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Are Deterministic Descriptions And Indeterministic

Descriptions Observationally Equivalent?

Charlotte Werndl
The Queen’s College, Oxford University, charlotte.werndl@queens.ox.ac.uk

Forthcoming in: Studies in History and Philosophy of Modern Physics

Abstract

The central question of this paper is: are deterministic and inde-
terministic descriptions observationally equivalent in the sense that
they give the same predictions? I tackle this question for measure-
theoretic deterministic systems and stochastic processes, both of which
are ubiquitous in science. I first show that for many measure-theoretic
deterministic systems there is a stochastic process which is observa-
tionally equivalent to the deterministic system. Conversely, I show
that for all stochastic processes there is a measure-theoretic deter-
ministic system which is observationally equivalent to the stochastic
process. Still, one might guess that the measure-theoretic determin-
istic systems which are observationally equivalent to stochastic pro-
cesses used in science do not include any deterministic systems used
in science. I argue that this is not so because deterministic systems
used in science even give rise to Bernoulli processes. Despite this,
one might guess that measure-theoretic deterministic systems used in
science cannot give the same predictions at every observation level
as stochastic processes used in science. By proving results in ergodic
theory, I show that also this guess is misguided: there are several de-
terministic systems used in science which give the same predictions at
every observation level as Markov processes. All these results show
that measure-theoretic deterministic systems and stochastic processes
are observationally equivalent more often than one might perhaps ex-
pect. Furthermore, I criticise the claims of the previous philosophy
papers Suppes (1993, 1999), Suppes and de Barros (1996) and Winnie
(1998) on observational equivalence.
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1 Introduction

There has been a lot of philosophical debate about the question of whether
the world is deterministic or indeterministic. Within this context, there is
often the implicit belief (cf. Weingartner and Schurz, 1996, p. 203) that
deterministic and indeterministic descriptions are not observationally equiv-
alent. However, the question whether these descriptions are observationally
equivalent has hardly been discussed.

This paper aims to contribute to fill this gap. Namely, the central ques-
tions of this paper are the following: are deterministic mathematical descrip-
tions and indeterministic mathematical descriptions observationally equiva-
lent? And what is the philosophical significance of the various results on
observational equivalence?

The deterministic and indeterministic descriptions of concern in this pa-
per are measure-theoretic deterministic systems and stochastic processes,
respectively. Both are ubiquitous in science. Because of lack of space, I con-
centrate on descriptions where the time varies in discrete steps; but I point
out that analogous results also hold for a continuous time parameter.

More specifically, when saying that a deterministic system and a stochas-
tic process are observationally equivalent, I mean the following: the deter-
ministic system, when observed, gives the same predictions as the stochastic
process. In what follows, when I say that a stochastic process can be replaced
by a deterministic system, or conversely, I mean that it can be replaced by
such a system in the sense that they are observationally equivalent.

This paper proceeds as follows. In section 2 I will introduce stochastic
processes and measure-theoretic deterministic systems. In section 3 I will
show that measure-theoretic deterministic systems and stochastic processes
can often be replaced by each other. Given this, one might still guess that it
is impossible to replace stochastic processes of the kinds in fact used in sci-
ence by measure-theoretic deterministic systems that are used in science. One
might also guess that it is impossible to replace measure-theoretic determinis-
tic systems of the kinds used in science at every observation level by stochastic
processes that are used in science. By proving results in ergodic theory, I will
show in section 4 that these two guesses are wrong. Therefore, even kinds of
stochastic processes and deterministic systems which seem to give very dif-
ferent predictions are observationally equivalent. Furthermore, I will criticise
the claims of the previous philosophical papers Suppes (1993,1999), Suppes
and de Barros (1996) and Winnie (1998) on observational equivalence.
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For a less technical treatment of the issues discussed in this paper, see
Werndl (2009c).

2 Stochastic processes and deterministic sys-

tems

The indeterministic and deterministic descriptions I deal with are stochastic
processes and measure-theoretic deterministic systems, respectively. There
are two types of them: either the time parameter is discrete (discrete pro-
cesses and systems) or there is a continuous time parameter (continuous
processes and systems). I consider only discrete descriptions, but analogous
results hold for continuous descriptions, and these results are discussed in
Werndl (2009d).

2.1 Stochastic processes

A stochastic process is a process governed by probabilistic laws. Hence
there is usually indeterminism in the time-evolution: if the process yields
a specific outcome, there are different outcomes that might follow; and a
probability distribution measures the likelihood of them. I call a sequence
which describes a possible time-evolution of the stochastic process a realisa-
tion. Nearly all, but not all, the indeterministic descriptions in science are
stochastic processes.1

Let me formally define stochastic processes.2 A random variable is a
measurable function Z : Ω → M̄ from a probability space, i.e. a measure
space (Ω,ΣΩ, ν) with ν(Ω) = 1, to a measurable space (M̄,ΣM̄) where ΣM̄

denotes a σ-algebra on M̄ .3 The probability measure PZ(A) = P{Z ∈ A} :=
ν(Z−1(A)) for all A ∈ ΣM̄ on (M̄,ΣM̄) is called the distribution of Z. If

1For instance, Norton’s dome (which satisfies Newton’s laws) is indeterministic because
the time evolution fails to be bijective. Nothing in Newtonian mechanics requires us to
assign a probability measure on the possible states of this system. It is possible to assign a
probability measure, but the question is whether it is natural (cf. Norton, 2003, pp. 8–9).

2I assume basic knowledge about measure theory and modern probability theory. For
more details, see Doob (1953), Cornfeld et al. (1982) and Petersen (1983).

3For simplicity, I assume that any measure space is complete, i.e. every subset of a
measurable set of measure zero is measurable.
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A consists of one element, i.e. A = {a}, I often write P{Z = a} instead of
P{Z ∈ A}.

Definition 1 A stochastic process {Zt; t ∈ Z} is a one-parameter family of
random variables Zt, t ∈ Z, defined on the same probability space (Ω,ΣΩ, ν)
and taking values in the same measurable space (M̄,ΣM̄).

The set M̄ is called the outcome space of the stochastic process. The bi-
infinite sequence r(ω) := (. . . Z−1(ω), Z0(ω), Z1(ω) . . .) for ω ∈ Ω is called a
realisation (cf. Doob, 1953, pp. 4–46). Intuitively, t represents time; so that
each ω ∈ Ω represents a possible history in all its details, and r(ω) represents
the description of that history by giving the score at each t.

I will often be concerned with stationary stochastic processes. These are
processes whose probabilistic laws do not change with time:

Definition 2 A stochastic process {Zt; t ∈ Z} is stationary if and only if
the distributions of the multi-dimensional random variable (Zt1+h, . . . , Ztn+h)
is the same as the one of (Zt1 , . . . , Ztn) for all t1, . . . , tn ∈ Z, n ∈ N, and all
h ∈ Z (Doob, 1953, p. 94).

It is perhaps needless to stress the importance of discrete stochastic pro-
cesses, and stationary processes in particular: both are ubiquitous in science.

The following stochastic processes will accompany us throughout the pa-
per. They are probably the most widely known.

Example 1: Bernoulli processes.
A Bernoulli process is a process where, intuitively, at each time point a
(possibly biased) N -sided die is tossed where the probability for obtaining
side sk is pk, 1 ≤ k ≤ N, N ∈ N, with

∑N
k=1 pk = 1, and each toss is

independent of all the other ones. The mathematical definition proceeds as
follows. The random variables X1, . . . , Xn, n ∈ N, are independent if and
only if P{X1 ∈ A1, . . . , Xn ∈ An} = P{X1 ∈ A1} . . . P{Xn ∈ An} for all
A1, . . . , An ∈ ΣM̄ . The random variables {Zt; t ∈ Z} are independent if and
only if any finite number of them is independent.

Definition 3 {Zt; t ∈ Z} is a Bernoulli process if and only if (i) its outcome
space is a finite number of symbols M̄ = {s1, . . . , sN}, N ∈ N, and ΣM̄ =
P(M̄), where P(M̄) is the power set of M̄ ; (ii) P{Zt = sk} = pk for all t ∈ Z
and all k, 1 ≤ k ≤ N ; and (iii) {Zt; t ∈ Z} are independent.
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Clearly, a Bernoulli process is stationary.
In this definition the probability space Ω is not explicitly given. I now give

a representation of Bernoulli processes where Ω is explicitly given. The idea
is that Ω is the set of realisations of the process. For a Bernoulli process with
outcomes M̄ = {s1, . . . , sN} which have probabilities p1, . . . , pN , N ∈ N, let
Ω be the set of all sequences ω = (. . . ω−1ω0ω1 . . .) with ωi ∈ M̄ corresponding
to one of the possible outcomes of the i-th trial in a doubly infinite sequence
of trials. Let ΣΩ be the σ-algebra generated by the cylinder-sets

CA1...An
i1...in

={ω ∈ Ω |ωi1∈A1,. . ., ωin∈An, Aj∈ΣM̄ , ij∈Z, i1<. . .<in, 1≤ j≤n}.
(1)

Since the outcomes are independent, these sets have probability ν̄(CA1...An
i1...in

) :=
P{Zi1 ∈ A1} . . . P{Zin ∈ An}. Let ν be defined as the unique extension of ν̄
to a measure on ΣΩ. Finally, define Zt(ω) := ωt (the t-th coordinate of ω).
Then {Zt; t ∈ Z} is the Bernoulli process we started with.

2.2 Deterministic systems

According to the canonical definition, a description is deterministic exactly
if any two solutions that agree at one time agree at all times (Butterfield,
2005). I call a sequence which describes the evolution of a deterministic
description over time a solution.

This paper is concerned with measure-theoretic deterministic descrip-
tions, in short deterministic systems:

Definition 4 A deterministic system is a quadruple (M,ΣM , µ, T ) consist-
ing of a probability space (M,ΣM , µ) and a bijective measurable function
T : M→M such that also T−1 is measurable.

The solution through m, m ∈ M , is the sequence (T t(m))t∈Z. M is the
set of all possible states called the phase space; and T , which describes how
solutions evolve, is called the evolution function. Clearly, Definition 4 defines
systems which are deterministic according to the above canonical definition.

When observing a deterministic system, one observes a value functionally
dependent on, but maybe different from, the actual state. Hence observations
can be modeled by an observation function, i.e. a measurable function Φ :
M → MO from (M,ΣM) to the measurable space (MO,ΣMO

) (cf. Ornstein
and Weiss, 1991, p. 16).

I will often be concerned with measure-preserving deterministic systems
(cf. Cornfeld et al., 1982, pp. 3–5).
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Definition 5 A measure-preserving deterministic system is a deterministic
system (M,ΣM , µ, T ) where the measure µ is invariant, i.e. for all A ∈ ΣM

µ(T (A)) = µ(A). (2)

Measure-preserving deterministic systems are important models in physics
but are also important in other sciences such as biology, geology etc. This
is so because condition (2) is not very restrictive. For first, all deterministic
Hamiltonian systems and statistical-mechanical systems, and their discrete
versions, are measure-preserving; and the relevant invariant measure is the
Lebesgue-measure or a close cousin of it (Petersen, 1983, pp. 5–6). Second, an
invariant measure need not be the Lebesgue measure, i.e. measure-preserving
deterministic systems need not be volume-preserving. Indeed, systems which
are not volume-preserving (called ‘dissipative systems’) can often be modeled
as measure-preserving systems. For instance, the long-term behaviour of a
large class of deterministic systems can be modeled by measure-preserving
systems (Eckmann and Ruelle, 1985). More generally, the potential scope
of measure-preserving deterministic systems is quite wide: although some
evolution functions do not have invariant measures, for very wide classes of
evolution functions invariant measures are proven to exist. For instance, if
T is a continuous function on a compact metric space, there exists at least
one invariant measure (Mañé, 1987, p. 52).

I adopt the common assumption that invariant measures can be inter-
preted as probability measures. This deep issue has been discussed in sta-
tistical mechanics but is not the focus of this paper. I only mention two
interpretations that naturally suggest interpreting measures as probability.
According to the time-average interpretation, the measure of a set A is the
long-run average of the time that a solution spends in A. According to the
ensemble interpretation, the measure of a set A at t corresponds to the frac-
tion of solutions starting from some set of initial conditions that are in A at
time t [cf. Eckmann and Ruelle, 1985, pp. 625-627; Lavis, forthcoming].

The following deterministic system will accompany us.

Example 2: The baker’s system.
On the unit square M = [0, 1] × [0, 1] \ Γ, where Γ = {(x, y) |x = j/2n or
y = j/2n, n ∈ N, 0 ≤ j ≤ 2n} consider

T (x, y) = (2x,
y

2
) if 0 ≤ x <

1

2
; (2x− 1,

y + 1

2
) if

1

2
≤ x ≤ 1. (3)
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Figure 1: The baker’s system on 0 ≤ y ≤ 1/2

(Γ is excluded to be able to define a bijective function T ). Figure 1 illus-
trates that the baker’s system first stretches the unit square to twice its
length and half its width; then it cuts the rectangle obtained in half and
places the right half on top of the left. For the Lebesgue measure µ and
the Lebesgue σ-algebra ΣM one obtains the measure-preserving determin-
istic system (M,ΣM , µ, T ). This system also has physical meaning: e.g. it
describes the movement of a particle with initial position (x, y) in the unit
square. The particle moves with constant speed perpendicular to the unit
square. It bounces on several mirrors, causing it to return to the unit square
at T (x, y) (Pitowsky, 1995, p. 166).

3 Basic observational equivalence

Let me turn to some results about observational equivalence which are basic
in the sense that they are about the question whether, given a deterministic
system, it is possible to find any stochastic process which is observationally
equivalent to the deterministic system, and conversely.

How can a stochastic process and a deterministic system yield the same
predictions? When a deterministic system is observed, one only sees how
one observed value follows the next observed value. Because the observation
function can map two or more actual states to the same observed value, the
same present observed value can lead to different future observed values. And
so a stochastic process can be observationally equivalent to a deterministic
system only if it is assumed that the deterministic system is observed with
an observation function which is many to one. Yet this assumption is usually
unproblematic: the main reason being that perhaps deterministic systems
used in science typically have an infinitely large phase space, and scientists

8



can only observe finitely many different values.
A probability measure is defined on a deterministic system. Hence the

predictions derived from a deterministic system are the probability distribu-
tions over sequences of possible observations. And similarly, the predictions
obtained from a stochastic process are the probability distributions over se-
quences of possible outcomes. Consequently, the most natural meaning of
the phrase ‘a stochastic process and a deterministic system are observation-
ally equivalent’ is: (i) the set of possible outcomes of the stochastic process
is identical to the the set of possible observed values of the deterministic sys-
tem, and (ii) the realisations of the stochastic process and the solutions of
the deterministic system coarse-grained by the observation function have the
same probability distribution.

Let me now investigate when deterministic systems can be replaced by
stochastic processes. Then I will investigate when stochastic processes can
be replaced by deterministic systems.

3.1 Deterministic systems replaced by stochastic pro-
cesses

Let (M,ΣM , µ, T ) be a deterministic system. According to the canonical
Definition 1, Zt(x) := T t(x) is a stochastic process with exactly the same
predictions as the deterministic system. However, this process is evidently
equivalent to the original deterministic system, and the probabilities that
one value leads to another one are trivial (0 or 1). Hence it is still “really” a
deterministic system.

But one can do better by appealing to observation functions as explained
above; and, to my knowledge, these results are unknown in philosophy. As-
sume the deterministic system (M,ΣM , µ, T ) is observed with Φ : M →MO.
According to Definition 1, {Zt := Φ(T t); t ∈ Z} is a stochastic process. It
is constructed by applying Φ to the deterministic system. Hence the out-
comes of the stochastic process are the observed values of the deterministic
system; and the realisations of the process and the solutions of the determin-
istic system coarse-grained by the observation function have the same prob-
ability distribution. Consequently, according to the characterisation above,
(M,ΣM , µ, T ) observed with Φ is observationally equivalent to stochastic pro-
cess {Φ(T t); t ∈ Z}. But the important question is whether {Φ(T t); t ∈ Z}
is nontrivial. Indeed, the stochastic process {Φ(T t); t ∈ Z} is often nontriv-
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ial. I show now one result in this direction; besides, several other results
also indicate this (cf. Cornfeld et al., 1982, pp. 178-179).4 — Before I can
proceed, the following definitions are needed:

Definition 6 A measure-preserving deterministic system (M,ΣM , µ, T ) is
ergodic if and only if for all A,B ∈ ΣM

lim
n→∞

1

n

n−1∑
i=0

(µ(T n(A) ∩B)− µ(A)µ(B)) = 0. (4)

A partition of a measure space (M,ΣM , µ) is a set α = {α1, . . . , αn} with
αi ∈ ΣM , n ∈ N, such that

⋃n
i=1 αi = M, µ(αi) > 0, and αi ∩ αj = ∅ for

i 6= j, 0 ≤ i, j ≤ n. A partition is nontrivial if and only if it has more than
one element. Let me make the realistic assumption that the observations have
finite accuracy, i.e. that only finitely many values are observed. Then one has
a finite-valued observation function Φ; i.e. Φ(m) =

∑n
i=1 oiχαi

(m), MO :=
{oi | 1 ≤ i ≤ n} for some partition α of (M,ΣM , µ) and some n ∈ N, where χA

denotes the characteristic function of A. A finite-valued observation function
is called nontrivial if and only if its corresponding partition is nontrivial (cf.
Cornfeld et al., 1982, p. 179).

The following proposition shows that for ergodic deterministic systems for
which there is no nontrivial set which is eventually mapped onto itself, and
every finite-valued observation function, the stochastic process {Φ(T t); t ∈
Z} is nontrivial. That is, there is an observed value oi ∈MO such that for all
observed values oj ∈ MO the probability of moving from oi to oj is smaller
than 1. Hence there are two or more observed values that can follow oi; and
the probability that oi moves to any of these observed values is between 0 and
1. This is a strong result because irrespective of how detailed one looks at
the deterministic system, one always obtains a nontrivial stochastic process.

Proposition 1 Assume that the deterministic system (M,ΣM , µ, T ) is er-
godic and that there does not exist an n ∈ N and a C ∈ ΣM , 0 < µ(C) < 1,
such that, except for a set of measure zero, T n(C) = C. Then for every
nontrivial finite-valued observation function Φ : M →MO and the stochastic

4For instance, if K-systems are observed with a finite-valued observation function, one
obtains nontrivial stochastic processes because for K-systems the entropy of any finite
partition is positive (cf. Petersen, 1983, p. 63).
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process {Zt := Φ(T t); t ∈ Z} the following holds: there is an oi ∈ MO such
that for all oj ∈MO, P{Zt+1 =oj |Zt =oi} < 1.5

For a proof, see subsection 6.1. For instance, the baker’s system (Example 2)
is weakly mixing, and thus any finite-valued observation function gives rise
to a nontrivial stochastic process.

Measure-preserving systems are typically what is called ‘weakly mixing’6

(Halmos, 1944). It is easy to see that any weakly mixing system satisfies
the assumption of Proposition 1 (weakly mixing is stronger than this as-
sumption).7 Hence Proposition 1 shows that for typical measure-preserving
deterministic systems any finite-valued observation function yields a nontriv-
ial stochastic process.

Yet Proposition 1 does not say much about whether the measure-preserving
deterministic systems encountered in science fulfill the assumption of Propo-
sition 1 because those systems constitute a small class of all measure-preserving
systems. Indeed, the KAM theorem says that the phase space of integrable
Hamiltonian systems which are perturbed by a small nonintegrable pertur-
bation breaks up into stable and unstable regions. With increasing pertur-
bation the unstable regions become larger and often eventually cover nearly
the entire hypersurface of constant energy. Because a solution is confined
to a region, the KAM theorem implies that the discrete versions of infinitely
differentiable Hamiltonian systems are typically not ergodic (Berkovitz et al.,
2006, section 4). (I call the discrete-time systems obtained by looking at a
continuous-time system S at points of time nt0, n ∈ N, t0 ∈ R arbitrary,
t0 6= 0, the discrete versions of S).8

5For a random variable Z to a measurable space (M̄, ΣM̄ ) where M̄ is finite the condi-
tional probability is defined as usual as:
P{Z ∈ A |Z ∈ B} := P{Z ∈ A ∩B}/P{Z ∈ B} for all A,B ⊆ ΣM̄ with P{Z ∈ B} > 0.

6(M,ΣM , µ, T ) is weakly mixing if and only if for all A,B ∈ ΣM

lim
n→∞

1
n

n−1∑
i=0

|µ(Tn(A) ∩B)− µ(A)µ(B)| = 0. (5)

7First, it is clear that weakly mixing systems are ergodic. Second, assume that for a
weakly mixing system there exists an n ∈ N and a C ∈ ΣM , 0 < µ(C) < 1, such that,
except for a set of measure zero, Tn(C) = C. But then equation (5) cannot hold for
A := C and B := C. In subsection 4.2.2 I will show that the irrational rotation on the
circle satisfies the assumption of Proposition 1 but is not weakly mixing.

8Alternatively, continuous-time deterministic systems can be discretised by considering
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Despite this, Proposition 1 applies to several systems encountered in
science. First, a motion is chaotic just in case it is deterministic yet also
unstable because nearby initial conditions eventually lead to very different
outcomes. I will not need a more exact definition; but I will call a system
chaotic if the motion is chaotic on the entire phase space and locally chaotic
if the motion is chaotic on a region of phase space. Chaotic systems are
usually regarded as weakly mixing (Berkovitz et al., 2006, p. 688; Werndl,
2009a, section 3). And as will be argued in subsection 4.1, there are several
physically relevant chaotic and weakly mixing systems. Moreover, in sub-
section 4.2.2 it will be shown that there are even systems which are neither
chaotic nor locally chaotic but which satisfy Proposition 1. Second, even
if the whole system does not satisfy the assumption of Proposition 1, the
motion of the system restricted to some regions of phase space might well
satisfy this assumption. In fact, Proposition 1 immediately implies the fol-
lowing result. Assume that for a measure-preserving system (M,ΣM , µ, T )
there is a A ∈ ΣM , µ(A) > 0, such that the system restricted to A9 fulfills
the assumption of Proposition 1. Then all observations which discriminate
between values in A lead to nontrivial stochastic processes. That is, for any
observation function Φ(m) =

∑n
i=1 oiχαi

(m) where there are k, l, k 6= l, such
that µ(A ∩ αk) 6= 0 and µ(A ∩ αl) 6= 0, there is an outcome oi ∈ MO such
that for all outcomes oj ∈ MO it holds that P{Zt+1 = oj |Zt = oi} < 1. In
particular, although mathematically little is known, it is conjectured that the
motion restricted to unstable regions of KAM-type systems is weakly mixing
(Berkovitz et al., 2006, section 4; Werndl, 2009a, section 3). If this is true,
then my argument shows that for many observation functions of KAM-type
systems one obtains nontrivial stochastic processes.

3.2 Stochastic processes replaced by deterministic sys-
tems

I have shown that deterministic systems, when observed, can yield nontriv-
ial stochastic processes. But can one find, for every stochastic process, a

the successive hits of a trajectory on a suitable Poincaré section. All I say about discrete
versions of continuous systems also holds true for discrete-time systems arising in this way,
except that the latter are more often ergodic (Berkovitz et al., 2006, pp. 680–685).

9That is, the system (A,ΣM∩A, µA, TA), where ΣM∩A := {B ∩A|B ∈ ΣM}, µA(X) :=
µ(X)
µ(A) , and TA denotes T restricted to A.
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deterministic system which produces this process?
The following idea of how to replace stochastic processes by deterministic

systems is well known in the technical literature (Petersen, 1983, pp. 6–7)10

and known to philosophers (Butterfield, 2005); I also need to discuss it for
what follows later. The underlying thought is that for each realisation r(ω),
one sets up a deterministic system with phase space {r(ω)}.

So consider a stochastic process {Zt; t ∈ Z} from (Ω,ΣΩ, ν) to (M̄,ΣM̄).
Let M be the set of all bi-infinite sequences m = (. . .m−1m0m1 . . .) with
mi ∈ M̄, i ∈ Z, and let mt be the t-th coordinate of m, t ∈ Z. Let ΣM

be the σ-algebra generated by the cylinder-sets as defined in (1) at the end
of subsection 2.1. {Zt; t ∈ Z} assigns to each cylinder set CA1...An

i1...in
a pre-

measure, namely the probability P{Zi1 ∈ A1, . . . , Zin ∈ An}. Let µ be the
unique extension of this pre-measure to a measure on ΣM . Let T : M → M
be the left shift, i.e. T ((. . .m−1m0m1 . . .)) := (. . .m0m1m2 . . .). T is bijective
and measurable, and so one obtains the deterministic system (M,ΣM , µ, T ).
Finally, assume one sees only the 0-th coordinate of the sequence m, i.e. one
applies the observation function Φ0 : M → M̄,Φ0(m) = m0. I now define:

Definition 7 (M,ΣM , µ, T,Φ0) as constructed above is the deterministic
representation of the process {Zt; t ∈ Z}.

For the deterministic representation (M,ΣM , µ, T,Φ0) of {Zt; t ∈ Z} it
is assumed that the 0-th coordinate is observed. Consequently, the possible
outcomes of {Zt; t ∈ Z} are the possible observed values of (M,ΣM , µ, T,Φ0).
Clearly, any realisation r(ω) of the process is contained in M , and observ-
ing the solution (T t(r(ω)))t∈Z with Φ0 exactly gives r(ω). Furthermore, the
measure µ is defined by the probabilities which are assigned by {Zt; t ∈ Z}
to each cylinder set. Hence the probability distribution over the realisations
of {Zt; t ∈ Z} is the same as the one over the sequences of observed values of
(M,ΣM , µ, T,Φ0). Thus, according to the characterisation at the start of this
section, a stochastic process is observationally equivalent to its deterministic
representation. Hence every stochastic process can be replaced by at least one
deterministic system. (When there is no risk of confusion, I also refer to the
system (M,ΣM , µ, T ) of the deterministic representation (M,ΣM , µ, T,Φ0)
as the deterministic representation.)

For Bernoulli processes (Example 1) the deterministic representation is
the following. (M,ΣM , µ) is the measure space (Ω,ΣΩ, ν) as defined at the

10Petersen discusses it only for stationary stochastic processes; I consider generally
stochastic processes.
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end of subsection 2.1. T ((. . . ω−1ω0ω1 . . .)) := (. . . ω0ω1ω2 . . .) for ω ∈ Ω and
Φ0(ω) = ω0.

Definition 8 The deterministic representation (M,ΣM , µ, T ) of the Bernoulli
process with probabilities p1, . . . , pN , N ∈ N, is called the Bernoulli shift with
probabilities (p1, . . . , pN).

From a philosophical perspective the deterministic representation is a
cheat because its states are constructed to encode the future and past out-
comes of the stochastic process. Despite this, it is important to know that the
deterministic representation exists. Of course, there is the question whether
deterministic systems which do not involve a cheat can replace a stochastic
process. I will turn to this question in section 4, where I show that for some
stochastic processes this is indeed the case. To my knowledge, it is unknown
whether every stochastic process can be thus replaced.

3.3 A mathematical definition of observational equiv-
alence

Let me now mathematically define what it means for a stochastic process and
a deterministic system to be observationally equivalent. The notion of iso-
morphism captures the idea that deterministic systems are probabilistically
equivalent, i.e. that their states can be put into one-to-one correspondence
such that the corresponding solutions have the same probability distribu-
tions.

Definition 9 (M1,ΣM1 , µ1, T1) is isomorphic to (M2,ΣM2 , µ2, T2) (where both
systems are assumed to be measure-preserving) if and only if there are mea-
surable sets M̂i ⊆ Mi with µi(Mi \ M̂i) = 0 and TiM̂i ⊆ M̂i (i = 1, 2),
and there is a bijection φ : M̂1 → M̂2 such that (i) φ(A) ∈ ΣM2 for all
A ∈ ΣM1 , A ⊆ M̂1, and φ−1(B) ∈ ΣM1 for all B ∈ ΣM2 , B ⊆ M̂2; (ii)
µ2(φ(A)) = µ1(A) for all A ∈ ΣM1 , A ⊆ M̂1; (iii) φ(T1(m)) = T2(φ(m)) for
all m ∈ M̂1 (cf. Petersen, 1983, p. 4).

One easily sees that ‘being isomorphic’ is an equivalence relation. Isomor-
phic systems may have different phase spaces. If identical sets M̂1 and M̂2

can be found, then the deterministic systems are obviously probabilistically
equivalent and have, from a probabilistic viewpoint, the same phase space;
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for this case it will later be convenient to say that the measure-preserving
deterministic systems are manifestly isomorphic.

According to the characterisation at the beginning of this section, a deter-
ministic system (M,ΣM , µ, T ), observed with Φ, gives the same predictions as
{Zt| t ∈ Z} exactly if (i) the outcomes of {Zt| t ∈ Z} are the observed values of
(M,ΣM , µ, T ), and (ii) the deterministic representation of {Φ(T t); t ∈ Z} is
probabilistically equivalent to the deterministic representation of {Zt| t ∈ Z}.
Hence one arrives at the following definition of ‘observational equivalence’;
(for what follows, a definition for measure-preserving systems and, corre-
spondingly, stationary stochastic processes will suffice):11

Definition 10 The stationary stochastic process {Zt; t ∈ Z} and the measure-
preserving deterministic system (M,ΣM , µ, T ), observed with Φ, are observationally
equivalent if and only if the deterministic representation of {Φ(T t); t ∈ Z}
is manifestly isomorphic to the deterministic representation of {Zt; t ∈ Z}.

All the cases of observational equivalence already discussed are cases of
observational equivalence in the sense of Definition 10. First, I claimed in
subsection 3.1 that (M,ΣM , µ, T ) observed with Φ is observationally equiv-
alent to the stochastic process {Φ(T t); t ∈ Z}. This is true because every
system is manifestly isomorphic to itself. Second, I claimed in subsection 3.2
that the deterministic representation (M,ΣM , µ, T,Φ0) of {Zt; t ∈ Z} is ob-
servationally equivalent to {Zt; t ∈ Z}. This is true because the deterministic
representation of {Φ0(T

t); t ∈ Z} is (M,ΣM , µ, T,Φ0).
One final point: assume that (M,ΣM , µ, T ) is isomorphic via φ : M̂ → M̂2

to the deterministic representation (M2,ΣM2 , µ2, T2,Φ0) of {Zt; t ∈ Z}. This
means that there is a one-to-one correspondence between the solutions of
the deterministic system and the realisations of the stochastic process. Thus
(M,ΣM , µ, T ) restricted to M̂ and observed with Φ0(φ(m)) is observationally
equivalent to {Zt; t ∈ Z}. This is so because the deterministic representa-
tion of {Φ0(φ(T t)); t ∈ Z} where T is restricted to M̂ is identical to the

11For a measure-preserving system (M,ΣM , µ, T ) the process {Φ(T t); t ∈ Z} is station-
ary: {x ∈ M |Φ(T t1(x)) ∈ A1, . . . ,Φ(T tn(x)) ∈ An, Ai ∈ ΣMO

, ti ∈ Z, n ∈ N} is iden-
tical to A := T−t1(Φ−1(A1) ∩ . . . ∩ T t1−tnΦ−1(An)). Likewise, {x ∈ M |Φ(T t1+h(x)) ∈
A1, . . . ,Φ(T tn+h(x)) ∈ An} is B := T−(t1+h)(Φ−1(A1) ∩ . . . ∩ T t1−tnΦ−1(An)). Because
the system is measure-preserving, µ(A) = µ(B), implying that {Φ(T t); t ∈ Z} is station-
ary. And if {Zt| t ∈ Z} is stationary, its deterministic representation (M,ΣM , µ, T ) is
measure-preserving. For stationarity implies that µ(T (A)) = µ(A) for any cylinder set A,
and hence that µ(T (A)) = µ(A) for all A ∈ ΣM (cf. Cornfeld et al., 1982, p. 178).
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deterministic representation of {Φ0(T
t
2); t ∈ Z} where T2 is restricted to M̂2.

Hence the deterministic representation of {Φ0(φ(T t)); t ∈ Z} is manifestly
isomorphic to (M2,ΣM2 , µ2, T2).

The following definition will be important later:

Definition 11 (M,ΣM , µ, T ) is a Bernoulli system if and only if it is iso-
morphic to a Bernoulli shift.

The meaning of Bernoulli systems is clear, viz. the solutions of a Bernoulli
system can put into one-to-one correspondence with the realisations of a
Bernoulli process. Thus a Bernoulli system, observed with Φ0(φ), produces
a Bernoulli process. Finally, I note the important result that two Bernoulli
shifts (and hence two Bernoulli systems) are isomorphic if and only if they
have the same Kolmogorov-Sinai entropy, where the Kolmogorov-Sinai en-
tropy of a Bernoulli shift with probabilities (p1, . . . , pn) is

∑n
i=1−pi log2 pi

(Frigg and Werndl, 2010; Ornstein, 1974, pp. 5–3; Werndl, 2009b).

4 Advanced observational equivalence

In this section I discuss results which are ‘advanced’ in the sense that they are
about the question whether it is possible to replace deterministic systems in
science with stochastic processes in science. The phrase ‘systems in science’
(or ‘processes in science’) is a short-hand for systems (or processes) which
are used in science to model phenomena.

4.1 Deterministic system in science which replace stochas-
tic processes in science

The deterministic representation does not naturally arise in science (no doubt
reflecting that fact that is a philosophical cheat). And the results so far only
show that stochastic processes in science, e.g. a Bernoulli process, can be
replaced by its deterministic representation. Hence it seems hard to imagine
how deterministic systems in science could replace stochastic processes in
science. In particular, it seems hard to imagine how deterministic systems
in science could be random enough to replace random stochastic processes
such as Bernoulli processes. Thus one might conjecture that it is impossible
to replace stochastic processes in science by deterministic systems in science.
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Bernoulli processes (Example 1) are often regarded as the most random
discrete-time stochastic processes because their outcomes are independent
(cf. Ornstein, 1989). Are there deterministic systems in science which, when
observed, are observationally equivalent to Bernoulli processes? And are
there even deterministic systems in science which are Bernoulli systems?
Historically, it was long thought that the answer to these questions is nega-
tive (cf. Sinai, 1989, p. 834). So it was a big surprise when it was discovered
from the 1960s onwards that there are several deterministic systems in sci-
ence which are Bernoulli systems (among them systems producing Bernoulli
processes with equiprobable outcomes). Let me mention some of the most
important examples, which are also some of the most important examples of
chaotic systems.12

To start with, there are systems in Newtonian mechanics, some of which
are simple models of statistical mechanical systems, whose discrete versions
are proven to be Bernoulli systems. The most prominent examples are: first,
some hard sphere systems, which describe the motion of a number of hard
spheres undergoing elastic reflections at the boundary and collisions amongst
each other; e.g., the motion of N hard balls on the m torus for N ≥ 2 and
m ≥ N ; second, billiard systems with convex obstacles; and third, geodesic
flows of negative curvature, i.e. frictionless motion of a particle moving with
unit speed on a compact manifold with everywhere negative curvature. It is
usually very hard to prove that systems are Bernoulli. Therefore, for many
systems it is only conjectured that their discrete versions are Bernoulli, e.g.,
for all hard sphere systems and the motion of KAM-type systems restricted
to some regions of phase space (Ornstein and Weiss, 1991, section 4; Young,
1997; Berkovitz et al., 2006, p. 679–680).

Furthermore, there are dissipative systems which are Bernoulli systems:
such as the logistic map and generalised versions thereof, the Hénon map and
generalised versions thereof, and the discrete versions of the Lorenz system
and generalised versions thereof. Some of these systems give relatively ac-
curate predictions, e.g. the Lorenz system as a model for water-wheels. Yet
often these systems are motivated as simple models which help us to un-
derstand, and not so much to predict, phenomena: e.g. the logistic map for
population and climate dynamics, and the Hénon map and the Lorenz system
for weather dynamics (Lorenz, 1964; May, 1976; Jacobson, 1981; Benedicks
and Young, 1993; Smith, 1998, chapter 8; Lyubich, 2002; Luzzatto, 2005).

12Bernoulli systems are regarded as strongly chaotic.
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Also the baker’s system (M,ΣM , µ, T ) (Example 2), a somewhat artificial
example of deterministic motion, is Bernoulli. Assign to each (x, y) in M the
sequence φ(x, y) = . . . ω−2ω−1ω0ω1ω2 . . . defined by the binary expansion of
the coordinates:

x = 0.ω0ω1 . . . =
∞∑
i=1

ωi−1

2i
; y = 0.ω−1ω−2 . . . =

∞∑
i=1

ω−i

2i
. (6)

Consider the Bernoulli shift (M2,ΣM2 , µ2, T2) with states s1, s2 and proba-
bilities (1

2
, 1

2
). Let M̂2 be the subset of M2 excluding all states beginning or

ending with an infinite sequence of ones or zeros; note that µ2(M̂2) = 1. One
easily verifies that φ : M → M̂2 gives an isomorphism from (M,ΣM , µ, T )
to (M2,ΣM2 , µ2, T2). Hence the baker’s system with the observation function
Φ((x, y)) := s1χα1((x, y)) + s2χα2((x, y)), where α = {α1, α2} := {[0, 1

2
) ×

[0, 1] \ Γ, [1
2
, 1]× [0, 1] \ Γ} yields the Bernoulli process with states s1, s2 and

probabilities (1
2
, 1

2
).

A Bernoulli system is weakly mixing (Petersen, 1983, p. 58). Hence,
provided it is observed with a finite-valued observation function, one always
obtains a nontrivial stochastic process (Proposition 1).

What is the significance of the these results? They show that the conjec-
ture advanced at the beginning of this subsection is wrong: it is possible to
replace stochastic processes in science by deterministic systems in science.13

Of course, the question arises whether for deterministic systems in sci-
ence which are observationally equivalent to stochastic processes in science
the corresponding observation function is natural in the sense that one might
encounter it when modeling phenomena. The answer depends on the deter-
ministic system and the phenomenon under consideration. For some systems
the observation function is very involved and thus no natural interpretation
can be found. But in other cases the observation function corresponds to a
realistic way of observing the system.

For instance, recall that the baker’s system models a particle bouncing on
several mirrors where (x, y) denotes the position of the particle on a square.
Here an observer might well only be interested in whether the position of
the particle is to the left or to the right of the square. Then the observa-
tion function Φ((x, y)) := s1χα1((x, y)) + s2χα2((x, y)), above, which indeed

13The arguments in this section allow any meaning of ‘deterministic systems in science’
that is wide enough to include some Bernoulli systems but narrow enough to exclude
systems such as the deterministic representation.
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produces a Bernoulli process, would be natural.

4.2 Stochastic processes which replace deterministic
systems in science at every observation level

4.2.1 ε-congruence and replacement by Markov processes

The previous discussion showed that for several deterministic systems in sci-
ence, regardless which finite-valued observation function one applies, one
always obtains a stochastic process. But to obtain systems in science such
as Bernoulli processes, it seems crucial that coarse observation functions are
applied. Hence it is hard to imagine that by taking finer and finer observa-
tions of deterministic systems in science one still obtains stochastic processes
in science. In particular, it is hard to imagine that one still obtains random
stochastic processes. Therefore, one might conjecture that it is impossible to
replace deterministic systems in science at every observation level by stochas-
tic processes in science.

Let me introduce one of the most natural ways of understanding the
phrase ‘at any observation level’, i.e. the notion that stochastic processes of
a certain type replace a deterministic system at any observation level. I first
explain what it means for a deterministic system and a stochastic process
to give the same predictions at an observation level ε > 0, ε ∈ R. There
are two aspects. First, one imagines that in practice, for sufficiently small
ε1, one cannot distinguish states of the deterministic system which are less
than the distance ε1 apart. The second aspect concerns probabilities: in
practice, for sufficiently small ε2, one will not be able to observe differences
in probabilities of less than ε2. Assume that ε is smaller than ε1 and ε2. Then
a deterministic system and a stochastic process give the same predictions at
observation level ε if the following holds: the solutions of the deterministic
system can be put into one-to-one correspondence with the realisations of the
stochastic process in such a way that the actual state of the deterministic
system and the corresponding outcome of the stochastic process are at each
time point less then ε apart except for a set whose probability is smaller than
ε.

Mathematically, this idea is captured by the notion of ε-congruence. To
define it, one needs to speak of distances between states in the phase space
M of the deterministic system; hence one assumes a metric dM defined on
M . So we need to find a stochastic process whose outcome is within distance
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ε of the actual state of the deterministic system. Hence one assumes that the
possible outcomes of the stochastic process are a subset of the phase space of
the deterministic system. For what follows, it suffices to consider measure-
preserving deterministic systems and, correspondingly, stationary processes.
Now recall Definition 7 of the deterministic representation and Definition 9
of being isomorphic. So finally, I can define:

Definition 12 Let (M,ΣM , µ, T ) be a measure-preserving deterministic sys-
tem, where (M,dM) is a metric space. Let (M2,ΣM2 , µ2, T2,Φ0) be the de-
terministic representation of the stationary stochastic process {Zt; t ∈ Z},
which takes values in (M,dM), i.e. Φ0 : M2 → M . (M,ΣM , µ, T ) is ε-
congruent to (M2,ΣM2 , µ2, T2,Φ0) if and only if (M,ΣM , µ, T ) is isomorphic
via a function φ : M → M2 to (M2,ΣM2 , µ2, T2) and dM(m,Φ0(φ(m))) < ε
for all m ∈M except for a set of measure < ε in M (cf. Ornstein and Weiss,
1991, pp. 22–23).

Note that ε-congruence does not assume that the deterministic system is ob-
served with an observation function. Of course, observation functions can be
introduced. Assume one observes a deterministic system with an observation
function. Then there is a stochastic process which is ε-congruent to the de-
terministic system such that the probabilistic predictions resulting from the
observation function differ at most by ε from the probabilistic predictions
obtained by applying the observation function to the ε-congruent stochastic
process.

By generalising over ε, one obtains a natural meaning of the notion that
stochastic processes of a certain type replace a measure-preserving determin-
istic system at any observation level, namely: for every ε > 0 there is a
stochastic process of this type which gives the same predictions at observa-
tion level ε. Or technically: for every ε > 0 there exists a stochastic process
of this type which is ε-congruent to the deterministic system.

For Bernoulli processes the next outcome of the process is independent
of its previous outcomes. So, intuitively, it seems clear that deterministic
systems in science, for which the next state of the system is constrained by
its previous states (because of the underlying determinism at the level of
states), cannot be replaced by Bernoulli processes at every observation level.
Smith (1998, pp. 160–162) also hints at this idea but does not substantiate
it with a proof. The following theorem shows that, for our notion of replace-
ment at every observation level, this idea is indeed correct under very mild
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assumptions, which hold for deterministic systems in science.14 Hence this
theorem shows a limitation on the observational equivalence of deterministic
systems and stochastic processes.

Theorem 1 Let (M,ΣM , µ, T ) be a measure-preserving deterministic system
where ΣM contains all open balls of the metric space (M,dM), T is continuous
at some point x ∈ M , every open ball around x has positive measure, and
there is a set D ∈ ΣM , µ(D) > 0, with d(T (x), D) := inf{d(T (x),m) |m ∈
D} > 0. Then there is some ε > 0 for which there is no Bernoulli process to
which (M,ΣM , µ, T ) is ε-congruent.

For a proof, see subsection 6.2.15

Given this result, it is natural to ask (which, incidentally, Smith (1998)
does not do) whether deterministic systems in science can be replaced at ev-
ery observation level by other stochastic processes in science. The answer is
‘yes’. Besides, all one needs are irreducible and aperiodic Markov processes,
which are widely used in science. These Markov processes are often regarded
as random; in particular, Bernoulli processes are regarded as the most ran-
dom processes and Markov processes as the next most random (Ornstein and
Weiss, 1991, p. 38 and p. 66).

For Markov processes the next outcome depends only on the previous
outcome.

Definition 13 {Zt; t ∈ Z} is a Markov process if and only if (i) its outcome
space consists of a finite number of symbols M̄ := {s1, . . . , sN}, N ∈ N, and
ΣM̄ = P(M̄); (ii) P{Zt+1 = sj |Zt, Zt−1 . . . , Zk} = P{Zt+1 = sj |Zt} for any
t, any k ∈ Z, k ≤ t, and any sj ∈ M̄ ; and (iii) {Zt; t ∈ Z} is stationary

Define P k(si, sj) := P{Zn+k = si |Zn = sj} for k ∈ Z. A Markov process
is irreducible exactly if it cannot be split into two processes because each
outcome can be reached from all other outcomes; formally: for every si, sj ∈

14This theorem also holds for generalised Bernoulli processes—stochastic processes con-
sisting of independent and identically distributed random variables whose outcome space
need not be finite. That is, under the assumption of Theorem 1, there is an ε > 0 for
which there is no generalised Bernoulli process to which (M,ΣM , µ, T ) is ε-congruent
(cf. Remark 1 at the end of subsection 6.2).

15A deterministic system which is replaced at every observation level by a Bernoulli
process will be measure-preserving. Hence it suffices to concentrate on measure-preserving
systems.
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M̄ there is a k ∈ N such that P k(si, sj) > 0. A Markov process is aperiodic
exactly if for every possible outcome there is no periodic pattern in which the
process can visit that outcome. Mathematically, the period dsi

of an outcome
si ∈ M̄, 1 ≤ i ≤ N , is defined by di = gcd{n ≥ 1 |P n(si, si) > 0} where
‘gcd’ denotes the greatest common divisor. An outcome si ∈ M̄ is aperiodic
if and only if di = 1, and the Markov process is aperiodic if and only if all
its possible outcomes are aperiodic.

The following theorem shows that Bernoulli systems (cf. Definition 11)
can be replaced at every observation level by irreducible and aperiodic Markov
processes.

Theorem 2 Let (M,ΣM , µ, T ) be a Bernoulli system where the metric space
(M,dM) is separable16 and ΣM contains all open balls of (M,dM). Then for
any ε > 0 there is an irreducible and aperiodic Markov process such that
(M,ΣM , µ, T ) is ε-congruent to this Markov process.

For a proof, see subsection 6.3. The assumptions in this theorem are fulfilled
by all Bernoulli systems in science.

The following theorem shows that, for our notion of replacement at every
observation level, also only Bernoulli systems can be replaced by irreducible
and aperiodic Markov processes.

Theorem 3 The deterministic representation of any irreducible and aperi-
odic Markov process is a Bernoulli system.

For a proof of this deep theorem, see Ornstein (1974, pp. 45–47).
For example, consider the baker’s system (M,ΣM , µ, T ) (Example 2),

where dM is the Euclidean metric. It is a Bernoulli system. Thus for every
ε > 0 there is a Markov process such that the baker’s system is ε-congruent
to this Markov process. Let me explain this. For an arbitrary ε > 0 choose
n ∈ N such that

√
2

2n < ε. Consider the partition αn = {α1, α2, . . . , α22n} :=

{[0, 1

2n
)×[0,

1

2n
)\Γ, [0, 1

2n
)×[

1

2n
,

2

2n
)\Γ, . . . , [2

n − 1

2n
, 1]×[

2n − 1

2n
, 1]\Γ}. (7)

16(M,dM ) is separable if and only if there exists a countable set M̈ = {mn |n ∈ N} with
mn ∈ M such that every nonempty open subset of M contains at least one element of M̈ .
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Now let Φαn(m) :=
∑22n

i=1 oαi
χαi(m), where

oα1 = (

√
2

2n+1
,

√
2

2n+1
), oα2 = (

√
2

2n+1
,
2 +

√
2

2n+1
), . . . ,

oα22n = (
2n+1 − 2 +

√
2

2n+1
,
2n+1 − 2 +

√
2

2n+1
). (8)

It is not hard to see that {Φαn(T t); t ∈ Z} is an irreducible and aperi-
odic Markov process whose deterministic representation is isomorphic to
(M,Σ, µ, T ). (M,Σ, µ, T ) is ε-congruent to this Markov process since

dM(m,Φαn(m)) ≤
√

2

2n
< ε for all m ∈M. (9)

Recall that irreducible and aperiodic Markov processes are widely used in
science, and they are even regarded as being second most random. Also recall
that several deterministic systems in science are Bernoulli systems (subsec-
tion 4.1). Hence Theorem 1 and Theorem 2 show that irreducible and ape-
riodic Markov processes are the most random stochastic processes which are
needed in order to replace deterministic systems at every observation level.
This implies that the conjecture advanced at the beginning of this subsection
is wrong: it is possible to replace measure-theoretic deterministic systems in
science at every observation level by stochastic processes in science.

4.2.2 Previous philosophical discussion

Let me discuss the previous philosophical papers about the topic of this sec-
tion. Suppes and de Barros (1996) and Suppes (1999) discuss an instance of
Theorem 2, namely that for discrete versions of billiards with convex obsta-
cles and for any ε > 0 there is a Markov process such that the billiard system
is ε-congruent to this Markov process. Suppes (1993) (albeit with only half
a page on the topic of this section) and Winnie (1998) discuss the theorem
that some continuous-time deterministic systems can be replaced at every
observation level by semi-Markov processes.

Suppes and de Barros (1996, p. 196), Winnie (1998, p. 317) and Suppes
(1999, p. 181–182) claim that the philosophical significance of these results is
that for chaotic motion and every observation level one can choose between
a deterministic description in science and a stochastic description. For in-
stance, Suppes and de Barros (1996, p. 196) comment on the significance of
these results:
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What is fundamental is that independent of this variation of
choice of examples or experiments is that [sic] when we do have
chaotic phenomena [...] then we are in a position to choose either
a deterministic or stochastic model.

However, I submit that these claims are weak, and the ε-congruence re-
sults show more. As argued in section 3.1, the basic results on observa-
tional equivalence already show that for many deterministic systems, includ-
ing many deterministic systems in science, the following holds: for any finite-
valued observation function one can choose between a nontrivial stochastic or
a deterministic description. This implies that, in a way, many deterministic
systems can be replaced at every observation level by nontrivial stochastic
processes. And as one would expect, given a deterministic system in sci-
ence which satisfies the assumption of Proposition 1, for every ε > 0 there
is a nontrivial stochastic process which is ε-congruent to the system. For
basically all ergodic deterministic systems in science have a generating par-
tition (Definition 14).17 Besides, one easily sees the following: assume that
(M,ΣM , µ, T ) is an ergodic measure-preserving deterministic system with
a generating partition, and that (M,dM) is separable and ΣM contains all
open balls of (M,dM). Then for every ε > 0 there is a stochastic process
{Φ(T t); t ∈ Z}, where Φ : M → M is finite-valued, which is ε-congruent
to the system.18 And similar results for chaotic systems were known long
before the ε-congruence results were proved (cf. subsection 3.1). Hence the
fact that at every observation level one has a choice between a determin-
istic description in science and a stochastic process was known long before
the ε-congruence results were proved, and so cannot be the philosophical sig-

17Basically all deterministic systems in science have finite Kolmogorov-Sinai entropy;
and ergodic systems with finite Kolmogorov-Sinai entropy have a generating partition (cf.
Petersen, 1983, p. 244; Ornstein and Weiss, 1991, p. 19).

18Let ε > 0. Since (M,dM ) is separable, there exists a r ∈ N and mi ∈ M , 1 ≤
i ≤ r, such that µ(M \ ∪r

i=1B(mi,
ε
2 )) < ε

2 (B(m, ε) is the ball of radius ε around m).
Let α be a generating partition. Then for each B(mi,

ε
2 ) there is an ni ∈ N and a Ci

of union of elements in ∨ni
j=−ni

T j(α) such that µ((B(mi,
ε
2 ) \ Ci) ∪ (Ci \ B(mi,

ε
2 )) <

ε
2r . Define n := max{ni}, β := {β1, . . . , βl} := ∨n

j=−nT j(α) and Φ :=
∑l

i=1 oiχβi
with

oi ∈ βi. Φ is finite-valued and, since β is generating, (M,ΣM , µ, T ) is isomorphic via φ
to the deterministic representation (M2,ΣM2 , µ2, T2,Φ0) of the stochastic process Zt :=
{Φ(T t); t ∈ Z} (Petersen, 1983, p. 274). And, by construction, dM (x,Φ0(φ(x))) < ε except
for a set in M smaller than ε.
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nificance of these results as claimed by these authors.19 As I have argued
in subsection 4.2.1, the significance of the ε-congruence results is something
stronger: namely that it is possible to replace deterministic systems in science
at every observation level by stochastic processes in science.

Furthermore, Suppes and de Barros (1996), Winnie (1998) and Suppes
(1999) do not seem to be aware that also for non-chaotic systems there is a
choice between a deterministic and a stochastic description. To show this, I
do not have to discuss the hard question of how to define chaos. It will suffice
to show that Proposition 1 also applies to systems which are uncontroversially
neither chaotic nor locally chaotic. Consider the measure-preserving deter-
ministic system (M,ΣM , µ, T ) where M := [0, 1) represents the unit circle,
i.e. each m ∈ M represents the point e2πmi, ΣM is the Lebesgue σ-algebra, µ
is the Lebesgue measure, and T is the rotation T (m) := m+α (mod 1), where
α ∈ R is irrational. It is uncontroversial that this system is neither chaotic
nor locally chaotic because all solutions are stable, i.e. nearby solutions stay
close for all times. However, one easily sees that it satisfies the assumption of
Proposition 1.20 Consequently, this deterministic system is replaced at every
observation level by a nontrivial stochastic process.21

There remains the question: if one can choose between a deterministic
system and a stochastic process, which description is preferable? Winnie
(1998, pp. 317–318) dismisses Suppes’s (1993, p. 254) claim that in the case
of the ε-congruence results both descriptions are equally good. Winnie argues
that the deterministic description is preferable: assume a stochastic process
replaces a deterministic system for the current observation level. At some
point in the future the observational accuracy may be so fine that another

19The reader should also be warned that there are some technical lacunae in Suppes and
de Barros (1996) and Suppes (1999). For instance, according to their definition, any two
systems whatsoever are ε-congruent (let the metric space simply consist of one element).
Also, these authors do not seem to be aware that the continuous-time ε-congruence re-
sults require the motion to be a Bernoulli flow and so do not generally hold for ergodic
systems. And in these papers it is wrongly assumed that the notions of isomorphism
and ε-congruence require that the deterministic system is looked at through an observa-
tion function (Suppes and de Barros, 1996, p. 195–196, p. 200; p. 198-200; Suppes, 1999,
p. 192, p. 195; pp. 189–192).

20This is so because any such deterministic system with irrational α is ergodic (Petersen
1983, p. 49).

21This example can be generalised: any rationally independent rotation on a torus is
uncontroversially non-chaotic but fulfills the assumption of Proposition 1 (cf. Petersen,
1983, p. 51).
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stochastic process will be needed to replace the deterministic system, and so
on. Because there is in principle no limitation on the observational accuracy,
there is no stochastic process that one can be sure, for practical purposes,
will always give the same predictions as the deterministic system. Hence the
deterministic description is preferable.

However, I think neither Winnie’s (1998) nor Suppes’ (1993) view is ten-
able. In a way, if the phenomenon under consideration is really stochastic,
the stochastic description is preferable, even if the stochasticity is at a small
scale and thus not observable. Likewise, if the phenomenon is really deter-
ministic, the deterministic description is preferable. Now assume one cannot
know for sure whether the phenomenon is deterministic or stochastic. Which
description is then preferable in the sense of being preferable relative to our
current knowledge and evidence? The answer depends on many factors, such
as the kind of phenomenon under consideration, theories about fundamental
physics, etc. And it may well be that the stochastic description is preferable
if, for instance, a fundamental theory suggests this and one aims for a de-
scription at the most fundamental level. To sum up, neither Winnie’s nor
Suppes’ view is tenable, and the question of which description is preferable
needs more careful examination.

5 Conclusion

The central question of this paper has been: are deterministic and indeter-
ministic descriptions observationally equivalent in the sense that determin-
istic descriptions, when observed, and indeterministic descriptions give the
same predictions? I have tackled it for discrete-time stochastic processes
and measure-theoretic deterministic systems, both of which are ubiquitous
in science.

I have demonstrated that every stochastic process is observationally equiv-
alent to a deterministic system, and that many deterministic systems are
observationally equivalent to stochastic processes. Still, one might guess
that the measure-theoretic deterministic systems which are observationally
equivalent to stochastic processes in science do not include any deterministic
systems in science. I have shown this to be false because some determinis-
tic systems in science even produce Bernoulli processes. Despite this, one
might guess that measure-preserving deterministic systems in science cannot
give the same predictions at every observation level as stochastic processes
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in science. I have shown that there is indeed a limitation on observational
equivalence, namely deterministic systems in science cannot give the same
predictions at every observation level as Bernoulli processes. However, the
guess is still wrong because I have shown (one of the ε-congruence results)
that several deterministic systems in science give the same predictions at ev-
ery observation level as Markov processes. Therefore, even kinds of stochastic
processes and kinds of deterministic systems which intuitively seem to give
very different predictions are observationally equivalent.

Furthermore, I have criticised the previous philosophical literature, namely
Suppes and de Barros (1996), Winnie (1998) and Suppes (1999). They ar-
gue that the philosophical significance of the ε-congruence results is that for
chaotic motion one can choose at every observation level between a stochastic
or a deterministic description. However, this is already shown by the basic
results in subsection 3.1. The philosophical significance of the ε-congruence
result is really something stronger, namely, that there are deterministic sys-
tems in science that give the same predictions at every observation level as
stochastic processes in science. Furthermore, these authors seem not to be
aware that there are also uncontroversially non-chaotic deterministic systems
which can be replaced at every observation level by stochastic processes.

6 Appendix: Proofs

6.1 Proof of Proposition 1

Proposition 1 Assume that the deterministic system (M,ΣM , µ, T ) is er-
godic and that there does not exist an n ∈ N and a C ∈ ΣM , 0 < µ(C) < 1,
such that, except for a set of measure zero, T n(C) = C. Then for every
nontrivial finite-valued observation function Φ : M →MO and the stochastic
process {Zt := Φ(T t); t ∈ Z} the following holds: there is an oi ∈ MO such
that for all oj ∈MO, P{Zt+1 =oj |Zt =oi} < 1.

Proof : I have not found a proof of this result in the literature and thus
provide one here. Notice that it suffices to prove the following:

(∗) Assume that (M,ΣM , µ, T ) is ergodic and that it is not the
case that there exists an n ∈ N and a C ∈ ΣM , 0 < µ(C) < 1, such
that, except for a set of measure zero, T n(C) = C. Then for any
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nontrivial partition α = {α1, . . . , αn} there is an i ∈ {1, . . . , n}
such that for all j, 1≤j≤n, µ(T (αi)\αj)>0.

For recall that any finite observation function has a corresponding parti-
tion (cf. subsection 3.1). Hence the conclusion of (∗) implies that for any
nontrivial finite observation function Φ : M → MO there is an outcome
oi ∈ MO := ∪n

k=1ok, n ∈ N, such that for all possible outcomes oj ∈ MO it
follows that P{Zt+1 = oj |Zt = oi} < 1, t ∈ Z.

So assume that the conclusion of (∗) does not hold, i.e. there exists a
nontrivial partition α such that for each αi there exists an αj with, except
for a set of measure zero, T (αi) ⊆ αj.

Case 1 : for all i there is a j such that, except for a set of measure zero,
T (αi) = αj. Then ergodicity implies that α1 is mapped, except for a set of
measure zero, onto all αk, 2 ≤ k ≤ n, before being mapped onto itself. But
this contradicts the assumption that it is not the case that there exists an
n ∈ N and a C ∈ ΣM , 0 < µ(C) < 1, such that, except for a set of measure
zero, T n(C) = C.

Case 2 : for some i there is a j with, except for a set of measure zero,
T (αi) ⊂ αj and µ(αi) < µ(αj). Ergodicity implies that there exists a k ∈ N
such that, except for a set of measure zero, T k(αj) ⊆ αi. Hence it holds that
µ(αj) ≤ µ(αi), yielding a contradiction, viz. µ(αi) < µ(αj) ≤ µ(αi).

6.2 Proof of Theorem 1

Theorem 1 Let (M,ΣM , µ, T ) be a deterministic system where ΣM contains
all open balls of the metric space (M,dM), T is continuous at a point x ∈M ,
every open ball around x has positive measure, and there is a set D ∈ ΣM ,
µ(D) > 0, with d(T (x), D) := inf{d(T (x),m) |m ∈ D} > 0. Then there is
some ε > 0 for which there is no Bernoulli process to which (M,ΣM , µ, T ) is
ε-congruent.

Proof : I have not found a proof of this result in the literature and thus
provide one here.

For m ∈ M , E ⊆ M and ε > 0 let the ball of radius ε around m be
B(m, ε) := {y ∈ M | d(y,m) < ε} and let B(E, ε) := ∪m∈EB(m, ε). Since
d(T (x), D) > 0, one can choose γ > 0 and β > 0 such that B(T (x), 2γ) ∩
B(D, 2β) = ∅. Because T is continuous at x, one can choose δ > 0 such
that T (B(x, 4δ)) ⊆ B(T (x), γ). Recall that µ(B(x, 2δ)) = ρ1 > 0 and that
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µ(D) = ρ2 > 0. Let ε > 0 be such that ε < ρ1ρ2

8
, ε < δ, ε < β and ε < γ. I

am going to show that there is no Bernoulli process such that (M,ΣM , µ, T )
is ε-congruent to this Bernoulli process.

Assume that (M,ΣM , µ, T ) is ε-congruent to a Bernoulli process, and
let (Ω,ΣΩ, ν, S,Φ0) be the deterministic representation of this Bernoulli pro-
cess. This implies that (M,ΣM , µ, T ) is isomorphic (via φ : M̂ → Ω̂) to
the Bernoulli shift (Ω,ΣΩ, ν, S) and hence that (M,ΣM , µ, T ) is a Bernoulli
system. Let αΦ0 := {α1

Φ0
. . . αs

Φ0
}, s ∈ N, be the partition of (Ω,ΣΩ, ν) corre-

sponding to the observation function Φ0 (cf. subsection 3.1). Let M̌ :=M \M̂
and Ω̌ := Ω \ Ω̂. Clearly, φ−1(αΦ0) := {φ−1(α1

Φ0
\ Ω̌) ∪ M̌, φ−1(α2

Φ0
\ Ω̌),

. . . , φ−1(αs
Φ0
\ Ω̌)} is a partition of (M,ΣM , µ).

Consider all the sets in φ−1(αΦ0) which are assigned values in B(x, 3δ),
i.e. all the sets a ∈ φ−1(αΦ0) with Φ0(φ(m)) ∈ B(x, 3δ) for almost all
m ∈ a. Denote these sets by A1, . . . An, n ∈ N, and let A := ∪n

i=1Ai. Be-
cause (M,ΣM , µ, T ) is ε-congruent to (Ω,ΣΩ, ν, S,Φ0), it follows that µ(A \
B(x, 4δ)) < ε and µ(A ∩B(x, 2δ)) ≥ ρ1/2.

Now consider all the sets in φ−1(αΦ0) which are assigned values inB(D, β),
i.e. all the sets c ∈ φ−1(αΦ0) where Φ0(φ(m)) ∈ B(D, β) for almost all m ∈ c.
Denote these sets by C1, . . . Ck, k ∈ N, and let C := ∪k

i=1Ci. Because
(M,ΣM , µ, T ) is ε-congruent to (Ω,ΣΩ, ν, S,Φ0), I have µ(C ∩ D) ≥ ρ2/2
and µ(C ∩B(T (x), γ)) < ε.

Because (Ω,ΣΩ, ν, S,Φ0) is a Bernoulli process isomorphic to (M,ΣM , µ, T ),
it must hold that µ(T (Ai) ∩ Cj) = µ(Ai)µ(Cj) for all i, j, 1 ≤ i ≤ n,
1 ≤ j ≤ k. Hence also µ(T (A) ∩ C) = µ(A)µ(C). But it follows that
µ(A)µ(C) ≥ ρ1ρ2

4
and that µ(T (A) ∩ C) < ε + ε, and this yields the contra-

diction ρ1ρ2

4
< 2ε < ρ1ρ2

4
since it was assumed that ε < ρ1ρ2

8
.

Remark 1. I say that a stochastic process {Zt; t ∈ Z} is a generalised
Bernoulli process if and only if (i) it takes values in an arbitrary measur-
able space (M̄,ΣM̄); (ii) the random variables Zt have the same distribution
for all t; and (iii) {Zt; t ∈ Z} are independent. A generalised Bernoulli shift
is the deterministic representation of a generalised Bernoulli process. A gen-
eralised Bernoulli system is a deterministic system which is isomorphic to a
generalised Bernoulli shift. Now it is important to note that Theorem 1 also
holds for generalised Bernoulli processes, i.e.:

Theorem 1* Let (M,ΣM , µ, T ) be a deterministic system where ΣM con-
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tains all open balls of the metric space (M,dM), T is continuous at a point
x ∈ M , every open ball around x has positive measure, and there is a set
D ∈ ΣM , µ(D) > 0, with d(T (x), D) := inf{d(T (x),m) |m ∈ D} > 0. Then
it is not the case that for all ε > 0 there is a generalised Bernoulli process
such that (M,ΣM , µ, T ) is ε-congruent to this generalised Bernoulli process.

Proof : the proof goes through as above when one considers generalised
Bernoulli processes instead of Bernoulli processes, generalised Bernoulli shifts
instead of Bernoulli shifts and generalised Bernoulli systems instead of Bernoulli
systems, and one definesA := φ−1(Φ−1

0 (B(x, 3δ))\Ω̌) and C := φ−1(Φ−1
0 (B(D, β))\

Ω̌). Clearly, because for a generalised Bernoulli process the random variables
are independent, it still holds that µ(T (A) ∩ C) = µ(A)µ(C) and the proof
goes through as above.

6.3 Proof of Theorem 2

Theorem 2 Let (M,ΣM , µ, T ) be a Bernoulli system where the metric space
(M,dM) is separable and ΣM contains all open balls of (M,dM). Then for
any ε > 0 there is an irreducible and aperiodic Markov process such that
(M,ΣM , µ, T ) is ε-congruent to this Markov process.

Proof : I have not found a proof of this result in the literature and thus
provide one here. I need the following definition.

Definition 14 A partition α of (M,ΣM , µ, T ) is generating if and only if
for every A ∈ ΣM there is an n ∈ N and a set C of unions of elements in
∨n

j=−nT
j(α) such that µ((A \C)∪ (C \A)) < ε (cf. Petersen, 1983, p. 244).

Per assumption, the deterministic system (M,ΣM , µ, T ) is isomorphic
via φ : M̂ → Ω̂ to the deterministic representation (Ω,ΣΩ, ν, S,Φ0) of a
Bernoulli shift with outcome space M̄ . Let αΦ0 := {α1

Φ0
. . . αk

Φ0
}, k ∈ N,

be the partition of (Ω,ΣΩ, ν) corresponding to the observation function Φ0

(cf. subsection 3.1). Let M̌ := M \ M̂ and Ω̌ := Ω \ Ω̂. φ−1(αΦ0) :=
{φ−1(α1

Φ0
\Ω̌)∪M̌, φ−1(α2

Φ0
\Ω̌), . . . , φ−1(αk

Φ0
\Ω̌)} is a partition of (M,ΣM , µ).

For the partitions α = {α1, . . . , αn} and β = {β1, . . . , βn}, n ∈ N, α ∨ β is
the partition

⋃
1≤i,j≤n αi ∩ βj. Clearly, if α is a partition of M , T−tα :=

{T−tα1, . . . , T
−tαn}, t ∈ Z, are partitions.

Since (M,dM) is separable, there exists an r ∈ N and mi ∈ M ,
1 ≤ i ≤ r, such that µ(M \ ∪r

i=1B(mi,
ε
2
)) < ε

2
. Because for a Bernoulli
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system Φ−1(αΦ0) is generating (Petersen, 1983, p. 275), for each B(mi,
ε
2
)

there is an ni ∈ N and a Ci of union of elements in ∨ni
j=−ni

T j(φ−1(αΦ0))
such that µ(Di) <

ε
2r

, where Di := (B(mi,
ε
2
) \ Ci) ∪ (Ci \ B(mi,

ε
2
)). De-

fine n := max{ni}. For Q = {q1, . . . , ql} := ∨n
j=−nS

j(αΦ0) let ΦQ
0 : Ω →

M ; ΦQ
0 (ω) =

∑l
i=1 oiχqi

(ω), where oi ∈ φ−1(qi \ Ω̌). Note that oi 6= oj for
i 6= j, 1 ≤ i, j ≤ l. Then

dM(m,ΦQ
0 (φ(m))) < ε except for a set in M of measure < ε. (10)

Now let (X,ΣX , λ, R,Θ0) be the deterministic representation of the stochas-
tic process {ΦQ

0 (St); t ∈ Z} from (Ω,ΣΩ, ν) to (M,ΣM). This process is a
Markov process since for any k ∈ N and any A,B1, . . . , Bk ∈ M̄2n+1,

ν({ω ∈ Ω | (ω−n . . . ωn) = A and (ω−n+1 . . . ωn+1) = B1})
ν({ω ∈ Ω | (ω−n+1 . . . ωn+1) = B1})

= (11)

ν({ω∈Ω|(ω−n. . .ωn)=A and(ω−n+1. . .ωn+1)=B1,. . ., (ω−n+k. . .ωn+k)=Bk})
ν({ω∈Ω|(ω−n+1. . .ωn+1)=B1,. . ., (ω−n+k. . .ωn+k)=Bk})

,

if ν({ω∈Ω|(ω−n. . .ωn)=A and(ω−n+1. . .ωn+1)=B1,. . ., (ω−n+k. . .ωn+k)=Bk})>0.

Because S is a shift, one sees that for all i, j, 1 ≤ i, j ≤ l, there is
a k ≥ 1 such that P k(oi, oj) > 0, and hence that the Markov process is
irreducible. One also sees that there exists an outcome oi, 1 ≤ i ≤ l, such
that P 1(oi, oi) > 0. Hence doi

= 1; and since all outcomes of an irreducible
Markov process have the same periodicity (Cinlar, 1975, p. 131), it follows
that the Markov process is also aperiodic.

Consider ψ : Ω → X, ψ(ω) = . . .ΦQ
0 (S−1(ω)),ΦQ

0 (ω),ΦQ
0 (S(ω)) . . .,

for ω ∈ Ω. Clearly, there is a set X̂ ⊆ X with λ(X̂) = 1 such that
ψ : Ω → X̂ is bijective and measure-preserving and R(ψ(ω)) = ψ(S(ω))
for all ω ∈ Ω. Hence (Ω,ΣΩ, ν, S) is isomorphic to (X,ΣX , λ, R) via ψ, and
thus (M,ΣM , µ, T ) is isomorphic to (X,ΣX , λ, R) via θ = ψ(φ). Now because
of (10) it holds that

dM(m,Θ0(θ(m))) < ε except for a set in M of measure < ε. (12)
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