

A Scalable Multi-Path Microarchitecture for Efficient GPU Control Flow

HPCA 2014

GPU for non-graphics computing

- Single Instruction Multiple Thread(SIMT) execution model
 - Use a single instruction sequencer to operate on a group of threads
- Improve efficiency by amortizing instruction fetch and decode cost.
- Reduce thread level parallelism(TLP) with divergent control flow
 - Current GPUs serialize the execution of divergent paths

Single-Path Stack Execution Model

- <u>Per warp</u> (4 threads) stack is used to manage divergence
- Serialize the execution of diff control flow paths (B & C)
- Immediate postdominator(IPDOM) is set as the RPC
 - The earliest point where all divergent threads are guaranteed to execute

Stack-Based Reconvergence Limitations

Two cycle latency

Assume two instructions per block

emory Systems Lab.

- Allow only <u>a single</u> control flow path to execute at a time
 -> reduce the number of running threads
- Potential: during the idle cycles due to long latency, alternative paths could make progress.

Computer Architecture and Memory Systems Lab

Contribution

- Goal
 - Allow concurrent scheduling of any number of warp splits while maintaining IPDOM reconvergence
 - Enable early reconvergence opportunistically at run-time
- Scheme
 - Warp split table (ST)
 - the state of warp splits executing in parallel basic blocks
 - Reconvergence table (RT)
 - reconvergence points for the splits

Operation of MP IPDOM

Pending mask:

threads that have not yet reached the reconvergence point

Computer Architecture and Memory Systems Lab.

• Upon each update to the pending active mask in the RT table, the Pending Mask is checked if it is all zeros.

Timing Diagram of MP IPDOM

Occupy the idle cycles with the alternative control path

- IPDOM reconvergence point: the **earliest guaranteed** reconvergence point.
- In certain situations, there are **opportunities** to reconverge at **earlier points** than the IPDOM point.
- Not guaranteed for all executions.

• A divergence at BR_{A-D}^C results in two splits B_{1010} and C_{0101} , and split C_{0101} reaches BR_{A-D}^C before split B_{1010} finishes executing basic block B

- An early reconvergence opportunity: two splits (B_{0101} and B_{1010}) of the same warp executing the same basic block B
- The early reconvergence point is the program counter of the next instruction of the leading warp split (B_{1010}) .

- Warp split B_{0101} reaches the early reconvergence point B_R
- B_{0101} 's entry in the ST is invalidated
- Pending mask of the reconvergence entry $\mathbf{B}_{\text{R1111}}$ is updated
- The reconvergence entry B_{R1111} moves from the RT to the ST

SIMD Unit Utilization

and Memory Systems Lab.

- Same SIMD unit utilization for SPS, DPS and basic MP: all reconverge at the IPDOM reconvergence points
- Opportunistic rec. opt: an average of 48% and up to 182%

Overall Performance

architecture and Memory Systems Lab.

- Reduced idle cycles (i.e., more warp split instructions per cycle)
- Improved SIMD units' utilization (i.e., more throughput per warp split instructtion).
- MP with opportunistic reconvergece has harmonic mean speedup of:
 - 32% over the SPS model
 - 18.6% over the basic MP
 - 12.5% over DPS models

Conclusions

 Propose a novel mechanism that enables multi-path execution in GPUs. Achieved by two tables:

cture and Memory Systems Lab.

- One tracks the concurrent executable paths upon every branch
- The other tracks the reconvergence points of these branches
- Modify the proposed model to enable opportunistic early reconvergence at run time
- Evaluations show 32% speedup over conventional single-path SIMT execution