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Deep-sea hydrothermal vents are dynamic environments with exotic fauna, including bathymodiolin 
mussels and scale worm annelids that are often in close association. In this study, we found a new species 
of Branchipolynoe (Aphroditiformia: Polynoidae) living in the recently discovered mussel Gigantidas 
vrijenhoeki in deep-sea hydrothermal vents and methane seeps at 2,014–2,023 m depth. Based on the 
morphology and full mitochondrial genome sequences of specimens of Branchipolynoe from the Onnuri 
vent field (OVF) on the northern Central Indian Ridge, we describe them as a new species: Branchipolynoe 
onnuriensis sp. nov. This species resembles B. longqiensis and B. tjiasmantoi, but can be distinguished 
from these species by the shape of the notopodial acicular lobe and the tips of the subacicular 
neurochaetae. This identity is well-supported by genetic distance and phylogenetic analyses based on the 
mitochondrial c oxidase subunit I (COI) gene, with the new species being closest to the Western Pacific 
species B. tjiasmantoi. Phylogenetic analyses support close relationships between the Indian Ocean and 
Western Pacific hydrothermal polychaetes. Our data provide a foundation for exploring the evolutionary 
relationship between scale worms and bathymodiolin mussels.

Key words: Chemosynthetic environment, Full mitochondrial genome, Hydrothermal vent, Mitochondrial 
cytochrome c oxidase subunit I (COI), Polychaeta, Taxonomy.

BACKGROUND

Hydrothermal vents were first discovered on a sea 
ridge crest off the Galapagos Islands in 1977 (Lonsdale 
1977). Many vents continue to be discovered along 
global mid-ocean ridge systems, back-arc diffusion 
centers, and off-axis submarine volcanoes (Beedessee 
et al. 2013). Deep-sea hydrothermal vents are dynamic 
environments with steep nutrient gradients and 

physicochemical conditions driven by volcanic and 
tectonic activities (Ryu et al. 2020). Investigations of 
the diversity and distribution of vent communities are 
critical due to their unique nature (Wu et al. 2019). Vents 
are commonly associated with dense communities and 
high biomass of organisms, and are patchily distributed 
on the deep-sea bottom (Van Dover 1990; Rogers et 
al. 2012). These communities contribute significantly 
to the production of chemosynthetic biomass and 
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demonstrate the remarkable adaptability of life to the 
extreme conditions of hydrothermal ecosystems (Van 
Dover et al. 2001), as the organisms in these habitats are 
maintained by chemically synthesized energy sources, 
such as hydrogen sulfide and methane released from 
hydrothermal mineral deposits (Dubilier et al. 2008).

Since the discovery of a hydrothermal vent 
community at the Kairei vent field near the Rodriguez 
Triple Junction in the Indian Ocean in 2000 (Hashimoto 
et al. 2001), five hydrothermal vent ecosystems have 
been found along the northern Central India Ridge 
(CIR) and Southwest Indian Ridge (SWIR), including 
the Dodo, Edmond, Longqi, Solitaire, and Onnuri vent 
fields (Copley et al. 2016; Jang et al. 2020; Nakamura 
et al. 2012). As a consequence, the biogeographical 
connectivity of Indian Ocean vent fauna has become a 
focus of research (Beedessee et al. 2013). Indian Ocean 
mid-ocean ridges have been suggested to function as 
biogeographical pathways linking Western Pacific and 
Atlantic Ridge vent fauna (German et al. 1998). Thus, 
the evolutionary affinity of Western Pacific and Indian 
Ocean vent invertebrates has been proposed to exhibit 
an asymmetric assembly pattern , with a positive bias in 
the Western Pacific (Van Dover et al. 2001).

Polychaetes of the suborder Aphroditiformia 
(Annelida) are commonly referred to as scale worms 
due to their dorsal scales (elytra) (Rouse and Fauchald 
1997). Scale worms are found throughout the tropics, 
polar regions, intertidal zones, and deep seas (Pettibone 
1986; Wiklund et al. 2005; Glasby and Hutchings 2010; 
Norlinder et al. 2012; Salazar-Silva 2020). Those in the 
genus Branchipolynoe Pettibone, 1984 live within the 
mantle cavities of bathymodiolin mussels inhabiting 
hydrothermal vents and methane seeps (Desbruyères 
et al. 2006). Notably, they have well-developed 
arborescent branchiae that are larger than those of other 
polynoids (Hourdez and Jouin-Toulmond 1998). Unlike 
typical scale worms, which have large scales completely 
covering the dorsum, species of Branchipolynoe have 
small scales, leaving most of the dorsum uncovered 
(Lindgren et al. 2019), which is characteristic of 
symbiotic species of the polynoids (Martín and 
Britayev 1998 2018). In the Indian Ocean, species of 
Branchipolynoe have been reported from SWIR deep-
sea hydrothermal vents (Zhou et al. 2017). 

Species of Branchipolynoe have been described 
as symbionts of host mussels, with recent studies 
suggesting they may be parasitic (Bebianno et al. 2018). 
For example, Branchipolynoe seepensis may cause gill 
filament displacement and minor gill tissue damage in 
its host mussels (Ward et al. 2004). These scale worms 
eat particulate organic matter filtered by the mussels, 
and accidentally consume mussel tissues during the 
feeding process, thus being considered kleptoparasites 

rather than true parasites or commensals (Britayev 
et al. 2007). The most recent common ancestor of 
eastern Pacific species of Branchipolynoe may be a 
methane seep inhabiting species that later migrated to 
hydrothermal vents in the western Pacific and Indian 
Oceans (Lindgren et al. 2019).

In this study, we examined numerous specimens 
of Branchipolynoe collected during a survey of the 
hydrothermal vents of the Onnuri vent field (OVF) in 
2019. Based on analyses of both morphological traits 
and the full mitochondrial genome, we describe these 
specimens as a new species and assess the phylogenetic 
associations of this species within Branchipolynoe 
based on the c oxidase subunit I (COI) gene. 

MATERIALS AND METHODS

Specimen collection and preservation

Specimens of Gigantidas vrijenhoeki Jang et al. 
2020 containing Branchipolynoe were collected from 
OVF deep-sea hydrothermal vents on the northern 
CIR (Fig. S1). The OVF is located along the CIR 
at 11°24.880'S, 66°25.420'E. All specimens were 
obtained at 2,014 to 2,023 m depth using a video-
guided hydraulic grab (television grab) during a Korea 
Institute of Ocean Science and Technology research 
cruise in 2019, preserved onboard in 95% (v/v) ethanol 
solution in a freezer (-20°C) and then transported to a 
laboratory. The type specimens were deposited in the 
Library of Marine Samples of the Korea Ocean Science 
& Technology (KIOST). 

Morphological examination

We used a Leica DMC 4500 camera mounted 
on a Leica M205C stereomicroscope for micrography, 
and the Helicon Focus v6 software (Helicon Ltd., 
Kharkiv, Ukraine) to incorporate images into stacks. 
For scanning electron microscope (SEM) observations, 
several parapodia were dissected, rinsed with absolute 
ethanol, dehydrated, coated with gold, inspected, and 
photographed using a Hitachi S-4300 SEM.

All known species of Branchipolynoe were 
tabulated to allow for comparison of key morphological 
characteristics, including the elytra, filaments, 
branchiae, dorsal cirri, notochaetae, and neurochaetae.

DNA extraction, amplification, and sequencing

The mitochondrial COI (~700 bp) was amplified 
via polymerase chain reaction (PCR) using the 
primers polyLCO and polyHCO (Carr et al. 2011) 
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with the D’Neasy Blood and Tissue Kit (Qiagen, 
Hilden, Germany) (Table S1). PCR amplification was 
performed in 20 µL reaction volumes containing 10 µL 
2× TOPsimpe DyeMIX-Tenuto (Enzynomics, Korea), 
1 µL template DNA (10 pmol/μL), 0.5 µL each primer 
(20 pmol/μL), and 8 µL distilled water (dH2O) under 
the following conditions: 1 cycle of 95°C (2 min), 
followed by 35 cycles of 95°C (30 s), 60°C (1 min), and 
72°C (1 min) and a final extension at 72°C (5 min). The 
PCR products were confirmed through 1% agarose gel 
electrophoresis in 1× TAE buffer.

Genome sequencing and trimming

Two libraries (insert size, 550 bp) were constructed 
using the TruSeq DNA Nano 550 bp kit. The libraries 
were sequenced using the Illumina Novaseq 6000 
platform. Low-quality reads (less than Q20) were 
trimmed using Trim Galore (ver. 0.6.6), discarding reads 
shorter than 120 bp and reads with unknown nucleotides 
(“N”). We obtained a total of 131,865,089 reads (Choi 
et al. 2022).

Mitochondrial genome assembly and annotation

After the filtering process, de novo assembly 
was performed using MITOZ (Meng et al. 2019) and 
SPAdes (ver. 3.14.0) software (Bankevich et al. 2012). 
Putative mitochondrial contigs generated by both 
programs were identified and annotated on the MITOS 
web server (Bernt et al. 2013). The circular mitogenome 
was visualized using Circos (ver. 0.69-8) (Krzywinski et 
al. 2009).

Phylogenetic analyses

To reconstruct phylogenetic relationships, we 

used both COI and 13 protein coding genes (PCGs). 
For the COI dataset, we gathered sequences for 10 
species of Branchipolynoe downloaded from the 
National Center for Biotechnology Information (NCBI) 
database and used Branchinotogluma japonicus as the 
outgroup (Table S2). Multiple sequence alignment of 
the coding genes was performed using MAFFT (ver. 
7.475) with the default options. COI distance matrices 
were implemented in MEGA X software using the 
Kimura two-parameter model (Kumar et al. 2018) (Table 
1). We used corrected Akaike information criterion 
(AICc) values to select the best model for phylogenetic 
t ree  recons t ruc t ion  us ing  IQ-TREE sof tware 
(Kalyaanamoorthy et al. 2017). The combined General 
Time Reversible, fitness, and invariable sites (GTR+F+I) 
evolutionary model was the best fit for the sequences in 
the dataset.

For the dataset of 13 PCGs, we concatenated each 
gene into 12 mitochondrial genome sequences (11 from 
Polynoidae and one individual from Aphroditidae which 
was used as outgroup) (Table S5). Each sequence was 
aligned separately using MAFFT (ver. 7.475). The best-
fit partitioning schemes and best evolutionary model for 
the 13 PCGs dataset were determined using the Partition 
Finder 2 program with the Bayesian information 
criterion (BIC). The GTR+I+G (G, rate of variation 
across sites) nucleotide substitution model was used for 
phylogenetic analysis.

A maximum likelihood (ML) phylogeny was 
reconstructed using the RAxML-NG tool (Kozlov et 
al. 2019). ML node support was determined from a 
majority-rule consensus tree constructed using 1,000 
bootstrap replicates. Bayesian inference (BI) analysis 
was performed using MrBayes (ver. 3.2.7) (Ronquist 
and Huelsenbeck 2003). Markov chain Monte Carlo 
(MCMC) searches were performed twice for 106 
generations with four chains, with sampling every 500 

Table 1.  Kimura two-parameter distance matrix of genus Branchipolynoe taxon COI sequences. (Branchipolynoe 
seepensis, B. symmytilida, B. pettiboneae, B. longqiensis, B. eliseae, B. halliseyae, B. kajsae, B. meridae, B. tjiasmantoi, 
B. onnuriensis sp. nov., and Branchinotogluma japonicus)

B. seepensis B. symmytilida B. pettiboneae B. longqiensis B. eliseae B. halliseyae B. kajsae B. meridae B. tjiasmantoi B. onnuriensis 
sp. nov.

Branchipolynoe seepensis
B. symmytilida 0.184
B. pettiboneae 0.156 0.194
B. longqiensis 0.164 0.194 0.070
B. eliseae 0.162 0.098 0.171 0.183
B. halliseyae 0.068 0.178 0.158 0.168 0.175
B. kajsae 0.063 0.179 0.166 0.179 0.179 0.057
B. meridae 0.162 0.091 0.185 0.187 0.081 0.177 0.176
B. tjiasmantoi 0.161 0.189 0.111 0.100 0.207 0.167 0.178 0.198
B. onnuriensis sp. nov. 0.172 0.191 0.095 0.106 0.207 0.189 0.192 0.191 0.049
Branchinotogluma japonicus 0.193 0.232 0.236 0.234 0.220 0.219 0.238 0.220 0.243 0.215
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generations for each analysis. The phylogenetic tree was 
visualized using FigTree (ver. 1.4.4).

RESULTS

TAXONOMY

Family Polynoidae Kinberg, 1856
Subfamily Aphroditiformia Pettibone, 1984

Genus Branchipolynoe Pettibone, 1984

Branchipolynoe onnuriensis sp. nov.
(Figs. 1–4)

urn:lsid:zoobank.org:act:7E5DB4C2-75E2-4AD2-9BE7-
A4860812BBC9

Material examined: Six specimens. Holotype (B_S_
MA_0031740) and five paratypes (B_S_MS_00031741-
5), collected from the OVF on the northern Central 
Indian Ridge (st. GTV1906 - 11°24.96'S, 66°25.397'E, 
2064 m depth).

Etymology: Named in honor of the discoverer of 
the OVF.

Ecology: The new species is only known to occur 
in association with the hydrothermal vent mussel 
Gigantidas vrijenhoeki Jang et al. 2020. It lives inside 
the pallial cavity of the host (Fig. S1). The deep-sea 

OVF in the Indian Ocean is a hydrothermal system 
characterized by low-temperature diffuse emissions 
with high concentrations of dissolved methane (Jang et 
al. 2020).

Description: Body slightly tapered anteriorly and 
posteriorly, flattened ventrally and arched dorsally, 
with 21 segments, first segment achaetous (Fig. 1A, 
B). Ten pairs of elytrophores and elytra on segments 
2, 4, 5, 7, 9, 11, 13, 15, 17, and 19; elytra moderately 
large, smooth, oval without border papillae (Fig. 2C–
F), covering the dorsum in the anterior and posterior 
regions, but leaving the mid-dorsum partially uncovered 
(Fig. 1A, B). Cirrophorous segments with short 
cylindrical cirrophores and short, smooth dorsal cirri 
with short slender tips, tapering gradually, exceeding 
the anterior and ventral cirri, not extending past the tips 
of neurochaetae (Fig. 1A).

Prostomium ellipsoidal, bilobed, with rounded 
anterior lobes. A pair of short conical palps and short 
conical median antennae between the two anterior lobes 
(Fig. 1C). Median antenna and palps smooth, tapering 
to slender tip; palps extending beyond prostomium. 
Prostomium lacking frontal peaks, eyes, and lateral 
antennae. First segment with two pairs of tentacular 
cirri, fused to the prostomium; tentacular cirri smooth, 
slightly slender, not exceeding prostomium length (Fig. 
1C). Thick, muscular pharynx with five pairs of dorsal 
and ventral small, sac-like terminal papillae surrounding 

Fig. 1.  Branchipolynoe onnuriensis sp. nov. holotype, female. (A) Dorsal view. (B) Ventral view. (C) Anterior region in dorsal view. (D) Mid-body 
in ventral view; arrows indicating the nephridial papillae. Pa: palps; ma: median antenna; pr: prostomim; e1: first elytron; dtc: dorsal tentacular cirrus; 
vtc: ventral tentacular cirrus.
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the mouth (Fig. 2A).
Branchiae on segments 3–21, dense, arborescent, 

with short terminal filaments (Fig. 2B), not extending 
beyond the elytral border, gradually decreasing in size 
anteriorly and posteriorly, separated into two types 
emerging dorsally and ventrally, respectively. Dorsal 
tubercles non-discernible.

Parapodia subbiramous. Notopodia smaller than 
neuropodia, with few notochaetae projecting beyond 
notopodia (Fig. S2). Neuropodia large, rounded, 
enclosing numerous neurochaetae with rounded 
lobes. Notochaetae smooth; stouter and shorter than 
neurochaetae (Fig. 3A). Notochaetae few (up to 8 per 

parapodium), more numerous in middle and posterior 
than anterior segments, slightly tapering, with serrated 
distal parts, rounded unidentate tips and shafts with 
indistinctive serrations (Fig. 3B–D). Neurochaetae 
numerous, more abundant on middle than anterior and 
posterior segments, arranged as a lateral fan, tapering, 
with subdistal swelling and small spines along the edge, 
serrations starting at the midpoint of the expanded 
distal part on only one side and extending distally; 
supraacicular neurochaetae long, stout, with slender 
tips, bidentate, with hooked distal teeth, serrated distally 
and flattened on one side; subacicular neurochaetae 
similar to supraacicular but with shorter distal serrated 

Fig. 2.  Branchipolynoe onnuriensis sp. nov. paratype 5. (A) Frontal view of pharynx. (B) Branchia from segment 10. (C) Left 4th elytron from 
segment 7. (D) Left 6th elytron from segment 11. (E) Left 8th elytron from segment 15. (F) Left 9th elytron from segment 17.
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parts (Fig. 4).
Ventral cirri smooth, small, lacking papillae, 

inserted in the middle of neuropodia; projecting 
anteriorly (Fig. 1D). Nephridial papillae ventral, on 
segments 11 and 12 in females, long, reaching the next 
segment, projecting posteriorly (Fig. 1D). Pygidium 
small, round with a pair of short, stout, tapered anal 
cirri, not fused (Fig. 1B).

Morphological variation: Holotype 28 mm long 
and 13 mm wide (including parapodia); paratypes 23–
31 mm long and 8–14 mm wide (including parapodia). 
All specimens showing nephridial papillae on segments 
11 and 12, suggesting all were females.

Remarks: Nine species of Branchipolynoe have 

been described (Pettibone 1984 1986; Miura and 
Hashimoto 1991; Zhou et al. 2017; Lindgren et al. 
2019; Wu et al. 2019). The diagnostic characteristics of 
this genus were established based on Branchipolynoe 
symmytilida and amended based on B. seepensis to 
include the first position of branchiae, the presence of 
cephalic peaks, and the form of parapodia (Pettibone 
1984 1986). Subsequently, B. longqiensis was described 
from the Indian Ocean and five additional species 
were described from the Pacific Ocean (Lindgren et al. 
2019; Zhou et al. 2017) (Table S2). Members of this 
genus have 21 segments, 10 elytra partially covering 
the dorsal region and bilobed prostomium (except B. 
kajsae) lacking cephalic peaks (except B. symmytilida). 

Fig. 3.  Branchipolynoe onnuriensis sp. nov. paratype 5, female, showing left notopodium on segment 4. (A) Detail of notochaetae tip. (B) Detail of 
distal part of notochaetae. (C) Detail of notochaetae tip. (D) Detail of serration in distal part of notochaetae.
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Branchipolynoe onnuriensis sp. nov. most closely 
resembles B. longqiensis and B. tjiasmantoi in having 
branchiae starting on the third segment and subbiramous 
parapodia, but differs in the two latter species have 
short, rounded notopodial acicular lobes, inconspicuous 
pharyngeal papillae, and different tip shapes of their 
sub-acicular neurochaetae (Table S3).

Phylogenetic analyses

The COI genetic distances between species of 
Branchipolynoe ranged from 0.049 to 0.207 (0.167 on 
average, Table 1). The closest species to B. onnuriensis 
sp. nov. was B. tjiasmantoi from the western Pacific, 
followed by B. pettiboneae and B. longqiensis, which 
were considered sister species due to their similar 
morphology (Lindgren et al. 2019), and then by B. 
longqiensis from the Indian Ocean (Table 1).

As the COI sequences obtained through PCR and 
genome assembly were identical, we used the latter 

dataset for reconstruction of the phylogeny tree. The 
ML tree and BI analyses inferred from Branchipolynoe 
mitochondrial COI sequences produced a single 
topology for each region (Fig. 5). The branch containing 
B. onnuriensis sp. nov. and B. tjiasmantoi had high 
support values (ML: 92%, BI: 1.0).

Phylogenetic relationships among Polynoidae were 
inferred using a concatenated 13-gene dataset, which 
produced similar topologies to ML and BI analyses (Fig. 
6). Interestingly, the genus Branchipolynoe formed a 
clade with high support (ML: 100%, BI: 1.0) and the 
gene orders within this clade were identical, while the 
subfamily Lepidonotinae was not monophyletic.

General features of mitochondrial genomes

The  comple te  mi tochondr ia l  genome o f 
B. onnuriensis sp. nov. was 16,217 bp in length, 
comprising 15 protein-coding genes (PCGs) (Fig. 7), 7 
NADH dehydrogenase subunits (nad1–6 and nad4L), 4 

Fig. 4.  Branchipolynoe onnuriensis sp. nov. paratype 5, female, showing left neuropodium on segment 6. (A) Neurochaetae. (B) Serration at distal 
part of supraaciular neurochaetae. (C–E) Detail of supraacicular neurochaeta tips. (F) Distal parts of two subacicular neurochaeta. (G) Detail of 
subacicular neurochaeta tip.
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cytochrome oxidase subunits (cob and cox1–3), 2 ATP 
synthase subunits (atp6 and atp8), and 2 small and large 
ribosomal RNA genes (rns and rnl). We identified 22 
transfer RNA genes (tRNAs) and an A+T-rich region. 
Among these genes, ND5 was the longest (1,525 bp) 
and atp8 was the shortest (160 bp). The tRNA length 
ranged from 64 (trnC) to 71 (trnQ), with an average 

length of 66.41 bp (Table 2). 
The gene order was identical for all three 

species of Branchipolynoe investigated (Fig. 6). 
Within the subfamily Lepidonotinae, Halosydna sp., 
and Lepidonotopodium sp. had a different syntenic 
arrangement wherein ATP6, ND4L, ND5 and ND6 were 
translocated (Zhang et al. 2018).

Base composition

To assess the mitochondrial genome, we calculated 
its nucleotide composition (A%, C%, G%, T%, A + 
T%, C + G%), AT skew, and GC skew. AT and GC 
skew were calculated as follows: AT skew = (A – T%) 
/ (A% + T%) and GC skew = (G – C%) / (G% + C%). 
The overall nucleotide composition of the complete 
mitochondrial genome was 28.45% A, 24.44% C, 8.99% 
G, and 38.12% T. The proportion of AT content (66.57%) 
was ~1.99 times higher than that of GC content (33.43%) 
(Table S4). Most genes showed positive AT skew, 
except rns and rnl. All genes also showed negative GC 
skew, indicating that PCGs in B. onnuriensis sp. nov. 
contained a higher percentage of T and C than A and G, 
except rns and rnl. 

DISCUSSION

At present, Branchipolynoe includes 10 species 
from hydrothermal vents and methane seeps worldwide, 
including five found in the eastern Pacific, two in the 
western Pacific, and two in the Indian Ocean (Lindgren 

Fig. 5.  Maximum likelihood (ML) tree inferred from mitochondrial 
cytochrome c  oxidase I (COI) sequences of the species of 
Branchipolynoe. Numbers at nodes represent ML and Bayesian 
inference supports.
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et al. 2019). Branchipolynoe onnuriensis sp. nov. is 
the second species of this genus found at Indian Ocean 
deep-sea hydrothermal vents. Morphologically, it 
resembles B. longqiensis from the Indian Ocean and 
B. tjiasmantoi from the western Pacific, and the latter 
species is phylogenetically closest. The most recent 
common ancestor of Branchipolynoe could have lived at 
methane seeps in the eastern Pacific, which share basic 
ecological conditions with western Pacific and Indian 
Ocean hydrothermal vents. This origin could facilitate 

the westward migration of Branchipolynoe. Migration 
patterns of Branchipolynoe to other regions in the 
Indian Ocean, as well as their evolutionary processes 
during adaptation to these harsh environments requires 
further investigation.

Branchipolynoe onnuriensis sp. nov. showed 
interspecific genetic distances sufficient to support 
its description as a new species. Animal species are 
commonly described without apparent morphological 
differences based on molecular data alone (Halt et al. 

Fig. 7.  Circular map of the complete mitochondrial genome of Branchipolynoe onnuriensis sp. nov. Outer to inner circles represent: (i) the positions 
of annotated genes, (ii) the sequencing depth and (iii) the GC content.
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2009). Molecular tools appear sufficiently reliable to 
separate species of polychaetes, which may contribute 
to elucidation of their geographic distribution patterns 
(Nygren 2014). Polynoids are the most diverse and 
widely distributed polychaete group at hydrothermal 
vents and seeps, and are a good model for evaluating 
the biogeographic distributions of deep-sea fauna (Wu 
et al. 2019).

Species  of  Branchipolynoe  l ive at  e i ther 
hydrothermal vents or in methane seeps, although 
B. pettiboneae occurs in both environments. Two 
undescribed species  have been reported from 
hydrothermal fields on the CIR and SWIR (Copley et 
al. 2016). Branchipolynoe sp. “Dragon,” a commensal 
scale worm found in bivalve mussels in the Longqi 

vent field on the SWIR, genetically resembles the other 
undescribed species (Branchipolynoe sp. “VG-2002”) 
from the Kairei vent field on the CIR. 

Minimum COI distances are not commonly 
accepted for classification of species, and each taxon 
appears to have a different minimum COI distance 
(Berriman et al.  2018). Therefore, a minimum 
interspecific distance greater than the maximum 
interspecies distance is often used to identify new species 
(Meier et al. 2008). Lindgren et al. (2019) found that the 
minimum COI distance between Branchipolynoe species 
was 3.7%, and most distances exceeded 5% (Lindgren 
et al. 2019). For our new species, the minimum genetic 
distance to another species was 0.049, representing 
a genetic difference of > 5% from the most closely 

Table 2.  Annotation of the Branchipolynoe onnuriensis sp. nov. mitochondrial genome

Gene Strand Position Length (bp) Initiation codon Stop codon

trnS + 1,099–1,167 69
nad2 + 1,168–2,193 1026 ATG TAA
cox1 + 2,171–3,712 1542 ATG TAA
cox2 + 3,765–4,454 690 ATG TAA
trnD + 4,459–4,524 66
atp8 + 4,525–4,680 156 ATG TAA
trnY + 4,682–4,748 67
cox3 + 4,750–5,529 780 ATG TAA
trnQ + 5,534–5,603 70
cob + 5,627–6,763 1137 ATG TAA
trnL + 6,765–6,831 67
trnF + 6,832–6,898 67
trnE + 6,906–6,969 64
trnP + 6,971–7,034 64
nad4 + 7,161–8,522 1362 ATG TAA
trnG + 8,525–8,589 65
trnS + 8,653–8,719 68
nad1 + 8,720–9,652 67 ATG TAG
trnI + 9,651–9,718 933
trnK + 9,724–9,790 68
nad3 + 9,792–10,145 67 ATG TAA
trnN + 10,150–10,213 354
nad6 + 10,275–10,763 64 ATG TAA
trnW + 10,784–10,847 489
atp6 + 10,848–11,549 64 ATG TAG
trnR + 11,548–11,611 702
trnH + 11,613–11,676 64
nad5 + 11,677–13,374 64 ATG TAA
trnT + 13,395–13,459 1698
nad4L + 13,460–13,762 65 ATG TAA
trnC + 13,780–13,842 303
trnM + 13,849–13,912 63
rns + 13,911–14,728 64
trnV + 14,723–14,785 818
rnl + 14,757–16,120 63
trnL + 16,081–16,145 1364
trnA + 16,147–16,210 65
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related species, B. tjiasmantoi. Thus, the molecular data 
confirm the observed morphological differences and 
support the designation of a new species.

Branchipolynoe onnuriensis sp. nov. lives 
symbiotically with the recently discovered mussel 
G. vrijenhoeki. Branchipolynoe species are usually 
found in bivalve mussels, and are most often solitary 
(rarely, two are found within one mussel) (Plouviez 
et al. 2008). Thus, the lack of previous records of 
symbiotic polynoids in the OVF is may be due to the 
apparent rarity of Bathymodiolus mussels (McKiness 
et al. 2005). These symbiotic polynoids subsist on host 
chemical synthesis byproducts, and obtain protection 
from external risks from host shells (Company et al. 
2007). Symbiont haplotypes and host species or depth 
ranges appear unrelated, as the populations showed no 
significant within-species genetic distances (Lindgren 
et al. 2019). Species of Branchipolynoe have evolved to 
coexist with a variety of hosts at different depths, and 
any mussel adapted to life around hydrothermal vents or 
methane seeps appears to be a suitable host.

In this investigation, only female individuals of 
Branchipolynoe onnuriensis sp. nov. were identified 
among the six specimens, based on the presence of 
nephridial papillae on segments 11 and 12. Some 
species (e.g., Branchipolynoe seepensis) are sexually 
dimorphic in favor of  larger females, with sex ratios 
between 1.4:1 and 2:1 (Van Dover et modified by our 
side 1999; Jollivet et modified by our side 2000). This 
result could be related to an interesting ecological 
or life cycle feature of the genus Branchipolynoe. 
As  suggested previously, females may have reduced 
mobility (and thus always remain inside the host 
mussel), while males are more motile and can leave the 
host for reproductive purposes (Britaev et al. 2003). 
Britaev modified by our side (2003) investigated the 
correlation between Branchipolynoe seepensis and 
trauma in the Bathmodiolus mollusc host, and found 
no evidence to suggest that this polychaete consumed 
host tissue as food. B. seepensis could be considered 
parasitic rather than symbiotic with Bathymodiolus 
molluscs. The unique environment of deep-sea 
hydrothermal vents may lead to differences from 
general parasitic relationships observed in nature, 
and therefore additional research on the relationships 
between Branchipolynoe and their hosts is needed.

Among hydrothermal vent species, B. symmytilida 
lives with the mussel B. thermophilus, B. pettiboneae 
with B. brevior, B. longqiensis with B. marisindicus and 
B. tjiasmantoi with B. brevior. However, some species 
of this genus have recently been discovered in cold 
seeps, and their larvae may be capable of traveling long 
distances between hydrothermal vents or among vent 
systems, allowing for gene flow (Lindgren et al. 2019). 

Further studies are needed to determine whether species 
of Branchipolynoe have preferred host mussels, how 
they coexist, their evolutionary history, and the role they 
play in hydrothermal environments.

CONCLUSIONS

A new species of Branchipolynoe was described 
from the deep-sea hydrothermal OVF on the northern 
CIR. The identity of the new species was supported by 
genetic distance and phylogenetic analyses based on 
the COI gene, and the new species was most closely 
related to the western Pacific species Branchipolynoe 
tjiasmantoi. In addition, the full mitochondrial genome 
was assessed. Our data provide information about the 
evolutionary relationship between scale worms and 
bathymodiolin mussels.
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Supplementary materials

Fig. S1.  Location of Branchipolynoe onnuriensis sp. 
nov. inside the mussel Gigantidas vrijenhoeki. (download)

Fig. S2.  Branchipolynoe onnuriensis sp. nov. paratype 
5, female. A, Left parapodium from segment 2, posterior 
view. B, Left parapodium from segment 3, posterior view. 
C, Left parapodium from segment 4, posterior view. 
D, Left parapodium from segment 5, posterior view. E, 
Left parapodium from segment 7, posterior view. F, Left 
parapodium from segment 8, posterior view. (download)

Table S1.  Primer sets for the mitochondrial cytochrome 
c oxidase I (COI) genes used in this study. (download)

Table S2.  Sampling information for species used for 
phylogenetic analysis in this study. (download)

Table S3.  Main morphological characteristics of the 
ten-known species of Branchipolynoe. (download)

Table S4.  Base composition of the mitochondrial genome 
of Branchipolynoe onnuriensis sp. nov. (download)

Table S5.  Sampling information of species used for 
phylogenetic analysis in this study. (download)
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