ON IMPRIMITIVITY HILBERT BIMODULES OVER COMMUTATIVE H^{*}-ALGEBRAS

M. KHANEHGIR ${ }^{1 *}$, M. MORADIAN KHIBARY ${ }^{2}$, AND Z. NIAZI MOGHANI ${ }^{1}$

Abstract

In this paper, we introduce the notion of imprimitivity Hilbert H^{*} bimodule and describe some properties of it. Moreover, we show that if \mathcal{A} and \mathcal{B} are proper and commutative H^{*}-algebras, $\mathcal{A} E_{\mathcal{B}}$ is a Hilbert H^{*}-bimodule and e_{1} is a minimal projection in \mathcal{A} with $\mathcal{A}[x \mid x]=e_{1}$ for some $x \in \mathcal{A}$, then $[x \mid x]_{\mathcal{B}}$ is a minimal projection in \mathcal{B}, too. Furthermore, the existence of orthonormal bases for such spaces is studied.

1. Introduction and Preliminaries

An H^{*}-algebra, introduced by Ambrose [1] is a complex Banach algebra \mathcal{A} satisfying the following conditions:
(i) \mathcal{A} is a Hilbert space under an inner product $\langle\cdot, \cdot\rangle$;
(ii) for each a in \mathcal{A} there is an element a^{*} in \mathcal{A}, the so-called adjoint of a, such that $\langle a b, c\rangle=\left\langle b, a^{*} c\right\rangle$ and $\langle a b, c\rangle=\left\langle a, c b^{*}\right\rangle$, for all $b, c \in \mathcal{A}$.
Recall that $\mathcal{A}_{0}=\{a \in \mathcal{A}: a \mathcal{A}=\{0\}\}=\{a \in \mathcal{A}: \mathcal{A} a=\{0\}\}$ is called the annihilator ideal of \mathcal{A}. A proper H^{*}-algebra is an H^{*}-algebra with zero annihilator ideal. Ambrose [1] proved that an H^{*}-algebra is proper if and only if every element has a unique adjoint. The trace-class $\tau(\mathcal{A})$ of a proper H^{*}-algebra \mathcal{A} is defined by the set $\tau(\mathcal{A})=\{a b: a, b \in \mathcal{A}\}$. It is known that $\tau(\mathcal{A})$ is an ideal of \mathcal{A}, which is a Banach $*$-algebra under a suitable norm $\tau_{\mathcal{A}}(\cdot)$. The norm $\tau_{\mathcal{A}}$ is related to the given norm $\|\cdot\|$ on \mathcal{A} by $\tau_{\mathcal{A}}\left(a^{*} a\right)=\|a\|^{2}$ for all $a \in \mathcal{A}$. The trace functional $\operatorname{tr}_{\mathcal{A}}$ on $\tau(\mathcal{A})$ is defined by $\operatorname{tr}_{\mathcal{A}}(a b)=\left\langle a, b^{*}\right\rangle=\left\langle b, a^{*}\right\rangle=\operatorname{tr}_{\mathcal{A}}(b a)$ for each $a, b \in \mathcal{A}$. In particular $\operatorname{tr}_{\mathcal{A}}\left(a a^{*}\right)=\operatorname{tr}_{\mathcal{A}}\left(a^{*} a\right)=\|a\|^{2}$ for each $a \in \mathcal{A}$. A nonzero element $e \in \mathcal{A}$ is called a projection, if it is self-adjoint and idempotent. In addition, if $e \mathcal{A} e=\mathbb{C} e$ then,

[^0]it is called a minimal projection. Each simple H^{*}-algebra (that is, an H^{*}-algebra without nontrivial closed two-sided ideals) contains minimal projections. It is known that all minimal projections in a simple H^{*}-algebra have equal norms equal to α for some $\alpha \geq 1$ [2]. Two idempotents e and e^{\prime} are doubly orthogonal if $\left\langle e, e^{\prime}\right\rangle=0$ and $e e^{\prime}=e^{\prime} e=0$. An idempotent is primitive if it can not be expressed as the sum of two doubly orthogonal idempotents. Every proper H^{*}-algebra contains a maximal family of doubly orthogonal primitive self-adjoint idempotents [1]. Recall that in a commutative H^{*}-algebra an element is a primitive projection if and only if it is a minimal projection [7, Lemma 1.1]. There are many scholars have worked on H^{*} algebras and developed the topic in several directions, see [1,3,8-10] and references cited therein.

Proposition 1.1. Let \mathcal{A} be a proper commutative H^{*}-algebra. If e and e^{\prime} are distinct minimal projections in \mathcal{A}, then they are doubly orthogonal.
Proof. We are going to show that $e e^{\prime}=0$. If on the contrary $e e^{\prime} \neq 0$, then commutativity of \mathcal{A} and minimality of the projections e and e^{\prime}, imply that $e e^{\prime}=e e^{\prime} e=\lambda_{1} e=\lambda_{2} e^{\prime}$ for some nonzero and distinct scalars λ_{1} and λ_{2}. On the other hand, since e, e^{\prime} and $e e^{\prime}$ are idempotents, then $\left(\lambda_{1} e\right)^{2}=\lambda_{1} e=e e^{\prime}=\left(\lambda_{2} e^{\prime}\right)^{2}=\lambda_{2} e^{\prime}$ and so $\lambda_{1}=\lambda_{2}=1$, which gives $e=e^{\prime}$ a contradiction. Thus $e e^{\prime}=e^{\prime} e=0$ and therefore $\left\langle e, e^{\prime}\right\rangle=\operatorname{tr}_{\mathcal{A}}\left(e e^{\prime}\right)=0$.

An immediate consequence of the above proposition is the following result.
Corollary 1.1. Each commutative H^{*}-algebra has a unique maximal family of doubly orthogonal minimal projections which contains all of its minimal projections.
Let us recall the definition of a Hilbert H^{*}-module.
Definition 1.1. [2] A Hilbert H^{*}-module over a proper H^{*}-algebra \mathcal{A} is a left \mathcal{A} module E on which there is a mapping $[\cdot \mid \cdot]: E \times E \rightarrow \tau(\mathcal{A})$ (called $\tau(\mathcal{A})$-valued product), satisfying
(i) $[\alpha x \mid y]=\alpha[x \mid y]$;
(ii) $[x+y \mid z]=[x \mid z]+[y \mid z]$;
(iii) $[a x \mid y]=a[x \mid y]$;
(iv) $[x \mid y]^{*}=[y \mid x]$;
(v) for each nonzero element x in E there is a nonzero element a in \mathcal{A} such that $[x \mid x]=a^{*} a ;$
(vi) E is a Hilbert space under the inner product $(x, y)=\operatorname{tr}_{\mathcal{A}}([x \mid y])$;
for each $\alpha \in \mathbb{C}, x, y, z \in E$ and $a \in \mathcal{A}$.
The Hilbert H^{*}-module E is full $[7]$ if the ideal $[E \mid E]=\operatorname{span}\{[x \mid y]: x, y \in E\}$, is dense in $\tau(\mathcal{A})$ under the norm $\tau_{\mathcal{A}}(\cdot)$.
Example 1.1. [2] Let H be an infinite dimensional Hilbert space and $\mathcal{H S}(H)$ be the standard H^{*}-algebra of Hilbert-Schmidt operators on it. Let us denote by $\Theta_{x, y}$ the
rank 1 operator on H defined by $\Theta_{x, y}(z)=(z, y) x$. It is well known that H may be regarded as a Hilbert H^{*}-module over $\mathcal{H S}(H)$. Given $x \in H$ and $T \in \mathcal{H S}(H)$, $T x$ is interpreted as the action of T and $\mathcal{H S}(H)$-valued product on H is defined by $[x \mid y]=\Theta_{x, y}$. Since $\operatorname{tr}_{\mathcal{H}(H)} \Theta_{x, y}=(x, y)$, then the resulting norm on H coincides with the original one.

For a Hilbert H^{*}-module E over a proper H^{*}-algebra \mathcal{A} the following relations between the two norms $\|$.$\| and \tau_{\mathcal{A}}$ hold (see [2]):

$$
\begin{gathered}
\|x\|^{2}=\operatorname{tr}_{\mathcal{A}}([x \mid x])=\tau_{\mathcal{A}}([x \mid x]), \quad \text { for all } x \in E \\
\|[x \mid y]\| \leq \tau_{\mathcal{A}}([x \mid y]) \leq\|x\|\|y\|, \quad \text { for all } x, y \in E \\
\|a x\| \leq\|a\|\|x\|, \quad \text { for all } a \in \mathcal{A}, x \in E
\end{gathered}
$$

Definition 1.2. [2] An element $u \in E$ is a basic element if there exists a minimal projection $e \in \mathcal{A}$ (called the supporting projection) such that $[u \mid u]=e$. An orthonormal system in E is a family of basic elements $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$ satisfying $\left[u_{\lambda} \mid u_{\mu}\right]=0$, for all $\lambda, \mu \in \Lambda, \lambda \neq \mu$. An orthonormal basis in E is an orthonormal system generating a dense submodule of E.

Note that if $\left\{u_{\lambda}\right\}$ is an orthonormal basis for E, then for each $x \in E, x=\sum_{\lambda}\left[x \mid u_{\lambda}\right] u_{\lambda}$ (Fourier expansion) (see [2]). We recall that each Hilbert H^{*}-module E contains basic elements, orthonormal systems and orthonormal bases and moreover, all orthonormal bases for E have the same cardinal number called the hilbertian dimension of E.

Lemma 1.1. [2] Let E be a Hilbert module over an arbitrary H^{*}-algebra $\mathcal{A}, e \in \mathcal{A}$ be a projection (not necessarily minimal) and let $x \in E$ be such that $[x \mid x]=e$. Then $e x=x$.

In the above lemma one observes that if $[x \mid x]=\lambda e$ for some scalar λ and some projection e in \mathcal{A}, then

$$
[e x-x \mid e x-x]=[e x \mid e x]-[e x \mid x]-[x \mid e x]+[x \mid x]=\lambda e^{3}-\lambda e^{2}-\lambda e^{2}+\lambda e=0
$$

which implies that $e x=x$. Let E be a Hilbert H^{*}-module over an H^{*}-algebra \mathcal{A} and let $e \in \mathcal{A}$ be a minimal projection. Then $E_{e}=\{x \in E:[x \mid x]=\lambda e, \lambda \geq 0\}$ is a closed subspace of the Hilbert space E. If \mathcal{A} is a simple H^{*}-algebra, then the subspace E_{e} generates a dense submodule in E (see [2]). For emphasizing its H^{*}-algebra, we denote E_{e} by $\left({ }_{\mathcal{A}} E\right)_{e}$ (or $\left(E_{\mathcal{A}}\right)_{e}$ in right module case). For more details on this issue see [2]. Also, for general facts about Hilbert H^{*}-modules we refer the interested reader to $[2,4,7,10,11]$.

We introduce the notion of imprimitivity Hilbert H^{*}-bimodule and describe some properties of it. In this paper, we show that if \mathcal{A} and \mathcal{B} are proper and commutative H^{*} algebras, ${ }_{A} E_{\mathcal{B}}$ is an imprimitivity Hilbert H^{*}-bimodule and e_{1} is a minimal projection in \mathcal{A} with ${ }_{\mathcal{A}}[x \mid x]=e_{1}$ for some $x \in \mathcal{A}$, then $[x \mid x]_{\mathcal{B}}$ is a minimal projection in \mathcal{B}, too. Furthermore, the existence of orthonormal bases for such spaces is studied.

2. Main Results

In this section, we state the notions of Hilbert H^{*}-bimodule and imprimitivity Hilbert H^{*}-bimodule. We then investigate the existence of orthonormal bases for imprimitivity Hilbert bimodules over the commutative H^{*}-algebras. Before giving our results, we state two interesting facts related to Hilbert modules over the commutative H^{*}-algebras which will be used in the sequel.

Proposition 2.1. Let E be a Hilbert module over a commutative H^{*}-algebra \mathcal{A}. If $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$ is an orthonormal basis for E and $x \in E$, then $x=\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}$ for some $\mu_{\lambda} \in \mathbb{C}$.

Proof. Let $\left\{e_{i}\right\}, i \in I$, be the maximal family of doubly orthogonal minimal projections in \mathcal{A} as Corollary 1.1. Let's also suppose that each $u_{\lambda}, \lambda \in \Lambda$, has supporting projection $e_{i_{\lambda}}$ for some $i_{\lambda} \in I$. Since $x=\sum_{\lambda \in \Lambda}\left[x \mid u_{\lambda}\right] u_{\lambda}$, then applying [1, Theorem 4.1] and by the commutativity of \mathcal{A}, we get $\left[x \mid u_{\lambda}\right]=\sum_{i \in I} \mu_{\lambda, i} e_{i}$, for each $\lambda \in \Lambda$ and some scalars $\mu_{\lambda, i}$. Thus we have $x=\sum_{\lambda \in \Lambda} \sum_{i \in I} \mu_{\lambda, i} e_{i} u_{\lambda}$.

On the other hand, $e_{i} u_{\lambda}=0$ for all $i \neq i_{\lambda}$. Indeed, by applying Proposition 1.1 we conclude that $\left[e_{i} u_{\lambda} \mid e_{i} u_{\lambda}\right]=e_{i}\left[u_{\lambda} \mid u_{\lambda}\right]=e_{i} e_{i_{\lambda}}=0$ for each $i \neq i_{\lambda}$. Therefore, $x=\sum_{\lambda \in \Lambda} \mu_{\lambda, i_{\lambda}} e_{i_{\lambda}} u_{\lambda}=\sum_{\lambda \in \Lambda} \mu_{\lambda, i_{\lambda}} u_{\lambda}$ by Lemma 1.1.
Proposition 2.2. Let E be a full Hilbert module over a commutative H^{*}-algebra \mathcal{A}, $e_{0} \in \mathcal{A}$ be a minimal projection and $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$, be an orthonormal basis for E. Then $e_{0}=\left[u_{\lambda_{0}} \mid u_{\lambda_{0}}\right]$ for some $\lambda_{0} \in \Lambda$.

Proof. On the contrary, we suppose that

$$
\begin{equation*}
e_{0} \neq\left[u_{\lambda} \mid u_{\lambda}\right], \tag{2.1}
\end{equation*}
$$

for all $\lambda \in \Lambda$. By the fullness of E we get $e_{0}=\sum_{t \in J}\left[x_{t} \mid y_{t}\right]$, for some index set J and x_{t} and y_{t} in E. Regarding to Proposition 2.1 it follows that $x_{t}=\sum_{\lambda \in \Lambda} \mu_{t, \lambda} u_{\lambda}$ and $y_{t}=\sum_{\lambda \in \Lambda} \mu_{t, \lambda}^{\prime} u_{\lambda}$, for each $t \in J$ and some scalars $\mu_{t, \lambda}$ and $\mu_{t, \lambda}^{\prime}$. Therefore, we can write

$$
\begin{equation*}
e_{0}=\sum_{t \in J}\left[x_{t} \mid y_{t}\right]=\sum_{t, \lambda} \mu_{t, \lambda} \overline{\mu_{t, \lambda}^{\prime}}\left[u_{\lambda} \mid u_{\lambda}\right] . \tag{2.2}
\end{equation*}
$$

Accordingly, by (2.1) and (2.2) and applying Proposition 1.1 we observe that,

$$
e_{0}=e_{0}^{2}=\sum_{t, \lambda} \mu_{t, \lambda} \overline{\overline{\mu_{t, \lambda}^{\prime}}}\left[u_{\lambda} \mid u_{\lambda}\right] e_{0}=0,
$$

which gives a contradiction to the fact $e_{0} \neq 0$.
Definition 2.1. Let \mathcal{A} and \mathcal{B} be two proper H^{*}-algebras. By a Hilbert bimodule ${ }_{\mathcal{A}} E_{\mathcal{B}}$ we mean a left Hilbert \mathcal{A}-module with the $\tau(\mathcal{A})$-valued product ${ }_{\mathcal{A}}[\cdot \mid \cdot]: E \times E \rightarrow \tau(\mathcal{A})$ and a right Hilbert \mathcal{B}-module with the $\tau(\mathcal{B})$-valued product $[\cdot \mid \cdot]_{\mathcal{B}}: E \times E \rightarrow \tau(\mathcal{B})$ such that
(i) $(a x) b=a(x b)$;
(ii) ${ }_{\mathcal{A}}[x b \mid y]={ }_{\mathcal{A}}\left[x \mid y b^{*}\right]$;
(iii) $[x \mid a y]_{\mathcal{B}}=\left[a^{*} x \mid y\right]_{\mathcal{B}} ;$
for all $x, y \in_{\mathcal{A}} E_{\mathcal{B}}, a \in \mathcal{A}$ and $b \in \mathcal{B}$.
Further, Hilbert H^{*}-bimodule ${ }_{\mathcal{A}} E_{\mathcal{B}}$ is called full, if it is full both as a left and as a right Hilbert module over \mathcal{A} and \mathcal{B}, respectively.
Definition 2.2. A Hilbert \mathcal{A} - \mathcal{B}-bimodule E is called an imprimitivity bimodule if

$$
{ }_{\mathcal{A}}[x \mid y] z=x[y \mid z]_{\mathcal{B}},
$$

where $x, y, z \in_{\mathcal{A}} E_{\mathcal{B}}$.
Example 2.1. Suppose \mathcal{A} is a proper H^{*}-algebra. It is easy to verify that \mathcal{A} is a full Hilbert H^{*}-bimodule over \mathcal{A} with the maps ${ }_{\mathcal{A}}\left[a_{1} \mid a_{2}\right]=a_{1} a_{2}^{*}$ and $\left[a_{1} \mid a_{2}\right]_{\mathcal{A}}=a_{1}^{*} a_{2}$, $a_{1}, a_{2} \in \mathcal{A}$.

We point out that each Hilbert H^{*}-bimodule ${ }_{\mathcal{A}} E_{\mathcal{B}}$ is a Hilbert space under both inner products $\left.\mathcal{A}^{(} x, y\right)=\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x \mid y]\right),(x, y)_{\mathcal{B}}=\operatorname{tr}_{\mathcal{B}}\left([x \mid y]_{\mathcal{B}}\right)$ and therefore it has two norms, usually different, as follows

$$
\mathcal{A}_{\mathcal{A}}\|x\|=\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x \mid x]\right)^{\frac{1}{2}}, \quad\|x\|_{\mathcal{B}}=\operatorname{tr}_{\mathcal{B}}\left([x \mid x]_{\mathcal{B}}\right)^{\frac{1}{2}}, \quad x \in E .
$$

We however have the following result in the particular case $\mathcal{A}=\mathcal{B}$.
Theorem 2.1. Let E be a Hilbert H^{*}-bimodule over an H^{*}-algebra \mathcal{A}, then

$$
\mathcal{A}_{\mathcal{A}}\|x a\| \leq\|a\|_{\mathcal{A}}\|x\|, \quad\|a x\|_{\mathcal{A}} \leq\|a\|\|x\|_{\mathcal{A}},
$$

for each $a \in \mathcal{A}$ and $x \in E$.
Proof. We are going to show that ${ }_{\mathcal{A}}\|x a\| \leq\|a\|_{\mathcal{A}}\|x\|$. Without loss of generality, we can assume that $\|a\| \leq 1$. Take $b=a a^{*}$. Then $b-b^{2}=h^{2}$ for some positive element $h \in \tau(\mathcal{A})$ (see [5, p. 34]). Therefore we can write $\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}\left[x\left(b-b^{2}\right) \mid x\right]\right)=$ $\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x h \mid x h]\right)={ }_{\mathcal{A}}\|x h\|^{2} \geq 0$ and thus we have

$$
\begin{equation*}
\operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}\left[x \mid x b b^{*}\right]\right)=\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}\left[x b^{2} \mid x\right]\right) \leq \operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}[x b \mid x]\right) . \tag{2.3}
\end{equation*}
$$

On using (2.3), we get

$$
\begin{aligned}
0 & \leq \operatorname{tr}_{\mathcal{A}}(\mathcal{A} \\
& {[x-x b \mid x-x b]) } \\
& =\operatorname{tr}_{\mathcal{A}}(\mathcal{A}[x \mid x])-\operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}[x \mid x b]\right)-\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x b \mid x]\right)+\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x b \mid x b]\right) \\
& =\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x \mid x]\right)-\operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}[x \mid x b]\right)-\operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}[x b \mid x]\right)+\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}\left[x \mid x b b^{*}\right]\right) \\
& \leq \operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}[x \mid x]\right)-\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x \mid x b]\right)-\operatorname{tr}_{\mathcal{A}}(\mathcal{A}[x b \mid x])+\operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}[x b \mid x]\right) .
\end{aligned}
$$

It enforces that $\operatorname{tr}_{\mathcal{A}}(\mathcal{A}[x \mid x b]) \leq \operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}[x \mid x]\right)$. Hence

$$
\begin{aligned}
\mathcal{A}\|x a\|^{2} & =\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x a \mid x a]\right)=\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}\left[x \mid x a a^{*}\right]\right)=\operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}_{\mathcal{A}}[x \mid x b]\right) \\
& \leq \operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x \mid x]\right)={ }_{\mathcal{A}}\|x\|^{2},
\end{aligned}
$$

as desired. The proof of the other part is similar and therefore, to avoid repeation we remove it.

Now we are in a position to state and prove our main result.
Theorem 2.2. Suppose that E is an imprimitivity Hilbert \mathcal{A} - \mathcal{B}-bimodule over the commutative H^{*}-algebras \mathcal{A} and \mathcal{B} and $x \in E$. Then ${ }_{\mathcal{A}}[x \mid x]$ is a minimal projection in \mathcal{A} if and only if $[x \mid x]_{\mathcal{B}}$ is a minimal projection in \mathcal{B}. Furthermore, x is in the Hilbert space $\left({ }_{\mathcal{A}} E\right)_{e}$ for some minimal projection $e \in \mathcal{A}$ if and only if x is in the Hilbert space $\left(E_{\mathcal{B}}\right)_{e^{\prime}}$ for some minimal projection $e^{\prime} \in \mathcal{B}$.

Proof. Consider ${ }_{\mathcal{A}}[x \mid x]=e_{1}$ for some minimal projection e_{1} in \mathcal{A}. Then $e_{1} x=x$ by Lemma 1.1 and therefore it establishes

$$
[x \mid x]_{\mathcal{B}}=\left[x \mid e_{1} x\right]_{\mathcal{B}}=\left[\left.x\right|_{\mathcal{A}}[x \mid x]_{\mathcal{B}}=\left[x \mid x[x \mid x]_{\mathcal{B}}\right]_{\mathcal{B}}=[x \mid x]_{\mathcal{B}}^{2} .\right.
$$

Since $[x \mid x]_{\mathcal{B}}=b^{*} b$ for some nonzero $b \in \mathcal{B}$, then $[x \mid x]_{\mathcal{B}}$ is a projection. It remains to prove that it is a minimal projection. For this purpose, let $\left\{e_{j}^{\prime}\right\}, j \in J$ be the maximal family of minimal projections in \mathcal{B}. In view of [1, Lemma 4.1] and [7, Lemma 1.1], $[x \mid x]_{\mathcal{B}}=\sum_{j \in J} t_{j}^{\prime} e_{j}^{\prime}$ for some nonnegative numbers $t_{j}^{\prime}, j \in J$. Put $[x \mid x]_{\mathcal{B}}=\sum_{j \in J_{0}} t_{j}^{\prime} e_{j}^{\prime}$, where $J_{0}=\left\{j \in J: t_{j}^{\prime} \neq 0\right\}$. Now, since $[x \mid x]_{\mathcal{B}}$ is idempotent, so we get $[x \mid x]_{\mathcal{B}}=\sum_{j \in J_{0}} e_{j}^{\prime}$. We claim that $[x \mid x]_{\mathcal{B}}=e_{j}^{\prime}$ for some $j \in J_{0}$. First, on the contrary suppose that $[x \mid x]_{\mathcal{B}}=e_{j_{1}}^{\prime}+e_{j_{2}}^{\prime}$, for distinct elements $j_{1}, j_{2} \in J_{0}$. Applying again Lemma 1.1, for each $a \in \mathcal{A}$, we have

$$
\begin{aligned}
e_{1} a & ={ }_{\mathcal{A}}[x \mid x] a \\
& ={ }_{\mathcal{A}}\left[\left.{ }_{\mathcal{A}}[x \mid x] x\right|_{\mathcal{A}}[x \mid x] x\right] a={ }_{\mathcal{A}}\left[x[x \mid x]_{\mathcal{B}} \mid x[x \mid x]_{\mathcal{B}}\right] a \\
& ={ }_{\mathcal{A}}\left[x\left(e_{j_{1}}^{\prime}+e_{j_{2}}^{\prime}\right) \mid x\left(e_{j_{1}}^{\prime}+e_{j_{2}}^{\prime}\right)\right] a={ }_{\mathcal{A}}\left[x e_{j_{1}}^{\prime}+x e_{j_{2}}^{\prime} \mid x e_{j_{1}}^{\prime}+x e_{j_{2}}^{\prime}\right] a \\
& ={ }_{\mathcal{A}}\left[x e_{j_{1}}^{\prime} \mid x e_{j_{1}}^{\prime}\right] a+_{\mathcal{A}}\left[x e_{j_{1}}^{\prime} \mid x e_{j_{2}}^{\prime}\right] a+_{\mathcal{A}}\left[x e_{j_{2}}^{\prime} \mid x e_{j_{1}}^{\prime}\right] a+{ }_{\mathcal{A}}\left[x e_{j_{2}}^{\prime} \mid x e_{j_{2}}^{\prime}\right] a .
\end{aligned}
$$

The double orthogonality of $e_{j} s^{\prime}$ ensures that

$$
\begin{equation*}
e_{1} a==_{\mathcal{A}}\left[x e_{j_{1}}^{\prime} \mid x e_{j_{1}}^{\prime}\right] a+_{\mathcal{A}}\left[x e_{j_{2}}^{\prime} \mid x e_{j_{2}}^{\prime}\right] a \tag{2.4}
\end{equation*}
$$

Assume that $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$, is an orthonormal basis for the right Hilbert \mathcal{B}-module E. According to Proposition 2.1 we observe that $x=\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}$ for some scalars $\mu_{\lambda}, \lambda \in \Lambda$, and therefore, $e_{j_{1}}^{\prime}+e_{j_{2}}^{\prime}=[x \mid x]_{\mathcal{B}}=\left[\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda} \mid \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}\right]_{\mathcal{B}}=\sum_{\lambda \in \Lambda}\left|\mu_{\lambda}\right|^{2}\left[u_{\lambda} \mid u_{\lambda}\right]_{\mathcal{B}}$. So, there exists λ_{1} and λ_{2} in Λ such that $\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]_{\mathcal{B}}=e_{j_{1}}^{\prime},\left[u_{\lambda_{2}} \mid u_{\lambda_{2}}\right]_{\mathcal{B}}=e_{j_{2}}^{\prime}$. Regarding to (2.4) we derive that

$$
\begin{aligned}
e_{1} a & ={ }_{\mathcal{A}}\left[x\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]_{\mathcal{B}} \mid x\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]_{\mathcal{B}}\right] a+_{\mathcal{A}}\left[x\left[u_{\lambda_{2}} \mid u_{\lambda_{2}}\right]_{\mathcal{B}} \mid x\left[u_{\lambda_{2}} \mid u_{\lambda_{2}}\right]_{\mathcal{B}}\right] a \\
& ={ }_{\mathcal{A}}\left[\left.{ }_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right] u_{\lambda_{1}}\right|_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right] u_{\lambda_{1}}\right] a+_{\mathcal{A}}\left[\left.\left[x \mid u_{\lambda_{2}}\right] u_{\lambda_{2}}\right|_{\mathcal{A}}\left[x \mid u_{\lambda_{2}}\right] u_{\lambda_{2}}\right] a \\
& ={ }_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right]_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right]_{\mathcal{A}}^{*}\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right] a+_{\mathcal{A}}\left[x \mid u_{\lambda_{2}}\right]_{\mathcal{A}}\left[x \mid u_{\lambda_{2}}\right]_{\mathcal{A}}^{*}\left[u_{\lambda_{2}} \mid u_{\lambda_{2}}\right] a .
\end{aligned}
$$

Both of statements in the right hand side of the above relation are nonzero. Indeed, we have $\left[\left.\mathcal{A}\left[x \mid u_{\lambda_{1}}\right] u_{\lambda_{1}}\right|_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right] u_{\lambda_{1}}\right]_{\mathcal{B}}=\left[x\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]_{\mathcal{B}} \mid x\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]_{\mathcal{B}}\right]_{\mathcal{B}}=[x \mid x]_{\mathcal{B}}\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]_{\mathcal{B}}=$ $\left(e_{j_{1}}^{\prime}+e_{j_{2}}^{\prime}\right) e_{j_{1}}^{\prime}=e_{j_{1}}^{\prime}$ and similarly $\left[\left.\mathcal{A}\left[x \mid u_{\lambda_{2}}\right] u_{\lambda_{2}}\right|_{\mathcal{A}}\left[x \mid u_{\lambda_{2}}\right]_{\lambda_{2}}\right]_{\mathcal{B}}=e_{j_{2}}^{\prime}$. Whence ${ }_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right] u_{\lambda_{1}}$ and ${ }_{\mathcal{A}}\left[x \mid u_{\lambda_{2}}\right] u_{\lambda_{2}}$ and consequently ${ }_{\mathcal{A}}\left[\left.\mathcal{A}_{\mathcal{A}}\left[x \mid u_{\lambda_{i}}\right] u_{\lambda_{i}}\right|_{\mathcal{A}}\left[x \mid u_{\lambda_{i}}\right] u_{\lambda_{i}}\right], i=1,2$ are nonzero.

Next, put ${ }_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right]=g,{ }_{\mathcal{A}}\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]=h^{*} h,{ }_{\mathcal{A}}\left[x \mid u_{\lambda_{2}}\right]=g^{\prime}$ and ${ }_{\mathcal{A}}\left[u_{\lambda_{2}} \mid u_{\lambda_{2}}\right]=h^{*} h^{\prime}$, for some $g, g^{\prime}, h, h^{\prime}$ in \mathcal{A}. Thus, we derive that

$$
e_{1} a=g g^{*} h^{*} h a+g^{\prime} g^{\prime *} h^{* *} h^{\prime} a=(g h)(g h)^{*} a+\left(g^{\prime} h^{\prime}\right)\left(g^{\prime} h^{\prime}\right)^{*} a .
$$

Take $g h=k$ and $g^{\prime} h^{\prime}=k^{\prime}$, so

$$
\begin{equation*}
e_{1} a=\left(k k^{*}+k^{\prime} k^{\prime *}\right) a . \tag{2.5}
\end{equation*}
$$

Let $\left\{e_{i}\right\}, i \in I$, be the maximal family of minimal projections in \mathcal{A} containing e_{1}. Without loss of generality, we may assume that $e_{i_{1}}=e_{1}$, where $i_{1} \in I$. If we put $k=\sum_{i \in I} t_{i} e_{i}$ and $k^{\prime}=\sum_{i \in I} s_{i} e_{i}$, then $e_{1}=k k^{*}+k^{\prime} k^{\prime *}=\sum_{i \in I}\left|t_{i}\right|^{2} e_{i}+\sum_{i \in I}\left|s_{i}\right|^{2} e_{i}$. On the other hand,

$$
\begin{aligned}
\left(g h^{*} h\right)\left(g^{\prime} h^{\prime *} h^{\prime}\right) & =\mathcal{A}_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right]_{\mathcal{A}}\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]_{\mathcal{A}}\left[x \mid u_{\lambda_{2}}\right]_{\mathcal{A}}\left[u_{\lambda_{2}} \mid u_{\lambda_{2}}\right] \\
& \left.={ }_{\mathcal{A}}\left[\left[x \mid u_{\mathcal{A}}\right] u_{\lambda_{1}} \mid u_{\lambda_{1}} u_{\lambda_{1}}\right]_{\mathcal{A}}\left[\left[x \mid u_{\mathcal{A}}\right] u_{\lambda_{2}}\right] u_{\lambda_{2}} \mid u_{\lambda_{2}}\right] \\
& ={ }_{\mathcal{A}}\left[x\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]_{\mathcal{B}} \mid u_{\lambda_{1}}\right]_{\mathcal{A}}\left[x\left[u_{\lambda_{2}} \mid u_{\lambda_{2}}\right]_{\mathcal{B}} \mid u_{\lambda_{2}}\right] \\
& ={ }_{\mathcal{A}}\left[x e_{j_{1}}^{\prime} \mid u_{\lambda_{1}}\right]_{\mathcal{A}}\left[x e_{j_{2}}^{\prime} \mid u_{\lambda_{2}}\right]={ }_{\mathcal{A}}\left[\left[x e_{j_{1}}^{\prime} \mid u_{\lambda_{1}}\right] x e_{j_{2}}^{\prime} \mid u_{\lambda_{2}}\right] \\
& ==_{\mathcal{A}}\left[x e_{j_{1}}^{\prime}\left[u_{\lambda_{1}} \mid x e_{j_{2}}^{\prime}\right]_{\mathcal{B}} \mid u_{\lambda_{2}}\right]={ }_{\mathcal{A}}\left[x e_{j_{1}}^{\prime} e_{j_{2}}^{\prime}\left[u_{\lambda_{1}} \mid x\right]_{\mathcal{B}} \mid u_{\lambda_{2}}\right] \\
& ==_{\mathcal{A}}\left[0 \mid u_{\lambda_{2}}\right]=0,
\end{aligned}
$$

which in turn implies that

$$
\begin{equation*}
k k^{*} k^{\prime} k^{\prime *}==_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right]_{\mathcal{A}}\left[x \mid u_{\lambda_{1}}\right]_{\mathcal{A}}^{*}\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]_{\mathcal{A}}\left[x \mid u_{\lambda_{2}}\right]_{\mathcal{A}}\left[x \mid u_{\lambda_{2}}\right]_{\mathcal{A}}^{*}\left[u_{\lambda_{2}} \mid u_{\lambda_{2}}\right]=0 . \tag{2.6}
\end{equation*}
$$

Clearly, $k k^{*}+k^{\prime} k^{*}=\sum_{i \in I}\left|t_{i}\right|^{2} e_{i}+\sum_{i \in I}\left|s_{i}\right|^{2} e_{i}$ have a nonzero scalar $t_{i_{2}}$ or $s_{i_{2}}$ for some $i_{2} \neq i_{1}$. Otherwise, $k k^{*}+k^{\prime} k^{\prime *}=\left|t_{i_{1}}\right|^{2} e_{i_{1}}+\left|s_{i_{1}}\right|^{2} e_{i_{1}}$ and so $k k^{*} k^{\prime} k^{\prime *}=\left|t_{i_{1}} s_{i_{1}}\right|^{2} e_{i_{1}}^{2}=$ $\left|t_{i_{1}} s_{i_{1}}\right|^{2} e_{i_{1}} \neq 0$ which is in contradiction with (2.6).

On the other hand, if such $t_{i_{2}}$ or $s_{i_{2}}$ occurs in $k k^{*}+k^{\prime} k^{\prime *}$, then substituting a with $e_{i_{2}}$ in (2.5), we get $e_{1} e_{i_{2}}=\left(k k^{*}+k^{\prime} k^{\prime *}\right) e_{i_{2}}$. It leads to a contradiction, since the right hand side of this equality is greater than $\left|t_{i_{2}}\right|^{2} e_{i_{2}}$ or $\left|s_{i_{2}}\right|^{2} e_{i_{2}}$ or sum of them but the left hand side is equal to zero. Therefore $[x \mid x]_{\mathcal{B}}$ cannot be of the form $e_{j_{1}}^{\prime}+e_{j_{2}}^{\prime}$. Repeating the above procedure, we realize that $[x \mid x]_{\mathcal{B}}$ cannot be appear as the form $e_{j_{1}}^{\prime}+\cdots+e_{j_{n}}^{\prime}$ where $n>2$. Hence $[x \mid x]_{\mathcal{B}}=e_{j}^{\prime}$ for some $j \in J_{0}$ and so the claim holds.

Finally, if $x \in\left({ }_{\mathcal{A}} E\right)_{e}$ for some minimal projection e in \mathcal{A}, then ${ }_{\mathcal{A}}[x \mid x]=\lambda e$ for some $\lambda>0$. Therefore $\mathcal{A}_{\mathcal{A}}\left[(\sqrt{\lambda})^{-1} x \mid(\sqrt{\lambda})^{-1} x\right]=e$ and so using the first part $[\sqrt{\lambda} x \mid \sqrt{\lambda} x]_{\mathcal{B}}$ is a minimal projection in \mathcal{B}, too. This completes the proof.
Theorem 2.3. Let E be an imprimitivity Hilbert H^{*}-bimodule over commutative H^{*} algebras \mathcal{A} and \mathcal{B}. If x and y are two nonzero elements in E such that ${ }_{\mathcal{A}}[x \mid x]$ and $\mathcal{A}^{\mathcal{A}}[y \mid y]$ are scalar multiplication of some minimal projections in \mathcal{A}, then the following four statements are equivalent:
(i) x, y are in Hilbert space $\left({ }_{\mathcal{A}} E\right)_{e}$ for some minimal projection e in \mathcal{A};
(ii) $[x \mid y]_{\mathcal{B}} \neq 0$;
(iii) x, y are in Hilbert space $\left(E_{\mathcal{B}}\right)_{e^{\prime}}$ for some minimal projection e^{\prime} in \mathcal{B};
(iv) $\mathcal{A}_{\mathcal{A}}[x \mid y] \neq 0$.

Proof. (i) \Rightarrow (ii) Let us assume that ${ }_{\mathcal{A}}[x \mid x]=\lambda e$ and ${ }_{\mathcal{A}}[y \mid y]=\mu e$ for some positive scalars λ and μ. According to Lemma 1.1 and imprimitivity of E we conclude that

$$
[x \mid x]_{\mathcal{B}}=\left[\left.\frac{1}{\mu_{\mathcal{A}}}[y \mid y] x \right\rvert\, x\right]_{\mathcal{B}}=\frac{1}{\mu}\left[\left.x\right|_{\mathcal{A}}[y \mid y] x\right]_{\mathcal{B}}=\frac{1}{\mu}\left[x \mid y[y \mid x]_{\mathcal{B}}\right]_{\mathcal{B}}=\frac{1}{\mu}[x \mid y]_{\mathcal{B}}[y \mid x]_{\mathcal{B}},
$$

which implies that $[x \mid y]_{\mathcal{B}} \neq 0$.
(ii) \Rightarrow (i) Suppose, on the contrary that, ${ }_{\mathcal{A}}[x \mid x]=\lambda_{1} e_{1}$ and ${ }_{\mathcal{A}}[y \mid y]=\lambda_{2} e_{2}$, for distinct minimal projections e_{1} and e_{2} in \mathcal{A}. These conditions assure us $e_{1} x=x$ and $e_{2} y=$ y. Thus we get $[x \mid y]_{\mathcal{B}}=\left[e_{1} x \mid e_{2} y\right]_{\mathcal{B}}=\left[e_{1} e_{2} x \mid y\right]_{\mathcal{B}}=[0 \mid y]_{\mathcal{B}}=0$ which contradicts assertion (ii).
(i) \Rightarrow (iii) Put ${ }_{\mathcal{A}}[x \mid x]=\lambda e$ and ${ }_{\mathcal{A}}[y \mid y]=\mu e$ for some positive scalars λ and μ. Applying a similar argument as before we observe that

$$
[y \mid y]_{\mathcal{B}}=\left[\left.\frac{1}{\lambda_{\mathcal{A}}}[x \mid x] y \right\rvert\, y\right]_{\mathcal{B}}=\frac{1}{\lambda}\left[x[x \mid y]_{\mathcal{B}} \mid y\right]_{\mathcal{B}}=\frac{1}{\lambda}[x \mid y]_{\mathcal{B}}[y \mid x]_{\mathcal{B}},
$$

which let us conclude that $[x \mid y]_{\mathcal{B}}[y \mid x]_{\mathcal{B}} \neq 0$. According to [1, Lemma 2.3], $\left([x \mid y]_{\mathcal{B}}[y \mid x]_{\mathcal{B}}\right)^{2} \neq 0$ and so $[x \mid x]_{\mathcal{B}}[y \mid y]_{\mathcal{B}}=\frac{1}{\lambda \mu}\left([x \mid y]_{\mathcal{B}}[y \mid x]_{\mathcal{B}}\right)^{2} \neq 0$. It enforces that $x, y \in\left(E_{\mathcal{B}}\right)_{e^{\prime}}$ for some minimal projection e^{\prime} in \mathcal{B}.

Implications (iii) \Rightarrow (i) and (iii) \Leftrightarrow (iv) are proved in similar ways and so we omit them.

Corollary 2.1. Suppose that E is an imprimitivity Hilbert \mathcal{A} - \mathcal{B}-bimodule over the commutative H^{*}-algebras \mathcal{A} and \mathcal{B} and also assume that $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$ is an orthonormal system for Hilbert H^{*}-module ${ }_{\mathcal{A}} E$. Then $\left\{u_{\lambda}\right\}$ is an orthonormal system for right Hilbert H^{*}-module $E_{\mathcal{B}}$ if and only if each $u_{\lambda}, \lambda \in \Lambda$, has its exclusive supporting projection in \mathcal{A}, it means that if λ_{1}, λ_{2} are distinct elements in Λ with $\mathcal{A}\left[u_{\lambda_{1}} \mid u_{\lambda_{1}}\right]=e_{\lambda_{1}}$ and $\mathcal{A}\left[u_{\lambda_{2}} \mid u_{\lambda_{2}}\right]=e_{\lambda_{2}}$ for some minimal projections $e_{\lambda_{1}}$ and $e_{\lambda_{2}}$ in \mathcal{A}, then $e_{\lambda_{1}} \neq e_{\lambda_{2}}$.

Proof. Suppose that $\left\{u_{\lambda}\right\}$ is an orthonormal system for Hilbert module $E_{\mathcal{B}}$. We assert that each $u_{\lambda}, \lambda \in \Lambda$, has its exclusive supporting projection in \mathcal{A}. If not, then there are distinct elements u_{μ} and u_{ν} in $\left\{u_{\lambda}\right\}$ with the same supporting projection e in \mathcal{A}. Whence $u_{\mu}, u_{\nu} \in E_{e}$ and by Theorem 2.3 we have that $\left[u_{\mu} \mid u_{\nu}\right]_{\mathcal{B}} \neq 0$, which leads to a contradiction. So each $u_{\lambda}, \lambda \in \Lambda$, has its exclusive supporting projection in \mathcal{A}. The reverse direction is a straightforward consequence of Theorems 2.2 and 2.3.

Up to now we discussed the existence of basic elements and orthonormal systems for a particular class of Hilbert H^{*}-bimodules. We are interested to prove the existence of orthonormal bases in these space. We focus on this subject below.

Theorem 2.4. Let \mathcal{A} and \mathcal{B} be two commutative H^{*}-algebras and ${ }_{\mathcal{A}} E_{\mathcal{B}}$ be an imprimitivity Hilbert H^{*}-bimodule. Let $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$ and $\left\{v_{\gamma}\right\}, \gamma \in \Gamma$ be orthonormal bases in $\mathcal{A} E$ and $E_{\mathcal{B}}$, respectively. Then the following conditions hold:
(i) for each $\lambda_{0} \in \Lambda$ there is a unique $v_{\gamma_{0}} \in\left\{v_{\gamma}\right\}$ and a scalar $t_{\gamma_{0}}, \gamma_{0} \in \Gamma$, with $\left|t_{\gamma_{0}}\right|=1$ in which $u_{\lambda_{0}}=t_{\gamma_{0}} v_{\gamma_{0}}$;
(ii) $u_{\lambda_{0}}$ and $v_{\gamma_{0}}$ have the same supporting projections in \mathcal{A} and also in \mathcal{B};
(iii) there is a bijection between Λ and Γ.

Proof. Suppose that λ_{0} is any arbitrary fixed element in Λ. Regarding Proposition 2.1, $u_{\lambda_{0}}=\sum_{\gamma \in \Gamma^{\prime}} t_{\gamma} v_{\gamma}$, where $\Gamma^{\prime}=\left\{\gamma \in \Gamma: t_{\gamma} \neq 0\right\}$. We claim that there is a unique $v_{\gamma_{0}}$ in $\left\{v_{\gamma}\right\}$ such that $\left[u_{\lambda_{0}} \mid v_{\gamma_{0}}\right] \neq 0$. First, note that for each $\gamma^{\prime} \in \Gamma^{\prime}$, we get

$$
\begin{equation*}
\left[u_{\lambda_{0}} \mid v_{\gamma^{\prime}}\right]_{\mathcal{B}}=\left[\sum_{\gamma \in \Gamma^{\prime}} t_{\gamma} v_{\gamma} \mid v_{\gamma^{\prime}}\right]_{\mathcal{B}}=t_{\gamma^{\prime}}\left[v_{\gamma^{\prime}} \mid v_{\gamma^{\prime}}\right]_{\mathcal{B}} \neq 0 . \tag{2.7}
\end{equation*}
$$

Take γ^{\prime} an arbitrary fixed element in Γ^{\prime} and set ${ }_{\mathcal{A}}\left[u_{\lambda_{0}} \mid u_{\lambda_{0}}\right]=e,{ }_{\mathcal{A}}\left[v_{\gamma^{\prime}} \mid v_{\gamma^{\prime}}\right]=e_{1}$ for some minimal projections e and e_{1} in \mathcal{A}. Notice that using Theorem 2.2, ${ }_{\mathcal{A}}\left[v_{\gamma^{\prime}} \mid v_{\gamma^{\prime}}\right]$ is a minimal projection in \mathcal{A}. From (2.7) and applying Theorem 2.3, it follows that $e=e_{1}$. Hence $u_{\lambda_{0}}$ and $v_{\gamma^{\prime}}$ have the same supporting projection in \mathcal{A} and also in \mathcal{B}. Taking into account Corollary 2.1 and since $\gamma^{\prime} \in \Gamma^{\prime}$ was arbitrary, we deduce that there is a unique $\gamma_{0} \in \Gamma$. with $t_{\gamma_{0}} \neq 0$ and $t_{\gamma}=0$, for all $\gamma \in \Gamma \backslash\left\{\gamma_{0}\right\}$. In fact, suppose that there are two distinct elements γ_{1} and γ_{2} in Γ^{\prime} in which both of $t_{\gamma_{1}}$ and $t_{\gamma_{2}}$ are nonzero, then using the similar argument as above we conclude that $v_{\gamma_{1}}$ and $v_{\gamma_{2}}$ have the same supporting projections in \mathcal{A} and also in \mathcal{B}. It enforces that $\left[v_{\gamma_{1}} \mid v_{\gamma_{2}}\right]_{\mathcal{B}} \neq 0$, which is a contradiction. Therefore $u_{\lambda_{0}}=t_{\gamma_{0}} v_{\gamma_{0}}$ and the claim holds.

On the other hand, if $\left[u_{\lambda_{0}} \mid u_{\lambda_{0}}\right]_{\mathcal{B}}=e^{\prime}$ for some minimal projection e^{\prime} in \mathcal{B}, then we have

$$
e^{\prime}=\left[u_{\lambda_{0}} \mid u_{\lambda_{0}}\right]_{\mathcal{B}}=\left[t_{\gamma_{0}} v_{\gamma_{0}} \mid t_{\gamma_{0}} v_{\gamma_{0}}\right]_{\mathcal{B}}=\left|t_{\gamma_{0}}\right|^{2}\left[v_{\gamma_{0}} \mid v_{\gamma_{0}}\right]_{\mathcal{B}}=\left|t_{\gamma_{0}}\right|^{2} e^{\prime} .
$$

It follows that $\left|t_{\gamma_{0}}\right|=1$. It proves items (i) and (ii). For proving (iii) consider the mapping $\phi: \Lambda \rightarrow \Gamma$, which assigns each $u_{\lambda_{0}}$ to $v_{\gamma_{0}}$, where $\lambda_{0} \in \Lambda, \gamma_{0} \in \Gamma$ and $v_{\gamma_{0}}$ is chosen as the proof of the previous parts. It is readily verified that ϕ is an injection.

Surjectivity of ϕ follows from changing the roles of $\left\{u_{\lambda}\right\}$ and $\left\{v_{\gamma}\right\}$ in the proof of (i).

Corollary 2.2. Suppose that E is an imprimitivity Hilbert \mathcal{A} - \mathcal{B}-bimodule over the commutative H^{*}-algebras \mathcal{A} and \mathcal{B}. Then $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$, is an orthonormal basis for the Hilbert H^{*}-module ${ }_{\mathcal{A}} E$ if and only if it is an orthonormal basis for the Hilbert H^{*}-module $E_{\mathcal{B}}$.

Proof. Let $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$, be an orthonormal basis in ${ }_{\mathcal{A}} E$. It is an immediate consequence of Theorems 2.2 and 2.3, that $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$, is an orthonormal system for $E_{\mathcal{B}}$. So it is enough to prove that $\left\{u_{\lambda}\right\}$ generates a dense submodule for $E_{\mathcal{B}}$. Using Theorem 2.4, we may consider $\left\{v_{\lambda}\right\}, \lambda \in \Lambda$ to be an orthonormal basis for $E_{\mathcal{B}}$ such
that $u_{\lambda}=t_{\lambda} v_{\lambda}$ for each $\lambda \in \Lambda$ and some scalar t_{λ} with $\left|t_{\lambda}\right|=1$. Let us denote by \mathcal{F} the family of finite subsets of Λ. Now if $x \in E$, then $x=\sum_{\lambda \in \Lambda} \mu_{\lambda}^{\prime} v_{\lambda}$ and thus we have

$$
\begin{equation*}
\left\|x-\sum_{\lambda \in \Lambda^{\prime}} \mu_{\lambda}^{\prime} v_{\lambda}\right\|_{\mathcal{B}}=\left\|x-\sum_{\lambda \in \Lambda^{\prime}} \frac{\mu_{\lambda}^{\prime}}{t_{\lambda}} u_{\lambda}\right\|_{\mathcal{B}}, \tag{2.8}
\end{equation*}
$$

for each $\Lambda^{\prime} \in \mathcal{F}$. On using (2.8) we conclude that $\left\{u_{\lambda}\right\}$ generates a dense submodule of $E_{\mathcal{B}}$, too.

In the light of the previous corollary, the following definition is reasonable.
Definition 2.3. Let E be an imprimitivity Hilbert \mathcal{A} - \mathcal{B}-bimodule over the commutative H^{*}-algebras \mathcal{A} and \mathcal{B} and $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$, be an orthonormal basis for Hilbert H^{*}-module ${ }_{\mathcal{A}} E$ (or $E_{\mathcal{B}}$). Then we say $\left\{u_{\lambda}\right\}$ is an orthonormal basis for Hilbert H^{*} bimodule ${ }_{\mathcal{A}} E_{\mathcal{B}}$.

In the sequel, we investigate the relationship between two topologies induced by H^{*}-algebras \mathcal{A} and \mathcal{B}.
In general suppose that H is a Hilbert space with both inner products $\langle\cdot, \cdot\rangle$ and $\langle\cdot, \cdot\rangle_{1}$ and corresponding norms $\|$.$\| and \|.\|_{1}$, respectively. If $\|x\|_{1} \leq \beta\|x\|$ for each $x \in H$ and some $\beta>0$, then there is a positive operator $K \in B(H)$ (w.r.t. $\|\cdot\|$) such that K is injective and moreover $\langle x, y\rangle_{1}=\langle K x, y\rangle$, for all x, y in H. On the other hand, $\|\cdot\|$ and $\|\cdot\|_{1}$ give rise to the same topology if K has an inverse in $B(H)$ (see [6, Page 162]). Accordingly, if ${ }_{\mathcal{A}} E_{\mathcal{B}}$ is a Hilbert H^{*}-bimodule, then ${ }_{\mathcal{A}}\|\cdot\|$ and $\|\cdot\|_{\mathcal{B}}$ are equivalent if and only if there is a positive invertible operator K in $B(E)$ (w.r.t. $\left.{ }_{\mathcal{A}}\|\cdot\|\right)$ in which $\langle x, y\rangle_{\mathcal{B}}=_{\mathcal{A}}\langle K x, y\rangle$, for all x, y in E. Further, some more interesting results can be found in the case that H^{*}-algebras \mathcal{A} and \mathcal{B} are commutative.

Proposition 2.3. Let \mathcal{A} and \mathcal{B} be two commutative H^{*}-algebras and ${ }_{\mathcal{A}} E_{\mathcal{B}}$ be an imprimitivity Hilbert H^{*}-bimodule. Assume that all minimal projections in \mathcal{A} and \mathcal{B} have norms equal to some $\alpha \geq 1$. Then ${ }_{\mathcal{A}}\|x\|=\|x\|_{\mathcal{B}}$ for each $x \in E$.
Proof. Let $\left\{e_{i}\right\}, i \in I$, be the family of all minimal projections in \mathcal{A} and $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$, be an orthonormal basis for ${ }_{\mathcal{A}} E_{\mathcal{B}}$ with ${ }_{\mathcal{A}}\left[u_{\lambda} \mid u_{\lambda}\right]=e_{i_{\lambda}}$ for each $\lambda \in \Lambda$ and some $i_{\lambda} \in I$. Take $x \in E$, then $x=\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}$ for some scalars $\mu_{\lambda}(\lambda \in \Lambda)$ and thus we have

$$
\begin{aligned}
{ }_{\mathcal{A}}\|x\|^{2} & =\operatorname{tr}_{\mathcal{A}}\left({ }_{\mathcal{A}}[x \mid x]\right)=\operatorname{tr}_{\mathcal{A}}\left(\mathcal{A}\left[\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda} \mid \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}\right]\right) \\
& ={ }_{\mathcal{A}}\left(\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda} \mid \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}\right)=\sum_{\lambda \in \Lambda}\left|\mu_{\lambda}\right|_{\mathcal{A}}^{2}\left(u_{\lambda} \mid u_{\lambda}\right)=\sum_{\lambda \in \Lambda}\left|\mu_{\lambda}\right|^{2}{ }_{\mathcal{A}}\left\|e_{i_{\lambda}}\right\|^{2} \\
& =\sum_{\lambda \in \Lambda}\left|\mu_{\lambda}\right|^{2} \alpha^{2} .
\end{aligned}
$$

Since the representation of $x=\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}$ is the same with respect to both of norms $\mathcal{A}\|\cdot\|$ and $\|\cdot\|_{\mathcal{B}}$, then similar relations proves that $\|x\|_{\mathcal{B}}^{2}=\sum_{\lambda \in \Lambda}\left|\mu_{\lambda}\right|^{2} \alpha^{2}$. So we achieve our goal.

Proposition 2.4. Let ${ }_{\mathcal{A}} E_{\mathcal{B}}$ be an imprimitivity Hilbert H^{*}-bimodule over commutative H^{*}-algebras \mathcal{A} and \mathcal{B} and let $x, y \in E$. Then ${ }_{\mathcal{A}}[x \mid y]=0$ if and only if $[x \mid y]_{\mathcal{B}}=0$.
Proof. In the forward direction, suppose that ${ }_{\mathcal{A}}[x \mid y]=0$. Let $\left\{u_{\lambda}\right\}, \lambda \in \Lambda$ be an orthonormal basis for Hilbert H^{*}-bimodule ${ }_{\mathcal{A}} E_{\mathcal{B}}$, then for some suitable scalars t_{λ} and $s_{\mu}(\lambda, \mu \in \Lambda), x=\sum_{\lambda \in \Lambda^{\prime}} t_{\lambda} u_{\lambda}$ and $y=\sum_{\mu \in \Lambda^{\prime \prime}} s_{\mu} u_{\mu}$, where $\Lambda^{\prime}=\left\{\lambda \in \Lambda: t_{\lambda} \neq 0\right\}$ and $\Lambda^{\prime \prime}=\left\{\mu \in \Lambda: s_{\mu} \neq 0\right\}$. These allow us to write $\mathcal{A}[x \mid y]=\sum_{\lambda \in \Lambda^{\prime}} \sum_{\mu \in \Lambda^{\prime \prime}} t_{\lambda}{\overline{s_{\mu}}}_{\mathcal{A}}\left[u_{\lambda} \mid u_{\mu}\right]=0$, which in turn implies that $\Lambda^{\prime} \cap \Lambda^{\prime \prime}=\emptyset$. It follows from this reasoning and by applying Corollary 2.2, that $[x \mid y]_{\mathcal{B}}=\sum_{\lambda \in \Lambda^{\prime}} \sum_{\mu \in \Lambda^{\prime \prime}} t_{\lambda} \overline{s_{\mu}}\left[u_{\lambda} \mid u_{\mu}\right]_{\mathcal{B}}=0$. The inverse implication is shown similarly.
In the sequel, we give an example to verify usefulness of our results.
Example 2.2. Let \mathcal{A} be the commutative real H^{*}-algebra $\left\{\left(\begin{array}{cc}a & a \\ b & b\end{array}\right): a, b \in \mathbb{R}\right\}$ together with the usual operations of addition and scalar multiplication and endowed with componentwise multiplication. Adjoint and inner product are defined by

$$
\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)^{*}=\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)
$$

and

$$
\mathcal{A}\left\langle\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)\left(\begin{array}{ll}
c & c \\
d & d
\end{array}\right)\right\rangle=k(a c+b d),
$$

where k is a positive number greater or equal to 1 . Obviously, $\tau(\mathcal{A})=\mathcal{A}$ and linear functional $\operatorname{tr}_{\mathcal{A}}: \tau(\mathcal{A}) \rightarrow \mathbb{R}$ defined by $\operatorname{tr}_{\mathcal{A}}\left(\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)\right)=k(a+b)$ is positive. Similarly, consider the commutative real H^{*}-algebra $\mathcal{B}=\left\{\left(\begin{array}{ll}a & b \\ a & b\end{array}\right): a, b \in \mathbb{R}\right\}$ together with the operations of addition, scalar multiplication, componentwise multiplication and adjoint which are defined as the similar way as \mathcal{A} and inner product is defined by

$$
\left\langle\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right),\left(\begin{array}{ll}
c & d \\
c & d
\end{array}\right)\right\rangle_{\mathcal{B}}=p(a c+b d)
$$

for some positive number $p \geq 1$. Evidently, $\tau(\mathcal{B})=\mathcal{B}$ and linear functional $\operatorname{tr}_{\mathcal{B}}: \tau(\mathcal{B}) \rightarrow \mathbb{R}$ is defined by $\operatorname{tr}_{\mathcal{B}}\left(\left(\begin{array}{ll}a & b \\ a & b\end{array}\right)\right)=p(a+b)$ is positive. It is routine to verify that $\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\right\}$ and $\left\{\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)\right\}$ are the sets of all minimal projections in \mathcal{A} and \mathcal{B}, respectively. Now, take E the space of all 2×2 matrices $\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right), a, b \in \mathbb{R}$, and define left module multiplication.$: \mathcal{A} \times E \rightarrow E$ and right module multiplication . : $E \times \mathcal{B} \rightarrow E$ by

$$
\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)\left(\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a c & 0 \\
0 & b d
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right)\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right)=\left(\begin{array}{cc}
a c & 0 \\
0 & b d
\end{array}\right)
$$

respectively. Also, define $\tau(\mathcal{A})$ - and $\tau(\mathcal{B})$-valued inner products ${ }_{\mathcal{A}}[\cdot \mid \cdot]: E \times E \rightarrow \tau(\mathcal{A})$ and $[\cdot \mid]_{\mathcal{B}}: E \times E \rightarrow \tau(\mathcal{B})$ by

$$
\mathcal{A}\left[\left.\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right)\right]=\left(\begin{array}{cc}
a c & a c \\
b d & b d
\end{array}\right)
$$

and

$$
\left[\left.\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right) \right\rvert\,\left(\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right)\right]_{\mathcal{B}}=\left(\begin{array}{ll}
a c & b d \\
a c & b d
\end{array}\right)
$$

respectively. It is not hard to see that E is an imprimitivity \mathcal{A} - \mathcal{B} Hilbert bimodule.
Next, we point that the set $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is an orthonormal basis for ${ }_{\mathcal{A}} E_{\mathcal{B}}$. This holds since

$$
\mathcal{A}\left[\left.\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right]=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

and

$$
\mathcal{A}\left[\left.\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right]=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right),
$$

and with the help of Corollaries 2.1 and 2.2 we get the desired result. Furthermore, assume that $p=k$, then all minimal projections in \mathcal{A} and \mathcal{B} have the same norm \sqrt{k}. Therefore, ${ }_{\mathcal{A}}\|\cdot\|=\|\cdot\|_{\mathcal{B}}$ by Proposition 2.3.
Theorem 2.5. Let \mathcal{A} and \mathcal{B} be two commutative H^{*}-algebras and ${ }_{\mathcal{A}} E_{\mathcal{B}}$ be a full Hilbert H^{*}-bimodule. Then H^{*}-algebras \mathcal{A} and \mathcal{B} are isomorphic.

Proof. Consider $\left\{e_{i}\right\}, i \in I$, is the family of all minimal projections in $\mathcal{A},\left\{u_{\lambda}\right\}, \lambda \in \Lambda$ is an orthonormal basis for ${ }_{\mathcal{A}} E_{\mathcal{B}}$ and a is an arbitrary element in \mathcal{A}. By the commutativity of $\mathcal{A}, a=\sum_{i \in I} \mu_{i} e_{i}$. According to Proposition 2.2, for each $i \in I$ there exists $\lambda_{i} \in \Lambda$ such that $e_{i}=\mathcal{A}_{\mathcal{A}}\left[u_{\lambda_{i}} \mid u_{\lambda_{i}}\right]$. Hence, $a=\sum_{i \in I} \mu_{i}{ }_{\mathcal{A}}\left[u_{\lambda_{i}} \mid u_{\lambda_{i}}\right]$. Define a mapping $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ by $\varphi(a):=\sum_{i \in I} \mu_{i}\left[u_{\lambda_{i}} \mid u_{\lambda_{i}}\right]_{\mathcal{B}}$, where $a=\sum_{i \in I} \mu_{i} \mathcal{A}\left[u_{\lambda_{i}} \mid u_{\lambda_{i}}\right]$. In view of Theorem 2.3, we observe that $a=\sum_{i \in I} \mu_{i \mathcal{A}}\left[u_{\lambda_{i}} \mid u_{\lambda_{i}}\right]=0$ if and only if $\varphi(a)=\sum_{i \in I} \mu_{i}\left[u_{\lambda_{i}} \mid u_{\lambda_{i}}\right]_{\mathcal{B}}=0$. This shows that φ is well defined and injective. It is easy to verify that φ is a morphism, i.e., $\varphi\left(a_{1}+a_{2}\right)=\varphi\left(a_{1}\right)+\varphi\left(a_{2}\right), \varphi\left(a_{1} a_{2}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)$ and $\varphi\left(a^{*}\right)=\varphi(a)^{*}$, for all a_{1}, a_{2}, a in \mathcal{A}. The surjectivity of φ is evident. This is somewhat similar to the situation discussed for constructing φ. Therefore, φ is an isomorphism.

References

[1] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
[2] D. Bakic and B. Guljas, Operators on Hilbert H^{*}-modules, J. Operator Theory 46 (2001), 123-137.
[3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
[4] M. Cabrera, J. Martinez and A. Rodriguez, Hilbert modules revisited: orthonormal bases and Hilbert-Schmidt operators, Glasg. Math. J. 37 (1995), 45-54.
[5] H. G. Dales, P. Aiena, J. Eschmeier, K. Laursen and G. Willis, Introduction to Banach Algebras, Operators, and Harmonic Analysis, Cambridge Univerity Press, Cambridge, 2003.
[6] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Academic Press, Inc. New York, 1983.
[7] M. Khanehgir, M. Amyari and M. Moradian Khibary, Pullback diagram of Hilbert modules over H^{*}-algebras, Kragujevac J. Math. 39(1) (2015), 21-30.
[8] M. Khanehgir and M. Moradian Khibary, b- H^{*}-algebras, Kochi Journal of Mathematics 11 (2015), 1-12.
[9] P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary H^{*}-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100.
[10] P. P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35 (1968), 191-197.
[11] J. F. Smith, The structure of Hilbert modules, J. Lond. Math. Soc. 8 (1947), 741-749.
${ }^{1}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Email address: khanehgir@mshdiau.ac.ir
Email address: zahra-nm79@yahoo.com
${ }^{2}$ Department of Pure Mathematics, Farhangian University,
Mashhad, Iran
Email address: MMkh926@gmail.com
*CORRESPONDING AUTHOR

[^0]: Key words and phrases. \mathcal{A} - \mathcal{B}-bimodule, H^{*}-algebra, full Hilbert H^{*}-module, minimal projection. 2010 Mathematics Subject Classification. Primary: 46H05. Secondary: 46C05.
 Received: September 18, 2017.
 Accepted: January 16, 2018.

