MAGNETICKÉ POLE V LÁTCE (Elektrodynamika II.)

Studijní text pro řešitele FO a ostatní zájemce o fyziku

Bohumil Vybíral

Obsah

Úvod

Ú	Úvod		
1	Mag	gnetické vlastnosti látky	4
	1.1	Vliv látky na magnetické pole	4
	1.2	Magnetické vlastnosti atomu	5
		a) Základní představy o atomu	5
		b) Momenty hybnosti a magnetické momenty elektronů	5
		c) Moment hybnosti a magnetický moment atomového jádra	8
		d) Atom ve vnějším magnetickém poli	8
	1.3	Magnetická polarizace	10
	1.4	Magneticky měkké látky	10
		a) Diamagnetika	10
		b) Paramagnetika	11
	1.5	Feromagnetické látky	11
2 Magnetický obvod		gnetický obvod	16
	2.1	Magnetický indukční tok, magnetomotorické napětí	16
	2.2	Hopkinsonův zákon	17
	2.3	Složený magnetický obvod	18
		a) Sériové řazení magnetických odporů	18
		Příklad 1 - magnetický obvod se vzduchovou mezerou	19
		b) Paralelní řazení magnetických odporů	20
		Příklad 2 - kombinované řazení magnetických odporů	21
	2.4	Magnetické pole na rozhraní dvou látek, magnetické stínění $\ .$.	22
		Příklad 3 - indukční čáry a siločáry na rozhraní	25
3	Mag	gnety	26
	3.1	Elektromagnet, permanentní magnet	26
	3.2	Magnetické pole magnetu, Gaussovy polohy	27
		Příklad 4 - první Gaussova poloha	29
	3.3	Magnetické pole Země	31
	3.4	Působení magnetického pole na magnet	32

	3.5	Příklad 5 - magnetickodynamické měření	35 35 37
4	Úlo	hy	39
D	odat	ky	43
D.1 Magnetické vlastnosti některých látek			
		Tab. 1 Magnetická susceptibilita magneticky měkkých látek	43
		Tab. 2 Závislost magnetické indukce a relativní permeability na	
		intenzitě magnetického pole u feromagnetických prvků.	44
		Magnetizační křivky technických kovů	45
	D.2	Fyzikální konstanty pro řešení úloh	47
Ř	ešeni	úloh	48
Li	terat	ura	52

Úvod

Studijní text **Magnetické pole v látce** volně navazuje na text **Magnetické pole ve vakuu** [13] a je druhým dílem elektrodynamiky. Na něj bude navazovat díl třetí, který bude věnován elektromagnetické indukci.

Předložený text pojednává o magnetickém poli v látkovém prostředí. Látka svou atomovou strukturou ovlivňuje primární magnetické pole buzené pohybem nábojů (resp. elektrickým proudem) ve vakuu. Z mikroskopického hlediska je popis vlivu látky na magnetické pole složitý a uspokojivě se s ním vyrovnává až kvantová fyzika. To je však mimo možnosti předloženého textu. Proto je (až na čl. 1.2) volen běžně užívaný makroskopický - fenomenologický (jevový) popis, který dostatečně vyhovuje pro řešení úloh o magnetickém poli v látce.

Studijní text je rozvržen do tří částí. Nejprve pojednává o magnetických vlastnostech látek a jejich vlivu na celkové magnetické pole, ve druhé části jsou řešeny magnetické obvody a třetí část pojednává o magnetech včetně magnetického pole Země.

Výklad je průběžně ilustrován na šesti řešených příkladech. K procvičení teorie a k přípravě na řešení úloh ve fyzikální olympiádě je na závěr textu zařazeno 13 úloh s uvedenými výsledky jejich řešení, případně u obtížnějších úloh i s naznačeným nebo úplným řešením.

1 Magnetické vlastnosti látky

1.1 Vliv látky na magnetické pole

Vložíme-li látku do vnějšího magnetického pole, vytvořeného ve vakuu pohybem nábojů v pozorovací soustavě anebo elektrickým proudem, dojde k interakci vnějšího magnetického pole s látkou. To se projeví změnou původního magnetického pole, neboť látka se působením pole magneticky polarizuje a svým vnitřním magnetickým polem přispívá k primárnímu magnetickému poli ve vakuu. Mechanismus magnetické polarizace je složitý a je dán atomovou a molekulární strukturou látky.

Podle magnetické polarizace (její velikosti a směru) dělíme látky na:

- 1. diamagnetika (látky diamagnetické)
- 2. paramagnetika (látky paramagnetické)
- 3. feromagnetika (látky feromagnetické)

U látek prvních dvou skupin dochází jen k malé magnetické polarizaci, přičemž polarizační pole u diamagnetik je opačného směru než primární pole ve vakuu, kdežto u paramagnetik stejného směru. Diamagnetika tedy poněkud zeslabují primární magnetické pole. U paramagnetik má polarizační pole stejný směr jako primární magnetické pole, dochází naopak k jeho zesílení. U feromagnetik je magnetická polarizace značná a tomu odpovídá velké zesílení primárního magnetického pole.

Většina látek patří mezi diamagnetika nebo paramagnetika. Z prvků se diamagnetismus nejvíce projevuje u vizmutu, paramagnetismus u manganu, chromu a platiny. Mezi feromagnetika patří prvky železo, nikl a kobalt.

O chování látek v magnetickém poli se můžeme experimentálně přesvědčit, vložíme-li tělísko (např. podlouhlý váleček) do silného nehomogenního magnetického pole. Toto pole získáme např. v blízkosti jednoho pólu tyčového magnetu nebo solenoidu s feromagnetickým jádrem. Přitom se váleček z paramagnetika natočí podélnou osou do směru pole a bude se vtahovat do míst s větší intenzitou pole. U válečku z feromagnetika je toto vtahování velmi intenzivní. Váleček z diamaagnetika se natočí podélnou osou kolmo ke směru pole a bude z pole vytlačován do míst s menší intenzitou.

Abychom alespoň kvalitativně pochopili složité a rozmanité vlastnosti látek v magnetickém poli, pokusme se nejprve nahlédnout do atomu a poodhalit jeho magnetické vlastnosti.

1.2 Magnetické vlastnosti atomu

a) Základní představy o atomu

Jak je známo, atom prvku o protonovém (resp. atomovém) čísle Z a nukleonovém (resp. hmotnostním) čísle A se skládá z jádra, které obsahuje Z protonů a A-Z neutronů a elektronového obalu o Z elektronech. Atom má velikost řádu 10^{-10} m, jádro pouhých 10^{-14} m.

V průběhu 20. století bylo k popisu struktury atomu vytvořeno několik modelů, z nichž je v současné době v podstatě dobře přijatelný jen kvantově mechanický model. Jde o matematický model, který k popisu struktury elektronového obalu a kvantových stavů elektronů používá vlnovou funkci. Ta je řešením Schrödingerovy rovnice.

Pro získání názoru na podstatu magnetických vlastností atomu si zvolme jednoduchý atom vodíku, který se skládá z jádra tvořeného jedním protonem a z obalu s jedním elektronem. Uvažujme nejprve speciální případ **rotačně symetrických stavů** elektronu, tj. jeho "kruhových" drah (použijeme-li terminologii původního Bohrova modelu). Pro základní energetické stavy elektronu a jeho spektra poskytuje Bohrův model i kvantově mechanický model stejné výsledky (viz např. [8]). Existuje však principiální rozdíl v pohledu na elektron v atomu. V Bohrově modelu je každý elektron bodovou částicí, která se pohybuje po přesně určené trajektorii, kdežto v kvantově mechanickém modelu lze najít jen místa nejpravděpodobnějšího výskytu elektronu. Zajímavé je, že tato místa v případě rotačně symetrických stavů se nacházejí právě na Bohrových kružnicích. V kvantovém modelu je ovšem elektron současně přítomen na celé této "kružnici", což je neslučitelné s Bohrovou představou elektronu v atomu jako bodové částice.

Vedle uvedených základních rotačně symetrických stavů elektronu, je nutné uvažovat další kvantové stavy elektronu, jako částice o třech stupních volnosti - částice, která je v prostoru popsána vedle souřadnice r, ještě úhly φ , ϑ . Navíc má elektron vlastní moment hybnosti (spin).

b) Momenty hybnosti a magnetické momenty elektronů

Nicméně proveďme nyní pro jednoduchost výpočet orbitálního (dráhového) magnetického momentu a orbitálního momentu hybnosti elektronu v Bohrově modelu atomu. V něm se elektrony pohybují po kruhových drahách o poloměru (viz např. [5]):

$$r = r_0 n^2$$
, kde $r_0 = \frac{\varepsilon_0 h^2}{\pi m_e e^2} = 5.29 \cdot 10^{-11} \text{ m},$

(tento poloměr se nazývá Bohrův poloměr) rychlostí

$$v = \frac{v_0}{n}$$
, kde $v_0 = \frac{e^2}{2\varepsilon_0 h} = 2.19 \cdot 10^6 \text{ m} \cdot \text{s}^{-1}$

a s frekvencí

$$f = \frac{1}{T} = \frac{2N}{n^3}$$
, kde $N = \frac{m_e e^4}{8\varepsilon_0^2 h^3} = 3,29 \cdot 10^{15} \text{ Hz}$

je Rydbergův kmitočet
a $n=1,2,3,\ldots$ hlavní kvantové číslo. Obíhající elektron je ekvival
entní proudu

$$I_{\rm e} = -\frac{e}{T} = -ef = -\frac{m_{\rm e}e^5}{4\varepsilon_0^2 h^3 n^3}.$$
 (1)

Tento proud vyvolá v souladu s výrazy (22) a (38) v [13] ve středu kruhové trajektorie magnetické pole o indukci

$$|\boldsymbol{B}_o| = \mu_0 \frac{I_{\rm e}}{2r} \tag{2}$$

a o orbitálním magnetickém momentu \pmb{m}_0 o velikosti

$$|\boldsymbol{m}_0| = \pi r^2 I = \frac{eh}{4\pi m_{\rm e}} n = \mu_{\rm B} n, \qquad (3)$$

kde

$$\mu_{\rm B} = \frac{e\hbar}{4\pi m_{\rm e}} = \frac{e\hbar}{2m_{\rm e}} = 9,27 \cdot 10^{-24} \,\,\mathrm{A} \cdot \mathrm{m}^2 \tag{4}$$

je **Bohrův magneton**, který reprezentuje kvantum magnetického pole elektronu. **Orbitální moment hybnosti** elektronu má velikost

$$|\mathbf{L}_{\rm o}| = m_{\rm e} v r = \frac{h}{2\pi} n = \hbar n, \tag{5}$$

kde $\hbar=1,05\cdot10^{-34}~{\rm J\cdot s}$ je kvantum momentu hybnosti elektronu. Rovnice (5) představuje první Bohrův postulát.

Kvantově mechanický model atomu přinesl korekci vztahů (3)
a(5)- řešením Schrödingerovy rovnice vychází

$$|\boldsymbol{m}_0| = \sqrt{l(l+1)}\mu_{\rm B},\tag{6}$$

$$|\boldsymbol{L}_0| = \sqrt{l(l+1)}\hbar,\tag{7}$$

 $\mathbf{6}$

kde l = 0, 1, 2, ..., (n - 1) je **vedlejší kvantové číslo**. Je zřejmé, že vztahy (3), (5) jsou zvláštními případy vztahů (6) a (7) pro l = 0.

Elektron má vedle orbitálních charakteristik ještě vlastní veličiny - vlastní moment hybnosti, tzv. spin L_s a odpovídající **spinový magnetický moment** m_s . Tyto veličiny mají podle kvantové fyziky velikost

$$|\boldsymbol{L}_{\rm s}| = s\hbar, \quad |\boldsymbol{m}_{\rm s}| = 2s\mu_{\rm B},\tag{8}$$

kde $s = \pm \frac{1}{2}$ je **spinové kvantové číslo**, přičemž znaménko + značí směr souhlasný s příslušným orbitálním momentem a znaménko – směr opačný. Čísla s nejsou celistvá, ale jejich rozdíl celistvý je stejně jako u ostatních kvantových čísel.

Mezi magnetickým momentem a momentem hybnosti jsou zřejmé tyto vztahy:

$$\boldsymbol{m}_0 = -\frac{e}{2m_{\rm e}}\boldsymbol{L}_0\tag{9}$$

pro orbitální veličiny a

$$\boldsymbol{m}_{\rm s} = -\frac{e}{m_{\rm e}} \boldsymbol{L}_{\rm s} \tag{10}$$

pro spinové veličiny. Konstanta, která váže veličiny m, L se nazývá gyromagnetický faktor. U spinových momentů má tento faktor dvojnásobnou velikost než u orbitálních. Záporné znaménko je dáno záporným nábojem elektronu. Vektory m a L mají tedy vzájemně opačný směr.

Z výrazů (9) a (10) je zřejmé, že s magnetickým momentem je nerozlučně spojen moment hybnosti, tj. že i uvnitř atomu mají magnetické jevy zřejmou příčinu v pohybu náboje. Z toho vyplývá makroskopický důsledek: při zmagnetování tělesa se změní jeho moment hybnosti a naopak, že změna momentu hybnosti tělesa může vyvolat změnu jeho magnetického momentu, tj. magnetickou polarizaci. Existenci prvního efektu potvrdili v letech 1915 až 1925 Einstein, de Haas a další fyzici, existenci druhého efektu S. a L. Barnettové (podrobněji viz např. [3], [5]). Přitom u látek feromagnetických byl potvrzen gyromagnetický faktor podle vztahu (10), tj. že magnetická polarizace feromagnetik je způsobena skládáním jejich nekompenzovaných spinových magnetických momentů elektronů.

Uvedené **magnetomechanické jevy** experimentálně potvrzují, že u složitějších atomů je výsledný magnetický moment dán vektorovým součtem orbitálních a spinových momentů. Kvantová struktura elektronů v atomu je u každého prvku jiná, atomy prvků (až na výjimky inertních plynů) se váží do molekul. Proto jsou magnetické vlastnosti jednotlivých prvků a zvlášť jejich sloučenin rozdílné.

Poznatky o magnetických momentech elektronu vedou k modelové představě o existenci atomárních proudových smyček s proudy typu (1). Pomocí atomárních (molekulárních) proudových smyček lze vysvětlit některé makroskopické vlastnosti látky a např. magnetů (viz dále 3. kap.). Zajímavé je, že molekulární proudové smyčky zavedl do fyziky již r. 1822 A. M. Ampére.

c) Moment hybnosti a magnetický moment atomového jádra

Vedle elektronového obalu je velmi významnou součástí atomu jeho jádro, které se rovněž vyznačuje vlastním momentem hybnosti (spinem atomového jádra) a spinovým magnetickým momentem jádra. Spin atomového jádra má velikost řádově stejnou jako spin elektronu, kdežto spinový magnetický moment jádra μ_i je výrazně menší. Vyjadřuje se v jednotkách **jaderný magneton** μ_N , definovaných obdobně jako Bohrův magneton (4). Jednotka $\mu_{\rm N}$ se od jednotky $\mu_{\rm B}$ liší činitelem $\frac{m_{\rm e}}{m_{\rm p}} = 1\,836$, kde $\mu_{\rm p}$ je hmotnost protonu, tedy

$$\mu_{\rm N} = \frac{m_{\rm e}}{m_{\rm p}} \mu_{\rm B} = \frac{eh}{4\pi m_{\rm p}} = 5,05 \cdot 10^{-27} \,{\rm A} \cdot {\rm m}^2.$$

Jak je zřejmé, jaderný magneton je o tři řády menší než Bohrův magneton a proto v prvním přiblížení můžeme vliv jádra na magnetické vlastnosti atomu zanedbat (tento vliv se projevuje až v hyperjemné struktuře spektrálních čar). Na druhé straně je známo, že pro některé jevy (např. pro magnetickou jadernou rezonanci) je role magnetických vlastností jádra rozhodující.

Zajímavá je skutečnost, že magnetický moment protonu (tedy jádra vodíku) není roven jadernému magnetonu $\mu_{\rm N}$, jak by se mohlo na první pohled zdát, nýbrž platí $\mu_{\rm p} = 2,7928 \,\mu_{\rm N}$. Ještě zajímavější je zjištění, že magnetický moment neutronu (o nulovém elektrickém náboji) není nulový, nýbrž $\mu_{\rm n}=-1,9135\,\mu_{\rm N}$ (znaménko minus vyjadřuje, že magnetický moment má opačný směr než spin neutronu). Tyto dvě skutečnosti svědčí o tom, že proton a neutron má vnitřní elektrickou strukturu.

d) Atom ve vnějším magnetickém poli

Nyní se vrátíme k atomu jako celku. Z minulého odstavce vidíme, že vliv jádra na magnetické vlastnosti atomu lze zanedbat. V odstavci b) jsme dospěli k poznatku, že magnetické vlastnosti elektronového obalu, tedy v podstatě celého atomu, lze modelovat atomárními proudovými smyčkami.

Vložíme-li makroskopickou proudovou smyčku o magnetickém momentu $\boldsymbol{m}_0 = I \boldsymbol{S}$ do vnějšího magnetického pole o indukci \boldsymbol{B} bude mít v souladu se vztahem (39) v [13] potenciální energii

Obr. 1

$$E_{\rm p} = |\boldsymbol{m}_0| \cdot |\boldsymbol{B}| (1 - \cos \alpha), \qquad (11)$$

kde α je úhel, který svírají vektory $\boldsymbol{m}_0, \boldsymbol{B}$ (viz obr. 1). Smyčka bude mít tendenci sklopit se do směru vnějšího pole a zaujmout tak polohu s nejmenší energií.

Podobná situace nastává při vložení atomu do vnějšího magnetického pole, protože elektrony mají orbitální magnetické momenty (6). Na rozdíl od makroskopické smyčky nemůže nabývat průmět \boldsymbol{m}_z magnetického momentu do směru \boldsymbol{B} libovolnou velikost. Podle kvantové fyziky (viz např. [1], [8]) je velikost \boldsymbol{m}_z kvantována vztahem

$$|\boldsymbol{m}_z| = m_l \mu_{\rm B}, \tag{12}$$

kde $m_l = 0, \pm 1, \pm 2, \ldots, \pm l$ je **magnetické kvantové číslo** - čtvrté kvantové číslo. Úhel α může tedy nabývat jen diskrétních hodnot α , pro něž v souladu s (6) platí $\cos \alpha = \frac{|\boldsymbol{m}_z|}{|\boldsymbol{m}_0|} = m_l \sqrt{l(l+1)}$ a podobně energie (11) jen diskrétních hodnot

$$E_{\rm p} = \mu_{\rm B} B(\sqrt{l(l+1)} - m_l).$$
 (13)

Pro nejmenší tři hodnoty vedlejšího kvantového čísla l = 0, 1, 2 dostaneme tuto řadu potenciálních energií (13):

$$\begin{array}{ll} l = 0, & m_l = 0; & E_{\rm p} = 0, \\ l = 1, & m_l = 0, \pm 1; & E_{\rm p} = \mu_{\rm B} B \sqrt{2}, \, \mu_{\rm B} B(\sqrt{2} \mp 1) \\ l = 2, & m_l = 0, \pm 1, \pm 2; & E_{\rm p} = \mu_{\rm B} B \sqrt{6}, \, \mu_{\rm B} B(\sqrt{6} \mp 1), \, \mu_{\rm B} B(\sqrt{6} \mp 2). \end{array}$$

Shrnutí: vložíme-li atom do vnějšího magnetického pole, dostává se do kvantového stavu, v němž nabývají magnetické momenty elektronu poloh s co nejmenší potenciální energií podle (13). V souladu s **Pauliho vylučovacím principem** (viz např. [1], [5]) se však ani dva elektrony nemohou dostat do stejného kvantového stavu - neboli v určitém atomu se elektrony musí vzájemně lišit alespoň v jednom ze čtyř kvantových čísel n, l, m_l, s .

Působením vnějšího magnetického pole se tedy energetické hladiny elektronu v atomu rozštěpí na více hladin - experimentálně se to projeví jako Zeemanův jev v elektromagnetickém (optickém) spektru (viz např. [1], [5]).

Působením vnějšího magnetického pole vzniká magnetická polarizace atomu, molekuly, a tím i makroskopické látky vložené do tohoto pole.

1.3 Magnetická polarizace

Nyní se vrátíme k fenomenologickému studiu chování látky v magnetickém poli a provedeme kvantitativní popis děje. Nechť primární pole ve vakuu má indukci $\boldsymbol{B}_0 = \mu_0 \boldsymbol{H}$. Vložíme-li do tohoto pole látku, dojde k její magnetické polarizaci, která se projeví vnitřním magnetickým polem o indukci \boldsymbol{B}_p ; v teorii magnetismu se tato veličina označuje \boldsymbol{J} a nazývá se **magnetická polarizace**. Vnitřní pole se superponuje s vnějším primárním polem a výsledné magnetické pole má indukci

$$\boldsymbol{B} = \boldsymbol{B}_0 + \boldsymbol{B}_p = \boldsymbol{B}_0 + \boldsymbol{J} = \mu_0 \boldsymbol{H} + \boldsymbol{J}.$$
 (14)

Vektory B_0 , J obecně nemají stejný směr. Existuje však velká skupina látek, které se nazývají magneticky měkké látky (patří k nim diamagnetika a paramagnetika), u nichž platí lineární závislost

$$\boldsymbol{J} = \boldsymbol{\varkappa}_{\mathrm{m}} \boldsymbol{B}_{0} = \boldsymbol{\varkappa}_{\mathrm{m}} \boldsymbol{\mu}_{0} \boldsymbol{H}, \tag{15}$$

kde konstanta $\varkappa_{\rm m}$ se nazývá **magnetická susceptibilita**. Pak můžeme výraz (14) přepsat do tvaru

$$\boldsymbol{B} = (1 + \boldsymbol{\varkappa}_{\mathrm{m}})\boldsymbol{B}_{0} = \mu_{0}(1 + \boldsymbol{\varkappa}_{\mathrm{m}})\boldsymbol{H} = \mu_{0}\mu_{\mathrm{r}}\boldsymbol{H} = \mu\boldsymbol{H} , \qquad (16)$$

kde

$$\mu_{\rm r} = 1 + \varkappa_{\rm m} \tag{17}$$

je relativní permeabilita a $\mu = \mu_0 \mu_r$ absolutní permeabilita látky. Pro některé látky jsou tyto konstanty uvedeny v tab. 1 v Dodatku na konci textu.

Γ

K výpočtu magnetického pole v homogenních obecně neohraničených magneticky měkkých látkách používáme vztahů obdobných pro vakuum (viz [13]), jen permeabilitu μ_0 nahradíme permeabilitou μ . Je-li prostředí nestejnorodé, kdy se vodiče nacházejí v prostředích s různými magnetickými vlastnostmi, musí být splněny okrajové podmínky na rozhraní těchto prostředí(viz čl. 2.4).

1.4 Magneticky měkké látky

a) Diamagnetika

Diamagnetika jsou látky, jejichž atomy, resp. molekuly, mají zcela vykompenzovány orbitální a spinové magnetické momenty elektronů. Proto je celkový magnetický moment atomu, resp. molekuly nulový. Vložíme-li tuto látku do vnějšího magnetického pole, budou na jednotlivé orbity elektronu (modelově vyjádřeno: na elektronové proudové smyčky) působit momenty sil, které způsobují jejich precesní pohyb jako u rotujícího setrvačníku. Vzniká tzv. Larmorova precese elektronové orbity (výpočet Larmorovy úhlové rychlosti precese je např. v [14]). Při této precesi vzniká přídavné magnetické pole, jehož magnetický moment a indukce je opačného směru než má indukce vnějšího pole. Výsledné pole v diamagnetické látce má tedy menší indukci než primární pole ve vakuu. Proto je $\varkappa_{\rm m} < 0$ a $\mu_{\rm r} < 1$. Např. pro vizmut je $\varkappa_{\rm m} = -1.7 \cdot 10^{-4}$ a $\mu_{\rm r} = 0.999\,83$, u vody je $\varkappa_{\rm m} = -9.0 \cdot 10^{-6}$ a $\mu_{\rm r} = 0.999\,991$. Látky v supravodivém stavu se chovají jako ideální diamagnetika, tj. zcela vytlačují magnetické pole, a tudíž je B = 0 a tedy $\mu_{\rm r} = 0$.

b) Paramagnetika

Jsou to látky, jejichž atomy, resp. molekuly, nemají zcela vykompenzovány orbitální nebo spinové magnetické momenty elektronů. U paramagnetik, u nichž nejsou kompenzovány spinové magnetické momenty ve vnitřních slupkách elektronového obalu, je výsledný magnetický moment atomu relativně velký. Hovoříme o silném paramagnetismu. Tento jev pozorujeme např. u Mn, Cr, Pt aj.

V normálním stavu jsou magnetické momenty atomů (molekul) statisticky neuspořádány, takže celkový magnetický moment látky je nulový. Vložíme-li paramagnetikum do vnějšího magnetického pole, nastane usměrnění atomárních (molekulárních) magnetických momentů do směru magnetické indukce vnějšího pole. Vedle toho - stejně jako u diamagnetik - konají jednotlivé orbity elektronů v atomu Larmorovu precesi. Magnetický moment, který vzniká při tomto pohybu, sice zmenšuje výsledný magnetický moment atomu, avšak toto zmenšení je velmi malé, takže výsledné magnetické pole atomů (molekul) má směr vnějšího pole. Vzniká tak **zesílení vnějšího pole**; proto $\varkappa_m > 0$ a $\mu_r > 1$. Např. u manganu je $\varkappa_m = 8.1 \cdot 10^{-4}$ a $\mu_r = 1,000\,81$, u vzduchu $\varkappa_m = 3.8 \cdot 10^{-7}$ a $\mu_r = 1,000\,000\,38$.

1.5 Feromagnetické látky

Feromagnetika jsou látky krystalické struktury, v nichž je možno i slabým vnějším polem vzbudit silné vnitřní (látkové) magnetické pole. Na rozdíl od diamagnetismu a paramagnetismu, které jsou jevy atomovými, je feromagnetismus jev, který je závislý na uspořádání atomů (iontů) v krystalické mřížce. Samotné atomy feromagnetických látek jeví běžný paramagnetismus. Plyne to např. ze dvou jevů, které si popíšeme. Zahřejeme-li feromagnetikum na určitou teplotu, tzv. *Curieův bod*, ztrácí skokem vlastnosti feromagnetika a stává se z něho paramagnetikum. Při této teplotě se výrazně porušuje uspořádání atomů v krystalické mřížce. U železa je to při teplotě 768 °C. Dále existují feromagnetika, která jsou složena výhradně z paramagnetických a diamagnetických

prvků. Jsou to např. Heuslerovy slitiny (např. 61,5 % Cu, 23,5 % Ma, 15,0 % Al).

Příbuzné látkám feromagnetickým jsou např. látky **antiferomagnetické** (např. NiO, CuO, FeS, α – Fe₂O₃) a látky **ferimagnetické** - **ferity** (např. FeO · Fe₂O₃, NiO · Fe₂O₃, MgO · Fe₂O₃), které jsou rovněž vystavovány silnému působení magnetického pole.

Feromagnetismus má stejnou atomovou podstatu jako silný paramagnetismus, tj. u atomů nejsou zcela vyrušeny spinové magnetické momenty elektronů ve vnitřních elektronových slupkách atomového obalu. Zatímco u silného paramagnetika jsou atomy statisticky neuspořádány, zaujímají ve feromagnetickém krystalu vlivem vzájemného působení polohy, ve kterých mají jejich magnetické atomové momenty stejný směr. Tvoří tzv. **Weissovy domény** (**oblasti**), jejichž objem má velikost 10^{-3} mm³ až 10^{1} mm³.

Bez působení vnějšího magnetického pole jsou magnetické momenty Weissových domén orientovány statisticky neuspořádaně, takže výsledné magnetické pole látky je nulové (obr. 2a). Začne-li působit vnější pole, narůstají domény, jejichž magnetický moment má stejný směr s magnetickou indukcí B_0 vnějšího pole (obr. 2b). Je-li vnější pole dostatečně silné, nastává náhlé přeorientování celých domén (obr. 2c). Vzrůstá-li dále indukce vnějšího pole, natáčejí se magnetické momenty stále více do směru vnějšího pole. Ve stavu nasycení mají magnetické momenty všech domén stejný směr jako indukce vnějšího pole (obr. 2d). Působením vnějšího magnetického pole nastává **magnetická polarizace** feromagnetika.

Obr. 2

Hypotézu o doménách vyslovil již roku 1908 francouzský fyzik P. Weiss, ale teprve ruskému fyzikovi J. I. Frenkelovi a německému fyzikovi W. Heisenbergovi se podařilo na základě kvantové fyziky uspokojivě objasnit většinu feromagnetických jevů.

Sledujme nyní závislost indukce **B** celkového magnetického pole ve feromagnetiku na indukci $\mathbf{B}_0 = \mu_0 \mathbf{H}$ vnějšího (budicího) magnetického pole ve vakuu (viz obr. 3). Magnetujeme-li dosud nemagnetované feromagnetikum, probíhá

závislost $B = f(B_0)$ podle křivky 1 (je to tzv. **panenská křivka**). Indukce \pmb{B} stoupá se vzrůstající indukcí \pmb{B}_0 nejprve pomaleji, pak rychleji a pak opět pomaleji. V bodě A nastává **nasycení** - dalším zvětšováním indukce B_0 již nelze zvětšovat magnetizaci feromagnetika. Budeme-li od tohoto bodu indukci B_0 zmenšovat, nebude se indukce **B** zmenšovat podle křivky 1, nýbrž v důsledku magnetické hystereze (opožďování) po křivce 2. V bodě R, ve kterém má vnější pole nulovou indukci, si látka látka podržuje indukci o velikosti $B_{\rm r}$, která se nazývá magnetická remanence (zbytek). K tomu, aby remanence zanikla, je nutno směr indukce vnějšího pole obrátit tak, aby dosáhla hodnoty B_k . Pole indukce \boldsymbol{B}_k se nazývá koercitivní pole. Zvětšujeme-li dále velikost indukce vnějšího pole v záporných hodnotách, dojde k přemagnetování feromagnetika. V bodě A', symetrickém k bodu A, nastává nasycení v opačném směru. Při zvětšování indukce B_0 od tohoto bodu se magnetická indukce B ve feromagnetiku bude měnit podle křivky 3. Uzavřená křivka AKA'K'A se nazývá hysterezní smyčka. Dá se ukázat, že její plocha je číselně rovna energii spotřebované na jeden magnetizační oběh v objemové jednotce feromagnetika. Tato energie se přemění na teplo.

Magneticky tvrdá feromagnetika (např. kobaltová, wolframová a chrómová ocel, tvrdé ferity) mají **širokou** hysterezní smyčku (obr. 3b). Mají velký zbytkový magnetismus (B_r) a hodí se pro výrobu permanentních (stálých) magnetů.

Magneticky měkká feromagnetika (např. měkké železo, křemíkové železo) mají úzkou hysterezní smyčku (obr. 3c). Protože se u nich při každém přemagnetování přeměňuje jen malá energie na teplo, jsou vhodné pro magnetické obvody se střídavým proudem (např. u transformátorů).

Obr. 3

Panenská křivka (1) z obr. 3, tj. závislost velikosti B indukce magnetického pole v látce na její velikosti $B_0 = \mu_0 H$ ve vakuu, vedená z výchozího nulového magnetického stavu (B = 0 pro $B_0 = 0$), se nazývá **magnetizační křivka**. Je důležitou charakteristikou feromagnetika potřebnou pro navrhování magnetických obvodů. Její typický průběh je na obr. 4. Vedle uvedené závislosti $B = f(B_0)$ se často uvádí jako funkční závislost B = f(H), jak je uvedeno pro některé materiály v Dodatku. Zde je také uvedena její tabulková forma pro prvky Fe, Ni, Co.

Důležitou charakteristikou látky z hlediska magnetického pole je **relativní permeabilita** $\mu_{\rm r}$. U magneticky měkkých látek je to konstanta blízká jedničce (viz čl. 1.4). U feromagnetik však takovou jednoznačně určenou veličinu nelze najít. Lze např. určit směrnici k magnetizační křivce (obr. 4) pro určité sycení feromagnetika: $\frac{\mathrm{d}B}{\mathrm{d}B_0} = \mu_{\rm d}$, která se nazývá diferenciální relativní permeabilita (viz [5]). Je zřejmé, že pro velké sycení bude její velikost blízká 1. Malá vhodnost této veličiny jako charakteristiky feromagnetika je dána tím, že její velikost je závislá na stavu magnetizace, který předcházel měření (je to zřejmé z hysterezní smyčky).

Z hlediska řešení magnetických obvodů (viz kap. 2) je vhodnější feromagnetikum charakterizovat střední velikostí $\overline{\mu}_r$ relativní permeability pro dané sycení. Jednoduše se určí ze vztahu

$$\overline{\mu}_{\rm r} = \frac{B}{B_0} = \frac{B}{\mu_0 H},\tag{18}$$

kde *B* je indukce magnetického pole vyvolaná určitou hodnotou intenzity *H* pole ve vakuu. V literatuře se $\overline{\mu}_{\rm r}$ prostě označuje μ_r (i když je toto zjednodušené označení poněkud zavádějící, budeme je dále rovněž užívat).

Typický průběh funkce $\mu_{\rm r} = f(B_0)$ je na obr. 5. Maximální velikost permeability určíme tak, že vedeme tečnu z počátku k magnetizační křivce, jak je naznačeno na obr. 4. určíme příslušné hodnoty $B_{\rm 0m}$, $B_{\rm m}$ a vypočteme $\mu_{\rm rmax}$.

Ke grafům na obr. 3, 4 a 5 je třeba na závěr upozornit, že u feromagnetik, kde $\mu_{\rm r}$ je řádu 10³, je žádoucí vynášet indukci B_0 v dílech jednotky veličiny B(bude-li B v T, je vhodné B_0 v mT), jinak by křivky vyšly značně strmé.

Relativní permeabilita železa nabývá maxima asi $\mu_{\rm rmax} = 5800$, pro nikl je $\mu_{\rm rmax} = 1120$, pro kobalt $\mu_{\rm rmax} = 170$. U **Heuslerových** slitin (podle složení) až $\mu_{\rm rmax} = 250$. Významným feromagnetikem je slitina **permalloy** (20,9 % Fe, 78,5 % Ni, 0,6 % Mn), u níž je maximum $\mu_{\rm rmax} = 1,05 \cdot 10^5$ a **supermalloy** (15 % Fe, 79 % Ni, 5 % Mo, 0,5 % Mn), která dosahuje až $\mu_{\rm rmax} = 1,0 \cdot 10^6$.

2 Magnetický obvod

2.1 Magnetický indukční tok, magnetomotorické napětí

Magnetické pole vytvořené v prostoru, ať již ve vakuu nebo v látce, názorně zobrazujeme pomocí siločar (znázorňují průběh intenzity \boldsymbol{H}) a indukčních čar (znázorňují průběh indukce \boldsymbol{B}) - viz [13]. V [13] jsme zavedli veličinu **magnetický indukční tok**; v obecném případě nehomogenního pole výrazem

$$\boldsymbol{\Phi} = \int_{S} \boldsymbol{B} \cdot d\boldsymbol{S}. \quad [\boldsymbol{\Phi}] = \mathbf{V} \cdot \mathbf{s} = \mathbf{W}\mathbf{b} \quad (\text{weber})$$
(19)

Analogicky zavedené siločáry a indukční čáry pro elektrické pole (viz např. [12]) začínají na kladném elektrickém náboji a končí na náboji záporném. Protože v přírodě nebyly nalezeny analogické žádné magnetické náboje (z hlediska relativistického výkladu magnetismu - viz např. [13] - taková veličina ani nemá smysl), jsou magnetické siločáry a indukční čáry vždy křivky uzavřené. Magnetický indukční tok uzavřenou plochou je tedy vždy nulový:

$$\oint_{S} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S} = 0. \tag{20}$$

Tento významný poznatek se v teorii elektromagnetického pole uvádí jako čtvrtá Maxwellova rovnice (zde v integrálním tvaru).

Obr. 6

Uvažujme nyní **indukční trubici**, kterou budou tvořit všechny indukční čáry procházející určitou ploškou ΔS kolmo postavenou v daném místě k indukčním čarám (obr. 6). Indukční tok procházející touto trubicí zřejmě je

$$\Delta \Phi = B \Delta S, \qquad (21)$$

pokud uvažujeme plochu ΔS dostatečně malou, aby indukce **B** byla ve všech bodech stejná.

Na libovolné uzavřené křivce C uvnitř indukční trubice, např. na siločáře, je definováno **magnetomotorické napětí** vztahem

$$U_{\rm m} = \oint_C \boldsymbol{H} \cdot d\boldsymbol{I}, \quad [U_{\rm m}] = A, \tag{22}$$

kde H je intenzita v určitém bodě křivky C a dI je její element.

Podle zákona celkového proudu (viz výraz (27) v [13]) je magnetomotorické napětí, působící v libovolné uzavřené křivce, rovno celkovému proudu, který prochází vnitřkem křivky:

$$\oint_C \boldsymbol{H} \cdot d\boldsymbol{I} = \sum_{k=1}^n I_k.$$
(23)

V situaci naznačené na obr. 6 je celkový proud zI, kde z je počet závitů cívky.

2.2 Hopkinsonův zákon

Soustavu do sebe uzavřených oblastí, kterými prostupuje týž magnetický tok, označujeme jako jednoduchý **magnetický obvod**. Je to např. prstencová indukční trubice na obr. 6. Hledejme nyní vztah mezi magnetickým indukčním tokem Φ , magnetomotorickým napětím $U_{\rm m}$, které v obvodu působí, geometrickými rozměry a magnetickými vlastnostmi obvodu.

Nejprve upravíme vztah (22) pro magnetomotorické napětí pomocí indukčního toku (21). Pro magneticky měkké látky můžeme užít vztah (16). U feromagnetik není vztah mezi B a H lineární - viz např. magnetizační křivku na obr. 4. Pro určité budicí pole $B_0 = \mu_0 H$ se vztah mezi B a H linearizuje: $B = \overline{\mu}H = \mu_0\overline{\mu}_r H = \mu_0\mu_r H$, kde $\overline{\mu}_r = \mu_r$ je střední velikost relativní permeability (viz obr. 5 a vztah (18)). V souladu s literaturou budeme v dalších vztazích užívat pro $\overline{\mu}$ označení μ . Volíme-li za křivku C siločáru, jsou vektory H, dI rovnoběžné a můžeme psát

$$U_{\rm m} = \oint_C \frac{B}{\mu} dl = \oint_C \frac{dl}{\mu S}, \qquad (24)$$

přičemž Φ je tok podél celé uvažované indukční trubice konstantní, proto mohl být vytknut před integrál. Výraz popsaný křivkovým integrálem je dán geometrií a magnetickými vlastnostmi obvodu a nazývá se **magnetický odpor** (reluktance) $R_{\rm m}$ obvodu:

$$R_{\rm m} = \oint_C \frac{\mathrm{d}l}{\mu S} , \quad [R_{\rm m}] = \mathrm{V}^{-1} \cdot \mathrm{A} \cdot \mathrm{s}^{-1} = \mathrm{H}^{-1}.$$
 (25)

Má-li obvod stálý průřezS=konst.a na délcelhomogenní látku, lze výraz pro magnetický odpor psát jednoduše ve tvaru

$$R_{\rm m} = \frac{l}{\mu S}.$$
 (26)

Výrazy (24) můžeme vzhledem k (25) přepsat do tvaru

$$U_{\rm m} = R_{\rm m} \Phi, \quad \text{kde} \quad U_{\rm m} = \Sigma I.$$
 (27)

Tento vztah se nazývá **Hopkinsonův zákon**, je analogický Ohmovu zákonu U = RI, přičemž tok Φ je analogický elektrickému proudu I, magnetomotorické napětí $U_{\rm m} = \Sigma I$ elektrickému napětí U a magnetický odpor $R_{\rm m}$ elektrickému odporu R.

Výraz (26) je dále analogický známému vztahu pro elektrický odpor $R = \frac{l}{\gamma S}$. Permeabilita μ popisuje magnetickou vodivost obvodu stejně jako γ elektrickou vodivost.

2.3 Složený magnetický obvod

a) Sériové řazení magnetických odporů

Analogii mezi elektrickým a magnetickým obvodem podporuje další důležitá skutečnost, že pro spojování magnetických odporů platí obdobné zákony jako pro spojování elektrických odporů.

Magnetomotorické napětí v obvodu $U_{\rm m}$ se rozdělí na jednotlivé úseky:

$$U_{\rm m} = \sum_{k} U_{\rm mk}.$$
 (28)

Uvažujme nejprve magnetický obvod, u něhož jsou úseky z látek

o různých magnetických vlastnos-

tech a geometrických rozměrech řazeny v sérii. Příklad sériově řazeného obvodu je na obr. 7, kde je volen konstantní průřez S, úseky mají per-

meability μ_k a délky l_k (k = 1, 2, 3).

Magnetický indukční tok v jednotlivých úsecích je stejný ($\Phi_k = \Phi$).

Je to analogie 2. Kirchhoffova zákona pro elektrický obvod. Současně podle Hopkinsonova zákona (27) platí $U_{\rm m} = R_{\rm m} \Phi$, kde $R_{\rm m}$ je magnetický odpor celého obvodu a $U_{\rm mk} = R_{\rm mk} \Phi$, kde $R_{\rm mk}$ je magnetický odpor k-tého úseku. Po dosazení do vztahu (28) dostáváme vzorec pro n sériově řazených magnetických odporů

$$R_{\rm m} = \sum_{k=1}^{n} R_{\rm mk}.$$
(29)

Významným případem sériového řazení magnetických odporů je magnetický **obvod se vzduchovou mezerou**. Protože pro vzduch $\mu_r = 1$, je magnetický odpor vzduchové mezery ve srovnání s částí obvodu z feromagnetika značný. U elektrických strojů a zařízení (jako jsou generátory, motory, transformátory, měřící přístroje, relé) se proto konstruktéři snaží zmenšovat vzduchovou mezeru na nezbytnou délku.

Příklad 1 – magnetický obvod se vzduchovou mezerou

Jádro o průřezu (25 × 30) mm² vytvořené z transformátorových plechů podle obr. 8 je přerušeno mezerou tloušťky $\delta = 1,0$ mm. Jaký proud I musí procházet cívkou o z = 1000 závitech, aby v obvodu vznikl indukční tok $\Phi = 7,5 \cdot 10^{-4}$ Wb? Jaký proud I_1 vybudí stejný tok při zmenšení mezery na $\delta_1 = 0,50$ mm?

Obr. 8

Řešení

Pole v obvodu má indukci

$$B = \frac{\Phi}{S} = \frac{7.5 \cdot 10^{-4}}{2.5 \cdot 3.0 \cdot 10^{-4}} \text{ T} = 1.0 \text{ T},$$

která je stejná ve všech bodech obvodu, protože S = konst., a zanedbáváme rozptyl v malé štěrbině. Z magnetizační křivky pro transformátorový plech

(viz Dodatek) určíme potřebnou intenzitu pole, v železe $H=320~{\rm A\cdot m^{-1}}.$ Pak podle (18) příslušná střední velikost relativní permeability je

$$\mu_{\rm r} = \frac{B}{\mu_0 H} = \frac{1}{4\pi \cdot 10^{-7} \cdot 320} = 2490.$$

Obvod má výsledný odpor

$$R_{\rm m} = R_{\rm m\check{z}} + R_{\rm mv} = \frac{1}{\mu_0 \mu_{\rm r} S} (l_{\check{z}} + \mu_{\rm r} \delta),$$

kde $l_{\check{\mathbf{z}}}=349$ mm je střední délka indukční čáry v železe
a $\delta=1$ mm ve vzduchu. Číselně $R_m=1,21~\mathrm{H^{-1}}.$ Podle Hopkinsonova zákon
a $R_\mathrm{m}\,\varPhi=U_\mathrm{m}=zI,$ odtud potřebný proud

$$I = \frac{R_{\rm m}\Phi}{z} = \frac{1,21 \cdot 10^6 \cdot 7,5 \cdot 10^{-4}}{1000} \text{ A} = 0,91 \text{ A}.$$

Při zmenšení vzduchové mezery na $\delta_1=0,50$ mm, tedy na polovinu, bude $R_{\rm m1}=6,79\cdot10^5~{\rm H^{-1}}$ a potřebný proud se zmenší na $I_1=0,51$ A, tedy na 56 % původní velikosti.

b) Paralelní řazení magnetických odporů

Mějme nyní magnetický obvod, ve kterém se indukční tok Φ rozděluje do dvou nebo více větví o tocích $\Phi_1, \Phi_2,...$ Příkladem je jádro transformátoru na obr. 9. Pak v důsledku platnosti zákona (20) pro magnetický uzel (analogický 1. Kirchhoffovu zákonu pro proudy v uzlu) platí, že tok Φ , který vtéká do uzlu, je roven součtu toků $\Phi_1, \Phi_2,...$ ve větvích: $\Phi = \sum_k \Phi_k.$

Obr. 9

Magnetomotorické napětí na jednotlivých větvích je však stejné: $U_{m1} = U_{m2} = \ldots = U_m = zI$. Uvážíme-li Hopkinsonův zákon (27) pro větve ($U_{mk} = R_{mk} \Phi_k$) a pro celý obvod ($U_m = R_m \Phi$) dostaneme rovnost

$$\Phi = \frac{U_{\rm m}}{R_{\rm m}} = \sum_k \Phi_k = \sum_k \frac{U_{\rm mk}}{R_{\rm mk}} = U_{\rm m} \sum_k \frac{1}{R_{\rm mk}}$$

Odtud pro výsledný odpor $R_{\rm m}$ celkem
 n paralelně řazených magnetických odporů platí vztah

$$\frac{1}{R_{\rm m}} = \sum_{k=1}^{n} \frac{1}{R_{\rm mk}}.$$
(30)

Příklad 2 – kombinované řazení magnetických odporů

Magnetický obvod je vytvořen ze 30 transformátorových plechů tloušťky 0,80 mm o plošných rozměrech znázorněných na obr. 10.

Cívka na středním sloupku oz=
= 500 závitech má na svém jádře vytvořit magnetický indukční tok
 $\varPhi=4,2\cdot10^{-4}$ Wb.

a) Vypočtěte magnetický odpor obvodu.

b) Jaký proud I musí procházet cívkou, aby se tok Φ vytvořil?

c) Magnetický obvod bude nyní na bočních sloupcích přerušen úzkými vzduchovými štěrbinami $\delta =$ = 0,20 mm. Vypočtěte jak se změní magnetický odpor obvodu a jaký proud I' musí nyní procházet, abv

se tok Φ nezměnil. Jak bychom museli změnit počet závitů, abychom tok Φ dosáhli proudem I z řešení ad b).

Řešení

Jde o **kombinované řazení** magnetických odporů. Paralelní obvody i v případě bez vzduchových mezer totiž obsahují části se dvěma různými příčnými plochami *S*, s různým magnetickým sycením (indukcí **B**) a tím i různou relativní permeabilitou $\mu_{\rm r}$. Tloušťka jádra je $30 \cdot 0.80$ mm = 24 mm.

a) Indukce na středním sloupku je
 $B_{\rm s}=1,1$ T, tomu odpovídá z magnetizační křivky (viz Dodatek)
 $H_{\rm s}=400~{\rm A}\cdot{\rm m}^{-1}.$ Z toho pak podle (18) je relativní permeabilit
a $\mu_{\rm rs}=2190.$

Tok v bočních částech jádra je $\Phi_1 = \Phi_2 = \frac{\Phi}{2} = 2.1 \cdot 10^{-4}$ Wb. Indukce $B_1 = B_2 = 0.55$ T, z magnetizační křivky je potřebná intenzita na bocích $H_{\rm b} = 125$ A \cdot m⁻¹ a $\mu_{\rm rb} = 3500$.

Dva stejné paralelní obvody mají tyto geometrické charakteristiky: sloupek $l_{\rm s}=64~{\rm mm},~S_{\rm s}=1.92\cdot10^{-4}~{\rm m}^2,$ bok $l_{\rm b}=136~{\rm mm},~S_{\rm b}=3.84\cdot10^{-4}~{\rm m}^2.$ Magnetický odpor každého z paralelních obvodů pak je

$$R_{\rm m1} = R_{\rm m2} = \frac{1}{\mu_0} \left(\frac{l_{\rm s}}{\mu_{\rm rs} S_{\rm s}} + \frac{l_{\rm b}}{\mu_{\rm rb} S_{\rm b}} \right) = 2.02 \cdot 10^5 \; {\rm H}^{-1}.$$

Magnetický odpor celého obvodu je $R_{\rm m} = \frac{R_{\rm m1}}{2} = 1.01 \cdot 10^5 \, {\rm H}^{-1}.$

b) $I = \frac{R_{\rm m} \Phi}{z} = 85 \text{ mA}.$

c) Vzduchová štěrbina změní magnetický odpor větví na

$$R'_{\rm m1} = R'_{\rm m2} = R_{\rm m1} + \frac{\delta}{\mu_0 S} = 6.16 \cdot 10^5 \ {
m H}^{-1}$$

a celého obvodu na $R_{\rm m}'=3,\!08\cdot 10^5\;{\rm H}^{-1}.$ Potřebný proud pak bude

$$I' = \frac{R'_{\rm m} \varPhi}{z} = 260 \text{ mA}, \quad {\rm tedy \ 3krát \ větší}.$$

Pro stejný proud $I=85~{\rm mA}$ jako v případě bez mezer je nutné zvětšit počet závitů naz'=1530.

Poznámka. Profil transformátorových plechů na obr. 10 je převzat z konkrétního transformátoru. Obvyklejší a pro řešení jednodušší je volit střední sloupek o dvojnásobné šířce než mají okrajové sloupky. Pak indukce \boldsymbol{B} je ve všech částech jádra stejná. Se středním sloupkem dvojnásobné šířky se transformátorové plechy zpravidla vyrábějí.

2.4 Magnetické pole na rozhraní dvou látek, magnetické stínění

Vyšetřeme nejprve, jak se chová magnetické pole na rozhraní dvou látek o různých permeabilitách μ_1 , μ_2 . Pole v prvním prostředí nechť má indukci B_1 , která má vůči kolmici k na rozhraní sklon α_1 . Ve druhém prostředí se změní indukce na B_2 (obr. 11). Vztah mezi vektory B_1 , B_2 najdeme tak, že budeme aplikovat obecný zákon (20) na elementární váleček o výšce dh a ploše podstavy ΔS , který bude protínat rozhraní (obr. 11).

Protože indukční tok pláštěm válečku je vzhledem k d $h \rightarrow 0$ zanedbatelný, uplatní se jen tok podstavami ΔS . Je zřejmé, že platí

$$-B_1 \cos \alpha_1 \cdot \Delta S + B_1 \cos \alpha_2 \cdot \Delta S = 0,$$

neboli

$$B_1 \cos \alpha_1 = B_2 \cos \alpha_2$$
, resp. $B_{1n} = B_{2n}$. (31)

Normálové složky indukce $\boldsymbol{B}_1, \ \boldsymbol{B}_2$ se na rozhraní zachovávají.

Obr. 11

Nyní sledujme, jak se na rozhraní látek chovají vektory intenzity H_1, H_2 . K tomu budeme aplikovat zákon celkového

proudu (23) na elementární obdélníček C, protínající rozhraní uprostřed $dh \rightarrow 0$; jeho strany délky l jsou rovnoběžné s rozhraním (obr. 12).

Protože obdélníček C neuzavírá žádný proud (předpokládáme, že rozhraním proud neteče) a $dh \rightarrow 0$, musí platit

$$-H_1 \sin \alpha_1 \cdot l + H_2 \sin \alpha_2 \cdot l = 0,$$

neboli

$$H_1 \sin \alpha_1 = H_2 \sin \alpha_2,$$

resp.
$$H_{1t} = H_{2t}$$
. (32)

Na rozhraní se zachovávají tečné složky intenzity H_1 , H_2 . Pokud ide o normálové složky intenzity H na rozhraní využijej

Pokud jde o normálové složky intenzity \pmb{H} na rozhraní, využijeme vztah (31) a vztah $B=\mu H.$ Pak

$$\mu_1 H_{1n} = \mu_2 H_{2n}. \tag{33}$$

Normálová složka intenzity na rozhraní je tedy nepřímo úměrná permeabilitě. Dopadají-li siločáry na rozhraní kolmo je $H_{1t} = H_{2t} = 0$ a výše uvedený poznatek platí pro celkové velikosti. Siločáry jsou tedy na rozhraní nespojité; čím je permeabilita prostředí menší tím hustší jsou v tomto prostředí siločáry.

Příkladem magnetického pole v nestejnorodé látce je sériový magnetický obvod, u nějž tok $\Phi = \Phi_k = konst.$ (obr.7). Zvolíme-li $S_k = S = konst.$, je rovněž magnetická indukce $B_k = konst.$, avšak pro intenzity na jednotlivých úsecích bude platit

$$\mu_1 H_1 = \mu_2 H_2 = \dots = \mu_k H_k. \tag{34}$$

Intenzita se bude v závislosti na permeabilitě měnit. Vstupuje-li např. magnetické pole ze železa do vzduchové mezery (obvod na obr. 8) bude $\mu_{\rm r}H_{\rm z} = H_{\rm v}$, tedy ve vzduchu bude intenzita pole $\mu_{\rm r}$ krát (tedy např. 3000 krát) větší než v železe. Je pochopitelné, že nemagnetický vzduch potřebuje pro stejnou indukci **B** mnohem silnější buzení než železo.

Po těchto důležitých poznámkách se vraťme k obecnému šikmému dopadu indukčních čar a siločar k rozhraní dvou látek.

Vydělíme-li rovnici (32) rovnicí (31) a uvážíme-li, že $\frac{B_1}{H_1} = \mu_1, \frac{B_2}{H_2} = \mu_2$ dostaneme důležitý poznatek

$$\frac{\operatorname{tg}\alpha_1}{\operatorname{tg}\alpha_2} = \frac{\mu_1}{\mu_2}, \quad \alpha_1 \in \left\langle 0, \frac{\pi}{2} \right\rangle, \tag{35}$$

neboli na rozhraní dvou látek, které je bez povrchových proudů, se indukční čáry a siločáry magnetického pole lámou tak, že úhly α_1 , α_2 splňují vztah (35).

Závěry pro případ, že jednou látkou je feromagnetikum (μ_r je řádu 10³ až 10⁴):

a) Feromagnetikem je látka 2 (pole vstupuje např. ze vzduchu do železa), pa
k $\alpha_1 \ll \alpha_2$ (čili při vstupu do železa se indukční čáry přiklánějí k jeho povrchu). Indukční čáry se lámou od kolmice.

b) Feromagnetikum je naopak látka 1, pa
k $\alpha_2 \ll \alpha_1;$ indukční čáry se lámou ke kolmici.

c) Je-li $\alpha_1 = 0$, je i $\alpha_2 = 0$ (platí pro všechny látky).

Uvedených poznatků se s výhodou užívá k magnetickému stínění

(obr. 13). Kolem prostoru, který máme odstínit, vytvoříme uzavřenou vrstvu (např. kulovou) z feromagnetika s co největší relativní permeabilitou (např. ze slitiny permalloy).

Indukční čáry se lámou od kolmice, takže se zhušťují; stíněnému prostoru se "vyhýbají". Ve stíněném prostoru je magnetické pole velmi slabé. Je to možné vysvětlit i tím, že magnetický odpor feromagnetického stínění je velmi malý, indukční čáry jdou "cestou nejmenšího odporu" a stíněnému prostoru se vyhnou.

Příklad 3 – indukční čáry a siločáry na rozhraní

Z prostředí o permeabilitě μ_1 vstupují k rovinnému rozhraní prostředí o permeabilitě $\mu_2 = \frac{\mu_1}{3}$ indukční čáry a siločáry pod úhlem $\alpha_1 = 60^\circ$ od kolmice k rozhraní. Vypočtěte úhel α_2 a nakreslete průběh indukčních čar a siločar ve druhém prostředí.

Řešení

Úhel lomu čar

$$\alpha_2 = \operatorname{arctg}(\frac{1}{3}\operatorname{tg} 60^\circ) = 30^\circ.$$

Protože $H_{2t} = H_{1t}$ a $H_{2n} = 3H_{1n}$, budou mít siločáry ve druhém prostředí třikrát větší hustotu (na rozhraní budou nespojité), kdežto indukční čáry budou spojité, protože $B_{2n} = B_{1n}$ (obr. 14).

Obr. 14

3 Magnety

3.1 Elektromagnet, permanentní magnet

Vložíme-li do osy solenoidu tyčku z měkkého feromagnetika, charakterizovaného úzkou hysterezní smyčkou (obr. 3c), dojde při průchodu proudu solenoidem k její magnetické polarizaci. Indukce pole v tyčce se $\mu_{\rm r}$ krát zvětší oproti poli ve vzduchu. Přerušíme-li proud v solenoidu, pole v tyčce klesne prakticky na nulu. Dostali jsme **elektromagnet**.

Vložíme-li do dostatečně intenzivního pole solenoidu tyčku z tvrdého feromagnetika, charakterizovaného širokou hysterezní smyčkou (obr. 3b), dojde k její magnetické polarizaci, která se stává trvalou - po přerušení proudu v solenoidu zůstává v materiálu tyčky magnetické pole o indukci B_r (magnetické remanenci). Tyčka se stala **permanentním magnetem**.

Účinky magnetu se nejsilněji projevují na dvou protilehlých místech, která se označují jako **póly magnetu**. Jejich spojnice je **magnetická osa**. Od pólů směrem ke středu magnetu se magnetické účinky zmenšují; v okolí středu magnetu se nachází jeho netečné pásmo.

Budeme-li mít dlouhý magnet, volně otočný kolem svislé osy procházející jeho těžištěm, zjistíme, že se orientuje severo-jižním směrem. Pól směřující k severu se označuje N (north), pól směřující k jihu S (south). Použitím dvou takových magnetů snadno zjistíme, že póly N - N nebo S - S se vzájemně odpuzují, kdežto póly N - S se přitahují (analogie s elektrickými náboji). Z toho vyplývá, že na severním zeměpisném pólu (resp. v jeho blízkosti) je jižní pól zemského magnetu a naopak na jižním zeměpisném pólu je jeho severní pól.

Magnet se charakterizuje veličinou **magnetický moment** m (viz [13]). Proveďte nyní jeho výpočet dostatečně přesně platný pro elektromagnet ve tvaru štíhlého solenoidu o z závitech, který je navinut na feromagnetickém jádře o průřezu S, délce l a relativní permeabilitě $\mu_{\rm r}$. Jeho magnetický moment bude mít při průchodu proudu I velikost

$$|\boldsymbol{m}| = zIS. \tag{36}$$

Vektor \boldsymbol{m} má směr osy solenoidu orientovanou na stranu palce pravé ruky, ukazují-li její prsty směr proudu. Uvnitř solenoidu je homogenní pole o intenzitě \boldsymbol{H} (viz výraz (31) v [13]) a indukčním toku $\boldsymbol{\Phi}$:

$$H = z \frac{I}{l}, \quad \Phi = BS = \mu HS = \frac{\mu}{l} z IS = \frac{\mu}{l} |\boldsymbol{m}|.$$
$$|\boldsymbol{m}| = \frac{1}{\mu} \Phi l. \tag{37}$$

 Pak

Magnet je magnetický dipól o magnetickém momentu (37). Je zde zřejmá analogie s elektrickým dipólem, jehož elektrický moment se definuje $\boldsymbol{p} = Q\boldsymbol{I}$ (viz např. [5], [12]). Již ovšem víme, že na rozdíl od elektrického náboje, nemáme analogické "magnetické náboje" (resp. "množství"), o nichž se předpokládalo, že jsou soustředěné v blízkosti pólu magnetu. Můžeme se o tom přesvědčit experimentem. Rozdělíme elektrický dipól na dvě části, dostaneme osamocené elektrické náboje - dipól přestal existovat. Budeme-li půlit magnet ve tvaru tyčinky, dostaneme dva magnetické dipóly. Proces s dělením může dále pokračovat až se dostaneme na molekulární nebo atomární magnetické dipóly. V tom je zásadní rozdíl mezi elektřinou a magnetismem. Ostatně v [13] jsme si podstatu magnetismu vysvětlili užitím teorie relativity: magnetické pole je relativistickým efektem, který pozorujeme v soustavě, v níž se pohybuje náboj - zdroj elektrického pole.

Nicméně z výrazu (37) lze odůvodnit, proč lze formálně pracovat s "magnetickým množstvím", které r. 1785 zavedl Coulomb do svého magnetostatického zákona. Ten se při výpočtech magnetických polí magnetů osvědčoval až do 2. poloviny 20. století (pracuje s ním např. ještě učebnice [3]). Užitím tohoto zákona poměrně jednoduše dostaneme odpovídající výsledky, když původní Coulombova magnetická množství formálně nahradíme toky $+\Phi$, $-\Phi$ umístěnými do pólů magnetů. Coulombův zákon předpokládá tyto veličiny jako "bodové". V následujícím textu si však ukážeme, že tyto formální postupy není nutné užívat, i když práce s Coulombovým zákonem byla jednodušší (srovnej s úlohou 12).

Magnetický moment \boldsymbol{m} charakterizuje magnet jako celek; tzn. že závisí jednak na **magnetické polarizaci** \boldsymbol{J} feromagnetika magnetu, jednak na jeho objemu V = Sl. Vztah mezi vektory \boldsymbol{m} a \boldsymbol{J} můžeme určit ze vztahu (37). Uvážíme-li, že veličina $\boldsymbol{J} = \boldsymbol{B}_{\rm p}$, neboli jde o indukci polarizovaného pole v látce, jak byla zavedena vztahem (14), bude v magnetu indukční tok $\boldsymbol{\Phi} = |\boldsymbol{J}|S$. Pak

$$\boldsymbol{J} = \boldsymbol{\mu} \frac{\boldsymbol{m}}{V},\tag{38}$$

neboli velikost vektoru magnetické polarizace je rovna μ násobku objemové hustoty velikosti magnetického momentu magnetu. Výraz zřejmě udává střední velikost pro celý magnet - jednak se váže na objem V, jednak na střední hodnotu permeability μ pro dané sycení feromagnetika.

3.2 Magnetické pole magnetu, Gaussovy polohy

Základní veličinou magnetu pro výpočet jeho pole je magnetický moment m. U elektromagnetu jej můžeme určit výpočtem, např. podle vztahu (36). U permanentního magnetu se určuje experimentálně.

Podoba magnetického pole solenoidu (obr. 13 v [13]) tyčového a permanentního magnetu (obr. 15a) vede k modelové představě permanentního magnetu

Obr. 15

jako solenoidu, jehož hustě vinutými závity prochází povrchový proud I = Jl, kde J je délková hustota povrchového proudu ($[J]=\mathbf{A}\cdot\mathbf{m}^{-1}$) a l délka magnetu.

K poznatku o povrchovém proudu dospějeme i z Ampérovy modelové představy o existenci elementárních (atomárních, molekulárních) proudových smyček (viz čl. 1.2b). V každém kolmém řezu magnetu (obr. 15b) si lze představit velké množství elementárních proudových smyček orientovaných do jednoho směru. Označíme-li $I_{\rm m}$ proud v každé z nich, budou se tyto proudy uvnitř plochy řezu ve svých magnetických účincích rušit a zůstane účinek proudu $I_{\rm m}$ jen na obvodu řezu, tedy $I = I_{\rm m}$. Podstatný rozdíl mezi proudem I (v solenoidu) a proudu $I_{\rm m}$ (v magnetu) je v tom, že proud I je vodivý ("přístupný"), kdežto proud $I_{\rm m}$ je vázaný ("nepřístupný").

Nejsnazší je provést výpočet intenzity magnetického pole tyčového magnetu ve dvou významných polohách, které pro magnetické měření zavedl již v 1. polovině 19. století K. F. Gauss. První Gaussova poloha je na obr. 16 vyznačena bodem G_1 , který leží na podélné ose magnetu ve vzdálenosti R od jeho středu. Druhá Gaussova poloha je dána bodem G_2 , který je v příčné rovině souměrnosti ve vzdálenosti R od osy. Intenzita magnetického pole v těchto polohách

je za podmínky $R+\frac{l}{2}\gg r$ dána výrazy (odvození prvního je v příkladu 4):

$$H_1 = \frac{m}{2\pi R^3 (1 - \Lambda^2)^2}, \quad H_2 = -\frac{H_1}{2},$$
 (39)

kde $\Lambda = \frac{l}{2R}$ je poměrná délka magnetu a r jeho poloměr.

Příklad 4 – první Gaussova poloha

Odvoď
te vzorec(39) pro intenzitu magnetického pole tyčového permanentního magnetu v první Gaussově poloze.

Řešení

Permanentní magnet budeme z hlediska výpočtu jeho magnetického pole modelovat povrchovým proudem I = Jlo délkové hustotě J, který prochází obvodem pláště magnetu o poloměru r (obr. 16).

Z pláště vyjmeme element šířky d ξ v obecné poloze ξ od levého konce. Tento element lze považovat za kruhové proudové vlákno s proudem d $I = Jd\xi$, které v poloze G_1 vyvolá magnetické pole o intenzitě (viz výraz (21) v [13]):

$$\mathrm{d}H_1 = \frac{r^2 J}{2(x^2 + r^2)^{3/2}} \mathrm{d}\xi.$$

Výsledné pole v ${\cal G}_1$ dostaneme integrací těchto elementárních polí pro celý povrchový proud:

$$H_1 = \int_0^l \frac{r^2 J}{2(x^2 + r^2)^{3/2}} \mathrm{d}\xi$$

Mezi proměnnými ξ , x je geometrický vztah $\xi + x = \frac{l}{2} + R$, zřejmý z obr. 16. Za integrační proměnnou zvolíme x. Protože pro její diferenciál a integrační meze platí

$$\mathrm{d}x = -\mathrm{d}\xi, \quad R + \frac{l}{2}, \quad R - \frac{l}{2}$$

bude

$$H_{1} = -\frac{r^{2}J}{2} \int_{R+l/2}^{R-l/2} \frac{\mathrm{d}x}{(x^{2}+r^{2})^{3/2}} = -\frac{J}{2} \left[\frac{x}{\sqrt{x^{2}+r^{2}}} \right]_{R+l/2}^{R-l/2} =$$
$$= \frac{J}{2} \left[\frac{R+l/2}{\sqrt{(R+l/2)^{2}+r^{2}}} - \frac{R-l/2}{\sqrt{(R-l/2)^{2}+r^{2}}} \right].$$
(40)

Při výpočtu výše uvedeného integrálu jsme užili vztahu

$$\int \frac{\mathrm{d}x}{(x^2 + r^2)^{3/2}} = \frac{1}{r^2} \frac{x}{\sqrt{x^2 + r^2}} + C,$$

který je možno vypočítat pomocí substituce $x=r \operatorname{tg} t.$

Nyní se omezíme na zvláštní případ $R + \frac{l}{2} \ll r$, užívaný pro magnetická měření. Výrazy upravíme tak, aby v čitateli zlomků byla 1, pak lze jednoduše provést rozvinutí podle binomické věty a vynechat členy 4. a vyššího řádu:

$$H_1 = \frac{J}{2} \left[\frac{1}{\sqrt{1 + r^2/(R + l/2)^2}} - \frac{1}{\sqrt{1 + r^2/(R - l/2)^2}} \right] \approx$$
$$\approx \frac{J}{2} \left[1 - \frac{r^2}{2(R + l/2)^2} - \left(1 - \frac{r^2}{2(R - l/2)^2} \right) \right] = \frac{Jr^2}{4} \frac{2Rl}{(R^2 - l^2/4)^2}.$$

Uvážíme-li, že $Jl\pi r^2=|\pmb{m}|$ je magnetický moment a zavedeme-li poměrnou délku $\Lambda=\frac{l}{2R}$ magnetu, dostaneme hledaný vztah

$$\boldsymbol{H}_1 = \frac{\boldsymbol{m}}{2\pi R^3 (1 - \Lambda^2)^2}.$$

9	Λ
Э	U

3.3 Magnetické pole Země

Od starověku je známo, že Země má své magnetické pole, zvané **geomagnetické**. Průběh magnetických siločar Země lze vyšetřit **magnetkou** (lehkým permanentním magnetem) volně otáčivou kolem těžiště, a to buď v horizontální rovině kolem svislé osy (**deklinační magnetka**) nebo ve vertikální rovině kolem vodorovné osy (**inklinační magnetka**). Měření ukazují, že Země je permanentní magnet, jehož pól S_Z je na severní polokouli pod místem na 72° severní šířky a 96° západní délky a pól N_Z je na jižní polokouli pod místem na 73° jižní šířky a 156° východní délky. Průběh siločar geomagnetického pole je naznačen na obr. 17.

Siločára, která prochází pól
y $S_{\rm Z},~N_{\rm Z}$ tvoří magnetickou osu. Rovina k ní kolmá, která prochází bodem
O, protíná zemský povrch přibližně podél kružnice zvané magnetický rovník. Na něm je intenzit
a ${\boldsymbol{\mathcal{T}}}$ geomagnetického pole vodorovná.

Velikost intenzity \boldsymbol{T} , nazývané totální intenzita, je podle místa na Zemi v mezích (16 až 60) A · m⁻¹. K úplnému popisu magnetického pole Země se užívají tyto tři magnetické souřadnice:

1. Horizontální složka H geomagnetického pole je rovna průmětu totální intenzity T do vodorovné roviny (obr. 18). Má směr přibližně od jihu k severu a určuje směr místního magnetického poledníku.

2. Magnetická deklinace δ je úhel sevřený poledníkem magnetickým a zemským, neboli úhel sevřený osou deklinační magnetky, resp. vektorem \boldsymbol{H} a polední přímkou. Deklinace se označují jako západní (kladná), když je deklinační magnetka odchýlena od směru S - N na západ. Je-li odchýlena na východ, je východní (záporná).

3. Magnetická inklinace *i* je úhel, který svírá totální intenzita T s vodorovnou rovinou (obr. 18). Měří se inklinační magnetkou. Protože se měří velikost vektoru H platí pro totální velikost intenzity vztah $T = \frac{H}{\cos i}$.

Magnetické souřadnice geomagnetického pole jsou proměnné nejen místně, ale i časově. Tabulkové hodnoty pro r. 1975 v Praze a v Brně jsou:

$$H = 15,45 \text{ A} \cdot \text{m}^{-1}, \quad \delta = -0,59^{\circ}, \quad i = 66,09^{\circ}, \quad T = 38,13 \text{ A} \cdot \text{m}^{-1}.$$
$$H = 15,83 \text{ A} \cdot \text{m}^{-1}, \quad \delta = +0,15^{\circ}, \quad i = 65,42^{\circ}, \quad T = 38,06 \text{ A} \cdot \text{m}^{-1}.$$

3.4 Působení magnetického pole na magnet

Vložíme-li magnet do vnějšího magnetického pole, dojde k interakci tohoto pole s magnetickým polem magnetu. Bude-li vnější pole nehomogenní a magnet volně pohyblivý, tak se magnet po vložení jednak natočí tak, aby jeho magnetický moment \boldsymbol{m} měl směr indukčních čar vnějšího pole, jednak se bude pohybovat (přitahovat) do míst s větší indukcí \boldsymbol{B} vnějšího pole. Magnet zaujme takovou polohu, v níž bude jeho potenciální energie minimální.

Bude-li vnější pole homogenní (B = konst.), bude na magnet působit jen moment síly M podle vztahu (37) v [13]:

o velikosti $M = mB \sin \alpha$ a směru, který je dán pravidlem (pravé ruky) pro vektorový součin. Směr je zřejmý z obr. 19. V této poloze bude mít magnet potenciální energii určenou již dříve uvedeným vztahem (11). Působení homogenního pole na magnet bude takové, že bude mít tendenci zmenšovat úhel α .

Obr. 19

Působením momentu síly (41) může magnet v homogenním magnetickém poli **kmitat**. Pro magnetická měření se s výhodou užívá horizontální složka

geomagnetického pole $B=\mu_0 H,$ které lze považovat v okolí magnetu za homogenní.

Zavěsme do tohoto pole tyčovitý magnet o magnetickém momentu m na torzní vlákno tak, aby procházelo jeho těžištěm kolmo na podélnou osu (obr. 20).

Pohybová rovnice magnetu o momentu setrvačnosti J, pak je $J\ddot{\alpha} = M$, neboli

$$\ddot{\alpha} + \frac{mB}{J}\alpha = 0$$
, kde $\ddot{\alpha} = \frac{d^2\alpha}{dt^2}$ je úhlové zrychlení

Je to rovnice harmonických kmitů o úhlové frekvenci, která je dána odmocninou konstanty u proměnné α . Perioda tedy je

$$T = 2\pi \sqrt{\frac{J}{mB}} = 2\pi \sqrt{\frac{J}{\mu_0 mH}}.$$
(43)

Pro přesnější měření nelze zanedbat torzní tuhost k_t . Protože rovnovážnou polohu v tomto případě ovlivňuje i torzní napjatost vlákna, je nutné rovnovážnou polohu otočným závěsem (obr. 20) seřídit tak, aby v klidové poloze osa magnetu měla směr magnetického poledníku (je dána směrem magnetky kompasu). Pak při vychýlení o úhel α budou mít veličiny (42) a (43) korigovanou velikost

$$M' = -(mB + k_{\rm t})\alpha, \quad T' = 2\pi \sqrt{\frac{J}{mB + k_{\rm t}}}.$$
 (44)

Při studiu kmitů magnetky kompasu je samozřejmě $k_t = 0$ (magnetka je podepřena na hrotu) a platí vztah (43), který je zvláštním případem vztahu (44).

K magnetostatickému měření s výhodou využijeme permanentní magnet v první Gaussově poloze. Schéma magnetometru je na obr. 21.

Orientujme jej tak, aby jeho osa, totožná s osou měřeného magnetu, byla kolmá k magnetickému poledníku. Nastavení provedeme pomocí kompasu, když je měřený magnet dostatečně oddálen. Přiblížíme-li magnet do vzdálenosti R (obr. 21), vychýlí se magnetka o úhel φ . S využitím vztahu (39) dostaneme

$$\operatorname{tg}\varphi = \frac{H_1}{H} = \frac{m}{2\pi R^3 (1 - \Lambda^2)^2 H}, \quad \Lambda = \frac{l}{2R}.$$
 (45)

Provedeme-li vedle magnetodynamického měření (z kmitů) měření magnetostatické, můžeme současně určit \boldsymbol{m} i \boldsymbol{H} a nejsme vázáni na tabulkovou hodnotu \boldsymbol{H} , která se může místně i časově měnit. Z výrazu (43) se určí mH, ze (45) $\frac{m}{H}$. Pak

$$|\boldsymbol{m}| = \frac{2\pi(1-\Lambda^2)}{T} \sqrt{\frac{2\pi R^3 J \operatorname{tg} \varphi}{\mu_0}},$$
$$|\boldsymbol{H}| = \frac{1}{T(1-\Lambda^2)} \sqrt{\frac{2\pi J}{\mu_0 R^3 \operatorname{tg} \varphi}}.$$
(46)

Chceme-li naopak provést magnetické měření, které nemá být ovlivněno geomagnetickým polem, použijeme **astatický magnetometr**.

Jeho základem jsou dva stejné tyčové magnety (případně dvě magnetky) se vzájemně opačně orientovanými magnetickými momenty, umístěné nad sebou (obr. 22). Jejich vzdálenost je $L \gg l$ (L např. 1 až 2 m), aby horní magnet neovlivňoval pole zkoumané dolním magnetem. Výsledné působení geomagnetického pole na soustavu je zřejmě nulové.

Příklad 5 – magnetickodynamické měření

Magnetometrem z obr. 20, u něhož torzní tuhost $k_t \neq 0$ není známa, má být měřením periody T malých kmitů určen magnetický moment $|\mathbf{m}|$ magnetu o známém momentu setrvačnosti J. Je známa místní intenzita \mathbf{H} magnetického pole Země a je k dispozici magnet - etalon o známém \mathbf{m}_0, J_0 .

Řešení

Užijeme odvozeného výsledku (44). Abychom vyloučili neznámou torzní tuhost k_t , musíme provést dvojí stejné měření - jednak se zkoumaným magnetem (perioda T), jednak s etalonem (perioda T_0). Pro tyto periody zřejmě platí

$$T = 2\pi \sqrt{\frac{J}{\mu_0 m H + k_{\rm t}}}, \quad T_0 = 2\pi \sqrt{\frac{J_0}{\mu_0 m_0 H + k_{\rm t}}}$$

Z těchto rovnic vyloučíme $k_{\rm t}$ a dostaneme

$$|\mathbf{m}| = |\mathbf{m}_0| + \frac{4\pi^2}{\mu_0 H} \left(\frac{J}{T^2} - \frac{J_0}{T_0^2} \right).$$

Můžeme také vypočítat neznámou torzní tuhost

$$k_{\rm t} = J_0 \left(\frac{2\pi}{T_0}\right)^2 - \mu_0 m_0 H.$$

3.5 Nosná síla magnetu

Uvažujme permanentní magnet nebo elektromagnet (obr. 23). Ve feromagnetické kotvě se proti severnímu pólu (N) elektromagnetu vybudí pól jižní (S) a naopak. Protože opačné póly se přitahují, bude kotva přitahována silou F_0 , která se nazývá nosnost magnetu.

Ke kvantitativnímu určení síly \mathbf{F}_0 vyjdeme z energie magnetického pole ve vzduchové mezeře. Protože výraz pro hustotu energie $w_{\rm m}$ magnetického pole odvodíme až ve 3. dílu elektrodynamiky (s využitím poznatků o elektromagnetické indukci), uvedeme zde příslušný výraz jen na základě analogie s polem elektrickým:

$$w_{\rm e} = \frac{1}{2} \varepsilon E^2 = \frac{1}{2} \boldsymbol{E} \cdot \boldsymbol{D},$$
$$w_{\rm m} = \frac{1}{2} \mu H^2 = \frac{1}{2} \boldsymbol{H} \cdot \boldsymbol{B}.$$
(47)

Uvažme situaci u jednoho pólu; zde k udržení rovnováhy musíme působit silou $\mathbf{F} = -\frac{\mathbf{F}_0}{2}$. Magnetické pole v mezeře δ mezi pólem a kotvou nechť má indukci $B = \mu_0 H$. Rozptyl pole v mezeře zanedbáváme. Zvětšíme-li mezeru o dx vykoná síla \mathbf{F} práci, která se musí projevit zvětšením magnetické energie v mezeře o $w_{\rm m} dV$, kde dV je zvětšení objemu pole v mezeře.

Obr. 23

Detail situace u jednoho pólu je na obr. 24. Plocha jednoho pólu je rovna ploše S příčného řezu jádra. Pak

$$F dx = w_{\rm m} dV = \frac{1}{2} HBS dx, \quad H = \frac{B}{\mu_0}.$$

Obr. 24

K udržení rovnováhy kotvy musí tedy na jejím jednom konci působit síla \boldsymbol{F} , jejíž velikost je

$$F = \frac{1}{2} \frac{B^2}{\mu_0} S.$$
 (48)

Celková síla, kterou magnet přitahuje kotvu je $\pmb{F}_0 = -2\pmb{F}.$

Protože $BS = \Phi$ je indukční tok, který je konstantní pro celý obvod a platí pro něj Hopkinsonův zákon (27), můžeme výraz (48) přepsat do tvaru

$$F = \frac{\Phi^2}{2\mu_0 S} = \frac{z^2 I^2}{2\mu_0 S R_m^2},\qquad(49)$$

kde $R_{\rm m}$ je magnetický odpor celého obvodu. Ten se při zvětšování mezery δ rychle zvětšuje (viz příklad 1), a proto se síla **F** zmenšuje. Největší síla mezi kotvou a póly působí při $\delta \to 0$, kdy odpor $R_{\rm m}$ nabývá minima.

Příklad 6 – nosná síla elektromagnetu

Elektromagnet z obr. 23 má cívku
oz=250závitech, kterou prochází proudI=2,0 A. Jádro a kotva jsou z ocelo
litiny, plocha příčného řezu je $S=2,5\cdot 10^{-4}$ m² na celém obvodu stejná, střední délka silo
čáry jel=0,30 m. Vypočtěte nosnost F_0 jako funkci
 δ tloušťky vzduchové mezery. Řešte numericky pro
 $\delta=0, \delta=0,5$ mm, $\delta=1,0$ mm.

Řešení

Nejprve upravíme výraz (49) dosazením za magnetický odpor obvodu. Ten zřejmě je (srovnejte s příkladem 1)

$$R_{\rm m} = \frac{1}{\mu_0 S} \left(\frac{l - 2\delta}{\mu_{\rm r}} + 2\delta \right).$$

Po dosazení do (47) a uvážení, že nosnost v daném případě je $F_0=2F,$ dostaneme

$$F_0 = \frac{\mu_0 \mu_r^2 z^2 I^2 S}{[l + 2\delta(\mu_r - 1)]^2} \approx \mu_0 S \left(\frac{\mu_r z I}{l + 2\mu_r \delta}\right)^2,$$
(50)

který ve zvláštním případě $\delta \rightarrow 0$ bude

$$F_0' = \mu_0 S \left(\frac{\mu_{\rm r} zI}{l}\right)^2. \tag{51}$$

Pro numerické řešení je třeba nejprve určit střední velikost relativní permeability železa pro dané sycení. V případě bez vzduchové mezery je magnetický obvod stejnorodý, zákon celkového proudu (23) má jednoduchý tvar Hl = zI, z něhož intenzita pole v železe $H = \frac{zI}{l} = 1670 \text{ A} \cdot \text{m}^{-1}$. Z grafu v Dodatku určíme indukci B = 1,5 T, pak $\mu_{\rm r} = \frac{B}{\mu_0 H} = 710$. Pak z (51) vychází $F'_0 = 440 \text{ N}$. Pro $\delta \neq 0$ bude intenzita pole v železe H a ve vzduchu $H_{\rm v}$ vázána vztahem (34), neboli $H_{\rm v} = \mu_{\rm r} H$.

Zákon celkového proudu bude mít tvar

$$H(l-2\delta) + H_v 2\delta = zI.$$

neboli intenzita pole v železe

$$H \approx \frac{zI}{l + 2\delta\mu_{\rm r}} \tag{52}$$

je závislá na neznámé relativní permeabilitě železa $\mu_{\rm r}$. Problém musíme řešit postupnou metodou, tj. odhadneme $\mu_{\rm r}$, z (52) vypočteme H, z magnetizační křivky určíme B a vypočteme $\mu_{\rm r}$:

$$\mu_{\rm r} = \frac{B}{\mu_0 H}.\tag{53}$$

Získaná hodnota μ_r se pravděpodobně nebude shodovat s původně odhadnutou hodnotou hodnotou μ_r . Provedeme korekci odhadu a postup opakujeme.

Pro případ $\delta = 0,5$ mm např. odhadneme $\mu_r = 2500$, z (52) určíme $H = 180 \text{ A} \cdot \text{m}^{-1}$, z magnetizační křivky pro ocelolitinu určíme B = 0,52 T, z (53) vypočteme $\mu_r = 2300$. Protože se liší od odhadnuté zvolíme nyní $\mu_r = 2300$, vypočteme znovu $H = 190 \text{ A} \cdot \text{m}^{-1}$ a pak z křivky je B = 0,55 T a z (53) vyjde $\mu_r = 2300$ v souladu s odhadem. Nyní můžeme již přejít do výrazu (50) a vypočíst $F_0 = 61,5 \text{ N}$.

Podobně pro $\delta = 1,0$ mm stanovíme $\mu_r = 2080$ a $F_0 = 17,0$ N.

Z ukázaného řešení je vidět, že nosnost magnetu je značně závislá na velikosti vzduchové mezery. Vypočtená velikost síly (51) pro $\delta \to 0$ je jen teoretická; jakákoli nerovnost či nečistota ve styčné ploše pólů rychle zmenšuje nosnost, jak se dá posoudit ze vztahu (50).

Poznámka. Řešení inverzní úlohy, tj. stanovení potřebného proudu pro danou nosnost a vzduchovou mezeru je obtížnější. Řešení problému stanovení správného $\mu_{\rm r}$ je ještě složitější. Pro určitý magnet lze ovšem problém přímo řešit užitím grafu $F_0 = f(I)$, který jsme schopni sestrojit na základě postupu užitého v tomto příkladu 5.

4 Úlohy

1. Gyromagnetický faktor

Odvoďte výraz pro gyromagnetický faktor elektronu zavedený vztahem (9) na základě klasické úvahy o pohybu elektronu po kruhové trajektorii blíže neurčeného poloměru.

2. Bohrův magneton

Odvoďte vztah (4) pro Bohrův magneton na základě úvahy o stojatých de Brogliho vlnách $\lambda = \frac{h}{p_e} = \frac{h}{m_e v}$ na první kvantové dráze s využitím výsledků úlohy 1.

3. Magnetizační proud

Na jádře ve tvaru anuloidu o středním poloměru $r_0 = 100$ mm a o kruhovém průřezu s poloměrem r = 20,0 mm je navinuto z = 150 závitů. Jaký magnetizační proud musí procházet cívkou, aby se vytvořilo magnetické pole o toku $\Phi = 1,40 \cdot 10^{-3}$ Wb, je-li jádro a) z ocelolitiny, b) z litiny. Posuďte vhodnost uvažovaných materiálů. Určete relativní permeabilitu těchto materiálů při požadovaném sycení.

4. Magnetický obvod se vzduchovou mezerou

Ocelolitinový obvod z úlohy 3 je přerušen vzduchovou mezerou tloušťky $\delta = 1,0$ mm. Jaký bude nyní potřebný magnetizační proud? Vypočtěte sílu \boldsymbol{F} , kterou jsou k sobě přitahovány póly vytvořené štěrbinou.

5. Dva magnetické obvody

Uvažujme dva stejné pr
stence z ocelolitiny o střední délce l = 400 mm, na nichž je navinuta stejná cívka
oz = 200 závitech. Jeden pr
stence je přerušen vzduchovou mezerou $\delta = 1,0$ mm. Vinutím pr
stence bez mezery prochází proud $I_1 = 1,0$ A. Jaký prou
d I_2 musí procházet druhým pr
stencem, aby v něm vznikla stejná indukce - odvoď
te vztah mezi proudy I_1, I_2 .

6. Permeabilita železa

Na železném jádře ve tvaru anuloidu o průměru osy d (obr. 25) je navinuta cívka o z závitech. Jádro je přerušeno úzkou mezerou tloušťky δ . Proud vybudí v obvodu magnetické pole o indukci B. Vypočtěte relativní permeabilitu železa. Rozptyl pole v mezeře lze zanedbat.

Obr. 25

7. Permanentní magnet

Zvolíme-li za materiál kotvy z obr. 25 ocel vhodného složení, dostaneme po jejím zmagnetování dostatečně intenzivním proudem I permanentní magnet. Nechť pole tohoto magnetu má v mezeře δ indukci **B**. Vypočtěte velikosti vektorů intenzity **H** a magnetické polarizace **J** v oceli.

8. Pole přímkového proudu na rozhraní

Na rovinném rozhraní vakua a nevodivé látky o relativní permeabilitě μ_r leží přímkový vodič (zanedbatelného průměru), kterým prochází proud *I*. Vypočtěte intenzitu a indukci magnetického pole v poloprostoru s látkou a naznačte siločáry a indukční čáry pole.

9. Nosnost elektromagnetu

Elektromagnet má jádro z měkkého železa ve tvaru podkovy a k jeho průřezu je přiložena kotva podle obr. 26. Průřez $S = 5,0 \text{ cm}^2$ je po celém obvodu stejný, délka střední siločáry je l = 36 cm. Cívka má z = 120 závitů a prochází jí proud I = 1,2 A. Určete nosnou sílu magnetu pro případ, že se kotva dotýká pólů.

Obr. 26

10. Indukce pole permanentního magnetu

Experimentem bylo zjištěno, že k odtržení kotvy permanentního magnetu, který má tvar jádra popsaný v úloze 9 (obr. 26), bylo zapotřebí sílu $F_0 = 225$ N. Vypočtěte indukci magnetického pole na pólech (a v celém objemu) magnetu.

11. Coulombův magnetostatický zákon

Ve vývoji magnetismu sehrál nesmazatelnou roli Coulombův magnetostatický zákon

$$\boldsymbol{F} = \frac{1}{4\pi\mu} \frac{\boldsymbol{\Phi}_1 \boldsymbol{\Phi}_2}{r^2} \boldsymbol{r}^0, \tag{54}$$

který Coulomb formuloval r. 1785 ještě před svým analogickým zákonem elektrostatickým. I když se tento druhý zákon stal základem i moderní teorie elektromagnetického pole, zákon (54) pozbyl na významu, protože existence magnetických množství Φ_1 , Φ_2 se neprokázala a dnes je lze považovat jen za pomocné matematické veličiny. Nicméně užitím zákona (54) lze jednoduše dostat některé výsledky, které aplikací relevantní elektrodynamické teorie získáváme obtížněji (srovnejte příklad 4 s úlohou 12 pro první Gaussovu polohu). Zákon (54) musí tedy být "zakódován" v zákonech elektrodynamiky.

Užitím Ampérova zákona a zákona Biotova-Savartova-Laplaceova (výrazy (33) a (15) v [13]) odvoďte zákon (54), když uvážíte původní definici intenzity magnetického pole

$$\boldsymbol{H} = \frac{\boldsymbol{F}}{\Phi} \tag{55}$$

jako sílu, kterou magnetické pole v uvažovaném bodě působí na kladné jednotkové magnetické množství.

12. Gaussovy polohy

Užití Coulombova zákona (54) odvoďte vztahy (39) pro obě Gaussovy polohy.

13. Mikroskopická analýza magnetu

Ocelový tyčový magnet ve tvaru válce délky l = 120 mm a poloměru $r_0 = 5,00 \text{ mm}$ má magnetický moment $|\mathbf{m}| = 12,5 \text{ A} \cdot \text{m}^2$.

a) Vypočtěte počet spinových magnetických momentů (Bohrových magnetonů), který odpovídá magnetickému momentu magnetu.

b) Vypočtěte počet spinových magnetických momentů, který v průměru připadá na 1 atom železa.

c) Magnet volně otočný kolem podélné osy zahřejeme nad teplotu Curiova bodu (tj. u železa nad 768 °C), při které dojde k úplné ztrátě magnetické

polarizace. Vypočtěte úhlovou rychlost $\omega,$ kterou se začne těleso původního

magnetu otáčet. Hustota oceli (železa) $\rho = 7,80 \cdot 10^3 \text{ kg} \cdot \text{m}^{-3}$ a její molární hmotnost $M_{\rm m} = 0,0558 \text{ kg} \cdot \text{mol}^{-1}$.

Dodatky

$\frac{\varkappa_{\rm m}}{10^{-6}}$ $\frac{\varkappa_{\rm m}}{10^{-6}}$ Látka Látka - 0,011 Olovo +0,82Argon Baryum +7,1Oxid dusný - 0,01 Benzen - 8,0 Oxid dusnatý -17Bismut - 170 Platina + 280Cín +2,3 $Rtu{t}$ - 31 Dusík - 0,007 - 12 SíraHliník + 22Stříbro - 26 Chrom + 320Tantal + 180+ 22Iridium + 40Vápník - 9 Kadmium - 20 Voda Kyslík Vodík - 0,002 +1,85Lithium + 3,4Vzduch +0,38Mangan + 810Zinek - 14 Měď - 8,9 Zlato - 37

Tab. 1 Magnetická susceptibilita magneticky měkkých látek

D.1 Magnetické vlastnosti některých látek

	-	Fe	1	Ni	С	0
$\frac{H}{\mathbf{A} \cdot \mathbf{m}^{-1}}$	$\frac{B}{T}$	$\mu_{ m r}$	$\frac{B}{T}$	$\mu_{ m r}$	$\frac{B}{T}$	$\mu_{ m r}$
80	$0,\!580$	5800	0,065	650		
120	0,750	5000	$0,\!135$	900		
200	0,920	3 680	0,280	1 1 2 0	0,021	84
400	1,100	2200	$0,\!433$	865	$0,\!057$	114
800	1,230	1230	0,494	494	$0,\!170$	170
1 600	$1,\!345$	673	$0,\!540$	270	0,340	170
4000	$1,\!485$	297	$0,\!585$	117	$0,\!596$	119
8 000	1,600	160	0,620	62	0,784	78
12000	$1,\!686$	112	0,640	43	0,900	60
24000	1,840	61,3	$0,\!670$	22		
40000	1,920	38,4	$0,\!691$	14		
80 000	2,000	20,0	0,737	7,4		
160 000	$2,\!106$	10,5	0,840	4,2		
240000	2,210	7,4	$0,\!938$	3,1		
320 000	2,313	$5,\!8$	1,040	2,6		
400 000	2,412	4,8				
480 000	2,513	4,2				

Tab. 2 Závislost magnetické indukce a relativní permeability na intenzitě magnetického pole u feromagnetických prvků

.....

Magnetizační křivky technických kovů

Magnetizační křivky pro litinu - 1, ocelolitinu - 2, transformátorový plech (4% Si) - 3 a železný plech - 4 pro $H \in (20,900) \, \mathrm{A \cdot m^{-1}}$

Magnetizační křivky a) pro ocelolitinu, b) pro litinu pro $H\in(0.1;75)\cdot10^3\;{\rm A\cdot m^{-1}}$

D.2 Fyzikální konstanty pro řešení úloh

(Konstanty jsou uvedeny s přesností na pět platných míst.)

Rychlost světla ve vakuu	$c = 2,9979 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$			
Planckova konstanta	$h = 6{,}6261 \cdot 10^{-34} \text{ J}{\cdot}\text{s}$			
	$\hbar = \frac{h}{2\pi} = 1,0546 \cdot 10^{-34} \text{ J} \cdot \text{s}$			
Elementární náboj	$e = 1,\!6022\cdot 10^{-19}\;\mathrm{C}$			
Permitivita vakua	$\varepsilon_0 = 8{,}8542\cdot 10^{-12}\;{\rm F}{\cdot}{\rm m}^{-1}$			
	$\frac{1}{4\pi\varepsilon_0} = 8,9876 \cdot 10^9 \ {\rm F}^{-1} \cdot {\rm m}$			
	$\doteq 9\cdot 10^9 \; \mathrm{F}^{-1}\cdot \mathrm{m}$			
Permeabilita vakua	$\mu_0 = 4\pi \cdot 10^{-7} \text{ H} \cdot \text{m}^{-1} =$			
	$= 1{,}2566 \cdot 10^{-6} \ {\rm H}{\cdot}{\rm m}^{-1}$			
Avogadrova konstanta	$N_{\rm A} = 6{,}0221 \cdot 10^{23} \; {\rm mol}^{-1}$			
Faradayova konstanta	$F=9{,}6485\cdot10^4\;\mathrm{C}{\cdot}\mathrm{mol}^{-1}$			
Elektronvolt	$1~{\rm eV} = 1{,}6022\cdot 10^{-19}~{\rm J}$			
Hmotnostní jednotka	u= 1,6605 $\cdot 10^{-27} \text{ kg}$			
Klidová hmotnost elektronu	$m_{\rm e} = 9{,}1094\cdot 10^{-31}~{\rm kg}$			
Měrný náboj elektronu	$e/m = 1,7588 \cdot 10^{11} \; \mathrm{C \cdot kg^{-1}}$			
Klidová hmotnost protonu	$m_{\rm p} = 1{,}6726\cdot 10^{-27}~{\rm kg}$			
Klidová hmotnost neutronu	$m_{\rm n} = 1{,}6749\cdot 10^{-27}~{\rm kg}$			
Bohrův poloměr	$r_{\rm B} = 5{,}2918\cdot 10^{-11}~{\rm m}$			
Bohrův magneton	$\mu_{\rm B} = 9{,}2740 \cdot 10^{-24} \; {\rm A}{\cdot}{\rm m}^2$			
Jaderný magneton	$\mu_{\rm N} = 5{,}0508\cdot 10^{-27}~{\rm A}{\cdot}{\rm m}^2$			
Rydbergův kmitočet	$N = 3,\!2898 \cdot 10^{15} \; \mathrm{Hz}$			
Normální tíhové zrychlení	$g=9{,}80665\;\mathrm{m\cdot s^{-2}}$ (přesně)			
Rovníkový poloměr Země	$R_{\rm Z} = 6,3782 \cdot 10^6 \; {\rm m}$			
Gravitační konstanta	$\varkappa = 6{,}6726\cdot 10^{-11} \ \mathrm{m^3 \cdot kg^{-1} \cdot s^{-2}}$			

Řešení úloh

1.
$$|\boldsymbol{L}_{0}| = m_{e}vr, |\boldsymbol{m}_{0}| = I_{e}S = \frac{ev}{2\pi r}\pi r^{2} = \frac{evr}{2} = \frac{e}{2m_{e}}|\boldsymbol{L}_{0}|.$$

2. $n\lambda = 2\pi r$; pro $n = 1$ je $|\boldsymbol{L}_{0}| = \hbar$ a $|\boldsymbol{m}_{0}| = \frac{e\hbar}{2m_{e}} = \mu_{B}.$

- **3.** Pro indukci $B = \frac{\Phi}{\pi r^2} = 1,0 \text{ T}, \text{ z magnetizačních křivek odečteme: } H_a = 420 \text{ A} \cdot \text{m}^{-1}, H_b = 11500 \text{ A} \cdot \text{m}^{-1}. \text{ Ze zákona celkového proudu je } I = \frac{2\pi r_0 H}{z}, \text{ tj. } I_a = 1,8 \text{ A}, I_b = 48 \text{ A}. \text{ Litina je pro zvolené sycení zcela nevhodná. Relativní permeabilita } \mu_r = \frac{B}{\mu_0 H}, \text{ tj. } \mu_a = 1890, \mu_b = 70.$
- 4. Protože intenzita ve vzduchové mezeře $H_{\rm v}=\mu_{\rm r}H_{\rm \check{z}},$ kde $\mu_{\rm r}=1890$ a $H_{\rm \check{z}}=420~{\rm A}\cdot{\rm m}^{-1}$ (úloha 3), je ze zákona celkového proudu

$$I = \frac{H_{\check{z}}}{z} (2\pi r_0 + \mu_{\rm r} \delta) = 7,05 \text{ A}.$$

Síla (výraz 49) je F = 495 N.

5.

$$I_2 = I_1 \left[1 + \frac{\delta}{l} (\mu_{\mathrm{r}} - 1) \right].$$

Relativní permitivitu ocelolitiny určíme pro případ jednoduchého obvodu prvního prstence: $H_1 = \frac{zI_1}{l} = 500 \text{ A} \cdot \text{m}^{-1}$, protože sycení ocelolitiny musí být v obou případech stejné. Z magnetizační křivky vychází B = 1,1 T. Pak $\mu_r = 1760$ a $I_2 = 5,4$ A.

- 6. Zákon celkového proudu: $(\pi d \delta)H + H_v \delta = zI$. Protože $B_v = B$, $H_v = \mu_r H$, $H = \frac{B}{\mu_0 \mu_r}$, $\delta \ll d$ je $\mu_r = \frac{\pi B d}{\mu_0 zI - B \delta}$.
- 7. Ze zákona celkového proudu (vodivý proud I = 0) podobně jako v úloze 6 vychází $(\pi d \delta)H + \frac{B\delta}{\mu_0} = zI$, odkud

$$H \approx -\frac{B\delta}{\mu_0 \pi d}.$$

Znaménko minus naznačuje, že vektor
y \pmb{H} a \pmb{B} mají vzájemně opačné směry. Ze vztahu (14) pak

$$J = B\left(1 + \frac{\delta}{\pi d}\right) \approx B.$$

8. Ze zákona celkového proudu, provedeme-li cirkulaci po siločáře vychází: $\pi r H + \pi r H_0 = I$. Protože na rozhraní $B = B_0$, neboli $\mu_r H = H_0$, pak

Obr. 27

Průběh siločar a indukčních čar - viz obr. 27, siločáry jsou na rozhraní nespojité.

9. Síla je dána výrazem (51). Pro intenzitu pole $H = \frac{zI}{l} = 400 \text{ A} \cdot \text{m}^{-1}$ vychází z tab. 2 v Dodatku D1 $\mu_{\rm r} = 2200$. Pak

$$F_0 = \mu_0 S \left(\frac{\mu_{\rm r} zI}{l}\right)^2 = 487 \,\mathrm{N}.$$

10. Z výrazu (48): $B = \sqrt{\frac{\mu_0 F_0}{S}} = 0.752 \text{ T.}$

11. Proudový element IdI vybudí podle Biotova-Savartova-Laplaceova zákona (14) v [13] magnetické pole intenzity d H_1 o velikosti

$$\mathrm{d}H_1 = \frac{I\mathrm{d}l\sin\alpha}{4\pi r^2}.$$

Na týž proudový element bude v poli o intenzit
ě \pmb{H} působit podle Ampérova zákona (33) v [13] síla o velikosti

$$\mathrm{d}F_1 = \mu H I \, \mathrm{d}l \sin \alpha.$$

Vydělíme-li první výraz druhým, dostaneme

$$H = \frac{1}{4\pi\mu r^2} \frac{\mathrm{d}F_1}{\mathrm{d}H_1}.$$

Uvážíme-li definiční výrazy pro intenzitu

$$\mathrm{d}H_1 = \frac{\mathrm{d}F_1}{\varPhi_1}, \quad H = \frac{F}{\varPhi_2},$$

dostaneme původní Coulombův magnetostatický zákon

$$F = \frac{1}{4\pi\mu} \frac{\Phi_1 \Phi_2}{r^2}$$

čili po vynásobení jednotkovým vektorem \pmb{r}^0 vektorový výraz (54).

12. Pro první Gaussovu polohu (bod G_1 v obr. 28) platí

$$H_1 = H_1^{+} - H_1^{-} = \frac{1}{4\pi\mu} \left[\frac{\Phi}{(R-l/2)^2} - \frac{\Phi}{(R+l/2)^2} \right] = \frac{1}{4\pi\mu} \frac{2\Phi Rl}{(R^2 - l^2/4)^2}.$$

Obr. 28

Vyjádříme-li magnetický moment užitím vztahu (37) a zavedeme-li poměrnou délku $\Lambda = \frac{l}{2R}$, dostaneme

$$\boldsymbol{H}_1 = \frac{\boldsymbol{m}}{2\pi R^3 (1 - \Lambda^2)^2} \approx \frac{\boldsymbol{m}}{2\pi R^3} \quad \text{pro } \Lambda \ll 1.$$

Ve druhé Gaussově poloze G_2 bude

$$H^+ = H^- = \frac{1}{4\pi\mu} \frac{\Phi}{R^2 + l^2/4}.$$

Pro výslednici ${\cal H}_2$ a složku ${\cal H}^+$ z geometrické podobnosti platí

$$H_2$$
 : $H^+ = l$: $\sqrt{R^2 + \frac{l^2}{4}}$.

Odtud

$$H_2 = \frac{\Phi l}{4\pi\mu (R^2 + l^2/4)^{3/2}} = \frac{|\mathbf{m}|}{4\pi R^3 (1 + \Lambda^2)^{3/2}} \approx \frac{|\mathbf{m}|}{4\pi R^3}$$
$$\mathbf{H}_2 = -\frac{\mathbf{H}_1}{2}.$$

13. a) Počet spinových magnetických momentů j
e $n_{\rm celk} = \frac{|\boldsymbol{m}|}{\mu_{\rm B}} = 1,35 \cdot 10^{24}.$ b) Počet spinových magnetických momentů připadajících na 1 atom Fe:

$$n_{\rm Fe} = rac{|{m m}|}{\mu_{\rm B}} rac{M_{
m m}}{\pi r_0^{-2} l \varrho N_{
m A}} = 1,70.$$

c) Bude platit zákon zachování momentu hybnosti $\boldsymbol{L}_s + J \boldsymbol{\omega} = \boldsymbol{0}$, kde \boldsymbol{L}_s je celkový spinový moment hybnosti magnetu orientovaný do směru pole magnetu. Pak úhlová rychlost

$$\omega = -\frac{2}{\pi r^4 l \varrho} \frac{m_{\rm e}}{e} |\boldsymbol{m}| = -7,73 \cdot 10^{-5} \, {\rm s}^{-1} = -16,0^{\prime\prime} \, {\rm s}^{-1}.$$

Znaménko minus vyjadřuje, že úhlová rychlost má opačný směr než mají spiny elektronů, které vyvolávaly magnetickou polarizaci magnetu.

Literatura

- [1] Beiser, A.: Úvod do moderní fyziky. Academia, Praha 1975.
- [2] Brož, J. a kol.: Základy fyzikálních měření. SPN, Praha 1967.
- [3] Fuka, J., Havelka, B.: *Elektřina a magnetismus.* 3. vydání. SPN, Praha 1979.
- [4] Haňka, L.: Teorie elektromagnetického pole. SNTL/ALFA, Praha 1982.
- [5] Horák, Z., Krupka, F.: Fyzika. SNTL/SVTL, Praha 1966, 1976, 1981.
- [6] Hubeňák, J.: Řešené úlohy z elektřiny a magnetismu. Edice "SCIO ME MULTA NESCIRE" č.8. MAFY, Hradec Králové 1997.
- [7] Hubeňák, J.: Úlohy výkonového kursu fyziky v SRN. 1. část Elektrické a magnetické pole. Edice "SCIO ME MULTA NESCIRE" č.19. MAFY, Hradec Králové 1999.
- [8] Krempaský, J.: Fyzika. Alfa/SNTL Bratislava 1982.
- [9] Irodov, I., E.: Osnovnyje zakony elektromagnetizma. Izd. Vysšaja škola, Moskva 1983.
- [10] Vybíral, B.: Fyzikální pole z hlediska teorie relativity. SPN, Praha 1976, SPN, Bratislava 1980.
- [11] Vybíral, B.: Teorie elektromagnetického pole. Pedagogická fakulta v Hradci Králové, Hradec Králové 1984.
- [12] Vybíral, B.: *Elektrostatika*. Knihovnička fyzikální olympiády č. 39. MAFY, Hradec Králové 1999.
- [13] Vybíral, B.: Magnetické pole ve vakuu. Knihovnička fyzikální olympiády č. 42. MAFY, Hradec Králové 2000.
- [14] Vybíral, B.: Setrvačníky a jejich aplikace. Knihovnička fyzikální olympiády č. 34. MAFY, Hradec Králové 1998.