
Pentahedral Volume, Chaos, and Quantum
Gravity

Hal Haggard

May 30, 2012



Volume

Polyhedral Volume (Bianchi, Doná and Speziale):

V̂Pol = The volume of a quantum polyhedron
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Minkowski’s theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

~A1 + · · ·+ ~An = 0.



Minkowski’s theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

~A1 + · · ·+ ~An = 0.

Only an existence and uniqueness theorem.



Minkowski’s theorem: a tetrahdedron

Interpret the area vectors of tetrahedron as angular momenta:

~A1 + ~A2 + ~A3 + ~A4 = 0 ⇐⇒

For fixed areas A1, . . . ,A4 each area vector lives in S2.

Symplectic reduction of (S2)4 gives rise to the Poisson brackets:

{f , g} =
4∑

l=1

~Al ·
(
∂f

∂~Al

× ∂g

∂~Al

)



Minkowski’s theorem: a tetrahdedron

For fixed areas A1, . . . ,A4

p = |~A1 + ~A2| q = Angle of rotation generated by p:

{q, p} = 1



Dynamics

Take as Hamiltonian the Volume:

H = V 2 =
2

9
~A1 · (~A2 × ~A3)



Bohr-Sommerfeld quantization

Require Bohr-Sommerfeld quantization condition,

S =

∮
γ
pdq = (n +

1

2
)2π~.

Area of orbits given in terms of complete elliptic integrals,

S(E ) =

(
4∑

i=1

aiK (m) +
4∑

i=1

biΠ(α2
i ,m)

)
E
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VTet =

√
2
3 ×√

|~A1 · (~A2 × ~A3)|

A1 = j + 1/2
A2 = j + 1/2
A3 = j + 1/2
A4 = j + 3/2

◦ = Numerical
• = Bohr-Som

[PRL 107, 011301]



Table

j1 j2 j3 j4 Loop gravity Bohr- Accuracy
Sommerfeld

6 6 6 7

1.828 1.795 1.8%
3.204 3.162 1.3%
4.225 4.190 0.8%
5.133 5.105 0.5%
5.989 5.967 0.4%
6.817 6.799 0.3%
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Volume of a pentahedron

A pentahedron can be completed to a tetrahedron



Volume of a pentahedron

A pentahedron can be completed to a tetrahedron

α, β, γ > 1 found from,

α~A1 + β~A2 + γ~A3 + ~A4 = 0

e.g. =⇒ α = −~A4 · (~A2 × ~A3)/~A1 · (~A2 × ~A3)



Volume of a pentahedron

A pentahedron can be completed to a tetrahedron

The volume of the prism is then,

V =

√
2

3

(√
αβγ −

√
(α− 1)(β − 1)(γ − 1)

)√
~A1 · (~A2 × ~A3)



Adjacency and reconstruction

What’s most difficult about Minkowski reconstruction? Adjacency!

Remarkable side effect of introducing α, β and γ: they completely
solve the adjacency problem!



Determining the adjacency

Let Wijk = ~Ai · (~Aj × ~Ak). Different closures imply,

α1
~A1 + β1~A2 + γ1~A3 + ~A4 = 0,

α ≡ α1 = −W234

W123
β ≡ β1 =

W134

W123
γ ≡ γ1 = −W124

W123

α2
~A1 + β2~A2 + ~A3 + γ2~A4 = 0,

α2 =
W234

W124
=
α

γ
β2 = −W134

W124
=
β

γ
γ2 = −W123

W124
=

1

γ

They are mutually incompatible!
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Cylindrical consistency

Smaller graphs and the associated observables can be consistently
included into larger ones

Cylindrical consistency is non-trivially implemented for the
polyhedral volume
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EBK quantization

Sommerfeld and Epstein extended Bohr’s condition, L = n~, as we
have seen

S =

∫ T

0
p
dq

dt
dt = nh

and applied it to bounded, separable systems with d degrees of
freedom, ∫ Ti

0
pi
dqi
dt

dt = nih, i = 1, . . . , d

Here the Ti are the periods of each of the coordinates.

Einstein(!) was not satisfied. These conditions are not invariant
under phase space changes of coordinates.



EBK quantization II

Motivating example: central force problems

In configuration space trajectories cross



EBK quantization II

Motivating example: central force problems

Momenta are distinct at such a crossing



EBK quantization II

Motivating example: central force problems

In phase space the distinct momenta lift to the two sheets of a torus



EBK quantization III

Following Poincaré, Einstein suggested that we use the invariant

d∑
i=1

pidqi

to perform the quantization.

The topology of the torus remains under coordinate changes, and
so the quantization condition should be,

Si =

∮
Ci

~p · d~q = nih.





Surface of section

Visualizing dynamics with a surface of section



KAM: Weak perturbation of an integrable system → Break up of
those tori foliated by trajectories with rational frequency ratios



KAM: Weak perturbation of an integrable system → Break up of
those tori foliated by trajectories with rational frequency ratios

Toroidal Islands and island chains are left within a sea of chaos
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Phase space of the pentahedron I

The pentahedron has two fundamental degrees of freedom,

The angles generated by p1 = |~A1 + ~A2| and p2 = |~A3 + ~A4|.



Phase space of the pentahedron II

For fixed p1 and p2 these angles sweep out a torus.

The phase space consists of tori over a convex region of the
p1p2-plane.



Volume is nonlinear

The volume is a very nonlinear function of any of the variables we
have considered:

V =

√
2

3

(√
αβγ −

√
(α− 1)(β − 1)(γ − 1)

)√
|~A1 · (~A2 × ~A3)|

Recall,

α = −
~A4 · (~A2 × ~A3)

~A1 · (~A2 × ~A3)
, similarly for β, γ

Forced to integrate it numerically.



Numerical integration

Fortunately, the angular momenta can be lifted into the phase
space of a collection of harmonic oscillators. This allows the use of
a geometric (i.e. symplectic) integrator.

Explicit Euler: un+1 = un + h · a(un)

Implicit Euler: un+1 = un + h · a(un+1)

Symplectic Euler: un+1 = un + h · a(un, vn+1)
vn+1 = vn + h · b(un, vn+1)

Implementation: Symplectic integrator preserves face areas to
machine precision and volume varies in 14th digit



Volume dynamics: first results

A Schlegel diagram projects a 3D polyhedron into one of its faces
(left panel):

A Schlegel move merges two vertices of the diagram and and splits
them apart in a different manner. This is precisely how the volume
dynamics changes adjacency.
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Poincaré section of pentahedral volume dynamics



Guess: Analogy with billiards systems suggests that the dynamics
will be mixed, containing chaos
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Conclusions

Minkowski reconstruction for 5 vectors solved

There is cylindrical consistency in the polyhedral picture and
it is non-trivial

The classical polyhedral volume is only twice continuously
differentiable

Can explore the classical dynamics of the volume operator in
the case of a polyhedron with 5 faces

Does this dynamics exhibit chaos?
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