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Abstract. With the fast expansion of computer networks, it is inevitable
to study data mining on heterogeneous databases. In this paper we pro-
poseMDBM, an accurate and efficient approach for classification on mul-
tiple heterogeneous databases. We propose a regression-based method
for predicting the usefulness of inter-database links that serve as bridges
for information transfer, because such links are automatically detected
and may or may not be useful or even valid. Because of the high cost
of inter-database communication, MDBM employs a new strategy for
cross-database classification, which finds and performs actions with high
benefit-to-cost ratios. The experiments show that MDBM achieves high
accuracy in cross-database classification, with much higher efficiency
than previous approaches.

1 Introduction

The rapid growth of the number of data sources on the internet has brought great
need for computation over multiple data sources, especially knowledge discovery
from multiple data sources. For example, biologists need databases of genes, pro-
teins, and microarrays in their research; a credit card company needs data from
a credit bureau for building models for handling applications. Data integration
approaches [5, 11] may be used to overcome the heterogeneity problem. However,
perfect integration of heterogeneous data sources is a very challenging problem,
and it is often impossible to migrate one whole database to another site. In
contrast, distributed data mining [3, 7, 8, 12, 13] aims at discovering knowledge
from a dataset that is stored at different sites. But they focus on a homogeneous
dataset (a single table or a set of transactions) that is distributed to multiple
sites, thus are unable to handle heterogeneous relational databases.
In this paper we study the problem of cross-database classification, which

aims at building accurate classifiers based on multiple heterogeneous databases,
because a single database often contains insufficient information for a classifica-
tion task. For example, Yahoo shopping may want to build a model for predict-
ing customers’ behaviors (as in Figure 1), and thus needs important information
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from databases of different vendors. In this example the Customer0 relation in
the Yahoo shopping database is called target relation, whose tuples are target
tuples. The goal of cross-database classification is to build an accurate classifier
for predicting the class labels of target tuples.
There are two major challenges in cross-database classification. The first

is the data heterogeneity problem. To transfer information across hetero-
geneous databases, one must detect inter-database links, which are links be-
tween matched attributes (as in Figure 1) and can serve as bridges for infor-
mation transfer. There are many studies on this issue, such as schema mapping
[5] and mining database structures [4]. However, some links detected may be
vague and sometimes connect unrelated objects. For example, Customer0.name
→ Customers1.name may connect different persons with same name, and Cus-
tomer0.zipcode → Customer1.zipcode may lead to an explosive number of joined
tuples. The second challenge is the efficiency problem. It is often expensive
to transfer information between two databases, which may be far from each
other physically. Thus we must be able to build accurate cross-database classi-
fiers with as low inter-database communication cost as possible. In this paper
we propose MDBM (Multi-Database Miner), an efficient and accurate approach
for classification across multiple heterogeneous databases.
The first contribution of this paper is to propose an approach for predict-

ing the usefulness of links. As mentioned above, some links can lead to useful
features, while some others may be useless and only add burdens to the classifi-
cation procedure. We define the usefulness of a link as the maximum information
gain of any feature generated by propagating information through this link. We
propose a regression-based approach for building a model to predict usefulness
of links based on properties of links. Our experiments show that this approach
achieves reasonably high prediction accuracy.
Our second contribution is economical classification. As many approaches on

relational (or first-order) classification [1, 9, 10, 14], MDBM also uses rule-based
classification. All previous approaches build rules by searching for predicates (or
literals) with highest information gain (or Foil gain), in order to build accurate
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rules. Although this strategy is effective in single databases, it may lead to
high inter-DB communication cost in multi-database classification. With the
prediction model for gainfulness of links, MDBM can predict the gain and cost of
each action of searching for predicates. The strategy of economical classification
always selects the action with highest gain-to-cost ratio, i.e., the action of lowest
price per unit of gain. It can achieve same total gain with much lower cost. Our
experiments show that MDBM achieves as high accuracy as previous approaches,
but is much more efficient in both running time and inter-DB communication.
The rest of the paper is organized as follows. We discuss related work in

Section 2. Section 3 describes the approach for building prediction models for
usefulness of links. We describe the strategy of economical cross-database classi-
fication in Section 4. We present empirical evaluation in Section 5, and conclude
this study in Section 6.

2 Related Work

The traditional way of mining multiple databases is to first integrate the databases
[5, 11], then apply data mining algorithms. However, it is often hard to integrate
heterogeneous databases or to migrate one whole database to another site, be-
cause of both efficiency and privacy concerns. Thus in multi-database mining
we need efficient approaches that can produce good mining results with low
inter-database communication cost.
Distributed data mining received much attention in the last several years,

which aims at discovering knowledge from a dataset that is distributed at differ-
ent sites. There are two types of distributed data: (1) horizontally partitioned
data, in which data about different objects with same attributes are owned by
different sites; (2) vertically partitioned data, in which different attributes of the
same set of objects are stored at different sites. Either way of distribution divides
the rows or columns of a table into different parts. Distributed data mining ap-
proaches for horizontally partitioned data include meta-learning [3] that merges
models built from different sites, and privacy preserving techniques including
decision tree [8] and association rule mining [7]. Those for vertically partitioned
data include association rule mining [12] and k-means clustering [13]. Distributed
data mining works on a well-formatted data table stored at different sites. It is
fundamentally different from cross-database data mining, which works on mul-
tiple heterogeneous databases, each containing a set of interconnected relations.
There are many studies on relational (or first-order) classification [1, 9, 10,

14], which aims at building accurate classifiers in relational databases. Such
algorithms search among different relations for useful predicates, by transferring
information across relations. They either build rules by adding good literals (or
predicates), or build decision trees recursively. Such approaches have proven to
be efficient and accurate in single-database scenarios. However, in multi-database
classification, they may have high inter-database communication cost, because
they only focus on finding gainful literals but not on how much data needs to be
transferred. MDBM follows their main philosophy of classification (rule-based,
greedy classification), but adopts a new strategy called economical classification
which can achieve as high accuracy with much lower cost.
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3 Predicting Usefulness of Links

3.1 Propagating Information Across Databases

In [4] an efficient approach is proposed to identify joinable attributes in a rela-
tional database. Its main idea is to compute the set resemblance of sets of values
of different attributes, and it achieves good scalability with a sampling technique.
MDBM uses this approach to find all joinable attributes across databases. For
two attributes A1 and A2 in different databases, if a significant portion (at least
25%) of values of A1 are joinable to A2, or those of A2 are joinable to A1, then
MDBM assumes there is a link between A1 and A2. This approach has the limi-
tation that it can only detect simple links. A recent schema matching approach
[5] that can detect complex links (e.g., “firstname + lastname → name”) can
also be easily integrated into MDBM.
During cross-database mining, large amounts of data needs to be exchanged

across databases frequently, and we need an approach that transfers minimum
required information to enable effective data mining. In [14] an approach called
Tuple ID Propagation is proposed, which propagates the unique IDs of target
tuples and their class labels across different relations. Tuple ID Propagation is
a method for virtually joining relations, and the propagated IDs can be used
to identify useful features in different relations. As shown in Figure 2, the IDs
can be propagated freely across different relations and databases. As shown in
Figure 1, there are usually a large number of inter-database links. Some links
serve as good bridges for cross-database mining, such as links of trans id. While
some other links are weak or even incorrect, such as links of zipcode and date.
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Fig. 2. Example of Tuple ID Propagation

3.2 Gainfulness of Links

As previous approaches of relational classification [1, 9, 10, 14], MDBM uses rule-
based classification. A rule consists of a list of predicates and a class label. Sup-
pose the class label is whether a customer will buy photo printers. An example
rule is “[Customer0 → Transaction0, Transaction0.amount ≥ 500], [Transac-
tion0 → Product0, Product0.category=‘digital camera’] ⇒ +”. It contains two
predicates: the first one is that the customer buys some product of at least $500,
and the second one is that this product is a digital camera. As in [10, 14], we use
Foil gain, a variant of information gain, to measure the usefulness of a predicate.
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Foil gain measures how many bits can be saved in representing class labels of
positive tuples, by adding a predicate to the current rule.

Definition 1. (Foil gain). For a rule r, we use P (r) and N(r) to denote the
numbers of positive and negative target tuples satisfying r. We use r+p to denote
the rule constructed by appending predicate p to r. Suppose the current rule is r̂.
The Foil gain of predicate p is defined as

Foil gain(p) = P (r̂ + p) ·

[

log
P (r̂ + p)

P (r̂ + p) +N(r̂ + p)
− log

P (r̂)

P (r̂) +N(r̂)

]

(1)

A link is considered to be a useful one if it brings significant Foil gain, and
vice versa. To build a model for predicting the gainfulness of links, we need
to first define the gainfulness of links in a predictable way. This definition must
indicate the potential gain we can get from a link, but should not be significantly
affected by the problem settings (e.g. usage of different classification goals) other
than the properties of the link itself.
The definition of Foil gain mainly depends on two factors that vary greatly

for different classification goals, even on same dataset. If there are a large number
of positive target tuples, the Foil gain of each link is likely to be large. If the
number of positive tuples is very small compared to that of negative tuples, then
the entropy difference for each positive tuple is large, and Foil gain is likely to
be large. Although these factors are not related to the links, they may affect
their Foil gain greatly. Therefore, we eliminate the influences of these factors
in the definition of gainfulness of links. We define the gainfulness of a link as
the maximum Foil gain we get from it, divided by the number of positive target
tuples, and the maximum possible entropy gain for each positive tuple, as follows.

Definition 2. (gainfulness of link). Suppose there are P positive target tuples
and N negative ones. Suppose pl is the predicate with highest Foil gain that is
found by propagating through link l. The gainfulness of l is defined as

gainfulness(l) =
Foilgain(pl)

P · (− log P

P+N
)

(2)

3.3 Building Prediction Model

In order to build a model for predicting gainfulness of links, we need to select
a good set of properties of links that are related to their gainfulness. The first
property of a link is the type of its source and destination attributes. Each
attribute can be a key, a foreign-key, or a semi-key (an attribute that can almost
distinguish every tuple in a relation). Links between other attributes are not
considered because they seldom convey strong semantic relationships.
Besides the types of links, the following three properties are selected: cover-

age, fan-out, and correlation. For a link l = R1.A → R2.B, they are defined as
follows. The coverage of link l is the proportion of tuples in R1 that are joinable
with R2 via l. Propagating information through a link with high coverage is
likely to generate predicates covering many positive tuples. The fan-out of link
l is the average number of tuples in R2 joinable with each tuple in R1 via l.
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Low fan-out usually indicates stronger relationships between linked objects. The
correlation of link l is the maximum information gain of using any attribute of
R2 to predict the value of any attribute of R1

1. It indicates whether link l brings
correlation between some attributes of R1 and R2. For example, the link Prod-
uct0.UPC → Product2.UPC has high correlation because category of Product0
can be predicted by manufacturer and some specifications of Product2.
The coverage, fan-out, and correlation of each link can be computed when

searching for matching attributes between different databases. These properties
can be roughly computed by sampling techniques in an efficient way.
Based on the properties of links, we use regression techniques to predict their

gainfulness. Regression is a well studied field, with many mature approaches
such as linear or non-linear regression, support vector machines, and neural
networks. We finally choose neural networks [6], because it has high scalability
and accuracy, and can model arbitrary functions. A neural network learns to
predict values by keeping adapting itself when training examples are fed into it.
We perform multi-relational classification on some datasets to get properties

and gainfulness of links, in order to get training data and build models. Our
experiments show that these models achieve reasonably high accuracy when
predicting for gainfulness of links on other datasets.

4 Economical Cross-Database Classification

4.1 Classification Algorithm

The procedure of rule-based classification consists of a series of actions of search-
ing for gainful predicates. It keeps performing the following action: propagating
information across a link between two relations, and searching for good predi-
cates based on propagated information. For each action, there is a certain cost
(of inter-database communication, computation, etc.), and a certain benefit (in
predicting class labels of target tuples). The goal of economical cross-database
classification is to achieve high accuracy, with as low cost as possible.

Target 
Relation

Database 1

Database 2

gain=15
cost=100KB

gain=4
cost=8KB

gain=3
cost=5KB

gain=10
cost=50KB

Fig. 3. Economical cross-database classification

For example, the estimated costs and benefits of four actions are shown in
Figure 3. The main philosophy of economical classification is to always select the
“cheapest” action, i.e., the action with highest benefit-to-cost ratio (the second
one in Figure 3). In a cross-database classification process, the most gainful

1 Numerical attributes are discretized when computing correlation.
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action is usually not the cheapest one, and vice versa. By selecting the cheapest
actions instead of the most gainful ones, MDBM can achieve similar total gain
with a much lower “average price”, thus achieves high accuracy with low cost.
In general MDBM uses the sequential covering algorithm as in [14] to build

rules. At each step of searching for gainful predicates, instead of evaluating all
possible predicates as in [14], it uses the strategy of economical cross-database
classification to select a gainful predicate. At each step, there is a set of candidate
links for propagation, each having an estimated benefit-to-cost ratio. MDBM
conducts the action with highest benefit-to-cost ratio. If the real benefit of this
action mostly meets our expectation, MDBM stops and moves to the next step.
If the real benefit is much lower than estimation, and there is another action with
higher estimated benefit-to-cost ratio, then MDBM will conduct that action.
The benefit of a propagation is defined as the maximum Foil gain of any

feature found by this propagation, which can be estimated by the prediction
model. Suppose there are P positive and N negative tuples satisfying the current
rule. The estimated maximum Foil gain of propagation through a link l is

est Foilgain(l) = gainfulness(l) · P ·

(

− log
P

P +N

)

(3)

We use the communication overhead of a propagation as its cost, which can
be estimated by the properties of link l and statistics of the source relation Rs

of propagation. Suppose there are |Rs| tuples in Rs, and each tuple is associated
with I tuple IDs on average. 2

est cost(l) = l.coverage · |Rs| · I (4)

Now we describe the MDBM classification algorithm, which follows the main
principles of previous relational classification approaches [10, 14]. MDBM builds
a set of rules for each class. For a certain class, it builds rules one by one, and
removes all positive tuples that are correctly classified by each rule, until more
than a proportion of (1− ε) of positive tuples are covered by any rule. To build
a rule, it keeps searching for gainful predicates and adding them to the current
rule. At each step, MDBM considers all links from the target relation or any
relation used in the current rule. MDBM also utilizes some idea of beam search
[15]. Suppose it builds a rule “p1, p2 ⇒ +”, and this rule only covers a small
portion of the positive tuples covered by p1, then MDBMwill try to build another
rule based on those uncovered tuples satisfying p1. By using the idea of beam
search, MDBM tries to utilize all Foil gain of p1, which saves some inter-database
communication cost compared with starting from another empty rule.

4.2 Analysis of the Search Strategy

The strategy of previous rule-based classification algorithms [10, 14] is to try
every possible action at each step and select the most gainful one. While our
strategy is to select the cheapest action at each step. Using cheap actions will

2 Because each propagation leads to some computational cost, the estimated cost of
a propagation is set to MIN COST if it is less than this. This threshold prevents
MDBM from selecting many extremely cheap actions with very low gain.
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lead to the generation of predicates and rules with less Foil gain. For our strategy
to be effective, we need to prove that many cheap actions can achieve similar
classification accuracy as a smaller number of “expensive” actions, if their total
gain are similar.

Theorem 1. Suppose a rule set S contains L rules r1, r2, . . . , rL. Each rule ri

covers pi positive and ni negative tuples, which are not covered by previous rules
(r1, . . . , ri−1). For another rule r that covers (

∑

L

i=1
pi) positive and (

∑

L

i=1
ni)

negative tuples, L
∑

i=1

Foil gain(ri) ≤ Foil gain(r).

Corollary 1. Suppose a rule set S contains L rules r1, r2, . . . , rL. Each rule ri

covers pi positive and ni negative tuples, which are not covered by previous rules
(r1, . . . , ri−1). If S has higher total Foil gain than a single rule r, then r either
covers less positive tuples or more negative tuples than S.

Theorem 1 and Corollary 1 show that, (1) if a rule set S covers identical
numbers of positive and negative tuples as any single rule r, S will have less
total gain, and (2) if S has total Foil gain of g, then for any single rule r with
Foil gain less than g, r must cover either less positive or more negative examples
than S. Although it cannot be strictly proven, we believe that in most cases if
a rule set S has higher total gain than a rule r, S will have higher classification
accuracy or at least cover more tuples with similar accuracy.
As mentioned before, in cross-database classification we want to achieve high

classification accuracy with as low inter-database communication cost as possi-
ble. Let us compare MDBM with an existing rule-based multi-relational classi-
fication approach (e.g., [10] and [14]). MDBM always selects actions with high
gain-to-cost ratios. Thus if both approaches build rule sets with similar total
gains, MDBM will usually be much more efficient. On the other hand, our ex-
periments show that MDBM achieves similar accuracies as the approach in [14],
which means that MDBM probably builds a rule set with less total gain (ac-
cording to Corollary 1), and is thus more efficient. The efficiency and accuracy
of MDBM is also verified in our experiments.
Although MDBM usually builds more rules, it uses the same thresholds to

control the complexity of each rule (by limiting the length of rule and minimum
Foil gain of each predicate). Therefore, MDBM will not build overly complex
rules, and overfitting is not a big concern.

5 Empirical Evaluation

We perform comprehensive experiments on both synthetic and real databases.
The experiments are run on a 2.4GHz Pentium 4 PC with 1GB memory, running
Windows XP Pro. The algorithms are implemented with Visual Studio.Net. The
following parameters are used in MDBM:MIN COST=0.5KB,MIN GAIN=6.0,
and ε = 0.1. MDBM is compared with CrossMine [14], a recent approach for re-
lational classification that is order of magnitude more efficient than previous
approaches. We keep the implementation details and parameters of CrossMine,
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and reimplement it to make it capable of performing cross-database classifica-
tion. We use the code of neural networks at
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html.

5.1 Experiments on Predicting Gainfulness of Links

We perform experiments on three real datasets to test the accuracy and effi-
ciency of MDBM. The first one is CS Dept + DBLP dataset. CS Dept dataset3

was collected from the web sources of Dept. of CS, UIUC. It contains eight
relations: Student, Advise, Professor, Registration, OpenCourse, Course,
WorkIn, and ResearchGroup. DBLP dataset is retrieved from DBLP web site
and contains three relations: Author, Publication, and Publish. The target re-
lation is Student, and the class labels are their research areas, which are inferred
from their research groups, advisors, and recent publications.
The second dataset is Loan application + Bank dataset. This is from the

financial dataset used in PKDD CUP 99, and is split into two datasets. One
of them contains information about loan applications and has three relations:
Loan, Account, and District. The other is about bank transactions and records
and has five relations: Client, Disposition, Card, Order, and Transaction. The
target relation is Loan. It stores the loan applications and their results (approved
or not), which are used as class labels.
The third dataset is Movie + People dataset. It is from the Movies dataset

in UCI KDD archive, and is split into two databases. One of them contains
information of people and has three relations: Actor, Director, and Studio.
The other contains information about movies and has four relations: Movie,
MovieCategory (a movie may belong to multiple categories), Cast, and Award.
The target relation is Director and the class label is whether a director is old
or new (whether she started her career before or after 1970). All temporal infor-
mation is removed from Director relation before training.
We first test the accuracy of predicting gainfulness of links. Cross-validation

is used in this experiment as well as others, which means that a model is built
based on the links from two datasets, and is used to predict the gainfulness
of links in the third dataset. In this experiment a link is considered as gainful
if its gainfulness is greater than 0.25. The precision, recall, and accuracy of
prediction on each dataset is shown in Figure 4. Recall is more important than
precision because important features may be missed if a gainful link is predicted

3 http://dm1.cs.uiuc.edu/csuiuc dataset/
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as gainless, but it does not hurt much to predict a gainless link as gainful. It can
be seen that we achieve high recall and overall accuracy for predicting gainfulness
of links. This training process only takes about one second.

5.2 Experiments on Classification Accuracy

For each of the three datasets, we compare the accuracy, running time, and inter-
database communication of three approaches: (1) Single-DB CrossMine—the
CrossMine algorithm for single database; (2) Multi-DB CrossMine—the Cross-
Mine algorithm that is able to propagate information and search for features
across databases; (3) MDBM : our cross-database classification algorithm.
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Fig. 5. Accuracy, runtime, and inter-DB communication on CS Dept + DBLP dataset

The results on CS Dept + DBLP dataset are shown in Figure 5. It can be seen
that using multi-database information can significantly increase classification
accuracy. MDBM achieves much higher efficiency in both running time and inter-
database communication, which shows the effectiveness of our approach.
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Fig. 6. Accuracy, runtime, and inter-DB communication on Loan + Bank dataset

The results on Loan application + Bank dataset are shown in Figure 6. One
can see that both Multi-DB CrossMine and MDBM achieve high accuracy, and
MDBM is much more efficient in inter-DB communication and running time.
The results on Movie + People dataset are shown in Figure 7. It can be seen

that MDBM achieves higher accuracy than Multi-DB CrossMine. Again MDBM
is much more efficient in inter-database communication (about 10% of that of
Multi-DB CrossMine) and running time. Single-DB CrossMine runs fast because
it cannot generate any meaningful rules.

5.3 Experiments on Scalability

We test the scalability of MDBM w.r.t. number of databases and number of
tuples on synthetic datasets. We use the data generator for CrossMine [14], which
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Fig. 7. Accuracy, runtime, and inter-DB communication on Movie + People dataset

can randomly generate a relational database with |R| relations, each having N

tuples on average. The target tuples are generated according to a set of randomly
generated rules that involve different relations. After a dataset is generated, we
randomly partition it into several databases, and use database structuring tool
to identify inter-database links.
We first test the scalability of MDBM and Multi-DB CrossMine w.r.t. the

number of databases. Five datasets are generated, with number of databases
being one to five. Each database has five relations, and the expected number
of tuples in each relation is 1000. The accuracy, runtime and inter-database
communication of two algorithms are shown in Figure 8. It can be seen that their
accuracies are close, but MDBM achieves much higher efficiency and scalability
than CrossMine, especially in inter-database communication.
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Fig. 8. Scalability w.r.t. number of databases

We also test the scalability of MDBM and Multi-DB CrossMine w.r.t. the
number of tuples. Five datasets are generated with identical schemas, each hav-
ing two databases and five relations in each database. The expected number
of tuples in each relation grow from 200 to 5,000. The accuracy, runtime and
inter-database communication of two algorithms are shown in Figure 9. It can
be seen that both algorithms are linear scalable in runtime and inter-database
communication, and MDBM is much more efficient than CrossMine.

6 Conclusions

In this paper we present MDBM, a new approach for cross-database classifica-
tion. MDBM can perform accurate classification with data stored in multiple
heterogeneous databases, with low inter-database communication. It builds a
prediction model for usefulness of links from cross-database mining processes on



12

0.5

0.6

0.7

0.8

0.9

1

2000 5000 10000 20000 50000

Number of tuples

A
cc

ur
ac

y

S
er
ie

1

10

100

1000

2000 5000 10000 20000 50000

Number of tuples

R
un

tim
e 

(s
ec

)|

Ser
ies
2
Ser

0.01

0.1

1

10

2000 5000 10000 20000 50000

Number of tuples

In
te

r-
D

B
 c

om
m

un
ic

at
io

n 
(M

B
)  

 |

CrossMine
MDBM

Fig. 9. Scalability w.r.t. number of tuples

available datasets that can guide the mining tasks. To achieve high classification
accuracy with as low cost as possible, MDBM adopts an economical strategy
for cross-database mining, which selects actions with high gain-to-cost ratio. It
is shown by experiments that MDBM achieves both high accuracy and high ef-
ficiency (especially in inter-database communication) on classification tasks on
both real and synthetic datasets.
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