
8.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Dynamic Storage-Allocation Problem

First-fit: Allocate the first hole that is big enough

Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size.

Worst-fit: Allocate the largest hole; must also search entire list.

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

Which is the fastest? Time complexity of first-fit is gradually
increased Next-fit

What is the advantage of worst-fit ?

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Dynamic Storage-Allocation Problem
First Fit

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Dynamic Storage-Allocation Problem
Best Fit

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Dynamic Storage-Allocation Problem
Worst Fit

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Fragmentation

Fragmentation
The main problem of multiple-partition (continuous) allocation.

Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used

External Fragmentation – total memory space exists to satisfy a
request, but it is not contiguous

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Internal Fragmentation

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

External Fragmentation

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

External Fragmentation

Reduce external fragmentation by Coalescing
Combine adjacent free blocks into one large block
Often not enough to reclaim significant amount of memory

Reduce external fragmentation by Compaction
Shuffle memory contents to replace all free memory together in
one large block
Compaction is possible only if relocation is dynamic, and is
done at execution time
In compile time or load time binding scheme, compaction is
impossible.

The necessary for execution time binding
– Or, we say real time address binding

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Coalescing

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Compaction

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Relocation Register revisited

Relocation Register revisited
Hardware support for execution time binding.
The binding management of OS alone severely degrades system
performance.

Mechanism
Compiler compiles the relative address base as zero address.
OS loads process base (beginning) address as the value of
relocation register when each time process is invoked (i.e., just
executed). dynamic loading with dynamic linking
CPU calculates THE instruction by adding instruction address
and relocation register value and fetches into memory

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Where are We?

Where are We?
Multiple partition continuous allocation
Fragmentation and Compaction
Relocation register

Problem still remains
When is the compaction conducted?
Eventually, the address space is overflowed, although
compaction.
But actually, no memory overflow is occurred.
How can it be possible? PAGING

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Paging

Memory management scheme that permits the physical address space
of a process to be non-continuous.

cf. Not all in memory the concept of demand paging in virtual
memory (Chap. 9)

Divide memory space into small chucks.
Concept of paging
Non-continuous scattered across the memory No external
fragmentation.

Do not load all, but load only necessary chucks.
Concept of demand paging in virtual memory

Locality Model
Temporal locality vs. Spatial locality
e.g., loop or array traversal

8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

More about Locality

Temporal Locality
Local variable i, j, temp

Spatial Locality
Continuous change in array index

Usually, temporal and spatial
localities occur together

Loop structure

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Paging

Divide physical memory into fixed-sized blocks called frames (size is
power of 2, between 512 bytes and 8192 bytes)
Divide logical memory into blocks of same size called pages.

Keep track of all free frames
To run a program of size n pages, need to find n free frames and load
program
Set up a page table to translate logical to physical addresses

Page mapped into frame in arbitrary memory location through
page table mapping scheme
Internal fragmentation could be possible, but trivial compared to
external fragmentation.

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Address Translation Scheme

Address generated by CPU is divided into:

Page number (p) – used as an index into a page table
which contains base address of each page in physical
memory

Page offset (d) – combined with base address to define
the physical memory address that is sent to the memory
unit

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Address Translation Architecture

Physical address = frame number * frame size (= page size) + offset

8.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Address Translation Architecture

8.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Paging Example

Logically, continuous
address space

Physically, scattered
address space

8.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Paging Example (4 byte page)

0th page is mapped into 5th frame
by page table

4
bytes
page

5th page
frame

8.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Free Frames

Before allocation After allocation

8.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Implementation of Page Table

Page table is kept in main memory

Page-table base register (PTBR) points to the page table

TBL architecture

8.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Implementation of Page Table

Disadvantage of Page Table scheme
In this scheme, every data/instruction access requires two
memory accesses.

One for the page table and one for the data/instruction.

The two memory access problem can be solved by the use of
a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

8.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Associative Memory (TLB)

Associative memory – parallel search
Physical feature: SRAM in CPU (similar to D-cache)

Address translation (A´, A´´)
If A´ is in associative register (i.e., TLB), get frame # out
Otherwise get frame # from page table in memory

Page # Frame #

8.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Paging Hardware With TLB

In
parallel

8.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Effective Access Time

Associative Lookup = ε time unit
Assume memory access time is 1 microsecond
Hit ratio – percentage of times that a page number is found in the
associative registers; ratio is related to the number of associative
table entry
Hit ratio = α

Effective Access Time (EAT)
EAT = (ε +1) α + (ε+2)(1 – α)

= 2 + ε – α

In this equation, TLB and Page Table is sequentially accessed

8.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Memory Protection

Memory access operation protection
Memory protection can be implemented by associating protection bit
with each frame
We can add protection bit into each page to indicate read-only or
read-write or other information

8.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Memory Protection

Memory access address protection
To check memory address violation, one additional bit Valid-invalid
bit is attached to each entry in the page table
“valid” indicates that the associated page is in the process’ logical
address space, and is thus a legal page
“invalid” indicates that the page is not in the process’ logical address
space

non-continuous & all in memory : next slide example
non-continuous & not all in memory : Chap 9

8.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Valid (v) or Invalid (i) Bit In A Page Table

e.g.,
The system with 14bit address
space and 2KB page size.

16K address space, so 8 entry
page table (fixed length of page
table)

We have a program that should
use only addresses 0 to 10,468.

Then, 0~5 entry is valid and 6~7
entry is in valid

Problem still remains. Address
space between 10468~12287?
i.e., Internal fragmentation of
paging

