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Cavitation Noise

The violent and catastrophic collapse of cavitation bubbles results in the production of noise that is a
consequence of the momentary large pressures that are generated when the contents of the bubble are
highly compressed. Consider the flow in the liquid caused by the volume displacement of a growing or
collapsing cavity. In the far field the flow will approach that of a simple source, and it is clear that
equation (Ngb5) for the pressure will be dominated by the first term on the right-hand side (the unsteady
inertial term) since it decays more slowly with radius, r, than the second term. If we denote the time-
varying volume of the cavity by V (t) and substitute using equation (Ngb2), it follows that the time-varying
component of the pressure in the far field is given by

pa =
ρL

4πR
d2V

dt2
(Nhg1)

where pa is the radiated acoustic pressure and we denote the distance, r, from the cavity center to the point
of measurement by R (for a more thorough treatment see Dowling and Ffowcs Williams 1983 and Blake
1986b). Since the noise is directly proportional to the second derivative of the volume with respect to time,
it is clear that the noise pulse generated at bubble collapse occurs because of the very large and positive
values of d2V/dt2 when the bubble is close to its minimum size. It is conventional (see, for example, Blake
1986b) to present the sound level using a root mean square pressure or acoustic pressure, ps, defined by

p2
s = p2

a =

∫ ∞

0

G(f)df (Nhg2)

and to represent the distribution over the frequency range, f , by the spectral density function, G(f).

To the researcher or engineer, the crackling noise that accompanies cavitation is one of the most evident
characteristics of the phenomenon. The onset of cavitation is often detected first by this noise rather than
by visual observation of the bubbles. Moreover, for the practical engineer it is often the primary means
of detecting cavitation in devices such as pumps and valves. Indeed, several empirical methods have been
suggested that estimate the rate of material damage by measuring the noise generated (for example, Lush
and Angell 1984).

The noise due to cavitation in the orifice of a hydraulic control valve is typical, and spectra from such
an experiment are presented in figure 1. The lowest curve at σ = 0.523 represents the turbulent noise
from the noncavitating flow. Below the incipient cavitation number (about 0.523 in this case) there is a
dramatic increase in the noise level at frequencies of about 5kHz and above. The spectral peak between
5kHz and 10kHz corresponds closely to the expected natural frequencies of the nuclei present in the flow
(see section (Ngj)).

Most of the analytical approaches to cavitation noise build on knowledge of the dynamics of collapse
of a single bubble. Fourier analyses of the radiated acoustic pressure due to a single bubble were first
visualized by Rayleigh (1917) and implemented by Mellen (1954) and Fitzpatrick and Strasberg (1956).
In considering such Fourier analyses, it is convenient to nondimensionalize the frequency by the typical
time span of the whole event or, equivalently, by the collapse time, ttc, given by equation (Ngd13). Now
consider the frequency content of G(f) using the dimensionless frequency, fttc. Since the volume of the
bubble increases from zero to a finite value and then returns to zero, it follows that for fttc < 1 the Fourier
transform of the volume is independent of frequency. Consequently d2V/dt2 will be proportional to f2 and



therefore G(f) ∝ f4 (see Fitzpatrick and Strasberg 1956). This is the origin of the left-hand asymptote in
figure 2.

The behavior at intermediate frequencies for which fttc > 1 has been the subject of more speculation and
debate. Mellen (1954) and others considered the typical equations governing the collapse of a spherical
bubble in the absence of thermal effects and noncondensable gas (equation (Ngd9)) and concluded that,

since the velocity dR/dt ∝ R− 3
2 , it follows that R ∝ t

2
5 . Therefore the Fourier transform of d2V/dt2 leads

to the asymptotic behavior G(f) ∝ f− 2
5 . The error in this analysis is the neglect of the noncondensable gas.

When this is included and when the collapse is sufficiently advanced, the last term in the square brackets
of equation (Ngd9) becomes comparable with the previous terms. Then the behavior is quite different from

R ∝ t
2
5 . Moreover, the values of d2V/dt2 are much larger during this rebound phase, and therefore the

frequency content of the rebound phase will dominate the spectrum. It is therefore not surprising that the
f− 2

5 is not observed in practice. Rather, most of the experimental results seem to exhibit an intermediate
frequency behavior like f−1 or f−2. Jorgensen (1961) measured the noise from submerged, cavitating jets
and found a behavior like f−2 at the higher frequencies (see figure 2). However, most of the experimental
data for cavitating bodies or hydrofoils exhibit a weaker decay. The data by Arakeri and Shangumanathan
(1985) from cavitating headform experiments show a very consistent f−1 trend over almost the entire
frequency range, and very similar results have been obtained by Ceccio and Brennen (1991).

Ceccio and Brennen (1991) recorded the noise from individual cavitation bubbles in a flow; a typical
acoustic signal from their experiments is reproduced in figure 3. The large positive pulse at about 450 μs
corresponds to the first collapse of the bubble. This first pulse in figure 3 is followed by some facility-
dependent oscillations and by a second pulse at about 1100 μs. This corresponds to the second collapse
that follows the rebound from the first collapse.

A good measure of the magnitude of the collapse pulse is the acoustic impulse, I , defined as the area under
the pulse or

I =

∫ t2

t1

padt (Nhg3)

Figure 1: Acoustic power spectra from a model spool valve operating under noncavitating (σ = 0.523) and cavitating
(σ = 0.452 and 0.342) conditions (from the investigation of Martin et al. 1981).



Figure 2: Acoustic power spectra of the noise from a cavitating jet. Shown are mean lines through two sets of data constructed
by Blake and Sevik (1982) from the data by Jorgensen (1961). Typical asymptotic behaviors are also indicated. The reference
frequency, fr , is (p∞/ρLd2)

1
2 where d is the jet diameter.

Figure 3: A typical acoustic signal from a single collapsing bubble. From Ceccio and Brennen (1991).

where t1 and t2 are times before and after the pulse at which pa is zero. For later purposes we also define
a dimensionless impulse, I∗, as

I∗ = 4πIR/ρLU�2 (Nhg4)

where U and � are the reference velocity and length in the flow. The average acoustic impulses for indi-
vidual bubble collapses on two axisymmetric headforms (ITTC and Schiebe headforms) are compared in
figure 4 with impulses predicted from integration of the Rayleigh-Plesset equation. Since these theoretical
calculations assume that the bubble remains spherical, the discrepancy between the theory and the exper-
iments is not too surprising. Indeed one interpretation of figure 4 is that the theory can provide an order
of magnitude estimate and an upper bound on the noise produced by a single bubble. In actuality, the
departure from sphericity produces a less focused collapse and therefore less noise.

The next step is to consider the synthesis of cavitation noise from the noise produced by individual
cavitation bubbles or events. If the impulse produced by each event is denoted by I and the number of



Figure 4: Comparison of the acoustic impulse, I, produced by the collapse of a single cavitation bubble on two axisymmetric
headforms as a function of the maximum volume prior to collapse. Open symbols: average data for Schiebe headform; closed
symbols: ITTC headform; vertical lines indicate one standard deviation. Also shown are the corresponding results from the
solution of the Rayleigh-Plesset equation. From Ceccio and Brennen (1991).

events per unit time is denoted by ṅ, the sound pressure level, ps, will be given by

ps = Iṅ (Nhg5)

Consider the scaling of cavitation noise that is implicit in this construct. Both the experimental results and
the analysis based on the Rayleigh-Plesset equation indicate that the nondimensional impulse produced by
a single cavitation event is strongly correlated with the maximum volume of the bubble prior to collapse
and is almost independent of the other flow parameters. It follows from equations (Nhg1) and (Nhg3) that

I∗ =
1

U�2
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t2

−
(
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}
(Nhg6)

and the values of dV/dt at the moments t = t1, t2 when d2V/dt2 = 0 may be obtained from the Rayleigh-
Plesset equation. If the bubble radius at the time t1 is denoted by Rx and the coefficient of pressure in the
liquid at that moment is denoted by Cpx, then

I∗ ≈ 8π

(
Rx

�

)2

(Cpx − σ)
1
2 (Nhg7)

Numerical integrations of the Rayleigh-Plesset equation for a range of typical circumstances yield Rx/Rm ≈
0.62 where Rm is the maximum volumetric radius and that (Cpx − σ) ∝ Rm/� (in these calculations � was
the headform radius) so that

I∗ ≈ β

(
Rm

�

)5
2

(Nhg8)

The aforementioned integrations of the Rayleigh-Plesset equation yield a factor of proportionality, β, of
about 35. Moreover, the upper envelope of the experimental data of which figure 4 is a sample appears to
correspond to a value of β ≈ 4. We note that a quite similar relation between I∗ and Rm/� emerges from
the analysis by Esipov and Naugol’nykh (1973) of the compressive sound wave generated by the collapse
of a gas bubble in a compressible liquid.

From the above relations, it follows that

I ≈ β
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2 (Nhg9)



Consequently, the evaluation of the impulse from a single event is completed by an estimate of Rm such
as that of equation (Nhb4). Since that estimate has Rm independent of U for a given cavitation number,
it follows that I is linear with U .

The event rate, ṅ, can be considerably more complicated to evaluate than might at first be thought. If
all the nuclei flowing through a certain, known streamtube (say with a cross-sectional area, An, in the
upstream flow) were to cavitate similarly, then the result would be

ṅ = nAnU (Nhg10)

where n is the nuclei concentration (number/unit volume) in the incoming flow. Then it follows that the
acoustic pressure level resulting from substituting equations (Nhg10), (Nhg9) into equation (Nhg5) and
using equation (Nhb4) becomes

ps ≈ β

3
ρLU2Ann�2(−σ − Cpmin)

5
2 /R (Nhg11)

where we have omitted some of the constants of order unity. For the relatively simple flows considered
here, equation (Nhg11) yields a sound pressure level that scales with U2 and with �4 because An ∝ �2.
This scaling with velocity does correspond roughly to that which has been observed in some experiments
on traveling bubble cavitation, for example, those of Blake, Wolpert, and Geib (1977) and Arakeri and
Shangumanathan (1985). The former observe that ps ∝ Um where m = 1.5 to 2.

Different scaling laws will apply when the cavitation is generated by turbulent fluctuations such as in a
turbulent jet (see, for example, Ooi 1985 and Franklin and McMillan 1984). Then the typical tension
experienced by a nucleus as it moves along a disturbed path in a turbulent flow is very much more difficult
to estimate. Consequently, the models for the sound pressure due to cavitation in a turbulent flow and the
scaling of that sound with velocity are less well understood.


