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We show here how a more philosophically satisfying foundation for physics
might grow from a century-old insight of Henri Bergson, that the world is the
continual creation of new possibilities, rather than the successive realization
of pre-existing possibilities. This insight invigorated fields both scientific and
humanistic, and helped win Bergson a Nobel prize (Literature, 1927), yet it
vanished from the intellectual scene because the mathematics did not exist
to make it precise. Today these mathematics do exist; we will use them
to translate Bergson’s insight into axioms that a physical theory ought to
satisfy.

The core idea motivating this paper is a mathematical version of Berg-
son’s insight: new mathematical structures are made possible over time. To
demonstrate its appeal we will take up each of four long-standing philosoph-
ical puzzles, show why each withstands current lines of attack, and let the
core idea suggest a postulate that might resolve it. The puzzles that give
rise to the postulates are (1) the arbitrariness of natural laws, (2) the in-
famous set-of-all-sets paradox, (3) the arbitrariness of space-time structure,
and (4) the independence of the continuum hypothesis from all “normal”
mathematical considerations.

Our fundamental first postulate will identify each point in space-time with
the totality of mathematical possibilities there; the other postulates will de-
mand that the growth of new possibilities be “philosophically innocuous” in
various senses. Once the postulates are stated it will be a fairly straight-
forward matter to translate them into axioms. The axioms themselves are
fundamentally set-theoretic. The framework for seeking a structure that sat-
isfies them—a model of the axioms—is therefore not any particular branch
of physics; it turns out to be, more or less necessarily, the technique of set-
theoretic forcing extensions. A forcing extension’s properties are determined
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by the boolean algebra used to obtain it. Our task is thus to associate the
points of space-time with boolean algebras in a way that accords with the
axioms.

The author’s initial plan was to find some well-known boolean algebra
forcing a simple model of the axioms, and then commend to smarter folks
the work of transferring this result to a physically relevant setting. On one
hand we can imagine that this scenario, if it worked out as planned, would
secure some philosophical worth for the Bergsonian postulates; on the other,
it would probably impose too few constraints on physical theories to yield
much properly scientific insight.

But it turns out (as shown in [2]) that none of the best-known boolean
algebras yields models of our axioms. In fact the only promising candidate
algebras we are aware of are derived from the “projection lattices” used in
algebraic quantum field theory. This is unfortunate in one sense, because
these structures are notoriously complex. In another sense, though, it is
intriguing: if the only models of the Bergsonian axioms came from AQFT,
it might help explain why our universe has the baroque quantum structure
that it does. And any modifications that might be needed for AQFT systems
to fulfill all the axioms could cash out to testable hypotheses. Our hope is
that what follows will be a sufficiently compelling case to devote resources
toward answering these questions.

Foreword On The Creation Of Mathematical Possibility

The best way to begin explaining our core idea, that new mathematical
structures are made possible over time, may be to insist that we mean it
literally, straightforwardly. Otherwise we might be suspected of preparing
to sublimate it with fancy glosses for “possible” and “structure.” We have
no such intention. The kind of possibility we have in mind is ordinary,
philosophically-naive mathematical possibility, and the structures that attain
it will simply be real numbers, and whatever other mathematical structures
can be constructed from them. But it will help us to regard real numbers
as sets. This will let us phrase our core idea more clearly: we augment the
usual “realist” or “platonic” position in the philosophy of mathematics, that
there really is a universe V of possible sets, with the claim that V grows over
time. Most importantly, this set-theoretic perspective will equip us to see
how and why new mathematical possibilities might arise.
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One could be forgiven for suspecting that our core idea refutes itself
immediately. If the real number 0.582, say, were newly made possible, then
it would have been correct in the past to assert “0.582 is not yet possible”;
but the mere fact that 0.582 could have been consistently referred to back
then should have sufficed to ensure its mathematical possibility. In a word,
thinkability ought to imply (mathematical) possibility. This argument is
valid as far as it goes: any unambiguously definable real number should
indeed be eternally possible. But the argument only goes as far as definable
real numbers. If there are numbers with non-repeating decimal expansions
whose digits follow no intelligible pattern then our core idea has room to
operate. This paper will make little sense unless it is kept in mind that,
whenever we speak of “newly possible real numbers,” we mean numbers that
are complex beyond definition.

Just because the notion of possibility-creation enjoys a modicum of self-
consistency, it does not follow that it is natural or intuitive. On the contrary,
it is deeply odd; its only champion to date has been Henri Bergson, the
mathematically gifted French philosopher who became famous in the early
twentieth century.1 Seeds of the possibility-creation notion appear in his
Creative Evolution of 1907. They reach maturity in “The Possible And The
Real,” published in 1930, where he argues sharply that time and freedom
make no sense without it. At any rate, we find his arguments sharp. Bergson
fell out of fashion in the 1930s and his few latter-day boosters tiptoe around
the idea of possibility-creation. That a brilliant Nobel laureate should have
failed to secure sustained interest in this idea is a warning to anyone who
would relaunch it today; in fact it is a source of suspicion serious enough for
us to defuse right now, and we give some quick reasons why we expect to
have more luck than Bergson had.

Three related obstacles kept Bergson’s insight from enduring. The first
was his choice of emphasis. Bergson, despite his mathematical gifts, framed
possibility-creation less as a mathematical idea than as a biological and psy-
chological one; and despite its success as an influence and inspiration in those
fields, it never really attained the status of a theory there. We will avoid this
obstacle ourselves by choosing the other approach. In Bergson’s defense,
though, his choice may have been forced by the second obstacle: the absence

1He was celebrated to a degree that seems astonishing today. A much-repeated anecdote
blames the world’s first automotive traffic jam on people thronging to Bergson’s lecture
at Columbia University in 1913.
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during his lifetime of mathematical tools for handling possibility-creation.
The early twentieth century was the heyday of the so-called “logicists,” led
by Frege and Russell, who sought to reduce all mathematical truths to for-
mal tautologies. “Undefinable real number” would have been a senseless
phrase in this context—if you can’t write it down, you can’t reduce it to
a tautology—and we have already stressed that undefinable structures are
needed if possibility-creation is to work as a mathematical idea.

We get around Bergson’s second obstacle thanks to our set-theoretic ap-
proach. No single philosophy of mathematics has inherited the popularity of
logicism, which was cut down by Gödel’s incompleteness theorem, but the
idea that set theory underlies or subsumes all of mathematics has gained
wide acceptance. Within set theory one can speak meaningfully of undefin-
able real numbers; Gödel first posed the question of whether there are any.
More precisely, he asked whether any real numbers fail to have the related
property called constructibility. In 1938 he proved that the standard axioms
of set theory fail to guarantee unconstructible reals. This might have been
the death knell of the possibility-creation idea, had Paul Cohen not proved
in 1963 that the same axioms also fail to preclude unconstructible real num-
bers. For all the standard axioms of set theory tell us, then, there might or
might not be the sort of structures that our core idea needs. In any case,
the last half-century has seen unconstructible sets become central to higher
set theory. We thus have the tools Bergson lacked for making a substantive
theory of possibility-creation.

The invention of these tools seems not, however, to have suggested to any-
one else the use that we are now proposing. This points to a third and more
formidable obstacle behind Bergson’s failure: the faith of nearly everyone
since Plato in mathematics’ timelessness. The Republic declared geometry—
like all of mathematics, presumably—to be “knowledge of the eternal, and
not of aught perishing and transient.” Hardly anyone in the twenty-five cen-
turies since has thought otherwise. What can be done about this ultimate
obstacle? One strategy would be to analyze this faith in timelessness into its
various threads and show that none of them enjoys a priori necessity. But
Bergson himself tried this; the last quarter of Creative Evolution is a far more
thorough critique of platonism and neoplatonism than we could ever mount,
and it made hardly a dent in the orthodoxy.

For those who would take up the fight against platonist orthodoxy, Berg-
son’s career presents few episodes that are encouraging, but one that is quite
instructive: his quarrel with Einstein. At the time of their first face-to-face
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meeting, in 1922, the two men’s theories of space and time were both fa-
mous. Bergson’s theory was impressionistic and backed up by compelling
metaphors; Einstein’s was quantitative and backed up by compelling formu-
las. From where we stand today it is fair to say that the quantitative theory
won outright, and we hardly need to examine the arguments’ details to know
that it won chiefly because it was quantitative.2 The lesson is clear for anyone
building an alternative approach to foundational questions: show precisely
how it fits into modern scientific theories. Vaunting its philosophical advan-
tages from a humanistic point of view will win it few lasting friends.

Our strategy for dealing with the third obstacle is therefore to turn
possibility-creation into a rigorous physical theory. We now turn to the
puzzles that will give rise to postulates for such a theory.

Puzzle 1: The Arbitrariness of Physical Laws

God does not play dice with the universe: You have surely heard this rebuke
of arbitrariness, and you surely know that Einstein meant it to deny that
quantum laws are random. The arbitrariness that concerns us here, however,
is of a broader kind. Grant Einstein what he insists; grant (which may be
more, depending on your definitions) that nature’s laws are deterministic.
They may still be arbitrary in this sense: there may be no explanation for why
these deterministic laws govern the universe, rather than those deterministic
laws. This worry is our starting point.

No sooner have we announced this starting point than certain readers
will sigh: “Worries about nature’s whys belong in the cloud-cuckoo land of
philosophy; real science keeps its feet on the ground, describing phenom-
ena, generalizing from them by induction, and making testable predictions.”
We sympathize with these defenders of empiricism. Historically speaking,
science’s empirical strain does tend to outperform what we might call its
“worrying about the why” strain. But it is not always idle to demand rea-
sons. Special relativity, for example, can be considered an answer to the
question: “Why and on what grounds might nature choose a privileged rest
frame if light’s speed is the same to all observers—and how might nature
arrange itself so as to do without such a choice?”

In this spirit, we are going to build a theory of how nature might evade

2The details are carefully examined in The Physicist And The Philosopher (Princeton,
2015) by Jimena Canales.
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all arbitrary choices, even of its own laws. To do so we must first set up our
puzzle precisely, and show that existing approaches do not resolve it. This
will require a formal and very general framework for physical theories: see
Figure 1 below. Alongside the definitions we will sketch simple illustrations
of them. Please keep in mind that the illustrations’ simplifying features, like
the fact that there are only finitely many points in the space-times that the
illustrations depict, do not lessen this framework’s ability to handle more
realistic cases.
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Definitions Simple Illustrated Examples

Let the word point refer to space-time
points.

Stipulate that < will always be an “abso-
lutely earlier than” partial-ordering rela-
tion on some set of points, so p < q means
that p is in q’s past light cone.

(a point p is < another point q if one can
reach q from p via lines going upwards)

Assume that the state of each point con-
sists of mathematical data (mass, charge,
spin, state vector, and/or something
more complex), and let all possible states
be collected in a set called states.

states =
{‘mass=0’, ‘mass=1’, ‘mass=2’ ...} =
{0, 1, 2, 3...}

A point’s state will be drawn inside it,
like so: 2

Let pasts be the set of possible absolute
pasts that a point might have; specifi-
cally, of all structures 〈P,<, φ〉 where P
is a set of points, < its ordering as above,
and φ a function from P to states.

pasts={
9

1 2
7 1

3
0

2

8
25

2

, , ...}

Let a causal natural law be a function from
pasts to states, i.e. a function from
pasts to present states of the universe.

f = { 9
1 2
7 1

3
0

2

8
25

2

, ,

5 1 7

...}

Let cnl be the set of all causal natural
laws, i.e. {f : f is a function from pasts
to states}.

cnl = {f, g, h, ...}

If you wish, modify the above definitions
so that states can have probabilities at
a point, and so that causal natural laws
can incorporate randomness. The exact
method will not matter for our purposes.

f = { 9
1 2
7 1

25
, ,

5 06 2

30% 70% 50% 50%

...}

Figure 1: Our formal framework for space-time theories
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With the definitions of Figure 1 established, we can pose our puzzle pre-
cisely:

Puzzle 1. The Law of the Universe is some particular member f of cnl,
but why not some other function g or h?

Now, the choice of a natural law from among cnl is not the only ar-
bitrariness in the above definitions; the order type of < in our real world
〈P,<, φ〉 is also unexplained, as is the extension of the set states. You are
more than welcome to make a note of these gaps, to which we will return,
but we will begin by worrying about the arbitrariness of f .

Plan I to Deal With Arbitrariness: Deny, On Skeptical Grounds,
That The Puzzle Can Even Be Posed

This puzzle’s set-up has put us squarely on the side of that famous philoso-
pher who said, “The world is the totality of facts.” This may bother some
readers—fans of philosophical “pragmatism,” “anti-realism,” or “skepticism”—
who prefer an earlier philosopher’s line, “There are no facts, only interpreta-
tions.” We know where these readers are coming from. To us too, in certain
moods, the world seems an unfathomable mysterium; in these moods we can
only laugh at anyone claiming to dissect it into discrete “points” or “states.”

What we would like to stress, though, is that we indulge these moods
largely because they soothe our worries about arbitrariness. By letting our
world be an unfathomable mysterium rather than a set of facts, we spare
ourselves the needling question, “Why is this set of facts real, rather than
that set?”. We trade in our feeling of arbitrariness for one of mute mystical
awe.

This is not an unequivocally good trade. Skepticism/pragmatism/anti-
realism has its drawbacks too, the worst being its inability to explain the
tremendous success of quantitative science. Current theories of “photons”
and “quarks” are accurate to as many decimal points as you care to measure.
The simplest way to explain their success is to admit that their terms really
do refer to nature’s constituent parts. And as soon as we appreciate this, our
philosophical pendulum will swing back the other way, towards the world-as-
totality-of-facts view. “Scientific realism” and “anti-realism” both have their
attractive and repellent sides, then, and what results is a philosophical yo-yo
effect. We are seeking a way to avoid the yo-yo-ing, a more stable response
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to the problem of arbitrariness than shoulder-shrugging mystagogy. So let
us put ourselves back in the “world as totality of facts” mood, and see if
there is a better direction to go in, once the question of arbitrariness starts
nudging us out of it.

Plan II to Deal With Arbitrariness: Just Accept It

The first puzzle, again, is this: The Law of the Universe is some particular
member f of cnl, but why not some other function g or h?

Barring the sort of cleverness we’ll see in Plan IV, it seems that any answer
we give could be expressed as “because f is better suited than the other
functions in cnl to govern the universe.” This would imply some Better-
Suited ordering (call it bs) on cnl that tells when one causal natural law is
Better Suited than another to govern the universe. But then we could go up a
level and ask: why is bs best suited to be the ordering that reflects functions’
suitability to govern the universe? Why not the ordering bs′, in which some
other function g is greatest? We are in an infinite regress. At no point does
any magic hand anoint the ordering that determines the ordering best suited
to determine the ordering (...) best suited to determine the function that
governs the universe. It looks as if the laws of nature must be arbitrary.

At this point the empiricists will pipe up again: “Look, with all this why
why why why why, you’re regressing not merely to infinity, but to age three.
Obviously explanations stop somewhere. It’s a component of maturity to
accept that some brute facts are just given.”

We certainly respect this position’s forthrightness. And for all we know
today, this sort of mature acceptance may turn out to be the healthiest at-
titude available. The problem is that we can’t quite shake our distaste for
“brute givens.” Maybe it would be easier if we didn’t have examples of el-
egant, non-arbitrary truths, but we do have examples, and in abundance:
mathematics. “2 + 2 = 4” is a truth that nobly disdains all issues of justifi-
cation or explanation. To understand it is to understand it to be right. We
can’t help hoping that nature’s laws will somehow share this elegant quality.

Plan III to Deal With Arbitrariness: Find The “Least Arbitrary”
Law

Some philosophers do in fact claim to have found a law with this elegant
quality, or at least to have deduced the existence of such a law. Despite the
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infinite regress just described, they believe in a function that, in virtue of
its quasi-mathematical elegance, of its near-logical necessity, “really is” best
suited to govern the universe. Leibniz is the archetype of these philosophers.
His own remarkable argument is well worth reading in full:

In practical affairs one always follows the decision rule in accor-
dance with which one ought to seek the maximum or the mini-
mum: namely, one prefers the maximum effect at the minimum
cost, so to speak. And in this [metaphysical] context, ... the
receptivity or capacity of the world can be taken for the cost or
the plot of ground on which the most pleasing building possible
is to be built, and the variety of shapes therein corresponds to
the pleasingness of the building and the number and elegance of
the rooms. And the situation is like that in certain games, in
which all places on the board are supposed to be filled in accor-
dance with certain rules, where at the end, blocked by certain
spaces, you will be forced to leave more places empty then you
could have or wanted to, unless you used some trick. There is,
however, a certain procedure through which one can most easily
fill the board. ... And so, assuming that ... something is to pass
from possibility to actuality, although nothing beyond this is de-
termined, it follows that there would be as much as there possibly
can be, given the capacity of time and space (that is, the capacity
of the order of possible existence); in a word, it is just like tiles
laid down so as to contain as many as possible in a given area.

From this we can already understand in a wondrous way how a
certain Divine Mathematics or Metaphysical Mechanism is used
in the very origination of things, and how the determination of a
maximum finds a place.3

Our puzzle requires a slightly different “determination of a maximum”;
we are seeking the maximal world-governing function, rather than directly
seeking the maximal world as Leibniz does.

In the context of our simple discrete-space-time illustrations, we nominate
as the “maximizing” function something we’ll call Σ: the function that just

3Leibniz,“On the Ultimate Origination of Things,” p. 150-151 in Philosophical Essays
(Hackett, 1989).
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Σ = { 9
1 2
7 1

3 1
25

2, ,

9 7 6

...}

Figure 2: A “least arbitrary” natural law à la Leibniz

sums the masses of a point’s immediate predecessors. For instance, if p comes
immediately after three points in its past light cone having mass 0, 3, and 8
respectively, then Σ will give p mass 11. We argue that there is a nice scalar
purity in summation; the sum of a set of numbers is in some sense “the most
that can be got from them.” This seems less arbitrary than other laws we
might choose.

It’s hard to deny that there is something pleasingly natural about the
thought that such a maximizing law should be the real one, even if, as Leibniz
admits elsewhere, such naturalness cannot quite amount to logical necessity.
But the consensus is that this sort of view is unsatisfactory—even on purely
philosophical grounds, to say nothing of empirical ones. Just which variable
is the “natural” one to maximize? Why should there be a unique law or
unique world that maximizes it (especially since worlds of infinite size seem
possible)? Why, instead of our function Σ, did we not make a pitch for a
multiplication function Π, or a function that sums all a point’s predecessors,
not just the immediate ones?

Plan IV to Deal With Arbitrariness: The All-Possible-Worlds-Are-
Equally-Real Thesis

The above criticisms of the Leibnizian approach motivate today’s clever trick
for exempting natural laws from arbitrariness: the all-possible-worlds-are-
equally-real thesis. Actually people speak more often of the “anthropic prin-
ciple,” but insofar as it succeeds in eliminating arbitrariness, our term is a
better one for it. Let us explain why. The anthropic principle (or one strong
version of it) says: “I think, therefore the universe must be so arranged as
to incorporate thinking beings.” If this is taken to explain why the universe
is roughly as it is, then the logic is faulty: It is perfectly possible that a uni-
verse without thinking beings, obeying some particularly stultifying natural
law g in cnl, could have been the real one. No entities would have existed
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to wonder about their own existence, but so what?
An extra idea is needed to make the anthropic principle do the explana-

tory work it seems intended to do—namely, the idea that all possible worlds
are equally real. Scientists know this idea as the many-worlds interpretation
of quantum mechanics; in philosophical circles, it is mainly associated with
the late Princeton professor David Lewis, although something like it seems
to have motivated Nietzsche’s theory of eternal recurrence a century earlier.
With this new assumption it becomes possible to explain why our world, the
world we experience, must be roughly as it is: because none of the possible
worlds that differ significantly from it embeds any minds who might inquire
about it.

There is no need for us to delve too deeply into this theory and its vari-
ants, which most readers will themselves have mulled over already. Let us
simply acknowledge that it eliminates arbitrariness more fully than the other
views we’ve canvassed, and is every bit as stable and internally consistent.
Many of its counterintuitive consequences can be happily accepted once one’s
paradigm has shifted. —Many, but not all.

The big problem for this view is the violence it does to our intuitions
about time and freedom. Of course, nobody has ever explained time or
freedom quite satisfactorily, but this view’s failure is especially bad, especially
immediate. By handing us the ensemble of all possible worlds as a timelessly
existing block, it practically begs us to ask the tough questions: Why do we,
who are bits embedded in one of these static worlds, experience it as evolving
through time? Why do we seem capable of choosing different sandwiches off
the lunch menu if our future is fixed? Adherents of the theory will of course
clamber over each other to field these questions. “Time is an illusion!” some
will say, “Lunchtime doubly so!” Others will insist, “By freedom we must have
meant a particularly nifty form of determinism all along!”4 The enthusiasm
that the all-worlds-are-equally-real thesis begets in its fans is remarkable.
But we are among the majority that ultimately finds their answers too glib.

Choiceless Space-time: Our New Plan to Deal With Arbitrariness

Plan IV is unsatisfactory because it gets time and freedom wrong, but it
does purge arbitrariness from the world more fully than Plan III did. We

4Daniel Dennett’s Freedom Evolves (Viking, 2003) is an entertaining exposition of this
point of view. And the “lunchtime” joke is of course Douglas Adams’s.
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would now like to return to Plan III and suggest a different way to purge its
arbitrariness, a way that is friendlier to our intuitions of time and freedom.

We begin by recalling that the natural law f was not the only arbitrariness
in our puzzle. f determines which member of states should obtain at each
space-time point, but we never explained why states, rather than some
other set, should be the range of data that can obtain at points. Physicists, of
course, define states according to the needs of their theories. If their theory
characterizes points by their non-negative real-valued mass, then states=
{m ∈ R : m ≥ 0}. If their theory characterizes points with a vector in
some Hilbert space, then states is the set of all such vectors. But we are
not interested, here in our armchairs, by the empirically-inspired what of
states; we are interested in the why. Why should states be any particular
set rather than another?

In essence, the answers that have been given to this question are the
same ones that Plans I–IV applied to the choice of f . They are no more
satisfactory in this context than they were in the other. So, calling up the
core Bergsonian idea that we stationed at the back of our mind, we propose
an entirely new answer. We dispense with the choice of a special set states,
dispense with the choice of the function that picks out a member of states
for each point, and instead characterize each point just by the totality of
mathematical possibilities there. In fact we will characterize each point just
by its continuum, that is, by the set of all possible real numbers there. (From
a more celestial viewpoint we could consider arbitrary sets, including subsets
of larger infinite cardinal numbers, but restricting ourselves to real numbers
will make our work more concrete and more tractable.)

Postulate 1a: Each space-time point is fully characterized just by the set
of real numbers that are possible there.

It is worth reading Postulate 1a a few times, as it contains the core of
our “arbitrary-choice-less” space-time theory. The most jarring thing about
it is its last word, “there.” Traditional philosophers of mathematics will balk
at it: “Surely there is one unique and timeless totality of real numbers, and
it is perversely otiose to talk of the numbers that are possible at this or that
point in space-time!” If this objection were right—if the same mathematical
structures were possible always and everywhere—then our theory would be
vacuous. Every point in space-time would be the same. Nothing would
happen.
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Against this objection, our second puzzle will give us a reason to think
that new mathematical structures must become possible over time. For now,
however, let us just reiterate what we said in our foreword: that this sce-
nario’s oddness does not make it formally contradictory, and that the notion
of multiple “totalities of possibilities” has become fundamental—one might
even say banal—in set theory, where they are referred to as different “uni-
verses” or “models of ZF” (the axioms of Zermelo-Fraenkel set theory). Be-
cause we will formalize our ideas in set theory, we will henceforth usually
replace the terms “mathematical structure” and “mathematical possibility”
with the term “set.”

Now, we will merely have replaced one arbitrariness with another until
we justify each space-time point’s association with its particular continuum.
Having allowed the answer to the question “What is possible?” to be just
as time- and space-dependent as the answer to “What is real?”, we may
seem to have saddled it with the same intractability that Plans I–IV failed
to overcome. We would like to say, “There is nothing arbitrary about what
holds at p, because what holds there is simply the totality of all possibilities,
with no choice made among them.” But why is the totality of possibilities
available at p not itself arbitrary?

We do have (the beginnings of) a good answer to this question:

Postulate 1b: At each point, precisely those real numbers are possible that
must be possible, given the real numbers that were possible at past points. We
call the resulting continuum the synthesis of the prior points’ continua.

Postulate 1b should be understood (not yet as a rigorous mathematical
statement but) as an application of the belief, nearly universal among people
who think about such matters, that the set of all real numbers is closed under
definable operations. If an irrational real number x = 0.2224 ... is possible,
for instance, then the real number 2x = 0.4448 ... is also possible. And this
is true regardless of whether x itself is definable in an absolute sense by some
mathematical formula. Postulate 1b notes that this closure idea ought to
apply to the past: whatever real numbers happen to have been mathemati-
cally possible in the past, they and any other structures definable from them
(including other real numbers) ought to be possible now. Moreover, no other
structures should be possible, since they would be unaccountable, in a sense
that we will make clearer in a moment.

Let us compare our new plan side-by-side with the Leibnizian Plan III,
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whose strategy it largely borrows. In both cases the state of each point is sup-
posed to be a “self-evident,” “eminently reasonable,” “not-at-all-arbitrary”
function of its past. Plan III (or our simple cartoon of it) declared that dis-
tinguished function to be the summation Σ, and asked, in a haughty voice,
“What else could it be? Multiplication? Indeed!” But the haughty voice
was not an argument and the Plan fizzled. To succeed, the strategy must be
deployed towards a different question. The old question was, “Which of this
fixed set of possibilities is real, given what was real in the past?”. Our new
question is “What is mathematically possible, given what was mathematically
possible in the past?”. And aside from some technical ambiguities, this ques-
tion has only one answer, at least if we grant that no possible mathematical
structure can become impossible later.

9
1 2

7

3
21

0
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5

678
9...

1. A special set STATES must
 be chosen, to contain
 every value that
 can characterize
 a space-time
 point.

2. A causal natural law
 must be chosen, to
 determine which member
 of STATES will obtain at
 a point with a given past.

ℝ(x,y)

ℝ(x) ℝ(y)

r

p q

The Old Question: Which of this
fixed set of possibilities is real, given
the order in which they were real in
the past?

The New Question: What is math-
ematically possible, given what
was mathematically possible in the
past?

Figure 3: A comparison of the framework of classical space-time (left) with
that of our Bergsonian postulates (right).

A comparison between Plan III and our new theory is sketched in Figure
3. The elements of the left-hand sketch have been defined; on the right,
we must define what we mean by R(x). It is what the phrase “all the real
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numbers that must be possible given that the real number x is possible”
cashes out to in mathematics: to wit, the set of all real numbers in the
(relative) constructive hierarchy L(x) that has been “seeded” with x. (For
the details on this definition, see Chapter 13 of the standard set-theory text
[1].) With the technique of forcing that Paul Cohen invented in the 1960s,
we can find “mutually generic” real numbers x and y that instantiate the
situation shown in the right-hand picture.

The key difference between the pictures in Figure 3 is that the left-hand
one involves three arbitrary choices, whereas the right-hand one involves
only one. (The order type of the space-time ordering < of points needs to
be explained in both pictures and we will address this choice under Puzzle
3 below.) At point r in the right-hand picture, exactly those real numbers
are possible that must be possible, given the real numbers that were possible
earlier. Specifically, the continuum at r is the union of all previous continua,
plus the minimum collection of reals needed to close it under definable op-
erations. For instance, consider the real number z, defined by “interlacing”
the digits of x and y. If x = 0.33338 ..., and y = 0.11112 ..., then z =
0.3131313182 .... . (Just to be clear, the ellipses do not mean that these are
repeating decimals!) This z must be possible at r, but not at p or q since x
and y are mutually unconstructible.

Of course, as we stressed at the outset, many of the real numbers in r’s
continuum, including this z, will be undefinable in an absolute sense. What
guarantees their possibility is that they are definable relative to previously
possible numbers, so that if one could refer to the earlier ones, one could
define the later ones too.

It is worth stressing the notion of “accountability” that uniquely fixes the
totality of mathematical possibilities at r. When we say that all possibilities
at r must be accounted for, we mean essentially what Leibniz meant when he
insisted that all events have a sufficient reason. Plan III itself wanted to avail
itself of this notion; it held that a point’s state could be “accounted for” if
and only if it were the sum of immediately preceding states. Again, this failed
because no logical or philosophical (as opposed to aesthetic) principle made
multiplication, or an infinity of other functions, any less “accountable” than
summation. The case is different for choiceless space-time, where we must ac-
count for possibility rather than reality. Here, if at point r a decimal number
w were possible that were not constructible from the numbers possible before
r, then w really would be absolutely arbitrary, absolutely unaccountable—it
would be the output of some cosmic random-number generator. There is a

16



clear sense in which the interlaced decimal z has a sufficient reason for being
possible at r, while the mysterious w would not.

Before going any deeper into the mathematics of Postulate 1, we ought
to address its fundamental oddness: few readers will be comfortable with
the idea that mathematical possibilities “arise” at all. Therefore we turn
to our second philosophical puzzle, which will lead us to a perspective from
which this arising seems not only sane, but natural and necessary. From this
perspective it would seem downright paradoxical if new sets failed to become
possible.

Puzzle 2: The Set-Theory Paradoxes

The infamous paradoxes of set theory all begin by having us imagine a “set
of all sets.” On some level it seems that this should be legitimate: we know
what sets are, and now we are gathering them all up into a hypothetical
mega-set. Note that we do more hereby than postulate the universe V of all
sets, as we’ve already done; we say that V is itself a set, and is by virtue of
this a member of the set of all sets, i.e. of itself.

The logic hits the fan when we start reasoning about this set of all sets—
about the set of its members that are not members of themselves (the Russell
paradox), or about the set of its members that are ordinal numbers (the
Burali-Forti paradox). Let us recall in detail how the latter case leads to
a contradiction. The notation x ∈ y means that x is a member of y. The
definition of a (von Neumann) ordinal is a set x that is transitive (x contains
all its members’ members, so that z ∈ y ∈ x entails z ∈ x) and is well-
ordered by the membership relation ∈ (of any pair of x-members, one is
a member of the other, and there is no “descending infinite membership
chain” x 3 y0 3 y1 3 ...). Now suppose there is a set Ord of all ordinals. It
is straightforward to show that Ord must be transitive and well-ordered by
the membership relation ∈, and would thus be an ordinal itself. Therefore
Ord ∈ Ord. But this yields an infinite descending chain of membership:
Ord 3 Ord 3 Ord.... So Ord is not well-ordered by ∈ after all: contradiction.

Puzzle 2: How can we refer to a set of all sets (or all ordinals) without
landing in mathematical contradiction?

The standard answer to this puzzle is well known: it is to decree thou shalt
not reason about the totality of all sets as though it were a set itself. This

17



“works,” but seems shamefully ad hoc to a certain philosophical mindset. To
wit:

It is an embarrassment in set theory, as it is often understood,
that an absolute distinction must be drawn between totalities
such as the totality of ‘all ordinals’ or ‘all cardinals’ or ‘all sets’—
the totalities which Cantor called ‘inconsistent manifolds’ and we
call proper classes—on the one hand, and those totalities which
form sets. For when we take the former totalities to be well-
defined objects, then we must make this absolute distinction: the
two kinds of objects must be treated quite differently. But why,
if the totality of all sets has a well-defined extension, is it not a
set in a more extensive totality?5

As with our first puzzle, today’s marketplace of ideas offers this puz-
zle little but glib, skeptical, and arbitrariness-embracing answers. The glib
ones try to convince us without invoking the paradoxes directly that we were
wrong to expect a universal set to exist. The arbitrariness-embracing ones
insist that the paradoxes really do explain by themselves the universal set’s
nonexistence. And the skeptics shrug off the issue by saying that mathemat-
ics is ultimately just a language game whose rules we can make up as we see
fit.

Despite the many well-written, good-faith presentations of the foregoing
answers, there are people like the quoted passage’s author who are not satis-
fied, who still think there ought to be a “more extensive totality” that could
include a set of all sets. What Bergson’s core idea suggests is that such a
totality could become possible, if only the class of all sets grew over time.
Consider: it takes time to think the thought “The set of all sets is a member
of the set of all sets,” time over which new (bigger) ordinals could become
possible, so that the “set of all sets” referenced at the start of the thought
could be different, and smaller, than the “set of all sets” referenced at the
end. Rather than the paradoxical V ∈ V , we will have thought the innocuous
proposition V1 ∈ V2. (Or Ord1 ∈ Ord2, in the Burali-Forti case.)

We will call any process that makes a new (higher) ordinal possible a
paradox escape. At the moment of a paradox escape, it becomes possible to
“step outside” all previously possible sets, and consider them as a totality;
the set of all previously possible sets becomes possible.

5W. W. Tait, “Constructing Cardinals From Below,” p. 10, on his University of Chicago
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Set-universe A

Set-universe B (contains A as a set)

Set-universe C (contains A and B as sets)

[the sets in A are considered as a totality...]

[the sets in B are considered as a totality...]

[time]

Figure 4: Escaping the paradoxes with a sequence of bigger and bigger set-
totalities.

This resolution to the set-theory paradoxes might already be celebrated
as the most satisfying, were it not for the question: Who or what is respon-
sible for the creation of new ordinals? We want to say that these ordinals
are “automatically” made possible as soon as the totality of all ordinals is
considered as a totality, but this use of the passive voice cannot ward off the
question: Who is it that considers the totality of ordinals as a totality? Who
is the synthesizing intellect? We hardly aspire to this role ourselves; Burali-
Forti’s proof is not a magic spell that we chant to conjure noetic entities.
We might borrow the answer that Berkeley gave to explain the continuation
of his own universe, and say that God is the synthesizing intellect. But a
Berkeleyan God is the sort of arbitrary, unexplained demiurge that it has
been our task to eliminate.

Our solution to this puzzle comes from the “choiceless space-time” model
that grew out of our first puzzle. The solution is not to name a being who,
by thinking of the totality of possible sets, pushes our world across the gaps
in Figure 4. It is instead to eliminate those troublesome gaps by rearranging
the set-totalities. If we put the set-totalities into a partial ordering that is
not a discrete linear ordering, then each might be a synthesis of those prior
to it, as per our Postulate 1. Such a synthesis can (depending on the sets
it gathers together) also be a paradox escape. And as we already argued
in our discussion of choiceless space-time, such a synthesis is philosophically
innocuous. It simply establishes what must be mathematically possible, given
what is already possible.

website at http://home.uchicago.edu/~wwtx/Foundations3.pdf.
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The right-hand picture of Figure 3 above can serve to illustrate a philo-
sophically innocuous paradox escape. In our initial explanation of it we said
that x and y, the real numbers that generate all the possibilities at the two
earlier points, were “mutually generic.” With the most common kinds of
generic real numbers, the point immediately later than these two — where
just those sets constructible from {x, y} are possible — will have no addi-
tional ordinals. Well, let us now suppose instead that x and y are the same
kinds of generic real numbers, but not mutually generic. It turns out to be
consistent that {x, y} constructs an ordinal higher than any constructible
from x or y alone. We thus have a mathematical green light to advance our
second Postulate:

Postulate 2: There are points at which some ordinals are possible that
were not possible at any previous point.

Puzzle 3: The Arbitrariness of Space-time Struc-

ture

The Postulates presented so far address only two of the three kinds of arbi-
trariness we identified in the first section, that of the range of possible states
for space-time points, and that of the natural law which selects one for each
point. There remains the arbitrariness of space-time structure. We phrase
this puzzle in terms of the “synthesis” that we defined in the first postulates:

Puzzle 3. What determines which collections of space-time points get
“synthesized” into an immediate successor point?

If space-time had only finitely many points, we might appeal to a “max-
imality principle” like the Leibnizian one cited earlier, and say that every
collection of space-time points get synthesized. But our first Postulate en-
tails that every point (except for the earliest one, if there is one) must have
infinitely many predecessor points. The argument here is simple. First,
if a point has no predecessors, its continuum must be the constructible
continuum—the smallest possible continuum, call it R0—for there is nothing
“previously possible” in terms of which an unconstructible number could be
defined. Second, if some point p were associated with a larger continuum
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than R0 but had only finitely many predecessors, then some q among them
(or p itself) whose continuum is not R0 would have either no predecessors, or
have as its sole predecessor a point associated with R0. But then the “new”
unconstructible real numbers in q (or p) would again be unaccountable in
terms of what was possible beforehand.

The problem with appealing to a maximality principle when there are
infinitely many points—with asserting that “every sub-collection of the col-
lection of space-time points should synthesize a new point”—is that there is
not, in general, any fact of the matter about what sub-collections an infinite
collection has. It would depend on what “background” or “outer” model of
set theory we took ourselves to be working in—and the whole point of our
endeavor is to deny that any such thing is given in advance.

A maximality principle would also be in tension with our arbitrariness-
purging goals; there lurks in it an unexplained “demiurge” of the kind we
tried to avoid when discussing paradox-escapes. Recall that the issue was
how possibilities at earlier points lead to new possibilities at later points,
and that we hoped never to need any mysterious force to “act” to obtain
one from the other. Our worry here is that whenever unrelated continua are
brought together and synthesized, there must be some force that reaches out
and brings them together.

Is there an alternative principle that could banish these worries from our
system? We suggest a vanishingly-little-work principle. Intuitively, it should
allow a collection X of points to synthesize into a successor point p with
continuum Rp just if X’s points are “already infinitely close to attaining
all of Rp” and require “vanishingly little intelligence” to synthesize. We
will not formalize this here (see [2] for the formalization) but it will require
that for any pair p, q of points in X there must exist a point r in X whose
continuum includes both p’s and q’s. Thus q and q′ will have “already been
brought together” in X; the synthesis of X into p will not be yoking together
unrelated continua.

Postulate 3. If p is any space-time point and Rp is its continuum, then
any smaller continuum R′ constructible from Rp will itself be associated with
a space-time point preceding p just if “vanishingly little work” is required to
synthesize it from some subcollection of p’s predecessors.
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Puzzle 4: How Can We Account For What Is

Mathematically Possible?

A perennial puzzle in the foundations of mathematics concerns statements
like the continuum hypothesis. Roughly speaking, this hypothesis says that
there are no sets “bigger than” the set of integers and “smaller than” the
set of real numbers. Such statements are puzzling because, as Gödel and
Cohen showed, they cannot be proved or refuted by the standard axioms of
mathematics, nor by any axiom that we are likely to admit in the future
on classical mathematical grounds. There are two main schools of thought
regarding this puzzle. One holds that these statements really are true or false,
that the hypothesized sets are or are not possible, in a metaphysical sense
of “possible” that is neither the same as physical possibility nor amenable
to investigation by classical mathematical methods. The other school holds
that there is no truth at all about these statements; they might be shown
to lead or not to lead to contradictions, but any talk about whether the
non-contradictory ones are “really” true is ethereal nonsense.

Our approach to this puzzle should be easy to infer from what we have said
already. It is closer to the first school of thought, agreeing that the various
hypothesized sets really are or really aren’t possible. But it overcomes in
a novel way the common objection to this position, that their possibility or
impossibility cannot be explained. Our Bergsonian view is that every possible
set has been made possible through the synthesis of less complex sets. There
is a web of explanations for the possibility of sets leading back to an earliest
point, at which only the constructible sets are possible. Space-time is this
web.

Some care is necessary if this approach is to account for all mathematical
possibilities. The preceding postulates may allow cases in which there is a
real number x and a point p, such that x appears at all points later than p, but
not at p or anywhere else. In such cases it is mysterious how x became possi-
ble. To exclude such cases we need a “well-foundedness” requirement on the
web of explanations. We need to know that every mathematical possibility
(except for the constructible sets, which are possible always and everywhere)
is explained in terms of prior possibilities. The following postulate ensures
this:

Postulate 4. If a real number is possible at some point p, it is possible at
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some point q prior to or identical with p, such that it is not possible at any
point prior to q.

What Structures Satisfy The Bergsonian Pos-

tulates?

The considerations driving our postulates have been abstract rather than
empirical. It would be to a world’s credit, we dare say, if it happened to
obey our postulates, but we have not yet asked whether our world does
obey them, or even whether any structure could obey them. To pose these
questions clearly, we must translate our postulates into purely mathematical
statements.

This is carried out in [2], which translates postulates 1, 3, and 4 into
set-theoretic axioms. We call a structure satisfying these axioms a self-
constructing family of continua. Our mathematical task is to find one —
hopefully, one that bears some structural resemblance to our universe.

The mathematical tool suited to produce candidates for satisfying these
axioms is the technique of forcing invented by Paul Cohen in the 1960s. This
was the first technique to establish the consistency of unconstructible sets,
and it remains by far the most popular tool for defining nested models of
set theory. The set-theory models it yields, called “generic extensions,” can
satisfy a wide range of desired properties.

A generic extension of L (the minimal model of ZFC set theory) is a model
of form L(G), where G 6∈ L is a generic filter on some particular boolean
algebra B. The properties of this model are determined by the particular
B that is used. Moreover, every ZFC model N that is an inner model of
L(G) (that is, L ⊆ N ⊆ L(G)) has form L(G ∩ C) for some subalgebra
C ⊆ B. Thus what we are seeking is a suitable system of nested boolean
algebras, some or all of which will correspond to space-time points; when
point p is ≤ q, any algebra corresponding to p will be a subalgebra of an
algebra corresponding to q.

The axiom that translates our second postulate requires a boolean alge-
bra that constructs new (higher) ordinals when it used for forcing. Now, if
spacetime points are densely ordered (i.e., if p > q implies that some point
r satisfies p > r > q) then not every spacetime point p can correspond to an
algebra constructing an ordinal α(p) that is greater than any constructed by
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p’s predecessors; otherwise there is an infinite descending chain of ordinals
α(p) > α(r1) > α(r2) > α(r3)..., which is impossible. Thus if our nested
system of boolean algebras yields a densely ordered set of space-time points,
as we expect, those points that collapse higher ordinals will be “sprinkled”
intermittently among those that don’t. This is suggestive of the discontin-
uous measurement events at the core of the quantum theory. But we will
focus now on points whose algebras do not collapse ordinals.

The simplest boolean algebras that are usable for forcing but do not
collapse cardinals are called Cohen algebras and measure algebras. Alas,
neither one yields models of the Bergsonian axioms. Since classical examples
from set theory don’t work, and since we hope the axioms apply to the
real world, we turn to current theories of physics to see if they supply any
boolean algebras that would be good candidates. It turns out that algebraic
quantum field theory (AQFT) is, at least superficially, quite like our own
set-up, associating to nested regions of spacetime correspondingly nested
structures called C* algebras.

The thrust of our research now is to generate boolean algebras from the
“projection lattices” of algebras used in AQFT, so that the requirements of
[2] are satisfied. If this can be done, it may well help explain why the world
must be built up from these abstruse quantum algebras, rather than from
simpler classical structures.

——

When the young Henri Bergson decided to pursue his metaphysical ideas,
he foreclosed a future in mathematics, where he had been a brilliant and
indeed nationally recognized student. This prompted his professor’s famous
quip: “You could have been a mathematician; and you will be a mere philoso-
pher.” It seems to us now that Bergson could not have chosen otherwise. The
world of the early twentieth century was ready for his intuitive rejection of
the positivist orthodoxy, which was unable to account in any satisfying way
for our sense that we can act freely; but it would take another century to
develop mathematics that could put Bergson’s ideas to a formal test. We
hope we have made a good case that the time for this test is now.
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Appendix: Consequences For Mathematics

Since the Bergsonian axioms are meant to be a joint solution to deep problems
of physics and the foundations of mathematics, it is worth looking at them
more closely from the latter side. Two of the main questions that occupy this
field’s thinkers are “Is the subject matter of mathematics a realm of objective
mathematical objects?” and “Can what is mathematically true change over
time?”. This gives a matrix of four possible answer pairs, which we will
review with great brevity.

“No”/“No” is best represented by classic logicism. This is the belief (asso-
ciated mainly with Gottlob Frege, Bertrand Russell, and Early Wittgenstein)
that mathematics is “just logic,” and that logic itself boils down to formal
rules about when the very structure of a proposition makes it true or false,
irrespective of what its terms refer to. Thus mathematical truth is a matter
of rules about propositions, not of mathematical objects; logicists have by
and large understood these rules to be immutable.

“Yes”/“No” is “platonism,” a view that gained popularity after Gödel
showed that no finite set of logical rules can yield all mathematical truths. A
platonist takes the propositions “there are infinitely many primes” or “there
is an unconstructible set” to be true or false in much the same way that
the proposition “there is a lion at the zoo” is true or false (which is to say
objectively, and not as a matter of mere logic), except that mathematical
propositions are not permitted to become true or false over time.

“No”/“Yes” are the answers of the so-called intuitionist school, which
emphasizes mathematics as the product of human minds. When, in the
foreword, we said that “hardly” anyone has doubted mathematics’ timeless-
ness, it was these folks who made the qualification necessary. They accept
that a proof about a newly defined structure may establish a genuinely new
truth. But such a truth is not really objective because, according to them,
there is no pre-existing realm of mathematical objects; mathematicians are
essentially deducing truths about figments of their imaginations.

These three pairs of answers capture the three main schools of mathe-
matical philosophy, which for a century or so have been in stalemate, or, if
you prefer, equilibrium — an equilibrium just dynamic enough to support a
handful of scholarly journals.

By answering “yes/yes” we propose a truly new approach to the founda-
tional problems of mathematics. Yes, there really is a realm of mathematical
objects (or possibilities); and yes, it does grow over time — and spacetime
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is the map of that growth.
Of course, it may happen that our work here just turns a stalemate of

three not-quite-satisfactory philosophies into a stalemate of four. The answer
depends on how the Bergsonian axioms fare as an approach to physics, and
that is why we have spent, and will continue to spend, most of our time on
that aspect of it.
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