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Matrix transpose reminder: 
 
        The transpose of  is 

        The transpose of  is 
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Definition:  
A   is a matrix  such that .    

A symmetric matrix is necessarily square.
A symmetric matrix may not have an inverse but if
an inverse exists, it is also symmetric.
Here 

Tsymmetric matrix A A A=

is an example of a symmetric matrix:
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Multiplying any matrix  by  gives a symmetric matrix.  

Note, our previous  factorization misses symmetry
but a factorization captures it!

Suppose   can be factored into  without
row i

T

T

A A

LU
LDL

A A A LDU

−

= =
nterchanges.  Then  is the transpose of .

The  becomes T

U L

symmetric factorization A LDL=



.The transpose of  gives 

Since , we have a factorization of  into
lower triangular times diagonal times upper triangular.   

 is upper triangular with ones on the diagonal just
like 

T T T T

T

T

A LDU A U D L

A A A

L

= =

=

.  Since this factorization is unique,  must be
identical to .

TU L
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Example:

    and 

1 2 1 0 1 0 1 2   2 8 2 1 0 4 0 1
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Elimination and Symmetric Matrices.
 is an advantage.  The smaller matrices stay 

symmetric as elimination proceeds.  So we only need to   
work with half the matrix!  The lower right-hand corner
rema

TA A=
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ins symmetric.
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 The elimination effort is reduced from operations3

to .  6

In addition, there is no need to store entries from both    
sides of the diagonal, or to store both  and .  
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Theorem
If  is symmetric, then any two eigenvectors from different   
eigenspaces are orthogonal.

A
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Definition
A matrix  is  if there
are an orthogonal matrix ,  with , and a digonal   
matrix  such that  

If  is orthogonally diagonalizable, then

          

T

T

A orthogonally diagonalizable
P P P

D A PDP PDP

A

−

−

=
= =

( )     .

So  is symmetric.  

TT T TT T TA PDP P D P A

A

= = =



Theorem
An  matrix  is orthogonally diagonalizable   
if and only if  is a symmetric matrix.

n n A
A

×







The Spectral Theorem for Symmetric Matrices:  
An  matrix  is orthogonally diagonalizable if and only   
if  is a symmetric matrix.

The Spectral Theorem for symmetric matrices:
An  symmetric matri

n n A
A

n n

×

× x  has the following properties:
a.   has  real eigenvalues, counting multiplicities.
b.  The dimension of the eigenspace for each eigenvalue  
     equals the multiplicity of  as a root of the char

A
A n

λ
λ acteristic

     equation.
c.  The eigenspaces are mutually orthogonal, in the sense that    
     eigenvectors corresponding to different eigenvalues are 
     orthogonal.
d.   is orthogonally diagonalizaA ble.
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Spectral Decomposition.
Suppose  where the columns of  are orthonormal   
eigenvectors , ,  of  and the corresponding eigenvalues

, ,  are in the diagonal matrix .  Then, since 
n
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1 1 1 2 2 2So we have    

This representation of  is called a spectral decomposition   
of  because it breaks up  into pieces determined by the
spectrum (the eigenvalues) of .  

T T T
n n nA u u u u u u

A
A A

A

λ λ λ= + + +     



Each term, , is an  matrix of rank 1.T
j ju u n n× 
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1 1 1 1For example, every column of   is a multiple of .    

In addition, each matrix  is a  in

the sense that for each  in , the vector  is the
orthogonal proje

T

T
j j
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u u u

u u projection matrix

x u u x
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x
u
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3 1 1 1
Example:  Let 1 3 1  and 1 .  

1 1 3 1

Verify that 5 is an eigenvalue of  and 
 is an eigenvector.  Then orthogonally diagonalize .   

A v

A
v A
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Solution:
3 1 1

Let 1 3 1 .  Since each row of  sums to 5,
1 1 3

1 3 1 1 1 5 1
  1 1 3 1 1 5 5 1  and 5 is an eigenvalue of .    

1 1 1 3 1 5 1

1
The eigenvector 1

1
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1 3
 may be normalized to get 1 3

1 3
u
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Also,  
1 3 1 1 1 2 1

    1 1 3 1 1 2 2 1 , so 2 is a repeated eigenvalue of    
0 1 1 3 0 0 0

1
associated with the eigenvector 1 .

0

For 2,  a basis for th

A A

λ
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= = =

−

= , .
1 1

e eigenspace is 1 1   This basis is
0 2

an orthogonal basis for the eigenspace, and these vectors can be
normalized ...

    
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1 2 1 6
We get   1 2 1 6    

0 2 6

Let
1 3 1 2 1 6 5 0 0

   1 3 1 2 1 6 and 0 2 0 .   
0 0 21 3 0 2 6

Then orthogonally diagonalizes , and 

u u
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Theorem:  
If  is symmetric, then any two eigenvectors   
from different eigenspaces are orthogonal.

Definition:  
A matrix  is said to be  if there   
are an orthogonal matrix

A

A orthogonally diagonalizable

1

  and a diagonal matrix  such that    

               T

P D

A PDP PDP−= =



( ) 1

To orthogonally diagonalize an  matrix, we need to find    
 linearly independent and orthonormal vectors.

If  is orthogonally diagonalizable, then   

       

Thus  is symme

TT T T T T T

n n
n

A

A PDP P P D P PDP A

A

−

×

= = = =

tric.  It turns out that every symmetric 
matrix is orthogonally diagonalizable.



Matrix Factorizations
lower triangular upper triangular 1.   ones on the diagonal pivots on the diagonal

     Requirements: No row exchanges, as Gaussian Elimination    
     reduce

L UA LU   
    
  

= =

( )( )( )
1

1

s  to .

2.  
    eigenvectors in eigenvalues in left eigenvectors in 
     Requirements:  must have  linearly independent eigenvectors.    

A U

A S S
S S

A n

−

−

= Λ
= Λ



( )( )( )1 

Matrix Factorizations continued

3.  orthogonal matrix real eigenvalues in is    
     Requirements:  is symmetric.  This is the spectral theorem.

 maorthogonal4.   is 

T T

T

A Q Q Q Q Q
A

m nA U V U m m

−

 
 
 

= Λ = Λ

×= Σ =
×
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1

  

trix orthogonal    , ,  on diagonal  is 
     Requirements: None.  The singular value decomposition (SVD)
     has the eigenvectors of  in  and of  in .

    

r
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A A AAλ λ

σ σ

σ

  
     

Σ
×
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Reminder: Diagonalization of a Matrix

 
Suppose the  matrix  has  linearly independent 
eigenvectors.  If these eigenvectors are the columns of    
a matrix ,  

The eigenvectors diagonalize a matrix. 
n n A n

S

×

1

1
1 .

then  is a diagonal matrix .

The eigenvalues of  are on the diagonal of :

                
n

S AS

A

S AS
λ

λ

−

−
 
 
 
 
  

Λ

Λ

=Λ = 



1 2 1 1 2 2

1 1 2 2 1 2

 Proof:  Put the eigenvectors in the columns of ,
and compute  by columns:

     .     
Then the last matrix can be written 

 

i

n n n

n n n

v S
AS

AS A v v v v v v

v v v v v v

λ λ λ

λ λ λ

      

     

= =

=
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 
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 
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The order of the matrices is important.  
If   came before  then  would multiply the entries
in the first row.  We want  to appear in the first column.
Therefore, ,  or

n

SA

S

AS S

λ

λ

λ
λ

 
 
 
 
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=

Λ

= Λ



1 1. S AS S A S S− −= Λ⇒ = Λ



End presentation 
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