
28 06/2013

PL
u

s

Deploying SQL
Injection Attacks in
POST Method Data to Hack Websites

It is easier to dump the database if SQL Injection Vulnerability exists
in the GET Method Parameters than in the case of POST Method
Parameters. Havij or SQLmap, Tools cannot substitute knowledge.
Here we explore how we can exploit an SQL Injection Vulnerability
existing in the POST Parameter with the help of a case study.

SQL Injection Vulnerabilities have been exploit-
ed since they were first discovered by ‘rain.
forest.puppy’ who wrote a paper about it in

the ‘Phrack’ magazine in 1998. It has been a favorite
of Hackers to gain access into the database which
contains vital information about users like ‘user-ids’,
‘passwords’, ‘emails’ etc. There are numerous blogs
and websites which detail the procedure to gain ac-
cess into the website’s database when such vulner-
ability exists in the GET parameter. But there aren’t
as many resources discussing the POST parameter
SQL injection. Before we can move any further it be-
comes incumbent to comprehend the difference be-
tween GET and POST Methods.

The Two HTTP Request methods:
GET and POST
In HTML, one can specify two different submission
methods for a form. The method is specified inside
a FORM element, using the METHOD attribute. The
difference between METHOD=”GET” (the default) and
METHOD=”POST” is primarily defined in terms of form
data encoding.

GET method
The GET method means retrieve whatever infor-
mation (in the form of an entity) is identified by the
Request-URL Example of GET Parameter data:

GET /<website>/?parameter_name1=value1¶meter_
name2=value2 HTTP/1.1

Because query strings are transferred openly in
GET requests, they are not used when dealing with
sensitive information being passed in web-forms.

POST method
The POST method is used to request that the ori-
gin server accept the entity enclosed in the request
as a new subordinate of the resource identified by
the Request-URI in the Request-Line

Usually POST method is used because the que-
ry stings are not passed openly in URL and it helps
keep the URL short and simple while sending a re-
quest. Example of POST Parameter data:

POST /website/ HTTP/1.1
parameter_name1=value1¶meter_name2=value2

SQL Injection Attacks
A SQL injection attack consists of insertion or “in-
jection” of a SQL query via the input data from the
client to the application. A successful SQL injection
exploit can read sensitive data from the database.

When an SQL Injection Vulnerability exists in the
GET parameter, it’s relatively easy to exploit it be-
cause we can clearly observe the parameters where
we can inject the SQL queries. For example in the
GET request above, we can identify two parameters:

parameter_name1 and parameter_name2

When it comes to POST data however, the Param-
eters are not so obvious since they are passed in
the background and are never really displayed on-
screen while an HTTP Request is passed. With-
out the knowledge of the Parameters, a Hack-
er will have problems figuring out where to Inject
SQL queries. The Tools available to exploit SQL In-
jections are no wiser, as they have to be explicitly
pointed to where the SQL queries are to be inject-

www.hakin9.org/en 29

ed. Hence it is up to the Hacker to somehow locate
the exact names of the POST Parameters.

Typically this can be done by viewing the source
code of the webpage. The source code could be
searched for forms where POST parameters are
being passed. However on bulky pages with long
lines of HTML, viewing source code and locating the
POST parameters can slow a Hacker down. How-
ever a [Control+F] search for the term ‘password’
or ‘login’ or ‘username’ can take us to the right spot
where the POST Parameters are named (Listing 1).

A much better way to determine information
about these Parameters would be to intercept on-
going requests from the browser in a local proxy.
These requests can then be studied to determine
which POST parameters are being passed.

In our case we have a website where the user-
code and password fields are making the use of
HTTP POST Method. The first thing we do is try to
manually check for the presence of SQL Injection
Vulnerabilities. A very common way to do this is to
put a ‘Single Quote’ in one of the fields (Figure 1)and

forward the request. In this case we receive an error
message as shown in Figure 2, which indicates that
the website is vulnerable to SQL Injection Attacks.
The input in the password field is not validated or fil-
tered before passing to the Database and hence the
MSSQL 2005 server generated the error message.
Information of this sort is vital for Hackers.

Once we have checked for the presence of the
SQL Vulnerability we can go ahead and try to ex-
ploit it. To do this we seek assistance from some
well known tools. One of these Tools is Burpsuite.

Burpsuite has become a prominent tool in the ar-
senal of Hackers. It provides a wide range of func-
tionality in a GUI Environment. Burpsuite has a
‘Proxy’ module that runs on a specified port on the
system and listens for connections (Default Port
is 8080). A browser can be configured to connect
to Burpsuite Proxy at port 8080. If the Burpsuite
Proxy is ‘running’ and the ‘Intercept is on’, the re-
quest from the browser would be intercepted in the
middle by the Burpsuite proxy which allows us to
modify requests and construct attacks.

Figure 1. Sending a ‘Single Quote’ in Password Field

Listing 1. Viewing Webpage Source code to locate POST
Parameters

 पासवर्ड

 :

</td>
<td width=”26%” height=”19” align=”center” >

 <input name=”PasswdText” size=”10”
style=”float: left; font-family: Times New
Roman; font-size: 14pt; font-weight: bold”
tabindex=”2” type=”password”>

</td>
<td width=”43%” height=”19” align=”center”>

</td>
</tr>

Figure 2. Received Error Message from the Database Server

Figure 3. POST Parameters intercepted by Burpsuite

30 06/2013

PL
u

s

Shown in Figure 3, are the POST method param-
eters being held in Burpsuite proxy. At this point
the POST Parameters can be grabbed and their
‘values’ can be changed. For our purpose we will
try to inject SQL Injection Attack Queries in these
Parameter values and see if we get success in
enumerating available databases.

Havij is an advanced SQL Injection Tool available
for windows. It has easy to use GUI and brings ex-
ploiting SQL Injection vulnerabilities down to sim-
ple point-and-click. In case of GET Request, you
can specify the URL containing the GET Parame-
ters and SQL would do its job. But in Case of POST
Parameters, Havij needs to know where to inject
SQL Injection queries. This location is provided to
Havij by %Inject _ Here% as shown in Figure 4.

In this case, we know that an SQL Injection Vul-
nerability lies in PasswordText Parameter (as con-
cluded by the error message shown to us by en-
tering a single quote in the Password field), so we
%Inject _ Here%.

Havij immediately recognizes by the error mes-
sage shown, that the Database Server running is
‘MSSQL 2005’ and grabs the name of the avail-
able database (Figure 5). Next we can pull tables,
columns and data from this database (Figure 6).
In one of these tables we find the one table that
contains the ‘UserCode’ and ‘Password’ columns
(Figure 7). We pull the data in this table and no-
tice that passwords are stored as Plaintext in the
Database. This is a serious Negligence on part of
the Website Administrator. If the Passwords were
stored in hashed format, the Hacker would have to
crack the Hashes. But in this case, it is not so. All
5 Users are compromised and we can use these 5

Figure 4. Passing on POST Parameters to Havij

Figure 5. Database Server Recognized as MSSQL 2005 and
DB Name Enumerated

Figure 6. Pulling Tables from the Database

Figure 7. ‘password’ field found in one of the tables ‘PID_
userdat’

www.hakin9.org/en 31

Passwords to log into each of their accounts (Fig-
ure 8). SQLmap is another great tool that can be
used for SQL Injections for both GET and POST
data. However this is a command line tool and pro-
vides no GUI. It is available for Linux Platform. Fig-
ure 9 shows the same SQL Vulnerability being ex-
ploited by SQLmap.

What is better, Havij or SQLmap?
While Havij is a proprietary tool, SQLMAP is open
source. Havij is available for Windows Only where
as SQLmap runs on any OS running a Python
Compiler. Havij has the upper hand in terms of
providing ease-of-use to the new inexperienced
user because of its point and click GUI that SQL-
map lacks. However Hackers argue that SQLmap
is much more flexible than Havij. It’s impossible to
choose a winner unless you work on both and fig-
ure out what works best for your needs.

Conclusion
SQL Injection in POST data can be a little tricky if
you don’t know where to inject the queries. How-
ever with the aid of tools like Burpsuite Proxy we
can intercept such POST Parameters with ease
and then supply these to an automatic SQL Injec-
tion Tool and sit back to see if it can enumerate
the databases and dump data. SQL Injection at-
tacks have been widely misused since 1998 and
it’s amazing to see how many websites out there
are still vulnerable to such attacks and many of

Figure 8. Logging into Hacked Accounts

Figure 9. Exploiting the SQL Injection Vulnerability in the
POST Parameter using SQLmap

them are downright negligent when they store sen-
sitive information like passwords in plaintext. The
need for securing websites against SQL Injection
attacks can’t be overlooked. Some of the points to
be kept in mind to secure a website against such
attacks are:

• Input Validation
• Parameterized Queries
• Using Stored Procedures
• Suppressing Error Messages that reveal infor-

mation to the Hacker
• Installing Database by using a Least-Privileges

account
• Encrypting Sensitive data (Passwords)

PRANSHU BAjPAI
Pranshu Bajpai is a Computer Security
Professional specialized in ‘Systems,
Network and Web Penetration Test-
ing’. He is completing his Master’s in
Information Security from the Indian
Institute of Information Technology.
Currently he is also working as a Free-

lance Penetration Tester on a Counter-Hacking Project
in a Security Firm in Delhi, India, where his responsibil-
ities include’Vulnerability Research’, ‘Exploit kit deploy-
ment’, ‘Maintaining Access’ and ‘Reporting’. He is an ac-
tive speaker and author with a passion for Information
security.

SAURABH mISHRA
Saurabh Mishra is a Cyber Security
Professional. His area of interest in-
cludes Network & Web Penetration
Testing, Attack Research, Defense
Strategies, Post Exploitation Research

and malware analysis. He has years of experience in
Penetration Testing of many Government Organizations
of India and Global Corporate Giants. He has discovered
vulnerabilities in hundreds of Govt. and corporate web-
sites & servers. Currently he is working as a Penetration
Tester on a Hack-Defense Project in Cyber Security Divi-
sion of National Informatics Centre in Delhi, India with a
wide-range of responsibilities.

On the Web
• http://itsecteam.com/products/havij-advanced-sql-injec-

tion/ – Havij
• http://sqlmap.org/ – SQLmap
• http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html –

HTTP Methods

http://itsecteam.com/products/havij-advanced-sql-injection/
http://itsecteam.com/products/havij-advanced-sql-injection/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://sqlmap.org/

	Deploying SQL Injection Attacks in POST Method Data to Hack Websites

	Previouse Page:
	Go To Next Page:
	Previouse Page 1:
	Go To Next Page 1:

