7.1 Diagonalization of Symmetric Matrices



Matrix transpose reminder:

The transpose of AB is (AB)' =BT AT

The transpose of A™ is (A‘l)T =(AT )_1




Definition:
A symmetric matrix is a matrix A such that A" = A.

A symmetric matrix Is necessarily square.
A symmetric matrix may not have an inverse but if

an inverse exists, it is also symmetric.
Here Is an example of a symmetric matrix:
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Multiplying any matrix A by AT gives a symmetric matrix.

Note, our previous LU factorization misses symmetry
but a factorization LDL™ captures it!

Suppose A= AT can be factored into A= LDU without
row interchanges. Then U Is the transpose of L.

The symmetric factorization becomes A= LDL'




The transpose of A= LDU gives AT =UTD'L".

Since A= A", we have a factorization of A into
lower triangular times diagonal times upper triangular.

L" is upper triangular with ones on the diagonal just

like U. Since this factorization is unique, L' must be
Identical to U.




Example:

LT =U and A=LDL'.
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Elimination and Symmetric Matrices.

A= A" is an advantage. The smaller matrices stay
symmetric as elimination proceeds. So we only need to
work with half the matrix! The lower right-hand corner

remains symmetric.
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The elimination effort is reduced from % operations

n3
to 5

In addition, there 1S no need to store entries from both
sides of the diagonal, or to store both L and U.
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EXAMPLE 2 If possible, diagonalize the matnix 4 = | —2

-1 -1
SOLUTION The characteristic equation of A4 is

0=—A"+ 17417 — 904 + 144 = —(A — 8)(A — 6)(L — 3)
Standard calculations produce a basis for each eigenspace:
—1
A=8: v = 1 {: A ¥ : A=3: vy =
0 I

These three vectors form a basis for B-. In fact, it is easy to check that {v;, vy, vy 1s
an orthogonal basis for B-. Experience from Chapter 6 suggests that an orthonormal
basis might be useful for calculations, so here are the normalized (unit) eigenvectors.

—1 I."I. \.":I —1 I."I. \."Ia | I."I. \.-'ij
u = 1/+ m=|-1/J6|. ma=|1/,3
2//6 1/+/3

R,
0

—1/+2 —1/+/6  1/4/3
P = /2 —1/V6 1/43
0 2.":. \."E ].I."I. *\;,‘."i_E

Then 4 = PDP~'. as usual. But this time, since P is square and has orthonormal
columns, P is an orthogonal matrix, and P! is simply P . (See Section 6.2.) |




Theorem
If A Is symmetric, then any two eigenvectors from different
eigenspaces are orthogonal.

PROOF Let v, and v, be eigenvectors that correspond to distinct eigenvalues, say, 4
and A,. To show that v, - v, = 0, compute

AVi= ¥y = (V) vy = (4Av)) v,

= (v] AT)vy = v (4v)

= ‘i-"i 1.-;.31-’3 )

1

= .-;.'_:T ¥V, = .-;.'_:‘-'l * Vo

Hence (A — A2)vi-va=0.ButA; — Az £ 0,50 vi-v2 = (.




Definition
A matrix A is orthogonal
are an orthogonal matrix

matrix D such that A=P

y diagonalizable if there
P with P~1=PT, and a digonal

DPT = PDP-L

If A Is orthogonally diagonalizable, then
AT =(PDPT) =PTTDTPT =A

So A Is symmetric.




Theorem
An nxn matrix A is orthogonally diagonalizable
If and only If A Is a symmetric matrix.

EXAMPLE 3 Orthogonally diagonalize the matrix 4 = [—"

characteristic equation is

D= A +1222 =214 —-98 = —(A =711 + D)




SOLUTION The usual calculations produce bases for the eigenspaces:

Although vy and v, are linearly independent, they are not orthogonal. Recall from
Y- ¥V

Section 6.2 that the projection of v, onto v| is ——v,;, and the component of v,
] Vi- V)

orthogonal to v 1s

—1/2 ‘|
|




Then {v,.Z,} is an orthogonal set in the eigenspace for A = 7. (Note that z; is a linear
combination of the eigenvectors v, and v,, so Z; 1s in the eigenspace. This construction
of z; 15 just the Gram—Schmuidt process of Section 6.4.) Since the eigenspace 1s two-
dimensional (with basis v, v2), the orthogonal set {v). Z2 15 an orthogonal basis for the
eigenspace, by the Basis Theorem. (See Section 2.9 or 4.5.)

Normalize v, and z, to obtain the following orthonormal basis for the eigenspace

forA =T:
/¥ ~1/ vﬁ-‘
m = 0 | —1 \.f"ﬁ
L l \.fi? 1/ \xlﬁJ
An orthonormal basis for the eigenspace for A = —2is

1 I
n: = E".’ = —
’ [|12v; ’ 3

2

By Theorem 1. u; is orthogonal to the other eigenvectors u; and u,. Hence {u;. m;. 055
1s an orthonormal set. Let

Then P orthogonally diagonalizes A, and 4 = PDF g




The Spectral Theorem for Symmetric Matrices:
An nxn matrix A is orthogonally diagonalizable if and only
If A Is a symmetric matrix.

The Spectral Theorem for symmetric matrices:

An nxn symmetric matrix A has the following properties:

a. A has n real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace for each eigenvalue 4
equals the multiplicity of 4 as a root of the characteristic
equation.

c. The eigenspaces are mutually orthogonal, in the sense that
eigenvectors corresponding to different eigenvalues are
orthogonal.

d. A s orthogonally diagonalizable.




Spectral Decomposition.

Suppose A= PDP, where the columns of P are orthonormal
eigenvectors u.,...,0, of A and the corresponding eigenvalues

Ay, .., A, are in the diagonal matrix D. Then, since Pt =PT,

_21 O__U:'I-I'_
A=PDPT =[d, - 0,] . 5
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Sowe have A=A00 +A4,0,0) +---+A,0,03

This representation of A iIs called a spectral decomposition
of A because It breaks up A into pieces determined by the
spectrum (the eigenvalues) of A.

Each term, UjUJT, is an nxn matrix of rank 1.




For example, every column of A0 is a multiple of G,.

In addition, each matrix UjUJT IS a projection matrix in
the sense that for each X in R", the vector (UJUJT ))‘(’ is the

orthogonal projection of X onto the subspace spanned
by U;.




When A4 1s symmetric and not too large, modern high-performance computer al-
gorithms calculate eigenvalues and eigenvectors with great precision. They apply
a sequence of similarity transformations to A mvolving orthogonal matrices. The
diagonal entries of the transformed matrices converge rapidly to the eigenvalues

of A. (See the Numerical Notes in Section 5.2.) Using orthogonal matrices

generally prevents numerical errors from accumulating during the process. When
A 1s symmetric, the sequence of orthogonal matrices combines to form an
orthogonal matrix whose columns are eigenvectors of A.

A nonsymmeitric matrix cannot have a full set of orthogonal eigenvectors, but
the algorithm still produces fairly accurate eigenvalues. After that, nonorthogonal
techniques are needed to calculate eigenvectors.




311 1
Example: LetA=|1 3 1|andV=|1|.
113 1

Verify that 5 Is an eigenvalue of A and
V Is an eigenvector. Then orthogonally diagonalize A.




Solution:

311
Let A=|1 3 1|. Since each row of A sums to 5,
11 3]
1] [3 1 1][1] [5] [1]
Alli=l1 3 1||1|=|5|=5|1|and5 isan eigenvalue of A.
1) 1131 |5 |1

1 13
The eigenvector |1 may be normalized to get U, = 1/3J3].
1 1/3
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associated with the eigenvector | 1|.

W

W R

, SO 2 Is a repeated eigenvalue of A

For A =2, a basis for the eigenspace is {| 1|,[—1|}. This basis is

an orthogonal basis for the eigenspace, and these vectors can be

normalized ...




o U E
We get U,=| 1/v2|andl,=|-1/V6|

0_ ! 2/@_

Let
1/V3 -1/N2 -1/J6]

P=[0, U, U]=|%¥3 V2 -YJ6|andD=
_J/@ 0 2/@_

Then P orthogonally diagonalizes A, and A=PDP!
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Theorem:
If A Is symmetric, then any two eigenvectors
from different eigenspaces are orthogonal.

Definition:

A matrix A is said to be orthogonally diagonalizable if there
are an orthogonal matrix P and a diagonal matrix D such that

A=PDPT = PDP-!




To orthogonally diagonalize an nxn matrix, we need to find
n linearly independent and orthonormal vectors.

If A Is orthogonally diagonalizable, then
AT =(PDPT) =PTPTDTPT =PDP-1=A

Thus A Is symmetric. It turns out that every symmetric
matrix Is orthogonally diagonalizable.




Matrix Factorizations

111 _ (lower triangular L upper triangular U
1. A=LU = : ) :
ones on the diagonal )| pivots on the diagonal

Requirements: No row exchanges, as Gaussian Elimination
reduces A to U.

2. A=SAS
=(eigenvectors in S)(eigenvalues in A)(Ieft eigenvectors in S‘l)
Requirements: A must have n linearly independent eigenvectors.




Matrix Factorizations continued

3. A=QAQT =(orthogonal matrix Q)(real eigenvalues in A)(QT is Q—l)
Requirements: A is symmetric. This is the spectral theorem.

4 A—UsVT = orthogonal mxn matrix X orthogonal
' U ismxm )| o,,...,0, on diagonal | V isnxn

Requirements: None. The singular value decomposition (SVD)
has the eigenvectors of AAT in U and of AT Ain V.




Reminder: Diagonalization of a Matrix

The eigenvectors diagonalize a matrix.
Suppose the nxn matrix A has n linearly independent
eigenvectors. If these eigenvectors are the columns of

a matrix S, then S7AS is a diagonal matrix A.
The eigenvalues of A are on the diagonal of A :
A _

STAS =A= o
An




Proof: Put the eigenvectors V. in the columns of S,
and compute AS by columns:

AS=AV, 7, - Vo ]=[A% AV, - AV, ]
Then the last matrix can be written

[

The order of the matrices is important.
If A came before S then 4, would multiply the entries

In the first row. We want A, to appear in the first column.
Therefore, AS =SA, or STAS=SA = A=SASL

4
U, - V]| . |=SA

An

Vi

[/11\71 /12\72 /Invn]




End presentation
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