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ON IMPRIMITIVITY HILBERT BIMODULES OVER
COMMUTATIVE H*-ALGEBRAS

M. KHANEHGIR!'*, M. MORADIAN KHIBARY?, AND Z. NIAZI MOGHANT!

ABSTRACT. In this paper, we introduce the notion of imprimitivity Hilbert H*-
bimodule and describe some properties of it. Moreover, we show that if A and B
are proper and commutative H*-algebras, 4Fg is a Hilbert H*-bimodule and e;
is a minimal projection in A with 4[z|z] = e; for some z € A, then [z|z]p is a
minimal projection in B, too. Furthermore, the existence of orthonormal bases for
such spaces is studied.

1. INTRODUCTION AND PRELIMINARIES

An H*-algebra, introduced by Ambrose [1] is a complex Banach algebra A satisfying
the following conditions:

(i) A is a Hilbert space under an inner product (-, );

(ii) for each a in A there is an element a* in A, the so-called adjoint of a, such

that (ab,c) = (b,a*c) and (ab, c) = (a,cb*), for all b, c € A.

Recall that Ay = {a € A : aA = {0}} = {a € A : Aa = {0}} is called the
annihilator ideal of A. A proper H*-algebra is an H*-algebra with zero annihilator
ideal. Ambrose [1] proved that an H*-algebra is proper if and only if every element
has a unique adjoint. The trace-class 7(A) of a proper H*-algebra A is defined by
the set 7(A) = {ab : a,b € A}. It is known that 7(A) is an ideal of A, which

is a Banach x-algebra under a suitable norm 74(-). The norm 74 is related to the

given norm || - || on A by 74(a*a) = ||al|? for all @ € A. The trace functional tr,
on 7(A) is defined by try(ab) = (a,b*) = (b,a*) = tru(ba) for each a,b € A. In
particular trg(aa*) = trg(a*a) = ||al|? for each a € A. A nonzero element e € A is

called a projection, if it is self-adjoint and idempotent. In addition, if eAe = Ce then,
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it is called a minimal projection. Each simple H*-algebra (that is, an H*-algebra
without nontrivial closed two-sided ideals) contains minimal projections. It is known
that all minimal projections in a simple H*-algebra have equal norms equal to « for
some « > 1 [2]. Two idempotents e and ¢’ are doubly orthogonal if (e,e’) = 0 and
e/ = e’e = 0. An idempotent is primitive if it can not be expressed as the sum of
two doubly orthogonal idempotents. Every proper H*-algebra contains a maximal
family of doubly orthogonal primitive self-adjoint idempotents [1]. Recall that in a
commutative H*-algebra an element is a primitive projection if and only if it is a
minimal projection [7, Lemma 1.1]. There are many scholars have worked on H*-
algebras and developed the topic in several directions, see [1,3,8-10] and references
cited therein.

Proposition 1.1. Let A be a proper commutative H*-algebra. If e and €' are distinct
minimal projections in A, then they are doubly orthogonal.

Proof. We are going to show that ee’ = 0. If on the contrary ee’ # 0, then commutativ-
ity of A and minimality of the projections e and €', imply that ee’ = ee’e = A\je = Ag€’
for some nonzero and distinct scalars A\; and As. On the other hand, since e,

¢ and ee’ are idempotents, then (A\e)? = Me = e/ = (A\€/)? = A€’ and so
A1 = XAy = 1, which gives e = €’ a contradiction. Thus ee/ = €’e = 0 and there-
fore (e, e’) = tra(ee’) = 0. O

An immediate consequence of the above proposition is the following result.

Corollary 1.1. Each commutative H*-algebra has a unique maximal family of doubly
orthogonal minimal projections which contains all of its minimal projections.

Let us recall the definition of a Hilbert H*-module.

Definition 1.1. [2] A Hilbert H*-module over a proper H*-algebra A is a left A-
module F on which there is a mapping [-|-] : £ x E — 7(A) (called 7(A)-valued
product), satisfying

(i) [azly] = alz|y];

() [o -+ yl2] = [z]2] + [yl2)
(ii1) laxly] = alz|y};
(iv) [2y]" = [yl];
(v) for each nonzero element z in F there is a nonzero element a in A such that
[z|z] = a*a;

(vi) E is a Hilbert space under the inner product (z,y) = tra([z|y]);
for each a € C, x,y,2 € E and a € A.

The Hilbert H*-module F is full [7] if the ideal [E|E]| = span{[z|y]| : x,y € E}, is
dense in 7(A) under the norm 74(+).

Example 1.1. [2] Let H be an infinite dimensional Hilbert space and H8(H) be the
standard H*-algebra of Hilbert-Schmidt operators on it. Let us denote by O, , the



ON IMPRIMITIVITY HILBERT H*-BIMODULES 453

rank 1 operator on H defined by ©,,(2) = (z,y)z. It is well known that H may
be regarded as a Hilbert H*-module over HS(H). Given x € H and T € HS(H),
Tz is interpreted as the action of T and H8(H )-valued product on H is defined by
[z|y] = ©,,. Since trygm) O,y = (x,y), then the resulting norm on H coincides with
the original one.

For a Hilbert H*-module E over a proper H*-algebra A the following relations
between the two norms ||.|| and 74 hold (see [2]):

||:):||2 = try([z]z]) = Ta([z|2]), forallxz € E,
[[zly]l] < Ta(lz|y]) < |z[lllyll, forallz,y € E,
|laz|| < |alll|z], foralla€ A ze€ E.

Definition 1.2. [2] An element u € F is a basic element if there exists a minimal
projection e € A (called the supporting projection) such that [u|u] = e. An orthonor-
mal system in F is a family of basic elements {u,}, A € A satistying [uy|u,] = 0, for
all A, u € A, X\ # . An orthonormal basis in E is an orthonormal system generating
a dense submodule of E.

Note that if {u,} is an orthonormal basis for E, then for each x € E, x = ¥, [z|uy]uy
(Fourier expansion) (see [2]). We recall that each Hilbert H*-module E contains basic
elements, orthonormal systems and orthonormal bases and moreover, all orthonormal
bases for E have the same cardinal number called the hilbertian dimension of F.

Lemma 1.1. [2] Let E be a Hilbert module over an arbitrary H*-algebra A, e € A
be a projection (not necessarily minimal) and let x € E be such that [x|x] =e. Then
er = .

In the above lemma one observes that if [z|z] = Ae for some scalar A\ and some
projection e in A, then

[ex — zlex — 7] = [ex|ex] — [ex|z] — [z]ex] + [x]x] = Ae® — Ae® — Ae? + e = 0,

which implies that ex = z. Let E be a Hilbert H*-module over an H*-algebra A
and let e € A be a minimal projection. Then E, = {z € F : [z|z] = Ae, A > 0} is a
closed subspace of the Hilbert space E. If A is a simple H*-algebra, then the subspace
E. generates a dense submodule in F (see [2]). For emphasizing its H*-algebra, we
denote E. by (4F). (or (E4). in right module case). For more details on this issue see
[2]. Also, for general facts about Hilbert H*-modules we refer the interested reader
to [2,4,7,10,11].

We introduce the notion of imprimitivity Hilbert H*-bimodule and describe some
properties of it. In this paper, we show that if A and B are proper and commutative H*-
algebras, 4 F3 is an imprimitivity Hilbert H*-bimodule and e; is a minimal projection
in A with 4[z|z] = e; for some x € A, then [z|z]g is a minimal projection in B, too.
Furthermore, the existence of orthonormal bases for such spaces is studied.
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2. MAIN RESULTS

In this section, we state the notions of Hilbert H*-bimodule and imprimitivity
Hilbert H*-bimodule. We then investigate the existence of orthonormal bases for
imprimitivity Hilbert bimodules over the commutative H*-algebras. Before giving our
results, we state two interesting facts related to Hilbert modules over the commutative
H*-algebras which will be used in the sequel.

Proposition 2.1. Let E be a Hilbert module over a commutative H*-algebra A. If
{ux}, A € A is an orthonormal basis for E and x € F, then x = Y \capauy for some
wy € C.

Proof. Let {e;}, i € I, be the maximal family of doubly orthogonal minimal projections
in A as Corollary 1.1. Let’s also suppose that each uy, A € A, has supporting projection
e;, for some i) € I. Since x = >\ [z|ur]uy, then applying [1, Theorem 4.1] and by
the commutativity of A, we get [z|uy] = Y jerpn€i, for each A € A and some scalars
;- Thus we have & = >"ycx Dicr friCilin.

On the other hand, e;uy = 0 for all 7 # iy. Indeed, by applying Proposition 1.1
we conclude that [e;uy|e;uy] = e;lunun] = e;e;;, = 0 for each ¢ # iy. Therefore,
T = D aeA HAinCinUn = Doxen Haiyua by Lemma 1.1. O
Proposition 2.2. Let E be a full Hilbert module over a commutative H*-algebra A,

ep € A be a minimal projection and {uy}, A € A, be an orthonormal basis for E.
Then eg = [uy,|uy,] for some g € A.

Proof. On the contrary, we suppose that

(2.1) eo 7 [ur|ual,

for all A € A. By the fullness of E we get eg = 3, [x¢|ys], for some index set J and
x; and vy in E. Regarding to Proposition 2.1 it follows that x; = Y \capeauy and
Y = Z;\eA,u;AU)\, for each t € J and some scalars p;» and ,uft’/\. Therefore, we can
write

(2.2) eo = Y [melye] = D peasih p[ualual.
teJ 5\

Accordingly, by (2.1) and (2.2) and applying Proposition 1.1 we observe that,
eo = €5 = Y i \[ualurleo = 0,
A
which gives a contradiction to the fact eq # 0. U
Definition 2.1. Let A and B be two proper H*-algebras. By a Hilbert bimodule 4 Eg
we mean a left Hilbert A-module with the 7(A)-valued product 4[-|] : E x E — 7(A)

and a right Hilbert B-module with the 7(B)-valued product [-|-]g : E x E — 7(B)
such that

(i) (azx)b = a(xb);
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(ii) alzbly] =a [2|yd"];
(iii) [z|ay]s = [a"z|y]s;
for all z,y €4 Eg, a € A and b € B.

Further, Hilbert H*-bimodule 4 FEg is called full, if it is full both as a left and as a
right Hilbert module over A and B, respectively.

Definition 2.2. A Hilbert A-B-bimodule FE is called an imprimitivity bimodule if

alzlylz = xlyl2]s,
where x,y,z €4 Esg.

Ezxample 2.1. Suppose A is a proper H*-algebra. It is easy to verify that A is a
full Hilbert H*-bimodule over A with the maps 4[a1|as] = aia} and [a1|as]a = ajas,
ay,as € A.

We point out that each Hilbert H*-bimodule 4F3 is a Hilbert space under both
inner products 4(z,y) = tra(alz|y]), (z,y)s = tra([z|y]s) and therefore it has two
norms, usually different, as follows

1 1
allzll = traalzlz])>,  [lzlls = tra([z|z]s)?, =€ E.
We however have the following result in the particular case A = B.
Theorem 2.1. Let E be a Hilbert H*-bimodule over an H*-algebra A, then
allzall < flallallzll,  [laz(la < llallllza,
for eacha € A and z € E.

Proof. We are going to show that 4||za| < ||laljallz||. Without loss of generality,
we can assume that [la]] < 1. Take b = aa*. Then b — b* = h? for some positive
element h € 7(A) (see [5, p. 34]). Therefore we can write trg(a[z(b — 0?)|z]) =
tra(a[zh|zh]) =4 ||zh|* > 0 and thus we have

(2.3) tra(a[z|obb*]) = tra(a[zb®|2]) < trg(afzdla]).
On using (2.3), we get
0 <trg(a[z — xblz — xb))
=tra(af[z|z]) — tra(alz|eb]) — tra(alzd|z]) + tra(a]zb|ab))
=trg(a[x|z]) — tra(a[z]ad]) — tra(a[zd|z]) + tra(a[z|zbb])
<tra(alz|z]) — tra(afz|zd]) — tra(alzb|x]) + tra(a]xd|x]).
xb]) < tra(afz|x]). Hence
allzal* =tra(alvalza]) = tra(alzlraa’]) = tra(alz|zb])
<tra(alzla]) =a [2]?,

as desired. The proof of the other part is similar and therefore, to avoid repeation we
remove it. O

It enforces that trg(4]x



456 M. KHANEHGIR, M. MORADIAN KHIBARY, AND Z. NIAZI MOGHANI

Now we are in a position to state and prove our main result.

Theorem 2.2. Suppose that E is an imprimitivity Hilbert A-B-bimodule over the
commutative H*-algebras A and B and x € E. Then 4[x|x] is a minimal projection in
A if and only if [x|z]s is a minimal projection in B. Furthermore, x is in the Hilbert
space (4 F). for some minimal projection e € A if and only if x is in the Hilbert space
(E)e for some minimal projection € € B.

Proof. Consider 4[z|z] = e; for some minimal projection e; in A. Then e;x = x by
Lemma 1.1 and therefore it establishes

[z|x]s = [z]|e1x]s = {x’ﬂ[ﬂx]xh}) = [[E‘J][ZElI]'B}B = [z|z]3.

Since [z|z]g = b*b for some nonzero b € B, then [z|x]z is a projection. It remains
to prove that it is a minimal projection. For this purpose, let {e}}, j € J be
the maximal family of minimal projections in B. In view of [1, Lemma 4.1] and
[7, Lemma 1.1], [:1:]95] = Yjest;e; for some nonnegative numbers t;, j € J. Put
[z]x]s = X jestie), where Jp = {] E J .t # 0}. Now, since [z]z]g is 1dempotent SO
we get [z]z]s = ey €. We claim that [ |z = ¢} for some j € Jy. First, on the
contrary suppose that [:1:|$]93 = ¢ + ¢, for distinct elements ji, j2 € Jo. Applying
again Lemma 1.1, for each a € .A We have

era =4x|r]a
:Ab[x|x]x‘A[x\x]x]a =a [x[x]x]g‘x[aﬂx]g}a
=alz(e), + €),)|x(e], + €),)]a =4 [xe), + xe),|xe) +xe))]a
=nlze), |ve la +a [xe) e, |a +4 [ve], |ve) Ja +4 [ve], |xe), ]a.
The double orthogonality of e; s’ ensures that
(2.4) era =y [xe) |ve] la 44 [ve], |ve),]a.

Assume that {uy}, A € A, is an orthonormal basis for the right Hilbert B-module FE.
According to Proposition 2.1 we observe that x = Y~y pauy for some scalars py, A € A,

and therefore, €’ + €’ = [r|r]s = [Creattrta|Xreatirtia]s = Z)\EA|,U)\|2[U)\|U)\]B. So,
there exists A\; and Ay in A such that [uy, |ux,]s = €}, [un,|ur,]s = €, . Regarding to
(2.4) we derive that

era = a[ux, [ux,Js |2 lus, [ur, )5 ] @ +a [2lus, [ur,)s |2 [us, [u,)s ]

—A [A[:du)\l]u/h

=alzlu,Jalzlux Jalu fusJa +a [zlus,alz Iwg] [, |ux,]a.

[$|UA1]UA1}CL +a4 [ [$|U)\2]U)\2 {L'|U,\2 UAQ}CL

Both of statements in the right hand side of the above relation are nonzero. Indeed,
we have [ [ |UA1]UA1|A[$|UA1]UA1]% = [zlur, [ur]slzfuy, [ux]s]s = [zla]s[us, [ur]s
(e}, +e,)el = e} and similarly [4[z[u,]us,|al@|us,|us,]s = €}, Whence 4[z|uy, |uy,
and [:v|u,\2]uA2 and consequently 4[alx|uy,|ux, |a[z|ur]uy,], ¢ = 1,2 are nonzero.
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Next, put glz|ux,] = g, alux, |ur,] = h*h, alz|uy,] = ¢ and 4luy,|uy,] = *H, for
some ¢,¢’,h,h in A. Thus, we derive that

era = gg*h*ha +g'g"h"h'a = (gh)(gh)*a + (¢'h')(¢'l)"a.
Take gh =k and ¢'h' = k', so
(2.5) era = (kk* + K'kE™)a.

Let {e;}, i € I ,be the maximal family of minimal projections in A containing e;.
Without loss of generality, we may assume that e;, = e;, where i; € I. If we put
k= Yicrtie; and k' = ¥ ,c18:¢, then ey = kk* + K'E™* = Yo/ |ti]?e; + Yierlsi)®e;. On
the other hand,

(gh™h)(g'h" ') =alw|ur,Jalus, [ux,Jal2|us,]alua, [us,]

—A L[:du)\l]u)q u)\1:|A L[IE|UA2]UA2 UAQ}
= |@[ur [ux ] |ux, p Tun, [Ur,] s U,
! ! ’ ’
=alwe; [u,]alve;, [ux,] =4 L[ﬂf@jJUAl]l’% UAZ}
! ! ! i
=a|re; [us |Te;,|s|ux, | =4 |ve; e, [ux |T]s u,\Q}
:A[0|u)\2] =0,
which in turn implies that
(2.6) kE"K'E™ =a [2|us,]alz|wn [ lus [ Jalzlus,la [z luss [ [us, [uas] = 0.

Clearly, kk* + K'E™* = 3,1t %e; + Z!siPei have a nonzero scalar t¢;, or s;, for some
il

iy # i1. Otherwise, kk* + k'K = |t;, [*e;, + |si,|%e;, and so kE*K'E™ = |t;,s;,%e? =

|ti, 8i,|es, # 0 which is in contradiction with (2.6).

On the other hand, if such ¢;, or s;, occurs in kk* + k'k™, then substituting a with
e, in (2.5), we get eje;, = (kk* + k'k™)e;,. It leads to a contradiction, since the
right hand side of this equality is greater than |t;,|%e;, or |s;,|?e;, or sum of them but
the left hand side is equal to zero. Therefore [z|x]s cannot be of the form e;l + 6;-2.
Repeating the above procedure, we realize that [x|z]s cannot be appear as the form
e;-l +- 4 e;n where n > 2. Hence [z]z]g = €/ for some j € Jy and so the claim holds.

Finally, if z € (4 ). for some minimal projection e in A, then 4[z|z] = Ae for some
A > 0. Therefore 4[(v/A)"'z|(v/A)~'z] = e and so using the first part [vAz|v/\z]p is

a minimal projection in B, too. This completes the proof. 0

Theorem 2.3. Let E be an imprimitivity Hilbert H*-bimodule over commutative H*-
algebras A and B. If x and y are two nonzero elements in E such that 4[z|x] and
alyly] are scalar multiplication of some minimal projections in A, then the following
four statements are equivalent:
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(i) x,y are in Hilbert space (4 E). for some minimal projection e in A;
(ii) [z[y]s # O;
--)

(iii) =,y are in Hilbert space (Eg)e for some minimal projection €' in B;

(iv) alzly] # 0.

Proof. (i)=-(ii) Let us assume that 4[z|z] = Ae and 4[y|ly] = pe for some positive
scalars A and u. According to Lemma 1.1 and imprimitivity of E we conclude that

1 1 1 1
[ﬂﬂgzlﬂJmmd4B=njﬂﬁmmﬂB=AJAMMMﬂgzyjﬂMMMM%
which implies that [z|y]s # 0.

(ii)=(i) Suppose, on the contrary that, 4[z|x] = Aje; and 4[y|y] = Ageq, for distinct
minimal projections e; and ey in A. These conditions assure us e;z = x and ey =
y. Thus we get [z|yls = [e1x|eay]ls = [ere2x|y]s = [Oly]s = 0 which contradicts
assertion (ii).

(i)=(ili) Put 4[z|z] = Ae and 4[y|y] = pe for some positive scalars A and p. Applying
a similar argument as before we observe that

s [relollo], = 5 lolsbiel

1
Xﬂ[wlx]y\y

[ylyls = =
B
which let us conclude that [z|y]sly|z]s # 0. According to [1, Lemma 2.3],
([z[y]slylz]s)* # 0 and so [2]z]s[ylyls = 5, ([z]y]slylz]s)* # 0. It enforces that
x,y € (Fg)e for some minimal projection €’ in B.

Implications (iii)=-(i) and (iii)<>(iv) are proved in similar ways and so we omit
them. U

Corollary 2.1. Suppose that E is an imprimitivity Hilbert A-B-bimodule over the
commutative H*-algebras A and B and also assume that {uy}, A € A is an orthonormal
system for Hilbert H*-module 4E. Then {uy} is an orthonormal system for right
Hilbert H*-module Eg if and only if each uy, N\ € A, has its exclusive supporting
projection in A, it means that if Ay, Ay are distinct elements in A with 4[uy, |uy,] = ex,
and gluy,|uy,| = ey, for some minimal projections ey, and ey, in A, then ey, # ey,.

Proof. Suppose that {u,} is an orthonormal system for Hilbert module E5. We assert
that each uy, A € A, has its exclusive supporting projection in A. If not, then there
are distinct elements u, and u, in {u,} with the same supporting projection e in A.
Whence w,, u, € E. and by Theorem 2.3 we have that [u,|u,]s # 0, which leads to a
contradiction. So each uy, A € A, has its exclusive supporting projection in A. The
reverse direction is a straightforward consequence of Theorems 2.2 and 2.3. 0

Up to now we discussed the existence of basic elements and orthonormal systems for
a particular class of Hilbert H*-bimodules. We are interested to prove the existence
of orthonormal bases in these space. We focus on this subject below.
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Theorem 2.4. Let A and B be two commutative H*-algebras and 4 Fg be an imprim-
itivity Hilbert H*-bimodule. Let {uy}, A € A and {v,}, v € I' be orthonormal bases
in 4 F and Eg, respectively. Then the following conditions hold:

(i) for each Ay € A there is a unique vy, € {vy} and a scalar t,,, v € I', with
[tye] = 1 in which uy, = t,0y,;
(ii) un, and vy, have the same supporting projections in A and also in B;
(iii) there is a bijection between A and I.

Proof. Suppose that )y is any arbitrary fixed element in A. Regarding Proposition
2.1, ux, = X eprtyvy, where I = {y € I' : , # 0}. We claim that there is a unique
vy, in {v,} such that [uy,|v,,] # 0. First, note that for each 7' € I, we get

(2.7) [uro|vy]s = [Z tyvs|vy | = tyfvylvy]s # 0.
yeI’ B
Take +" an arbitrary fixed element in I and set 4[uy,|uy,] = €, alvy|vy] = € for

some minimal projections e and e; in A. Notice that using Theorem 2.2, 4[vy/|vy/]
is a minimal projection in A. From (2.7) and applying Theorem 2.3, it follows that
e = e;. Hence uy, and v, have the same supporting projection in A and also in B.
Taking into account Corollary 2.1 and since 7/ € I was arbitrary, we deduce that
there is a unique 7o € I'. with ¢,, # 0 and ¢, = 0, for all v € I'\{7}. In fact, suppose
that there are two distinct elements v, and 7, in I'" in which both of ¢,, and t,, are
nonzero, then using the similar argument as above we conclude that v, and v,, have
the same supporting projections in A and also in B. It enforces that [v,,|v,,]s # 0,
which is a contradiction. Therefore uy, = t,,v., and the claim holds.

On the other hand, if [uy,|uy,|s = € for some minimal projection €’ in B, then we
have

¢ :[u)\oluko]B = [t’YOU’Yoyt’YOU’YO]B = |t“fol2[fv’70|v’70]B = ‘t“fo‘2€/'

It follows that |t,,| = 1. It proves items (i) and (ii). For proving (iii) consider the
mapping ¢ : A — I', which assigns each u,, to v.,, where \g € A, 7y € I" and v, is
chosen as the proof of the previous parts. It is readily verified that ¢ is an injection.

Surjectivity of ¢ follows from changing the roles of {u)} and {v,} in the proof
of (i). O

Corollary 2.2. Suppose that E is an imprimitivity Hilbert A-B-bimodule over the
commutative H*-algebras A and B. Then {uy}, X € A, is an orthonormal basis for
the Hilbert H*-module 4 FE if and only if it is an orthonormal basis for the Hilbert
H*-module Eg.

Proof. Let {uy}, A € A, be an orthonormal basis in 4£. It is an immediate conse-
quence of Theorems 2.2 and 2.3, that {uy}, A € A, is an orthonormal system for
Eg. So it is enough to prove that {u,} generates a dense submodule for Ez. Using
Theorem 2.4, we may consider {vy}, A € A to be an orthonormal basis for Eg such
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that uy = tyvy for each A € A and some scalar ¢, with |ty| = 1. Let us denote by F
the family of finite subsets of A. Now if z € F, then x = >, phvs and thus we have

/!
(2.8) =Y pho =lz— > %u,\ ,
Y B DY AR P
for each A’ € F. On using (2.8) we conclude that {u,} generates a dense submodule
of Eg, too. O

In the light of the previous corollary, the following definition is reasonable.

Definition 2.3. Let E be an imprimitivity Hilbert A-B-bimodule over the commu-
tative H*-algebras A and B and {u,}, A € A, be an orthonormal basis for Hilbert
H*-module 4E (or Eg). Then we say {u,} is an orthonormal basis for Hilbert H*-
bimodule 4 E3.

In the sequel, we investigate the relationship between two topologies induced by
H*-algebras A and B.

In general suppose that H is a Hilbert space with both inner products (-,-) and
(-,-)1 and corresponding norms ||.|| and ||.||1, respectively. If ||z||; < g||z| for each
x € H and some /5 > 0, then there is a positive operator K € B(H) (w.r.t. || - ||) such
that K is injective and moreover (x,y); = (Kz,y), for all z,y in H. On the other
hand, || - || and || - ||; give rise to the same topology if K has an inverse in B(H) (see
[6, Page 162]). Accordingly, if 4E5 is a Hilbert H*-bimodule, then 4| - || and || - ||5
are equivalent if and only if there is a positive invertible operator K in B(E) (w.r.t.
all 1) in which (x,y)s =4 (Kx,y), for all ,y in E. Further, some more interesting
results can be found in the case that H*-algebras A and B are commutative.

Proposition 2.3. Let A and B be two commutative H*-algebras and 4E5 be an
imprimitivity Hilbert H*-bimodule. Assume that all minimal projections in A and B
have norms equal to some o > 1. Then 4||x|| = ||z||s for each x € E.

Proof. Let {e;}, i € I, be the family of all minimal projections in A and {uy}, A € A,
be an orthonormal basis for 4 Fg with 4[uy|uy] = e;, for each A € A and some iy € I.
Take x € F, then © = Yoy pauy for some scalars py, (A € A) and thus we have

allz]]? =tra(alzla]) = tra (A [ZHAUA‘ZNAUA])

A€A A€A

=A (ZNA“A‘ZM“A> = i (ualun) = > sl alles, |1?

AEA AeA AEA AEA
:Z |al?a?.
AEA
Since the representation of x = 3" capauy is the same with respect to both of norms
all -] and |- ||s, then similar relations proves that ||z||% = Y sealua]?a?. So we achieve
our goal. 0
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Proposition 2.4. Let 4 Eg be an imprimitivity Hilbert H*-bimodule over commutative
H*-algebras A and B and let x,y € E. Then 4lx|y| = 0 if and only if [x|y]s = 0.

Proof. In the forward direction, suppose that 4[xz|y] = 0. Let {uy}, A € A be an
orthonormal basis for Hilbert H*-bimodule 4, Fs, then for some suitable scalars ¢, and
sp (A€ N), x = cptruy and y = 3 cansuty,, where A = {A € A : ty # 0} and
A" = {p € N:s, #0}. These allow us to write 4[x|y] = Yrenr X peartasu[ualuy] = 0,
which in turn implies that A’NA” = (). It follows from this reasoning and by applying
Corollary 2.2, that [z|y]s = Y \enr 2 peartasulua|u,)s = 0. The inverse implication is
shown similarly. O

In the sequel, we give an example to verify usefulness of our results.

Ezxample 2.2. Let A be the commutative real H*-algebra { Z Z ca,b € R}

together with the usual operations of addition and scalar multiplication and endowed
with componentwise multiplication. Adjoint and inner product are defined by

(i) =(is)
A<<Z Z)(; §>>:k<ac+bd),

where k is a positive number greater or equal to 1. Obviously, 7(A) = A and linear

and

functional try : 7(A) — R defined by trA< ( Z Z ) ) = k(a-+0b) is positive. Similarly,

a b
b

the operations of addition, scalar multiplication, componentwise multiplication and
adjoint which are defined as the similar way as A and inner product is defined by

<<Z 2)(2 Z>>B=p(ac+bd),

for some positive number p > 1. Evidently, 7(B) = B and linear functional

trg : 7(B) — R is defined by tr3<< Z Z ) = p(a + b) is positive. It is rou-

: . 11 0 0 10 0 1
tmetovemfythat{(o O)’(l 1>}and{<1 0>,<0 1>}arethesets

of all minimal projections in A and B, respectively. Now, take E the space of all 2 x 2

consider the commutative real H*-algebra B = { ) ca,b e R} together with

matrices 0 ), a,b € R, and define left module multiplication . : A x E — E and

a
0 b
right module multiplication . : £ x B — E by

(1)(5 (v 2)



462 M. KHANEHGIR, M. MORADIAN KHIBARY, AND Z. NIAZI MOGHANI

(o0)(55)= (% o)

respectively. Also, define 7(A)- and 7(B)-valued inner products 4[-|-] : £ x E — 7(A)
and [-|-]g : E X E— 7(B) by

L0 )= (o i)

and

and
[ a 0 c 0 ] [ ac bd
0 b 0 d/)]g \ac bd )’
respectively. It is not hard to see that E is an imprimitivity A-B Hilbert bimodule.
Next, we point that the set { (1) 8 , ( 8 (1) ) } is an orthonormal basis for

| LI 0)=(03)
L8 2)]=(20)

and with the help of Corollaries 2.1 and 2.2 we get the desired result. Furthermore,
assume that p = k, then all minimal projections in A and ‘B have the same norm v/k.
Therefore, 4[| - || = || - || by Proposition 2.3.

and

Theorem 2.5. Let A and B be two commutative H*-algebras and 4Eg be a full
Hilbert H*-bimodule. Then H*-algebras A and B are isomorphic.

Proof. Consider {e;}, i € I, is the family of all minimal projections in A, {uy}, A € Ais
an orthonormal basis for 4 F'g and a is an arbitrary element in A. By the commutativity
of A, a = Y ;crpiei. According to Proposition 2.2, for each 7 € I there exists \; € A
such that e; =4 [uy,|uy,]. Hence, a = Y ;e aluy,|uy,]. Define a mapping ¢ : A — B
by o(a) := Y icritilun |un]s, where a = 3 ;e aluy,|uy,]. In view of Theorem 2.3, we
observe that a = Y ;crpuialun, |un,] = 0 if and only if p(a) = > ;crpi[un,|uy,]s = 0. This
shows that ¢ is well defined and injective. It is easy to verify that ¢ is a morphism, i.e.,
plar + az) = p(ar) + p(a2), p(araz) = p(a1)p(az) and p(a*) = ¢(a)*, for all a1, az,a
in A. The surjectivity of ¢ is evident. This is somewhat similar to the situation
discussed for constructing ¢. Therefore, ¢ is an isomorphism. U
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