
Convex and Semidefinite
Programming for Approximation

We have seen linear programming based methods to solve
NP-hard problems. One perspective on this is that linear
programming is a meta-method since it allows modeling
of wide variety of problems (via integer programming)
and further linear programs can be solved in polynomial
time.

In mathematical programming, a more general polynomial
time solvable methodology is convex programming
which allows us to solve the following problem:

min f(x),  x 2 S µ Rn

where f(x) is a convex function and S is a convex set



Convex Programs

min f(x),  x 2 S µ Rn

where f(x) is a convex function and S is a convex set
To solve the problem we need to be able to do things

efficiently:
given x, evaluate f(x) in polynomial time
given x, output if x 2 S or not and it is it not then also

output a separating hyper-plane that separates x from S
(one always exists for convex set)

Due to precision issues one cannot get an exact solution
but an additive ε approximation for any desired ε > 0 in
time that grows with log (1/ε)



Convex Programs

One can apply convex programming the same way as
linear programming to obtain a relaxation that can be
solved in polynomial time. Although convex
programming is more general, it is not as widely used as
linear programming in approximation algorithms.

There are several reasons. First, integer programs are
natural and easy to write for NPO problems and their
relaxations turn out to be linear programs. Second, the
duality theory of linear programs helps in understanding
and rounding the relaxation. No general duality theory
exists for convex programming. Third, our mathematical
toolkit is perhaps not sophisticated enough yet!



Semidefinite Programming (SDP)

A special class of convex programs that are more general
than linear programs have made their way into
approximation algorithms starting with the simple but
spectacular result of Goemans and Williamson on
approximating Max-Cut.

The advantage of SDPs is that they provide a natural
modeling language for a certain class of quadratic
programming problems and they are closer to linear
programming in that they have duality theory (although
we haven’t really been able to exploit it like we do with
linear programs).

We will see a few applications of SDP methods for approx.



SDP

SDP is based on the properties of positive semi-definite
matrices:

A n£n real symmetric matrix A is positive semi-definite if
one of the following equivalent conditions holds

1. xt A x ¸ 0 for all x 2 Rn

2. eigen values of A are non-negative
3. A can be written as Wt W for a real matrix W
An important fact from property 1 above is that given two

psd matrices A and B, a A + b B is also psd for a, b ¸ 0
Thus the set of all n£ n psd matrices is a convex set in Rn2



SDP

Thus the set of all n£ n psd matrices is a convex set in Rn2

Let Mn denote the set of n£n real matrices
Given two n£n matrices A and B define
A · B = ∑i,j aij bij

The SDP problem is given by matrices C, D1, D2, .., Dk from
Mn and scalars d1, d2, ..., dk. The variables are given by
a matrix Y

max C · Y
Di · Y = di    1 · i · k
Y < 0
Y 2 Mn



SDP

max C · Y
Di · Y = di    1 · i · k
Y < 0
Y 2 Mn

The constraint Y < 0 is a shorthand to say that Y is
constrained to be psd

We can allow minimization in the objective function and
the equalities in the constraints can be inequalities

The claim is that sdp can be solved in polynomial time



Solvability of SDP

SDP can be solved in polynomial time to an arbitrary
desired accuracy from the fact that it is a special case of
convex programming.

To see this we note that the “actual” variables in sdp are
yij , 1· i · n,  1 · j · n

Note that the objective function and constraints are linear
in these variables

The only complex constraint is that Y < 0
Since the set of all psd matrices in Mn is a convex set, this

simply enforces a constraint that the variables yij belong
to this convex set



Solvability of SDP

To see that SDP can be solved in poly-time the main thing
to see is that we have a separation oracle for the
convex set defining psd matrices.

That is, we need to give a polynomial time algorithm that
given a matrix A 2 Mn checks if A is psd or not and if A
is not psd, it outputs a hyperplane (in Rn2) that
separates the convex set that contains all psd matrices
from A

The algorithm is simple from the characterization of psd
matrices



Solvability of SDP

The algorithm first checks to see if A is symmetric
If not then A is not psd and a separating hyper-plane is the

constraint yij = yji

Then it computes the eigenvalues of A and if they are all
non-negative then A is psd

Otherwise there is an eigen-vector v of A such that
Av = λv and λ < 0 which implies vt A v = λ < 0

and hence the violating hyper-plane is simply vt Y v ¸ 0
(which is valid for all psd matrices by property 1)



Solvability of SDP

Thus the constraint Y < 0 can be thought of as imposing
the following infinite family of linear constraints on the
variables yij

yij = yji  for all i,j
vt Y v ¸ 0  for all v 2 Rn

We can, in essence, separate over the above system in
polynomial time



Solutions of SDP as vectors

Given a solution A to an SDP we can interpret A as a
collection of vectors v1, v2, ..., vn as follows.

From property 3 of psd matrices, there exists W such that
A = Wt W

Let v1, v2, ..., vn be the columns of W
Then it follows that Aij = vi· vj with the usual inner product

between vectors
Thus SDP is equivalent to vector programming defined in

next slide



Vector Programming

In vector programming the “variables” are vectors v1, v2,
..., vn that are allowed to live in any dimension
(although we will restrict them to be in Rn)

The objective function and constraints are linear in the
“actual” variables, namely the inner products vi· vj.

Example:
max (1 - v1· v2 + v2· v3)
s.t
v1· v2 - v2· v3 = 5
v1, v2, v3 2 Rn



SDP and Vector Programming

From the previous discussion it is easy to see that SDP and
vector programming are the same

To implement vector programming via SDP we use
variables yij for vi·vj and constrain Y to be psd

To implement SDP via vector programming we simply use
vi· vj for yij

The advantage of vector programming is that it is useful to
model certain class of combinatorial problems as we will
see.



SDP for Max-Cut

We now give an approximation algorithm for Max-Cut via
SDP methods

Recall that Max-Cut is the problem of partitioning an edge
weighted graph G=(V,E) into two parts (S, V\S) to
maximize  w(δ(S))

Such cut problems are sometime easy to express as
quadratic programs

It turns out that in some cases the relaxation of a
quadratic program to a vector program yields good
(fantastic) relaxations



Quadratic program for Max-Cut

For each i 2 V, we have a variable yi 2 {-1, 1}
yi = -1 implies i 2 S and yi = 1 implies i 2 V\S
Then it is easy to see that Max-Cut is modeled by the

following quadratic program
max ∑ij 2 E wij (1 - yi yj)/2
s.t
yi 2 {-1, 1},  i 2 V
The above constraint is equivalent to
yi· yi = 1



Vector program for Max-Cut

The program
max ∑ij 2 E wij (1 - yi yj)/2
s.t
yi· yi = 1    i \in V
is equivalent to the following vector program where we

constrain the vectors to be in R1. We have a vector vi for
each i 2 V

max ∑ij 2 E wij (1- vi · vj)/2
s.t
vi · vi = 1
vi 2 R1



Vector program for Max-Cut

Since we cannot solve the constrained vector program we
let the vectors lie in any dimension (in particular R^n
since that is equivalent to SDP)

Thus we obtain the following relaxation

max ∑ij 2 E wij (1- vi · vj)/2
s.t
vi · vi = 1
vi 2 Rn

From our previous discussion we can solve above to an
arbitrary precision using SDP



Rounding

Let OPTv be an optimum solution value to the vector
program. Since it is a relaxation, OPTv ¸ OPT

Let the vectors achieving OPTv be v1
*, ..., vn

*

Note that each v*
i is a unit vector in Rn

How do we produce a cut from the vectors and how do we
analyze the quality of the cut?

The algorithm we use is the random hyper-plane algorithm
Equivalently, pick a random unit vector r
Set S = { i | r · v*i > 0 } , V \ S = { i | r · v*

i · 0 }



Analysis

To analyze this we need to understand the probability that
an edge (i,j) is cut in the random hyper-plane algorithm
and the value that (i,j) contributes to OPTv

Let θij be the angle between v*
i and v*

j

Since all vectors are unit vectors, cos(θij) = v*
i · v*

j

Note that the contribution of (i,j) to OPTv is
wij (1 - v*

i · v*
j)/2 = wij(1- cos(θij))/2

What is the probability that (i,j) is cut in the algorithm?
We claim that it is precisely equal to θij/π
See figure



Analysis

Thus the total expected weight of the cut found by the
algorithm, by linearity of expectation, is

∑ij 2 E wij θij/π
A simple claim from elementary calculus
shows that
θ/π ¸ α (1-cos(θ))/2
for all θ 2 [0, π] where
α ' 0.87856 θij

v*
j

v*
i

r



Analysis

Thus the expected weight of the cut is at least α OPTv
which implies an α randomized approx for Max-Cut

A technical issue is how to pick a random unit vector in Rn.
This is not completely obvious or trivial

We do this by picking n independent identical Gaussian
random variables x1, x2, .., xn with 0 mean and std
deviation 1 (with density function et2/2 /sqrt(2π))

We let r = (x1, x2, ..., xn)/||x|| where
||x|| = sqrt(x1

2 + x2
2 + ... + xn

2) is the length of x



Analysis

We let r = (x1, x2, ..., xn)/||x|| where
||x|| = sqrt(x1

2 + x2
2 + ... + xn

2) is the length of x
The reason the above works is because the density

function for the resulting vector is
f(y1, y2, ..., yn) is proportional to e∑i yi2/2

Note that the density function is dependent only on the
length of the vector and hence is centrally symmetric -
all directions are equally likely

Thus normalizing the vector gives a random unit vector



SDP for Graph Coloring

Graph coloring:
Given graph G=(V,E) , color vertices of G using colors from

say {1,2,...,n} such that for every edge (u,v) the colors
of u and v are distinct.

Goal: minimize the number of distinct colors used

χ(G) : chromatic number of G is the min # of colors
needed for G

Thus graph coloring is to find/approximate χ(G)



Hardness of coloring

It is known that coloring is very hard to approximate in general. Unless
P=NP there is no n1-ε approximation for any fixed ε > 0!

The hardness comes from a gap reduction (using PCP technology) that
show that distinguishing graphs with   χ(G) · nε and χ(G) > n1-ε is
NP-hard

However in many cases we are interested in the situation when χ(G) is
small and the above hardness does not directly apply

The following is also known. For all k ¸ k0 for some sufficiently large
constant k0, it is NP-hard to color a graph with χ(G) = k with less
than f(k) colors where f(k) is a polynomial in k. With stronger
assumptions f(k) can be made quasi-poly in k.



3-coloring

The simplest case of interest is when χ(G) = 3
Note that if χ(G) = 2 then G is a bipartite graph and it can

relatively easily be checked whether G is bipartite or not
(how?)

Deciding if χ(G) = 3 is NP-hard, one of the problems in
Karp’s list (the hardness holds even for planar graphs
which can always be 4-colored by the famous 4-color
theorem)

What can we say about hardness of 3-coloring?
What is known is the following. It is NP-hard to decide if
χ(G) = 3 or χ(G) ¸ 5



Coloring 3-colorable graphs and
promise problems

We now consider approximation algorithms that color a
3-colorbale graph with “few” colors

We first observe that the problem we are considering is
somewhat non-standard in the following sense. We
cannot check if a graph is 3-colorable so what does it
mean to color a 3-colorable graph with “few” colors?

Technically, we are working on what is called a promise
problem.  These are problems for which the input is
guaranteed to satisfy some property: the algorithm can
produce garbage if input does not satisfy property



Coloring 3-colorable graphs with
O(n1/2) colors

Any graph G can be colored with Δ(G) + 1 colors where
Δ(G) is the maximum degree (how?)

Another simple observation is the following.
Given a vertex u, let N(u) = { v | uv 2 E } be the

neighbors of u
It is easy to see that χ(G[N(u)]) · χ(G) - 1, that is the

neighbors of u can be colored with χ(G)-1 colors (why?)
Thus if χ(G) = 3 then for every u, G[N(u)] is bipartite and

hence we can check and color them using 2 colors



Coloring 3-colorable graphs with
O(n1/2) colors

Δ(G)+1 coloring is good when Δ(G) is small
Otherwise there is a vertex of large degree but then its neighbors can

be colored using 2 colors
We take advantage of the above two in the following algorithm
Let δ be a parameter that will be fixed later

G’ = G
While (Δ(G’) > δ)
  let v 2 V(G’) be a vertex of degree Δ(G’)
  color N(v) with 2 fresh colors, color v with a fresh color
  remove v and N(v) from G’
endwhile
Color G’ with δ+1 fresh colors



Coloring 3-colorable graphs with
O(n1/2) colors

The total number of colors used is seen to be at most
3t + (δ+1) where t is the number iterations of the while
loop

In each iteration we remove at least (δ+1) vertices and
hence t · n/(δ+1)

Therefore the number of colors used is at most
3n/(δ+1) + (δ+1)
This is minimized when we choose δ = Θ(n1/2). This gives

a coloring with O(n1/2) colors.



SDP for coloring

We now give an algorithm based on SDP that colors a
3-colorable graph with O(Δa log n) colors where
a = log 2/log 3 ' 0.631

This can be plugged into the previous algorithm to
optimize δ and obtain an O(n0.387) coloring

We will then improve the algorithm to color the graph
using O(Δ1/3 (log Δ)1/2 log n) colors which will yield an
O(n1/4 log1/2 n) coloring

The approach generalizes to k-colorable graphs. One can
color them with O(Δ1-2/k (log Δ)1/2log n) colors or
O(n1-3/(k+1) log1/2 n) colors



Vector chromatic number

The vector chromatic number of G is a solution to the
following SDP

min z
vi · vj · z (i,j) 2 E
vi· vi = 1 i 2 V
vi 2 Rn i 2 V

That is, we assign unit vectors to vertices so that for any
edge the inner product is at most z



Vector chromatic number

Claim: The vector chromatic number of a k-colorable graph
is at most -1/(k-1)

To see this, let V1, V2, ..., Vk be the color classes of G
We assign the same k-dimensional vector for each vertex

in Vi as  (β, β, ..., α, ...,β) where the α is in the i’th
position

We set α = - (k-1)1/2/k1/2 and β = 1/(k(k-1))1/2

The k-dimensional vectors can be lifted to n-dimensinoal
vectors by adding zeroes

It is easy to check that these achieve z = -1/(k-1) for SDP



Vector chromatic number

For k = 3, the the three vectors that achieve -1/2 are
simply the three unit vectors in the plane spaced 120
degrees apart

Note that the scheme in the previous slide embedded the
vectors in Rk but the vectors actually live in a k-1
dimensional sub-space since they are all orthogonal to
the vector (1,1,...,1) and that is why for k=3 we can
embed in the plane



Using vector chromatic number

We focus on 3-colorable case
The algorithm first computes a vector chromatic number

for G which we can assume is at most -1/2
Let v1, v2, ..., vn be the vectors from the SDP

We first give an algorithm that colors G using O(Δa log n)
colors where a = log 2/log 3 ' 0.631

Let θij be the angle between vi and vj

It follows that for each edge (i,j),  θij ¸ 2π/3 (120 degrees)



Using vector chromatic number

Let t be a parameter to be chosen later
The algorithm picks t random unit vectors r1, r2, ..., rt
Let sgn(u· v) be -1 if u·v < 0 and 1 otherwise

For each vertex i, we obtain a color as
color(i) = (sgn(vi · r1), sgn(vi · r2), ..., sgn(vi · rt))

Note that the total number of colors used is 2t



Analysis

To understand the algorithm let us analyze the probability
that an edge (i,j) is  not properly colored, that is
color(i) = color(j) (we say the edge is monochromatic)

Since each ri is an independent random unit vector
Pr[color(i) = color(j)] = αt where α is the probability that

sgn(r· vi) = sgn(r · vj) for a random unit vector
Pr[sgn(r· vi) = sgn(r · vj)] = 1 - θij/π
For an edge (i,j) by the SDP, θij/π ¸ 2/3
therefore Pr[color(i) = color(j)] · 1/3t



Analysis

We set t = 2 + log3 Δ
Then an edge (i,j) is monochromatic with probability at

most 1/3t · 1/(9Δ)
Thus the expected number of monochromatic edges is at

most m/(9Δ) · nΔ/(18Δ) · n/18

Suppose we remove all vertices incident to a
monochromatic edge - in expectation we lose at most
2n/18 · n/9 vertices

The graph induced on the remaining n-n/9 vertices is
properly colored!



Analysis

Thus using 2t ' 4 Δa colors we have colored a constant
fraction of the graph (here a = log 2/log 3)

We repeat this log n times to color the entire graph (note
that the vector coloring need not be recomputed, the
same vectors would work)

Note that we need to use a fresh set of 2t colors in each
iteration and hence the total number of colors used is
O(Δa log n)



Analysis

To make this a rigorous argument we need to ensure that
in each iteration we color a constant fraction of the
graph. In the analysis we showed that the number of
vertices incident to a monochromatic edge is in
expectation at most n/9. Thus with probability at least
1/2 it is at most 2n/9.

We can repeat the rounding several times to ensure that
with high probability at most 2n/9 vertices are incident
to a monochromatic edge.

We could also do an overall expectation analysis



An improved algorithm

We now describe an improved algorithm and its analysis
which obtains a coloring using O(Δ1/3 (log Δ)1/2 log n)
colors.

The idea is to to find an independent set of size
Ω(n / (Δ1/3 (log Δ)1/2 )) using the fact that the graph has

vector chromatic number 3. This can be iterated to
obtain the desired coloring.

The algorithm and analysis rely on some useful properties
of projections of vectors on to random lines. We first
review some of these properties.



Properties of Normal Distribution

In the following we use some properties of the normal distribution (or
guassian distribution). The density function of a standard one
dimensional normal distribution with mean µ and variance σ2 is
given by

f(y) = e-(y-µ)2/2σ2/((2π)1/2 σ)
Here we will be concerned only with the simple setting with µ=0 and

σ = 1 in which case the above simplifies to
f(y) = e-y2/2/ (2π)1/2

A basic fact about normal distributions is that the sum of two
independent normal distributed random variables with means µ1
and µ2 and variances σ1

2 and σ2
2 is itself normally distributed with

mean µ1+µ2 and variance σ1
2 + σ2

2



Properties of Normal Distribution

We will be interested in the tail distribution of a basic normal variable
with mean 0 and variance 1.

Define Φ(y) by the following

In other words Φ(y) is the probability that a basic normal variable will
take a value greater than equal to y. A simple lemma that we won’t
prove is the following:

Lemma: For every x > 0, f(x)(1/x - 1/x3) · Φ(x) · f(x)/x



Projections on to “random” vectors

Let v be a unit vector in Rn. Given a random unit vector r
in Rn we are interested in the distribution of the inner
product r·v which is the projection of v in a random
direction.

It turns out that the above projection is somewhat more
messy to analyze. Instead we choose r to be a random
vector (X1, X2, ..., Xn) where the Xi are independent with
a basic normal distribution (mean 0, variance 1). Recall
that we used this with scaling to generate a random unit
vector!

From here on, we will use “random” vector to denote a
vector chosen as above



Projections on to “random” vectors

The advantage of the random vector that we defined is
given by the following.

Lemma: For a unit vector v and a random vector r the
variable r·v has a basic normal distribution

The proof is simple. Note that r·v = ∑i v(i) Xi where v(i) is
the i’th coordinate of v and Xi is a basic normal variable.
Sums of independent normal variables is normally
distributed. The mean of r·v is 0 and variance is ∑i v(i)2.
Since v is a unit vector the variance is 1



Projection based algorithm

Now we describe the algorithm to find a large independent
set. Recall that the vector chromatic number is 3
implying that we have unit vectors v1, v2, ..., vn for the
nodes of the graph such that vi · vj · -1/2 for each edge
(i,j) of the graph

We choose a threshold θ that we will fix later
Algorithm:
Choose a random vector r
S = { i | r· vi ¸ θ }
Obtain independent set S’ µ S by removing one end point

(arbitrarily) of each edge (i,j) in G[S]



Analysis

We wish to lower bound the size of Z = |S’| since that is
the desired independent set size.

Let X = |S| and Y = |E[S]| be random variables for the
number of nodes in S and the number of edges in the
graph G[S]

We observe that Z ¸ max{0, X - Y} since each edge in
G[S] can remove at most one node from S in the
deletion phase (to obtain S’)

Thus Expect[Z] ¸ Expect[X] - Expect[Y]



Analysis

Expect[Z] ¸ Expect[X] - Expect[Y]

Note that Expect[X] = ∑i 2 V Pr[r·vi ¸ θ]
By symmetry, Pr[r· vi ¸ θ] is the same for all vi

Note that r· vi is distributed normally (vi is a unit vector
and r is a random vector) and hence

Pr[r· vi ¸ θ] = Φ(θ)

Thus Expect[X] = n Φ(θ)



Analysis

Now we upper bound Expect[Y]
It is straight forward to see that
Expect[Y] = ∑(i,j) 2 E Pr[i, j both in S]

Pr[i, j both in S] = Pr [r· vi ¸ θ and r· vj ¸ θ]
                       = Pr[r · (vi + vj) ¸ 2 θ]

We know that r· v is normally distributed if v is a unit
vector. In the above (vi+vj) is not a unit vector. So let
u = (vi+vj)/||vi+vj|| be a unit vector in the direction of
vi+vj



Analysis

Let u = (vi+vj)/||vi+vj||
We have ||vi+vj||2 = ||vi||2 + ||vj||2 + 2vi·vj

If (i,j) is an edge then vi· v| · -1/2 which implies that
||vi+vj||2 · 2-1 · 1, hence ||vi+vj|| · 1

Therefore,
Pr[i, j both in S] = Pr [r· vi ¸ θ and r· vj ¸ θ]
                        = Pr[r · (vi + vj) ¸ 2 θ]

    = Pr[r· u ¸ 2θ/||vi+vj||]
                    · Pr[r· u ¸ 2θ]

    · Φ(2θ)



Analysis

Thus,
Expect[Y] = ∑(i,j) 2 E Pr[i,j both in S]

    · m Φ(2θ) · n Δ Φ(2θ)/2
m is the number of edges in G which is at most nΔ/2

Hence
Expect[Z] ¸ Expect[X] - Expect[Y]  ¸ n Φ(θ) - nΔ Φ(2θ)/2

We can choose θ and use properties of Φ to maximize the
above quantity



Analysis

Expect[Z] ¸ Expect[X] - Expect[Y]  ¸ n Φ(θ) - nΔ Φ(2θ)/2

We can choose θ and use properties of Φ to maximize the above
quantity

We have earlier claimed that
f(x)(1/x - 1/x3) · Φ(x) · f(x)/x
where f(x) = e-x2/2/(2π)1/2

Set θ = ((2/3) log Δ)1/2

Then using above inequalities on Φ and some simple algebra we can
show that

n Φ(θ) - nΔ Φ(2θ)/2 = Ω(n/(Δ1/3(log Δ)1/2)



Summary

The projection based algorithm yields in expectation an
independent set of size Ω(n/(Δ1/3(log Δ)1/2)) if the graph
has vector chromatic number 3

We can iterate the algorithm to color the graph using
O(Δ1/3 (log Δ)1/2 log n) colors

Combining this with the greedy approach to removing high
degree vertices gives a coloring using O(n1/4 (log n)1/2)
colors



Gap of vector chromatic number

It is known that there are graphs for which chromatic
number if n0.05 while vector chromatic number is 3!

Thus using vector chromatic number alone, one cannot
hope to obtain better than nε approximation.

It is also known that the analysis we showed is essentially
tight as a function of Δ and k. There are graphs with
vector chromatic number k and chromatic number at
least Δ1-2/k -ε


