KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 43(3) (2019), PAGES 451–463.

ON IMPRIMITIVITY HILBERT BIMODULES OVER COMMUTATIVE *H**-ALGEBRAS

M. KHANEHGIR^{1*}, M. MORADIAN KHIBARY², AND Z. NIAZI MOGHANI¹

ABSTRACT. In this paper, we introduce the notion of imprimitivity Hilbert H^* bimodule and describe some properties of it. Moreover, we show that if \mathcal{A} and \mathcal{B} are proper and commutative H^* -algebras, $_{\mathcal{A}}E_{\mathcal{B}}$ is a Hilbert H^* -bimodule and e_1 is a minimal projection in \mathcal{A} with $_{\mathcal{A}}[x|x] = e_1$ for some $x \in \mathcal{A}$, then $[x|x]_{\mathcal{B}}$ is a minimal projection in \mathcal{B} , too. Furthermore, the existence of orthonormal bases for such spaces is studied.

1. INTRODUCTION AND PRELIMINARIES

An H^* -algebra, introduced by Ambrose [1] is a complex Banach algebra \mathcal{A} satisfying the following conditions:

- (i) \mathcal{A} is a Hilbert space under an inner product $\langle \cdot, \cdot \rangle$;
- (ii) for each a in \mathcal{A} there is an element a^* in \mathcal{A} , the so-called adjoint of a, such that $\langle ab, c \rangle = \langle b, a^*c \rangle$ and $\langle ab, c \rangle = \langle a, cb^* \rangle$, for all $b, c \in \mathcal{A}$.

Recall that $\mathcal{A}_0 = \{a \in \mathcal{A} : a\mathcal{A} = \{0\}\} = \{a \in \mathcal{A} : \mathcal{A}a = \{0\}\}$ is called the annihilator ideal of \mathcal{A} . A proper H^* -algebra is an H^* -algebra with zero annihilator ideal. Ambrose [1] proved that an H^* -algebra is proper if and only if every element has a unique adjoint. The trace-class $\tau(\mathcal{A})$ of a proper H^* -algebra \mathcal{A} is defined by the set $\tau(\mathcal{A}) = \{ab : a, b \in \mathcal{A}\}$. It is known that $\tau(\mathcal{A})$ is an ideal of \mathcal{A} , which is a Banach *-algebra under a suitable norm $\tau_{\mathcal{A}}(\cdot)$. The norm $\tau_{\mathcal{A}}$ is related to the given norm $\|\cdot\|$ on \mathcal{A} by $\tau_{\mathcal{A}}(a^*a) = \|a\|^2$ for all $a \in \mathcal{A}$. The trace functional $\operatorname{tr}_{\mathcal{A}}$ on $\tau(\mathcal{A})$ is defined by $\operatorname{tr}_{\mathcal{A}}(ab) = \langle a, b^* \rangle = \langle b, a^* \rangle = \operatorname{tr}_{\mathcal{A}}(ba)$ for each $a, b \in \mathcal{A}$. In particular $\operatorname{tr}_{\mathcal{A}}(aa^*) = \operatorname{tr}_{\mathcal{A}}(a^*a) = \|a\|^2$ for each $a \in \mathcal{A}$. A nonzero element $e \in \mathcal{A}$ is called a projection, if it is self-adjoint and idempotent. In addition, if $e\mathcal{A}e = \mathbb{C}e$ then,

Key words and phrases. A-B-bimodule, H^* -algebra, full Hilbert H^* -module, minimal projection. 2010 Mathematics Subject Classification. Primary: 46H05. Secondary: 46C05.

Received: September 18, 2017.

Accepted: January 16, 2018.

it is called a minimal projection. Each simple H^* -algebra (that is, an H^* -algebra without nontrivial closed two-sided ideals) contains minimal projections. It is known that all minimal projections in a simple H^* -algebra have equal norms equal to α for some $\alpha \geq 1$ [2]. Two idempotents e and e' are doubly orthogonal if $\langle e, e' \rangle = 0$ and ee' = e'e = 0. An idempotent is primitive if it can not be expressed as the sum of two doubly orthogonal idempotents. Every proper H^* -algebra contains a maximal family of doubly orthogonal primitive self-adjoint idempotents [1]. Recall that in a commutative H^* -algebra an element is a primitive projection if and only if it is a minimal projection [7, Lemma 1.1]. There are many scholars have worked on H^* algebras and developed the topic in several directions, see [1,3,8–10] and references cited therein.

Proposition 1.1. Let \mathcal{A} be a proper commutative H^* -algebra. If e and e' are distinct minimal projections in \mathcal{A} , then they are doubly orthogonal.

Proof. We are going to show that ee' = 0. If on the contrary $ee' \neq 0$, then commutativity of \mathcal{A} and minimality of the projections e and e', imply that $ee' = ee'e = \lambda_1 e = \lambda_2 e'$ for some nonzero and distinct scalars λ_1 and λ_2 . On the other hand, since e, e' and ee' are idempotents, then $(\lambda_1 e)^2 = \lambda_1 e = ee' = (\lambda_2 e')^2 = \lambda_2 e'$ and so $\lambda_1 = \lambda_2 = 1$, which gives e = e' a contradiction. Thus ee' = e'e = 0 and therefore $\langle e, e' \rangle = \operatorname{tr}_{\mathcal{A}}(ee') = 0$.

An immediate consequence of the above proposition is the following result.

Corollary 1.1. Each commutative H^* -algebra has a unique maximal family of doubly orthogonal minimal projections which contains all of its minimal projections.

Let us recall the definition of a Hilbert H^* -module.

Definition 1.1. [2] A Hilbert H^* -module over a proper H^* -algebra \mathcal{A} is a left \mathcal{A} module E on which there is a mapping $[\cdot|\cdot] : E \times E \to \tau(\mathcal{A})$ (called $\tau(\mathcal{A})$ -valued product), satisfying

(i) $[\alpha x|y] = \alpha [x|y];$

(ii)
$$[x+y|z] = [x|z] + [y|z];$$

- $(iii) \ [ax|y] = a[x|y];$
- (iv) $[x|y]^* = [y|x];$
- (v) for each nonzero element x in E there is a nonzero element a in A such that $[x|x] = a^*a$;

(vi) E is a Hilbert space under the inner product $(x, y) = tr_{\mathcal{A}}([x|y]);$

for each $\alpha \in \mathbb{C}$, $x, y, z \in E$ and $a \in \mathcal{A}$.

The Hilbert H^* -module E is full [7] if the ideal $[E|E] = \operatorname{span}\{[x|y] : x, y \in E\}$, is dense in $\tau(\mathcal{A})$ under the norm $\tau_{\mathcal{A}}(\cdot)$.

Example 1.1. [2] Let H be an infinite dimensional Hilbert space and $\mathcal{HS}(H)$ be the standard H^* -algebra of Hilbert-Schmidt operators on it. Let us denote by $\Theta_{x,y}$ the

rank 1 operator on H defined by $\Theta_{x,y}(z) = (z, y)x$. It is well known that H may be regarded as a Hilbert H^* -module over $\mathcal{HS}(H)$. Given $x \in H$ and $T \in \mathcal{HS}(H)$, Tx is interpreted as the action of T and $\mathcal{HS}(H)$ -valued product on H is defined by $[x|y] = \Theta_{x,y}$. Since $\operatorname{tr}_{\mathcal{HS}(H)}\Theta_{x,y} = (x, y)$, then the resulting norm on H coincides with the original one.

For a Hilbert H^* -module E over a proper H^* -algebra \mathcal{A} the following relations between the two norms $\|.\|$ and $\tau_{\mathcal{A}}$ hold (see [2]):

$$||x||^{2} = \operatorname{tr}_{\mathcal{A}}([x|x]) = \tau_{\mathcal{A}}([x|x]), \quad \text{for all } x \in E,$$
$$||[x|y]|| \le \tau_{\mathcal{A}}([x|y]) \le ||x|| ||y||, \quad \text{for all } x, y \in E,$$
$$||ax|| \le ||a|| ||x||, \quad \text{for all } a \in \mathcal{A}, x \in E.$$

Definition 1.2. [2] An element $u \in E$ is a basic element if there exists a minimal projection $e \in \mathcal{A}$ (called the supporting projection) such that [u|u] = e. An orthonormal system in E is a family of basic elements $\{u_{\lambda}\}, \lambda \in \Lambda$ satisfying $[u_{\lambda}|u_{\mu}] = 0$, for all $\lambda, \mu \in \Lambda, \lambda \neq \mu$. An orthonormal basis in E is an orthonormal system generating a dense submodule of E.

Note that if $\{u_{\lambda}\}$ is an orthonormal basis for E, then for each $x \in E$, $x = \sum_{\lambda} [x|u_{\lambda}]u_{\lambda}$ (Fourier expansion) (see [2]). We recall that each Hilbert H^* -module E contains basic elements, orthonormal systems and orthonormal bases and moreover, all orthonormal bases for E have the same cardinal number called the hilbertian dimension of E.

Lemma 1.1. [2] Let E be a Hilbert module over an arbitrary H^* -algebra \mathcal{A} , $e \in \mathcal{A}$ be a projection (not necessarily minimal) and let $x \in E$ be such that [x|x] = e. Then ex = x.

In the above lemma one observes that if $[x|x] = \lambda e$ for some scalar λ and some projection e in \mathcal{A} , then

$$[ex - x|ex - x] = [ex|ex] - [ex|x] - [x|ex] + [x|x] = \lambda e^3 - \lambda e^2 - \lambda e^2 + \lambda e = 0$$

which implies that ex = x. Let E be a Hilbert H^* -module over an H^* -algebra \mathcal{A} and let $e \in \mathcal{A}$ be a minimal projection. Then $E_e = \{x \in E : [x|x] = \lambda e, \lambda \geq 0\}$ is a closed subspace of the Hilbert space E. If \mathcal{A} is a simple H^* -algebra, then the subspace E_e generates a dense submodule in E (see [2]). For emphasizing its H^* -algebra, we denote E_e by $(\mathcal{A}E)_e$ (or $(E_{\mathcal{A}})_e$ in right module case). For more details on this issue see [2]. Also, for general facts about Hilbert H^* -modules we refer the interested reader to [2, 4, 7, 10, 11].

We introduce the notion of imprimitivity Hilbert H^* -bimodule and describe some properties of it. In this paper, we show that if \mathcal{A} and \mathcal{B} are proper and commutative H^* algebras, $_{\mathcal{A}}E_{\mathcal{B}}$ is an imprimitivity Hilbert H^* -bimodule and e_1 is a minimal projection in \mathcal{A} with $_{\mathcal{A}}[x|x] = e_1$ for some $x \in \mathcal{A}$, then $[x|x]_{\mathcal{B}}$ is a minimal projection in \mathcal{B} , too. Furthermore, the existence of orthonormal bases for such spaces is studied.

2. Main Results

In this section, we state the notions of Hilbert H^* -bimodule and imprimitivity Hilbert H^* -bimodule. We then investigate the existence of orthonormal bases for imprimitivity Hilbert bimodules over the commutative H^* -algebras. Before giving our results, we state two interesting facts related to Hilbert modules over the commutative H^* -algebras which will be used in the sequel.

Proposition 2.1. Let *E* be a Hilbert module over a commutative H^* -algebra \mathcal{A} . If $\{u_{\lambda}\}, \lambda \in \Lambda$ is an orthonormal basis for *E* and $x \in E$, then $x = \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}$ for some $\mu_{\lambda} \in \mathbb{C}$.

Proof. Let $\{e_i\}, i \in I$, be the maximal family of doubly orthogonal minimal projections in \mathcal{A} as Corollary 1.1. Let's also suppose that each $u_{\lambda}, \lambda \in \Lambda$, has supporting projection $e_{i_{\lambda}}$ for some $i_{\lambda} \in I$. Since $x = \sum_{\lambda \in \Lambda} [x|u_{\lambda}]u_{\lambda}$, then applying [1, Theorem 4.1] and by the commutativity of \mathcal{A} , we get $[x|u_{\lambda}] = \sum_{i \in I} \mu_{\lambda,i} e_i$, for each $\lambda \in \Lambda$ and some scalars $\mu_{\lambda,i}$. Thus we have $x = \sum_{\lambda \in \Lambda} \sum_{i \in I} \mu_{\lambda,i} e_i u_{\lambda}$.

On the other hand, $e_i u_{\lambda} = 0$ for all $i \neq i_{\lambda}$. Indeed, by applying Proposition 1.1 we conclude that $[e_i u_{\lambda} | e_i u_{\lambda}] = e_i [u_{\lambda} | u_{\lambda}] = e_i e_{i_{\lambda}} = 0$ for each $i \neq i_{\lambda}$. Therefore, $x = \sum_{\lambda \in \Lambda} \mu_{\lambda, i_{\lambda}} e_{i_{\lambda}} u_{\lambda} = \sum_{\lambda \in \Lambda} \mu_{\lambda, i_{\lambda}} u_{\lambda}$ by Lemma 1.1.

Proposition 2.2. Let *E* be a full Hilbert module over a commutative H^* -algebra \mathcal{A} , $e_0 \in \mathcal{A}$ be a minimal projection and $\{u_\lambda\}$, $\lambda \in \Lambda$, be an orthonormal basis for *E*. Then $e_0 = [u_{\lambda_0}|u_{\lambda_0}]$ for some $\lambda_0 \in \Lambda$.

Proof. On the contrary, we suppose that

(2.1)
$$e_0 \neq [u_\lambda | u_\lambda],$$

for all $\lambda \in \Lambda$. By the fullness of E we get $e_0 = \sum_{t \in J} [x_t | y_t]$, for some index set J and x_t and y_t in E. Regarding to Proposition 2.1 it follows that $x_t = \sum_{\lambda \in \Lambda} \mu_{t,\lambda} u_{\lambda}$ and $y_t = \sum_{\lambda \in \Lambda} \mu'_{t,\lambda} u_{\lambda}$, for each $t \in J$ and some scalars $\mu_{t,\lambda}$ and $\mu'_{t,\lambda}$. Therefore, we can write

(2.2)
$$e_0 = \sum_{t \in J} [x_t | y_t] = \sum_{t,\lambda} \mu_{t,\lambda} \overline{\mu'_{t,\lambda}} [u_\lambda | u_\lambda].$$

Accordingly, by (2.1) and (2.2) and applying Proposition 1.1 we observe that,

$$e_0 = e_0^2 = \sum_{t,\lambda} \mu_{t,\lambda} \overline{\mu'_{t,\lambda}} [u_\lambda | u_\lambda] e_0 = 0,$$

 \square

which gives a contradiction to the fact $e_0 \neq 0$.

Definition 2.1. Let \mathcal{A} and \mathcal{B} be two proper H^* -algebras. By a Hilbert bimodule ${}_{\mathcal{A}}E_{\mathcal{B}}$ we mean a left Hilbert \mathcal{A} -module with the $\tau(\mathcal{A})$ -valued product ${}_{\mathcal{A}}[\cdot|\cdot]: E \times E \to \tau(\mathcal{A})$ and a right Hilbert \mathcal{B} -module with the $\tau(\mathcal{B})$ -valued product $[\cdot|\cdot]_{\mathcal{B}}: E \times E \to \tau(\mathcal{B})$ such that

(i)
$$(ax)b = a(xb);$$

454

(ii) $_{\mathcal{A}}[xb|y] =_{\mathcal{A}} [x|yb^*];$ (iii) $[x|ay]_{\mathcal{B}} = [a^*x|y]_{\mathcal{B}};$

for all $x, y \in_{\mathcal{A}} E_{\mathcal{B}}, a \in \mathcal{A}$ and $b \in \mathcal{B}$.

Further, Hilbert H^* -bimodule ${}_{\mathcal{A}}E_{\mathcal{B}}$ is called full, if it is full both as a left and as a right Hilbert module over \mathcal{A} and \mathcal{B} , respectively.

Definition 2.2. A Hilbert \mathcal{A} - \mathcal{B} -bimodule E is called an imprimitivity bimodule if

$$_{\mathcal{A}}[x|y]z = x[y|z]_{\mathcal{B}},$$

where $x, y, z \in_{\mathcal{A}} E_{\mathcal{B}}$.

Example 2.1. Suppose \mathcal{A} is a proper H^* -algebra. It is easy to verify that \mathcal{A} is a full Hilbert H^* -bimodule over \mathcal{A} with the maps $_{\mathcal{A}}[a_1|a_2] = a_1a_2^*$ and $[a_1|a_2]_{\mathcal{A}} = a_1^*a_2$, $a_1, a_2 \in \mathcal{A}$.

We point out that each Hilbert H^* -bimodule ${}_{\mathcal{A}}E_{\mathcal{B}}$ is a Hilbert space under both inner products ${}_{\mathcal{A}}(x, y) = \operatorname{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x|y]), (x, y)_{\mathcal{B}} = \operatorname{tr}_{\mathcal{B}}([x|y]_{\mathcal{B}})$ and therefore it has two norms, usually different, as follows

$$_{\mathcal{A}}||x|| = \operatorname{tr}_{\mathcal{A}}(_{\mathcal{A}}[x|x])^{\frac{1}{2}}, \quad ||x||_{\mathcal{B}} = \operatorname{tr}_{\mathcal{B}}([x|x]_{\mathcal{B}})^{\frac{1}{2}}, \quad x \in E.$$

We however have the following result in the particular case $\mathcal{A} = \mathcal{B}$.

Theorem 2.1. Let E be a Hilbert H^* -bimodule over an H^* -algebra \mathcal{A} , then

$$_{\mathcal{A}} \|xa\| \le \|a\|_{\mathcal{A}} \|x\|, \quad \|ax\|_{\mathcal{A}} \le \|a\| \|x\|_{\mathcal{A}},$$

for each $a \in \mathcal{A}$ and $x \in E$.

Proof. We are going to show that $_{\mathcal{A}}||xa|| \leq ||a||_{\mathcal{A}}||x||$. Without loss of generality, we can assume that $||a|| \leq 1$. Take $b = aa^*$. Then $b - b^2 = h^2$ for some positive element $h \in \tau(\mathcal{A})$ (see [5, p. 34]). Therefore we can write $\operatorname{tr}_{\mathcal{A}}(_{\mathcal{A}}[x(b-b^2)|x]) = \operatorname{tr}_{\mathcal{A}}(_{\mathcal{A}}[xh|xh]) =_{\mathcal{A}} ||xh||^2 \geq 0$ and thus we have

(2.3)
$$\operatorname{tr}_{\mathcal{A}}(_{\mathcal{A}}[x|xbb^*]) = \operatorname{tr}_{\mathcal{A}}(_{\mathcal{A}}[xb^2|x]) \leq \operatorname{tr}_{\mathcal{A}}(_{\mathcal{A}}[xb|x]).$$

On using (2.3), we get

ſ

$$\begin{split} 0 &\leq \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x-xb|x-xb]) \\ &= \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x|x]) - \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x|xb]) - \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[xb|x]) + \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[xb|xb]) \\ &= \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x|x]) - \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x|xb]) - \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[xb|x]) + \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x|xbb^*]) \\ &\leq \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x|x]) - \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x|xb]) - \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[xb|x]) + \mathrm{tr}_{\mathcal{A}}({}_{\mathcal{A}}[xb|x]). \end{split}$$

It enforces that $\operatorname{tr}_{\mathcal{A}}(_{\mathcal{A}}[x|xb]) \leq \operatorname{tr}_{\mathcal{A}}(_{\mathcal{A}}[x|x])$. Hence

$$\underset{\mathcal{A}}{\|xa\|^{2}} = \operatorname{tr}_{\mathcal{A}}(\underset{\mathcal{A}}{[xa|xa]}) = \operatorname{tr}_{\mathcal{A}}(\underset{\mathcal{A}}{[x|xaa^{*}]}) = \operatorname{tr}_{\mathcal{A}}(\underset{\mathcal{A}}{[x|xb]})$$
$$\leq \operatorname{tr}_{\mathcal{A}}(\underset{\mathcal{A}}{[x|x]}) = \underset{\mathcal{A}}{\|x\|^{2}},$$

as desired. The proof of the other part is similar and therefore, to avoid repeation we remove it. $\hfill \Box$

Now we are in a position to state and prove our main result.

Theorem 2.2. Suppose that E is an imprimitivity Hilbert A- \mathbb{B} -bimodule over the commutative H^* -algebras A and \mathbb{B} and $x \in E$. Then $_{\mathcal{A}}[x|x]$ is a minimal projection in \mathcal{A} if and only if $[x|x]_{\mathbb{B}}$ is a minimal projection in \mathbb{B} . Furthermore, x is in the Hilbert space $(_{\mathcal{A}}E)_e$ for some minimal projection $e \in \mathcal{A}$ if and only if x is in the Hilbert space $(E_{\mathbb{B}})_{e'}$ for some minimal projection $e' \in \mathbb{B}$.

Proof. Consider $_{\mathcal{A}}[x|x] = e_1$ for some minimal projection e_1 in \mathcal{A} . Then $e_1x = x$ by Lemma 1.1 and therefore it establishes

$$[x|x]_{\mathcal{B}} = [x|e_1x]_{\mathcal{B}} = \left[x\Big|_{\mathcal{A}}[x|x]x\Big]_{\mathcal{B}} = \left[x\Big|x[x|x]_{\mathcal{B}}\right]_{\mathcal{B}} = [x|x]_{\mathcal{B}}^2.$$

Since $[x|x]_{\mathcal{B}} = b^*b$ for some nonzero $b \in \mathcal{B}$, then $[x|x]_{\mathcal{B}}$ is a projection. It remains to prove that it is a minimal projection. For this purpose, let $\{e'_j\}$, $j \in J$ be the maximal family of minimal projections in \mathcal{B} . In view of [1, Lemma 4.1] and [7, Lemma 1.1], $[x|x]_{\mathcal{B}} = \sum_{j \in J} t'_j e'_j$ for some nonnegative numbers t'_j , $j \in J$. Put $[x|x]_{\mathcal{B}} = \sum_{j \in J_0} t'_j e'_j$, where $J_0 = \{j \in J : t'_j \neq 0\}$. Now, since $[x|x]_{\mathcal{B}}$ is idempotent, so we get $[x|x]_{\mathcal{B}} = \sum_{j \in J_0} e'_j$. We claim that $[x|x]_{\mathcal{B}} = e'_j$ for some $j \in J_0$. First, on the contrary suppose that $[x|x]_{\mathcal{B}} = e'_{j_1} + e'_{j_2}$, for distinct elements $j_1, j_2 \in J_0$. Applying again Lemma 1.1, for each $a \in \mathcal{A}$, we have

$$\begin{split} e_{1}a &=_{\mathcal{A}} [x|x]a \\ &=_{\mathcal{A}} \Big[_{\mathcal{A}} [x|x]x \Big]_{\mathcal{A}} [x|x]x \Big]a =_{\mathcal{A}} \Big[x[x|x]_{\mathcal{B}} \Big| x[x|x]_{\mathcal{B}} \Big]a \\ &=_{\mathcal{A}} [x(e'_{j_{1}} + e'_{j_{2}})|x(e'_{j_{1}} + e'_{j_{2}})]a =_{\mathcal{A}} [xe'_{j_{1}} + xe'_{j_{2}}|xe'_{j_{1}} + xe'_{j_{2}}]a \\ &=_{\mathcal{A}} [xe'_{j_{1}}|xe'_{j_{1}}]a +_{\mathcal{A}} [xe'_{j_{1}}|xe'_{j_{2}}]a +_{\mathcal{A}} [xe'_{j_{2}}|xe'_{j_{1}}]a +_{\mathcal{A}} [xe'_{j_{2}}|xe'_{j_{2}}]a. \end{split}$$

The double orthogonality of e_i s' ensures that

(2.4)
$$e_1 a =_{\mathcal{A}} [x e'_{j_1} | x e'_{j_1}] a +_{\mathcal{A}} [x e'_{j_2} | x e'_{j_2}] a$$

Assume that $\{u_{\lambda}\}, \lambda \in \Lambda$, is an orthonormal basis for the right Hilbert \mathcal{B} -module E. According to Proposition 2.1 we observe that $x = \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}$ for some scalars $\mu_{\lambda}, \lambda \in \Lambda$, and therefore, $e'_{j_1} + e'_{j_2} = [x|x]_{\mathcal{B}} = [\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}] \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}]_{\mathcal{B}} = \sum_{\lambda \in \Lambda} |\mu_{\lambda}|^2 [u_{\lambda}|u_{\lambda}]_{\mathcal{B}}$. So, there exists λ_1 and λ_2 in Λ such that $[u_{\lambda_1}|u_{\lambda_1}]_{\mathcal{B}} = e'_{j_1}, [u_{\lambda_2}|u_{\lambda_2}]_{\mathcal{B}} = e'_{j_2}$. Regarding to (2.4) we derive that

$$e_{1}a =_{\mathcal{A}} \Big[x[u_{\lambda_{1}}|u_{\lambda_{1}}]_{\mathcal{B}} \Big| x[u_{\lambda_{1}}|u_{\lambda_{1}}]_{\mathcal{B}} \Big] a +_{\mathcal{A}} \Big[x[u_{\lambda_{2}}|u_{\lambda_{2}}]_{\mathcal{B}} \Big| x[u_{\lambda_{2}}|u_{\lambda_{2}}]_{\mathcal{B}} \Big] a$$
$$=_{\mathcal{A}} \Big[\Big[x[u_{\lambda_{1}}]u_{\lambda_{1}} \Big]_{\mathcal{A}} \Big[x[u_{\lambda_{1}}]u_{\lambda_{1}} \Big] a +_{\mathcal{A}} \Big[\Big[x[u_{\lambda_{2}}]u_{\lambda_{2}} \Big]_{\mathcal{A}} \Big[x[u_{\lambda_{2}}]u_{\lambda_{2}} \Big] a$$
$$=_{\mathcal{A}} [x[u_{\lambda_{1}}]_{\mathcal{A}} [x[u_{\lambda_{1}}]_{\mathcal{A}}^{*} [u_{\lambda_{1}}]u_{\lambda_{1}}] a +_{\mathcal{A}} [x[u_{\lambda_{2}}]_{\mathcal{A}} [x[u_{\lambda_{2}}]_{\mathcal{A}}^{*} [u_{\lambda_{2}}]u_{\lambda_{2}}] a.$$

Both of statements in the right hand side of the above relation are nonzero. Indeed, we have $[_{\mathcal{A}}[x|u_{\lambda_1}]u_{\lambda_1}]_{\mathcal{A}}[x|u_{\lambda_1}]u_{\lambda_1}]_{\mathcal{B}} = [x[u_{\lambda_1}|u_{\lambda_1}]_{\mathcal{B}}|x[u_{\lambda_1}|u_{\lambda_1}]_{\mathcal{B}}]_{\mathcal{B}} = [x|x]_{\mathcal{B}}[u_{\lambda_1}|u_{\lambda_1}]_{\mathcal{B}} = (e'_{j_1} + e'_{j_2})e'_{j_1} = e'_{j_1}$ and similarly $[_{\mathcal{A}}[x|u_{\lambda_2}]u_{\lambda_2}]_{\mathcal{A}}[x[u_{\lambda_2}]u_{\lambda_2}]_{\mathcal{B}} = e'_{j_2}$. Whence $_{\mathcal{A}}[x|u_{\lambda_1}]u_{\lambda_1}$ and $_{\mathcal{A}}[x|u_{\lambda_2}]u_{\lambda_2}$ and consequently $_{\mathcal{A}}[_{\mathcal{A}}[x|u_{\lambda_1}]u_{\lambda_1}]u_{\lambda_1}|_{\mathcal{A}}[x[u_{\lambda_1}]u_{\lambda_1}]$, i = 1, 2 are nonzero.

456

Next, put $_{\mathcal{A}}[x|u_{\lambda_1}] = g$, $_{\mathcal{A}}[u_{\lambda_1}|u_{\lambda_1}] = h^*h$, $_{\mathcal{A}}[x|u_{\lambda_2}] = g'$ and $_{\mathcal{A}}[u_{\lambda_2}|u_{\lambda_2}] = h'^*h'$, for some g, g', h, h' in \mathcal{A} . Thus, we derive that

$$e_1a = gg^*h^*ha + g'g'^*h'^*h'a = (gh)(gh)^*a + (g'h')(g'h')^*a.$$

Take gh = k and g'h' = k', so

(2.5)
$$e_1 a = (kk^* + k'k'^*)a.$$

Let $\{e_i\}$, $i \in I$, be the maximal family of minimal projections in \mathcal{A} containing e_1 . Without loss of generality, we may assume that $e_{i_1} = e_1$, where $i_1 \in I$. If we put $k = \sum_{i \in I} t_i e_i$ and $k' = \sum_{i \in I} s_i e_i$, then $e_1 = kk^* + k'k'^* = \sum_{i \in I} |t_i|^2 e_i + \sum_{i \in I} |s_i|^2 e_i$. On the other hand,

$$\begin{split} (gh^*h)(g'h'^*h') &=_{\mathcal{A}}[x|u_{\lambda_1}]_{\mathcal{A}}[u_{\lambda_1}]_{\mathcal{A}}[x|u_{\lambda_2}]_{\mathcal{A}}[u_{\lambda_2}|u_{\lambda_2}] \\ &=_{\mathcal{A}} \bigg[_{\mathcal{A}}[x|u_{\lambda_1}]u_{\lambda_1} \bigg| u_{\lambda_1} \bigg]_{\mathcal{A}} \bigg[_{\mathcal{A}}[x|u_{\lambda_2}]u_{\lambda_2} \bigg| u_{\lambda_2} \bigg] \\ &=_{\mathcal{A}} \bigg[x[u_{\lambda_1}|u_{\lambda_1}]_{\mathcal{B}} \bigg| u_{\lambda_1} \bigg]_{\mathcal{A}} \bigg[x[u_{\lambda_2}|u_{\lambda_2}]_{\mathcal{B}} \bigg| u_{\lambda_2} \bigg] \\ &=_{\mathcal{A}} [xe_{j_1}^{'}|u_{\lambda_1}]_{\mathcal{A}} [xe_{j_2}^{'}|u_{\lambda_2}] =_{\mathcal{A}} \bigg[_{\mathcal{A}} [xe_{j_1}^{'}|u_{\lambda_1}]xe_{j_2}^{'} \bigg| u_{\lambda_2} \bigg] \\ &=_{\mathcal{A}} \bigg[xe_{j_1}^{'}[u_{\lambda_1}|xe_{j_2}^{'}]_{\mathcal{B}} \bigg| u_{\lambda_2} \bigg] =_{\mathcal{A}} \bigg[xe_{j_1}^{'}e_{j_2}^{'}[u_{\lambda_1}|x]_{\mathcal{B}} \bigg| u_{\lambda_2} \bigg] \\ &=_{\mathcal{A}} [0|u_{\lambda_2}] = 0, \end{split}$$

which in turn implies that

(2.6) $kk^{*}k'k'^{*} =_{\mathcal{A}} [x|u_{\lambda_{1}}]_{\mathcal{A}}[x|u_{\lambda_{1}}]_{\mathcal{A}}^{*}[u_{\lambda_{1}}|u_{\lambda_{1}}]_{\mathcal{A}}[x|u_{\lambda_{2}}]_{\mathcal{A}}[x|u_{\lambda_{2}}]_{\mathcal{A}}^{*}[u_{\lambda_{2}}|u_{\lambda_{2}}] = 0.$

Clearly, $kk^* + k'k'^* = \sum_{i \in I} |t_i|^2 e_i + \sum_{i \in I} |s_i|^2 e_i$ have a nonzero scalar t_{i_2} or s_{i_2} for some $i_2 \neq i_1$. Otherwise, $kk^* + k'k'^* = |t_{i_1}|^2 e_{i_1} + |s_{i_1}|^2 e_{i_1}$ and so $kk^*k'k'^* = |t_{i_1}s_{i_1}|^2 e_{i_1}^2 = |t_{i_1}s_{i_1}|^2 e_{i_1} \neq 0$ which is in contradiction with (2.6).

On the other hand, if such t_{i_2} or s_{i_2} occurs in $kk^* + k'k'^*$, then substituting a with e_{i_2} in (2.5), we get $e_1e_{i_2} = (kk^* + k'k'^*)e_{i_2}$. It leads to a contradiction, since the right hand side of this equality is greater than $|t_{i_2}|^2e_{i_2}$ or $|s_{i_2}|^2e_{i_2}$ or sum of them but the left hand side is equal to zero. Therefore $[x|x]_{\mathcal{B}}$ cannot be of the form $e'_{j_1} + e'_{j_2}$. Repeating the above procedure, we realize that $[x|x]_{\mathcal{B}}$ cannot be appear as the form $e'_{j_1} + \cdots + e'_{j_n}$ where n > 2. Hence $[x|x]_{\mathcal{B}} = e'_j$ for some $j \in J_0$ and so the claim holds. Finally, if $x \in ({}_{\mathcal{A}}E)_e$ for some minimal projection e in \mathcal{A} , then ${}_{\mathcal{A}}[x|x] = \lambda e$ for some

Finally, if $x \in ({}_{\mathcal{A}}E)_e$ for some minimal projection e in \mathcal{A} , then ${}_{\mathcal{A}}[x|x] = \lambda e$ for some $\lambda > 0$. Therefore ${}_{\mathcal{A}}[(\sqrt{\lambda})^{-1}x](\sqrt{\lambda})^{-1}x] = e$ and so using the first part $[\sqrt{\lambda}x|\sqrt{\lambda}x]_{\mathcal{B}}$ is a minimal projection in \mathcal{B} , too. This completes the proof. \Box

Theorem 2.3. Let E be an imprimitivity Hilbert H^* -bimodule over commutative H^* algebras A and B. If x and y are two nonzero elements in E such that $_{\mathcal{A}}[x|x]$ and $_{\mathcal{A}}[y|y]$ are scalar multiplication of some minimal projections in A, then the following four statements are equivalent:

- (i) x, y are in Hilbert space $({}_{\mathcal{A}}E)_e$ for some minimal projection e in \mathcal{A} ;
- (ii) $[x|y]_{\mathcal{B}} \neq 0;$
- (iii) x, y are in Hilbert space $(E_{\mathfrak{B}})_{e'}$ for some minimal projection e' in \mathfrak{B} ;
- (iv) $_{\mathcal{A}}[x|y] \neq 0.$

Proof. (i) \Rightarrow (ii) Let us assume that $_{\mathcal{A}}[x|x] = \lambda e$ and $_{\mathcal{A}}[y|y] = \mu e$ for some positive scalars λ and μ . According to Lemma 1.1 and imprimitivity of E we conclude that

$$[x|x]_{\mathcal{B}} = \left[\frac{1}{\mu_{\mathcal{A}}}[y|y]x\Big|x\right]_{\mathcal{B}} = \frac{1}{\mu} \left[x\Big|_{\mathcal{A}}[y|y]x\Big]_{\mathcal{B}} = \frac{1}{\mu} \left[x\Big|y[y|x]_{\mathcal{B}}\right]_{\mathcal{B}} = \frac{1}{\mu} [x|y]_{\mathcal{B}}[y|x]_{\mathcal{B}},$$

which implies that $[x|y]_{\mathcal{B}} \neq 0$.

(ii) \Rightarrow (i) Suppose, on the contrary that, $_{\mathcal{A}}[x|x] = \lambda_1 e_1$ and $_{\mathcal{A}}[y|y] = \lambda_2 e_2$, for distinct minimal projections e_1 and e_2 in \mathcal{A} . These conditions assure us $e_1x = x$ and $e_2y = y$. Thus we get $[x|y]_{\mathcal{B}} = [e_1x|e_2y]_{\mathcal{B}} = [e_1e_2x|y]_{\mathcal{B}} = [0|y]_{\mathcal{B}} = 0$ which contradicts assertion (ii).

(i) \Rightarrow (iii) Put $_{\mathcal{A}}[x|x] = \lambda e$ and $_{\mathcal{A}}[y|y] = \mu e$ for some positive scalars λ and μ . Applying a similar argument as before we observe that

$$[y|y]_{\mathcal{B}} = \left[\frac{1}{\lambda_{\mathcal{A}}}[x|x]y\Big|y\right]_{\mathcal{B}} = \frac{1}{\lambda} \Big[x[x|y]_{\mathcal{B}}\Big|y\Big]_{\mathcal{B}} = \frac{1}{\lambda}[x|y]_{\mathcal{B}}[y|x]_{\mathcal{B}},$$

which let us conclude that $[x|y]_{\mathbb{B}}[y|x]_{\mathbb{B}} \neq 0$. According to [1, Lemma 2.3], $([x|y]_{\mathbb{B}}[y|x]_{\mathbb{B}})^2 \neq 0$ and so $[x|x]_{\mathbb{B}}[y|y]_{\mathbb{B}} = \frac{1}{\lambda\mu}([x|y]_{\mathbb{B}}[y|x]_{\mathbb{B}})^2 \neq 0$. It enforces that $x, y \in (E_{\mathbb{B}})_{e'}$ for some minimal projection e' in \mathcal{B} .

Implications (iii) \Rightarrow (i) and (iii) \Leftrightarrow (iv) are proved in similar ways and so we omit them.

Corollary 2.1. Suppose that E is an imprimitivity Hilbert A- \mathbb{B} -bimodule over the commutative H^* -algebras A and \mathbb{B} and also assume that $\{u_{\lambda}\}, \lambda \in \Lambda$ is an orthonormal system for Hilbert H^* -module $_{A}E$. Then $\{u_{\lambda}\}$ is an orthonormal system for right Hilbert H^* -module $E_{\mathbb{B}}$ if and only if each $u_{\lambda}, \lambda \in \Lambda$, has its exclusive supporting projection in A, it means that if λ_1, λ_2 are distinct elements in Λ with $_{\mathcal{A}}[u_{\lambda_1}|u_{\lambda_1}] = e_{\lambda_1}$ and $_{\mathcal{A}}[u_{\lambda_2}|u_{\lambda_2}] = e_{\lambda_2}$ for some minimal projections e_{λ_1} and e_{λ_2} in A, then $e_{\lambda_1} \neq e_{\lambda_2}$.

Proof. Suppose that $\{u_{\lambda}\}$ is an orthonormal system for Hilbert module $E_{\mathcal{B}}$. We assert that each $u_{\lambda}, \lambda \in \Lambda$, has its exclusive supporting projection in \mathcal{A} . If not, then there are distinct elements u_{μ} and u_{ν} in $\{u_{\lambda}\}$ with the same supporting projection e in \mathcal{A} . Whence $u_{\mu}, u_{\nu} \in E_{e}$ and by Theorem 2.3 we have that $[u_{\mu}|u_{\nu}]_{\mathcal{B}} \neq 0$, which leads to a contradiction. So each $u_{\lambda}, \lambda \in \Lambda$, has its exclusive supporting projection in \mathcal{A} . The reverse direction is a straightforward consequence of Theorems 2.2 and 2.3.

Up to now we discussed the existence of basic elements and orthonormal systems for a particular class of Hilbert H^* -bimodules. We are interested to prove the existence of orthonormal bases in these space. We focus on this subject below. **Theorem 2.4.** Let \mathcal{A} and \mathcal{B} be two commutative H^* -algebras and $_{\mathcal{A}}E_{\mathcal{B}}$ be an imprimitivity Hilbert H^* -bimodule. Let $\{u_{\lambda}\}, \lambda \in \Lambda$ and $\{v_{\gamma}\}, \gamma \in \Gamma$ be orthonormal bases in $_{\mathcal{A}}E$ and $E_{\mathcal{B}}$, respectively. Then the following conditions hold:

- (i) for each $\lambda_0 \in \Lambda$ there is a unique $v_{\gamma_0} \in \{v_{\gamma}\}$ and a scalar $t_{\gamma_0}, \gamma_0 \in \Gamma$, with $|t_{\gamma_0}| = 1$ in which $u_{\lambda_0} = t_{\gamma_0} v_{\gamma_0}$;
- (ii) u_{λ_0} and v_{γ_0} have the same supporting projections in \mathcal{A} and also in \mathcal{B} ;
- (iii) there is a bijection between Λ and Γ .

Proof. Suppose that λ_0 is any arbitrary fixed element in Λ . Regarding Proposition 2.1, $u_{\lambda_0} = \sum_{\gamma \in \Gamma'} t_{\gamma} v_{\gamma}$, where $\Gamma' = \{\gamma \in \Gamma : t_{\gamma} \neq 0\}$. We claim that there is a unique v_{γ_0} in $\{v_{\gamma}\}$ such that $[u_{\lambda_0}|v_{\gamma_0}] \neq 0$. First, note that for each $\gamma' \in \Gamma'$, we get

(2.7)
$$[u_{\lambda_0}|v_{\gamma'}]_{\mathcal{B}} = \left| \sum_{\gamma \in \Gamma'} t_{\gamma} v_{\gamma} |v_{\gamma'}| \right|_{\mathcal{B}} = t_{\gamma'} [v_{\gamma'}|v_{\gamma'}]_{\mathcal{B}} \neq 0.$$

Take γ' an arbitrary fixed element in Γ' and set $_{\mathcal{A}}[u_{\lambda_0}|u_{\lambda_0}] = e$, $_{\mathcal{A}}[v_{\gamma'}|v_{\gamma'}] = e_1$ for some minimal projections e and e_1 in \mathcal{A} . Notice that using Theorem 2.2, $_{\mathcal{A}}[v_{\gamma'}|v_{\gamma'}]$ is a minimal projection in \mathcal{A} . From (2.7) and applying Theorem 2.3, it follows that $e = e_1$. Hence u_{λ_0} and $v_{\gamma'}$ have the same supporting projection in \mathcal{A} and also in \mathcal{B} . Taking into account Corollary 2.1 and since $\gamma' \in \Gamma'$ was arbitrary, we deduce that there is a unique $\gamma_0 \in \Gamma$. with $t_{\gamma_0} \neq 0$ and $t_{\gamma} = 0$, for all $\gamma \in \Gamma \setminus \{\gamma_0\}$. In fact, suppose that there are two distinct elements γ_1 and γ_2 in Γ' in which both of t_{γ_1} and t_{γ_2} are nonzero, then using the similar argument as above we conclude that v_{γ_1} and v_{γ_2} have the same supporting projections in \mathcal{A} and also in \mathcal{B} . It enforces that $[v_{\gamma_1}|v_{\gamma_2}]_{\mathcal{B}} \neq 0$, which is a contradiction. Therefore $u_{\lambda_0} = t_{\gamma_0}v_{\gamma_0}$ and the claim holds.

On the other hand, if $[u_{\lambda_0}|u_{\lambda_0}]_{\mathcal{B}} = e'$ for some minimal projection e' in \mathcal{B} , then we have

$$e' = [u_{\lambda_0}|u_{\lambda_0}]_{\mathcal{B}} = [t_{\gamma_0}v_{\gamma_0}|t_{\gamma_0}v_{\gamma_0}]_{\mathcal{B}} = |t_{\gamma_0}|^2 [v_{\gamma_0}|v_{\gamma_0}]_{\mathcal{B}} = |t_{\gamma_0}|^2 e'.$$

It follows that $|t_{\gamma_0}| = 1$. It proves items (i) and (ii). For proving (iii) consider the mapping $\phi : \Lambda \to \Gamma$, which assigns each u_{λ_0} to v_{γ_0} , where $\lambda_0 \in \Lambda$, $\gamma_0 \in \Gamma$ and v_{γ_0} is chosen as the proof of the previous parts. It is readily verified that ϕ is an injection.

Surjectivity of ϕ follows from changing the roles of $\{u_{\lambda}\}$ and $\{v_{\gamma}\}$ in the proof of (i).

Corollary 2.2. Suppose that E is an imprimitivity Hilbert A- \mathbb{B} -bimodule over the commutative H^* -algebras A and \mathcal{B} . Then $\{u_{\lambda}\}, \lambda \in \Lambda$, is an orthonormal basis for the Hilbert H^* -module $_{\mathcal{A}}E$ if and only if it is an orthonormal basis for the Hilbert H^* -module $E_{\mathcal{B}}$.

Proof. Let $\{u_{\lambda}\}, \lambda \in \Lambda$, be an orthonormal basis in ${}_{\mathcal{A}}E$. It is an immediate consequence of Theorems 2.2 and 2.3, that $\{u_{\lambda}\}, \lambda \in \Lambda$, is an orthonormal system for $E_{\mathcal{B}}$. So it is enough to prove that $\{u_{\lambda}\}$ generates a dense submodule for $E_{\mathcal{B}}$. Using Theorem 2.4, we may consider $\{v_{\lambda}\}, \lambda \in \Lambda$ to be an orthonormal basis for $E_{\mathcal{B}}$ such that $u_{\lambda} = t_{\lambda}v_{\lambda}$ for each $\lambda \in \Lambda$ and some scalar t_{λ} with $|t_{\lambda}| = 1$. Let us denote by \mathcal{F} the family of finite subsets of Λ . Now if $x \in E$, then $x = \sum_{\lambda \in \Lambda} \mu'_{\lambda}v_{\lambda}$ and thus we have

(2.8)
$$\left\| x - \sum_{\lambda \in \Lambda'} \mu'_{\lambda} v_{\lambda} \right\|_{\mathcal{B}} = \left\| x - \sum_{\lambda \in \Lambda'} \frac{\mu'_{\lambda}}{t_{\lambda}} u_{\lambda} \right\|_{\mathcal{B}},$$

for each $\Lambda' \in \mathcal{F}$. On using (2.8) we conclude that $\{u_{\lambda}\}$ generates a dense submodule of $E_{\mathcal{B}}$, too.

In the light of the previous corollary, the following definition is reasonable.

Definition 2.3. Let E be an imprimitivity Hilbert \mathcal{A} - \mathcal{B} -bimodule over the commutative H^* -algebras \mathcal{A} and \mathcal{B} and $\{u_{\lambda}\}, \lambda \in \Lambda$, be an orthonormal basis for Hilbert H^* -module $_{\mathcal{A}}E$ (or $E_{\mathcal{B}}$). Then we say $\{u_{\lambda}\}$ is an orthonormal basis for Hilbert H^* bimodule $_{\mathcal{A}}E_{\mathcal{B}}$.

In the sequel, we investigate the relationship between two topologies induced by H^* -algebras \mathcal{A} and \mathcal{B} .

In general suppose that H is a Hilbert space with both inner products $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle_1$ and corresponding norms $\|.\|$ and $\|.\|_1$, respectively. If $\|x\|_1 \leq \beta \|x\|$ for each $x \in H$ and some $\beta > 0$, then there is a positive operator $K \in B(H)$ (w.r.t. $\|\cdot\|$) such that K is injective and moreover $\langle x, y \rangle_1 = \langle Kx, y \rangle$, for all x, y in H. On the other hand, $\|\cdot\|$ and $\|\cdot\|_1$ give rise to the same topology if K has an inverse in B(H) (see [6, Page 162]). Accordingly, if ${}_{\mathcal{A}}E_{\mathcal{B}}$ is a Hilbert H^* -bimodule, then ${}_{\mathcal{A}}\|\cdot\|$ and $\|\cdot\|_{\mathcal{B}}$ are equivalent if and only if there is a positive invertible operator K in B(E) (w.r.t. ${}_{\mathcal{A}}\|\cdot\|$) in which $\langle x, y \rangle_{\mathcal{B}} =_{\mathcal{A}} \langle Kx, y \rangle$, for all x, y in E. Further, some more interesting results can be found in the case that H^* -algebras \mathcal{A} and \mathcal{B} are commutative.

Proposition 2.3. Let \mathcal{A} and \mathcal{B} be two commutative H^* -algebras and $_{\mathcal{A}}E_{\mathcal{B}}$ be an imprimitivity Hilbert H^* -bimodule. Assume that all minimal projections in \mathcal{A} and \mathcal{B} have norms equal to some $\alpha \geq 1$. Then $_{\mathcal{A}}||x|| = ||x||_{\mathcal{B}}$ for each $x \in E$.

Proof. Let $\{e_i\}, i \in I$, be the family of all minimal projections in \mathcal{A} and $\{u_{\lambda}\}, \lambda \in \Lambda$, be an orthonormal basis for $_{\mathcal{A}}E_{\mathcal{B}}$ with $_{\mathcal{A}}[u_{\lambda}|u_{\lambda}] = e_{i_{\lambda}}$ for each $\lambda \in \Lambda$ and some $i_{\lambda} \in I$. Take $x \in E$, then $x = \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}$ for some scalars μ_{λ} ($\lambda \in \Lambda$) and thus we have

$$\begin{aligned} {}_{\mathcal{A}} \|x\|^{2} = & \operatorname{tr}_{\mathcal{A}}({}_{\mathcal{A}}[x|x]) = \operatorname{tr}_{\mathcal{A}}\left({}_{\mathcal{A}} \left[\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda} \Big| \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda} \right] \right) \\ = & _{\mathcal{A}} \left(\sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda} \Big| \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda} \right) = \sum_{\lambda \in \Lambda} |\mu_{\lambda}|^{2} (u_{\lambda}|u_{\lambda}) = \sum_{\lambda \in \Lambda} |\mu_{\lambda}|^{2} {}_{\mathcal{A}} \|e_{i_{\lambda}}\|^{2} \\ = & \sum_{\lambda \in \Lambda} |\mu_{\lambda}|^{2} \alpha^{2}. \end{aligned}$$

Since the representation of $x = \sum_{\lambda \in \Lambda} \mu_{\lambda} u_{\lambda}$ is the same with respect to both of norms $_{\mathcal{A}} \| \cdot \|$ and $\| \cdot \|_{\mathcal{B}}$, then similar relations proves that $\| x \|_{\mathcal{B}}^2 = \sum_{\lambda \in \Lambda} |\mu_{\lambda}|^2 \alpha^2$. So we achieve our goal.

Proposition 2.4. Let $_{\mathcal{A}}E_{\mathcal{B}}$ be an imprimitivity Hilbert H^* -bimodule over commutative H^* -algebras \mathcal{A} and \mathcal{B} and let $x, y \in E$. Then $_{\mathcal{A}}[x|y] = 0$ if and only if $[x|y]_{\mathcal{B}} = 0$.

Proof. In the forward direction, suppose that $_{\mathcal{A}}[x|y] = 0$. Let $\{u_{\lambda}\}, \lambda \in \Lambda$ be an orthonormal basis for Hilbert H^* -bimodule $_{\mathcal{A}}E_{\mathcal{B}}$, then for some suitable scalars t_{λ} and s_{μ} $(\lambda, \mu \in \Lambda), x = \sum_{\lambda \in \Lambda'} t_{\lambda} u_{\lambda}$ and $y = \sum_{\mu \in \Lambda''} s_{\mu} u_{\mu}$, where $\Lambda' = \{\lambda \in \Lambda : t_{\lambda} \neq 0\}$ and $\Lambda'' = \{\mu \in \Lambda : s_{\mu} \neq 0\}$. These allow us to write $_{\mathcal{A}}[x|y] = \sum_{\lambda \in \Lambda'} \sum_{\mu \in \Lambda''} t_{\lambda} \overline{s_{\mu}}[u_{\lambda}|u_{\mu}] = 0$, which in turn implies that $\Lambda' \cap \Lambda'' = \emptyset$. It follows from this reasoning and by applying Corollary 2.2, that $[x|y]_{\mathcal{B}} = \sum_{\lambda \in \Lambda'} \sum_{\mu \in \Lambda''} t_{\lambda} \overline{s_{\mu}}[u_{\lambda}|u_{\mu}]_{\mathcal{B}} = 0$. The inverse implication is shown similarly.

In the sequel, we give an example to verify usefulness of our results.

Example 2.2. Let \mathcal{A} be the commutative real H^* -algebra $\left\{ \begin{pmatrix} a & a \\ b & b \end{pmatrix} : a, b \in \mathbb{R} \right\}$ together with the usual operations of addition and scalar multiplication and endowed with componentwise multiplication. Adjoint and inner product are defined by

$$\left(\begin{array}{cc}a&a\\b&b\end{array}\right)^*=\left(\begin{array}{cc}a&a\\b&b\end{array}\right),$$

and

$$_{\mathcal{A}}\left\langle \left(\begin{array}{cc} a & a \\ b & b \end{array}\right) \left(\begin{array}{cc} c & c \\ d & d \end{array}\right) \right\rangle = k(ac+bd),$$

where k is a positive number greater or equal to 1. Obviously, $\tau(\mathcal{A}) = \mathcal{A}$ and linear functional $\operatorname{tr}_{\mathcal{A}} : \tau(\mathcal{A}) \to \mathbb{R}$ defined by $\operatorname{tr}_{\mathcal{A}} \left(\begin{pmatrix} a & a \\ b & b \end{pmatrix} \right) = k(a+b)$ is positive. Similarly, consider the commutative real H^* -algebra $\mathcal{B} = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix} : a, b \in \mathbb{R} \right\}$ together with the operations of addition, scalar multiplication, componentwise multiplication and adjoint which are defined as the similar way as \mathcal{A} and inner product is defined by

$$\left\langle \left(\begin{array}{cc} a & b \\ a & b \end{array} \right), \left(\begin{array}{cc} c & d \\ c & d \end{array} \right) \right\rangle_{\mathbb{B}} = p(ac+bd),$$

for some positive number $p \ge 1$. Evidently, $\tau(\mathcal{B}) = \mathcal{B}$ and linear functional $\operatorname{tr}_{\mathcal{B}} : \tau(\mathcal{B}) \to \mathbb{R}$ is defined by $\operatorname{tr}_{\mathcal{B}} \left(\begin{pmatrix} a & b \\ a & b \end{pmatrix} \right) = p(a+b)$ is positive. It is routine to verify that $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$ and $\left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}$ are the sets of all minimal projections in \mathcal{A} and \mathcal{B} , respectively. Now, take E the space of all 2×2 matrices $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a, b \in \mathbb{R}$, and define left module multiplication $\ldots \mathcal{A} \times E \to E$ and right module multiplication $\ldots \mathcal{E} \times \mathcal{B} \to E$ by

$$\left(\begin{array}{cc}a&a\\b&b\end{array}\right)\left(\begin{array}{cc}c&0\\0&d\end{array}\right) = \left(\begin{array}{cc}ac&0\\0&bd\end{array}\right)$$

and

$$\begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} a & b \\ a & b \end{pmatrix} = \begin{pmatrix} ac & 0 \\ 0 & bd \end{pmatrix}$$

respectively. Also, define $\tau(\mathcal{A})$ - and $\tau(\mathcal{B})$ -valued inner products $_{\mathcal{A}}[\cdot|\cdot]: E \times E \to \tau(\mathcal{A})$ and $[\cdot|\cdot]_{\mathcal{B}}: E \times E \to \tau(\mathcal{B})$ by

$$A\left[\left(\begin{array}{cc}a&0\\0&b\end{array}\right)\middle|\left(\begin{array}{cc}c&0\\0&d\end{array}\right)\right] = \left(\begin{array}{cc}ac∾\\bd&bd\end{array}\right)$$

and

$$\left[\left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \middle| \left(\begin{array}{c} c & 0 \\ 0 & d \end{array} \right) \right]_{\mathcal{B}} = \left(\begin{array}{c} ac & bd \\ ac & bd \end{array} \right),$$

respectively. It is not hard to see that E is an imprimitivity \mathcal{A} - \mathcal{B} Hilbert bimodule.

Next, we point that the set $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is an orthonormal basis for ${}_{\mathcal{A}}E_{\mathcal{B}}$. This holds since

$$\mathcal{A}\left[\left(\begin{array}{cc}1&0\\0&0\end{array}\right)\middle|\left(\begin{array}{cc}1&0\\0&0\end{array}\right)\right]=\left(\begin{array}{cc}1&1\\0&0\end{array}\right)$$

and

$$\mathcal{A}\left[\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \middle| \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \right] = \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right),$$

and with the help of Corollaries 2.1 and 2.2 we get the desired result. Furthermore, assume that p = k, then all minimal projections in \mathcal{A} and \mathcal{B} have the same norm \sqrt{k} . Therefore, $_{\mathcal{A}} \| \cdot \| = \| \cdot \|_{\mathcal{B}}$ by Proposition 2.3.

Theorem 2.5. Let \mathcal{A} and \mathcal{B} be two commutative H^* -algebras and $_{\mathcal{A}}E_{\mathcal{B}}$ be a full Hilbert H^* -bimodule. Then H^* -algebras \mathcal{A} and \mathcal{B} are isomorphic.

Proof. Consider $\{e_i\}, i \in I$, is the family of all minimal projections in $\mathcal{A}, \{u_\lambda\}, \lambda \in \Lambda$ is an orthonormal basis for ${}_{\mathcal{A}}E_{\mathcal{B}}$ and a is an arbitrary element in \mathcal{A} . By the commutativity of $\mathcal{A}, a = \sum_{i \in I} \mu_i e_i$. According to Proposition 2.2, for each $i \in I$ there exists $\lambda_i \in \Lambda$ such that $e_i =_{\mathcal{A}} [u_{\lambda_i}|u_{\lambda_i}]$. Hence, $a = \sum_{i \in I} \mu_i {}_{\mathcal{A}}[u_{\lambda_i}|u_{\lambda_i}]$. Define a mapping $\varphi : \mathcal{A} \to \mathcal{B}$ by $\varphi(a) := \sum_{i \in I} \mu_i [u_{\lambda_i}|u_{\lambda_i}]_{\mathcal{B}}$, where $a = \sum_{i \in I} \mu_i {}_{\mathcal{A}}[u_{\lambda_i}|u_{\lambda_i}]$. In view of Theorem 2.3, we observe that $a = \sum_{i \in I} \mu_{i\mathcal{A}}[u_{\lambda_i}|u_{\lambda_i}] = 0$ if and only if $\varphi(a) = \sum_{i \in I} \mu_i [u_{\lambda_i}|u_{\lambda_i}]_{\mathcal{B}} = 0$. This shows that φ is well defined and injective. It is easy to verify that φ is a morphism, i.e., $\varphi(a_1 + a_2) = \varphi(a_1) + \varphi(a_2), \ \varphi(a_1a_2) = \varphi(a_1)\varphi(a_2)$ and $\varphi(a^*) = \varphi(a)^*$, for all a_1, a_2, a in \mathcal{A} . The surjectivity of φ is evident. This is somewhat similar to the situation discussed for constructing φ . Therefore, φ is an isomorphism.

References

- W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364–386.
- [2] D. Bakic and B. Guljas, Operators on Hilbert H^{*}-modules, J. Operator Theory 46 (2001), 123–137.

462

- [3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- [4] M. Cabrera, J. Martinez and A. Rodriguez, Hilbert modules revisited: orthonormal bases and Hilbert-Schmidt operators, Glasg. Math. J. 37 (1995), 45–54.
- [5] H. G. Dales, P. Aiena, J. Eschmeier, K. Laursen and G. Willis, Introduction to Banach Algebras, Operators, and Harmonic Analysis, Cambridge University Press, Cambridge, 2003.
- [6] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Academic Press, Inc. New York, 1983.
- M. Khanehgir, M. Amyari and M. Moradian Khibary, Pullback diagram of Hilbert modules over H^{*}-algebras, Kragujevac J. Math. 39(1) (2015), 21–30.
- [8] M. Khanehgir and M. Moradian Khibary, b-H*-algebras, Kochi Journal of Mathematics 11 (2015), 1–12.
- P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 95–100.
- [10] P. P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35 (1968), 191–197.
- [11] J. F. Smith, The structure of Hilbert modules, J. Lond. Math. Soc. 8 (1947), 741-749.

¹DEPARTMENT OF MATHEMATICS, MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY, MASHHAD, IRAN *Email address*: khanehgir@mshdiau.ac.ir *Email address*: zahra-nm79@yahoo.com

²DEPARTMENT OF PURE MATHEMATICS, FARHANGIAN UNIVERSITY, MASHHAD, IRAN *Email address*: MMkh9260gmail.com

*Corresponding Author