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Abstract

Medusae can be conspicuous and abundant members of seafloor communities in deep-sea

benthic boundary layers. The epibenthic trachymedusa, Ptychogastria polaris Allman, 1878

(Hydrozoa: Trachylina: Ptychogastriidae) occurs in the cold, high latitude systems of both

the northern and southern hemispheres, with a circumpolar distribution in Arctic and sub-

Arctic areas, and disjunct reports of a few individuals from Antarctica. In January-February

2010, during benthic megafaunal photosurveys in three subpolar fjords along the West Ant-

arctic Peninsula (Andvord, Flandres and Barilari Bays), P. polaris was recorded in Antarctic

Peninsula waters. The trachymedusa, identified from megacore-collected specimens, was

a common component of the epifauna in the sediment floored basins at 436–725 m depths

in Andvord and Flandres Bays, reaching densities up to 13 m-2, with mean densities in indi-

vidual basins ranging from 0.06 to 4.19 m-2. These densities are 2 to 400-fold higher than

previously reported for P. polaris in either the Arctic or Antarctic. This trachymedusa had an

aggregated distribution, occurring frequently in Andvord Bay, but was often solitary in Flan-

dres Bay, with a distribution not significantly different from random. Epibenthic individuals

were similar in size, typically measuring 15–25 mm in bell diameter. A morphologically simi-

lar trachymedusa, presumably the same species, was also observed in the water column

near the bottom in all three fjords. This benthopelagic form attained abundances of up to

7 m-2 of seafloor; however, most P. polaris (~ 80%), were observed on soft sediments. Our

findings indicate that fjords provide a prime habitat for the development of dense populations

of P. polaris, potentially resulting from high and varied food inputs to the fjord floors. Be-

cause P. polaris resides in the water column and at the seafloor, large P. polaris populations

may contribute significantly to pelagic-benthic coupling in the WAP fjord ecosystems.
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Introduction

Pelagic organisms, particularly medusae, are common members of benthic boundary layer

communities, where some species may shift to benthic life stages, scavenge epibenthic food

sources and attain appreciable seafloor abundance (e.g. [1, 2, 3, 4, 5, 6]). Despite a paucity of

samples, the existence of a variety of gelatinous fauna in the benthic boundary layer is generally

accepted [7]. The diversity and abundance have been attributed to increased prey availability

in the form of detritivores that feed on marine snow sinking from the euphotic zone and

organic material resuspended from the seafloor [2, 8, 9].

The fragility of gelatinous zooplankton, and absence of suitable sampling gear and preserva-

tives, have hindered effective collection of intact specimens and contributed to their poor

representation in deep-sea faunal inventories (summarised in [10]). In the last two decades

imaging surveys and in situ collections, using underwater optical and acoustical instruments

(summarised by [11]), towed underwater cameras, manned and remotely operated submers-

ibles and autonomous underwater vehicles documented the occurrence and activities of gelati-

nous animals living near or on the seafloor [6, 12, 13, 14]. In addition, plankton nets tows [15]

and sediment traps [16, 17], as well as gear adapted for dedicated sampling of medusae (e.g.

nets on epibenthic sleds and bottom trawls as described in [18]), have facilitated collection of

gelatinous organisms from deep benthopelagic habitats.

Despite these recent advances and extensive records of Hydrozoa from the early 1800’s

onward [18, 19], benthopelagic gelatinous zooplankton in polar seas are poorly acknowledged,

particularly when compared to crustaceans, such as euphausiids and copepods [20, 21, 22, 23].

In most cases high latitude studies of gelatinous zooplankton have been limited to species

descriptions [18, 24, 25, 26]. Recent investigations have provided data on abundance and dis-

tribution records [21, 23, 27]. Most of these descriptions have been based on classical taxo-

nomic approaches [28, 29, 30]. This study is one of few presenting a molecular analysis and

DNA barcoding to validate species identifications.

The trachymedusa Ptychogastria polaris Allman, 1878 [31], is a cold-water species, occur-

ring at high latitudes in the northern and southern hemispheres [25, 26, 32, 33, 34]. Allman

described P. polaris from a single specimen collected off East Greenland (81’44˚N, 64’45˚W)

[31]. Subsequent reports have recognised three species in the genus Ptychogastria: the Arctic

Ptychogastria polaris, the Antarctic Ptychogastria opposita Vanhöffen, 1912 [35], and a Medi-

terranean counterpart Ptychogastria asteroides Haeckel, 1879 [36]. A further species, Ptycho-
gastria antarctica Haeckel, 1879, was described as Pectis antarctica Haeckel, 1879 [36] but

subsequently moved into the genus Ptychogastria by [37], where it remained as a doubtful spe-

cies until recently being found to be conspecific with Voragonema laciniata Bouillon, Pagès &

Gili, 2001 [18], which therefore becomes a junior synonym of Pe. antarctica [38]. Ptychogastria
asteroides is the smallest member of the genus and considered to be a true Ptychogastria [33].

Ptychogastria opposita has been identified as congeneric and a true Antarctic representative of

Ptychogastria; however a lack of distinguishing features led to the combination of P. polaris
and P. opposita into a single bipolar species [33, 34]. This trachymedusa has a circumpolar dis-

tribution in the Arctic and subarctic [24, 25, 26, 32, 39, 40, 41], with specimens occasionally

collected in deep-shelf waters of the temperate Atlantic and Pacific Oceans, including the Strait

of Georgia (200–580 m; British Columbia), Kurile Islands (200 m; NW Pacific Ocean), Japan

Sea (461 m) and Monterey Canyon (350–1000 m; California) [2, 26, 42, 43]. Arctic P. polaris
are patchily distributed on the seafloor, with abundances between 0.01 and 0.91 m-2 in NE

Greenland and 0.01 and 0.76 m-2 in the Barents Sea [25, 26]. In Antarctic waters, most records

of P. polaris are disjunct, with a few specimens collected from two widely separated areas near

Gauss Station (66’02˚S, 90’20˚E) and the South Shetland Islands (61–63˚S, 53–61˚W) [33, 35].
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Recently, this trachymedusa was reported as one of the numerically dominant epibenthic

megafaunal species in two West Antarctic Peninsula (WAP) fjords [44]. Ptychogastria polaris
is therefore one of 23 bipolar species of Medusozoa [45], although the occurrences listed above

suggest this trachymedusa may in fact be cosmopolitan–at least in cold, deep waters.

Here we describe patterns of abundance, distribution, body size and environmental condi-

tions for P. polaris, and provide morphological and molecular comparisons to document the

species’ phylogeny. We hypothesise that this trachymedusa may contribute significantly to

pelagic-benthic coupling in WAP fjord-floor communities.

Materials and Methods

Morphological taxonomy and molecular systematics

Live individuals of Ptychogastria polaris were collected in Andvord and Flandres Bays (Fig 1),

from the RVIB Nathaniel B. Palmer (cruise NBP10-01) and the ARSV Lawrence M. Gould
(cruise LMG11-05) in February 2010 and May 2011, respectively (Table 1). These individuals

were obtained from the top water of megacores (10 cm diameter) (OSIL Environmental

Instruments and Systems) from which formalin-preserved (3) and frozen at -80˚C (4) voucher

specimens were saved for taxonomic identification. All collections were made in international

waters, under the auspices of, and with permission from, the United States Antarctic program

(USAP). No endangered or protected species were collected in this study. Megacore-collected

trachymedusae were humanely sacrificed by rapid freezing, or by rapid warming to room tem-

perature (which anesthetizes Antarctic marine benthos adapted to living at -1.0˚C). Field col-

lections of invertebrates within the USAP do not require IACUC approval.

Formalin-preserved trachymedusae (Table 1) were compared to three voucher specimens

of the subboreal P. polaris obtained from JAMSTEC collections: 1 specimen (5% formalin),

JAMSTEC No. 045607 (2K1284SS7c), collected from Shiribeshi Seamount, Sea of Japan

(43.46’ N, 139.54’ E), 234 m, 19 July 2001 (Cruise NT01-07 Leg 2, Dive no. 2K#1284) [4.9˚C,

salinity 34.31, dissolved oxygen 1.8 ml/L]; and 2 specimens (3% formalin), JAMSTEC No.

1120031607, 1120031609 (7K549SS5, 7K549SS6), collected off Okushiri Island, Sea of Japan

(42.30’ N, 139.47’ E), 1062 m, 10 March 2012 (Cruise KR12-07, Dive no. 7K#0549) [0.24˚C,

salinity 34.01]. All formalin-preserved specimens were examined under a Leica MZ16 dissect-

ing microscope with a Leica KL2500LCD illuminator under transmitted, darkfield and polar-

ized light conditions.

For DNA sequencing, tentacle tissue was taken from each of the four frozen specimens and

transferred immediately into -20˚C molecular-grade (99.5%) EtOH. DNA was extracted from

tissues using the Biosprint 96 workstation (Qiagen, Hilden, Germany) in conjunction with the

Biosprint 96 DNA Blood Kit (cat. no. 940057) at the Laboratories of Analytical Biology (LAB)

of the National Museum of Natural History, Smithsonian Institution (Washington, DC, USA).

Specimens were barcoded using cytochrome oxidase I (COI) and additional molecular mark-

ers (mitochondrial ribosomal 16S, and nuclear-encoded ribosomal 18S and 28S) generated for

phylogenetic reconstruction. The primers and PCR conditions used for obtaining 16S, 18S,

and 28S were described in [47]. For COI barcoding the primers described in [48], were used

for PCR (94˚C for 5 min, 30 cycles of 94˚C for 1 min, 50˚C for 30 s, 72˚C for 2.5 min, followed

by a final extension step of 72˚C for 5 min) and cycle sequencing.

PCRs were performed in 10 μl reactions containing 0.5 units Biolase DNA polymerase (Bio-

line USA Inc., Taunton, MA), 0.3 mM of each primer, 0.5 mM dNTPs (Bioline), 1.5 mM mag-

nesium chloride, 2.5x Bovine serum albumin (BSA) (New England BioLabs Inc., Ipswich,

MA), and 1x Buffer, 1 μl template DNA, and DNAase-free H20 to bring the volume to 10 μl.

3 μl of a 1 in 5 dilution of ExoSAP-IT (Affymetrix, USB Products) was added to each PCR
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reaction, followed by incubation at 37˚C for 30 min followed by 80˚C for 20 min. 1 μl of the

ExoSAP-IT purified PCR product was used in cycle sequencing reaction with Big Dye Termi-

nator (v. 3.1; ThermoFisher Scientific, Waltham, MA), followed by Sephadex G-50 Fine (GE

Healthcare Life Sciences, Pittsburgh, PA) clean-up. Purified sequencing reactions were then

analysed on an Applied Biosystems 3130xl Genetic Analyzer or Applied Biosystems 3730xl

DNA Analyzer. Sequences were assembled in Geneious (v. 9.05; Biomatters Limited, NZ) and

Fig 1. Distribution of sampling sites in subpolar fjords. Boxes indicate the subpolar WAP fjords (1) Andvord, (2) Flandres and (3) Barilari

Bays. Panels 1–3: multibeam bathymetry superimposed on satellite imagery of the three WAP fjords. White lines indicate phototransect

positions: I = inner basin (IA = inner basin A and IB = inner basin B); M = middle basin; O = outer basin; and MTH = fjord mouth. ‘G’ indicates the

location of a tidewater glacier. Note that each fjord has multiple tidewater glaciers 10–15 km long carrying ice from the Peninsula ice cap

(previously described by [46]). Data available from the U.S. Geological Survey. Satellite images are public domain USGS Products. Reprinted

from [44].

doi:10.1371/journal.pone.0168648.g001
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their cnidarian origin verified by BLAST searches against the National Center for Biotechnol-

ogy Information’s GenBank database (http://www.ncbi.nlm.nih.gov/genbank/).

Sequences were aligned using MAFFT (v. 7.205; [49]) with default settings. The edges of the

COI alignment were trimmed to remove gaps at the ends of the alignments. Kimura 2-parame-

ter distances were calculated from this alignment with the R package APE (v. 3.5; [50]) to esti-

mate the genetic differentiation among sampling sites.

A concatenated matrix for 16S, 18S, and 28S was constructed in Mesquite (v. 3.1; [51])

using a broad sampling of trachyline species (S1 Table), with the aim of inferring the relation-

ship between subboreal and Antarctic P. polaris to each other, and their relationship to the

remainder of Trachylina. Positions in the concatenated alignment suitable for phylogenetic

analysis were identified using Gblocks [52] with the least stringent settings implemented in the

alignment viewer Seaview (v. 4; [53]), allowing for smaller blocks, gap positions, and less strict

flanking positions in the final alignment. The most appropriate model of sequence evolution

for the aligned genes was inferred using jModelTest (v. 2.1.10; [54]) with default settings; the

best fitting model was chosen using the Akaike Information Criterion (AIC). A Bayesian phy-

logenetic analysis was performed using MrBayes (v. 3.2.5; [55]). Here, MrBayes performed 4

separate runs with 8 markov-monte-carlo chains each for a maximum of 10,000,000 genera-

tions. Trees were sampled every 1,000 generations, discarding the first third of trees as burn-

in. The analysis was stopped automatically when the average standard deviation of split fre-

quencies among runs was< 0.01.

Seafloor abundance and distribution

Seafloor photosurveys were conducted using the Yoyo camera in Andvord, Flandres and Bari-

lari Bays in January-February 2010 as noted in [44]. Included therein are descriptions of the

environmental and substratum characteristics of the study sites [44]. In brief, two 1-km Yoyo

Camera phototransects of 100 vertical images were conducted in nine fjord basins of similar

Table 1. Station locations and environmental CTD data for megacore-collected specimens of Ptychogastria polaris from Andvord and Flandres

Bays.

Sampling

date

Cruise Station

(fjord

basin)

Megacore

(CRS & Tube

#)

Preservation

method

Latitude Longitude Mean

depth

(m)

Temp-

erature

(˚C)

SalinityPSU Dissolved

oxygen (ml/L)

20/02/2010 NBP10-

01

AO 1339 #11 Formalin 10% -64.77934 -62.72885 556 0.15 34.50 5.55

20/02/2010 NBP10-

01

AO 1339 #3 Formalin 10% -64.77934 -62.72885 556 0.15 34.50 5.55

15/05/2011 LMG11-

05

FIA 1351 #4 Formalin 10% -65.05712 -63.12767 690 1.15 34.55 -

16/05/2011 LMG11-

05

FIA 1355 #7 -80˚C -65.05383 -63.10942 701 1.15 34.55 -

27/05/2011 LMG11-

05

AMTH 1369 #5 -80˚C -64.78498 -62.88118 533 0.00 34.51 5.56

27/05/2011 LMG11-

05

AMTH 1369 #8 -80˚C -64.78498 -62.88118 533 0.00 34.51 5.56

27/05/2011 LMG11-

05

AI 1372 #5 -80˚C -64.86145 -62.56255 539 0.26 34.53 -

Station locations and environmental CTD data for morphological (formalin-preserved) and molecular, megacore-collected specimens sampled during

NBP10-01 (February 2010) and LMG11-05 (May 2011) from RVIB Nathaniel B. Palmer and ASRV Lawrence M. Gould, respectively. Fjord basins are

indicated as follows: AMTH = Andvord Bay mouth; AO = Andvord Bay outer; AI = Andvord Bay inner; and FIA = Flandres Bay inner A. N.B. Dashes indicate

that data are not available.

doi:10.1371/journal.pone.0168648.t001
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water depth (436–725 m; Table 2) at two random locations in each basin, except for Barilari

Bay, where one transect was completed in the outer fjord basin. Each image comprised ~3 m2

of the seafloor. Fifty images were randomly selected from each transect using the RAND-

BETWEEN function in Microsoft Excel and the abundance of P. polaris counted with the soft-

ware ImageJ (ver.1.49; [56]) for a 1.8 m2 area in the center of each image (Fig 2A–2C). The

location, on the seabed or in the water column, was also noted for each individual. Abundance

is reported by fjord basin, and with distance from glacial termini (as in [44]).

Spatial dispersion (even versus aggregated) of P. polaris was evaluated using the variance-

to-mean ratio (VMR) and Morisita’s Index of Dispersion (Id). Departure from randomness

and the significance of both statistics were assessed by Chi-square test (χ2) at the 5% level [57].

Frequency distributions of trachymedusa counts were compared with the expected frequency

distribution of two probability models; a Poisson (for a random distribution, variance = mean)

and a negative binomial distribution (for an aggregated distribution, variance > mean). Good-

ness-of-fit between the observed and expected frequencies was also tested using Chi-square

(χ2) at an alpha level of 0.05.

Body size

Where image quality allowed, bell diameters of all P. polaris oriented flat on the seafloor within

each 1.8 m2 area was measured in three horizontal directions (Fig 2D) using the straight line

drawing tool in ImageJ (v.1.49; [56]), and a mean value calculated. Frequency size distributions

of P. polaris were analysed for skewness by calculating the skewness coefficient (g1) and the

standard error of skewness (SES). Skewness was detected by outcomes where the skewness

coefficient per SES was > 2 or< -2 [58].

Table 2. Seafloor photosurveys undertaken in Andvord, Flandres and Barilari Bays.

Coordinates (Degrees Lat. and Long.)

Site Sampling date Station (fjord basin) Photo-transect (CRS #) Transect start Transect end Mean depth (m)

Andvord Bay 20/01/2010 Mouth (AMTH) 1289 -64.78084 -62.87507 -64.77787 -62.86436 533

20/01/2010 Mouth (AMTH) 1290 -64.78622 -62.87664 -64.78427 -62.88893 528

18/01/2010 Outer (AO) 1283 -64.78213 -62.74363 -64.78044 -62.72848 551

19/01/2010 Outer (AO) 1284 -64.78163 -62.74504 -64.78076 -62.73212 534

20/02/2010 Middle (AM) 1337 -64.82481 -62.64829 -64.81925 -62.65908 436

20/02/2010 Middle (AM) 1338 -64.82502 -62.65503 -64.81680 -62.65736 437

19/01/2010 Inner (AI) 1285 -64.85837 -62.56335 -64.86339 -62.55866 523

19/01/2010 Inner (AI) 1286 -64.65833 -62.56507 -64.86346 -62.56145 526

Flandres Bay 18/01/2010 Outer (FO) 1281 -65.00207 -63.32553 -65.00327 -63.31345 725

18/01/2010 Outer (FO) 1282 -65.00334 -63.31835 -65.00526 -63.30604 723

17/01/2010 Inner A (FIA) 1279 -65.05382 -63.11359 -65.05288 -63.09981 686

17/01/2010 Inner A (FIA) 1280 -65.05316 -63.11387 -65.05795 -63.10063 672

14/01/2010 Inner B (FIB) 1276 -65.10283 -63.15393 -65.10497 -63.13651 680

17/01/2010 Inner B (FIB) 1278 -65.10327 -63.14998 -65.10830 -63.14260 675

Barilari Bay 27/01/2010 Outer (BO) 1300 -65.78151 -64.86280 -65.76672 -64.84957 630

24/01/2010 Inner (BI) 1295 -65.94017 -64.63950 -65.94276 -64.65400 610

26/01/2010 Inner (BI) 1297 -65.94334 -64.62170 -65.94826 -64.63144 610

Seafloor photosurveys for this study taken in nine basins in Andvord, Flandres and Barilari Bays during NBP10-01 (2010) from RVIB Nathaniel B. Palmer.

Fjord basins are indicated as follows: AMTH = Andvord Bay mouth; AO = Andvord Bay outer; AM = Andvord Bay middle; AI = Andvord Bay inner;

FO = Flandres Bay outer; FIA = Flandres Bay inner A; FIB = Flandres Bay inner B; BO = Barilari Bay outer; and BI = Barilari Bay inner.

doi:10.1371/journal.pone.0168648.t002
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Environmental background conditions

CTD casts to within 10 m above the seafloor were conducted in all fjord basins to measure bot-

tom water temperature, salinity, oxygen and chlorophyll-a concentration, and to define the con-

ditions of the P. polaris habitat. Scaled seafloor images were used to characterise substratum

type (soft sediment or dropstone) underlying epibenthic trachymedusae. In an effort to develop

a standardised approach, only dropstones > 3 cm x 3 cm in maximum perpendicular dimen-

sions were considered. The frequency of P. polaris directly on dropstones was quantified.

Results

Morphology taxonomy and molecular systematics

Kramp synonymized Ptychogastria polaris and P. opposita through comparisons between net-

caught specimens, which are usually damaged [33]. The present material from the Antarctic

Fig 2. Representative images of the seafloor and the trachymedusa Ptychogastria polaris in Andvord and

Flandres Bays. Typical view and occurrence of P. polaris in the (A) outer basin of Andvord Bay and (B) inner basin

A of Flandres Bay. Scale bars are 1 cm. (C) Close-up view of P. polaris in the outer basin of Andvord Bay. Scale bar

is 2 cm. (D) Bell diameter measurements taken in three horizontal directions (X, Y and Z). Note that black arrows

are used to indicate the position of a representative selection of individual P. polaris in panels (A-C). Other P. polaris

not identified by black arrows in the field of view were still counted.

doi:10.1371/journal.pone.0168648.g002
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Peninsula and Japan Sea, collected by megacore and submersible, was in pristine condition

(Fig 3). Because Kramp may have missed some characters due to the state of his specimens,

we conducted detailed morphological comparisons between our Japan Sea and Antarctic

material. Apart from the gonads being more rugose in the specimens collected in 2012 in the

Japan Sea, no other differences were apparent, confirming our Antarctic trachymedusae to be

P. polaris based on morphological characters and agreeing with Kramp’s assertion that the two

species are likely synonymous. However, COI sequences generated for this study show a large

degree of differentiation between the Japan Sea and the Antarctic Peninsula with some 27%

Fig 3. Morphological and molecular representations of Ptychogastria polaris. (A) Photograph of a live P.

polaris, as photographed by Maria Stenzel, Photographer, collected by megacore in the outer basin of Andvord Bay,

WAP (64.77934’ S, 62.72885’ W), 556 m, 22 February 2010 (Cruise NBP10-01, CRS1339). Scale bar is 1 cm.

Reprinted from http://mariastenzel.photoshelter.com under a CC BY license, with permission from Maria Stenzel,

original copyright 2010. (B) In situ photograph of the subboreal specimen of P. polaris collected off Okushiri Island,

Sea of Japan (42.30216’ N, 139.4744’ E), 1062 m, 10 March 2012 (Cruise KR12-07, Dive no. 7K#0549). Scale bar

is 1 cm.

doi:10.1371/journal.pone.0168648.g003
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pairwise dissimilarity, while COI sequences are almost invariable within each sampled location

(Table 3).

Whether or not the specimens of P. polaris examined here are truly members of the same

species, they are each other’s closest relative, as demonstrated by phylogenetic analysis (Fig 4).

Overall the topology of the phylogeny is consistent with [47]. This earlier study found Rhopalo-

nematidae to be the closest relative to Narcomedusae [47], while the phylogeny presented here

suggests that Halicreatidae is the sister to Narcomedusae. Trachymedusae is polyphyletic and

Ptychogastriidae is the sister lineage to a clade containing Rhopalonematidae plus Actinulida.

Seafloor abundance and distribution

Ptychogastria polaris was a common component of the epibenthic community in Andvord and

Flandres Bays, occurring at 7 of the 9 stations surveyed (i.e. 14 of 17 phototransects), but was

absent from the inner and outer basins of Barilari Bay. A total of 1691 trachymedusae were

counted in phototransects: 1626 in Andvord Bay and 65 in Flandres Bay. The highest density

within a frame was 13 m-2, and mean abundances within basins ranged from 0.92 m-2 to 4.19

m-2 in Andvord Bay, and from 0.06 m-2 to 0.18 m-2 in Flandres Bay (Table 4; Fig 5).

There was a higher frequency of occurrence of P. polaris in Andvord Bay (commonly up to

12 individuals per frame), where maximum numbers of 23 and 24 individuals were observed

in a single frame in the outer basin and at the fjord mouth respectively (Fig 6A and 6B). In con-

trast, in Flandres Bay, most observations of P. polaris were limited to solitary individuals, with

occasionally 2–3 trachymedusae being recorded per frame (Fig 6C and 6D). Populations of

P. polaris had an aggregated distribution in Andvord Bay, where the VMR and Id in all fjord

basins were> 1 (Table 4). Distributions of the medusae differed significantly from random

(p< 0.05), with the negative binomial distribution providing a good fit in the middle basin

of Andvord Bay and at the fjord mouth. Ptychogastria polaris distributions in the outer and

inner basins of Andvord Bay, however, differed significantly from a negative binomial model

(p< 0.05). An aggregated distribution was also suggested in the basins of Flandres Bay, as the

VMR and Id also > 1, however these distributions did not significantly differ from random

(with the exception of inner basin A). Both the Poisson and negative binomial probability

models were adequate descriptors for the distributions of P. polaris throughout Flandres Bay,

confirming a random pattern.

Epibenthic P. polaris co-occurred with different communities in Andvord and Flandres

Bays. The benthic megafaunal community in Andvord Bay was dominated by the tube-build-

ing polychaete Amythas membranifera Benham, 1921 and an ampeliscid amphipod (> 74% of

megafaunal abundance), with P. polaris consistently being within the top 5 dominant species

Table 3. Pairwise Kimura-2 parameter distances in % calculated for mitochondrial cytochrome oxidase (COI) from Ptychogastria polaris

specimens.

AP (KY072784) AP (KY072785) AP (KY072786) JS (KY072787) JS (KY072788)

AP (KY072784) -

AP (KY072785) 0.0 -

AP (KY072786) 0.0 0.2 -

JS (KY072787) 26.6 26.6 26.8 -

JS (KY072788) 26.6 26.6 26.8 0.0 -

JS (KY072789) 26.5 26.5 26.8 0.2 0.2

Pairwise Kimura-2 parameter distances in % calculated for mitochondrial cytochrome oxidase (COI) from Ptychogastria polaris specimens collected in the

Japan Sea (JS) and Antarctic Peninsula (AP). Genbank accession numbers are provided.

doi:10.1371/journal.pone.0168648.t003
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[44]. In contrast, Flandres Bay was characterised by the circumpolar ophiuroid, Ophionotus
victoriae Bell, 1902 and a species of pycnogonid in one inner basin (Flandres inner basin B),

with the polychaete Pionosyllis kerguelensis McIntosh, 1885 replacing the ophiuroid as co-

dominant in the other Flandres Bay basins [44]. Ptychogastria polaris was among the five most

numerous megabenthic species in inner basin A of Flandres Bay and among the top 11 species

in the other fjord basins.

A trachymedusa similar in appearance to the epibenthic morphotype, and presumably the

same species, occurred in the water column in all three fjords within a couple of meters of the

seafloor, albeit in smaller numbers (468 individuals), constituting 45%, 22% and 0.5% of total

demersal nekton (Euphausia superba Dana, 1850, species of mysid and chaetognath, and two

species of pelagic medusa) in Andvord, Flandres and Barilari Bays, respectively [44]. This

medusa was most abundant in the water column in Andvord Bay and at the fjord mouth.

Mean densities within basins ranged from 0.26 to 0.99 m-2 in Andvord Bay, 0.01 to 0.16 m-2 in

Fig 4. Bayesian phylogenetic hypothesis of Trachylina, including Ptychogastria polaris. The phylogenetic

tree was rooted on Limnomedusae following [47]. Branches in black indicate a posterior probability� 0.95 while

grey branches represent a posterior probability < 0.95. The families of Trachymedusae are highlighted in grey. Note

that the P. polaris specimen from Antarctica is lacking a 16S sequence.

doi:10.1371/journal.pone.0168648.g004
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Flandres Bay and 0 to 0.02 m-2 in Barilari Bay. We noted two additional species of pelagic

medusa in the fjords: Benthodcodon hyalinus Larson & Harbison, 1990 (a total of 79 individu-

als noted from all three fjords), and Sigiweddellia sp (3 individuals limited to Andvord and

Flandres Bays). Both of these species lack a documented epibenthic counterpart and occurred

much less frequently than P. polaris

Body size

A total of 1624 measurable P. polaris were recorded in Andvord Bay, with an average bell

diameter of 20 mm ± 4 SD and a range between 8 to 32 mm. An asymmetric, negatively

skewed distribution was observed at the fjord level in Andvord Bay, and at the mouth of the

Table 4. Spatial dispersion of Ptychogastria polaris in Andvord and Flandres Bays.

Phototransect

CRS#

Location Number of

photographs

% photos with P.

polaris

Mean no. P. polaris

(m-2 ± SE)

VMR Id Poisson Negative binomial

n-2 χ2 n-3 χ2 k

1289 & 1290 AMTH 100 92 2.96±0.241 3.53* 1.47* 9 143.419** 12 14.412 2.102

1283 & 1284 AO 100 94 4.19±0.294 3.72* 1.36* 10 207.455** 16 28.071** 2.775

1337 & 1338 AM 100 59 0.92±0.122 2.94* 2.17* 4 52.497** 5 2.754 0.849

1285 & 1286 AI 100 66 0.97±0.095 1.70* 1.40* 4 30.771** 4 10.871** 2.476

1281 & 1282 FO 100 19 0.12±0.027 1.06 1.30 1 0.556 1 0.567 3.472

1279 & 1280 FIA 100 24 0.18±0.037 1.35* 2.08* 1 3.703 1 0.251 0.942

1276 & 1278 FIB 96 9 0.06±0.019 1.11 2.13 1 0.660 1 0.148 0.970

Basin phototransect information and spatial distribution analysis for P. polaris observed in Andvord and Flandres Bays. Fjord basins are indicated as

follows: AMTH = Andvord Bay mouth; AO = Andvord Bay outer; AM = Andvord Bay middle; AI = Andvord Bay inner; FO = Flandres Bay outer;

FIA = Flandres Bay inner A; and FIB = Flandres Bay inner B. Spatial dispersion for different populations was evaluated using variance-to-mean ratio (VMR)

and Morisita’s Index of Dispersion (Id).

* An asterisk indicates a population is significantly more aggregated than would be expected by chance for both VMR and Id at the 5% level based upon

Chi-square goodness of fit test. Chi-square values (χ2) indicate the goodness-of-fit of observed P. polaris frequencies to the expected frequency

distributions of Poisson and negative binomial probability models, where the number of degrees of freedom is given by the number of frequency classes (n)

minus 2 and 3 respectively.

** A double asterisk indicates a significant deviation from the probability distribution at the 5% level.

The exponent k is a parameter of the negative binomial distribution.

Note all but two cells had expected counts of at least 1.25, and 50% or fewer of the cells had expected counts of less than 5.

Bold Chi-square values indicate where one cell had an expected frequency < 1.

doi:10.1371/journal.pone.0168648.t004

Fig 5. Abundance of the trachymedusa Ptychogastria polaris in Andvord, Flandres and Barilari Bays. Data

are plotted (m-2) as a function of (A) distance to the nearest tidewater glacier, and (B) position in basins down fjord.

doi:10.1371/journal.pone.0168648.g005
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fjord at the basin level (Table 5), with most trachymedusae in the intermediate size classes

(15–20 and 20–25 mm; Fig 7A and 7B). The sixty-three measurable P. polaris in Flandres Bay

averaged 18 mm ± 4 SD in diameter, with a range of 11 to 28 mm. Skewness coefficients in

P. polaris indicated that the Flandres Bay size distributions were not significantly different

from unimodal/symmetric (Table 5; Fig 7C and 7D). Similarly to Andvord Bay, most individu-

als were between 15 and 25 mm in diameter, however the smallest size class (5–10 mm) was

absent from Flandres Bay.

Environmental background conditions

The highest basin mean abundance of P. polaris, 4.19 m-2 ± 0.29 SE, was recorded in the outer

basin of Andvord Bay at ~535–550 m. Ptychogastria polaris was also common (basin mean

abundance 2.96 m-2 ± 0.24 SE) at the mouth of the fjord at a depth of ~530 m. Lower abun-

dances were recorded at shallower sites (~ 430–520 m), where ~ 1 m-2 was commonly encoun-

tered, and at depths > 600 m (0.06 to 0.17 m-2).

Ptychogastria polaris occurred in bottom water temperatures ranging from -0.02 to+0.98˚C.

Salinity varied little across sampling sites (34.50–34.53), and oxygen and chlorophyll-a concen-

trations had mean values of 5.16 ml/l ± 0.38 SD (4.80–5.71 ml/l) and 0.03 μg/l ± 0.08 (0–0.25

μg/l), respectively.

Fig 6. Percentage frequency distribution of the trachymedusa Ptychogastria polaris in Andvord and

Flandres Bays. Percentage frequency distribution of P. polaris are plotted by fjord and by fjord basins using the

mean + standard deviation across phototransects. (A-B) Andvord Bay and (C-D) Flandres Bay. Note that panels A

and C are by fjord, and B and D are by fjord basin. Fjord basins are indicated as follows: AMTH = Andvord Bay

mouth; AO = Andvord Bay outer; AM = Andvord Bay middle; AI = Andvord Bay inner; FO = Flandres Bay outer;

FIA = Flandres Bay inner A; and FIB = Flandres Bay inner B. X-axes are on different scales for Andvord and

Flandres Bays. N = number of phototransects and n = number of P. polaris.

doi:10.1371/journal.pone.0168648.g006
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Table 5. Skewness characteristics of Ptychogastria polaris size frequency distributions observed in

Andvord and Flandres Bays.

Site g1 SES Sig. (> 2)

Andvord Bay -0.17 0.06 -2.75

AMTH -0.41 0.11 -3.83

AO -0.17 0.09 -1.93

AM 0.05 0.19 0.25

AI 0.03 0.18 0.15

Flandres Bay 0.37 0.30 1.23

FO 0.51 0.41 1.25

FIA 0.76 0.72 1.06

FIB 0.39 0.50 0.79

Skewness coefficient (g1) and the standard error of skewness (SES) were calculated. Skewness is detected

if the absolute value of g1/SES is > 2 or < -2 (Sig. > 2). If the absolute value of g1/SES is lower than minus

two (greater than plus two) then this suggests the population is negatively (positively) skewed. Fjord basins

are indicated as follows: AMTH = Andvord Bay mouth; AO = Andvord Bay outer; AM = Andvord Bay middle;

AI = Andvord Bay inner; FO = Flandres Bay outer; FIA = Flandres Bay inner A; and FIB = Flandres Bay inner

B.

doi:10.1371/journal.pone.0168648.t005

Fig 7. Percentage size frequency distribution of bell diameter for the trachymedusa Ptychogastria polaris

in Andvord and Flandres Bays. Percentage of P. polaris in each size category (mm) are plotted by fjord and by

fjord basins using the mean + standard deviation across phototransects. (A-B) Andvord Bay and (C-D) Flandres

Bay. Note that panels A and C are by fjord, and B and D are by fjord basin. Fjord basins are indicated as follows:

AMTH = Andvord Bay mouth; AO = Andvord Bay outer; AM = Andvord Bay middle; AI = Andvord Bay inner; FO =

Flandres Bay outer; FIA = Flandres Bay inner A; and FIB = Flandres Bay inner B. N = number of phototransects and

n = number of P. polaris.

doi:10.1371/journal.pone.0168648.g007
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Fjord basin floors were characterised by soft-sediments (e.g. dropstones covered only 1.2%

of the seafloor in Andvord Bay, A. Ziegler unpublished data). Most trachymedusae could be

classified as epibenthic with ~ 80% in contact with, or just overlying soft sediment; less than

1.5% of P. polaris were associated with dropstones, most of which were sediment-covered.

Discussion

The trachymedusa Ptychogastria polaris attains high seafloor densities in both Andvord and

Flandres Bays. Densities are up to 400-fold higher than reported for P. polaris in Arctic loca-

tions in NE Greenland (0.01 and 0.91 ind per m2; [25]), and the Barents Sea (0.01–0.52 ind per

m2; [25]; 0.41–0.76 ind m-2, [26]), and exceed numbers of specimens (1–6 individuals) col-

lected by dredge from two widely separated areas in the Southern Ocean (near Gauss Station

[35], and the South Shetland Islands [33]). Such pronounced densities may result from higher

benthic productivity in the fjords, potentially via higher detrital inputs from sustained phyto-

plankton blooms, macroalgae cascading down fjord walls, and/ or horizontal nutrient subsi-

dies (e.g. carcasses and faeces from migrating Antarctic krill, Euphausia superba and baleen

whales [44]). Concentrations of medusae near the seafloor of submarine canyons have also

been associated with sizeable accumulations of organic and inorganic debris in the form of

sediment and detritus [59]. These bathymetric features may resemble subpolar fjords in depth,

sediment characteristics, oceanographic processes (e.g. enhanced primary production and the

trapping of eddies) and thus in the ability to concentrate migrating nekton; such features

appear to provide suitable habitats for midwater and benthopelagic medusae, including P.

asteroides, the Mediterranean counterpart of P. polaris [16, 17, 59, 60]. The ecological and

oceanographic features that facilitate the concentration of medusan fauna in submarine can-

yons and subpolar fjords may therefore explain why we observe a relatively higher richness

and abundance of benthopelagic medusae in these unique ocean habitats compared to the

generic deep sea. However, owed to inadequate sampling efforts, via the tools deployed and

the frequency of collection (summarised in [10]), bipolar taxa such as P. polaris appear under-

represented, but may in fact be cosmopolitan in distribution.

Ptychogastria polaris was widespread throughout the sediment-floored basins of Andvord

and Flandres Bays. The basin and fjord-scale distribution patterns vary, however, with gener-

ally higher seafloor abundances towards the outer reaches of the fjords, and a higher abun-

dance in Andvord Bay, where P. polaris exhibited an aggregated distribution. Small-scale

jellyfish aggregations are commonly reported from coastal waters, but typically for the pelagic

medusae [61, 62, 63, 64]. Although “swarms” of a similar magnitude are not recognized at the

seafloor, other epibenthic medusae, in addition to P. polaris, are reported to accumulate in

small, aggregated populations that are densely packed, such as medusae of the scyphozoan

upside-down jellyfish of the genus Cassiopea Péron & Lesueur, 1810 and benthic staurozoans

[64]. In contrast, the occurrence of solitary individuals per 1.8 m2 and low-density populations

with apparently random dispersion patterns, were observed in Flandres Bay, which is consis-

tent with patterns reported for P. polaris in the Arctic [25, 26].

Patches of medusae form as a consequence of the physical, chemical and biological interac-

tions of jellyfish with the marine environment (reviewed by [11]). Topography and environ-

mental parameters such as rates of sedimentation, carbon input, or fjord circulation patterns

may therefore influence the distribution of the trachymedusa within and between the fjords.

There are, however, only limited measurements of sedimentation rates in Andvord and Flan-

dres Bays, with rates in inner basins of both fjords of approximately 3–5 mm yr-1 [65]. Sedi-

mentation rates are likely to decline down fjord but are poorly constrained [66, 67], and

accurate measurements of neither key inputs nor oceanographic parameters are available in
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the published literature. Available observations suggest the fjords are quiescent systems, with

weak melt-water input compared with most Arctic fjords ([68, 69]; C. Smith pers. observ.),

and elevated current velocities at the fjord mouths. Localised regions of turbulent mixing over

sills are also anticipated in Andvord and Flandres Bays. The complex interplay between shelf

processes, wind, ice-ocean interactions and tidal inputs limits the predictability of spatial and

temporal variability in water column currents that could influence the distribution patterns

observed for P. polaris.
Ptychogastria polaris is distributed amongst a diversity of epibenthic megafauna in the

WAP fjords, often dominating the community composition alongside species of echinoderms,

polychaetes and crustaceans [44]. Trachymedusae of this species also co-occur with rich epi-

benthic communities that are often dominated by echinoderms (e.g. Ophiura robusta Ayres,

1854 and Strongylocentrotus pallidus Sars G.O., 1872; [26]) in the Arctic at shelf depths off

Northeast Greenland and in the Barents Sea [70, 71]. Most P. polaris recorded in the fjords

were observed at or hovering a few centimetres above the seafloor, which is consistent with

laboratory and field reports describing a lifestyle that includes supra- and epibenthic living

positions [2, 25, 26, 33, 42, 59]. Some medusae, the morphology of which would otherwise be

interpreted to have a wholly pelagic lifestyle, have also been suggested to feed in a benthic

mode (e.g. [72]), while other medusae are well known to have a benthic/benthopelagic ecology

(e.g. medusae within the genera Cladonema, Eleutheria and Staurocladia [2, 73, 74]). Other

indicators of a benthic association in P. polaris include anatomical and functional adaptations

to the benthic boundary layer, including adhesive tentacle tips, allowing attachment to hard

substrata [2, 32, 42], and a relatively low number (~ 40–50) of spawned eggs that adhere to the

sediment-water surface [2].

Despite evidence from both the Arctic and boreal waters of a demersal existence ([2, 25, 26,

33, 42, 59], this study), P. polaris along the WAP was also observed in the water column, albeit

at smaller densities, in all three fjords including Barilari Bay. The trachymedusa is known to

undertake short swimming excursions (~ 15 s [2]; D. Stübing unpublished data, referred to in

[25]), often in response to disturbance (e.g. caused by contact with swimming euphausids as

described in [2]). However, the relatively high frequencies of occurrence in the water column

recorded here have not been reported previously in the published literature suggesting this

Antarctic trachymedusa may behave differently from its Arctic and boreal counterparts.

Periodic swimming has been reported for other benthic medusae, including P. asteroides,
the Mediterranean counterpart of P. polaris [59] and several members of the Limnomedusae

[75, 76, 77]. In contrast to the brief excursions reported for P. polaris, P. asteroides spends

more time in the water column [59]. These swimming periods have been associated with per-

turbations in deep-water flows and the associated sediments and detritus commonplace in

Mediterranean submarine canyons, to which this trachymedusa is endemic [59]. The noctur-

nal emergence behaviour observed in other species has been attributed to the light-inhibited

and diel-feeding activities of the Limnomedusae. Oceanographic conditions in the WAP fjords

are not well constrained, however localised regions of turbulent mixing over sills, distinct cir-

culation processes and sediment inputs unique to the fjords could explain the intermittent

swimming behaviour of P. polaris. Although not empirically tested, feeding opportunities are

also likely to drive the behavioral adaptations of the trachymedusa in WAP fjords.

The size range of P. polaris (8 to 32 mm in bell diameter) in the WAP fjords is similar to

that in Northeast Greenland (7 and 29 mm, median 14 mm [25]), the Barents Sea (5 and 21

mm, median 13 mm [25]; mean 21 mm [26]), and in the historical literature (maximum values

of 18 to 24 mm, [78]). The distributions of bell diameter were mostly unimodal, with the only

difference being a higher proportion of intermediately-sized individuals towards the outer

basin and mouth of Andvord Bay, suggesting a single pulse or seasonal recruitment event, and
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larger, mature trachymedusae generally account for most P. polaris in the WAP fjords. Differ-

ences in the proportion of medusae distributed amongst the various size spectra indicate that

the timing of recruitment and/or growth rates of P. polaris may differ between Andvord and

Flandres Bays. The fact that none of the P. polaris observed in Flandres Bay corresponded to

the smallest size class sampled suggests recruitment is lower compared to, and/ or out of phase

with, Andvord Bay, which is concert with the lower seafloor and water column densities

recorded in this fjord.

In the WAP fjords, Ptychogastria polaris occurred in seawater temperatures (-0.02˚C

to+0.98˚C) similar to those in in Northeast Greenland and the Barents Sea (-1.6˚C to +2.1˚C;

[25, 26]), confirming P. polaris as a cold-water species, originally as asserted by [32] and sup-

ported by [41]. Although most historical observations report this species as attached to hard

substrata in Arctic and boreal waters [2, 32, 42] (Fig 3B and 3D. Lindsay unpublished data),

the WAP fjord floors are characterised by soft-sediment, with only 1.5% of P. polaris individu-

als associated with dropstones. Associations with silty sand and finer sediment affinities have

since been confirmed in the Arctic [25, 26]. Ptychogastria polaris therefore appears to have

context-dependent habitat preferences.

This investigation provides the first phylogenetic analysis containing Ptychogastria, and

more broadly the family Ptychogastriidae. The morphological taxonomy confirms the WAP

fjord trachymedusa as synonymous with the Arctic P. polaris described by [31] and the Antarc-

tic P. opposita designated by [35]. Thus, Ptychogastria is a monotypic bipolar genus with two

species (P. asteroides from the Mediterranean and P. polaris from the northern and southern

high latitudes). This discovery revises the designation of Ptychogastria as a genus represented

by three species [45], and agrees with the conclusions of Kramp, that the Arctic and Antarctic

forms are conspecific [33, 34], and that P. polaris is one of 23 bipolar species belonging to the

Medusozoa [45]. However, in contrast to the lack of morphological differences, genetic differ-

ences are large, at least for the fast evolving barcoding marker COI. Ptychogastria polaris
appears to be most closely related to the pelagic medusae of the family Rhopalonematidae

(plus the sand-interstitial dwelling Actinulida), furthering our understanding of trachymedu-

san classification and evolution. Future studies are needed to assess the genetic structure and

demographic connectivity of widely distributed populations of P. polaris. In this context, the

high differentiation uncovered in the barcoding molecule COI is of interest. The differentia-

tion observed here, being larger than 25% in pairwise sequence comparisons, is at odds with

the lack of distinguishing morphological characters. This differentiation is far greater than has

been reported for hydrozoan species (~4%), and is more in line with previously described

inter-specific differences (~20%; [79]). Additional sampling for P. polaris on broader geo-

graphic scales should determine whether this species contains multiple morphologically cryp-

tic species or shows an unusually high degree of sequence variation between the opposite,

widely separated ends of its distributional range.

The relatively high densities of P. polaris in Andvord and Flandres Bays suggest that live or

dead P. polaris may link pelagic and benthic food-webs within WAP subpolar fjords. Zoo-

plankton, including gelatinous taxa, can connect pelagic and benthic subsystems in a variety of

ways, contributing prey and fecal material, undertaking vertical migrations and through dis-

persing life history stages [9, 80, 81]. For example, the provision of fecal pellets by extremely

abundant krill and salps and their direct consumption by benthic filter feeders enhances the

efficiency of exchange between the pelagic and benthic subsystems in the Antarctic [80]. Epi-

benthic medusae that are present in equally large numbers, such as P. polaris, and that make

excursions into the benthopelagic layer may also play an important ecological role as predators

of epibenthic organisms, consuming detritivorous zooplankton that are responsible for much

of the secondary production within the benthic boundary layer [12, 18, 73, 82]. In addition,
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jelly falls provide food inputs to the seafloor [83, 84]. For these reasons, high densities of epi-

benthic and benthopelagic medusae could yield food subsidies to fjord floors and integrate the

trophic ecology of the WAP deep-fjord benthos, influencing processes of energy transfer

between the pelagic and benthic components of the marine environment. Further research

into trophic linkages and food-web dynamics in the WAP fjords should resolve the extent to

which P. polaris subsidizes the benthos, and influences benthic community composition and

functioning.
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the pelagic and benthic systems on the Antarctic continental shelf. Mar Ecol Prog Ser. 2006; 322: 43–

49.

81. Boero F, Bouillon J, Gravili C, Miglietta MP, Parsons T, Piraino S. Gelatinous plankton: irregularities

rule the world (sometimes). Mar Ecol Prog Ser. 2008; 356: 299–210.

82. Cartes JE. Dynamics of the bathyal Benthic Boundary Layer in the north-western Mediterranean: depth

and temporal variations in macrofaunal–megafaunal communities and their possible connections within

deep-sea trophic webs. Prog Oceanogr. 1998; 41: 111–139.

83. Sweetman AK, Chapman A. First observations of jelly-falls at the seafloor in a deep-sea fjord. Deep

Sea Res Part 1 Oceanogr Res Pap. 2011; 58(12): 1206–1211.

84. Sweetman AC, Smith CR, Dale T, Jones DOB. Rapid scavenging of jellyfish carcasses reveals impor-

tance of gelatinous material to deep-sea food webs. Proc R Soc Lond B Biol Sci. 2014; 281: 20142210.

Dense Populations of Ptychogastria polaris in WAP Subpolar Fjords

PLOS ONE | DOI:10.1371/journal.pone.0168648 January 4, 2017 21 / 21


