
Principles of Compiler Design 

Prof. Y. N. Srikant 

Department of Computer Science and Automation 

Indian Institute of Science, Bangalore 

 

Module - 6 

Lecture - 23 

Run-time environments Part-4 

Control-flow graph and local optimizations Part-1 

 

 (Refer Slide Time: 00:22) 

 

Welcome to part four of the lecture on run time environments. Today we will continue 

with garbage collection and you know see how exactly two types of garbage collectors 

work, and so on. 



(Refer Slide Time: 00:34) 

 

So, to do a bit of recap let us see what exactly are the problems with manual 

deallocation, that is using free etcetera. So, there can be memory leaks which are not 

detected in the program it is very hard to debug such memory leaks. So, the memory leak 

is you know failing to delete data that cannot be referenced. So, basically we have 

forgotten to delete the nodes which we are not using anymore in a tree or in a graph, 

etcetera. 

And then there is a second problem of dangling pointer dereferencing, so we have 

forgotten to you know remove the references to deleted data. So, this could be you know 

a program error, which is very hard to debug as well the solution at least partial solution 

to these problems is automatic garbage collection. 



(Refer Slide Time: 01:33) 

 

So, garbage collection is nothing but reclamation of storage and the storage is not being 

used by the program, so we want to free such locations and use them again. It is possible 

to you know do this provided the types of objects are known to the garbage collector. 

The reason why we require the types of objects is that the sizes of these objects cannot be 

determine without knowing the type. 

Secondly, it is possible that the pointers, which are embedded inside the objects you 

know also refer to some you know runtime object. And it is not possible to determine 

whether there are pointers inside an object without knowing the type of that particular 

object. So, java for example, is you know is type safe because you can determine the 

types of objects either at compile time or at runtime c and c plus plus are not. 



(Refer Slide Time: 02:41) 

 

So, the basic mechanism by which we claim garbage is using the concept of reachability 

of objects. So, what we really want is to determine the root set which is nothing but the 

set of all data that can be accessed directly by a program without having to dereference 

any pointer. That is if you consider the pointer variables which have been declared by the 

programmer at the highest level in the program. 

 We are looking at these pointers as a pointer variables as the root set. So, from that point 

you know from that set we reach the objects you know using one level of dereferencing. 

And we also look at the objects which can be reached from the at the second level and so 

on and so forth. So, let us see how this reach ability can be used in garbage collection. 



(Refer Slide Time: 03:48) 

 

So, that is also possible I forgot to mention that parameter passing Assignments can 

propagate reach ability. And of course, assignments and ends of procedures can 

terminate reach ability of these objects. Similarly, an object that becomes unreachable 

can cause more objects to become reachable unreachable. So, that is you know if you 

have a pointer you can reach an object through it. And if that object has more pointers in 

it you can reach more objects through it etcetera. Similarly, if you actually free an object, 

which was being you know reached by a pointer.  

Now, the objects which were reached from the pointers within the object also become 

unreachable through this pointer. So, this is what we mean by the propagation of 

unreachability. The garbage collector you know periodically finds all the unreachable 

objects using one of the two methods. The first one says we know that the objects change 

state. So, when the objects become unreachable at that transition from reachable to 

unreachable we catch the, you know object and say now let me free it. So, second is 

periodically we scan the entire heap of the program and then locate the reachable objects 

and whatever is left over is the unreachable set. 



(Refer Slide Time: 05:25) 

 

The first method that is the reference counting garbage collector is an approximation to 

the approach that I you know, the first approach that is we catch the objects which 

become unreachable at the time of transition. So, how do we do this basically we 

maintain a count of the references to an object so. And when the count becomes 0 the 

object becomes unreachable, but how do we maintain the count. So, whenever you know 

the program perform certain actions and that changes the reach ability of that object. We 

modify the count as well, I will give you more details of this very soon and the reference 

count requires an extra field in the object. So, we maintain it you know using these rules. 

(Refer Slide Time: 06:22) 

 



Now, the rules for maintaining reference counts there is a let us say there is a new object 

allocation. So, that means the object comes into you know is born right so using new or 

any other mechanism. So, we set the reference count as 1 for this new object so that is 

quite fair because we have created a new object and that is being pointed to by a pointer. 

So, the reference count is one at that time. 

Parameter passing so, let us say objects are being passed into a procedure as parameters. 

So, that means from now on the parameter also refers to the object apart from the 

original number of references to that object. So, it is only fair that we do an increment 

operation for each object on the reference count counter, for each object passed into a 

procedure. So, this is parameter passing and its effect on the reference count, then there 

are reference assignments. So, that is u and v are references so and we are saying u equal 

to v this is an assignment. 

So, u is pointing to some object v is also pointing to some other object and from now on 

u will point to the object that v is pointing to so, this is a pointer copy operation. So, 

obviously for the object which is pointed to by v that is star v. The reference count has to 

be incremented by 1 because now from now on u will also point to it. And now, u has a 

kind of c’s to point to the old object so, references count is reduced for the object which 

is pointed to by u that is star u. 

So, this is how the reference assignment propagates you know reach ability and then and 

then of course, it ends the reach ability for the objects pointed to by u as well. What 

about procedure returns so, we know that the local variables die once a procedure 

returns. So, we do a reference count minus minus that is decrement operation on the 

reference counts, for each objects which is pointed to by the local variables, local 

pointers. Then there is transitive loss of reach ability as well so whenever an object have 

gets its reference count to 0. 

We must now trace further we must locate the reference count of each object pointed to 

you know by a reference within the object. So, we have an object there are more pointers 

within it, those pointers will also be pointing to some objects. So, if an object gets its 

reference count to 0 then you know you must decrement the reference count of the 

objects pointed to by the pointers inside as well. So, this must be done transitively and it 



will go on until no more decrement operation can be performed in any reference count of 

any particular object. 

(Refer Slide Time: 09:38) 

 

So, this is the reference counting you know method of garbage collection. So, basically 

we whenever we find that the reference count becomes 0, we return that object to the 

heap so garbage collection is in some sense incremental. So, overheads are distributed to 

the mutator operations and are spread out throughout the lifetime of the mutator. So, we 

do not have you know a huge amount of time, which is spent in garbage collection at a 

single point in time, but it is distributed throughout the you know programs operations. 

So, garbage is collected immediately and hence space usage is low and usage is also very 

efficient, we are not delaying you know the collection of garbage. So, for real time 

systems and interactive applications, such garbage collection is very useful because long 

and sudden pauses are unacceptable in such an environment. So, if we take away too 

much time during the applications run to perform garbage collection, it would obviously 

introduce long and sudden pauses. 

So, to avoid this an incremental garbage collection using reference counting is a very 

useful mechanism, but then these are the advantages. So, then there were also a few 

disadvantages there is a very high overhead due to reference maintenance because every 

time the reference changes, we know that the reference counter has to be either 

incremented or decremented. And, there is also a more serious problem the reference 



counting garbage collector cannot collect unreachable cyclic data structure. Such as, 

circularly linked lists I will show you an example of this very soon. Since, the reference 

counts never really become zero this is something very serious. 

(Refer Slide Time: 11:50) 

 

So, take this data structure so each of these is a 4 field object so, this pointer inside this 

object points to this node and this points to this node. So, here is a cycle of references, 

this pointer points to this node and then this pointer points to this node and again this 

pointer points to this node. So, here is another cycle and the second pointer here also 

points to this node. So, this object has a reference count of 1 because of this pointer 

pointing to it. 

This object has a reference count of 1 again because of this pointer pointing to it. This 

object has reference count 2 because there are 2 objects, 2 pointers pointing to it. And 

then this object also has a reference count of 2 because there are 2 objects pointing to it 

this and this. So, what it so happens that none of the objects here can be reached through 

any other useful program pointer variable or any other variable, any other pointer inside 

the program. 

So, this is basically garbage none of these nodes can be reached from anywhere in the 

program, but unfortunately the reference counts have not become 0. Therefore, none of 

these nodes will be returned to the storage pool the heap. So, this is a serious issue none 



of these nodes are in the root set either or transitively even in the root set. So, this storage 

will be permanently claimed and you know it remains in the program. 

So, if such circular data structures you know keep accumulating then even though they 

are all useless it will not be possible to return them to the storage pool. So, this is a big 

disadvantage as far as the reference counting garbage collector is concerned. So, how do 

we get rid of this problem? 

(Refer Slide Time: 14:03) 

 

So, let us look at a different type of garbage collector, mark and sweep garbage collector. 

So, the briefly again the memory recycling steps in such a garbage collector are the 

program runs it request memory locations. The garbage collector traces and finds 

reachable objects then the garbage collector reclaims storage from unreachable objects. 

So, the entire heap memory is scanned by the garbage collector in both these passes 

finding reachable objects and claiming unreachable objects. 

So, as the name indicates there is a marking phase to mark the reachable objects and 

there is a sweeping phase to reclaim the unreachable objects and return them to the 

storage pool. The advantage of this is it can claim unreachable data structures such as, 

circularly link lists and so on. And the other feature is the nature of the algorithm it is a 

stop-the-world algorithm. In other words, when the program runs out of memory the 

program you know calls the garbage collector, when the when an allocation is made the 

allocation fails. 



So, the garbage collector is called to perform garbage collection, the garbage collector 

does these 2 operations of marking and sweeping this may. And during this time the rest 

of the program does not run so this is called as a stop-the-world algorithm. And this is 

the one which may introduce pauses in the program and it hurts real time and interactive 

programs. 

(Refer Slide Time: 15:54) 

 

So, let us look at the details of the algorithm, the algorithm basically is quite simple there 

are many variations of the mark and sweep algorithm. We are going to look at one 

variety the simplest one and the rest can be read from the textbooks. So, what is the 

marking phase start scanning from the root set, first step in the marking phase is start 

scanning from the root set. Mark all the reachable objects that is set reachable be reached 

bit equal to 1 and place them on the list called unscanned. 

So, there your root set is as usual the set of pointer variables which are declared by the 

programmer. So, all these all the objects which are reached from the root set will be 

marked as, marked with reached bit equal to one and they will be placed on a list called 

unscanned. Now, we must do the marking you know rather a progressively so there is a 

loop which continues until unscanned does not contain any object so, while unscanned 

not equal to phi do. 

So, take out an object from the unscanned list so object O equal to delete unscanned. 

And then for each object O 1 referenced in O so there are pointers within the object so 



each one of these pointers is now actually traced. So, if the object is already you know is 

not yet reached so reached bit O 1 equal to 0. Then we say the we make it 1 reached bit 

O 1 equal to 1 and place O 1 on unscanned so this goes on and on. 

So, once all the pointers in the object O you know object O are completed we take the 

next object from the unscanned list and continue. So, in this process every one of the 

objects which actually can be reached, will be reached and each of these objects will 

have their reached bit set to 1. All the you know objects which have reached bit equal to 

0 will be unreachable and they can be claimed during the next phase. 

(Refer Slide Time: 18:21) 

 

So, here is an example to show how mark works so this is the root set the blue variety. 

So, these are the two variables programmer variables which used to access these data 

structures. And this is the storage which cannot be reached it is garbage and it needs to 

be collected. So, we start from the root set and then mark the objects these two objects as 

1 and then from these two objects we progressively go to these and these and so on. 

So, we mark these two as 1 and these two again as 1. Then in the next step we go to these 

two objects and mark them as 1. So, we now have all the reachable objects marked as 1 

and the unreachable object remains with reached bit equal to 0, the unscanned list now is 

empty so the marking phase ends. 



(Refer Slide Time: 19:23) 

 

The next phase is the sweep phase so again the entire heap is scanned here. So, sweep 

phase each object in the heap is inspected exactly once not more than once, we will see 

why it is incorrect to look at it more than once. So, to begin with the free list is phi we 

had nothing on it and we look at every object in the heap. And if the reached bit is of that 

object is 0 we just dispose it off, add it to the free list. If the reached bit was 1, then that 

means, the object was useful so we set it to 0. 

So, you see for the objects which had their reached bit equal to 1 we have now reset it to 

0. So, looking at the object again would be incorrect because it would you know send all 

these objects to the free space. These were really useful objects so we should not be 

looking at them again. So, let us see how it works in this case. 



(Refer Slide Time: 20:28) 

 

So, up to this was the marking phase so all the reachable objects have been marked, these 

are the unreachable ones. So, again as we inspect everyone of the objects here we take 

this, take this and take this return it to the storage pool and that ends the garbage 

collector operation. So, this gives you an overview of garbage collection there are 

obviously many varieties of garbage collectors which are in operation. 

You know in the literature the concurrent garbage collectors, copy garbage collectors 

etcetera are all described. They are all useful in different circumstances, my point you 

know my aim was to give you an overview of garbage collection. So, with this the 

runtime system lecture ends so and we will continue with local optimizations. 



(Refer Slide Time: 21:29) 

 

So, welcome to part one of the lecture on control flow graph and local optimizations. 

(Refer Slide Time: 21:39) 

 

So, you know in the past lectures we have seen different phases of the compiler. For 

example, to begin with we saw lexical analysis, then we saw syntax analysis, then we 

discussed semantic analysis and after that we discussed you know intermediate code 

generation. And of course, we also saw the runtime support that is necessary. Now, 

before we generate machine code I mentioned in the early lectures, that there is 

something called machine independent optimization, which needs to be performed. 



So, in this lecture we are going to see one type of machine independent code 

optimization called as the local optimization and the other types of optimization, will be 

discussed later. So, in this lecture we will see the reasons rather the definition of code 

optimization its purpose and then the types of optimizations. We are going to study what 

are basic blocks, what are control flow graphs the different types of local optimizations 

the procedure for building a control flow graph. And then of course, the methods of 

storing basic blocks efficiently using you know value numbering directed acyclic graphs 

etcetera. 

(Refer Slide Time: 23:17) 

 

So, what exactly is machine independent code optimization and why is it necessary. So, 

the intermediate we have discussed intermediate code generation in rare detail and we 

know that it is a fairly straight forward process. It introduces a large number of 

inefficiencies into the intermediate code that is generated. For example, whenever there 

is an expression a equal to b plus c, you know we would first do t 1 equal to b plus c and 

then do a equal to t 1. Now, we have really introduced an extra copy of a in the 

temporary t 1. 

So, this is what I mean by extra copies of variables and using variables instead of 

constants. So, well there are many constants that we would like to use in the program, 

there is no straight forward way of using the may not be a straight forward way of using 

the constants in some cases. So, the intermediate code generator would generate an 



assignment statement to assign a constant to a variable and then use that variable instead 

of the constant itself. 

Then there are repeated evaluation of expressions so even though an expression such as a 

star b has not change its value. We may be evaluating a star b all over again within a 

short period of time, instead of trying to reuse the value which was computed earlier. So, 

these are all things which happen you know famous example, of this repeated evaluation 

is that i star 4 in the case of a of i plus b of i etcetera, etcetera. So, these are the sources 

of inefficiency in intermediate code. 

The reason we did not bother about such inefficiencies is that we know code 

optimization would remove such inefficiencies and make the code better. Of course, 

improvement of the code may be these are only a minor examples, there are many more 

examples which we will see in the future. The improvement may be in time, in space or 

in power consumption. So, when we improve the time requirement which is probably 

what we do most of the time, we would be making the program run faster and faster. 

When do we require improvement in space in other words we would like the program to 

take as little space as possible? So, in embedded systems memory is actually very 

expensive to incorporate so, we may have to pack all our programs into a very small 

memory. And in such cases, memory based optimizations to reduce the space 

requirements becomes very important. The same is true in embedded systems and a 

sensor network systems and so on. Power consumption becomes a very important factor 

in such cases. 

So, embedded systems and sensor networks you know they run on small size batteries. 

So, it is necessary that the battery can be used to a you know, it can be used over a large 

period of time. To do this the power consumption of the program has to be minimized, if 

we simply make the program run faster you know. Of course, the power consumption 

will reduce because the program is now running for a shorter period of time, but there 

may be very subtle optimizations possible via you know by a compilers. Such as, 

reducing the voltage of the chip, switching of certain function units etcetera. 

So, the compiler may be able to perform up you know optimizations keeping these 

features in mind. So, power consumption reduction is another type of optimization which 

is sometimes possible. So, the in general optimizations change the structure of programs 



in fact sometimes beyond recognition. For example, optimizer’s inline functions you 

know so the function call disappears the body of the function replaces the call. 

It unrolls loops so instead of running the loop you know 300 thousand times, it can 

possibly unroll the loop 3 times and then say now, I will run it only 100 thousand 

number of times. So, why should it do such things the unrolling of loops etcetera will 

increase the opportunities available for instruction scheduling etcetera, and it may 

actually increase the parallelism in the program? So, the same is true for in lining of 

functions so these are all desirable optimizations, it may also eliminate some of the 

programmer defined variables. 

So for example, in induction variable elimination the variable, which is defined as an 

induction variable may eventually get eliminated from the program. These effect of all 

this would be that we cannot use a debugger on optimized programs because the program 

has now changed and the mapping to the source code is no more possible. So, you know 

debugging an optimized program may not give out appropriate you know hints to the 

programmer at all. So, in a gcc for example, kind of stops all the optimizations if you 

choose the debugger option. 

Code optimization in general consists of a bunch of heuristics so in other words, the 

percentage improvement is not guaranteed by any optimizer. The simplest example, 

would be you know if there is a set of statements which cannot be improved further then 

applying any number of heuristics on it will not improve the program. So, in such a case 

the code optimizer cannot do anything. So, you cannot guaranty the amount of 

improvement that a code optimizer provides, sometimes it may be 0 as well. 

Optimizations made be very broadly classified as local optimizations and global 

optimizations. 



(Refer Slide Time:30:25) 

. 

So, let me give you a few examples, of these optimizations all local optimizations are 

within what are known as basic blocks, we will know what these are in very in a very 

short period of time. To be very brief basic blocks are single entry, single exit areas of 

code and in such basic blocks whatever optimization we perform. The effect will not go 

beyond the basic block that is why they are called local optimizations. Whereas, the 

other type of optimizations are global optimizations so the effect of the optimization is 

on the whole procedure or even the whole program. 

The some of the optimizations with the important ones are local common subexpression 

elimination. Then dead code elimination so what is dead code instructions that compute a 

value that is never used. That is really dead code elimination of such dead code and 

reordering computations using algebraic laws such as commutativity, associativity 

etcetera. So, these are all called as local optimizations we are going to see in this lecture 

how to perform such local optimizations. 

There are the some of the very important global optimizations are listed here the global 

common subexpression elimination, which is similar to in effect as the local common 

subexpression elimination. Then there is constant propagation, constant folding, loop 

invariant code motion, partial redundancy elimination, loop unrolling, function inlining, 

vectorization, concurrentization. 



There are a host of others as well more than another does not important optimizations 

which are possible and the gcc performs quite a few of them. So, we will work you know 

perform we will understand how to perform local optimizations in this lecture and then 

in the later lectures we will see how to perform global optimizations as well. 

(Refer Slide Time: 32:33) 

 

So, as I said local optimizations are all performed on basic blocks so we must understand 

the definition of basic blocks, how to construct basic blocks etcetera before we go to 

optimizations. So, basic blocks are sequences of intermediate code with a single entry 

and a single exit. So, let me show you an example before we consider further which we 

before we go further. 



(Refer Slide Time: 33:01) 

 

So, for example, this entire piece of code is one basic block so you can see that there is a 

single entry here and there is a single exit at this point as well. Similarly, these two 

statements together form a single basic block. So, here is the entry to the whole 

procedure and here is the exit from the basic block. So, but at the same time this piece of 

code which corresponds to the entire high level language program which is written here. 

So, this is a the simple dot product program is not a basic block, why so as we go on here 

is an entry then we go down. 

And then, there is a goto which actually reenters the program you know so the b 2 part is 

the beginning of this t 1 so, here is the b 2 part. So, this is reentering the program again at 

this point so this is not a basic block, this whole thing has to be still carved into basic 

blocks. So, we consider the quadruple version of intermediate code here, we already saw 

that in the picture to make explanations easier. 

And control flow graphs show control flow among basic blocks so this is actually a 

control flow graph. So, control flow between this and this block is shown by this arc, this 

and this block is shown by this arc and this is a loop again goes back to the beginning of 

the same block. So, these are all you know arcs in the control flow graphs and the entire 

structure is called as a control flow graph. 



(Refer Slide Time: 34:55) 

 

Basic blocks are represented as directed acyclic graphs so they do not have any loops 

within them. So, they are really directed acyclic graphs and we will see how to represent 

them using value numbering method applied on quadruples. And we will also see how to 

perform the local optimizations on basic blocks. 

(Refer Slide Time: 35:20) 

 

So, let us see how to carve out basic blocks from a piece of intermediate code. So, we 

must determine what are known as the set of leaders, that is the set of first statements of 

the basic blocks. And once actually get all the leaders in the program you know getting 



basic blocks is very easy. A leader and all statements which follow it up to, but not 

including the next leader or the end of the procedure is the corresponding block, basic 

block corresponding to that leader so that is very easy. 

So, the basic idea is to form leaders and any statements not placed in a block can never 

be executed and can be removed. So, this is the dead code elimination that we perform so 

if code does not get into a block then it can be it is unreachable and it can be removed. 

Now, how to get the leaders the first statement of the program is obviously a leader so 

you must begin somewhere so this is the first statement. 

Then any statement which is the target of a conditional or unconditional go to is a leader. 

So, please understand this carefully we are not talking about the conditional goto 

statement for say, but we are talking about the target of the conditional statement. So, the 

target is an entry point to the basic block so that is the why it is a leader. And any 

statement which immediately follows a conditional goto is a leader. 

(Refer Slide Time: 37:09) 

 

So, let me show you how to carve out these basic blocks from this procedure. So, the 

first statement is a leader so this particular thing you know prod equal to 0 is a leader. 

Then we continue scanning we come here if i less than or equal to 20 b 2, b 2 of course, 

begins with t 1 so that is this right. So, this statement t 1 equal to 4 star i is a leader so we 

have set prod equal to 0 is a leader t 1 equal to 4 star i is another leader. 



Then here is this is a conditional go to statement, the statement which follows it is also a 

leader so stop is also a leader. So, we have formed three leaders, why is it we say the 

statement following a conditional goto is a leader and not an unconditional go to. The 

reason is very simple a conditional goto has 2 exits one is going back of course, in this 

case. And the other one is if the value of i is greater than 20 the code falls through and 

executes stop so this is the other exit. 

So, control can go either backwards or forwards that is why the next statement after the 

conditional goto is an executable statement. And that can be marked as a leader and of 

course, since the entry is the target is nothing but another entry into the program this will 

also be called as a leader. Now, suppose this were to be just go to b 2 instead of if i less 

than or equal to 20 goto b 2. Suppose, this statement was just goto b 2 then if you 

observe we will actually go into an infinite loop and we will never be able to reach this 

statement stop. 

So, we should never mark this stop as a leader you know this is really dead code and it 

will get eliminated. Once, we have formed the set of leaders so this is a leader then this t 

1 is a leader and stop is a leader. So, from prod to t 1 so not inclusive is the first basic 

block and from t 1 up to stop not inclusive is a second basic block. And from stop till the 

end of the program which is stop itself is the third basic block. So, this is how basic 

blocks are carved out of a program. 

Now, to do a little of little bit of work on these basic blocks we must also add the arcs 

into between these basic blocks in order to form the control flow graph. So, how do we 

add these arcs of course, the first thing is we look at the you know look at the basic 

block, look at the last statement in the basic block. Then if it is not a you know 

unconditional goto statement then the statement following it can be actually taken as the 

target of this particular arc. 

So, in this case we have i equal to 1 which is not a goto and therefore, we mark a you 

know we place an arc between these two to indicate the flow of control. Similarly, we 

goto the last statement of this particular block it is not an unconditional goto, if it were 

then this would have been dead code. So, this is conditional goto so the next statement 

will be executed if the condition is false. 



So, we place an arc from here to here indicating that control flow can happen here as 

well. Then of course, we have this arc to show that this is the target of this you know 

conditional goto so, we place the arc between this point the end of the basic block to the 

target b 2 so this is how we place arcs to to form a control flow graph. 

(Refer Slide Time: 41:24) 

 

 So, this is what I just now explain the nodes of the control flow graph are basic blocks, 

one node is distinguished as the initial node so this is the procedure entry. There is a 

directed edge b 1 to b 2 if b 2 can immediately follow b 1 in some execution sequence. 

So, this is what I just explain that is there is a conditional or unconditional jump from the 

last statement of b 1 to the first statement of b 2. So, here from the last statement of this 

to the first statement of this. 

And this of course, is not at all a goto so from here to here b 2 immediately follows b 1 

in the order of the program and b 1 does not end in an unconditional jump so, this is the 

other case. Now, how we do represent a basic block, we represent it as a record the 

record has a count of the number of quadruples in the block a pointer to the leader of the 

block. Then we need the predecessors and successors of the block as well so with this we 

can actually form the control flow graph as well. So, the jumps to points to the basic 

blocks and the not quadruples and this makes code movement easy so let me explain why 

this is so. 

 



(Refer Slide Time: 42:55) 

 

Just imagine that this statement if says if i less than or equal to 20 go to 3 because this is 

statement number three really one, two and three right. Suppose, we really you know add 

a few more statements here right some statements from here may move to this statement, 

this particular basic block during some optimization. In such a case, what happens is the 

the number of this particular quadruple the first quadruple in the basic block b 2 the it is 

number will change, it may become 5 or 6 let us say. 

So, if we had maintained goto 3 here we would have had to change that as well you 

know this number will have to be changed to 5 or 6 appropriately. Whereas, if we simply 

say goto b 2, where b 2 is nothing but a pointer to the basic block record. Then we know 

that in spite of the changes made to the number of quadruples in this basic block this 

pointer does not change. So, there is really no harm no change that is necessary. 

So, this makes code movement easy so we do not have to worry about changing any 

numbers if we move code from here to here or to some other place. Now, let us 

understand how to represent the basic block using directed acyclic graphs. So, what I 

said here you know this is the extra statement corresponding to a basic block we still 

have all the quadruples in the basic block and we must actually represent them using 

directed acyclic graphs. This is Meta information corresponding to a basic block. 



(Refer Slide Time: 44:51) 

 

Here, is a basic block there are ten statements in this basic block. So, observe that there 

are no jumps here it is just one block of statements. So let us understand what this 

structure is this is obviously a directed acyclic graph there is no loop here. And let us 

understand how to build this dag from this set of quadruples so the procedure is what I 

am going to describe now. 

So, here is a quadruple a equal to 10 so we form a node a, a node containing the value 10 

and we attach a label to it called a. And then there is an assignment statement b equal to 

4 star a now we know we search the dag how to do the search we will see later. We 

search the dag find that there is a node with label a in it so, this node b can you know this 

star node can be created with left child as 4 and the right child as this a. And we attach a 

label b to it so we have formed this computation tree as far as these two statements are 

concern. 

Third one says t 1 equal to i star j so similarly, we have i here we have j here we create 

the new nodes i and j. Then we create a new node star attach these two arcs and attach a 

label t 1 to it. So, the notation that I have used is the first time that we create a node the 

value is put inside, whether it is a variable or a constant and any extra variables are 

attached as labels. Then we have c equal to t 1 plus b so we must form actually a node 

called plus and label it as c. 



So, this node plus will have t 1 as its left child and it will have b as its right child. So, we 

can search the dag find out the appropriate nodes corresponding to b and t 1 and establish 

these links. Then we have t 2 equal to 15 star a so we have t 2 here, so 15 is a new node 

that we want to create a, is already present. So, we can create a star node and attach the 

links and label it as t 2, then we have d equal to t 2 star c which is very similar. 

So, we search for t 2 we find it, then we search for c we find it and then we form the star 

node and label it as d. We have e equal to i we find i so, we do not have to really do any 

extra you know creation of node we just attach a label e to it. Then we find t three equal 

to e star j so, e is here already available. Then you know t 3 is this so e and i are the same 

j is also here already. So, we simply do not create another node for t 3 we attach it to the 

star node. So, this has two labels now t 1 and t 3. 

Then the next statement is t 4 equal to i star a, so we have t 4 here this is a new node that 

star is a new node that needs to be created, i is already there a is also already there. So, 

we create a new star node and attach a label to it as t 4. The last one is important it says c 

equal to t 3 plus t 4 so, we find you know t 3 already available. And we also find t 4 

which is available here, but the point is the variable c is being reassigned. So, there was 

already a c variable here, so we need to actually kill the occurrence of the old variable it 

is not relevant anymore create a new node plus attach a label c to it. 

So, what are the advantages of this particular approach well, if you observe carefully you 

know we never created the node for t 3 all over again? So, t 1 corresponds to i star j and t 

3 even though it is written as e star j because of the assignment e equal to i it is really i 

star j. That means, the expression i star j is now both t 1 is available in t 1 and t 3 you 

know we would have recomputed the i star j two times if we had used this code. 

Whereas, if we use the dag representation we are not going to recompute an i star j all 

over again it is available in t 1. So, we will simply use t 1 in place of t 3 in our entire 

program. So, this is an example of common subexpression elimination. 

Then the second advantage for example, here we have b equal to 4 star a so we of course, 

have created a node for star for the example I showed that. We established links to 4 and 

10 here a is 10 of course, and instead of doing that when we search for a, since we get a 

value 10 and 4 is actually a constant as it is. We could have performed this multiplication 

4 into 10 as 40, replaced this entire structure by having one you know node b with a 



value of 40. This entire computation could have been eliminated. So, this is known as 

constant folding. We have propagated the value of a from here to here, so that is constant 

propagation. Then we can evaluate 4 star 10 as 40 so that would be constant folding. 

So, there is possibility of constant propagation, constant folding and also common 

subexpression elimination if we use the directed acyclic graph representation here. The 

only difficulty is if we really build a directed acyclic graph, using the pointers and links 

as we have seen as we see in this picture this is the way we build trees you see. So, if we 

build such a structure physically by establishing these links and nodes and so on and so 

forth. It is not of much use really let me explain why, so at some point we want to search 

for you know say b or something like that so, we want to search for a are even better. 

There is no simple mechanism to search for a, we will have to start at the root of the 

directed acyclic graph. Search the possibly the entire dag systematically and then at some 

point in this search we may we will end up getting this a. So, in the worst case you will 

search the entire dag this is a you know very expensive process. If we had some thousand 

statements in the basic block, then you know searching the entire dag of 1000 nodes is 

very time consuming. 

So, construction you know of the dag and trying to find common subexpressions or 

nodes in the dag by exhaustive search of the directed acyclic graph is a time waste, you 

know is a time consuming procedure and is a waste of time. If we use links and tree like 

structures like this, this is the only way whereas, if we avoid using these links represent 

this entire directed acyclic graph using hash table structures. Then you know the entire 

operation becomes much, much faster. 



(Refer Slide Time: 54:05) 

 

So, this process is known as value numbering and it is used in the construction of basic 

blocks. So, a simple way to represent DAG’s is via value numbering and value 

numbering uses hash tables. So, searching for expressions and variables is very quick, 

very time efficient. The basic idea is to assign numbers to expressions and these numbers 

are called value numbers. So, when we assign such numbers when we want to check 

whether two expressions are the same, we simply compare their value numbers. If the 

value numbers are the same then the two expressions are equivalent, they will produce 

the value at all times. So, this is the idea behind value numbering. Again, we are going to 

assume quadruples with binary or unary operators the algorithm will use different types 

of tables. For example, for expressions it uses hash tables and then for variables it uses 

valnum tables and for constants it uses name tables. 

So, these you know value numbering methods can be used to eliminate common 

subexpressions, do constant folding then they can be used to perform constant 

propagation in basic blocks. And they can of course, be used to you know take advantage 

of the commutativity of operators, addition of 0, multiplication of by an 1 and so on and 

so forth. So, at this point we will stop the lecture and continue with details in the next 

lecture. 

Thank you. 


