# Сравнительная оценка влияния молекулярного рассеяния и общего содержания озона в атмосфере на характеристики УФ-радиации

И.Н. Мельникова<sup>1</sup>, Т.А. Мурина<sup>2</sup>, И.А. Мазепа<sup>3</sup>, И.С. Гаранина<sup>3</sup>

<sup>1</sup> Научно-исследовательский центр экологической безопасности РАН 197110, Санкт-Петербург, ул. Корпусная, 18 E-mail: <u>Irina.Melnikova@pobox.spbu.ru</u> <sup>2</sup> Государственный политехнический университет <sup>3</sup> Российский государственный гидрометеорологический университет

Влияние УФ-радиации на живые организмы на поверхности земли очень важно, его воздействие, как положительное, так и отрицательное, обсуждалось многократно. Атмосфера Земли задерживает солнечную радиацию с длиной волны короче 0,28 мкм практически полностью. В качестве основного фактора в атмосфере, ослабляющего УФ-радиацию, фигурирует атмосферный озон, неравномерно распределенный по всей толще атмосферы и имеющий максимум на высоте 10-15 км. Весьма значительно ослабляет УФ-радиацию молекулярное рассеяния в атмосфере, воздействие которого оценено в работе. Для этого была рассмотрена модель однородной атмосферы для 6 длин волн: 0,28, 0,30, 0.32, 0,34, 0,36, 0,40 мкм, для 2-х значений атмосферного давления, соответствующих уровню моря и высоте 5000 м: 1000 и 500 мб, и для 3-х значений содержания озона в атмосфере: нормальное для лета и средних широт, уменьшенное на 10 и на 50%. Альбедо подстилающей поверхности принято 0 и 0,8. Расчет потоков солнечной УФ радиации и доли рассеянного света в потоке пропущенной солнечной радиации в условиях безоблачной атмосферы методом Эддингтона. Рассчитывались отраженный и пропущенный потоки солнечной УФ-радиации в зависимости от зенитного угла солнца, а также их отношение и доля рассеянной радиации в пропущенном потоке.

### Введение

Влияние УФ-радиации на живые организмы на поверхности земли, как положительное, так и отрицательное, многократно обсуждалось [1-3]. Атмосфера Земли задерживает солнечную радиацию с длиной волны короче 0,28 мкм практически полностью. Наиболее биологически активной является УФ-В радиация в спектральном диапазоне 0,29-0,32 нм и поэтому зачастую радиация в этом диапазоне измеряется в эритемных единицах. В качестве основного фактора в атмосфере, ослабляющего УФ-радиацию, обычно рассматривается атмосферный озон, неравномерно распределенный по всей толще атмосферы и имеющий максимум на высоте 10-15 км. Однако, весьма значительно ослабляет УФ-радиацию также и молекулярное рассеяния в атмосфере. Данная работа посвящена оценке влияния молекулярного рассеяния на уменьшение потока пропущенной УФрадиации у поверхности земли. Для этого была рассмотрена простейшая модель однородной атмосферы для 2-х значений атмосферного давления, соответствующих уровню моря и высоте 5000 м: 1000 и 500 мб, и 3-х значений содержания озона в атмосфере: нормальное для лета и средних широт, уменьшенное на 10 и на 50%. Напомним, что самые значительные наблюдаемые уменьшения содержания озона составляют 30%. Потоки УФ-излучения рассчитывались в ряде длин волн в диапазоне 0,28-0,40 мкм. Выбрано два значения альбедо подстилающей поверхности 0 и 0,8. Рассматриваются потоки отраженной и пропущенной радиации, поток на вертикальную поверхность и некоторые другие характеристики.

## Метод расчета

Расчет потоков солнечной УФ радиации и доли рассеянного света в потоке пропущенной солнечной радиации в условиях безоблачной атмосферы методом Эддингтона [4-6]. Оптическая толщина атмосферы обозначим  $\tau_0$ . Рассчитывались отраженный и пропущенный потоки солнечной УФ-радиации на горизонтальную и вертикальную поверхности в единицах потока от Солнца на верхней границе атмосферы  $S_{\lambda}\mu_0$  в зависимости от зенитного угла солнца, а также их отношение и доля рассеянной радиации в пропущенном потоке.

Выражения для полусферического потока отраженной солнечной радиации на верхней границе атмосферы (плоское альбедо атмосферы)  $F^{\uparrow}(0,\mu_0)$  и потока пропущенной радиации у земной поверхности (освещенность поверхности или пропускание)  $F^{\downarrow}(\tau_0,\mu_0)$  получаются путем решения уравнений для полусферических потоков с граничными условиями  $F^{\uparrow}(\tau_0,\mu_0)=F^{\downarrow}(0,\mu_0)=0$ , что соответствует допущению: альбедо поверхности A=0, где  $\mu_0$  - косинус зенитного угла Солнца и имеют вид следуя обозначениям [4,5]:

$$F^{\uparrow}(0,\mu_{0}) = m_{6} \left[ (1 - \kappa \mu_{0})(a_{2} + \kappa \gamma_{3})e^{\kappa \tau_{0}} - (1 + \kappa \mu_{0})(a_{2} - \kappa \gamma_{3})e^{-\kappa \tau_{0}} - 2\kappa(\gamma_{3} - a_{2}\mu_{0})e^{-\frac{\tau_{0}}{\mu_{0}}} \right]$$

$$F^{\downarrow}(\tau_{0},\mu_{0}) = \left[ 1 - m_{6}(m_{1} - m_{2} - m_{3}) \right]e^{-\frac{\tau_{0}}{\mu_{0}}}$$

где введены обозначения:

$$m_{1} = (1 + \kappa \mu_{0})(a_{1} + \kappa \gamma_{4})e^{\kappa\tau}, \qquad m_{2} = (1 - \kappa \mu_{0})(a_{1} - \kappa \gamma_{4})e^{-\kappa\tau},$$

$$m_{3} = 2\kappa(\gamma_{4} + a_{1}\mu_{0})e^{\tau/\mu_{0}}, \qquad m_{4} = (\kappa + \gamma_{1})e^{\kappa\tau} + (\kappa - \gamma_{1})e^{-\kappa\tau},$$

$$m_{5} = 1 - \kappa^{2}\mu_{0}^{2}, \qquad m_{6} = \frac{\omega'}{m_{4}m_{5}},$$

$$a_{1} = \gamma_{1}\gamma_{4} + \gamma_{2}\gamma_{3}, \qquad a_{2} = \gamma_{1}\gamma_{3} + \gamma_{2}\gamma_{4},$$

$$\kappa = \sqrt{\gamma_{1}^{2} - \gamma_{2}^{2}}$$

$$\gamma_{1} = \frac{1}{4}[7 - \omega'(4 + 3g')], \qquad \gamma_{2} = -\frac{1}{4}[1 - \omega'(4 - 3g')]$$

$$\gamma_{3} = \frac{1}{4}(2 - 3g'\mu_{0}), \qquad \gamma_{4} = 1 - \gamma_{3},$$
(2)
(3)

Здесь: g' – параметр асимметрии индикатрисы рассеяния,  $\omega'$  – альбедо однократного рассеяния. Учет альбедо поверхности производился согласно известным соотношениям, приведенным, например, в [6]:

$$\overline{F}^{\uparrow}(0,\mu_0) = F^{\uparrow}(0,\mu_0) + A_s V(\tau') \overline{F}^{\downarrow}(\tau_0,\mu_0)$$

$$\overline{F}^{\downarrow}(\tau_0,\mu_0) = \frac{F^{\downarrow}(\tau_0,\mu_0)}{1 - A_s A(\tau_0)}$$
(4)

где  $A(\tau=0)$  и  $V(\tau_0)$  - сферическое альбедо и пропускание выражаются следующими интегральными соотношениями:

$$A(\tau = 0) = 2\int_{0}^{1} F^{\uparrow}(0, \mu_{0})\mu_{0}d\mu_{0}$$

$$V(\tau_{0}) = 2\int_{0}^{1} F^{\downarrow}(\tau_{0}, \mu_{0})\mu_{0}d\mu_{0}$$
(5)

Откуда, выполняя интегрирование, можно получить выражения для величины A(0) в случае диффузной радиации, следуя [4]

$$A(0) = \frac{\gamma_2 \left( 1 - e^{-2\kappa\tau_0} \right)}{\kappa + \gamma_1 + (\kappa - \gamma_1) e^{-2\kappa\tau_0}}$$
(6)

и для величины  $V(\tau_0)$  согласно [4,5]):

$$V(\tau_0) = \frac{2\kappa e^{-\kappa\tau_0}}{\kappa + \gamma_1 + (\kappa - \gamma_1)e^{-2\kappa\tau_0}}$$
(7)

Причем, согласно [6] можно принять приближенное равенство:

$$A(0) \approx \frac{4}{4+3(1-g)\tau_0}$$
.

Доля рассеянного света в падающем потоке может быть вычислена по формуле

$$tt = \frac{\overline{F}^{\downarrow}(\tau_0, \mu_0) - \exp(-\frac{\tau_0}{\mu_0})}{\overline{F}^{\downarrow}(\tau_0, \mu_0)}$$
(8)

Для анализа характеристик радиации, выходящей из слоя, оказывается полезным исследовать отношение отраженного потока на верхней границе атмосферы к потоку, пропущенному слоем атмосферы (не путать с альбедо поверхности, где в определении стоит поток вверх, отраженный поверхностью на уровне нижней границы атмосферы):

$$rr = \frac{\overline{F}^{\uparrow}(\tau = 0, \mu_0)}{\overline{F}^{\downarrow}(\tau_0, \mu_0)}.$$

Для оценки потенциальной УФ-опасности для здоровья человека следует иметь значения потоков прямой и диффузной радиации на вертикальную поверхность (поток УФ-радиации, приходящий на кожу стоящего вертикально человека), применяя следующие соотношения для потока прямой радиации на вертикальную поверхность, ориентированную на солнце:

$$\overline{F}^{\downarrow}_{vert}(\tau_0,\mu_0)_{direct} = \frac{F^{\downarrow}(\tau_0,\mu_0)}{2}$$
(9)

и для потока суммарной радиации на вертикальную поверхность, ориентированную на солнце:

$$\overline{F}^{\downarrow}_{vert}(\tau_0,\mu_0)_{Sum} = \frac{\overline{F}^{\downarrow}(\tau_0,\mu_0)}{2} + \overline{F}^{\downarrow}(\tau_0,\mu_0)\sin(\mu_0)$$
(10)

Соответственно, поток суммарной радиации на вертикальную поверхность, ориентированную от солнца выражается формулой:

$$\overline{F}^{\downarrow}_{vert}(\tau_0,\mu_0)_{Sum} = \overline{F}^{\downarrow}(\tau_0,\mu_0)\sin(\mu_0)$$
(11)

Для получения потоков в энергетических единицах необходимо полученные значения умножить на величину внеатмосферного значения потока и косинус зенитного угла солнца  $S_{\lambda}\mu_{0}$ .

## Оптическая модель атмосферы

Для расчета радиационных характеристик необходимо задать оптическую модель атмосферы – набор оптических параметров, описывающих среду и падающее излучение. Расчет характеристик радиации проводился в 6 длинах волн: 0,28, 0,30, 0.32, 0,34, 0,36, 0,40 мкм. Будем рассматривать простейшую вертикально однородную модель атмосферы, так как согласно выводу, сделанному в [6] при определении потоков пропущенной радиации подобное приближение внесет ошибку в пределах нескольких процентов (<10%). Считаем, также, что в молекулярной атмосфере присутствуют атмосферные аэрозоли, рассеивающие и поглощающие свет. Введем следующие величины:

• оптическая толщина безоблачной атмосферы  $\tau_0 = \tau_{a,p} + \tau_{a,n} + \tau_{Rel} + \tau_{oz}$ ,

где  $\tau_{ap}$  - оптическая толщина аэрозольного рассеяния,  $\tau_{an}$  - оптическая толщина аэрозольного поглощения,  $\tau_{Rel}$  и  $\tau_{oz}$ - оптические толщины молекулярного (рэлеевского) рассеяния и поглощения озоном;

• альбедо однократного рассеяния (вероятность выживания кванта)  $\omega = (\tau_{ap} + \tau_{Rel})/\tau_0$ ;

Модель атмосферы в нашем случае будем описывать следующими параметрами, значения которых выбраны согласно данным [8]:

 $\tau_{\rm Rel}$  1000мб - оптическая толщина молекулярного рассеяния атмосферы на уровне моря;

*т*<sub>Rel</sub> 500мб - оптическая толщина молекулярного рассеяния атмосферы на высоте 5 км;

 $\tau_{ap}$  и  $\tau_{an}$  аэрозольная оптическая толщина рассеяния и поглощения;

тог оптическая толщина поглощения озона для нормального содержания (I);

0,9 *т*<sub>ог</sub> – оптическая толщина поглощения озона для содержания, уменьшенного на 10% (II);

0,5 *т*<sub>oz</sub> – оптическая толщина поглощения озона для содержания, уменьшенного вдвое (III);

 $\tau_{,i,1000}$  и  $\tau_{,i,500}$ - суммарная оптическая толщина для і-той модели атмосферы на уровне моря и на высоте 5 км;

 $\omega_{1,1000}$  и  $\omega_{1,500}$  – альбедо однократного рассеяния для і-той модели атмосферы на уровне моря и на высоте 5 км;

 $S_{\lambda}$  – спектральная солнечная постоянная по данным [7];

Спектральные значения оптических параметров приведены в Табл. 1.

| Модель | λ, мкм                                             | 0,28    | 0,30    | 0,32    | 0,34     | 0,36     | 0,40    |
|--------|----------------------------------------------------|---------|---------|---------|----------|----------|---------|
|        | $	au_{ m Rel}$ 1000мб                              | 1,5160  | 1,1524  | 0,8885  | 0,6974   | 0,5547   | 0,3640  |
|        | $\tau_{\rm Rel}$ 500мб                             | 0,7580  | 0,5762  | 0,4443  | 0,3487   | 0,2774   | 0,1820  |
|        | $	au_{an}$                                         | 0,3870  | 0,3711  | 0,3550  | 0,3390   | 0,3390   | 0,2760  |
|        | $	au_{ m an}$                                      | 0,0400  | 0,0400  | 0,0400  | 0,0400   | 0,0400   | 0,0400  |
|        | <i>т</i> <sub>рас</sub> 1000мб                     | 1,9030  | 1,5235  | 1,2435  | 1,0364   | 0,8937   | 0,6400  |
|        | 500мб                                              | 1,1450  | 0,9473  | 0,7993  | 0,6877   | 0,6164   | 0,4580  |
| Ι      | $	au_{ m oz}$                                      | 36,140  | 3,4450  | 0,3061  | 0,0220   | 0,61(-3) | 0,0000  |
| II     | $0.9 \tau_{oz}$                                    | 32,431  | 3,1001  | 0,2750  | 0,0191   | 0,55(-3) |         |
| III    | $0.5 \tau_{oz}$                                    | 18,070  | 1,7233  | 0,1530  | 0,0110   | 0,30(-3) |         |
| т      |                                                    | 20.000  | 5 0005  | 1 5000  | 1 000 4  | 0.0110   | 0.6000  |
| I<br>I | $	au_{ m I,1000}$                                  | 38,080  | 5,0085  | 1,5896  | 1,0984   | 0,9440   | 0,6800  |
|        | $	au_{ m II,1000}$                                 | 34,374  | 4,6276  | 1,5585  | 1,0955   | 0,9440   |         |
| 111    | $	au_{\mathrm{III},1000}$                          | 20,013  | 3,0068  | 1,4365  | 1,0874   | 0,9430   |         |
| Ι      | $\omega_{0\mathrm{I},1000}$                        | 0,04044 | 0,30418 | 0,78227 | 0,94355  | 0,95657  | 0,94118 |
| II     | $\omega_{0 \text{ II},1000}$                       | 0,05934 | 0,32922 | 0,79788 | 0,94605  | 0,95657  |         |
| III    | <b>W</b> <sub>0 III,1000</sub>                     | 0,10566 | 0,50669 | 0,86564 | 0,953099 | 0,95758  |         |
|        |                                                    |         |         |         |          |          |         |
| Ι      | $	au_{ m I,500}$                                   | 37,325  | 4,4670  | 1,1454  | 0,7497   | 0,6671   | 0,4980  |
| II     | $	au_{ m II,500}$                                  | 33,616  | 4,1220  | 1,1143  | 0,7468   | 0,6665   |         |
| III    | $	au_{ m III,500}$                                 | 19,255  | 2,7451  | 0,9923  | 0,7387   | 0,6640   |         |
| Ι      | $\omega_{0 L500}$                                  | 0,03067 | 0,18914 | 0,69784 | 0,91730  | 0,93089  | 0,91967 |
| II     | $\omega_{0.11,500}$                                | 0,03448 | 0,20471 | 0,71731 | 0,92086  | 0,93173  |         |
| III    | $\omega_{0 \text{ III } 500}$                      | 0,05946 | 0,31505 | 0,8055  | 0,93096  | 0,93524  |         |
|        | · 11,500                                           |         |         |         |          |          |         |
|        | $S_{\lambda}$ ,Вт м <sup>-2</sup> нм <sup>-1</sup> | 87,9615 | 305,720 | 793,823 | 1195,79  | 1294,811 | 1850,01 |

Таблица 1. Оптическая модель однородной безоблачной атмосферы в УФ диапазоне

Альбедо подстилающей поверхности выбрано 0 и 0,8.

Принято приближение изотропного рассеяния (g = 0), так как в данном рассмотрении нас интересуют потоки восходящего и нисходящего излучения, а форма релеевской индикатрисы близка к изотропной и оказывает влияние только на угловое распределение интенсивности излучения. Расчет потоков выполнен для зенитных углов солнца: 0, 15, 30, 45, 60, 75 градусов.

Результирующими величинами являются:

Потоки отраженной и пропущенной радиации; отношение отраженного атмосферой потока на верхней границе к пропущенному потоку на уровне подстилающей поверхности; доля диффуз-

ной радиации в пропущенном потоке; поток на вертикальную плоскость, ориентированную к солнцу и от солнца. Все величины приводятся на рисунках для зенитного угла солнца 45°.

### Результаты расчетов

На рисунках представлены рассчитанные характеристики УФ-радиации для зенитного угла солнца 45°.

На рис. 1 представлена спектральная зависимость в логарифмическом масштабе отношения отраженного атмосферой потока к пропущенному потоку, которая показывает, насколько отраженный атмосферой поток УФ радиации превосходит пропущенный к подстилающей поверхности в диапазоне 0,28 – 0,30 мкм. Видно, что если для длин волн больше 0630 мкм разница между моделями (содержанием озона) и давлением в атмосфере практически отсутствует, то для длины волны короче 0,30 мкм содержание озона заметно влияет на рассматриваемую величину.



Рис. 1 Отношение отраженного потока к пропущенному в зависимости от длины волны для моделей атмосферы I (отмечено ромбами) и II (отмечено треугольниками) и двух случаев атмосферного давления 500 (штриховая линия) и 1000 мб (сплошная линия)

Спектральная зависимость отраженного потока (рис. 2) формируется двумя процессами – релеевским рассеянием, определяющим возрастание в коротковолновой области и уменьшение, вызванное поглощением озоном. Альбедо поверхности очень слабо влияет на отраженный поток и на величину отношения отраженного потока, к пропущенному.



Рис. 2. Поток отраженной радиации в относительных единицах S<sub>A</sub>µ<sub>0</sub>

На рис. З представлена доля диффузной радиации в потоке на подстилающую поверхность. Видно, как меняется по спектру доля рассеянной УФ-радиации в пропущенном потоке для 2-х моделей содержания озона в атмосфере и 2-х значений альбедо подстилающей поверхности. Увеличение альбедо поверхности от 0 до 0,8 приводит к увеличению доли рассеянной радиации, причем влияние альбедо поверхности значительнее для длин волн длиннее 0,3 мкм. Вполне закономерно сильное влияние величины атмосферного давления на увеличение доли диффузной радиации. Содержание озона в атмосфере выявляется в области длин волн короче 0,30 мкм.



Рис. 3. Доля диффузной радиации в пропущенном потоке УФ-радиации в зависимости от длины волны

Спектральные зависимости потока, пропущенного атмосферой к подстилающей поверхности, в энергетических единицах демонстрируются на рис. 4. Увеличение альбедо поверхности до 0,8 по влиянию на поток у подстилающей поверхности равнозначно уменьшению содержания озона на 50%. Так же как и увеличение высоты над уровнем моря до 5000 м (уменьшение давление до 500 мб). Интересно, что влияние увеличения альбедо поверхности на поток УФ-радиации у поверхности оказывается значительнее, чем уменьшение давления.



Рис. 4. Спектральные зависимости потока пропущенной УФ-радиации на горизонтальную поверхность в энергетических единицах для 2-х моделей атмосферы (I – сплошная или штриховая линии) и III – пунктирная линия), 2-х значений атмосферного давления (1000 мб – отмечено квадратами и 500 мб – треугольниками) и 2-х значений альбедо поверхности (A=0 – прозрачные значки на кривых и A=0,8 – сплошные значки)

Спектральная зависимость потока на вертикальную поверхность показаны на рис. 5, а угловые зависимости – на рис. 6. Поток на вертикальную поверхность хорошо моделирует освещение тела стоящего человека. Оказывается, что при освещении солнцем под углом  $45^{\circ}$  на вертикальную поверхность поток при нормальном содержании озона (особенно в случае альбедо поверхности A=0,8) равен и даже превосходит поток УФ-радиации при содержании озона, уменьшенном вдвое. Из угловой зависимости потоков на горизонтальную и вертикальную поверхности следует, что при зенитных углах освещения превышающих  $30^{\circ}$  поток на вертикальную поверхность превосходит поток на горизонтальную поверхность. Причем на длине волны 0,32 мкм и углах освещения больших  $60^{\circ}$  поток в атмосфере с нормальным содержанием озона примерно равен потоку с уменьшенным вдвое содержанием озона.



Рис. 5. Спектральные зависимости потока пропущенной УФ-радиации на вертикальную поверхность в энергетических единицах для модели атмосферы I, 2-х значений атмосферного давления (1000 мб – отмечено квадратами и 500 мб – треугольниками) и 2-х значений альбедо поверхности (A=0 – прозрачные значки на кривых и A=0,8 – сплошные значки). Вертикальная поверхность ориентирована к солнцу (сплошные линии) и от солнца (штриховые)



Рис. 6. Угловые зависимости потока пропущенной УФ-радиации на горизонтальную (квадраты) и вертикальную (треугольники) поверхности для длин волн 0,30 и 0,32 мкм (указано на рис.) для атмосферного давления 1000 мб и моделей атмосферы I (прозрачные значки) и II (сплошные значки)

# Заключение

В качестве основного компонента в атмосфере, ослабляющего УФ-радиацию, является атмосферный озон. Однако, весьма важным ослабляющим фактором следует признать молекулярное рассеяния в атмосфере, на что указывает сравнение результатов в случае атмосферного давления 1000 и 500 мб. Также большое влияние оказывает геометрия освещения и альбедо поверхности. Так, при рассмотренных сочетаниях указанных факторов поток УФ-радиации при нормальном содержании озона в атмосфере превосходит поток при содержании озона, уменьшенном вдвое.

# Литература

1. *Kondratyev K.Y., Varotsos C.A.* Global total ozone dynamics - Impact on surface solar ultraviolet radiation variability and ecosystems // *Environmental Science and Pollution Research* 1996 V. 3 No. 4, P. 205-209.

2. *Kondratyev K.Y., Varotsos C.A.* Global total ozone dynamics - Impact on surface solar ultraviolet radiation variability and ecosystems .1. Global ozone dynamics and environmental safety // Environmental Science and Pollution Research, 1996, V. 3, No. 3, P. 153-157.

3. Varotsos C., Kondratyev K.Y., Katsikis S. On the relationship between total ozone and solar ultraviolet radiation at St Petersburg, Russia // Geophysical Research Letters, 1995, V. 22, No. 24, P. 3481-3484.

4. *Harshvardhan, M.D. King.* Comparative accuracy of diffuse radiative properties computed using selected multiple scattering approximations // Journal of the Atmospheric Sciences, V. 50, 1993, P. 247-259.

5. *King*, *M.D.*, *Harshvardhan*. Comparative accuracy of the albedo, transmission, and absorption for selected multiple scattering approximations // NASA Reference Publications, 1160, 41 p.

6. Минин И.Н. Теория переноса излучения в атмосферах планет // М.: Наука, 1988. 264 с.

7. Jacqueline Lenoble. Laboratoire d'Optique Atmospherique\UFR de Physique Bat. P5\USTL\59655 Villeneuve d'Ascq\France\Universite des Sciences et Technologies de Lille\station name Villard\_St\_Pancrace // частное сообщение.

8. Радиационные характеристики атмосферы и земной поверхности, под ред. К.Я. Кондратьева // Л.: Гидрометеоиздат, 1969. 564 с.