49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference <br> 16t AlAA 2008-1872
7 - 10 April 2008, Schaumburg, IL

Vibration Response of Cracked Cantilevered Plates
Near Natural Frequency Veerings

Akira Saito* and Matthew P. Castanier!
Department of Mechanical Engineering
The University of Michigan, Ann Arbor, MI 48109-2125, USA

Christophe Pierre?
Faculty of Engineering
McGill University, Montreal, Quebec, H3A 2K6, Canada

In this paper, the linear and nonlinear vibration response of a cracked cantilevered plate is
investigated as the crack location or crack length is varied. Of particular interest is the vibration
response in parameter regions where the natural frequency loci show veerings. For a represen-
tative finite element model, it is shown that the veerings due to crack length variation involve the
switching of mode shapes and modal interactions. The nonlinearity caused by the crack closing
effect is then introduced, and its effect on the vibration response near the veerings is discussed. A
hybrid-interface method of component mode synthesis is employed to generate a compact reduced-
order model of the system while retaining the crack surface degrees of freedom (DOF) as physical
DOF so that the nonlinear boundary conditions caused by the contact may be enforced. The non-
linear forced response analysis is carried out using a hybrid frequency/time domain method, which
is based on the method of harmonic balance. The nonlinear vibration response near loci veerings
and crossings due to the variation of crack length is investigated in detail. Furthermore, an al-
ternative method for estimating the nonlinear resonant frequency is introduced by extending the
bilinear frequency approximation, and its advantages and limitations are addressed.

I. Introduction

T is well known that the natural frequencies of cracked elastic structures differ from their healthy counter-
Iparts. A comprehensive literature survey of research activities regarding the vibration problems of various
structures with cracks is found in the work by Dimarogonas.! In this paper, linear and nonlinear vibration of
a cantilevered rectangular plate with a crack is investigated. The primary focus of this study is the vibration
response near the eigenvalue loci veerings and crossings that occur as the crack length or location is varied.

Eigenvalue loci veerings, also known as avoided crossings, or eigenvalue avoidance, are observed in
plots of eigenvalues versus a system parameter. In particular, a veering refers to a region in which two
eigenvalue loci approach each other and almost cross as the system parameter is changed, but instead of
crossing they appear to veer away from each other, with each locus then following the previous path of the
other.> Although this phenomenon was initially regarded as an “aberration” caused by approximation meth-
ods applied to the original infinite-dimensional eigenvalue problems,’ it was shown by Perkins and Mote*
that the phenomenon can be observed for continuous systems. Since then, several researchers have noted
and investigated the relation between veerings and mode localization phenomena.>~’ In conjunction with
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the localization, it is known that the veerings are associated with coupling between the modes, which is typ-
ically seen as the coupled mode shapes near the veering regions or even between modes in different physical
domains, such as electrical and mechanical domains.® These phenomena have also been investigated for the
damaged structures, such as two-span weakened column,’ and cables with damage.!?

For vibration problems of cracked rectangular plates, variations in natural frequencies and mode shapes
due to crack length variations have been known for a long time. The initial contribution to the study of
vibration problems of cracked rectangular plates was made by Lynn and Kumbasar,!! who calculated the
vibration frequency drop of plates due to cracking by numerically solving the Fredholm integral equation
of the first kind. Petyt'? also investigated the variation of frequency of fundamental mode due to crack
length by experiments and a finite element method. Those contributions were followed by a number of
investigations based on plate vibration theory, including those by Stahl and Keer,'? Hirano and Okazaki,'*
Solecki,'> and Yuan and Dickinson.'® Although the trajectories of frequencies versus crack length appear
in these articles, the veering regions and associated dynamics of the cracked plates near those regions were
not highlighted. Liew e al.'” applied a domain decomposition method to obtain the out-of-plane vibration
frequencies of cracked plates, and they not only confirmed the results found by Stahl and Keer'? and Hirano
and Okazaki'* but also considered a wider range of crack length ratio. It is noted that they examined a
plate with a centrally-located internal crack and reported frequency crossings instead of veerings. In other
words, for this case they observed that two approaching eigenvalue loci would intersect as crack length
increased, which is also known as crossover. More recently, Ma and Huang'® also reported variations in
natural frequencies and associated mode shapes due to changes in crack length for a square plate with an
edge crack, based on experiments and finite element analysis. As was mentioned by many others, Ma
and Huang stated that the nonlinearity due to the crack closing effect has to be considered for the in-plane
bending case, but crack closing was neglected in their study because their work focused on the out-of-plane
bending vibration.

In the studies of cracked rectangular plate vibrations reviewed above, the in-plane bending vibration
was not considered and thus the crack closing effect was not examined. In contrast, the issue of crack clos-
ing effect naturally arose in the studies of vibration problems of cracked beams, for which in-plane bending
vibration is typically of primary research interest. For the study of cracked Bernoulli-Euler beams, a pioneer-
ing contribution was made by Christides and Barr in their application of the Hu-Washizu-Barr variational
principle to the cracked beam problem.!® Further extension was made by Shen and Pierre for Bernoulli-
Euler beams with symmetric cracks®® and single-edge cracks.”! A generalization to the theory was made
by Chondros et al.*2 However, in these studies, the nonlinear effect was not considered. Gudmundson®
pointed out that measured natural frequencies of a beam with a fatigue crack differ from those calculated
without considering the crack closing effect. He also addressed the significance of the crack closing effect
for accurately predicting the frequency shifts due to cracking. The crack closing effect is also known to
cause phenomena that appear only in nonlinear response cases, such as superharmonic and subharmonic
resonances”*? and period doubling bifurcations.?®?’

One of the methods to estimate the (primary) resonant frequencies of the cracked beams is the appli-
cation of the bilinear frequency approximation. This was initially introduced for calculating the effective
resonant frequencies of piecewise linear oscillators (e.g., Shaw and Holmes??), and it has been used for
approximating the effective vibration frequency of multi-DOF piecewise linear systems (e.g., Butcher®). It
has also been used for estimating the natural frequency of cracked beams.?”-3%3! Chati er al.’? extended
the concept of the bilinear frequency to study the vibration of a cracked beam using a multi-DOF oscillator
model. They assumed that if the crack is sufficiently shallow, the actual and bilinear mode shapes are close
to each other, and thus the frequency can be approximated by the bilinear frequency. Most of the methods re-
viewed above assume that the crack has only two states—closed or open. This assumption is accurate when
the relative motion of the crack surfaces is simple, such as the in-plane bending vibration of cantilevered
beams. However, in general, the motion of crack surfaces is more complicated, and there may be more than
two states. For example, crack closing may proceed gradually and/or occur at different regions on the crack
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surfaces at different times.

The closing crack was also modeled by equivalent linear model by Kisa and Brandon,>? with the as-
sumption that the stiffness change due to a crack can be expressed as a linear combination of the stiffness
matrix of uncracked beam and that due to cracking and contact. An emerging approach for dealing with
this issue is the application of Nonlinear Normal Modes.3*3¢ However, the applicability of this approach is
still limited to simple structures or simplified vibration problems, due mostly to its computational costs for
constructing the nonlinear normal modes.

With regard to the veering phenomena for nonlinear structural systems, very little is known about how
the nonlinearities influence the response near the veering regions. Lacarbonara ef al.>’ investigated nonlin-
ear modal interactions of an imperfect beam near veering regions, the nonlinearities of which are quadratic
and cubic nonlinearities due to large-amplitude vibration, through perturbation and bifurcation analyses.
They observed distinguishing features in the response, such as mode localization due to nonlinear coupling
and frequency-island generation, which illustrates the richness of the dynamics in veering regions for non-
linear structural systems.

In this paper, the vibration of cracked cantilevered plates in frequency veering regions is investigated. As
reviewed above, veering phenomena have not been studied thoroughly for cracked structures, in either the
linear or nonlinear dynamics regime. Regarding the vibration of cantilevered cracked plates, the research
reviewed above focused only on the out-of-plane vibration, and crack closing effects were intentionally
neglected. On the other hand, studies of cracked beams have focused on in-plane bending in most cases.
Thus, the crack closing effect on the vibration response has been investigated in many studies of cracked
beams. However, veering and modal interaction phenomena between in-plane and out-of-plane vibration
modes have not been studied in this context. Moreover, in general, the veering phenomena in nonlinear
structural systems have not been studied well. Therefore, in this paper, first the eigenvalue loci veering
due to cracking is shown using a cracked cantilevered plate example without considering the crack closing
effect. The crack closing effect is then included and associated nonlinear resonant frequencies are identified.
Furthermore, the bilinear frequency approximation is extended such that the linear free response analysis
results can be used to estimate the resonant frequencies of the nonlinear forced response near veerings. The
effects of the crack closing on the resonant frequencies are discussed in detail for some specific veering
regions.

This paper is organized as follows. In section II, the cracked plate vibration problem and the finite
element model are introduced. In section III, the linear free response of a cracked plate is considered using
a finite element model of a three-dimensional cantilevered plate with a planar surface-breaking crack that
runs parallel to the cantilevered edge, and the associated frequency veering and crossing phenomena are
shown. In section IV, a solution technique for the nonlinear forced response analysis, called the hybrid
frequency/time (HFT) method, is briefly reviewed. The nonlinear forced response calculation is then carried
out and the effects of nonlinearity to the response in the neighborhood of representative veering regions
are discussed in detail. In section V, an alternative method for estimating the nonlinear resonant frequency
is introduced as an extension to the bilinear frequency approximation. The results are compared with the
results obtained with the forced response analysis, and the advantages and the limitations of the bilinear
frequency approximation are discussed. Finally, conclusions are summarized in section VI.
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Figure 1. Finite element model of the cracked plate

II. Cracked Plate Model

In this paper, the vibration of a cantilevered rectangular plate comprised of linear isotropic elastic ma-
terial is considered. Let Q € R? denote the domain of the plate fixed on a portion of its boundary, and
assume the material undergoes infinitesimal deformation, and finite rotations are not permitted. The elas-
todynamic problem is then formulated through the variational formulation, followed by the discretization
using Galerkin’s method. Namely, the semi-discrete governing equation of the cracked plate is formulated
as

Mu(t) + Cu(t) + Ku(t) = b(t) + f(u); M,C,K € R"*" u,b,f € R" (1)

where u is the displacement vector, M, C and K denote the mass, damping, and stiffness matrices, b(¢)
denotes the time-dependent external force, and f(u) denotes the displacement-dependent nonlinear force,
which in this case is the nonlinear force caused by the intermittent contact at the crack.

A finite element (FE) model of a cantilevered plate with a transverse crack is shown in Fig. 1, where
h =15x10"'m, I = 6.0 x 107%2m, ¢t = 3.0 x 1072m. The material model is steel with Young’s
modulus E = 200GPa, density p = 7800kg/m?, and Poisson’s ratio v = 0.3. The FE model is composed
of 6,750 brick trilinear elements and has approximately 28,000 DOF. This FE model is used for all the
numerical results in this paper, and the generation of the FE model as well as component mode synthesis
were performed with the commercial code ANSYS.

III. Linear Free Response Analysis

III.A. Natural frequency variation due to variations in crack location and length

For the FE model shown in Fig. 1, eigenvalue analysis was performed for various values of ./l and h./h,
and the results for the first 15 natural frequencies for two representative cases are shown in Fig. 2. First,
Fig. 2a shows the results where the crack length was fixed at I/l = 40%, and the crack location was varied
as 1.33 < he/h < 97.3%. As can be seen, the changes in the natural frequencies due to the variation in h./h
are quite complicated, and multiple loci veerings and crossings are observed. For example in Fig. 2a, starting
around h./h = 17%, modes 10 and 11 approach each other, but rather than crossing they veer away near
he/h = 19% with high curvature. Second, the crack location was fixed at h/h. = 50%, and the crack length
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Figure 2. First 15 natural frequencies versus (a) crack location ratio i /h for [/l = 0.40, (b) crack length ratio ./ for h./h = 0.50

was varied as 0 < ./l < 96.7%, the results of which are shown in Fig. 2b. The most notable distinction
from the case in Fig. 2a is that the natural frequency variation due to crack length change is monotonic,
i.e., as ./l increases, all natural frequencies tend to decrease. Although the amount of frequency drop
is dependent on the mode of interest, this is due to the fact that the stiffness of the plate monotonically
decreases for all modes as the crack length increases.

IIL.LB. Mode shape variation due to variations in crack location and length

In order to see the veering regions more closely, and to see the variations in the mode shapes, representative
cases are shown in Figs. 3 and 4. Figure 3a shows the veering between the modes 10 and 11 for [/l = 40%,
where 1.33 < h./h < 40%. An important characteristic of the loci veering is the mode shapes associated
with the natural frequencies on each locus before veering are interchanged during the veering in a continuous
manner.* This is illustrated in Fig. 3a, which shows that mode shapes 10 and 11 become mixed and then
appear to begin switching as the crack location ratio is increased through the veering region. On the other
hand in Fig. 3b, the region for the mode shape switching between modes five and six is narrow, and it appears
to be a loci crossing. This can be explained by considering that mode five (before switching) corresponds to
the second out-of-plane bending mode whereas mode six (before switching) corresponds to the first in-plane
bending mode, and there is little or no coupling between these modes due to their geometric dissimilarity.
Fig. 4 shows another veering region due to crack length variation, for modes seven and eight with crack
location h./h = 0.63. For this case, both mode mixing and switching can be observed as the crack length
is increased. In other words, the modes are coupled during the veering.

IV. Nonlinear Forced Response Analysis

In the previous section, the interchanging of modes as well as mode coupling were observed in frequency
veering and crossing regions. However, only natural frequencies of the linear system were considered. The
nonlinearity due to contact of the crack surfaces was neglected. In this section, a method to calculate the
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Figure 4. Magnified veering between modes seven and eight for h./h = 0.63

nonlinear resonant frequencies of the cracked plate is described. The method is then applied to the calcula-
tion of nonlinear resonant frequencies in veering/crossing regions, and their characteristics are discussed.

IV.A.  Component Mode Synthesis

In order to generate a reduced-order model, the plate is separated into two components (substructures)
Q7 and s along the crack path, as shown in Fig. 5, and a hybrid-interface method of component mode
synthesis® is employed. This process is advantageous over the direct application of FE analysis because it
provides improved computational efficiency while maintaining direct access to the dynamics of the crack-
surface DOF. Furthermore, it has good accuracy relative to the original FE model over the frequency range
of interest. The accessibility to the nodes on the crack surfaces is essential to the proper calculation of
the boundary condition at the crack surfaces, which is modeled as contact/impact forces in the formulation
described in IV.B. Namely, the dynamics of the FE degrees of freedom are projected onto constraint modes
W, inertia relief attachment modes W, (if rigid-body motion exists), and a truncated set of free-interface
normal modes ®.. Interested readers may consult, e.g., Craig,** for the detailed formulation of each mode
set.

Let the displacement vector u be partitioned into boundary DOF, uy, and interior DOF u;. By denoting
the inertia relief attachment coordinates and a truncated set of free-interface modal coordinates as q, and
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Figure 5. Plate divided into two substructures

dy, the linear projection is expressed as,

up
up I 0 0
= = o] |da @)
u; v, ¥, ¥,

qk

where \ila =, — V.V, \i!k = ®,;, — U,; Py, Lis the identity matrix, ¥, is the boundary partition of
¥, ¥,, and ¥y, denote the interior and the boundary partitions of ¥, and ®;; and ®,;, denote the interior
and the boundary partitions of ®;. Denoting Eq. (2) with a compact notation, u = Wq, the application of
Eq. (2) to Eq. (1) yields a smaller number of equations, i.e.,

Mg+ C'q+K'q=b"+f'(q) 3)

where M/ = 'MW, C' = $TC¥, K’ = $TKW¥, b’ = ¥'b, and f' = ¥Tf. The superscript “/” is
omitted for convenience in the subsequent formulations.

IV.B. Hybrid frequency/time domain method

For the calculation of steady-state response to harmonic excitation, an extension to the alternating frequency/time-
domain method,*! which is based on the concept of the method of harmonic balance,*? is employed in this
study. Because of its computational efficiency and accuracy, this type of method has been developed and ap-
plied to forced response problems for various nonlinear systems, such as friction damped systems*3>~*¢ and
cracked shafts.*’ In particular, the hybrid frequency/time-domain method developed by Poudou et al.*$->°
and the authors’! is applied in this paper. Namely, the method assumes that the steady-state vibration re-
sponse of q in Eq. (3), as well as the external force b and the nonlinear force due to intermittent contact f

are approximated as truncated Fourier series with, i.e.,

q="R (Z(Qi - jQi)ej’““t> )

k=0

b="% (Z (B¢ — jB3) ejk“’t> (5)

k=0

R (Z( z—JFz)ej’“t> 6)

k=0

f

where 27 /w is the fundamental frequency, n, is the number of non-zero harmonics and j = v/—1. Note that
Q7. and —Qj are the vectors of real and imaginary parts of kth Fourier coefficients of q, where superscripts
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Figure 6. Results of nonlinear harmonic response analysis for ~./h = 0.5

c and s denote cosine and sine components of the vibration respectively. The same notation is applied to
B, B, F{, and Fyj. Substituting Egs. (4) through (6) into Eq. (3) and considering the orthogonality of
harmonic functions, it results in a nonlinear algebraic equation with respect to the Fourier coefficients for
kth harmonic number, i.e.,

ALQr =B +Fi(Q) (N
where Qp = Q. By = B, Fo = F§, Ag = K, Q; = [(Qi)Ta(QZ)T]T, By = [(BZ)T,(BZ)T]T,
Fj. = [(F{)", (F;)"]", and

[~ (kw)>M + K (kw)C
A= ( ~(kw)C  —(kw)?M +K> ®

fork =1,...,n,. Assembling Eq. (8) forall k =0,1,...,ny,

AQ =B +F(Q) )

where A is a pseudo-block diagonal matrix with Ay on its diagonal blocks for k£ = 0,...np, Q =
QF,..-,Qn, Y. B=[Bj,....,B) |T,and F = [F§,...,F, ]T. Eq. (9) can then be solved with nonlin-
ear algebraic equation solvers. For the numerical examples shown in this paper, the Hybrid Powell method>?
was employed.

IV.C. Results of forced response analysis

In this subsection, the result of nonlinear forced response analysis for the cantilevered cracked plate is
presented, with the methods described in IV.A and IV.B. The damping was chosen to be C = aM + K
where o = 1.22 and 3 = 8.16 x 10, which result in damping that is approximately equivalent to modal
(structural) damping ratio ¢ = 1.00 x 10™* (y = 2.00 x 10~*) within the frequency range of 1900 <
f < 2000Hz. Vectors of harmonic forcing, the resultant of which is equal to 1N, is applied to the nodes on
the tip face of the plate to excite the modes of interest. The number of harmonics was chosen as n, = 9,
which showed convergence in the frequency response. Representative results are shown in Fig. 6 where
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he/h = 0.5, ./l = 0.167 for Fig. 6a, and ./l = 0.2 for Fig. 6b. Fig. 6a shows the resonant peaks
corresponding to modes five and six, which correspond to the third out-of-plane bending and the first in-
plane bending modes, respectively, whereas the order of the modes is interchanged in Fig. 6b.

V. Bilinear Frequency Approximation

V.A. Formulation

As an alternative way of predicting the nonlinear vibration frequencies, the bilinear frequency approximation
is extended for the analysis of three-dimensional cracked structures, and an analysis framework based on
reduced-order modeling as well as prediction of mode switching during the veering regions is proposed in
this section. The resonant peaks predicted by the forced response to harmonic excitation is then compared
with those calculated by the bilinear frequency approximations.

The bilinear frequency was originally introduced as the effective vibration frequency of a piecewise
linear, single-DOF system and defined as,®

w1 + w2

where wy, is the bilinear frequency, w; is the natural frequency of one of the linear systems associated with
the piecewise linear system, and ws is that of the other linear system of the piecewise linear system. This
expression is the exact solution, for the frequency of free oscillation of the piecewise linear single-DOF
oscillator with vanishing clearance/gap at the equilibrium. The application of Eq. (10) to a multi-DOF
piecewise linear system is rather straightforward if there is only one pair of linear systems. However in
the cases of cracked plates formulated with multiple DOF on crack surfaces, it involves multiple piecewise
linear systems, or a conewise linear systems.>* Hence an assumption has to be made such that the cracked
system has only two linear systems corresponding to two states, i.e., the crack is open or closed. These are
designated as states 1 and 2, respectively, in the following formulation. The definition of the states 1 and 2 is
a natural extension to that proposed by Chati et al.,>> which was applied to the analysis of in-plane bending
vibrations of a cracked beam. Namely, with the assumption of the open state, there is no connection between
the nodes on one crack surface and the nodes on the other surface (Fig. 7a), allowing the inter-penetration
of the crack surfaces. On the other hand with the closed state, the relative DOF along the direction that is
perpendicular to the crack surfaces are fixed to be zero, whereas the other two DOF of each node are allowed
to move freely in the plane tangent to the constrained direction (Fig. 7b). In other words, the crack surfaces
are allowed to slide with respect to each other, which is consistent with the assumption employed in the
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formulation in IV.B. Associated mathematical formulation is given as follows.
For a given crack length, eigenvalues of Eq. (1) for undamped case with open crack assumption are
obtained as
K¢ = wiM¢ (11)

where ¢ is the eigenvector and w? is the associated eigenvalue. On the other hand, the eigenvalues and
eigenvectors for the other case, namely the case with allowing sliding of crack surfaces, are obtained by
imposing appropriate constraints on Eq. (11) as follows. Let A and B denote the crack surfaces facing each
other, by assuming that the amplitude of vibration is much smaller than the finite element mesh size on the
crack surfaces, it is possible to identify the finite element nodes that may be in contact during the vibration
cycle. Hence such pairs of nodes are numbered and a set C, is defined where all numbers that denote the
contact pairs are included. Defining g,, as the gap between the nodes on the surfaces A and B for the nth
contact pair, the constraints to be imposed on the nodes of nth contact pair are expressed as

gn = (un)A - (un)B = 07 n c Ccp (12)

where (u,)4 and (u,)p denote the displacements of the nodes on the surface A and B, projected onto
the normal direction pointing outward from the surface A or B. It is noted that appropriate coordinate
transformation must be applied to the displacement vector based on the normal vector at each node, in
order to correctly calculate g,. It should also be noted that the motion of the nodes in tangential plane
that is perpendicular to the normal direction, is not constrained at all by Eq. (12), i.e., the nodes are free to
slide with each other on the tangential plane. This also indicates that the crack surfaces are assumed to be
frictionless, which is widely-employed assumption for the vibration problem of cracked beams and plates.
Applying the constraints Eq. (12) to the eigenvalue problem Eq. (11), a constrained eigenvalue problem is

obtained as
[ ¢

where N is the matrix of coefficients that are associated with Eq. (12) and the appropriate transformation
matrix, and A is the vector of Lagrange multipliers of size |C.,|. One method to solve this indefinite eigen-
value problem is to use an eigenvalue solver for indefinite systems. Another method is to first eliminate the
redundant equations due to the constraint equations Eq. (12), and the resulting positive definite eigenvalue
problem is then solved by an eigenvalue solver for definite systems. It should be noted that this methodol-
ogy can easily be incorporated with the reduced-order modeling framework described in IV.A as the motion
of the nodes on the crack surfaces in the three-dimensional space can be captured with the reduced-order
model.

With the eigenvalue problems Eqs. (12) and (13), the ith bilinear resonant frequency wy,; of the cracked
plate is approximated based on Eq. (10):

=w
1o o

K NT
N 0

2!M0

2w1w9;

b T o (14)
where w1; and wy; denote the frequencies of the :th mode of the states 1 and 2. It is emphasized that the index
1 does not denote the index of eigenvalues, but it denotes the index of the eigenvectors of the non-cracked
plate. Namely, the eigenvectors of the non-cracked plate are indexed based on their natural frequencies, i.e.,
for non-cracked plate, the eigenvalues are ordered as w1 < w2 < --- < wy—1 < wy where N is the size
of the non-cracked plate model, and corresponding eigenvectors are labeled as [¢1, @2, ..., dN—_1, PN].
The bilinear frequency wy; for a given crack length is calculated by using the natural frequencies of the
corresponding ith mode of the states 1 and 2.

The advantage of this method is that the frequency of the nonlinear response is obtained without calculat-
ing the associated mode shapes, thus it only involves eigenvalue extraction of two linear systems. However,
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as mentioned, this method is known to be accurate for systems with a relatively short crack. In addition, a
drawback of this method is that the choice of proper pairs of wy; and wo; is not apparent with the presence of
a veering or crossing, because the mode shapes associated with the natural frequencies switch their orders.
A way to overcome the latter problem is to track each mode by observing the correlation between the modes
during the variation of crack length or crack location. In this paper, the modal assurance criterion®> (MAC)
is employed as the measure of correlation.

Denoting the crack length as p (= l.), it is noted that N and A are dependent on p. That is, N = N(p)
and A = A(p). The eigenvector is also dependent on p, ¢ = ¢(p), and the correlation between the ith mode
shape of the system with p = pg and the jth mode shape with the perturbed crack length p = pg + Ap can
be characterized by
|5 (p0) T @ (po + Ap)|?

195 ()21 (po + Ap)| >

where ¢ is the eigenvector of the system defined by Eq. (13), the subscripts ¢ and 7 denote the indices for
modes, the superscript k indicates the state, and MAC’Z takes the value between 0 and 1, which respectively
correspond to no correlation, and consistent correlation between ¢;(po) and ¢;(po + Ap). Namely, the ith
eigenvector is tracked based on the value of MAC' throughout the variation of the crack length (p), such that
the correct natural frequencies for the ith eigenvector in Eq. (14) can be calculated.

In order to better clarify the behavior of the natural frequencies of the system with open and sliding
boundary conditions, as well as the bilinear frequencies, the above mentioned analysis framework was
applied to the reduced-order model of the cracked plate with A./h = 0.50. As an example, the veering
region between the fifth and sixth modes are shown in Fig. 8. As was shown in III.B, the modes of interest
are the in-plane and out-of-plane bending modes. In Fig. 8, two significant insights into the behavior of
the frequencies are shown. The first is that the existence and location vary between the cases with open
and sliding boundary conditions, and bilinear frequency. For the case with sliding boundary condition, the
veering between fifth and sixth modes does not exist. On the other hand for the open boundary condition
case, the loci of fifth and sixth modes approach and veer away where 10 < [./l < 15%. Therefore the
bilinear frequency also has the veering region due to that for the open boundary condition, but slightly shifted
toward larger crack length ratio because of the absence of the veering for the sliding boundary condition
case. The second is that the bilinear frequency is always bounded by the frequencies corresponding to
the cases with sliding and open boundary conditions, which are respectively the upper and lower bounds.

k=12 (15)

MACY; =
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Furthermore, it is noted that the width between the upper and lower bounds indicates the strength of the
effect of contact nonlinearity on the resonant frequency. For instance, for the fifth bilinear frequency that
corresponds to the in-plane bending mode, the width between the bounds is much larger than that for the
sixth bilinear frequency, which corresponds to the out-of-plane bending mode. This is due to the fact that the
motion of the in-plane bending mode is greatly influenced by the existence of the contact force at the crack
surfaces, whereas the out-of-plane bending modes is not so much affected by the contact force considering
that the motion of the crack surfaces is almost perpendicular to the crack surfaces.

V.B. Comparison with the results of forced response analysis

Using the bilinear frequency approximation described above, the nonlinear vibration frequencies of the
cracked plate are calculated, and they are compared with those obtained by the HFT method. It is noted
that the comparison between the resonant frequencies obtained by forced response analysis, and the bilinear
frequencies, namely the vibration frequencies of unforced system, has been made based on the assumption
that the resonant frequencies reside in the vicinity of the frequencies associated with the nonlinear normal
modes.>* Furthermore, the resonant frequencies are assumed to be independent of the amplitude of forcing,
based on the fact that the resonant frequencies of piecewise linear systems with the vanishing gap at the
equilibrium are not dependent on vibration amplitude.?!

Three representative veering regions are considered, which are the cases where (a) the interaction be-
tween the loci is weak and the corresponding modes are: (1) in-plane and out-of-plane bending modes, and
(2) both out-of-plane bending modes, and (b) the interaction between the loci is strong and veering occurs
in a continuous way and the associated modes are both out-of-plane bending modes.

First, the veering between an in-plane bending mode and an out-of-plane bending mode is considered,
using the modes five and six, for h./h = 0.50, as shown in Fig. 3b. The results of forced response analysis
as well as the calculation based on bilinear frequency assumption are shown in Fig. 9a. As can be seen,
the order-switching of modes can be observed even for this nonlinear system. The most notable distinction
from the linear assumption, i.e., Fig. 3b, is that the veering occurs with longer crack length, i.e., around 20%
whereas it occurs around 10% in Fig. 3b. This is due to the stiffening effect because of the contact/impact of
crack surfaces during the vibration cycle, which represents the dynamics of the cracked plates appropriately.
Regarding the bilinear frequency approximation, a notable result has been observed: the bilinear frequency
assumption predicts the resonant frequency calculated by HFT method quite well even for relatively large
crack length ratio (I./l < 40%).

Second, the veering between two out-of-plane bending modes is considered, using the modes nine and
ten for h./h = 0.60, and the calculation results are shown in Fig. 9b. This result also shows that bilinear
frequency approximates the resonant frequencies quite well for the case of veering between out-of-plane
bending modes, with relatively large crack length. Even though the effect of nonlinearity on the vibration
frequency is smaller than that on the in-plane bending modes, as it does not involve much contact/impact
between crack surfaces, this clearly indicates that the bilinear frequency approximation can also be used for
the prediction of nonlinear vibration frequencies of out-of-plane bending modes.

Third, the veering between the torsion and out-of-plane bending modes are examined, using the modes
seven and eight for h./h = 0.63 and results are shown in Fig. 9c. This veering region features a switching of
modes in a continuous way, or in other words, the mode shapes gradually change as the crack length is varied.
This result shows that the bilinear frequency approximation predicts the nonlinear vibration frequency quite
well even for the modes that exhibit complicated geometry due to coupling between modes. Moreover, the
results show that the approximation is accurate even for large cracks.
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Figure 9. Comparison between bilinear frequency assumption and HFT method, and corresponding mode shapes with open B.C.

VI. Conclusions

In this paper, the linear and nonlinear vibration response of a cracked cantilevered rectangular plate
has been investigated. In particular, the veering phenomena for the natural frequencies of the cracked plate
were investigated. It was observed that veerings appear in plots of natural frequencies versus crack length
or crack location ratio. It was shown that a wider veering region entails continuous interchanging between
the modes, whereas a smaller veering (or crossing) region shows fast mode switching. Then, the nonlin-
ear vibration response of the cracked plate due to contact of the crack surfaces was considered. A hybrid
frequency/time-domain (HFT) method was applied to the calculation of nonlinear resonant frequencies in
representative veering/crossing regions. It was shown that the characteristics of veerings/crossings are af-
fected to some extent by the nonlinearity induced by the crack closing effect, although in general they are
similar to those of the linear counterparts. Furthermore, an alternative method for estimating the nonlinear
resonant frequencies was introduced by extending the bilinear frequency approximation. It was observed
that the numerical results from the bilinear frequency approximation matched very well with those obtained
by the HFT method, even for relatively large crack lengths.
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