7.1 Diagonalization of Symmetric Matrices

Matrix transpose reminder:

The transpose of $A B$ is $(A B)^{T}=B^{T} A^{T}$

The transpose of A^{-1} is $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

Definition:

A symmetric matrix is a matrix A such that $A^{T}=A$.

A symmetric matrix is necessarily square.
A symmetric matrix may not have an inverse but if an inverse exists, it is also symmetric.
Here is an example of a symmetric matrix:

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 5 & 8 \\
0 & 8 & -7
\end{array}\right]
$$

Multiplying any matrix A by A^{T} gives a symmetric matrix.
Note, our previous $L U$ factorization misses symmetry but a factorization $L D L^{-1}$ captures it!

Suppose $A=A^{T}$ can be factored into $A=L D U$ without row interchanges. Then U is the transpose of L.

The symmetric factorization becomes $A=L D L^{T}$

The transpose of $A=L D U$ gives $A^{T}=U^{T} D^{T} L^{T}$.
Since $A=A^{T}$, we have a factorization of A into lower triangular times diagonal times upper triangular.
L^{T} is upper triangular with ones on the diagonal just like U. Since this factorization is unique, L^{T} must be identical to U.

Example:
$L^{T}=U$ and $A=L D L^{T}$.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 8
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=L D L^{T}
$$

Elimination and Symmetric Matrices.
$A=A^{T}$ is an advantage. The smaller matrices stay symmetric as elimination proceeds. So we only need to work with half the matrix! The lower right-hand corner remains symmetric.

$$
\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
a & b & c \\
0 & d-\frac{b^{2}}{a} & e-\frac{b c}{a} \\
0 & e-\frac{b c}{a} & f-\frac{c^{2}}{a}
\end{array}\right]
$$

The elimination effort is reduced from $\frac{n^{3}}{3}$ operations to $\frac{n^{3}}{6}$.

In addition, there is no need to store entries from both sides of the diagonal, or to store both L and U.

EXAMPLE 2 If possible, diagonalize the matrix $A=\left[\begin{array}{rrr}6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5\end{array}\right]$.
SOLUTION The characteristic equation of A is

$$
0=-\lambda^{3}+17 \lambda^{2}-90 \lambda+144=-(\lambda-8)(\lambda-6)(\lambda-3)
$$

Standard calculations produce a basis for each eigenspace:

$$
\lambda=8: \mathbf{v}_{1}=\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] ; \quad \lambda=6: \mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
-1 \\
2
\end{array}\right] ; \quad \lambda=3: \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

These three vectors form a basis for \mathbb{R}^{3}. In fact, it is easy to check that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3}. Experience from Chapter 6 suggests that an orthonormal basis might be useful for calculations, so here are the normalized (unit) eigenvectors.

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{c}
-1 / \sqrt{6} \\
-1 / \sqrt{6} \\
2 / \sqrt{6}
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]
$$

Let

$$
P=\left[\begin{array}{crc}
-1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & 2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right], \quad D=\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Then $A=P D P^{-1}$, as usual. But this time, since P is square and has orthonormal columns, P is an orthogonal matrix, and P^{-1} is simply P^{T}. (See Section 6.2.)

Theorem
If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

PROOF Let \mathbf{v}_{1} and \mathbf{v}_{2} be eigenvectors that correspond to distinct eigenvalues, say, λ_{1} and λ_{2}. To show that $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$, compute

$$
\begin{aligned}
\lambda_{1} \mathbf{v}_{1} \cdot \mathbf{v}_{2} & =\left(\lambda_{1} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\left(A \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2} & & \text { Since } \mathbf{v}_{1} \text { is an eigenvector } \\
& =\left(\mathbf{v}_{1}^{T} A^{T}\right) \mathbf{v}_{2}=\mathbf{v}_{1}^{T}\left(A \mathbf{v}_{2}\right) & & \text { since } A^{T}=A \\
& =\mathbf{v}_{1}^{T}\left(\lambda_{2} \mathbf{v}_{2}\right) & & \text { since } \mathbf{v}_{2} \text { is an eigenvector } \\
& =\lambda_{2} \mathbf{v}_{1}^{T} \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{1} \cdot \mathbf{v}_{2} & &
\end{aligned}
$$

Hence $\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$. But $\lambda_{1}-\lambda_{2} \neq 0$, so $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$.

Definition

A matrix A is orthogonally diagonalizable if there are an orthogonal matrix P, with $P^{-1}=P^{T}$, and a digonal matrix D such that $A=P D P^{T}=P D P^{-1}$

If A is orthogonally diagonalizable, then

$$
A^{T}=\left(P D P^{T}\right)^{T}=P^{T T} D^{T} P^{T}=A .
$$

So A is symmetric.

An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

EXAMPLE 3 Orthogonally diagonalize the matrix $A=\left[\begin{array}{rrr}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right]$, whose
characteristic equation is

$$
0=-\lambda^{3}+12 \lambda^{2}-21 \lambda-98=-(\lambda-7)^{2}(\lambda+2)
$$

SOLUTION The usual calculations produce bases for the eigenspaces:

$$
\lambda=7: \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right] ; \quad \lambda=-2: \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
-1 / 2 \\
1
\end{array}\right]
$$

Although \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, they are not orthogonal. Recall from Section 6.2 that the projection of \mathbf{v}_{2} onto \mathbf{v}_{1} is $\frac{\mathbf{v}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$, and the component of \mathbf{v}_{2} orthogonal to \mathbf{v}_{1} is

$$
\mathbf{z}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right]-\frac{-1 / 2}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 / 4 \\
1 \\
1 / 4
\end{array}\right]
$$

Then $\left\{\mathbf{v}_{1}, \mathbf{z}_{2}\right\}$ is an orthogonal set in the eigenspace for $\lambda=7$. (Note that \mathbf{z}_{2} is a linear combination of the eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}, so \mathbf{z}_{2} is in the eigenspace. This construction of \mathbf{z}_{2} is just the Gram-Schmidt process of Section 6.4.) Since the eigenspace is twodimensional (with basis $\mathbf{v}_{1}, \mathbf{v}_{2}$), the orthogonal set $\left\{\mathbf{v}_{1}, \mathbf{z}_{2}\right\}$ is an orthogonal basis for the eigenspace, by the Basis Theorem. (See Section 2.9 or 4.5 .)

Normalize \mathbf{v}_{1} and \mathbf{z}_{2} to obtain the following orthonormal basis for the eigenspace for $\lambda=7$:

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{c}
-1 / \sqrt{18} \\
4 / \sqrt{18} \\
1 / \sqrt{18}
\end{array}\right]
$$

An orthonormal basis for the eigenspace for $\lambda=-2$ is

$$
\mathbf{u}_{3}=\frac{1}{\left\|2 \mathbf{v}_{3}\right\|} 2 \mathbf{v}_{3}=\frac{1}{3}\left[\begin{array}{r}
-2 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right]
$$

By Theorem 1, \mathbf{u}_{3} is orthogonal to the other eigenvectors \mathbf{u}_{1} and \mathbf{u}_{2}. Hence $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set. Let

$$
P=\left[\begin{array}{lll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}
\end{array}\right]=\left[\begin{array}{crr}
1 / \sqrt{2} & -1 / \sqrt{18} & -2 / 3 \\
0 & 4 / \sqrt{18} & -1 / 3 \\
1 / \sqrt{2} & 1 / \sqrt{18} & 2 / 3
\end{array}\right], \quad D=\left[\begin{array}{rrr}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

Then P orthogonally diagonalizes A, and $A=P D P^{-1}$.

The Spectral Theorem for Symmetric Matrices:
An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

The Spectral Theorem for symmetric matrices:
An $n \times n$ symmetric matrix A has the following properties:
a. A has n real eigenvalues, counting multiplicities.
b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
d. A is orthogonally diagonalizable.

Spectral Decomposition.

Suppose $A=P D P^{-1}$, where the columns of P are orthonormal eigenvectors $\vec{u}_{1}, \ldots, \vec{u}_{n}$ of A and the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are in the diagonal matrix D. Then, since $P^{-1}=P^{T}$,

$$
\begin{aligned}
A & =P D P^{T}=\left[\begin{array}{lll}
\vec{u}_{1} & \cdots & \vec{u}_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
0 & \ddots & \\
0 & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vdots \\
\vec{u}_{n}^{T}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\lambda_{1} \vec{u}_{1} & \cdots & \lambda_{n} \vec{u}_{n}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vdots \\
\vec{u}_{n}^{T}
\end{array}\right]
\end{aligned}
$$

So we have $\quad A=\lambda_{1} \vec{u}_{1} \vec{u}_{1}^{T}+\lambda_{2} \vec{u}_{2} \vec{u}_{2}^{T}+\cdots+\lambda_{n} \vec{u}_{n} \vec{u}_{n}^{T}$
This representation of A is called a spectral decomposition of A because it breaks up A into pieces determined by the spectrum (the eigenvalues) of A.

Each term, $\vec{u}_{j} \vec{u}_{j}^{T}$, is an $n \times n$ matrix of rank 1.

For example, every column of $\lambda_{1} \vec{u}_{1} \vec{u}_{1}^{T}$ is a multiple of \vec{u}_{1}.
In addition, each matrix $\vec{u}_{j} \vec{u}_{j}^{T}$ is a projection matrix in the sense that for each \vec{x} in \mathbb{R}^{n}, the vector $\left(\vec{u}_{j} \vec{u}_{j}^{T}\right) \vec{x}$ is the orthogonal projection of \vec{x} onto the subspace spanned by \vec{u}_{j}.

NUMERICAL NOTE

When A is symmetric and not too large, modern high-performance computer algorithms calculate eigenvalues and eigenvectors with great precision. They apply a sequence of similarity transformations to A involving orthogonal matrices. The diagonal entries of the transformed matrices converge rapidly to the eigenvalues of A. (See the Numerical Notes in Section 5.2.) Using orthogonal matrices generally prevents numerical errors from accumulating during the process. When A is symmetric, the sequence of orthogonal matrices combines to form an orthogonal matrix whose columns are eigenvectors of A.

A nonsymmetric matrix cannot have a full set of orthogonal eigenvectors, but the algorithm still produces fairly accurate eigenvalues. After that, nonorthogonal techniques are needed to calculate eigenvectors.

Example: Let $A=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Verify that 5 is an eigenvalue of A and \vec{v} is an eigenvector. Then orthogonally diagonalize A.

Solution:

Let $A=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$. Since each row of A sums to 5 ,
$A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 5 \\ 5\end{array}\right]=5\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and 5 is an eigenvalue of A.
The eigenvector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ may be normalized to get $\vec{u}_{1}=\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$.

Also,
$A\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{r}-2 \\ 2 \\ 0\end{array}\right]=2\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$, so 2 is a repeated eigenvalue of A associated with the eigenvector $\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$. For $\lambda=2$, a basis for the eigenspace is $\left\{\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right]\right\}$. This basis is an orthogonal basis for the eigenspace, and these vectors can be normalized ...

We get $\vec{u}_{2}=\left[\begin{array}{r}-1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right]$ and $\vec{u}_{3}=\left[\begin{array}{c}-1 / \sqrt{6} \\ -1 / \sqrt{6} \\ 2 / \sqrt{6}\end{array}\right]$.
Let

$$
P=\left[\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6}
\end{array}\right] \text { and } D=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \text {. }
$$

Then P orthogonally diagonalizes A, and $A=P D P^{-1}$

Theorem:
If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

Definition:
A matrix A is said to be orthogonally diagonalizable if there are an orthogonal matrix P and a diagonal matrix D such that

$$
A=P D P^{T}=P D P^{-1}
$$

To orthogonally diagonalize an $n \times n$ matrix, we need to find n linearly independent and orthonormal vectors.

If A is orthogonally diagonalizable, then

$$
A^{T}=\left(P D P^{T}\right)^{T}=P^{T} P^{T} D^{T} P^{T}=P D P^{-1}=A
$$

Thus A is symmetric. It turns out that every symmetric matrix is orthogonally diagonalizable.

Matrix Factorizations

1. $A=L U=\binom{$ lower triangular $L}{$ ones on the diagonal }$\binom{$ upper triangular $U}{$ pivots on the diagonal } Requirements: No row exchanges, as Gaussian Elimination reduces A to U.
2. $A=S \Lambda S^{-1}$
$=($ eigenvectors in $S)($ eigenvalues in $\Lambda)\left(\right.$ left eigenvectors in $\left.S^{-1}\right)$
Requirements: A must have n linearly independent eigenvectors.

Matrix Factorizations continued
3. $A=Q \Lambda Q^{T}=($ orthogonal matrix $Q)($ real eigenvalues in $\Lambda)\left(Q^{T}\right.$ is $\left.Q^{-1}\right)$ Requirements: A is symmetric. This is the spectral theorem.
4. $A=U \Sigma V^{T}=\binom{$ orthogonal }{U is $m \times m}\binom{m \times n$ matrix $\Sigma}{\sigma_{1}, \ldots, \sigma_{r}$ on diagonal }$\binom{$ orthogonal }{V is $n \times n}$ Requirements: None. The singular value decomposition (SVD) has the eigenvectors of $A A^{T}$ in U and of $A^{T} A$ in V.

$$
\sigma_{i}=\sqrt{\lambda_{i}\left(A^{T} A\right)}=\sqrt{\lambda_{i}\left(A A^{T}\right)}
$$

Reminder: Diagonalization of a Matrix

The eigenvectors diagonalize a matrix. Suppose the $n \times n$ matrix A has n linearly independent eigenvectors. If these eigenvectors are the columns of a matrix S, then $S^{-1} A S$ is a diagonal matrix Λ.

The eigenvalues of A are on the diagonal of Λ :

$$
S^{-1} A S=\Lambda=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

Proof: Put the eigenvectors \vec{v}_{i} in the columns of S, and compute AS by columns:

$$
A S=A\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} \vec{v}_{1} & \lambda_{2} \vec{v}_{2} & \cdots & \lambda_{n} \vec{v}_{n}
\end{array}\right] .
$$

Then the last matrix can be written
$\left[\begin{array}{llll}\lambda_{1} \vec{v}_{1} & \lambda_{2} \vec{v}_{2} & \cdots & \lambda_{n} \vec{v}_{n}\end{array}\right]=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}\end{array}\right]\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]=S A$
The order of the matrices is important.
If Λ came before S then λ_{1} would multiply the entries in the first row. We want λ_{1} to appear in the first column. Therefore, $A S=S \Lambda$, or $S^{-1} A S=S \Lambda \Rightarrow A=S \Lambda S^{-1}$.

End presentation

