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We introduce a generalization of the Heisenberg algebra which is written in terms of a functional of
one generator of the algebra, f(J0), that can be any analytical function. When f is linear with slope
�, we show that the algebra in this case corresponds to q-oscillators for q2 = tan �. The case where
f is a polynomial of order n in J0 corresponds to a n-parameter deformed Heisenberg algebra. The
representations of the algebra, when f is any analytical function, are shown to be obtained through
the study of the stability of the �xed points of f and their composed functions. The case when
f is a quadratic polynomial in J0, the simplest non-linear scheme which is able to create chaotic
behavior, is analyzed in detail and special regions in the parameter space give representations that
cannot be continuously deformed to representations of Heisenberg algebra.

Key-words: q-oscillators; Heisenberg algebra; quantum algebras; non-linearity; chaos; Gauss num-
ber; q-analysis.

1 Introduction

Quantum algebras �rst appeared in the algebraic
Bethe ansatz approach to quantum integrable one-
dimensional models [1]. Since then, there have been
several attempts to apply them in a broad range of
physical phenomena [2].

Associated to the omnipresent harmonic oscillator
there is an algebra known as Heisenberg algebra. The
simple structure of that algebra, described in terms of
creation and annihilation operators, and its particle in-
terpretation promoted it to a paradigmatic tool in the
second quantization approach.

A connection between these two topics appears soon
after the discovery of quantum algebras when it was
found out that a generalization of Heisenberg algebra,
known as q-oscillators, was necessary in order to realize
suq(2) through the Jordan-Schwinger method [3].

Guided, in part, by the wide range of physical appli-
cability of Heisenberg algebra there have been along the
last ten years some e�ort in order to analyze possible
physical relevance of q-oscillators or deformed Heisen-
berg algebras [4]. The expected physical properties of
toy systems described by these generalized Heisenberg
algebras were analyzed and indications on how to solve
an old puzzle in physics were obtained [5].

Recently, it was introduced an algebra, called logis-
tic algebra, that is a generalization of Heisenberg alge-
bra where the eigenvalues of one generator of the alge-

bra (the one that generalizes the number operator) are
given by functional iterations of the logistic function.
This algebra has �nite- and in�nite-dimensional repre-
sentations associated to the cycles of the logistic map
and in�nite-dimensional representations related to the
chaotic band [6], [7].

Using that algebra it was constructed the Hamil-
tonian of a quantum solid whose collective modes of
vibration are described by oscillators satisfying the al-
gebra and it was analyzed the thermodynamic proper-
ties of the model in the two-cycle and a speci�c chaotic
region of the logistic map. It is interesting to mention
that in the chaotic band this model shows a curious hy-
brid behavior mixing classical and quantum behavior
showing how particular quantum systems can present
non-standard quantum behavior [7].

In this paper, a generalization of the logistic algebra
is constructed in such a way that the eigenvalues of one
generator is given by a functional iteration of a starting
number. This functional could be any analytical func-
tion but, in order to study the properties of this algebra
in detail, this function is taken as a polynomial of order
n.

When the functional, f(J0), is linear in J0, where J0
is the Hermitian generator of the algebra, i.e., f(J0) =
r J0 + s, r = q2 is shown to correspond to q-deformed
Heisenberg algebra or q-oscillators. The general case,
f(J0) =

Pn
i=0 riJ

i
0 is a n-parameter deformed Heisen-

berg algebra. This algebra is, therefore, a multipara-
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metric deformation of Heisenberg algebra.
The representation theory is presented in detail

for the linear and quadratic cases since they are the
paradigmatic ones. It is shown that the essential tool
in order to �nd the representations of the algebra is
the analysis of the stability of the �xed points of the
polynomial f and their composed functions.

Related to the cycles of period 1, 2, 4, ... there are
�nite- and in�nite-dimensional representations of the
algebra. The weights of the �nite-dimensional repre-
sentations are given exactly by the lowest values of the
cycles.

In the next section we present the general algebra
and the general representation theory. In section 3 we
analyze the linear case, its representations and its con-
nection to q-oscillators. The non-linear case or two-
parameter deformed Heisenberg algebra is presented in
section 4 where it becomes evident the essential role
played by the analysis of the stability of the �xed points
of the polynomial f and their composed functions in
order to obtain the �nite- and in�nite-dimensional rep-
resentations of the algebra. In section 5 we present our
�nal comments and also introduce a generalization of
su(2) in the sense discussed in this paper.

2 Generalized Heisenberg alge-

bra

Let us consider an algebra generated by J0, J� de-
scribed by the relations

J0 J+ = J+ f(J0); (1)

J� J0 = f(J0) J�; (2)

[J+; J�] = J0 � f(J0); (3)

where J� = Jy+, J
y
0 = J0 and f(J0) is a general analytic

function of J0. The case where f(J0) = r J0 (1 � J0)
was analyzed in refs. [6], [7]. The above algebra rela-
tions are constructed in order that the eigenvalues of

operator J0 are given by an iteration of an initial value
as will be clear in a moment.

Let us now show that the operator

C = J+ J� � J0 = J� J+ � f(J0); (4)

is a Casimir operator of the algebra. Using the alge-
braic relations in eqs. (1-3) it is easy to see that

[C; J0] = [C; J�] = 0; (5)

i.e., C is one Casimir operator of the algebra.

We start now analyzing the representation theory of
the algebra when the function f(J0) is a general ana-
lytic function of J0. In this section we obtain the gen-
eral equations for an n-dimensional representation and
in the next sections we solve these equations for linear
and quadratic polynomials f(J0) �nding out the �nite-
and in�nite-dimensional representations for the linear
and quadratic cases that are the paradigmatic ones.

We assume we have an n-dimensional irreducible
representation of the algebra given in eqs. (1-3). The
Hermitian operator J0 can be diagonalized. Consider
the state j0i with the lowest eigenvalue of J0

J0 j0i = �0 j0i: (6)

For each value of �0 and the parameters of the alge-
bra we have a di�erent vacuum that for simplicity will
be denoted by j0i. Moreover, will be clear in the next
sections, when we shall solve the representation theory
for the linear and quadratic polynomials f(J0), that
the allowed values of �0 depend on the parameters of
the algebra. Since by hypothesis, �0 is the lowest J0
eigenvalue, we must have

J� j0i = 0: (7)

In general we obtain

c

J0 jm� 1i = fm�1(�0) jm� 1i; m = 1; 2; � � � ; (8)

J+ jm� 1i = Nm�1 jmi; (9)

J� jmi = Nm�1 jm� 1i; (10)

d

where N2
m�1 = fm(�0)��0. Note that fm(�0) denotes

the mth iterate of f and

�m � fm(�0) = f(�m�1) (11)

eqs. (8-10) are easily proven by induction. In order to
verify eqs. (8-10) for m = 1, apply eq. (1) on the state

vector j0i obtaining J0 (J+j0i) = f(�0) (J+j0i). Thus,
we de�ne j1i � 1

N0

J+j0i where N0 is a constant to be
determined. It is easy to see that J0j1i = f(�0)j1i.
The constant N0 can be determined by imposing that
the state vector j1i has unit norm and with the use of
eq. (3), we get N2

0 = f(�0) � �0. As the last step of
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this check apply eq. (3) on the state j0i. Using eqs. (6)
and (7) we get J�j1i = N0j0i. Then, eqs. (8-10) are
veri�ed for m = 1.

Now, suppose eqs. (8-10) are valid for m. Apply J0
on eq. (9) and use eq. (1) on the left hand side, this
gives

J0 jmi = fm(�0) jmi: (12)

Applying eq. (1) on the state jmi and using eq. (12) we
are allowed to suppose that there exists a state vector
jm+ 1i such that

jm+ 1i = 1

C(m)
J+jmi ; (13)

where C(m) is a constant. This constant is determined
by imposing that the state vector jm+1i has unit norm

1 = hm + 1jm+ 1i = 1

C(m)2
hmjJ� J+jmi =

=
1

C(m)2
[hmjJ+ J�jmi + hmj(�J0 + f(J0))jmi] =

=
1

C(m)2
�
N2
m�1 � fm(�0) + fm+1(�0)

�
;

which gives C(m)2 = N2
m = fm+1(�0)� �0.

Applying eq. (2) on jmi and using eqs. (9-13) we
obtain the last equation we wanted. Putting everything
together we recover eqs. (8-10) for m 7! m+ 1 and the
proof is complete.

Note that eqs. (8-10) de�ne a general n-dimensional
representation for the algebra in eqs. (1-3). In or-
der to solve it, i.e., to construct the conditions under
which we have �nite- and in�nite-dimensional repre-
sentations we have to specify the functional f(J0). It
is easy to see that if we choose f(J0) = J0 + 1 the al-
gebra given by eqs. (1-3) becomes with this choice the
Heisenberg algebra. We shall see in the next section
that the choice f(J0) = r J0 + s corresponds to a one-
parameter deformed Heisenberg algebra and if we take
a functional with linear and quadratic terms (besides a
constant term) we have a quadratic Heisenberg algebra

or a two-parameter deformed Heisenberg algebra that
will be analyzed in section 4.

Another very interesting observation is that, as
mentioned in the beginning of this section, the alge-
braic relations eqs. (1) and (2) are constructed in such
a way that the eigenvalues of operator J0 are iterations
of an initial value �0 through the function f as shown
in eq. (8). Then, the increasing complexity of function
f will correspond to an increasing complex behavior of
the eigenvalues of J0 [8]. In fact, as already shown in
refs. ([6], [7]) choosing the logistic map for f it could
give rise to a chaotic behavior of the eigenvalue of J0.
Moreover, as will be clear in the next sections, it is
this iteration aspect of the algebra that will allow us
to �nd their representations through the analysis of the
stability of the �xed points of the function f and their
composed functions.

3 The linear case

In this section we are going to �nd the representations
for the algebra de�ned by the relations given in eqs. (1-
3) considering f(J0) = r J0 + s. The algebra relations
can be rewritten for this case as

[J0; J+]r = s J+; (14)

[J0; J�]r�1 = �s

r
J�; (15)

[J+; J�] = (1� r) J0 � s; (16)

where [a; b]r � a b�r b a is the r-deformed commutation
of two operators a and b.

It is very simple to realize that, for r = 1 and s
arbitrary, the above algebra is the Heisenberg algebra
for A, Ay and N where A = J�=

p
s, Ay = J+=

p
s and

N = J0=s. In this case the Casimir operator given in
eq. (4) is null. Then, for general r and s the algebra
de�ned in eqs. (14-16) is a one-parameter Heisenberg
algebra and generally speaking the algebra given in eqs.
(1-3) is a generalization of the Heisenberg algebra.

It is easy to see for the general linear case that

c

fm(�0) = rm �0 + s (rm�1 + rm�2 + � � �+ 1) (17)

= rm�0 + s
rm � 1

r � 1
;

d

thus,
N2
m�1 = fm(�0) � �0 = [m]r N

2
0 (18)

where [m]r � (rm � 1)=(r � 1) is the Gauss number of
m and N2

0 = �0 (r � 1) + s.
Let us search for �nite-dimensional representations

of the linear Heisenberg algebra. Our approach is the
following: we start from the vacuum state j0i and apply
repeatedly the operator J+ arriving, for speci�c values
of �0, r and s, eventually to J+jn � 1i = 0 for a n-
dimensional representation. From eq. (9) we see that
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the set of parameters providing an n-dimensional rep-
resentation, using eq. (18), is computed from

N2
0 = �0 (r � 1) + s > 0 ;

N2
1 = [2]r N

2
0 > 0 ;

� � � (19)

N2
m�2 = [m � 1]r N

2
0 > 0 ;

N2
m�1 = [m]r N

2
0 = 0 :

The solutions for [m]r = 0 are given by r =
exp(2�ik=m) for k = 1; 2; � � � ;m � 1, (k = 0 cor-
responds to Heisenberg algebra that we are not con-
sidering at the moment) but since J0 is taken Her-
mitian, the only interesting �nite dimensional solu-
tion is a two-dimensional (m = 2) representation with
r = �1 and s > 2�0. There is of course a trivial one-
dimensional representation where the weight of the rep-

resentation is the �xed point �0 = �� = s=(1 � r) and
r 2 (�1; 1) [ (1;1). We have also a marginal unin-
teresting one-dimensional solution obtained for r!1
and s=r2 =�nite.

The in�nite-dimensional solutions are more inter-
esting. In this case we must solve the following set of
equations:

N2
m > 0 ; 8m; m = 0; 1; 2; � � � : (20)

Apart from the Heisenberg algebra given by r = 1, the
solutions are

type I : r > 1 and �0 >
s

1� r
or (21)

type II : �1 < r < 1 and �0 <
s

1� r
;

with matrix representations

c

J0 =

0
BBBBB@

�0 0 0 0 : : :
0 �1 0 0 : : :
0 0 �2 0 : : :
0 0 0 �3 : : :
...

...
...

...
. . .

1
CCCCCA
; J+ =

0
BBBBB@

0 0 0 0 : : :
N0 0 0 0 : : :
0 N1 0 0 : : :
0 0 N2 0 : : :
...

...
...

...
. . .

1
CCCCCA
; J� = J

y
+ : (22)

d

Note that for type I solutions the eigenvalues of J0 , as
can be easily computed from eqs. (8) and (11), go to
in�nite as we consider eigenvectors jmi with increasing
value of m. Instead, for type II solutions the eigenval-
ues go to the value s=(1 � r), the �xed point of f , as
the state jmi increase.

The reason for this asymptotic behavior of the
eigenvalues of J0 is simple. It is clear from eqs. (8)
and (11) that the eigenvalues of J0 are given by the
functional iteration of f(�) = r � + s for the starting
number �0. Moreover, the stability of the �xed point
of f(�) is directly related to the asymptotic behavior
of the eigenvalue of J0. If the �xed point of f(�) is
stable (�1 < r < 1) or unstable (r > 1) the eigenval-
ues of J0 go to the �xed point �? = s=(1 � r) or to
in�nite respectively since they are given by iterations
of �0 through the function f . Finally, we mention that
the allowed values of �0 in (21) are purely algebraic
conditions that comes from our choice that the repre-
sentations of the algebra have always a lowest-weight
vector.

The interesting and certainly unexpected connection
we have just analyzed between the in�nite-dimensional
representations of the linear Heisenberg algebra and
the classi�cation of the di�erent types of �xed point
and their stability will become more relevant in the
next section where we shall consider the quadratic case
f(J0) = q J20 + r J0 + s. In this case, even the �nite di-

mensional representations will be connected to the �xed
point analysis through the attractors of f .

It is interesting to note that in eq. (18) we obtained,
considering the linear case, the well-known Gauss num-
ber of m as

N2
m�1

N2
0

=
rm � 1

r � 1
= [m]r : (23)

It is possible to look at the above equation the
other way round and to de�ne a general Gauss num-
ber [m]general for the case of arbitrary f as

[m]general �
N2
m�1

N2
0

=
fm(x)� x

f(x) � x
: (24)

Of course, this de�nition gives

[m]general �! m for f(x) = x+ s ; (25)

[m]general �! [m]r for f(x) = r x+ s :

Finally, it is easy to see that there is a direct rela-
tion between the linear Heisenberg algebra given in eqs.
(14-16) and the standard q-oscillators. In fact, de�ning

J0 = q2N �0 + s [N ]q2 ; (26)

J+
N0

= ay qN=2 ; (27)

J�
N0

= qN=2 a ; (28)
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we see that a, ay and N satisfy the usual q-oscillator relations [3]

c

a ay � q ay a = q�N ; a ay � q�1 ay a = qN ; (29)

[N; a] = �a ;
�
N; ay

�
= ay :

d

Note that, Heisenberg algebra is obtained from (26-28)
for q! 1 and �0 = 0.

4 The non-linear case

In this section we consider the algebra de�ned by eqs.
(1-3) for f(x) = q x2+r x+s 1. In this case the algebra
becomes

[J0; J+]r = q J+ J20 + s J+ ; (30)

[J0; J�]r�1 = �q

r
J20 J� �

s

r
J� ; (31)

[J+; J�] = �q J20 + (1� r) J0 � s : (32)

Of course, for q = 0 we recover the linear (or r-
deformed) Heisenberg algebra given in eqs. (14-16) and
for q = 0 and r = 1 the standard Heisenberg algebra.

We focus now on the analysis of eqs. (6-10), aim-
ing to �nd the �nite- and in�nite-dimensional repre-
sentations of the above quadratic Heisenberg algebra.
Following an observation done at the end of the pre-
vious section we shall �nd the algebra representations
through the analysis and the stability of the �xed points
of f(x) = q x2 + r x+ s and their composed functions.

One clear way to do this is to perform a graphical
analysis of the function f . Let us graph y = f(x) to-
gether with y = x. Where the lines intersect we have
x = y = f(x), so that the intersections are precisely
the �xed points. Now, for a point x0, di�erent from
the �xed point, in order to follow its path through it-
erations with the function f we perform the following
steps

1. move vertically to the graph of f(x),

2. move horizontally to the graph of y = x, and

3. repeat steps 1, 2, etc. (in �gure 1 it is shown
the example of the Heisenberg algebra, where
f(J0) = J0 + 1) .

There are three cases to be analyzed: (I) � < 0,
(II) � = 0 and (III) � > 0, for � = (r � 1)2 � 4 q s.
In the �rst case there is no �xed point and it is easy to
see by a graphical analysis that only q > 0 corresponds
to in�nite-dimensional representations (N2

m 6= 0, 8m,

m 2 Z+) having lowest weight states as desired (see �g-
ure 2(a)). Then, case (I) provides in�nite-dimensional
representations with lowest weight �0 for the value of
the parameters

q > 0 ; (r � 1)2 � 4 q s < 0 and �0 2 < : (33)

In case (II), q > 0 as well and we have one �xed
point given by �? = (1 � r)=2q. This �xed point cor-
responds to a trivial one-dimensional representation of
the algebra for �0 = �? since N0 = 0. Besides this triv-
ial one-dimensional representation we have for case (II)
in�nite-dimensional representations with lowest weight
�0 for the set of parameters (see �gure 2(b))

q > 0 ; (r�1)2�4 q s = 0 and �0 2 (<� 1� r

2q
) :

(34)

Case (III) is less trivial. In this case it is also possi-
ble to have attractors of period 1, 2, 4, � � � and even a
chaotic region in the space of parameters (q, r, s, �0).
Thus, there are regions in this space associated to �nite-
and in�nite-dimensional representations. In what fol-
lows, we analyze completely the cases of attractors of
period 1, 2 and give an example of the chaotic behavior
of the algebra. For shortness, the analysis from now
on will be done only for q > 0; the q < 0 behaviour is
similar, with no conceptually signi�cant di�erence.

We recall that a �xed point �?, where by de�nition
�? is solution of the equation �? = f(�?), is stable
if jf 0 (�?)j is smaller than one and is unstable if it is
greater than one. For case (III) the �xed points are

�?� =
1� r �

p
�

2 q
: (35)

The �xed point �?+ is always unstable and computing
the derivative of f at �?� we have that �?� is stable for
a set of q, r and s such that 0 < � < 4 (we stress again
that this analysis is for q > 0). For this set of (q, r, s)
we must search for the region of �0 that corresponds
to lowest-weight states. It is easy to realize that the
region �?� < �0 < �?+ has to be eliminated since it does
not correspond to a representation with lowest-weight

1Note that the q used in this section has nothing to do with the one of the previous section
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state, i.e., there will always exist an n > 0 such that
�n < �0 if �?� < �0 < �?+.

For the allowed values of �0 corresponding to
in�nite-dimensional representations with lowest-weight
state, i.e., �1 < �0 < �?� and �0 > �?+, there are two
types of asymptotic behaviors for the eigenvalues of J0.
They can go to in�nite or go to the �xed point �?�. In

order to identify these two regions consider the point
f(�?+). There is another point, denominated �m, that
gives f(�?+), i.e., f(�

m) = f(�?+) = �?+, this point is
given by

�m =
�1� r �p

�

2 q
: (36)

It is easy to verify that the set of (q, r, s, �0) such that

c

0 < � < 4 and

�
(a) �1 < �0 < �m or �?+ < �0 <1
(b) �m < �0 < �?�

(37)

d

corresponds to in�nite-dimensional representations
where the asymptotic eigenvalues of J0 in case (a)
go to in�nite and in case (b) go to the asymptotic
value �?�, see �gure 2(c). Moreover, � > 0 and
�0 = �?� or �0 = �?+ correspond to the trivial �nite
one-dimensional representation.

Next step is to consider the set of parameters (q, r,
s, �0) such that the function f(�) = q �2+ r �+ s has
an attractor of period 2. This will permit us to �nd
in�nite-dimensional representations where the asymp-
totic behavior of the eigenvalues of J0 is in�nity or an
attractor of period 2. Moreover, when the weight of the
representation is the lowest value of the attractor there
will be a set of parameters (q, r, s) corresponding to a
2-dimensional representation.

In order to perform that analysis we must study the
�xed points of f2(�) � f(f(�)), i.e., the points �? sat-
isfying �? = f2(�?) that are di�erent from the previous
one-cycle (attractors of period 1). They are

�?� =
�1� r �p

�1

2 q
; (38)

where �1 = �3�2 r+ r2�4 q s. Since the �xed points
of f2, �?�, have the same tangent it is su�cient to ana-
lyze the stabilization region for one of them. It is simple
to see that this region is given by the set (q, r, s) such
that 4 < � < 6. We see that for � = 4 the one-cycle
solution looses stability and starts the stabilization re-
gion for the two-cycle solution. Then, the set of (q, r,
s, �0) such that

c

4 < � < 6 and

�
(c) �1 < �0 < �m or �?+ < �0 <1 ;
(d) �m < �0 < �?� ;

(39)

d

corresponds to in�nite-dimensional representations
where the asymptotic eigenvalues of J0 in case (c) go to
in�nite and in (d) go to the lowest value of the stable
two-cycle attractor with values �?�.

In this case there is also a set of parameters, for
� > 4, corresponding to a 2-dimensional representa-
tion. Note that if we take the weight of the representa-
tion as

�0 = �?� =
�1� r �p

�1

2 q
; (40)

we have a two-dimensional representation with matrix
representation given by

J0 =

�
�?� 0
0 �?+

�
; J+ =

�
0 0
N0 0

�
; J� = J

y
+ ;

(41)
where N0 is computed for � > 4 and �0 given in eq.
(40).

Clearly, for � > 6, we will have other cycles, of
length 4, 8, : : : , 2k : : : , entering then in the chaotic re-
gion and displaying, in the region (�m, �

?
+), exactly the

same scenario the logistic map shows. To give an exam-
ple of the chaotic region one chooses a point in the pa-
rameter space presenting two chaotic bands. This point
corresponds to the numeric values q = 1, r = 2 and
s = �1:543591, see �gure 3. Actually, there is a whole
surface in the parameter space (q; r; s), in which this
point is included, exhibiting these two chaotic bands.
Clearly also, chaos implies in�nite-dimension represen-
tation and, for the example above, the eigenvalues of
J0 belong, mainly, to the �-region limited by the two
chaotic bands showed in �gure 3. The frequency of a
speci�c eigenvalue is given by the relative heigth of the
band at this value. If we call the lowest value of �
of the two bands by �mchaos, the allowed range for the
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lowest weight values of possible representations in this
example is �0 2 (�m; �mchaos).

In the case where q < 0 the whole region outside
the interval (�m; �?+) is not allowed, contrary to the
case q > 0. The lowest �xed point is always unstable,
also contrary to the case of positive values of q, where
the highest �xed point was always unstable. But the
general sequence of attractors and chaotic regions is ex-
actly the same as is well-known. A study of a particular

case of q < 0, the logistic case, was done in [6, 7].

5 Final comments

In this paper we have presented the �rst steps towards
the complete analysis of the algebra described by the
relations in eqs. (1-3). This algebra can be rewritten
for the polynomial f(J0) =

Pn
i=0 aiJ

i
0 as

c

[J0; J+]a1 = a0J+ +
nX
i=2

aiJ+J
i
0 ; (42)

[J0; J�]a�1

1

= �a0
a1
J� �

nX
i=2

ai
a1
J i0J� ; (43)

[J+; J�] = �
nX
i=2

aiJ
i
0 + (1 � a1) J0 � a0 : (44)

d

The linear case, f(J0) = a0 + a1 J0, corresponds to
Heisenberg algebra for a1 = 1 and to a21-deformed
Heisenberg algebra otherwise. The representation the-
ory was shown to be directly related to the stability
analysis of the �xed point of the function f and their
composed functions.

The linear and quadratic cases of f were analyzed
in detail. The �nite-dimensional representations corre-
spond to lowest-weights being the lowest value of the
attractors of period 1, 2, 4, : : : . Moreover, associated
to each attractor there is a parameter region provid-
ing an in�nite-dimensional representation. We expect
that this relation between representations and stability
analysis of the �xed points of f and their composed
functions will be the same for any analytical function
f . In fact, in higher-order polynomials there will be the
possibility to have, simultaneously, more than one at-
tractor, each one with its own basin of attraction in the
parameter space. In spite of this, inside one particular
basin of attraction the scenario is the same as analysed
here in the non-linear case.

It is interesting to mention that there are param-
eter regions corresponding to certain representations
that cannot be smoothly deformed to a representation
of Heisenberg algebra. An obvious example is the so-
called Logistic algebra where f(J0) = r J0(1 � J0) is
chosen as the logistic map for J0. It is clear that this
algebra cannot be deformed to Heisenberg algebra even
if it is a generalization of it in the sense discussed in
this paper.

Last, but not least, we have the feeling that the
approach we have presented in this paper be, in a cer-
tain sense, universal. In this approach we construct the

non-linear generalization of a given undeformed alge-
bra and its representation theory is directly related to
the classi�cation of the �xed points - and their stability
- of a function f (and their composed functions) that
generates the algebra.

In fact, it is possible to construct another iterative
algebra as

J0 J� = J� f(J0); (45)

J+ J0 = f(J0) J+; (46)

[J+; J�] = J0(J0 + 1) � f(J0)(f(J0) + 1) ;(47)

with Casimir

C = J+ J� + f(J0)(f(J0) + 1) = J� J+ + J0(J0 + 1) ;
(48)

where J� = Jy+, J
y
0 = J0 and f(J0) is an analytical

function in J0. Note that if f(J0) is the simplest lin-
ear functional f(J0) = J0 � 1 we obtain the relations
and the Casimir of the su(2) algebra. It is tempting
to investigate, as we did in this paper for the iterative
algebra in eqs. (1-3), the above algebra for more com-
plicated functionals f(J0).
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Figures

Fig. 1: Iterations of �0 for the Heisenberg algebra. The eigenvalues �n increase by a constant factor as n

increases.



10 CBPF-NF-066/00

Fig. 2(a): Iterations of �0 for the case I: � < 0. As it is easily seen, �n goes to in�nity as n ! 1. This

�gure was plotted for the values q = 1, r = �1:5 and s = 2:5.

Fig. 2(b): Iterations of �0 for the case II: � = 0. Also in this case, for � 6= �?, �n goes to in�nity as n!1.

This �gure was plotted for the values q = 1, r = �2 and s = 9=4.
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Fig. 2(c): Iterations of �0 for the case III: 0 < � < 4. �a0 is a starting point belonging to the regions

�0 < �m or �0 > �?+, whose future iterations tend to in�nity; �b0 is a starting point belonging to the region

�m < �0 < �?�, and whose future iterations tend to the �xed point �?�. This �gure was plotted for the values

q = 0:8, r = �4 and s = 6.

Fig. 3: Histogram of the chaotic bands corresponding to the points q = 1, r = and s = �1:543591.


