
Chem. Anal. (Warsaw), 53, 861 (2008)

Use of the Bayesian Concept for the Calculation of
Characteristic Limits in Radioanalytical Methods

by Slawomir Sterlinski

Central Laboratory for Radiological Protection
ul. Konwaliowa 7, 03-194 Warsaw, Poland

Keywords: Bayesian statistics; Conventional statistics; Modeling of measurements;
Characteristic limits; Decision threshold; Detection limit; Confidence limits;
Radioanalytical methods

Presented are procedures based on modern Bayesian statistics which are used to calculate
characteristic limits, i.e. the decision threshold, detection limit and confidence limit
in radioanalytical methods. Indicated are also the key elements of this statistics which can
be used for measurement of ionizing radiation. The attached example of instrumental
neutron activation analysis provides an illustration of the issues discussed.

Przedstawiono  procedury postêpowania, oparte na nowoczesnej statystyce bayesowskiej,
stosowane do obliczania granic charakterystycznych tzn. progu decyzji, granicy detekcji
i granic ufnoœci w metodach radioanalitycznych.Podano tak¿e podstawowe elementy tej
statystyki w aspekcie jej wykorzystania w pomiarach promieniowania jonizuj¹cego. Za³¹-
czony przyk³ad z instrumentalnej neutronowej analizy aktywacyjnej ilustruje omówione
zagadnienie.
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There has been for some decades a controversial debate between supporters of
conventional and Bayesian statistics. Those readers who would like to get a closer
look at the history and substance of the scientific dispute in this case are referred to
a monograph by Jaynes, an outstanding promoter of Bayesian statistics [1].

An important distinction between both types of statistics lies in a quite different
approach to the concept of probability. The conventional concept of probability
in statistics is associated with the relative frequency of random events. Such a statis-
tics fails in case of systematic effects, non-linear measurement models, values mea-
sured close to detection limits, etc. [1, 2]. An example of inconsistencies occurring
in conventional statistics can also be the Guide which has introduced two different
ways for  uncertainty evaluation (Type A and Type B) [3]..

Probability in Bayesian statistics has a completely different meaning: it reflects
the state of our incomplete knowledge of the measured quantity. This state is a result
of information obtained from measurements as well as that which was available prior
to such measurements (prior information). In other words, this difference can be put
as follows: in conventional statistics we ask what our measurements are supposed to
bring us, whereas in Bayesian statistics our question is rather about how our measure-
ments will add to our knowledge of the measured value. It should be noted here that
information existing prior to a measurement may include the results of any previous
measurement, thus creating a chain of consecutive steps toward the expansion of
available knowledge.

The term of characteristic limits is deemed to refer to the three specific statistics
which are vital to ensuring the quality of measurements (determinations): decision
threshold, detection limit and confidence limits [4–6]. The theoretical framework
and the rules for the calculation of such values for ionizing radiation were developed
in the 1960s, in the pioneering works of Altschuler and Pasternack [7], Nicholson [8],
and Currie [9]. The author of this article addresses the issue of the decision and detec-
tion limits for the measurement of short-lived radioisotopes that are used in neutron
activation analysis [10, 11]. These works are based on conventional statistics: they do
not comprise the entire analytical procedure as the contemporary Guide does [3], and
they relate to the characteristic limits of the signal (counts) from the radiation detector.

In radiological protection, mainly dosimetry [12], as well as in low-activity mea-
surements [13], the idea of Bayesian statistics was already used in the second half of
the last century. The Principle of Maximum Entropy (Information), one of the key
elements of the modern concept of Bayesian statistics, was not applied in the works
of that period.

The Bayesian approach to the calculation of characteristic limits in ionizing radia-
tion metrology was pioneered by Weise and Wöger [14, 15]. Their work helped build
a well-documented mathematical base of this concept for the calculation of measure-
ment uncertainties. The Bayesian concept is now becoming increasingly popular in
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nuclear engineering, including in radioanalytical and radioecological methods. In its
four out of eight parts (parts 5, 6, 7 and 8), the ISO 11929 (2000) standard, which
deals with the calculation of characteristic limits in ionizing radiation measurements,
is based on the methods of Bayesian statistics [4]. An expression of recognition for
the Bayesian concept is also the European Commission’s recommendation which
advises using this standard (part 7) for radiological monitoring of the surroundings of
nuclear facilities [16]. Some reports have recently appeared in the literature of the
subject that efforts are underway to replace conventional statistics in parts 1–4 of the
ISO 11929 standard with a new solution based on Bayesian statistics [6]. Far-reach-
ing changes are also being made to the Guide’s concept [17].

The article is basically meant for practitioners of radioanalytical methods,
although it may also be of use to other professionals in ionizing radiation metrology.
The theoretical considerations of Bayesian statistics are shown to an extent necessary
to understand the concept of characteristic limits. The author hopes that the article
will help avoid mistakes and myths that are still relevant when estimating detection
limits [18], in particular, make a distinction between the decision threshold and the
detection limit and not report negative results (for example, 0.1 ± 0.4 Bq cm–2).

 MEASUREMENT MODELLING

The modern concept of evaluation of measurement result uncertainty (measurand)
is based on the model function, which is also called model equation:

Y = fM(X1, X2, ..., XN)

where Y stands for the output quantity, that is, the measurand, whereas Xi for the
input quantities. This is a model with one output which is adopted in the current
Guide [3]. Knowledge of input quantities, which is incomplete, comes from their
probability density function (PDF). While the PDF has good theoretical foundations,
the process of measurement modeling does not yet have them. There are no clues
about it in the Guide, either. This is, therefore, a task for the researcher/metrologist,
and it depends on his experience and knowledge [19].

Input quantities X1 are assumed to be random variables with values xi (i = 1, 2, ...,
N) as an estimate. Output quantity Y is a random variable with measurement result y
as an estimate Function (1) is required to have only one output value for any set of
input values, with various sets of input values being allowed to form a single output
value. This rule shows that the dependence is true:

y = fM(x1, x2, ..., xN)

(1)

(2)
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In many analytical methods, especially in radioanalytical methods, the model
function is linear or can be considered linear with a good approximation in certain
intervals where after expansion into a Taylor series only terms of the first order are
used. Then the Guide’s rule of uncertainty combination is applied:
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which is called the law of uncertainty propagation (for non-correlated input values).
One should keep in mind, however, that some other procedures should be used to
calculate uncertainties u(y) for non-linear models (1). The issue has been addressed
in a new document attached as a supplement to the Guide [20].

Some applications of Bayesian statistics also use an equation that expresses the
dependence of the effect (signal) on its cause, which is called measurement equation
[19]. The gross signal is typically assigned to input quantity X1, and the equation is as
follows:

x1 = h(y, x2, ..., xN)

Equation (4) can be obtained by transforming equation (2). In more complex
cases, such as non-linear dependences, iterative methods should be applied.

KEY ELEMENTS OF BAYESIAN STATISTICS

Bayesian statistics is based on the theorem of Bayes (1702–1761), which was
re-discovered by Jeffreys in 1938 [1]. Bayes’ theorem grows from the simple prin-
ciple that two random variables A and B remain in the following dependence:

P(AB) = P(A|B)· P(B) = P(B|A) · P(A)

Vertical arrows | indicate conditional distributions. It appears from dependence
(5) that:

P(B)
P(A) · A)|P(B

B)|P(A =

(3)

(4)

(5)

(6)
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In the measurement process, the above probabilities have the following mean-
ings:

P(A) – pre-measurement probability that value of Y actually falls within
interval (η,η+dη) with prior information I being already known,
that is, in a notation using the probability density function for η
it will be P(A) = gy(η|I)dη;

P(B) – probability that the measurement returns (any) data, that is,
P(B) = const.;

P(B|A) – this factor represents the degree of our belief/hope that the measu-
rement will return new data B if event A occurs; it is called data
likelihood and is denominated as L(η|y,I);

P(A|B) – probability that output value of Y actually falls within interval
(η,η+dη) if the measurement return result y.

Following these notes, dependence (6) can be rewritten as follows:

gy(η|y,i) = C · L(η|y,I) · gy(η|I)

Constant C is determined by the normalization of posterior function gY(η|y,I).
Likelihood function L is not a PDF, and is not subject to normalization. Dependence
(7) is often put in a simplified form to leave out I, and then

g(η|y) = C · L(η|y) · g(η)

Likelihood function L turns into a function of the same name in conventional
statistics if this function is symmetrical and g(η) = const.

The goal of further consideration is to use prior and measurement information to
determine posterior probability density function g(η|y), which is also called Baye-
sian probability density function (BPDF). In modern Bayesian statistics, the Prin-
ciple of Maximum Entropy (Information) (PME) is used for this purpose. Derived
from Shannon’s formula, the PME is quite well-known in quantum mechanics and
thermodynamics. For continuous variables, the PME is written as follows:

∫ =⋅−= maxy))dη|ln(g(ηy)|g(ηS

If the measurement returns the amount and variance of measured quantity Y, then
equation (9) can be solved by imposing the following constraints: E(η) = y and
Var(η) = u2(y). So formulated, it is a problem of the calculus of variations, which is
solved by applying the method of Lagrange multipliers [1, 21]. The solution returns
a probability density function that makes the best possible use of prior and measure-
ment information about measured value Y:

(7)

(8)

(9)
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g(η|y) = C · g(η)exp(–(η–y)2/2u2(y))

In radioanalytical methods, Y usually represents analyte concentration and/or iso-
tope radioactivity. For these figures, actual value η cannot be negative, that is, η  ≥ 0
and prior function g(η) = const and posterior function g(η|y) have Gaussian forms.
It should be noted that in the Gaussian term the random variable is η, and the parame-
ter y. Constant C is determined by normalization.

Probability density function g(y|η) for constraint η is needed to calculate the
decision threshold. Such a function can be obtained from equations (6) and (10)) by
means of conformal transformations:

g(y|η) = C · exp(–(y – n)2 / 2u2(η)), ≥ 0

An important feature of formula (11) is uncertainty u(η), which is introduced
here as an approximation of uncertainty u(y). The determination of u2(η) requires
undertaking certain numerical operations that are necessary for calculation of charac-
teristic limits. A natural approach to the said approximation is to use measurement
equation (4). We include signal x1 in equation (3), replace uncertainties u(x1) with
function of x1 (if practicable), and finally use η in place of y [5, 6]. It is recommended
to take the input quantity X1 as the gross counting rate [6].The author of this article is
of the opinion that in radioanalytical methods due to simple model equations the
quantity X1 can be also taken as the net counting rate r0.

In radioanalytical  methods the well-known dependence exists: u(r0) = (r0/t +
rb(1/t +1/tb))

0.5, where t and tb represent the measurement times, respectively, of the
sample and the background, and rb the background counting rate.

If the procedure described above is impracticable, the approximation specified in
the ISO-11929-7 standard could be used [3]. It is assumed that u2(0) and u2(y) are
known and u2(η) is a slowly increasing linear function of η, hence

u2(η) = u2(0) · (1 – η/y) + u2(y) η/y

Formula (11) is a PDF that is totally defined as it does not contain any unknown
parameters. Therefore, its expected value and standard deviation can be calculated,
and not estimated as it is the case in conventional statistics [2].

(10)

(11)

(12)
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CALCULATION OF CHARACTERISTIC LIMITS

As in conventional statistics, the decision threshold and the detection limit are
defined here based on zero hypothesis H0(η = 0) being compared to alternative hypo-
thesis H1(η > 0). In the modern approach to this problem, it is measured value Y
which is decisive. Measurement result y, calculated using model function (2), should
be compared to decision threshold y*. If y ≤ y*, the zero hypothesis is assumed to be
true. If y > y*, it is statistically unreasonable to assume the zero hypothesis, and there-
fore an assertion is made that measured value Y occurs in the sample . The probabi-
lity of this error, called error of the first kind, amounts to:

P(y > y*|η = 0) = α

To calculate decision threshold y*, you must know u2(η) referred to in the pre-
vious paragraph. Placing η = 0, you obtain:

y* = k1–α u(0)

Coefficient k1–α is the quantile of the standard normal distribution for significance
level a. It is usually assumed that α = 0.05 [4–6].

The concept of detection limit relates to actual value η, but not to that of measu-
rement result y (which is quite often confused). We find such characteristic value η,
denominated as η*, to make the following dependence possible:

P(y ≤ y*|η = η*) = β

that is, we define detection limit η* based on decision threshold y* and probability β
of taking a wrong decision or accepting a false null hypothesis. This error is called
error of the second kind. The detection limit is calculated using the following for-
mula:

η* = y* + k1–β u(η∗)

where coefficient k1–β is also the quantile of the standard normal distribution for sig-
nificance level β. It is usually assumed that α = β = 0.05.

A general procedure used to determine the value of η* is the iterative one. if an
approximation for u(η*) can be accepted, which is returned by formula (12), then
detection limit η* is given by formula

η* = a + (a2 + (k2
1–β – k2

1–α) u2(0))1/2

(13)

(14)

(15)

(16)

(17)
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For  α = β,  η* = 2a.
If approximation u2(y) ≅  u2(0) is sufficient, then η* = 2y*, that is, the detection

limit is twice as high as the decision threshold.
The calculation of confidence limits is applicable  when measurement result y is

higher than the decision threshold. In Bayesian statistics, these limits are based on the
BPDF. The BPDF has the form of a cut Gaussian distribution.

Given that g(η) = const and following normalization one obtains the result

g(η|y) = (1/ ωu(y))exp(– (η – y)2/2u2(y)), for η ≥ 0

where ω is a value of the standard normal distribution (SND) for quantile y/u(y). The
calculation of confidence limits is based on the assumption that the actual amount of
measured value η lies with Bayesian probability (1 – γ) between the lower (ηL) and
upper (ηU) limits, and it is a probabilistically symmetric coverage interval, i.e.

P(η < ηL) = P(η > ηU) = γ / 2.

The limits can be found in the relationships:

Following integration and some simple transformations using the dependences
for the SND distribution function F(–t) = 1 – F(t), we arrive at the following equa-
tions:

The quantiles of function F(t) which correspond to probability p and q should be
denominated as kp and kq, respectively, that is, it appears from (20) that:

ηL = y – kp u(y)  and  ηU = y + kq u(y)

(18)

(19)

(20)

(21)
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The Bayesian confidence limits are not symmetric to value y, but we can assume
kp = kq for y > ≈ 4u(y). In addition, the lower confidence limit is always positive,
which results directly from the definition of function g(η|y) in equation (18) and the
definition of this limit (ηL) in equations (19).

In the Bayesian statistics of characteristic limits, the concepts of best estimate
value z and its standard uncertainty u(z) are also used. The best estimate is expected

value η, that is, z = Eη, and the standard uncertainty u(z) = . After perform-
ing some calculations using function (18), you arrive at:

 As you can see, z > y and u(z) < u(y), but you can already assume z = y i u(z) =
u(y) for y > ≈ 4 as well. If this prerequisite is not fulfilled, values z and u(z) should be
included in the measurement report.

SUMMARY

1. The measured value y and its uncertainty u(y) are calculated in accordance
with the Guide’s rules, that is, from model equation (1) and uncertainty com-
bination equation (3). Measurement models with correlated input values are
used in radioanalytical and radioecological methods very rarely. The equa-
tion for the combination of uncertainties in such cases is omitted in the
article, but we can find it elsewhere [3, 5, 6].

2. Subsequently, decision threshold y* is calculated from equation (14). For this
purpose, an expression for u(η) should be found as indicated in equation (11).
Placing η = 0 and assuming  that α usually equals to 0.05 and k1–α to 1.645,
we will find y*. If y ≤ y* ‘not detected’ is reported.

3. Detection limit η* in the methods concerned is usually calculated from equa-
tion (17) using approximation (12). The detection limit is compared to the
standard amount for the measured value and we evaluate whether or not the
method applied is suitable for our task in terms of detectability. The detection
limit cannot be used for ‘not detected’ decisions.

4. Before starting to calculate confidence limits, you must find the y/u(y) ratio.
If this ratio is higher than 4, confidence limits are calculated as in conven-
tional statistics. Otherwise coefficient ω, that is a value of standard normal

(22)

(23)
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distribution F(t) for quantile t = y/u(y) should be obtained. Having ω avail-
able and given that the confidence level is 1 – γ, values p and q are usually
calculated for γ = 0.1 (or 0.05) from equations (20). Quantiles kp and kq can be
read for p and q, respectively, from the statistical tables for F(t). Confidence
limits ηL and ηU are finally calculated from equations (21).

5. We should also calculate best estimate value z and its standard uncertainty
u(z). These values are calculated from equations (22) and (23) and included
in the measurement report.
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Example:

DETERMINATION OF ULTRATRACES OF CESIUM
IN TOBACCO LEAVES (CTA–OTL–1) USING INSTRUMENTAL

EPITHERMAL NEUTRON ACTIVATION ANALYSIS

The selected example concerns a specific situation in which the determination
result is higher than the decision threshold, but lower than the detection limit.
In conventional statistics, some difficulties in evaluating the confidence limits for the
determination result usually arise in such cases.

The analytical procedure involved gamma-spectrometric measurements of long-
lived radioisotopes of 15 elements, including cesium, generated in a stream of neu-
trons in the sample and the attached sets of relevant standards [22].

The model equation of the method is a NAA-typical linear equation:

m
M

M
r

ξc =

where: c – cesium concentration in the sample (in ng g–1), m – sample weight
(in grams), M – standard weight (in ng), r and R – net count rates in the 795.8 keV
peaks in the gamma spectra of the sample and the standard, respectively, ξ – correc-
tion factor for the microgradient of neutrons.

(24)
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Count rates r and R were calculated by adding up counts ai in the channels con-
taining the 795.8 keV peak according to Rogers’ formulae often applied in analytical
gamma-ray spectrometry [23]. These formulae are defined as

A = G – Bg = )ä 2)(ä(n
2
1

a N1
1N

2i i +−−∑ −
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for net area of gamma-ray peak (A) and
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20.25A(A)u N1
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for uncertainty of A. The factor (N–2) is used in Rogers’ formula because channels
1 and N do not contribute counts to the net area. Symbol ä1 means average back-
ground counts in channel 1 obtained from averaging over channels 2 – m to 1 and
symbol äN means average background counts in channel N obtained from averaging
over channels N to N + m – 1. Symbols G and Bg means the gross number of counts
accumulated in N–2 channels (between i = 2 and i = N – 1) and the background
number of counts estimated for the 795.8 keV peak with the use of linear approxima-
tion, respectively.

We assumed N = 11 channels for determination purposes, with channels 1 and 11
containing average counts ä1 and ä11 from three subsequent channels (m = 3). In the so
arranged Rogers’ rule, standard uncertainty for the net counting rate r = A/t in the
795.8 keV peak is calculated using the following formula:

 u2(r) = r / t + 11.25 (ä1 + ä11) / t
2

where t – measurement time of the gamma spectrum of samples (in seconds).
The calculation procedure of standard u2(R) for measurement time T is similar.

(25)

(26)

(27)
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Table 1. Data for the input values in the example

Calculations are performed using the data in Table 1, in the sequence specified
in the Summary.

1. The determined cesium concentration, calculated from formula (24), amounts
to 35.3 ng g–1.

2. Standard uncertainty u(c) is calculated in line with the existing principle of
uncertainty propagation (3). By applying this principle to function (24) we
obtain:

2

2

2

2

2

2

2
r

2

2

2

2

2

M
(M)u

m
(m)u

R
(R)u(r)u(ξ)u

c
(c)u

++++=
ξ

(28)

 Quantity Value Standard 
uncertainty Unit Type of 

uncertainty 

ξ 1.17 0.03 – B 

G 9332 96.0 1 A 

Bg 9018 116.3 1 A 

A 314 151.2 1 A 

ä1 +ä11 2004 25.8 1 A 

t 14400 – s – 

r 0.0218 0.0105 s–1 A 

Sa
m

pl
e 

m 1.0 5 × 10-4 g A 

G 12041 109.7 1 A 

Bg 10094 123.0 1 A 

A 1947 164.8 1 A 

ä1+ä11 2243 27.3 1 A 

T 1800 – S – 

R 1.082 0.0916 s–1 A 

St
an

da
rd

 

M 1500 55 ng A 
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and after substitution of the data from Table 1 we obtain u(c) = 17.7 ng g–1.

3. The calculation of decision threshold c* requires knowledge of u(η = 0). For
this purpose, in formula (28) expression (27) should be substituted for u2(r), and from
the measurement equation, after transformation of model equation (24), we get
r = c · m · R / ξ · M. These substitutions bring an expression for u2(c) in the form:
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Equation (27) is fulfilled for true yet unknown cesium concentration η. By repla-
cing c with η in (27), and then assuming that η = 0, we arrive at:
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mRt
ξM

11.25(0)u 111

2
2 += ⎟
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⎞

⎜
⎝
⎛

After substituting the data from Table 1 and assuming probability α = 0.05 we get
u(0) = 17.0 ng g–1 and decision threshold c* = 1.645 × 17.0 = 27.9 ng g–1.

4. Cesium detection limit η* is calculated using formula (16) by assuming that
α = β = 0.05, that is, kα = kβ = 1.645 and the calculated decision threshold
27.9 ng g–1. For u(η) both the exact formula (27) and the approximation given
by formula (17) were used. Formula (29) allows us to obtain the relationship
between u2(η) and η after inserting the respective data from Table 1 and
replacing c with η:

u2(η) = 0.00919 η2 + 0.1126 η + 288.7

With the use of the above relationship we get the detection limit η* = 57.4 ng g–1.
On the other hand when using the approximation (17) for u2(η) we obtain the detec-
tion limit η* = 57.7 ng g–1. So, in our example   is slowly increasing linear function
of η.

5. Traces of cesium were detected in tobacco sample (c > c*) and the limits of
the confidence interval should be calculated. Since ratio c/u(c) = 35.3/
17.7 = 4, the interval limits are not symmetrical to a cesium determination of
35.3 ng g–1. From table of standard normal distribution F(t) we find for quantile
t = 1.994 the value of ω = F(1.994) = 0.9769. We assume confidence level
1 – γ = 0.95. For these value ω and γ substituted in formulas (20) we obtain
p = 0.9524 and q = 0.9755. From table of the above mentioned function F(t)
we find for probabilities p and q quantiles kp = 1.6690 and kq = 1.9683.
The upper and lower limits of the confidence interval are calculated using
formula (21) by placing determined cesium concentration 35.3 ng g–1, its

(29)

(30)

(31)
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standard uncertainty 17.7 ng g–1 and relevant values of the quantiles. In our
example, the confidence limits amount to 5.7 ng g–1 and 70.1 ng g–1.

From formulae (22) and (23) we obtain for our data z = 36.4 ng g–1 and
u(z) = 16.6 ng g–1.
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