
1Arithmetic Expressions Lesson #1
CS1313 Spring 2024

17. What is an Arithmetic Expression? #1
18. What is an Arithmetic Expression? #2
19. What is an Arithmetic Expression? #3
20. Arithmetic Expression Examples
21. Unary & Binary Arithmetic Operations
22. Arithmetic Operations
23. Structure of Arithmetic Expressions #1
24. Structure of Arithmetic Expressions #2
25. Jargon: int-valued & float-valued

Expressions
26. Precedence Order
27. Precedence Order Examples
28. Precedence Order Example: int #1
29. Precedence Order Example: int #2
30. Precedence Order Example: float #1
31. Precedence Order Example: float #2

1. Arithmetic Expressions Lesson #1
Outline

2. A Less Simple C Program #1
3. A Less Simple C Program #2
4. A Less Simple C Program #3
5. A Less Simple C Program #4
6. A Less Simple C Program: Compile

& Run
7. Flowchart for my_add.c
8. Named Constant Example Program
9. Named Constant Example Program
10. 1997 Tax Program with Named

Constants
11. What is an Expression? #1
12. What is an Expression? #2
13. What is an Expression? #3
14. What is an Expression? #4
15. What is an Expression? #5
16. What is an Expression? #6

Arithmetic Expressions Lesson #1 Outline

2Arithmetic Expressions Lesson #1
CS1313 Spring 2024

Continued on
the next slide.

/*
**
*** Program: my_add ***
*** Author: Henry Neeman (hneeman@ou.edu) ***
*** Course: CS 1313 010 Spring 2024 ***
*** Lab: Sec 014 Fridays 3:00pm ***
*** Description: Input two integers, compute ***
*** their sum and output the result. ***
**
*/
#include <stdio.h>
int main ()
{ /* main */

/*

*** Declaration Section ***

*

* Named Constant Subsection *

*/
const int program_success_code = 0;
/*

* Local Variable Subsection *

*
* addend: the addend value that the user inputs.
* augend: the augend value that the user inputs.
* sum: the sum of the addend and the augend,
* which is output.
*/
int addend, augend, sum;

A Less Simple C Program #1

3Arithmetic Expressions Lesson #1
CS1313 Spring 2024

Continued on
the next slide.

/*

*** Execution Section ***

*

* Greeting Subsection *

*
* Tell the user what the program does.
*/
printf("I'll add a pair of integers.\n");

/*

* Input subsection *

*
* Prompt the user to input the addend & augend.
*/
printf("What pair of integers do you want to add?\n");

/*
* Input the integers to be added.
*/
scanf("%d %d", &addend, &augend);

A Less Simple C Program #2

4Arithmetic Expressions Lesson #1
CS1313 Spring 2024

The statement as a whole is an
assignment statement.

The stuff to the right of the
single equals sign is an
arithmetic expression.

/*

* Calculation Subsection *

*
* Calculate the sum.
*/
sum = addend + augend;

/*

* Output Subsection *

*
* Output the sum.
*/
printf("The sum of %d and %d is %d.\n",

addend, augend, sum);
return program_success_code;

} /* main */

A Less Simple C Program #3

5Arithmetic Expressions Lesson #1
CS1313 Spring 2024

The statement as a whole is an
assignment statement.

The stuff to the right of the
single equals sign is an
arithmetic expression.

#include <stdio.h>
int main ()
{ /* main */

const int program_success_code = 0;
int addend, augend, sum;

printf("I'll add a pair of integers.\n");
printf("What pair of integers do you want to add?\n");
scanf("%d %d", &addend, &augend);
sum = addend + augend;
printf("The sum of %d and %d is %d.\n",

addend, augend, sum);
return program_success_code;

} /* main */

A Less Simple C Program #4

6Arithmetic Expressions Lesson #1
CS1313 Spring 2024

% gcc -o my_add my_add.c
% my_add
I'll add a pair of integers.
What pair of integers do you want to add?
5 7
The sum of 5 and 7 is 12.
% my_add
I'll add a pair of integers.
What two integers do you want to add?
1593
09832
The sum of 1593 and 9832 is 11425.

A Less Simple C Program: Compile & Run

7Arithmetic Expressions Lesson #1
CS1313 Spring 2024

A rectangle denotes an
operation other than

I/O or branching
(for example,
calculation).

Flowchart for my_add.c

8Arithmetic Expressions Lesson #1
CS1313 Spring 2024

% cat circlecalc.c
#include <stdio.h>
int main ()
{ /* main */

const float pi = 3.1415926;
const float diameter_factor = 2.0;
const int program_success_code = 0;
float radius, circumference, area;

printf("I'm going to calculate a circle's\n");
printf(" circumference and area.\n");
printf("What's the radius of the circle?\n");
scanf("%f", &radius);
circumference = pi * radius * diameter_factor;
area = pi * radius * radius;
printf("The circumference is %f\n", circumference);
printf(" and the area is %f.\n", area);
return program_success_code;

} /* main */
% gcc -o circlecalc circlecalc.c
% circlecalc
I'm going to calculate a circle's
circumference and area.
What's the radius of the circle?
5
The circumference is 31.415924
and the area is 78.539810.

Named Constant Example Program

9Arithmetic Expressions Lesson #1
CS1313 Spring 2024

% cat circlecalc.c
#include <stdio.h>
int main ()
{ /* main */

const float pi = 3.1415926;
const float diameter_factor = 2.0;
const int program_success_code = 0;
float radius, circumference, area;

printf("I'm going to calculate a circle's\n");
printf(" circumference and area.\n");
printf("What's the radius of the circle?\n");
scanf("%f", &radius);
circumference = pi * radius * diameter_factor;
area = pi * radius * radius;
printf("The circumference is %f\n", circumference);
printf(" and the area is %f.\n", area);
return program_success_code;

} /* main */
% gcc -o circlecalc circlecalc.c
% circlecalc
I'm going to calculate a circle's
circumference and area.
What's the radius of the circle?
5
The circumference is 31.415924
and the area is 78.539810.

Named Constant Example Program

10Arithmetic Expressions Lesson #1
CS1313 Spring 2024

% cat tax1997_named.c
#include <stdio.h>
int main ()
{ /* main */

const float standard_deduction = 4150.0;
const float single_exemption = 2650.0;
const float tax_rate = 0.15;
const int tax_year = 1997;
const int program_success_code = 0;
float income, tax;
printf("I'm going to calculate the federal income tax\n");
printf(" on your %d income.\n", tax_year);
printf("What was your %d income in dollars?\n", tax_year);
scanf("%f", &income);
tax = (income - (standard_deduction + single_exemption)) * tax_rate;
printf("The %d federal income tax on $%2.2f\n", tax_year, income);
printf(" was $%2.2f.\n", tax);
return program_success_code;

} /* main */
% gcc -o tax1997_named tax1997_named.c
% tax1997_named
I'm going to calculate the federal income tax

on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00

was $1980.00.

1997 Tax Program with Named Constants

11Arithmetic Expressions Lesson #1
CS1313 Spring 2024

a + b - c * d / e % f – (398 + g) * 5981 / 15 % h

In programming, an expression is a combination of:
 Operands
 Operators
 Parentheses: ()

Not surprisingly, an expression in a program can look very much
like an expression in math (though not necessarily identical).
This is on purpose.

NOTE: In C, the only characters you can use for parenthesizing
are actual parentheses (unlike in math, where you can also use
square brackets and curly braces.)

What is an Expression? #1

12Arithmetic Expressions Lesson #1
CS1313 Spring 2024

a + b - c * d / e % f – (398 + g) * 5981 / 15 % h

In programming, an expression is a combination of:
 Operands, such as:

 Literal constants
 Named constants
 Variables
 Function invocations (which we’ll discuss later)

 Operators
 Parentheses: ()

What is an Expression? #2

13Arithmetic Expressions Lesson #1
CS1313 Spring 2024

a + b - c * d / e % f – (398 + g) * 5981 / 15 % h

In programming, an expression is a combination of:
 Operands
 Operators, such as:

 Arithmetic Operators
 Relational Operators
 Logical Operators

 Parentheses: ()

What is an Expression? #3

14Arithmetic Expressions Lesson #1
CS1313 Spring 2024

a + b - c * d / e % f – (398 + g) * 5981 / 15 % h

In programming, an expression is a combination of:
 Operands
 Operators, such as:

 Arithmetic Operators
 Addition: +
 Subtraction: -
 Multiplication: *
 Division: /
 Modulus (remainder): % (only for int operands)

 Relational Operators
 Logical Operators

 Parentheses: ()

What is an Expression? #4

15Arithmetic Expressions Lesson #1
CS1313 Spring 2024

a + b - c * d / e % f – (398 + g) * 5981 / 15 % h
In programming, an expression is a combination of:
 Operands
 Operators, such as:

 Arithmetic Operators
 Relational Operators

 Is Equal: ==
 Not Equal: !=
 Less Than: <
 Less Than or Equal To: <=
 Greater Than: >
 Greater Than or Equal To: >=

 Logical Operators
 Parentheses: ()

What is an Expression? #5

16Arithmetic Expressions Lesson #1
CS1313 Spring 2024

We’ll learn about these later.

a + b - c * d / e % f – (398 + g) * 5981 / 15 % h

In programming, an expression is a combination of:
 Operands
 Operators, such as:

 Arithmetic Operators
 Relational Operators
 Logical Operators

 Negation (NOT): !
 Conjunction (AND): &&
 Disjunction (OR): ||

 Parentheses: ()

What is an Expression? #6

17Arithmetic Expressions Lesson #1
CS1313 Spring 2024

An arithmetic expression (also called a numeric expression)
is a combination of:

 Numeric operands
 Arithmetic Operators
 Parentheses: ()

What is an Arithmetic Expression? #1

18Arithmetic Expressions Lesson #1
CS1313 Spring 2024

An arithmetic expression (also called a numeric expression)
is a combination of:

 Numeric operands, such as:
 int & float literal constants (BAD BAD BAD)
 int & float named constants (GOOD)
 int & float variables
 int-valued & float-valued function invocations

 Arithmetic Operators
 Parentheses: ()

What is an Arithmetic Expression? #2

19Arithmetic Expressions Lesson #1
CS1313 Spring 2024

An arithmetic expression (also called a numeric expression)
is a combination of:

 Numeric operands
 Arithmetic Operators, such as:

 Identity: +
 Negation: -
 Addition: +
 Subtraction: -
 Multiplication: *
 Division: /
 Modulus (remainder): % (only for int operands)

 Parentheses: ()

What is an Arithmetic Expression? #3

20Arithmetic Expressions Lesson #1
CS1313 Spring 2024

x

+x

-x

x + y

x - y

x * y

x / y

x % y

x + y - (z % 22) * 7 / cos(theta)

Arithmetic Expression Examples

21Arithmetic Expressions Lesson #1
CS1313 Spring 2024

Arithmetic operations come in two varieties:
unary and binary.

A unary operation is an operation that has only one operand.
For example:

-x
Here, the operand is x, the operator is the minus sign, and

the operation is negation.
A binary operation uses two operands. For example:

y + z
Here, the operands are y and z, the operator is the plus sign,

and the operation is addition.

Unary & Binary Arithmetic Operations

22Arithmetic Expressions Lesson #1
CS1313 Spring 2024

Operation Kind Oper-
ator

Usage Value

Identity Unary +
none

+x
+x

Value of x
Value of x

Negation Unary - -x Additive inverse of x
Addition Binary + x + y Sum of x and y
Subtraction Binary - x – y Difference between x and y
Multiplication Binary * x * y Product of x times y

(i.e., x . y)

Division Binary / x / y Quotient of x divided by y
(i.e., x ÷ y)

Modulus
(int only)

Binary % x % y Remainder of x divided by y
(that is, x - └x ÷ y┘ . y)

Arithmetic Operations

23Arithmetic Expressions Lesson #1
CS1313 Spring 2024

An arithmetic expression can be long and complicated.
For example:

a + b - c * d / e % f

Terms and operators can be mixed together in
almost limitless variety, but they must follow the rule that
a unary operator has a term immediately to its right and
a binary operator has terms on both its left and its right:
-a + b - c * d / e % f – (398 + g) * 5981 / 15 % h

Parentheses can be placed around any unary or binary
subexpression:

((-a) + b - c) * d / e % f – ((398 + g) * 5981 / 15) % h

Structure of Arithmetic Expressions #1

24Arithmetic Expressions Lesson #1
CS1313 Spring 2024

Putting a term in parentheses may change the value of
the expression, because a term inside parentheses will be
calculated first.

For example:
a + b * c is evaluated as

“multiply b by c, then add a,” but
(a + b) * c is evaluated as

“add a and b, then multiply by c”
Note: As a general rule, you cannot put two operators in a row

(but we’ll see exceptions, sort of).

Structure of Arithmetic Expressions #2

25Arithmetic Expressions Lesson #1
CS1313 Spring 2024

An int-valued expression is an expression that,
when it is evaluated, has an int result.

A float-valued expression is an expression that,
when it is evaluated, has a float result.

Jargon: int-valued & float-valued Expressions

26Arithmetic Expressions Lesson #1
CS1313 Spring 2024

In the absence of parentheses that explicitly state the order of
operations, the order of precedence (also known as the
order of priority) is:

 first: multiplication and division, left to right,
and then

 second: addition, subtraction, identity and negation, left to
right.

After taking into account the above rules,
the expression as a whole is evaluated left to right.

More broadly: PEMDAS (parentheses, exponentiation,
multiplication and division, addition and subtraction –
but C doesn’t have an exponentiation operator).

Precedence Order

27Arithmetic Expressions Lesson #1
CS1313 Spring 2024

 1 - 2 - 3 = -1 - 3 = -4 but
1 - (2 - 3) = 1 - (-1) = 2

 1 + 2 * 3 + 4 = 1 + 6 + 4 = 7 + 4 = 11 but
(1 + 2) * 3 + 4 = 3 * 3 + 4 = 9 + 4 = 13

 24 / 2 * 4 = 12 * 4 = 48 but
24 / (2 * 4) = 24 / 8 = 3

 5 + 4 % 6 / 2 = 5 + 4 / 2 = 5 + 2 = 7 but
5 + 4 % (6 / 2) = 5 + 4 % 3 = 5 + 1 = 6 but

(5 + 4) % (6 / 2) = 9 % (6 / 2) = 9 % 3 = 0

Rule of Thumb: If you can’t remember the precedence order
of the operations, use lots of parentheses.

But DON’T overdo your use of parentheses, because then
your code would be “write only” (unreadable).

Precedence Order Examples

28Arithmetic Expressions Lesson #1
CS1313 Spring 2024

#include <stdio.h>

int main ()
{ /* main */

printf("1 - 2 - 3 = %d\n", 1 - 2 - 3);
printf("1 - (2 - 3) = %d\n", 1 - (2 - 3));
printf("\n");
printf(" 1 + 2 * 3 + 4 = %d\n", 1 + 2 * 3 + 4);
printf("(1 + 2) * 3 + 4 = %d\n", (1 + 2) * 3 + 4);
printf("\n");
printf("24 / 2 * 4 = %d\n", 24 / 2 * 4);
printf("24 / (2 * 4) = %d\n", 24 / (2 * 4));
printf("\n");
printf(" 5 + 4 % 6 / 2 = %d\n", 5 + 4 % 6 / 2);
printf(" 5 + 4 % (6 / 2) = %d\n", 5 + 4 % (6 / 2));
printf("(5 + 4) % (6 / 2) = %d\n", (5 + 4) % (6 / 2));

} /* main */

Notice that a printf statement CAN output the value of
an expression (but that’s usually NOT RECOMMENDED).

Precedence Order Example: int #1

29Arithmetic Expressions Lesson #1
CS1313 Spring 2024

% gcc -o int_expressions int_expressions.c
% int_expressions
1 - 2 – 3 = -4
1 - (2 - 3) = 2

1 + 2 * 3 + 4 = 11
(1 + 2) * 3 + 4 = 13

24 / 2 * 4 = 48
24 / (2 * 4) = 3

5 + 4 % 6 / 2 = 7
5 + 4 % (6 / 2) = 6

(5 + 4) % (6 / 2) = 0

Precedence Order Example: int #2

30Arithmetic Expressions Lesson #1
CS1313 Spring 2024

#include <stdio.h>

int main ()
{ /* main */

printf("1.0 - 2.0 - 3.0 = %f\n", 1.0 - 2.0 - 3.0);
printf("1.0 - (2.0 - 3.0) = %f\n", 1.0 - (2.0 - 3.0));
printf("\n");
printf(" 1.0 + 2.0 * 3.0 + 4.0 = %f\n",

1.0 + 2.0 * 3.0 + 4.0);
printf("(1.0 + 2.0) * 3.0 + 4.0 = %f\n",

(1.0 + 2.0) * 3.0 + 4.0);
printf("\n");
printf("24.0 / 2.0 * 4.0 = %f\n", 24.0 / 2.0 * 4.0);
printf("24.0 / (2.0 * 4.0) = %f\n", 24.0 / (2.0 * 4.0));

} /* main */

Again, notice that a printf statement CAN output the value of
an expression (but that’s usually NOT RECOMMENDED).

Precedence Order Example: float #1

31Arithmetic Expressions Lesson #1
CS1313 Spring 2024

% gcc -o real_expressions real_expressions.c
% real_expressions
1.0 - 2.0 - 3.0 = -4.000000
1.0 - (2.0 - 3.0) = 2.000000

1.0 + 2.0 * 3.0 + 4.0 = 11.000000
(1.0 + 2.0) * 3.0 + 4.0 = 13.000000

24.0 / 2.0 * 4.0 = 48.000000
24.0 / (2.0 * 4.0) = 3.000000

Precedence Order Example: float #2

	Arithmetic Expressions Lesson #1 Outline
	A Less Simple C Program #1
	A Less Simple C Program #2
	A Less Simple C Program #3
	A Less Simple C Program #4
	A Less Simple C Program: Compile & Run
	Flowchart for my_add.c
	Named Constant Example Program
	Named Constant Example Program
	1997 Tax Program with Named Constants
	What is an Expression? #1
	What is an Expression? #2
	What is an Expression? #3
	What is an Expression? #4
	What is an Expression? #5
	What is an Expression? #6
	What is an Arithmetic Expression? #1
	What is an Arithmetic Expression? #2
	What is an Arithmetic Expression? #3
	Arithmetic Expression Examples
	Unary & Binary Arithmetic Operations
	Arithmetic Operations
	Structure of Arithmetic Expressions #1
	Structure of Arithmetic Expressions #2
	Jargon: int-valued & float-valued Expressions
	Precedence Order
	Precedence Order Examples
	Precedence Order Example: int #1
	Precedence Order Example: int #2
	Precedence Order Example: float #1
	Precedence Order Example: float #2

