Development of a Hierarchical Estimation Method for Anthropometric Variables

Heecheon You and T. Ryu

Ergonomic Design Technology Lab Department of Industrial Engineering Pohang University of Science & Technology

Agenda

- □ Background: 'Flat' Estimation Method
- Objectives of the Study
- Development of the Hierarchical Estimation Method
- Comparison of Flat and Hierarchical Models

Discussion

Use of Regression Models in Anthropometry

- Estimation of measurements of body dimensions unavailable
- Applications: Ergonomic design; sizing digital human models

 Most regression models provided in anthropometry include only stature and/or weight as regressor(s) to estimate body dimensions.

□ Unsatisfactory estimation for an anthropometric variable having a low value of *r* with S and/or W.

(e.g.) biacromial breadth = *f*(stature)

r	<i>R</i> ²	SE (cm)	SD (cm)
0.48	0.24	15.69	17.96

(1988 US Army anthropometric survey)

 \Rightarrow Resulting in low utility of regression models in estimation.

 Employ different regressors in regression models in a hierarchical manner by considering the anatomical and statistical relationships between anthropometric variables.

Develop a method to establish hierarchical regression models for anthropometric variables in a systematic manner by considering the geometric relationships of the AVs.

- Examine the effectiveness of the hierarchical estimation method in comparison with the flat estimation method
 - ✓ 1988 US Army anthropometric survey data
 - 59 AVs selected for application to design of an occupant packaging layout

4-step procedure to establish hierarchical estimation structures of anthropometric variables for regression.

S1: Grouping anthropometric variables

(1) length/height variables

(2) width/depth/circumference variables

S2: Analyzing geometric relationships

(1) combinatory relationships

(2) inclusive relationships

S3: Constructing estimation structures

(1) length/height estimation structure

(2) width/depth/circumference estimation structure

S4: Selecting variables for regression

S1: Grouping AVs

- Group AVs under consideration into two dimensional categories:
 - (1) length/height variables
 - (2) with/depth/circumference variables
 - Length/height variables are more closely related to each other than width/depth/circumference variables and vice versa (Rosenblad-Wallin, 1987).
 - \leftarrow Confirmed in the present study with the US Army data.

S2: Analyzing the Geometric Relationships of AVs

S2: Analyzing the Geometric Relationships of AVs

Combinatory	Inclusive		
A set of AVs in which one variable can be represented by a linear combination of the other variables	A pair of AVs in which both the variables measure the same body segment(s) but one variable measure a part of the other variable by using different landmarks and/or in different postures		

Crotch height

Gluteal furrow height

Trochanterion height

Functional leg length

POSTECH

Analysis of AVs: Length/Height (example)

S3: Constructing Hierarchical Estimation Structures

Hierarchical estimation structures for length/height and with/depth/circumference AVs.

First framed with AVs in combinatory relationships and then completed by adding AVs in inclusive relationships.

- For each group of AVs in combinatory relationship, one variable is determined if the other variables are known.
 - When a regressor is determined, one with a higher correlation is selected for regression and the other for estimation by the corresponding combinatory relationship.

Stature Head-neck length
$$r = 0.39$$
 HN length = Stature – AH
Acromial height $r = 0.96$ AH = f (stature)

Regression Model Development Process

Regression Model Improvement (example)

Models for buttock-knee length

Regressors included	adjusted R ²	Remark	Selection
Upper leg length	0.55	Based on the corresponding hierarchical estimation structure	
Upper leg length, (upper leg length) ²	0.55	Increased the order of the regressor	
Functional leg length	0.83	Introduced a new regressor	Ο

Hierarchical Regression Models: Trunk (example)

Flat vs. Hierarchical Models

 Of 54 hierarchical models, 45 models have regressors other than stature and weight.

	Performance Difference				
	Measure	Average	Min.	Max.	
Better performance: 39 hierarchal models	Adjusted R^2	0.209	0.002	0.627	
	SE (mm)	4.4	0.004	16.3	
Lower performance: 6 hierarchal models	Adjusted R^2	0.058	0.006	0.103	
	SE (mm)	1.7	0.400	3.4	

Discussion

- - Developed a method which estimates AVs in a hierarchical manner based on the geometric relationships between the AVs.
 - Demonstrated that hierarchical regression models are preferred overall to flat regression models for better adequacy of fit (adj. *R*²) and estimation accuracy (SE).
 - ✓ Of 45 hierarchical models, 39 models showed a 55% increase in adjusted *R*² and a 31% decrease in SE on average when compared to the corresponding flat models.

