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ABSTRACT 
A main feature of current FPGAs is that they can be dynamically 
reconfigured to meet the network traffic requirements. In this 
paper we present a case study for a multi-service edge router in 
which the number of processors and co-processors is dynamically 
reconfigured to meet the network traffic workload. The system 
targets the Xilinx Virtex4 FPGA platform and uses the 
MicroBlaze soft processors for header processing and hardware 
acceleration units for payload processing. Furthermore, two 
schemes are compared for the reconfiguration of the system. The 
first one has fast response time but is prone to network burst 
traffic while the second one has slower response time but is more 
robust to burst traffic. The performance evaluation shows that the 
reconfigurable platform can achieve up to 1.5x speedup compared 
to a static system.  

Categories and Subject Descriptors 
B.7.1. [Types and Design Styles]: Gate Arrays, C.1.3. [Other 
Architecture Styles]: Adaptable Architectures, C.2.6. 
[Internetworking]: Routers 

General Terms 
Performance, Design 

Keywords 
Reconfigurable logic, FPGA, Edge routers 

1. INTRODUCTION 
The packet’s processing requirements in the current network have 
been increased significantly the last years. To face the increased 
bandwidth and the processing requirements, more sophisticated 
network devices have to be used that are based on application 
specific processors and not on general-purpose processors. The 
most widely used platforms are the network processors, the 
application specific integrated circuits (ASIC) and the Field-
Programmable Gate Arrays (FPGAs) [1]. The network processors 
usually accommodate multiple RISC processors that have been 
optimized for network processing. The use of processors for the 
packet manipulation provides high flexibility but usually has low 

performance. The ASICs, on the other hand, use hardwired units 
to process the packets, therefore provide high performance but 
they lack of flexibility. Furthermore, the development of ASICs 
using the current technologies has become very expensive due to 
the increased Non-Recurring Engineering (NRE) cost. The 
FPGAs provide a promising alternative mainly because they can 
provide a fair combination of the flexibility of the network 
processors and the performance of an ASIC. The flexibility is 
preserved through the use of embedded RISC processors into the 
FPGA and the fact that the FPGAs can be reconfigured (similar to 
software upgrade) while the performance is preserved using 
hardware acceleration units to perform the payload processing. 
Furthermore, a major issue in the design of network device is the 
power limitations. Network processors use multiple instances of 
processors running at high clock frequencies to face the 
processing requirements. Hence, the power consumption of theses 
devices is usually high. The use of FPGAs can lower the power 
consumption since a lot of functions can be implemented in 
hardware that is more efficient than software in terms of 
performance and power consumption. Moreover, as the size of the 
transistors shrink, the static power starts to hold a significant 
portion of the total power consumption. Hence, in the future a 
major challenge will be how to reduce the static power 
consumption. The nature of network traffic is quite dynamic and 
unpredictable. In the case of multi-service router each packet 
belongs to a specific flow and each flow has different processing 
requirements. Some of the flows needs only header processing 
while others need also payload processing, such as encryption or 
compression. Therefore the utilization of the processors can be 
high and the utilization of the hardware accelerators units can be 
low in some cases and vice versa. Therefore, the current network 
processors are large devices that host many processors and 
hardware units in order to face worst case network traffic 
resulting in high static power consumption. The use of 
dynamically reconfigurable FPGAs can face this problem. Instead 
of containing all of the modules for every workload traffic 
distribution, a part of the FPGA can be adapted to the optimal 
configuration for the specific network traffic which results to 
smaller devices, hence to lower static power consumption. 
In this paper we present a representative case study in which the 
FPGA can be used to adapt to the network traffic. The FPGA 
platform can be used in a multi-service edge router. The multi-
service edge routers need to process several packets that may 
belong to different flows. Many flows need just forwarding of the 
packets. Some other flows need encryption or decryption of the 
packets if they belong to secured traffic (such as VPN networks). 
And some other packets may need compression or decompression 
if they belong to flows of wireless networks. This paper presents 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SBCCI’07, September 3–6, 2007, Rio de Janeiro, RJ, Brazil. 
Copyright 2007 ACM 978-1-59593-816-9/07/0009…$5.00. 
 



how the use of dynamically reconfigurable FPGAs can be 
efficiently deployed to implement such as a system that can 
provide high performance and low power consumption. The main 
contribution of this paper is the following: 

• The design of a multi-service edge router in a 
reconfigurable logic platform  that change the number 
of processors and the number and type of co-processors 
to meet the network traffic 

• The performance evaluation of the reconfigurable 
platform using two schemes for the reconfigurable 
manager depending on the traffics (burst traffic or 
steady traffic) 

The paper is organized in the following way. Section 2 presents 
the related work in the area of adaptive system for network 
processing both for network processors and FPGAs. Section 3 
presents the FPGA architecture of the proposed scheme and two 
schemes for the implementation of the reconfigurable manager. 
Section 4 presents the performance evaluation of the system for 
several network traffics and the comparison of the proposed 
schemes for the reconfigurable manager. Finally, Section 5 
presents the conclusions and the future work.  

2. RELATED WORK 
In the area of network processors, a case for run-time adaptation 
in packet processing systems is presented in [2], implemented 
using the Intel network processors. The proposed framework is 
used to allocate several micro-engines (simplified processors) 
depending on the fluctuation of the network flow. Each micro-
engine is used for separate flow, thus the system is used to 
automatically allocate a specific number of processor for each 
flow. The number of processors allocated to each flow depends on 
some thresholds on the FIFO occupancy of each flow. 
In the area of reconfigurable platform, several research papers try 
to address the exploitation of dynamic reconfiguration network 
processing applications. In [3] [4], a reconfigurable 
programmable router has been introduced that is mainly used in 
active networks. Active networks are networks in which the 
packets are processed by emerging protocols that are either 
included into the packet or can be downloaded dynamically into 
the router. The system consists of general purpose CPUs and 
hardware plug-ins. Each plugin has an SRAM and an SDRAM 
interface to communicate with the memory, and a custom 
interface to a 32-bit wide ring in order to communicate with the 
CPUs and the other plugins. The plugins are dynamically 
configured kernel modules used to process the active packets, that 
can be downloaded by a trusted server. The system has been 
implemented into two FPGAs, one used as the network interface 
device and one used as the host of the hardware plug-ins.  
In [5], a reconfigurable system called Programmable Protocol 
Processing Pipeline (P4) has been introduced. In this case, a set of 
FPGAs is used in a pipeline way in order to accelerate the packets 
processing. Every device has a FIFO buffer associated with it that 
is used to load and store the processed packets. The devices are 
connected using a switching array that can include or exclude 
processing elements. As an example a Forward Error Correction 
(FEC) is used as a protocol processing function. Although, the 
FPGAs are able to be reconfigured dynamically, in that paper 
there is only the performance evaluation of a static design, and 
not of a dynamically reconfigurable device. 

In [6], a reconfigurable network coprocessor platform is presented 
called DynaCore. In this case a platform mapped into an FPGA is 
presented that can accommodate hardware accelerator units. The 
platform includes a dispatcher that is used to send the incoming 
packets to the hardware acceleration units. The system consists 
only of hardware acceleration units, and a connection of the 
hardware units with the general purpose processing elements used 
for the remaining header processing is not presented.  
The design of the reconfigurable controller that must hide the 
reconfiguration overhead has also been addresses in many 
research papers. In [7], a reconfiguration manager is presented to 
hide the reconfiguration latency. The manager applies two 
different techniques at run-time: prefetch scheduling and 
replacement. In the prefetch scheduling technique, the manager 
schedules the reconfiguration based on scheduled sequence of 
tasks and their loading latency. Furthermore, they apply an 
intertask optimization technique to further decrease the 
reconfiguration overhead. In [8] various types of prefetching to 
reduce the reconfiguration overhead are also applied for the 
configuration manager. They present techniques such as static, 
dynamic and hybrid configuration prefetching. Furthermore, the 
configuration manager applies relocation and defragmentation 
techniques to reduce the dynamic reconfiguration overhead. A 
similar approach is presented in the MOLEN framework [9], in 
which a polymorphic processor is presented incorporating both 
general purpose and custom computing processing. The 
reconfiguration is mainly scheduled by the software, in which the 
hardware accelerators are pre-loaded in order to decrease the 
reconfiguration overhead.  
In [10] a framework for reconfigurable computing scheduling is 
presented in which the main task is the scheduling of the 
reconfigurable units at design time. A similar approach is also 
presented in [11][12], in which the optimum scheduling sequence 
is investigated based on the task graphs of the applications. In all 
of these approaches the scheduler can decide based on the task 
graph the sequence of the reconfiguration. On the other hand, in 
the area of network processing the workload (network traffic) is 
quite dynamic therefore the management of the reconfigurable 
units should be performed at run-time. Furthermore, the 
scheduling of the reconfigurable units should be simple enough so 
there is no much processing overhead. Hence, complicated 
algorithm should be avoided that will consume part of the 
processing power.  

3. RECONFIGURABLE ARCHITECTURE 
A typical multi-service edge router has to process packets that 
belong to several flows. Each flow can have its own processing 
requirements. In our case, we present a case study in which the 
router has to process three different flows. The packets that 
belong to the first flow are forwarded using a queue scheduling 
scheme (Deficit Round Robin - DRR), therefore only some header 
processing (IP forward) and some queue management is required 
that is performed by the processors. The packets that belong to the 
second flow are used in secure connections (such as Virtual 
Private Networks - VPN) thus the packets besides header 
processing need also payload processing that is performed by 
specialized hardware co-processors (DES co-processors). Finally, 
the packets that belong to the third flow are used in wireless 
connections that need compression to reduce the amount of data. 



In this case, a hardware acceleration unit is used to compress the 
payload of the data (Lempel-Ziv Compression- LZC).  

3.1 System Architecture 
The platform has been implemented in the Xilinx Virtex4 FPGA 
platform. The processors and the co-processors are attached to a 
32-bit wide shared bus (OPB Bus). The architecture of the 
reconfigurable platform is shown in Figure 1. The incoming 
packets are stored into FIFO_IN and are forwarded to the pool of 
the processors. The packets are classified and depending on the 
flows that they belong to, they are forwarded to the corresponding 
FIFO. If the packets belong to secured connections (such as VPN 
network) the packet are forwarded to FIFO_DES in which the 
DES co-processors are used to encrypt or decrypt the data. If the 
packets belong to a connection with a wireless device, the packets 
are forwarded to FIFO_LZC in which the compress units are used 
to compress or decompress the packet payload. Finally, if the 
packets do not belong to these flows they are just forwarded to 
FIFO_OUT after the DRR scheduling and the IP Forwarding 
(header modifications, checksum re-calculation, etc). A 
Reconfigurable Management Unit (RMU) is used to reconfigure 
the platform depending on the network traffic.  
The bottleneck of the system varies as the network traffic changes 
in the edge router. Figure 2 shows the number of cycles that are 
required for each unit (processors, encryption co-processor, and 
compressor co-processor) for several flow distributions. As it is 
shown, when the majority of the packets need just forwarding 
(60%) then the required number of cycles used by the processors 
is much more than the required cycle for the co-processors. In 
case that the majority of the packets belong to a secure connection 
then the required number of cycles from the DES unit is much 
more than the cycles for the processors and the compression unit. 
The same behavior is also present in the case that the majority of 
the packets need compression. Most of the cycles are used by the 
compression co-processors. 
Therefore, in order to create a balanced system in which all of the 
processors and the co-processors are equally utilized depending 
on the network flow distribution, an adaptive system is required. 
Based on the processing requirements and the processing 
capabilities of the modules, three configurations are used as it is 
shown in Table 1. The system consists of a static part and a 
reconfigurable part. In the static past two processors, and two co-
processors for each payload processing are used. The 
reconfigurable part accommodates two of the units (either two 
processors, or two DES units or two LZ compression units) 
depending on the configuration. The reconfiguration in which the 
two co-processors must be replaced by other co-processors is 
straightforward. The reconfiguration management unit (RMU) 
waits until the processing of the current packets has finished and 
then the co-processors are replaced by the new modules. In the 
case that the units must be replaced by processors the task is more 
complex. The RMU must replace the modules by processors, and 
then transfer the program to the local memory of the processor 
before it is initialized. The partial reconfiguration file contains the 
initialization memory of the internal processor’s memory units 
(Block RAMs), hence the total time is just the time to reconfigure 
the device plus the time to initialize the processor. The maximum 
number of slices of the reconfigurable area is 4438 slices (96 rows 
x 7 columns of the FPGA, ¼ of the total area). This area can 
accommodate either 2 processors or 2 co-processors. Using the 

Xilinx ICAP module for the reconfiguration running at 100MHz 
with 32 bit wide bus the reconfiguration time is almost 2.5ms. 
The time to initialize the processor is negligible, since no 
operating system is used in the processors (network processing 
functions mainly do data manipulation, hence no operating system 
is required).   

 
Figure 1. Reconfigurable Architecture 
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Figure 2. Bottleneck of the platform for several distributions 

 
Table 1. Configurations 

Configuration # of Processors # of DES # of LZC 

Config_A 4 2 2 

Config_B 2 4 2 

Config_C 2 2 4 

Reconfiguration 2 2 2 

 

3.2 Reconfigurable Manager 
The reconfigurable manager unit (RMU) can be implemented 
using two different schemes. The first option is to measure the 
distribution of the processed packets. After the classification, each 
processor increases a specific counter depending on the flow that 
the packet belongs to. These counters can be accessed by the 
RMU to decide if it will perform a reconfiguration or not. The 



decision is based on these counters. If the percentage of packets 
that belong to the specific flow reaches a specific threshold (e.g. 
50%) then the RMU reconfigures the platform to accommodate 
two more processors or co-processors for the specific flow. This 
scheme can provide fast response time to network traffic changes 
but is prone to burst traffic that do not last long.  
The second scheme performs the reconfiguration based on the 
occupancy of the FIFOs. In this case the platform remains in the 
same configuration until the occupancy of one of the FIFOs 
(FIFO_DES or FIFO_LZC) reaches a certain threshold. Based on 
these thresholds the manager selects one of the configurations 
from Table 1. In this case, the platform is reconfigured to remove 
two units (either two processors or two co-processors of the other 
flow) and two co-processors or processors for the specific flow 
are added. This scheme has slower response time to network 
traffic changes but is more robust to burst traffics that do not last 
long as it is shown in the performance evaluation. 

4. PERFORMANCE EVALUATION 
In order to evaluate the system an initial implementation of the 
system using the Xilinx EDK 8.2 platform has been used. Using 
the post place and route simulation model we measured the 
performance of the system for several configurations.  
Table 2 shows the number of cycles that are required by the 
MicroBlaze processor for the Deficit Round Robin (DRR) 
scheduling (from the the CommBench benchmark [13]) and the IP 
forward. Table 3 shows the performance of the hardware 
accelerators. The accelerators are modified version from the 
Opencores [14].  Table 4 shows the execution time to process 100 
packets (the packet size is set to 512 bytes) for several network 
flow distributions (Forward/Encrypt/Compress) by the 3 
configurations (the bold number shows the minimum execution 
time for each traffic distribution). The last configuration is the one 
in which the system is performing the reconfiguration. In this 
configuration the reconfigurable part cannot be used therefore the 
system consists of 2 processors, 2 co-processors for encryption 
and 2 co-processors for the compression. As it is shown in the 
table in this case the processing time is the maximum of the other 
three columns.  Therefore, the reconfigurable management unit 
(RMU) must perform the reconfiguration in a way that the 
reconfiguration overhead can be overcome by the benefit of using 
the best configuration in each network traffic distribution.  

 
Table 2. Processor performance for several applications 

Processor Performance Cycles 

IP Forward 303 

DRR2 1105 
2DRR for 20 queues 

 

Table 3. Performance of the Co-processors 

Module Performance 

DES encrypt 400Mbits/sec 

LZ compress 320Mbits/sec 

Table 4. Processing time (usec) for several configurations 

Distribution Config_A Config_B Config_C Reconfiguration

60/20/20 184 356 356 356 

20/60/20 311 197 321 321 

20/20/60 390 400 212 400 

 
In order to speedup the performance evaluation, we created 
simulation models for the processor and the co-processors using 
the post place and route simulation results. The program of the 
processors is explicit parallel, since each processor performs the 
same function for different packets. Hence, the communication 
overhead of the parallel processors is negligible.  To measure the 
speedup of the system compared to a static system, we created 2 
types of network traffic. In the first case, the network flow 
distribution was remaining the same for a certain amount of time 
(network stability). In the second case, we inserted small amount 
of packets in which the distribution was different from the current 
distribution. That way we could measure the performance of the 
system for bursty traffic. Figure 3 shows the speedup of the 
system compared to a static system (in which 4 processors and 2 
co-processors for each flow are used (Config_A). The speedup is 
calculated using the following equation. 

DynamicimeExecutionT
StaticimeExecutionT

speedup =  

Figure 3a shows the speedup when the network traffic does not 
have bursty traffic. Thus, the network flow distribution remains 
the same for a certain time (network stability) within some small 
fluctuations +-5%. As it is shown in the figure, the RMU that 
reconfigures the system using the flow distribution of the packets 
is always better than the RMU that used the FIFO occupancy to 
perform the reconfiguration. This is due to the fact that the 
distribution scheme has better response time, since it can 
recognize the network distribution at processing time. When the 
network traffic is unstable, (e.g., the network stability is 5 ms) 
then the FIFO-based RMU has a worse execution time than a 
static system, while the distribution-based RMU is slightly better 
than static system. The worse execution time of the FIFO-based 
RMU is due to the fact that the system remains in the 
reconfiguration state the majority of the time, thus the overall 
performance is worse than the static system. When the network 
traffic becomes more stable (network stability is 20ms) then both 
of the RMUs perform a significant speedup compared with the 
static system but still the Distribution-based RMU outperforms 
the FIFO-based RMU. Finally, when the network becomes more 
stable (200ms) then in this case the two schemes have almost the 
same speedup.  
On the other hand, when the network traffic becomes unstable 
(with bursty traffic) then the FIFO-based RMU is better than the 
distribution-based RMU. Figure 3b shows the performance of the 
system when the network traffic is stable for a specific time 
(network stability) but it is interrupted by fragments of time in 
which the distribution change for a while and then returns to the 
previous distribution. Figure 3b shows the speedup when 2 spikes 
are inserted into the network traffic with 2ms duration.  
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Figure 3a. Speedup comparison Figure 3b. Speedup comparison in bursty traffic 

Figure 4 depicts the comparison of the distribution-based RMU 
and the FIFO-based RMU for several numbers of burst spikes. As 
it is shown in the case of one spike in every network stability 
period the speedup is the same for both schemes. As the number 
of spikes increase the FIFO RMU performs better, since it can 
absorb the spikes. Therefore, a dynamic system could be used in 
which a module could capture the network stability and activate 
the appropriate RMU unit. In case that the network stability is 
small (less than 10 ms) then the RMU can keep the system to 
same configuration to avoid the overhead. In case, that the 
network stability is high enough then the system can use either 
the Distribution RMU or the FIFO RMU depending on the 
number of network spikes. 

 

Speedup comparison in a bursty network
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Figure 4. Speedup comparison in bursty network for 20 ms 

 

5. CONCLUSIONS 
As it is shown in this paper the use of dynamic reconfiguration in 
network devices can significantly improve the performance of the 
system by adapting it to the workload. Furthermore, through the 
dynamic reconfiguration the system can be implemented in 
smaller devices, thus reducing the cost and the static power 

consumption of the chip. In addition, two reconfigurable schemes 
have been presented that can be used to control the reconfigurable 
parts depending on the network features (traffic fluctuation). The 
RMU that use the current packet flow distribution has higher 
response time and is better for networks that are more stable, 
while the RMU that use the FIFO occupancy is better for 
networks that have bursty traffic.  
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