
A Reconfigurable Platform for Multi-Service Edge Routers

Christoforos Kachris, Stamatis Vassiliadis
Computer Engineering Department

Delft University of Technology
The Netherlands

{kachris, stamatis}@ce.et.tudelft.nl

ABSTRACT
A main feature of current FPGAs is that they can be dynamically
reconfigured to meet the network traffic requirements. In this
paper we present a case study for a multi-service edge router in
which the number of processors and co-processors is dynamically
reconfigured to meet the network traffic workload. The system
targets the Xilinx Virtex4 FPGA platform and uses the
MicroBlaze soft processors for header processing and hardware
acceleration units for payload processing. Furthermore, two
schemes are compared for the reconfiguration of the system. The
first one has fast response time but is prone to network burst
traffic while the second one has slower response time but is more
robust to burst traffic. The performance evaluation shows that the
reconfigurable platform can achieve up to 1.5x speedup compared
to a static system.

Categories and Subject Descriptors
B.7.1. [Types and Design Styles]: Gate Arrays, C.1.3. [Other
Architecture Styles]: Adaptable Architectures, C.2.6.
[Internetworking]: Routers

General Terms
Performance, Design

Keywords
Reconfigurable logic, FPGA, Edge routers

1. INTRODUCTION
The packet’s processing requirements in the current network have
been increased significantly the last years. To face the increased
bandwidth and the processing requirements, more sophisticated
network devices have to be used that are based on application
specific processors and not on general-purpose processors. The
most widely used platforms are the network processors, the
application specific integrated circuits (ASIC) and the Field-
Programmable Gate Arrays (FPGAs) [1]. The network processors
usually accommodate multiple RISC processors that have been
optimized for network processing. The use of processors for the
packet manipulation provides high flexibility but usually has low

performance. The ASICs, on the other hand, use hardwired units
to process the packets, therefore provide high performance but
they lack of flexibility. Furthermore, the development of ASICs
using the current technologies has become very expensive due to
the increased Non-Recurring Engineering (NRE) cost. The
FPGAs provide a promising alternative mainly because they can
provide a fair combination of the flexibility of the network
processors and the performance of an ASIC. The flexibility is
preserved through the use of embedded RISC processors into the
FPGA and the fact that the FPGAs can be reconfigured (similar to
software upgrade) while the performance is preserved using
hardware acceleration units to perform the payload processing.
Furthermore, a major issue in the design of network device is the
power limitations. Network processors use multiple instances of
processors running at high clock frequencies to face the
processing requirements. Hence, the power consumption of theses
devices is usually high. The use of FPGAs can lower the power
consumption since a lot of functions can be implemented in
hardware that is more efficient than software in terms of
performance and power consumption. Moreover, as the size of the
transistors shrink, the static power starts to hold a significant
portion of the total power consumption. Hence, in the future a
major challenge will be how to reduce the static power
consumption. The nature of network traffic is quite dynamic and
unpredictable. In the case of multi-service router each packet
belongs to a specific flow and each flow has different processing
requirements. Some of the flows needs only header processing
while others need also payload processing, such as encryption or
compression. Therefore the utilization of the processors can be
high and the utilization of the hardware accelerators units can be
low in some cases and vice versa. Therefore, the current network
processors are large devices that host many processors and
hardware units in order to face worst case network traffic
resulting in high static power consumption. The use of
dynamically reconfigurable FPGAs can face this problem. Instead
of containing all of the modules for every workload traffic
distribution, a part of the FPGA can be adapted to the optimal
configuration for the specific network traffic which results to
smaller devices, hence to lower static power consumption.
In this paper we present a representative case study in which the
FPGA can be used to adapt to the network traffic. The FPGA
platform can be used in a multi-service edge router. The multi-
service edge routers need to process several packets that may
belong to different flows. Many flows need just forwarding of the
packets. Some other flows need encryption or decryption of the
packets if they belong to secured traffic (such as VPN networks).
And some other packets may need compression or decompression
if they belong to flows of wireless networks. This paper presents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBCCI’07, September 3–6, 2007, Rio de Janeiro, RJ, Brazil.
Copyright 2007 ACM 978-1-59593-816-9/07/0009…$5.00.

how the use of dynamically reconfigurable FPGAs can be
efficiently deployed to implement such as a system that can
provide high performance and low power consumption. The main
contribution of this paper is the following:

• The design of a multi-service edge router in a
reconfigurable logic platform that change the number
of processors and the number and type of co-processors
to meet the network traffic

• The performance evaluation of the reconfigurable
platform using two schemes for the reconfigurable
manager depending on the traffics (burst traffic or
steady traffic)

The paper is organized in the following way. Section 2 presents
the related work in the area of adaptive system for network
processing both for network processors and FPGAs. Section 3
presents the FPGA architecture of the proposed scheme and two
schemes for the implementation of the reconfigurable manager.
Section 4 presents the performance evaluation of the system for
several network traffics and the comparison of the proposed
schemes for the reconfigurable manager. Finally, Section 5
presents the conclusions and the future work.

2. RELATED WORK
In the area of network processors, a case for run-time adaptation
in packet processing systems is presented in [2], implemented
using the Intel network processors. The proposed framework is
used to allocate several micro-engines (simplified processors)
depending on the fluctuation of the network flow. Each micro-
engine is used for separate flow, thus the system is used to
automatically allocate a specific number of processor for each
flow. The number of processors allocated to each flow depends on
some thresholds on the FIFO occupancy of each flow.
In the area of reconfigurable platform, several research papers try
to address the exploitation of dynamic reconfiguration network
processing applications. In [3] [4], a reconfigurable
programmable router has been introduced that is mainly used in
active networks. Active networks are networks in which the
packets are processed by emerging protocols that are either
included into the packet or can be downloaded dynamically into
the router. The system consists of general purpose CPUs and
hardware plug-ins. Each plugin has an SRAM and an SDRAM
interface to communicate with the memory, and a custom
interface to a 32-bit wide ring in order to communicate with the
CPUs and the other plugins. The plugins are dynamically
configured kernel modules used to process the active packets, that
can be downloaded by a trusted server. The system has been
implemented into two FPGAs, one used as the network interface
device and one used as the host of the hardware plug-ins.
In [5], a reconfigurable system called Programmable Protocol
Processing Pipeline (P4) has been introduced. In this case, a set of
FPGAs is used in a pipeline way in order to accelerate the packets
processing. Every device has a FIFO buffer associated with it that
is used to load and store the processed packets. The devices are
connected using a switching array that can include or exclude
processing elements. As an example a Forward Error Correction
(FEC) is used as a protocol processing function. Although, the
FPGAs are able to be reconfigured dynamically, in that paper
there is only the performance evaluation of a static design, and
not of a dynamically reconfigurable device.

In [6], a reconfigurable network coprocessor platform is presented
called DynaCore. In this case a platform mapped into an FPGA is
presented that can accommodate hardware accelerator units. The
platform includes a dispatcher that is used to send the incoming
packets to the hardware acceleration units. The system consists
only of hardware acceleration units, and a connection of the
hardware units with the general purpose processing elements used
for the remaining header processing is not presented.
The design of the reconfigurable controller that must hide the
reconfiguration overhead has also been addresses in many
research papers. In [7], a reconfiguration manager is presented to
hide the reconfiguration latency. The manager applies two
different techniques at run-time: prefetch scheduling and
replacement. In the prefetch scheduling technique, the manager
schedules the reconfiguration based on scheduled sequence of
tasks and their loading latency. Furthermore, they apply an
intertask optimization technique to further decrease the
reconfiguration overhead. In [8] various types of prefetching to
reduce the reconfiguration overhead are also applied for the
configuration manager. They present techniques such as static,
dynamic and hybrid configuration prefetching. Furthermore, the
configuration manager applies relocation and defragmentation
techniques to reduce the dynamic reconfiguration overhead. A
similar approach is presented in the MOLEN framework [9], in
which a polymorphic processor is presented incorporating both
general purpose and custom computing processing. The
reconfiguration is mainly scheduled by the software, in which the
hardware accelerators are pre-loaded in order to decrease the
reconfiguration overhead.
In [10] a framework for reconfigurable computing scheduling is
presented in which the main task is the scheduling of the
reconfigurable units at design time. A similar approach is also
presented in [11][12], in which the optimum scheduling sequence
is investigated based on the task graphs of the applications. In all
of these approaches the scheduler can decide based on the task
graph the sequence of the reconfiguration. On the other hand, in
the area of network processing the workload (network traffic) is
quite dynamic therefore the management of the reconfigurable
units should be performed at run-time. Furthermore, the
scheduling of the reconfigurable units should be simple enough so
there is no much processing overhead. Hence, complicated
algorithm should be avoided that will consume part of the
processing power.

3. RECONFIGURABLE ARCHITECTURE
A typical multi-service edge router has to process packets that
belong to several flows. Each flow can have its own processing
requirements. In our case, we present a case study in which the
router has to process three different flows. The packets that
belong to the first flow are forwarded using a queue scheduling
scheme (Deficit Round Robin - DRR), therefore only some header
processing (IP forward) and some queue management is required
that is performed by the processors. The packets that belong to the
second flow are used in secure connections (such as Virtual
Private Networks - VPN) thus the packets besides header
processing need also payload processing that is performed by
specialized hardware co-processors (DES co-processors). Finally,
the packets that belong to the third flow are used in wireless
connections that need compression to reduce the amount of data.

In this case, a hardware acceleration unit is used to compress the
payload of the data (Lempel-Ziv Compression- LZC).

3.1 System Architecture
The platform has been implemented in the Xilinx Virtex4 FPGA
platform. The processors and the co-processors are attached to a
32-bit wide shared bus (OPB Bus). The architecture of the
reconfigurable platform is shown in Figure 1. The incoming
packets are stored into FIFO_IN and are forwarded to the pool of
the processors. The packets are classified and depending on the
flows that they belong to, they are forwarded to the corresponding
FIFO. If the packets belong to secured connections (such as VPN
network) the packet are forwarded to FIFO_DES in which the
DES co-processors are used to encrypt or decrypt the data. If the
packets belong to a connection with a wireless device, the packets
are forwarded to FIFO_LZC in which the compress units are used
to compress or decompress the packet payload. Finally, if the
packets do not belong to these flows they are just forwarded to
FIFO_OUT after the DRR scheduling and the IP Forwarding
(header modifications, checksum re-calculation, etc). A
Reconfigurable Management Unit (RMU) is used to reconfigure
the platform depending on the network traffic.
The bottleneck of the system varies as the network traffic changes
in the edge router. Figure 2 shows the number of cycles that are
required for each unit (processors, encryption co-processor, and
compressor co-processor) for several flow distributions. As it is
shown, when the majority of the packets need just forwarding
(60%) then the required number of cycles used by the processors
is much more than the required cycle for the co-processors. In
case that the majority of the packets belong to a secure connection
then the required number of cycles from the DES unit is much
more than the cycles for the processors and the compression unit.
The same behavior is also present in the case that the majority of
the packets need compression. Most of the cycles are used by the
compression co-processors.
Therefore, in order to create a balanced system in which all of the
processors and the co-processors are equally utilized depending
on the network flow distribution, an adaptive system is required.
Based on the processing requirements and the processing
capabilities of the modules, three configurations are used as it is
shown in Table 1. The system consists of a static part and a
reconfigurable part. In the static past two processors, and two co-
processors for each payload processing are used. The
reconfigurable part accommodates two of the units (either two
processors, or two DES units or two LZ compression units)
depending on the configuration. The reconfiguration in which the
two co-processors must be replaced by other co-processors is
straightforward. The reconfiguration management unit (RMU)
waits until the processing of the current packets has finished and
then the co-processors are replaced by the new modules. In the
case that the units must be replaced by processors the task is more
complex. The RMU must replace the modules by processors, and
then transfer the program to the local memory of the processor
before it is initialized. The partial reconfiguration file contains the
initialization memory of the internal processor’s memory units
(Block RAMs), hence the total time is just the time to reconfigure
the device plus the time to initialize the processor. The maximum
number of slices of the reconfigurable area is 4438 slices (96 rows
x 7 columns of the FPGA, ¼ of the total area). This area can
accommodate either 2 processors or 2 co-processors. Using the

Xilinx ICAP module for the reconfiguration running at 100MHz
with 32 bit wide bus the reconfiguration time is almost 2.5ms.
The time to initialize the processor is negligible, since no
operating system is used in the processors (network processing
functions mainly do data manipulation, hence no operating system
is required).

Figure 1. Reconfigurable Architecture

Processing time

0

10000

20000

30000

40000

50000

60000

60/20/20 20/60/20 20/20/60

Distribution(Forward/Encrypt/Compress)

cy
cl

es

Processor

DES

LZ-Compr

Figure 2. Bottleneck of the platform for several distributions

Table 1. Configurations

Configuration # of Processors # of DES # of LZC

Config_A 4 2 2

Config_B 2 4 2

Config_C 2 2 4

Reconfiguration 2 2 2

3.2 Reconfigurable Manager
The reconfigurable manager unit (RMU) can be implemented
using two different schemes. The first option is to measure the
distribution of the processed packets. After the classification, each
processor increases a specific counter depending on the flow that
the packet belongs to. These counters can be accessed by the
RMU to decide if it will perform a reconfiguration or not. The

decision is based on these counters. If the percentage of packets
that belong to the specific flow reaches a specific threshold (e.g.
50%) then the RMU reconfigures the platform to accommodate
two more processors or co-processors for the specific flow. This
scheme can provide fast response time to network traffic changes
but is prone to burst traffic that do not last long.
The second scheme performs the reconfiguration based on the
occupancy of the FIFOs. In this case the platform remains in the
same configuration until the occupancy of one of the FIFOs
(FIFO_DES or FIFO_LZC) reaches a certain threshold. Based on
these thresholds the manager selects one of the configurations
from Table 1. In this case, the platform is reconfigured to remove
two units (either two processors or two co-processors of the other
flow) and two co-processors or processors for the specific flow
are added. This scheme has slower response time to network
traffic changes but is more robust to burst traffics that do not last
long as it is shown in the performance evaluation.

4. PERFORMANCE EVALUATION
In order to evaluate the system an initial implementation of the
system using the Xilinx EDK 8.2 platform has been used. Using
the post place and route simulation model we measured the
performance of the system for several configurations.
Table 2 shows the number of cycles that are required by the
MicroBlaze processor for the Deficit Round Robin (DRR)
scheduling (from the the CommBench benchmark [13]) and the IP
forward. Table 3 shows the performance of the hardware
accelerators. The accelerators are modified version from the
Opencores [14]. Table 4 shows the execution time to process 100
packets (the packet size is set to 512 bytes) for several network
flow distributions (Forward/Encrypt/Compress) by the 3
configurations (the bold number shows the minimum execution
time for each traffic distribution). The last configuration is the one
in which the system is performing the reconfiguration. In this
configuration the reconfigurable part cannot be used therefore the
system consists of 2 processors, 2 co-processors for encryption
and 2 co-processors for the compression. As it is shown in the
table in this case the processing time is the maximum of the other
three columns. Therefore, the reconfigurable management unit
(RMU) must perform the reconfiguration in a way that the
reconfiguration overhead can be overcome by the benefit of using
the best configuration in each network traffic distribution.

Table 2. Processor performance for several applications

Processor Performance Cycles

IP Forward 303

DRR2 1105
2DRR for 20 queues

Table 3. Performance of the Co-processors

Module Performance

DES encrypt 400Mbits/sec

LZ compress 320Mbits/sec

Table 4. Processing time (usec) for several configurations

Distribution Config_A Config_B Config_C Reconfiguration

60/20/20 184 356 356 356

20/60/20 311 197 321 321

20/20/60 390 400 212 400

In order to speedup the performance evaluation, we created
simulation models for the processor and the co-processors using
the post place and route simulation results. The program of the
processors is explicit parallel, since each processor performs the
same function for different packets. Hence, the communication
overhead of the parallel processors is negligible. To measure the
speedup of the system compared to a static system, we created 2
types of network traffic. In the first case, the network flow
distribution was remaining the same for a certain amount of time
(network stability). In the second case, we inserted small amount
of packets in which the distribution was different from the current
distribution. That way we could measure the performance of the
system for bursty traffic. Figure 3 shows the speedup of the
system compared to a static system (in which 4 processors and 2
co-processors for each flow are used (Config_A). The speedup is
calculated using the following equation.

DynamicimeExecutionT
StaticimeExecutionT

speedup =

Figure 3a shows the speedup when the network traffic does not
have bursty traffic. Thus, the network flow distribution remains
the same for a certain time (network stability) within some small
fluctuations +-5%. As it is shown in the figure, the RMU that
reconfigures the system using the flow distribution of the packets
is always better than the RMU that used the FIFO occupancy to
perform the reconfiguration. This is due to the fact that the
distribution scheme has better response time, since it can
recognize the network distribution at processing time. When the
network traffic is unstable, (e.g., the network stability is 5 ms)
then the FIFO-based RMU has a worse execution time than a
static system, while the distribution-based RMU is slightly better
than static system. The worse execution time of the FIFO-based
RMU is due to the fact that the system remains in the
reconfiguration state the majority of the time, thus the overall
performance is worse than the static system. When the network
traffic becomes more stable (network stability is 20ms) then both
of the RMUs perform a significant speedup compared with the
static system but still the Distribution-based RMU outperforms
the FIFO-based RMU. Finally, when the network becomes more
stable (200ms) then in this case the two schemes have almost the
same speedup.
On the other hand, when the network traffic becomes unstable
(with bursty traffic) then the FIFO-based RMU is better than the
distribution-based RMU. Figure 3b shows the performance of the
system when the network traffic is stable for a specific time
(network stability) but it is interrupted by fragments of time in
which the distribution change for a while and then returns to the
previous distribution. Figure 3b shows the speedup when 2 spikes
are inserted into the network traffic with 2ms duration.

Speedup comparison

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 20 40 80 100 200

Network Stability (ms)

Sp
ee

du
p

Distribution FIFO

Speedup comparison

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 20 40 80 100 200

Network Stability (ms)

sp
ee

du
p

Distribution FIFO

Figure 3a. Speedup comparison Figure 3b. Speedup comparison in bursty traffic

Figure 4 depicts the comparison of the distribution-based RMU
and the FIFO-based RMU for several numbers of burst spikes. As
it is shown in the case of one spike in every network stability
period the speedup is the same for both schemes. As the number
of spikes increase the FIFO RMU performs better, since it can
absorb the spikes. Therefore, a dynamic system could be used in
which a module could capture the network stability and activate
the appropriate RMU unit. In case that the network stability is
small (less than 10 ms) then the RMU can keep the system to
same configuration to avoid the overhead. In case, that the
network stability is high enough then the system can use either
the Distribution RMU or the FIFO RMU depending on the
number of network spikes.

Speedup comparison in a bursty network

1.15

1.2

1.25

1.3

1.35

1.4

0 1 2

Nymber of spikes

sp
ee

du
p

Distrib.

FIFO

Figure 4. Speedup comparison in bursty network for 20 ms

5. CONCLUSIONS
As it is shown in this paper the use of dynamic reconfiguration in
network devices can significantly improve the performance of the
system by adapting it to the workload. Furthermore, through the
dynamic reconfiguration the system can be implemented in
smaller devices, thus reducing the cost and the static power

consumption of the chip. In addition, two reconfigurable schemes
have been presented that can be used to control the reconfigurable
parts depending on the network features (traffic fluctuation). The
RMU that use the current packet flow distribution has higher
response time and is better for networks that are more stable,
while the RMU that use the FIFO occupancy is better for
networks that have bursty traffic.

6. ACKNOWLEDGMENTS
This work was supported by Sandbridge Technologies Inc.

7. REFERENCES
[1] R. Warden, Design Considerations for Edge Router, Online

article, www.commsdesign.com, 8 May 2002
[2] A. Raghunath, A. Kunze, E. J. Johnson, V. Balakrishnan,

Framework for supporting multi-service edge packet
processing on network processors, in Proceedings of the
ACM First Symposium on Architectures for Networking and
Communications Systems, Princeton, NJ, October, 2005

[3] J. Lockwood, N. Naufel, J. Turner, D. Taylor,
Reprogrammable Network Packet Processing on the Field
Programmable Port Extender (FPX), in Proceeding of the
International Symposium on Field Programmable Gate
Arrays (FPGA’01), Monterey, CA, February 2001

[4] D. Taylor, J. Turner, J. Lockwood, “Dynamic Hardware
Plugins (DHP): Exploiting Reconfigurable Hardware for
High-Performance Programmable Routers,” Computer
Networks, vol. 38, no. 3, pp. 295-310, February 2002

[5] I. Hadzic, W. Marcus, and J. Smith, On-the-fly
Programmable Hardware for Networks, in Proceedings of
the IEEE Global Communications Conference
(GLOBECOM98), Sydney Australia, November 1998

[6] J. Foag, R. Koch, Architecture Conception of a
Reconfigurable Network Coprocessor Platform (DynaCore)
for Flexible Task Offloading, in Proceedings of the
Advanced Networking and Communications Hardware
Workshop (ANCHOR 2004), Munich, June 2004

[7] J. Resano, D. Mozos, F. Catthoor, D. Verkest, A
Reconfiguration Manager for Dynamically Reconfigurable
Hardware, IEEE Design and Test of Computers, Sept.-Oct.
2005, vol. 22, no. 5, pp. 452- 460

[8] Z. Li, S. Hauck, Configuration Prefetching Techniques for
Partial Reconfigurable Coprocessor with Relocation and
Defragmentation, in Proceedings of the Tenth ACM
International Symposium on FPGAs, Monterey, CA , April
2002

[9] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M. Bertels,
G.K. Kuzmanov, E. Moscu Panainte, The Molen
Polymorphic Processor, IEEE Transactions on Computers,
pp. 1363- 1375, November 2004, vol. 53, no. 11

[10] R. Maestre et al., A Framework for Reconfigurable
Computing: Task Scheduling and Context Management,
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 9, no. 6, December 2001

[11] K. Papademetriou, A. Dollas, Performance Evaluation of a
Preloading Model in Dynamically Reconfigurable
Processors, in Proceedings of the IEEE International
Conference on Field Programmable Logic and Applications
(FPL’06), Madrid, Spain, August 2006

[12] K. Papademetriou, A. Dollas, A Task Graph Approach for
Efficient Exploitation of Reconfiguration in Dynamically
Reconfigurable Systems, in Proceedings of the IEEE
Symposium on Field Programmable Custom Computing
Machines (FCCM’06), San Jose, CA, April 2006

[13] T. Wolf, M. Franklin, CommBench-a telecommunications
benchmark for network processors, in Proceedings of the
IEEE International Symposium on Performance Analysis of
Systems and Software, Austin, TX, USA, 2000

[14] Basic DES Crypto Core, OpenCores, www.opencores.com

