Pentahedral Volume, Chaos, and Quantum Gravity

Hal Haggard

May 30, 2012

Volume

Polyhedral Volume (Bianchi, Doná and Speziale):

$$
\hat{V}_{\text {Pol }}=\text { The volume of a quantum polyhedron }
$$

1 Pentahedral Volume

2 Chaos \& Quantization

3 Volume Dynamics and Quantum Gravity

1 Pentahedral Volume

2 Chaos \& Quantization

3 Volume Dynamics and Quantum Gravity

Minkowski's theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

$$
\vec{A}_{1}+\cdots+\vec{A}_{n}=0
$$

Minkowski's theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

$$
\vec{A}_{1}+\cdots+\vec{A}_{n}=0
$$

Only an existence and uniqueness theorem.

Minkowski's theorem: a tetrahdedron

Interpret the area vectors of tetrahedron as angular momenta:

$$
\vec{A}_{1}+\vec{A}_{2}+\vec{A}_{3}+\vec{A}_{4}=0
$$

For fixed areas A_{1}, \ldots, A_{4} each area vector lives in S^{2}.
Symplectic reduction of $\left(S^{2}\right)^{4}$ gives rise to the Poisson brackets:

$$
\{f, g\}=\sum_{l=1}^{4} \vec{A}_{l} \cdot\left(\frac{\partial f}{\partial \vec{A}_{l}} \times \frac{\partial g}{\partial \vec{A}_{l}}\right)
$$

Minkowski's theorem: a tetrahdedron

For fixed areas A_{1}, \ldots, A_{4}

$$
\begin{aligned}
p=\left|\vec{A}_{1}+\vec{A}_{2}\right| \quad q= & \text { Angle of rotation generated by } p: \\
& \{q, p\}=1
\end{aligned}
$$

Dynamics

Take as Hamiltonian the Volume:

$$
H=V^{2}=\frac{2}{9} \vec{A}_{1} \cdot\left(\vec{A}_{2} \times \vec{A}_{3}\right)
$$

Bohr-Sommerfeld quantization

Require Bohr-Sommerfeld quantization condition,

$$
S=\oint_{\gamma} p d q=\left(n+\frac{1}{2}\right) 2 \pi \hbar .
$$

Area of orbits given in terms of complete elliptic integrals,

$$
S(E)=\left(\sum_{i=1}^{4} a_{i} K(m)+\sum_{i=1}^{4} b_{i} \Pi\left(\alpha_{i}^{2}, m\right)\right) E
$$

Table

$j_{1} j_{2} j_{3} j_{4} \quad$ Loop gravity | Bohr- |
| :---: |
| Sommerfeld |\quad Accuracy

	1.828	1.795	1.8%
	3.204	3.162	1.3%
6667	4.225	4.190	0.8%
	5.133	5.105	0.5%
	5.989	5.967	0.4%
	6.817	6.799	0.3%
	1.828	1.795	1.8%
	3.204	3.162	1.3%
	4.225	4.190	0.8%
	5.133	5.105	0.5%
	5.989	5.967	0.4%
	6.817	6.799	0.3%

Volume of a pentahedron

A pentahedron can be completed to a tetrahedron

Volume of a pentahedron

A pentahedron can be completed to a tetrahedron

$\alpha, \beta, \gamma>1$ found from,

$$
\begin{gathered}
\alpha \vec{A}_{1}+\beta \vec{A}_{2}+\gamma \vec{A}_{3}+\vec{A}_{4}=0 \\
\text { e.g. } \Longrightarrow \alpha=-\vec{A}_{4} \cdot\left(\vec{A}_{2} \times \vec{A}_{3}\right) / \vec{A}_{1} \cdot\left(\vec{A}_{2} \times \vec{A}_{3}\right)
\end{gathered}
$$

Volume of a pentahedron

A pentahedron can be completed to a tetrahedron

The volume of the prism is then,
$V=\frac{\sqrt{2}}{3}(\sqrt{\alpha \beta \gamma}-\sqrt{(\alpha-1)(\beta-1)(\gamma-1)}) \sqrt{\vec{A}_{1} \cdot\left(\vec{A}_{2} \times \vec{A}_{3}\right)}$

Adjacency and reconstruction

What's most difficult about Minkowski reconstruction? Adjacency!

Remarkable side effect of introducing α, β and γ : they completely solve the adjacency problem!

Determining the adjacency

Let $W_{i j k}=\vec{A}_{i} \cdot\left(\vec{A}_{j} \times \vec{A}_{k}\right)$. Different closures imply,

- $\alpha_{1} \vec{A}_{1}+\beta_{1} \vec{A}_{2}+\gamma_{1} \vec{A}_{3}+\vec{A}_{4}=0$,

$$
\begin{aligned}
& \alpha \equiv \alpha_{1}=-\frac{W_{234}}{W_{123}} \quad \beta \equiv \beta_{1}=\frac{W_{134}}{W_{123}} \quad \gamma \equiv \gamma_{1}=-\frac{W_{124}}{W_{123}} \\
& \alpha_{2} \vec{A}_{1}+\beta_{2} \vec{A}_{2}+\vec{A}_{3}+\gamma_{2} \vec{A}_{4}=0, \\
& \alpha_{2}=\frac{W_{234}}{W_{124}}=\frac{\alpha}{\gamma} \quad \beta_{2}=-\frac{W_{134}}{W_{124}}=\frac{\beta}{\gamma} \quad \gamma_{2}=-\frac{W_{123}}{W_{124}}=\frac{1}{\gamma}
\end{aligned}
$$

They are mutually incompatible!

Cylindrical consistency

Smaller graphs and the associated observables can be consistently included into larger ones

Cylindrical consistency is non-trivially implemented for the polyhedral volume

1 Pentahedral Volume

2 Chaos \& Quantization

3 Volume Dynamics and Quantum Gravity

EBK quantization

Sommerfeld and Epstein extended Bohr's condition, $L=n \hbar$, as we have seen

$$
S=\int_{0}^{T} p \frac{d q}{d t} d t=n h
$$

and applied it to bounded, separable systems with d degrees of freedom,

$$
\int_{0}^{T_{i}} p_{i} \frac{d q_{i}}{d t} d t=n_{i} h, \quad i=1, \ldots, d
$$

Here the T_{i} are the periods of each of the coordinates.
Einstein(!) was not satisfied. These conditions are not invariant under phase space changes of coordinates.

EBK quantization II

Motivating example: central force problems

In configuration space trajectories cross

EBK quantization II

Motivating example: central force problems

Momenta are distinct at such a crossing

EBK quantization II

Motivating example: central force problems

In phase space the distinct momenta lift to the two sheets of a torus

EBK quantization III

Following Poincaré, Einstein suggested that we use the invariant

$$
\sum_{i=1}^{d} p_{i} d q_{i}
$$

to perform the quantization.
The topology of the torus remains under coordinate changes, and so the quantization condition should be,

$$
S_{i}=\oint_{C_{i}} \vec{p} \cdot d \vec{q}=n_{i} h
$$

a

Quadrupole

Visualizing dynamics with a surface of section

KAM: Weak perturbation of an integrable system \rightarrow Break up of those tori foliated by trajectories with rational frequency ratios

KAM: Weak perturbation of an integrable system \rightarrow Break up of those tori foliated by trajectories with rational frequency ratios

Toroidal Islands and island chains are left within a sea of chaos

1 Pentahedral Volume

2 Chaos \& Quantization

3 Volume Dynamics and Quantum Gravity

Phase space of the pentahedron I

The pentahedron has two fundamental degrees of freedom,

The angles generated by $p_{1}=\left|\vec{A}_{1}+\vec{A}_{2}\right|$ and $p_{2}=\left|\vec{A}_{3}+\vec{A}_{4}\right|$.

Phase space of the pentahedron II

For fixed p_{1} and p_{2} these angles sweep out a torus.

The phase space consists of tori over a convex region of the $p_{1} p_{2}$-plane.

The volume is a very nonlinear function of any of the variables we have considered:

$$
V=\frac{\sqrt{2}}{3}(\sqrt{\alpha \beta \gamma}-\sqrt{(\alpha-1)(\beta-1)(\gamma-1)}) \sqrt{\left|\vec{A}_{1} \cdot\left(\vec{A}_{2} \times \vec{A}_{3}\right)\right|}
$$

Recall,

$$
\alpha=-\frac{\vec{A}_{4} \cdot\left(\vec{A}_{2} \times \vec{A}_{3}\right)}{\vec{A}_{1} \cdot\left(\vec{A}_{2} \times \vec{A}_{3}\right)}, \quad \text { similarly for } \beta, \gamma
$$

Forced to integrate it numerically.

Numerical integration

Fortunately, the angular momenta can be lifted into the phase space of a collection of harmonic oscillators. This allows the use of a geometric (i.e. symplectic) integrator.

Explicit Euler: $\quad u_{n+1}=u_{n}+h \cdot a\left(u_{n}\right)$
Implicit Euler: $\quad u_{n+1}=u_{n}+h \cdot a\left(u_{n+1}\right)$
Symplectic Euler:

$$
\begin{aligned}
& u_{n+1}=u_{n}+h \cdot a\left(u_{n}, v_{n+1}\right) \\
& v_{n+1}=v_{n}+h \cdot b\left(u_{n}, v_{n+1}\right)
\end{aligned}
$$

Implementation: Symplectic integrator preserves face areas to machine precision and volume varies in 14th digit

Volume dynamics: first results

A Schlegel diagram projects a 3D polyhedron into one of its faces (left panel):

A Schlegel move merges two vertices of the diagram and and splits them apart in a different manner. This is precisely how the volume dynamics changes adjacency.

Poincaré section of pentahedral volume dynamics

Guess: Analogy with billiards systems suggests that the dynamics will be mixed, containing chaos

Conclusions

■ Minkowski reconstruction for 5 vectors solved

- There is cylindrical consistency in the polyhedral picture and it is non-trivial
- The classical polyhedral volume is only twice continuously differentiable
- Can explore the classical dynamics of the volume operator in the case of a polyhedron with 5 faces
■ Does this dynamics exhibit chaos?

