

Next two lectures:

- What is a phylogenetic tree?
- How are trees inferred using molecular data?
- How do you assess confidence in trees and clades on trees?
- Why do trees for different data sets sometimes conflict?
- What can you do with trees beyond simply inferring relatedness?

Phylogenetic sinterlude
 Molecular evidence of HIV-1 transmission in a criminal case

Michael L. Metzker*t, David P. Mindell', Xiao-Mei Lut's, Roger G. Ptak", Richard A. Gibbs*, and David M. Hallis*

A gastroenterologist was convicted of attempted second-degree murder by injecting his former girlfriend with blood or bloodproducts obtained from an HIV type 1 (HIV-1)-infected patient under his care. Phylogenetic analyses of HIV-1 sequences were admitted and used as evidence in this case, representing the first use of phylogenetic analyses in a criminal court case in the United States.

Inferring phylogenies

- There are two fundamental ways of treating data; as distances or as discrete characters
- Distance methods first convert aligned sequences into a pairwise distance matrix, then input that matrix into a tree building method
- Discrete methods consider each nucleotide site (or some function of each site) directly. Consider the following example:

- The alignment is the statement of homology, that is shared ancestry from which historical inferences are made. The alignment, then, becomes critical to reconstructing phylogenies.
- In some cases, the alignment is trivial. In many cases it is not.

Inferring phylogenies

- All phylogeny reconstruction methods assume you start with a set of aligned sequences.

Phylogeny reconstruction：maximum parsimony

A non－biological example：coin tossing

Say we toss a coin 100 times and observe 56 heads and 44 tails．Instead of assuming that p is 0.5 ，we want to find the MLE for p ．Then we want to ask whether or not this value differs significantly from 0.50 ．
How do we do this？We find the value for p that makes the observed data most likely．

0.48	0.0222
0.50	0.0389
0.52	0.0581
0.54	0.0739
0.56	0.0801
0.58	0.0738
0.60	0.0576
0.6	0.

In parsimony we are optimizing the total number of evolutionary changes on he tree or tree length．The tre ength，then，is the sum of the
number of changes at each site．So， f we have k sites，each with a length of l ，then the length L of the tree is given by

```
L-\sum⿱亠䒑⿱二小贝
```


A non－biological example：coin tossing

If the probability of an event X dependent on model parameters p is written

$$
P(x \mid p)
$$

then we would talk about the likelihood

$$
L(p \mid x)
$$

that is，the likelihood of the parameters given the data．

Phylogeny reconstruction: Bayesian methods
But first, Markov Chain Monte Carlo (MCMC)...
A method for integrating complex high-dimensional spaces. In other words, it involves traveling through a set of solutions such that every point is visited at a frequency equal to its likelihood. Basically it's hill climbing, but can head downhill sometimes too--a wandering among states that is biased toward better states.

This allows you to sample from a ridiculously huge hypothesis space. The chain spends most of its time in higher probability regions.

Phylogeny reconstruction: Bayesian methods
The most widely used MCMC method is the Metropolis algorithm:

1. Start at some tree

Pick a neighboring tree in hypothesis space. Call this the proposal.
Compute the ratio (R) of the probabilities of the proposed new tree and the old tree.
4. If $R>=1$, accept the new tree as the current tree
5. If $R<1$, draw a number between 0 and 1 . If this number is less than R, accept the new tree as the current tree.
6. Otherwise, reject the new tree and keep the old tree.
7. Return to step 2

This algorithm never terminates. It is a Markov chain because it is a rando
process in which the next change depends only on the current state.

Phylogeny reconstruction: Bayesian methods

$\operatorname{Prob}(H \mid D)=\frac{\operatorname{Prob}(H) \operatorname{Prob}(D \mid H)}{\sum_{H} \operatorname{Prob}(H) \operatorname{Prob}(D \mid H)}$

S. Mathews, M. J. Donoghue. The root of angiosperm phylogeny inferred from duplicate plytoclirome genes.

Science 286, 947 (1999).

1) The figure above shows the phylogeny estimated for a sample of flowering plants (angiosperms) from

PHYTOCHROME A and PHYTOCHROME C, a pair of genes that duplicated prior to the ongin of the angiosperms
Which of the following sets of taxa constrat
a) Degeneria-Magnolia-Eupomaria
b) All angiopperms except Amborella
c) Austrobalieya Mmphace Cabombuces
d) Nelimbo-Trochodendron-squilegia

What can you do with trees beyond simply inferring relatedness? (molecular clocks)

Timing the Ancestor of the HIV-1 Pandemic Strains
B. Korber, ${ }^{1,2 *+}$ M. Muldoon, ${ }^{2,3}$ J. Theiler, ${ }^{1}$ F. Gao, ${ }^{4}$ R. Gupta, ${ }^{1}$ A. Lapedes, ${ }^{1,2}$ B. H. Hahn, ${ }^{4}$ S. Wolinsky, ${ }^{5}$ T. Bhattacharya ${ }^{14}$ SCIENCE VOL 2889 JUNE 2000

What can you do with trees beyond simply inferring relatedness? (genome evolution)

Genome Research

The Genomic Sequence and Comparative Analysis of the Rat Major Histocompatibility Complex
Peter Hurt, ${ }^{1}$ Lutz Walter, ${ }^{2}$ Ralf Sudbrak, ${ }^{1}$ Sven Klages, ${ }^{1}$ Ines Muller, ${ }^{1,3}$ Takashi Shiina, ${ }^{4}$ Hidetoshi Inoko, ${ }^{4}$ Hans Lehrach,' Eberhard Gunther, ${ }^{2.5}$ Richard Reinhardt, ${ }^{1,5}$ and Heinz Himmelbauer ${ }^{1,6}$
-MHC genes play important roles in immunity
-MHC class I presents antigen from viruses to killer T cells -These genes are in a brisk arms race with pathogens

What can you do with trees beyond simply inferring relatedness? (ancestral reconstruction)

Molecular resurrection of an extinct ancestral promoter for mouse L1

```
(sequence erolution)
```

Nils B. Adey, Trygye O. Tollefsbol, Andrew B. Sparks, Marshall Hall Edgell, and Clyde A. Hutchison III*

What can you do with trees beyond simply inferring relatedness?
-Adey et al. (1994) resurrected an extinct ancestral promotor for a subfamily of retroposons that dispersed in the mouse genome several million years ago
-The retroposons are no longer transcriptionally or transpositionally active
-They hypothesized that the promoter may have accumulated deleterious mutations, used extant sequences to infer the ancestor
-Chemically synthesized it and found it reawakened the retroposon

What can you do with trees beyond simply inferring relatedness?

Molecular Biology and Evolution 19:1483-1489 (2002)
C 2002 Society for Molecular Biology and Evolution
Recreating a Functional Ancestral Archosaur Visual Pigment
Belinda S. W. Chang ${ }^{*}$, Karolina Jönsson ${ }^{*}$, Manija A. Kazmi ${ }^{*}$, Michael J. Donoghue ${ }^{\dagger}$ and Thomas P. Sakmar

What can you do with trees beyond simply inferring relatedness?

-Chang et al. (2002) used maximum likelihood phylogenetic ancestral reconstruction methods to recreate a putative ancestral archosaur visual pigment (ca. 240 mya)

What can you do with trees beyond simply inferring relatedness?
-To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in tissue culture

What can you do with trees beyond simply inferring relatedness?
-The expressed artificial genes were all found to yield stable photoactive pigments with max values of about 508 nm , which is slightly redshifted relative to that of extant vertebrate pigments.

What can you do with trees beyond simply inferring relatedness?

Chang et al. Fig 2

What can you do with trees beyond simply
inferring relatedness?

