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Introduction

In Macroecology, Brown (, ) defi ned this emerging fi eld as “a way of 
studying relationships between organisms and their environment that in-
volves characterizing and explaining statistical patterns of abundance, dis-
tribution, and diversity.” It is a relatively new and fundamentally diff erent 
approach to ecology that centers on large- scale phenomena. Macroecology 
grew partly out of the recognition that the results of short- term, small- scale 
experiments could not be extrapolated readily to larger scales (see Rough-
garden, Gaines, and Possingham , and Wares and Cunningham  
for examples in the marine realm). It also explores the intriguing and oft en 
puzzling relationships between community structure and the ecogeographic 
properties of species that had simply never been seriously examined. Estab-
lished as both an unabashedly empirical and inductive discipline, the scaling 
relationships that emerged in macroecology have contributed signifi cantly 
to the development of a synthetic metabolic theory of ecology, a conceptual 
framework that has the potential to unify ecology across multiple levels of 
organization (Brown et al. ).

Most macroecological analyses have focused on terrestrial systems be-
cause large databases on geographic ranges of species, body size, abundance, 
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diversity, and relevant environmental variables were already available for 
regional and oft en global spatial scales. Much less is known about marine 
macroecology, a shortcoming that this volume is intended to remedy. Least 
well known is the deep sea. Ecological investigation in the deep sea began 
only forty years ago (Sanders, Hessler, and Hampson ). Its vast size and 
extreme environment make exploration technically diffi  cult and expensive. 
Macroecology would seem to provide a useful and practical perspective for 
understanding the structure and function of deep- sea ecosystems. Small-
 scale manipulative experiments conducted on annual time scales in the deep 
sea have provided important insights into the causes of local species coexis-
tence (Snelgrove and Smith ). However, it is now clear that community 
structure varies on local, regional, and global spatial scales, and on temporal 
scales ranging from annual to cycles of orbital forcing (Stuart, Rex, and Etter 
). Local diversity is aff ected by oceanographic processes that operate 
on very large scales in both surface and benthic environments (Levin et al. 
). With present technology, it seems unlikely that experiments could be 
deployed on geographic and temporal scales suffi  ciently large to capture the 
full range of factors that regulate deep- sea benthic diversity. A comparative 
approach like macroecology seems promising both to integrate our present 
understanding and to shape an agenda for future research. Ultimately, ex-
periments will be necessary to test inferences from macroecological studies, 
but large- scale comparative studies will help identify and limit the range of 
hypotheses that need to be tested experimentally (Brown , Menge et al. 
).

In this chapter, we present the basic macroecological features of the 
deep- sea fauna, including geographic variation in standing stock, species 
diversity, species ranges, and body size. We also explore the relationships 
among body size, diversity, and abundance, and between body size and met-
abolic rate. Whenever possible, we compare these trends to those found in 
other ecosystems. We concentrate on the deep North Atlantic Ocean, which 
is by far the most intensively sampled region of the World Ocean. We em-
phasize communities that inhabit the soft - sediment habitats covering most 
of the seafl oor. An excellent summary of biogeographic patterns in deep-
 sea chemosynthetic habitats is provided by Van Dover (). Many of our 
case studies involve mollusks, because their taxonomy and biogeography are 
relatively well known, owing to the extensive published work of Philippe 
Bouchet, Anders Warén, John Allen, Howard Sanders, and their colleagues. 
While the data are limited and geographically restricted, they begin to pro-
vide a macroecological context for studying deep- sea assemblages.



PATTERNS IN DEEP- SEA MACROECOLOGY 67

Standing Stock

The pattern of standing stock with depth is the most well- established feature 
of community structure in the deep- sea benthos. The biomass and abun-
dance of the macrofauna in the western North Atlantic are shown in fi gure 
.. Both decrease exponentially by two to three orders of magnitude from 
the continental shelf to the abyssal plain. Abyssal macrobenthic standing 
stock is extremely low (s– s individuals m–  and < g m–). Bathymetric 
decreases in standing stock also occur in bacteria (Deming and Yager ; 
Aller, Aller, and Green ), the meiofauna (Soltwedel ), invertebrate 
megafauna (Lampitt, Billett, and Rice ) and demersal fi shes (Haedrich 
and Rowe ).

The primary source of food for the benthos is sinking phytodetritus aug-
mented by the sporadic occurrence of sinking plant and animal remains. 
Food availability decreases with increasing distance from productive coastal 
waters and terrestrial runoff , and because of remineralization during descent 
through a progressively deeper water column. Thus, the decline in standing 
stock is driven by the decrease in the rate of organic carbon input with in-
creasing depth and distance from land. The entire process of surface- benthic 
coupling is complicated and incompletely understood. It involves the biotic 
and abiotic factors aff ecting surface production, the export of organic mate-
rial to the deep ocean, horizontal dispersal by currents in the water column, 
transformation during sinking, and redistribution within the benthic com-
munity. Despite this complexity, deep- sea macrobenthic standing stock can 
be accurately predicted by estimates of organic carbon fl ux at depths deter-
mined from satellite imagery of overhead surface production and empirical 
models of downward fl ux (Johnson et al. ).

Rowe () fi rst showed that the exponential decrease in standing stock 
is a global phenomenon. Subsequently, it has become clearer that the pattern 
is modulated in a predictable way by unusual circumstances of food avail-
ability at depth. For example, elevated standing stock is caused by organic 
carbon loading associated with proximity to oxygen minimum zones (Levin 
and Gage ), lateral advection and deposition (Blake and Hilbig ), 
upwelling systems (Sanders ), exposure of reactive sediments or depo-
sition of sediments by strong bottom currents (Aller ), or where topog-
raphy concentrates food in canyons (Vetter and Dayton ) or trenches 
(Gambi, Vanreusel, and Danovaro ). By contrast, depressed standing 
stock is found in oligotrophic ocean basins such as the Arctic Sea (Kröncke 
et al. ) and the Mediterranean Sea (Tselepides et al. ). Overall, how-
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ever, as we show in our discussion of body size with a new global analysis 
of abundance in the macrofauna and meiofauna, there is a strong and clear 
tendency for standing stock to decrease with depth and distance from land 
when geography is statistically controlled. Benthic standing stock appears 
to be the best available correlate of food availability in the deep sea (Smith 
et al. ), and arguably represents the single most signifi cant environmen-
tal gradient aff ecting geographic patterns of biodiversity and evolutionary 
potential of the deep- sea benthos.

Figure 3.1 Standing stock of macrobenthos with depth in the deep western North Atlan-
tic. Data are from Sanders, Hessler, and Hampson (); Rowe, Polloni, and Horner (); 
Smith (); Rowe, Polloni, and Haedrich (); Maciolek et al. (b).
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Patterns of Species Diversity

The quantitative study of community structure in the deep- sea benthos 
began with Hessler and Sanders’ () momentous discovery that spe-
cies diversity is surprisingly high. It had been assumed for a century before 
that the deep- sea fauna was depauperate, and prior to then that the great 
depths were essentially sterile. Sanders (), in his infl uential comparative 
study of marine benthic diversity, showed that bathyal diversity exceeded 
coastal diversity in the temperate zone and approached shallow- water tropi-
cal diversity. The development and deployment of more eff ective sampling 
gear (Hessler and Jumars ) has indicated that diversity is probably even 
higher than Sanders estimated (Grassle and Maciolek ). Given the brief 
period of exploration, the enormous size of the environment, and the diffi  -
culty of sampling, it is not surprising that our knowledge of ecology and bio-
geography in the deep sea remains far behind that for terrestrial and coastal 
systems. All the same, Hessler and Sanders’ discovery has inspired remark-
ably rapid progress, and a picture of diversity in time and space is beginning 
to take shape. In this section we summarize patterns of diversity on local, re-
gional, and global scales.

On relatively small scales, the number of species coexisting in the deep 
sea is surprisingly high, exceeding  macrofaunal species m–  at bathyal 
depths in the western North Atlantic (Etter and Mullineaux ; Levin et al. 
). Despite recent controversy (Gray , , Gray et al. ), di-
versity is considerably higher than in nearby shallow- water communities. 
While true that some deep- sea communities (e.g., western North Atlan-
tic) are less diverse than some shallow- water communities elsewhere in the 
world (e.g., Australia), it is not clear what this means or how it will help us to 
identify the ecological and evolutionary forces that regulate diversity. When 
comparisons are controlled for spatial scale, geography, taxonomy, sampling 
methods, and habitat, the number of species coexisting at small scales in the 
deep sea is considerably higher than in shallow- water communities (Etter 
and Mullineaux , Levin et al. ).

The greater diversity in what appears to be a more homogeneous envi-
ronment has long perplexed marine ecologists (Sanders ; Gage ; 
Gray ) and remains a major theoretical challenge. Numerous hypoth-
eses have been proposed, including competition, facilitation, predation, dis-
turbance, productivity, environmental heterogeneity, and patch dynamics 
(reviewed in Etter and Mullineaux , Levin et al. , and Snelgrove and 
Smith ). Existing experimental and comparative evidence suggest that 
no single factor is responsible. Diversity within local deep- sea assemblages is 
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apt to refl ect a complex dynamical process that integrates a number of inter-
dependent forces operating at diff erent space and time scales and changing 
in relative importance along various environmental gradients.

Much of our understanding of the patterns and potential causes of deep-
 sea biodiversity comes from regional- scale sampling studies, particularly 
along bathymetric gradients (Levin et al. ). Sanders () showed that 
local species diversity of bivalve mollusks and polychaete worms increased 
from the continental shelf to lower bathyal depths in the western North At-
lantic. When the analysis was extended to abyssal depths and more taxa, the 
overall diversity- depth trend appeared to be unimodal; diversity increased 
to a peak in the mid- to lower- bathyal zone, and then decreased in the abyss 
(Rex , , ). These early studies relied on estimating diversity from 
qualitative samples by normalizing the number of species to a common 
number of individuals with rarefaction, a numerical method to resample 
the relative abundance distribution devised by Sanders () and formal-
ized statistically by Hurlbert (). Recent intensive quantitative sampling 
with precision box corers confi rmed Sanders’ fi nding that diversity increases 
with depth below the continental shelf (Etter and Mullineaux ; Levin 
et al. ), and suggest that peak diversity of the whole macrofaunal as-
semblage occurred at around ,– , m on the continental slope (Etter 
and Grassle ). The depth of maximum diversity may depend on the taxa 
considered, species’ ranges and dispersion patterns, and the spatial scales 
covered by diff erent sampling gears (Stuart, Rex, and Etter ). However, 
the general unimodel shape of diversity- depth patterns seems to be typical 
in the western North Atlantic. No other region of the World Ocean has been 
sampled so intensively. Polychaetes, the most abundant and diverse macro-
faunal taxon, show unimodal diversity- depth patterns in the eastern North 
Atlantic (Paterson and Lambshead ) and in the eastern equatorial At-
lantic (Cosson- Sarradin et al. ). But limited data on other taxa and geo-
graphic regions suggest that unimodal patterns may not be universal; and 
moreover, that the causes of known unimodal patterns may vary geographi-
cally (Rex, Etter, and Stuart ; Flach and deBruin ; Gage et al. ; 
Stuart, Rex, and Etter ).

Studies of bathymetric diversity trends have centered on variation in alpha 
(sample) diversity within basins. Here, we present a diff erent approach, based 
on species ranges, and extend the analysis to much larger spatial scales that 
include eastern and western corridors of the North Atlantic. Figure . shows 
depth ranges of all protobranch bivalve mollusks collected by the Woods 
Hole Oceanographic Institution’s Benthic Sampling Program (Sanders ) 
from sampling transects in the North American and West European Basins 



Figure 3.2 Depth ranges of protobranch bivalves from the eastern and western North Atlan-
tic. Data are from Allen and Sanders (). Subspecies are combined. Where ranges do not 
overlap between the eastern and western North Atlantic, the distributions are connected with 
a thin line. Depth locations of samples on which the ranges are based are given at the top of 
the fi gure (ticks represent individual samples, and numbers represent multiple samples that 
are located close together). The number of coexisting species in , m depth intervals is in-
dicated at the bottom. The species and their depth ranges (western and eastern North Atlantic 
respectively) are given in Appendix A.
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(Allen and Sanders ). All of the material was collected with epibenthic 
sleds (Hessler and Sanders ). The depth distribution of samples in both 
basins is indicated at the top of fi gure .. While sampling is not perfectly 
equable between the eastern and western North Atlantic, both transects ex-
tend from upper bathyal to abyssal depths, represent all major seafl oor phys-
iographic features, and include a similar number of samples (thirty- fi ve west, 
twenty- eight east). Species accumulation curves suggest that the faunas are 
reasonably well characterized, and that the eastern fauna is somewhat more 
diverse over much of the depth range (Allen and Sanders ).

The unimodal diversity- depth pattern discussed previously for alpha di-
versity of individual samples is also apparent when the number of coexist-
ing species ranges is summed over , m depth intervals (fi g. ., bot-
tom panel). Diversity peaks in the ,– , m region and is depressed at 
upper bathyal and abyssal depths. Eastern and western faunas show similar 
diversity- depth patterns.

Figure . reveals a high rate of faunal turnover, or β- diversity, along the 
depth gradient. High rates of zonation are also common in the megafauna 
(Haedrich, Rowe, and Polloni ; Hecker ; Howell, Billett and Tyler 
), macrofauna as a whole (Rowe, Polloni, and Haedrich ; Blake 
and Grassle ; Gage et al. ) and meiofauna (Coull ). A surpris-
ingly high proportion of protobranch species (twenty- four out of fi ft y- six, 
or  percent) are shared between the eastern and western North Atlantic 
(fi g. .). Even more remarkable, twenty- one of the shared species ( per-
cent) have depth ranges that overlap between basins. Only three of these 
species (connected by thin lines, fi gure .) have disjunct depth ranges, and 
even so, occur in the same basic physiographic feature and are separated by 
<, m. As Sanders and Hessler () conjectured, based on fewer data, 
some basic features of faunal zones within basins appear to extend as bands 
around the North Atlantic, at least in protobranchs. This large- scale faunal 
redundancy has important implications for projecting global biodiversity in 
the deep- sea benthos, and suggests that diversity might be lower than the 
,, species projected by Grassle and Maciolek ().

Allen and Sanders () showed that deeper- dwelling protobranch spe-
cies tend to be more cosmopolitan, as is borne out in fi gure . for the North 
Atlantic. The proportion of species that occur in both eastern and western 
basins increases from  percent at upper bathyal depths (– , m) to 
 percent at lower bathyal depths (,– , m) to  percent in the abyss 
(>, m). Rex et al. () pointed out that within- basin abyssal endemism 
in mollusks appeared to be low. On a between- basin scale it appears to be 
even lower. For example, Ledella aberrata would appear to be an abyssal en-
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demic in the eastern North Atlantic (see Appendix A), but has a lower bathyal 
distribution in the western North Atlantic. Malletia polita is another case of 
an apparent eastern North Atlantic abyssal endemic that occurs at bathyal 
and abyssal depths in the western North Atlantic (Allen and Sanders ; 
Allen, Sanders, and Hannah ). Two other apparent western North At-
lantic abyssal endemics, Silicula macalisteri and Yoldiella similiris are known 
from upper bathyal sites in western South Atlantic (Allen and Sanders ; 
Allen, Sanders, and Hannah ). Of the other abyssal endemic species that 
are described, only one Ledella galathea, is known exclusively from abyssal 
depths (the West European Basin and off  West Africa; Allen and Hannah 
). Three undescribed unique species (Ledella sp., Spinula sp., and Tin-
dariopsis sp.) are also potential candidates for true abyssal endemics (J. Allen, 
personal communication). A conspicuous feature of fi gure . is that the vast 
majority of species with abyssal distributions ( percent;  percent if we 
exclude S. mcalisteri and Y. similiris as discussed previously) are range exten-
sions of bathyal species. This has important implications for the causes of di-
versity discussed in the following.

Variation in species diversity and composition also occurs on oceanwide 
interbasin scales in the Atlantic (Allen and Sanders ; Wilson ). 
There is some indication of latitudinal gradients of diversity in the deep- sea 
fauna, though this is based on much less sampling than in terrestrial and 
coastal systems (Roy, Jablonski, and Valentine , ; Hawkins, Porter, 
and Dinîz- Filho ; Hillebrand a, b, Witman, Etter, and Smith 
). Rex et al. (; Rex, Stuart, and Coyne ) found poleward de-
creases in the diversity for gastropods, bivalves, and isopods in the North 
Atlantic and Norwegian Sea. The South Atlantic is more poorly sampled. It 
shows strong regional variation in diversity, and a weak latitudinal signal for 
mollusks, but not isopods (Rex et al. ). Gage et al. () found pole-
ward declines in the diversity of deep- sea cumaceans for the entire Atlantic 
(a signifi cant parabolic regression with a peak at tropical latitudes). The east-
ern corridor of the North Atlantic showed a signifi cant latitudinal gradient, 
but the western corridor did not, suggesting strong interbasin diff erences 
and mixed evidence for a simple consistent hemisphere- wide latitudinal gra-
dient. Among the meiofauna, deep- sea foraminiferans show latitudinal gra-
dients in the North and South Atlantic (Culver and Buzas ). Nematodes 
do not show a clear monotonic poleward decline (c.f. Lambshead et al. 
 and Rex, Stuart, and Etter ), but may show peak diversity at mid-
 latitudes in the North Atlantic (Mokievsky and Azovsky ).

The causes of geographic patterns of diversity on local, regional, and 
global scales have been reviewed several times recently (Rex, Etter, and 
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Stuart ; Levin et al. ; Etter and Mullineaux ; Snelgrove and 
Smith ; Stuart, Rex, and Etter ; Rex et al. ), and will only be 
summarized briefl y here, since our chapter is concerned primarily with pat-
terns. Unimodal bathymetric gradients of diversity have been attributed to 
mid- domain eff ects based on boundary constraints imposed by the coast 
and seafl oor (Pineda ), but recent analyses show that diversity trends 
depart signifi cantly from the predictions of mid- domain models (Pineda 
and Caswell ; McClain and Etter ). Just as in other marine envi-
ronments, a wide variety of biotic and abiotic factors that act on diff erent 
scales of time and space appear to aff ect deep- sea diversity. Apart from cat-
astrophic events such as burial by submarine landslides (Rothwell, Thom-
son, and Kahler ) and ash from volcanic eruptions (Hess and Kuhnt 
) or global anoxic events (Kennett and Stott ), much of the varia-
tion observed in deep- sea diversity appears to be related, directly or indi-
rectly, to productivity in the form of carbon fl ux to the benthos from sur-
face production. Within the deep sea, the relationship between diversity and 
productivity is unimodal as it is frequently, but not universally, in coastal 
and terrestrial environments (Rosenzweig ; Mittelbach et al. ). The 
most accurate indication available of average carbon fl ux over large spatio-
 temporal scales is the standing stock of the benthos (Smith et al. ). The 
unimodal diversity- depth pattern evident in fi gure . coincides with the 
monotonic decline in standing stock with depth shown in fi gure .. Rex 
() suggested that depressed diversity at upper bathyal depths, where 
standing stock is high, might be due to accelerated rates of local competitive 
displacement driven by pulsed carbon loading from high seasonal produc-
tivity in coastal waters (Rex ). All of the circumstances mentioned ear-
lier where heavy carbon loading associated with upwelling, topographic fo-
cusing of sinking organic material, sediment erosion, and deposition result 
in high standing stock also show depressed diversity irrespective of depth. 
Even oxygen- minimum zones on continental margins that limit diversity 
through severe physiological constraints are ultimately caused by unusually 
high rates of overhead production and downward carbon fl ux (Levin and 
Gage ).

Rex et al. () recently proposed that continental margins and abys-
sal plains of the North Atlantic may constitute a source- sink system for 
many species. As can be seen in fi gure ., the vast majority of abyssal pro-
tobranchs in both eastern and western basins represent range extensions of 
bathyal species. These abyssal range extensions are very sparsely occupied 
because of the low density of all abyssal macroinvertebrates (fi g. .). Abys-
sal protobranch densities have been estimated to be on the order of one to 
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three individuals m–  for the few commonest species, one to fi ve individuals 
 m– for most species, and two individuals , m–  for the rarest species 
(Rex et al. ). Adult protobranchs are minute organisms with low mo-
bility, low gramete production, and separate sexes. Their larvae are lecitho-
trophic and disperse demersally, potentially over considerable distances in 
the frigid deep- sea environment. These conditions suggest that abyssal pop-
ulations of many species are sinks that experience chronic local extinction 
as an Allee Eff ect and are maintained by immigration from more abundant 
bathyal source populations through larval dispersal. In this view of deep-
 sea community ecology, bathyal diversity may be regulated by essentially 
the same equilibrial and nonequilibrial mechanisms that govern commu-
nity structure in coastal and terrestrial systems where population densities 
are relatively high (Bertness, Gaines, and Hay )—though the relative 
importance and operation of these mechanisms in the deep- sea remain far 
from clear. Much of the abyssal macrofauna may exist as a mass eff ect from 
bathyal populations. While source- sink dynamics may help explain abyssal 
molluscan diversity, at least for rarer species, its potential relevance to other 
elements of the abyssal fauna has not been examined.

At very large interbasin scales, both diff erences in regional ecology and 
the evolutionary- historical development of faunas may be important. De-
pressed diversity at high latitudes in some contemporary taxa may be caused 
in part by high- pulsed organic carbon loading resulting from high and sea-
sonal surface production (Campbell and Aarup ). However, isopods 
show a gradient of decreasing diversity from the South to the North Atlantic 
that Wilson () has attributed to a relatively new wave of invasion from 
shallow water in the Southern Hemisphere that augments the diversity of an 
earlier deep- sea in situ radiation. Stuart and Rex () demonstrated that 
local diversity was a function of regional diversity in deep- sea gastropods, 
suggesting that the size of the species pool, presumably originating from 
regional- scale adaptive radiation, infl uences local diversity. The gradual his-
torical formation of latitudinal gradients in deep- sea foraminifera during the 
Cenozoic can be traced in deep seabed cores (Thomas and Gooday ).

Body Size

Body size is related to a variety of life- history, physiological, and ecological 
traits (Peters ; Brown ; Gillooly et al. , Brown et al. , Savage 
et al. ), and thus may provide a link between processes at the individual 
level and higher levels of organization such as species diversity. The most 
immediate impression when looking at deep- sea samples is the extraordi-
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narily small size of most species. As early as , Mosely commented on the 
pervasive dwarfi sm of deep- sea animals. More recently, Thiel (, ) re-
ferred to the deep sea as a “small organism habitat.” Gage () showed that 
the mean weight per individual in coastal waters of Loch Creran in Scot-
land was . g, compared to . g in the Rockall Trough (, m), a 
full order of magnitude diff erence. Similar methods have been used to show 
meiofaunal miniaturization in the deep sea (Shirayama ; Pfannkuche 
; Tietjen ; Vincx et al. ). Paradoxically, some deep- sea arthro-
pods (isopods, amphipods, pycnogonids, ostracods) are much larger than 
shallow- water representatives (Gage and Tyler ).

Examples of the dramatic diff erence in body size of snails between the 
continental shelf and deep sea are shown in fi gures . and .. Estimates 
of size in the deep- sea assemblages collected south of New England (Mc-
Clain, Rex, and Jabbour ) are compared to those on Georges Bank, the 
adjacent continental shelf (Maciolek and Grassle ). The deep- sea fauna 
shows a smaller average size (deep sea: .mm, and Georges Bank: mm). 
Large deep- sea gastropods are known; for example, Troschelia berniciensis 
reaches  cm in the bathyal eastern Atlantic (Olabarria and Thurston ), 
and Guivillea alabastrina, the largest deep- sea gastropod known, reaches 
. cm in the Southern Hemisphere (Knudsen ). But such large indi-
viduals and species appear to be very rare in the deep sea. In fi gure ., we 
compare the sizes of eastern North Pacifi c continental shelf gastropods be-
longing to three families (Roy ) to those same families in the deep sea. 
Body size (geometric mean of length and width of the shell) is signifi cantly 

Figure 3.3 A comparison of body sizes between coastal and deep- sea benthic gastropods. Deep- sea 
gastropods were collected south of New England in the western North Atlantic (see McClain, Rex, 
and Jabbour ). Coastal gastropods represent the fauna of Georges Bank (Maciolek and Grassle 
). Inset histograms refl ect the percentage of species in mm length bins between – mm. Main 
histograms refl ect the percentage of species in mm length bins between – mm.
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greater on the Pacifi c shelf (both t- test and Median Test, p- values < .) 
in all cases. As a striking example of the size diff erence between coastal and 
deep- sea gastropods, a back- of- the- envelope calculation based on data from 
McClain, Rex, and Jabbour () shows that all of the deep- sea snails col-
lected from the western North Atlantic by the Woods Hole Oceanographic 
Institution’s Benthic Sampling Program (forty- four samples, , individ-
uals) would fi t comfortably into a single large shell of the common New En-
gland knobbed whelk Busycon carica.

The average size of deep- sea organisms continues to decrease with depth 
below the shelf- slope transition. Thiel () was the fi rst to demonstrate 
this trend by regressing abundance of the smaller meiofauna and larger mac-
rofauna against depth. An ANCOVA showed that the meiofaunal regres-
sion had a higher intercept and lower slope than did the macrofauna, there-
fore the meiofauna comprise a larger proportion of the total assemblage as 
depth increases (average size decreases with depth). The analysis was based 
on meiofaunal densities off  Portugal and East Africa, and macrofaunal den-
sities (from Rowe ) off  New England, Brazil, the Gulf of Mexico, and 
Peru. Here we repeat Thiel’s analysis using a much larger dataset represent-
ing most major ocean basins (sixty- fi ve studies and  observations for the 
meiofauna, sixty- one studies and  observations for the macrofauna). To 
remove regional infl uences, we regressed the partial residuals of abundance 
(eff ects of longitude and latitude removed) against depth (fi g. .). The re-
sulting abundance- depth relationships are highly signifi cant, with the meio-
fauna regression showing a higher elevation, as expected. An ANCOVA (see 
fi gure caption) shows that the macrofauna has a signifi cantly steeper slope 
confi rming, on a global basis, Thiel’s conclusion that average metazoan size 
decreases with depth.

A closer look at size- depth patterns within individual taxa reveals a very 
mixed picture; size can increase, decrease, or show no pattern with depth 

Figure 3.4 A comparison of 
size in deep- sea gastropods 
(McClain, Rex, and  Jabbour 
) from the western 
North Atlantic (solid bars) to 
continental shelf gastropods 
(open bars) from the Pacifi c 
(Roy ) for three separate 
 families.
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(reviewed in Rex and Etter , Soetaert, Muthumbi, and Heip ). Part 
of this variation among taxa probably relates to methodological diff erences 
in the way size was measured and statistically analyzed, and some of it may 
refl ect diff erences in the overall biological properties of the taxa and regional 
ecological diff erences. It is also important to remember that geographic vari-
ation in size might merely be a phenotypic plastic response. The degree to 
which size- depth trends represent actual adaptations to the environment is 
best studied at the level of individual species. If adaptive, bathymetric trends 
at higher taxonomic levels, and within and between functional groups, must 
result from clinal eff ects within species or depth- correlated replacement of 
species that diff er in size.

Bergmann’s rule states that body size increases toward higher latitudes. 

Figure 3.5 Regressions of the partial residuals of abundance (with the eff ects of longitude and 
latitude removed) against depth for deep- sea meiofauna and macrofauna. Meiofaunal abundance is 
higher and decreases with depth less rapidly than does macrofaunal abundance. This indicates that 
the average size of organisms decreases with depth. An ANCOVA shows that the slopes are sig-
nifi cantly diff erent (F = ., d.f. = ,, P < .). Regression equations are: Meiofauna 
Y = . – . X, R = ., N = , F = ., P < .; Macrofauna Y = . – .X, 
R = ., N = , F = ., P < .. Data references are given in Appendix B.
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Although the explanations for this trend are contentious, there is some sup-
port for increased size toward the poles for homeotherms (Brown and Lee 
; Brodie ; Forsman ; Scharples, Fa, and Bell ). For ecto-
therms, Bergmann’s rule applies for some insect taxa (e.g., Cushmann, Law-
ron, and Manly ; Hawkins and Lawton ; Arnett and Gotelli ) 
but not others (Hawkins ; Hawkins and Lawton ). Few studies have 
been conducted for marine invertebrates. Roy and Martien () found no 
relationship between size and latitude for eastern coastal Pacifi c bivalves. For 
deep- sea faunas, only two studies have investigated latitudinal- size relation-
ships. Latitude appears to be only a weak predictor of gastropod body size 
and is oft en subordinate to depth in multiple regression analyses (McClain 
and Rex , Olabarria and Thurston ).

Many hypotheses have been proposed to explain spatial gradients of size 
in other systems, including temperature (e.g., Atkinson and Sibly ), pre-
dation (e.g., Blumeshine, Lodge, and Hodgson ), energy input (Black-
burn and Gaston ), oxygen availability (Chapelle and Peck ) and 
sediment diversity (Schwinghamer ). It is unlikely that temperature, rel-
atively invariant throughout much of the deep sea, plays a signifi cant role in 
determining sizes of deep- sea organisms (McClain and Rex ), but this 
relationship has not been examined statistically. Schwinghamer () pro-
posed that the tendency toward smaller organisms in the deep sea is related 
to sediment diversity as a refl ection of greater habitat diversity. However, 
the relationship between body size and sediment heterogeneity has not been 
borne out in coastal and shelf benthic habitats (Duplisea and Drgas ; 
Parry et al. ; Leaper et al. ). Sediment- organism interactions do ap-
pear to be important in the deep sea (Etter and Grassle ), but they have 
not been related to body size. Chapelle and Peck () demonstrated that 
maximum potential size is limited by oxygen availability in benthic amphi-
pod crustaceans from coastal and freshwater environments. Larger size at 
more oxygenated sites is also found in deep- sea gastropods (McClain and 
Rex ). Spicer and Gaston () suggested that oxygen content of water 
should not aff ect size in aquatic environments, and that these relationships 
are a spurious consequence of temperature gradients. However, it is clear 
that body size and oxygen availability are related independent of tempera-
ture for both shallow and deep- water organisms (McClain and Rex ; 
Peck and Chapelle ). Body size can also be regulated by the eff ects of 
oxygen on development, cell size, and cell number (Frazier, Woods, and 
Harrison ; Peck and Chapelle ).

Although all of these factors, and others, may account for some of the 
variation in body size, the most important determinant is likely to be car-
bon fl ux to the benthos (Thiel ; Rex and Etter ). Support comes 
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from the inference that benthic standing stock decreases exponentially with 
depth (fi g. .), and that standing stock is the best proxy available for carbon 
fl ux to the seabed (Rowe ; Smith et al. ). According to the optimal-
ity theory of body size (Sebens , ), optimal size should decrease with 
depth as rates of food intake decrease and the costs of foraging increase (Rex 
and Etter ). In general, this prediction is supported by the decrease in 
average metazoan size with depth (fi g. .). However, as mentioned earlier, 
size- depth clines within species show considerable variation. This may be 
because other selective advantages of large size (metabolic effi  ciency, escape 
from predation, and the ability to exploit more food resources) displace 
populations away from optimal size in a taxon- specifi c way. For gastropods 
there is a shift  from positive to negative size- depth clines within species with 
increasing depth (McClain, Rex, and Jabbour ). There is also an indica-
tion of an increase in size across bathyal depths and a decrease in the abyss 
for gastropod assemblages as a whole and in demersal fi shes (fi g. .). In the 
upper- to mid- bathyal zone, where population densities are relatively high, 
other advantages of larger size may off set selection for optimal size based 
on maximizing the energy available for reproduction. However, at the ex-
tremely low densities found at lower bathyal and abyssal depths, the relative 
rates of energy intake, and cost may fi nally enforce smaller size. Alterna-
tively, abyssal snails may be smaller either because severe energy constraints 
favor small- bodied species as the energy demands become too great for large 
organisms to maintain reproductively viable population sizes (Thiel ), 
or because individuals of many populations experience retarded growth in 
an unfavorable sink environment (Rex et al. ), or some combination of 
these phenomena.

Some diff erences in the shape of size- depth trends also may be due to 
changes with depth in the fundamental causative agents. Soetaert, Muth-
umbi, and Heip () showed that the average size of nematodes decreases 
with depth in the eastern North Atlantic. However, this was a complex re-
sponse to both food availability and the biogeochemical properties of sedi-
ments that limit vertical distribution. Nematodes that occupy the topmost 
oxygenated layer of sediment scarcely change in size with depth. The over-
all miniaturization with depth is attributable to larger nematodes being able 
to utilize deeper more anoxic layers at bathyal depths, but not at abyssal 
depths.

A major objective of macroecology is to explore how body size relates to 
the structure of ecological communities (Lawton ; Brown ; Allen, 
Brown, and Gilloly ; Brown et al. ). In particular, this has centered 
on the relationship between body size, species richness, and abundance in 



Figure 3.6 Maximum Size (length + width) for deep- sea gastropods, each point represents 
an individual(McClain et al. ) and mean weight per individual for demersal fi shes (from 
Polloni et al. ) across a depth gradient South of New England, points represent a mean 
size per trawl.
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terrestrial and marine systems, with little research devoted to these trends in 
the deep sea (but see McClain , and Rex and Etter ). The statistical 
relationships among these variables have important implications for estimat-
ing biodiversity and could suggest how resource availability helps determine 
community structure. Siemann, Tilman, and Haarstad (, ), using 
data from a comprehensive sampling study of grassland insects, showed that 
diversity and abundance had fairly symmetrical unimodal relationships to 
body size, as had been frequently observed in other studies. When the rela-
tionships were reviewed in three dimensions they described a parabola with 
highest diversity at intermediate abundant size classes. The projection of this 
parabola on the diversity- abundance plane revealed that the number of spe-
cies (S) scaled to the number of individuals within size classes (I) according 
to the expression S = I ., independent of body size. A study of diversity, size 
and abundance in rocky intertidal mollusks showed a similar set of relation-
ships (Fa and Fa ).

McClain () examined these relationships for deep- sea gastropods 
(fi g. .). Again, the relationships of diversity and abundance to size are uni-
modal (fi g. ., panels A, B), although the diversity- body size relationship 
is right skewed. This contrasts with the log- normal trends in terrestrial ar-
thropods (Siemann, Tilman, and Haarstad ) and coastal mollusks (Roy, 
Jablonski, and Valentine ; Fa & Fa ), but agrees with the prevalent 
right- skewed pattern observed in a variety of other organisms (Brown ). 
The skewed distribution also, of course, aff ects the shape of the curve in 
the three dimensional representation (fi g. ., panel D), and the distribution 
of size classes about the diversity abundance regression (fi g. ., panel C). 
Nonetheless, diversity scales to abundance in a way that is similar to terres-
trial insects and coastal mollusks. That studies of three such diff erent com-
munities produce such a similar set of relationships suggests a common set 
of underlying causes. While the causal links remain obscure they are likely 
linked to scale, energy availability, available niche space, size- biased specia-
tion and extinction, and constraints on minimum size (Brown ; Koz-
lowski and Gawelczyk ; McClain ).

Metabolic Rates and the Metabolic Theory of Ecology

Metabolism underlies all biological rates because it is the sum of expendi-
tures toward growth, maintenance, and reproduction. The metabolic theory 
of ecology (MTE) is a potentially unifying framework that seeks to link the 
factors controlling metabolic rates to higher- order macroecological patterns 
and processes at population, community, and ecosystem levels (Gillooly 
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et al. ; Brown et al. ). The metabolic theory of ecology has gener-
ated substantial interest and criticism (see, e.g., special issue of Functional 
Ecology vol. , ; and Ecology, vol. , ). It predicts that metabolic 
rates of all organisms are primarily determined by individual body mass and 
temperature. Individual mass- specifi c metabolism is expected to scale with 
body size at a – /  power (West, Brown, and Enquist , a, b) and 
scale exponentially with temperature according to Boltzmann/ Van’t Hoff -
 Arrhenius equation, with an activation energy between .– . eV (Gil-
looly et al. ). The value of MTE in deep- sea ecology, if it can be verifi ed, 
would be to help explain large- scale macroecological patterns in an environ-
ment where both experimentation and precision sampling programs are lo-
gistically diffi  cult. Because of the recent development of MTE, little research 
has been conducted to establish its generality, or its applicability to deep-

Figure 3.7 Panel A: Relationship between log- species richness (S) per log size class (mm). 
B. Relationship between log abundance (I) per log size class. C. Relationship between log spe-
cies richness (S) and log abundance (I) per log size class. The lines represent fi tted regressions 
(OLS: S = – .I., R = ., p=.; RMA: S = – .I ., R = ., p = .). 
D. Relationships between log of species richness (S), log of number of individuals (I), and log 
size class. All plots are from McClain (). Lines represents a kernel smoothing curve fi tted 
to the data and numbers refer to the log size classes.
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 sea ecology. Metabolic rates of deep- sea organisms are temperature and size 
dependent, but selective pressures depending on habitat and life styles may 
lead to some additional variation (Childress et al. ; Childress ).

Conclusions and a Future Agenda for Research 
in Deep- Sea Macroecology

The study of macroecological patterns in the deep sea has changed our per-
ception of this remote, enormous, and complex ecosystem and helped to 
identify many of the ecological and evolutionary processes that might be im-
portant in regulating these communities. Several broad- scale patterns have 
emerged that provide the basic framework for exploring deep- sea ecosys-
tems. Biomass, density, and body size all decrease with depth, presumably 
refl ecting the exponential decline in carbon fl ux from surface production. 
Species diversity (or richness) typically peaks at intermediate depths and 
might also be related to energy fl ux, but not in a simple monotonic way. 
The consensus so far is that several interdependent processes that change 
in magnitude and vary in relative importance across various environmental 
gradients regulate diversity (Levin et al. ). One of the most intriguing 
hypotheses recently advanced to explain depressed abyssal diversity inte-
grates a number of macroecological, life history, and natural history patterns 
to suggest that the low diversity at abyssal depths occurs because the abyssal 
zone acts as a sink habitat (sensu Pulliam ), relying on more productive 
bathyal regions as a source of larvae to sustain populations (Rex et al. ). 
If correct, this theory would explain lower diversity on the abyss.

As in other ecosystems, there appears to be a link between abundance, 
body size, and diversity that changes with spatial scale and energy availabil-
ity. The relationships appear to be general but remain largely untested. Based 
on MTE (Brown et al. ), metabolic rates, governed by body size and 
temperature, and energy availability interact to regulate the basic time scales 
of biological processes, which in turn control population dynamics, rates of 
biotic interactions and the structure of communities. How applicable MTE 
is to life in the deep ocean is uncertain.

At global scales, species diversity locally and regionally declines pole-
ward, paralleling similar patterns in shallow- water and terrestrial environ-
ments. Because the patterns are manifested at both local and regional scales, 
the gradient may refl ect the evolutionary buildup of the regional species 
pools and the way in which these pools respond to ecological processes.

Although we have made signifi cant progress, deep- sea macroecology is 
in its infancy and much remains to be done. The most pressing need is for 
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more samples, collected over a broader geographic range. Fundamental to 
any macroecological study is the distribution of individual species, which 
is poorly documented in the deep sea. New sampling programs should be 
based on existing knowledge and undertaken in a coordinated fashion at 
strategic locations to test specifi c hypotheses (e.g., abyssal source- sink), de-
termine the generality of existing patterns, and expand our knowledge to 
other taxa, basins, and oceans. Most macroecological studies are based on a 
limited set of taxa, raising the possibility that observed patterns are not re-
fl ective of entire communities. This is especially true for broad- scale studies 
of species diversity because the patterns for a single taxon (or size category, 
e.g., macrofauna) may diff er from the whole community due to tradeoff s 
among major taxonomic groups within local assemblages (Wilson ).

Most deep- sea research has focused on documenting geographic and 
bathymetric patterns and inferring mechanisms that might shape these pat-
terns. The next phase of research needs to include an experimental com-
ponent to test the role of these putative processes in shaping macroecolog-
ical patterns and establish how those roles vary on large scales. It should 
also incorporate an evolutionary perspective because macroecological pat-
terns may ultimately refl ect evolutionary processes (Brown ; Gaston and 
Blackburn ; Brown et al. ). For example, recent population genetic 
(Cardillo ; Martin and McKay ; Williams and Reid ; Xiang 
et al. ) and paleontological (Jablonski ; Buzas, Collins, and Culver 
) evidence suggests that diff erences in evolutionary rates might be a key 
factor in generating latitudinal gradients in diversity. Similarly, bathymetric 
gradients in diversity may refl ect diff erences in the potential for evolution 
at diff erent depths (Etter and Rex ; Rex et al. ; Etter et al. ). 
Recent advances in molecular genetics (Chase et al. ) make it possible 
to identify where and how evolution has unfolded in the deep sea, which 
should allow us to test the role of historical processes. To ultimately under-
stand the origin and maintenance of macroecological patterns, we will need 
to quantify and critically test the infl uence of processes operating at a variety 
of diff erent spatial and temporal scales.

APPENDIX A

Yoldiella frigida (–  m,  m), Yoldiella lucida (–  m,  m), Ennucula bushae 
( m, ,– , m), Ennucula granulosa (– , m, , m), Ledella pustulosa (— , – 
, m), Yoldiella curta (– , m, ,– , m ), Ennucula similis (– , m, — ), Nei-
lonella salicensis (,– , m, ,– , m), Deminucula atacellana (,– , m, ,– 
, m), Yoldia inconspicua (,– , m, ,– , m), Ledella solidula (, m, — ), 
Yoldiella enata (, m, — ), Phaseolus sp. (,– , m, — ), Malletia johnsoni (,– , m, 
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,– , m), Ledella similis (— , , m), Ledella acuminata (— , ,– , m), Nucu-
lana commutata (— , , m), Yoldiella obesa (,– , m, ,– , m), Yoldiella lata 
(— , ,– , m), Microgloma turnerae (— , ,– , m), Tindaria hessleri (— , , m), 
Bathyspinula fi latovae (— , , m), Portlandia lenticulata (— , ,– , m), Yoldiella in-
sculpta (— , ,– , m), Bathyspinula subexisa (— , , m) Yoldiella fi bula (,– , m, 
,– , m), Ledella sublevis (,– , m, ,– , m), Pristogloma nitens (,– 
, m, ,– , m), Pristogloma alba (,– , m, — ), Brevinucula verrilli (,– 
, m, ,– , m), Bathyspinula hilleri (— , ,– , m), Ledella bushae (— , , m), 
Yoldiella veletta (— , , m), Portlandica minuta (— , , m), Lametia abyssorum (,– 
, m, — ), Portlandica fora (— , , m), Yoldiella biscayensis (— , ,– , m), Neilonella 
whoii (,– , m, ,– , m), Yoldiella jeff reysi (,– , m, ,– , m), Yol-
diella ella (,– , m, ,– , m), Malletia cuneata (,– , m, ,– , m), 
Malletia abyssorum (,– , m, ,– , m), Silicula fragilis (,– , m, , m), 
Ledella ultima (,– , m, ,– , m), Tindaria callistiformis (,– , m, — ), Si-
licula fi latovae (,– , m, — ), Ledella aberrata (, m, ,– ,  m), Yoldiella ameri-
cana (,– , m, — ), Malletia polita (,– , m, ,– , m), Yoldiella subcircularis 
(,– , m, ,– , m), Ledella sp. (,– , m, — ), Spinula sp.(,– , m, — ), 
Silicula mcalisteri (, m, — ), Yoldiella similiris (, m, — ), Tindariopsis sp. (— , , m), 
Ledella galathea (— , , m).

APPENDIX B

Meiofaunal data from Aller et al.  (NW Atlantic), Alongi and Pichon  (SW Pacifi c), 
Alongi  (SW Pacifi c), Ansari, Paurlekar, and Jagtap  (Arabian Sea), Coull et al.  
(NW Atlantic), Danovaro et al.  (Mediterranean), Danovaro et al.  (Mediterranean), 
Danovaro, Gambi, and Della Croce  (SE Pacifi c), DeBovée, Guidi, and Soyer  (Mediter-
ranean), Dinet and Vivier  (NE Atlantic), Dinet  (SE Atlantic), Dinet  in Soltwedel 
 (Norwegian Sea), Dinet  (Mediterranean), Dinet in Vincx et al.  (Tropical E At-
lantic), Duineveld et al.  (Tropical W Indian), Escobar et al.  (Gulf of Mexico), Fabiano 
and Danovaro  (Antarctic), Ferrero in Vincx et al.  (NE Atlantic), Flach, Muthumbi, 
and Heip  (NE Atlantic), Gage  (NE Atlantic), Gage  (NE Atlantic), Galéron et al. 
 (Tropical E Atlantic), Galéron et al.  (NE Atlantic), Gooday in Vincx et al.  (NE 
Atlantic), Heip et al.  (NE Atlantic), Herman and Dahms  (Antarctic), Kamenskaya 
and Galtsova  (NE Atlantic), Khripounoff , Desbruyéres, and Chardy  (Tropical W At-
lantic), Kröncke et al.  (Arctic), Lambshead and Ferrero in Vincx et al.  (NE Atlantic), 
Levin and Thomas  (Tropical Central Pacifi c), Levin, Huggett, and Wishner  (Tropi-
cal E Pacifi c), Parekular et al.  in Soltwedel  (Antarctic), Pequegnat, Gallaway, and 
Pequenat  (Gulf of Mexico), Pfannkuche and Thiel  (Arctic), Pfannkuche, Theeg, and 
Thiel  (NE Atlantic), Pfannkuche et al.  in Vincx et al.  (NE Atlantic), Pfannkuche 
 (NE Atlantic), Rachor  (NE Atlantic), Relexans et al.  (Tropical E Atlantic), Ro-
mano and Dinet  in Soltwedel  (Arabian Sea), Rutgers van der Loeff  and Lavaleye  
(NE Atlantic), Shirayama and Kojima  (NW Pacifi c), Shirayama  (Tropical W and NW 
Pacifi c), Sibuet et al.  (Tropical W Atlantic), Sibuet et al.  (NE, Tropical, SE Atlantic), 
Snider, Burnett, and Hessler  (Central N Pacifi c), Soetaert, Heip, and Vincx  (Medi-
terranean), Soltwedel and Thiel  (Tropical E Atlantic), Soltwedel, Mokievsky, and Schewe 
 (Arctic), Soltwedel  (Tropical E Atlantic), Sommer and Pfannkuche  (Arabian 
Sea), Tahey et al.  (Mediterranean), Thiel ,  (Tropical W. Indian), Thiel  (Nor-
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wegian Sea, NE Atlantic), Thiel  (Red Sea), Thiel  (NE Atlantic), Thistle, Yingst, and 
Fauchald  (NW Atlantic), Tietjen  (NW Atlantic), Vanaverbeke et al.  (NE Atlan-
tic), Vanhove et al.  (Antarctic), Vanreusel and Vincx in Vincx et al.  (NE Atlantic), 
Vanreusel et al.  (NE Atlantic), Vanreusel et al.  (NE Atlantic), Vivier  (Mediterra-
nean), Wigley and McIntyre  (NW Atlantic).

Macrofauna data from Aller, Aller, and Green  (NW Atlantic), Alongi  (SW Pa-
cifi c), Blake and Grassle  (NW Atlantic), Blake and Hilbig  (NW Atlantic), Carey and 
Ruff   in Rowe  (Arctic), Carey, Jr.  (NE Pacifi c), Clough et al.  in Rowe  
(Arctic), Cosson, Sibuet, and Galeron  (Tropical E Atlantic), Dahl et al.  (Norwegian 
Sea), Daule, Herman, and Heip  (North Sea), Desbruyères, Bervas, and Kripounoff   
(NE Atlantic), Duineveld et al.  (Mediterranean), Spiess et al.  (Tropical E Pacifi c), 
Flach and Heip  (NE Atlantic), Flach, Muthumbi, and Heip  (NE Atlantic), Franken-
berg and Menzies  (Tropical E Pacifi c), Gage  (NE Atlantic), Gage  (NE Atlantic), 
Galéron et al.  (Tropical E Atlantic), Galéron et al.  (NE Atlantic), Grassle and Morse-
 Porteous  (NW Atlantic), Grassle  (NW Atlantic), Griggs, Carey, and Kulm  (NE 
Pacifi c), Hecker and Paul  (Tropical E Pacifi c), Hessler and Jumars  (Central N Pacifi c), 
Houston and Haedrich  (NW Atlantic), Hyland et al.  (NE Pacifi c), Jazdzewski et al. 
 (Antarctic), Jumars and Hessler  (Central N Pacifi c), Kripounoff , Desbruyéres, and 
Chardy  (Tropical W Atlantic), Kröncke  (Arctic), Kröncke, Türkay, and Fiege  
(Mediterranean), Kröncke et al.  (Arctic), Laubier and Sibuet  (NE Atlantic), Levin 
and Thomas  (Tropical Central Pacifi c), Levin, Huggett, and Wishner  (Tropical E Pa-
cifi c), Levin et al.  (Arabian Sea), Maciolek and Grassle  (NW Atlantic), Maciolek et al. 
a, b (NW Atlantic), Nichols and Rowe  (Tropical E Atlantic), Pfannkuche. Theeg, 
and Thiel  (NE Atlantic), Rhoads et al.  (NW Pacifi c), Richardson et al.  (Carib-
bean), Richardson et al.  (Tropical W Atlantic), Romero- Wetzel and Gerlach  (Norwe-
gian Sea), Rowe and Menzel  (Gulf of Mexico), Rowe  (Tropical E Pacifi c), Rowe et al. 
 (NW Atlantic), Rowe et al.  (NW Atlantic), Rowe et al.  (NW Atlantic, Gulf of 
Mexico), Sanders  (SE Atlantic), Sanders et al.  (NW Atlantic), Schaff  et al.  (NW 
Atlantic), Shirayama  (Tropical W and NW Pacifi c), Sibuet et al. (Tropical W Atlantic), 
Sibuet et al.  (NE, Tropical, SE Atlantic), Smith  (NW Atlantic), Smith  (Central 
N Pacifi c), Tselepides and Eleft heriou  (Mediterranean), Tselepides et al.  (Mediterra-
nean), Witte  (Arabian Sea).
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