Math 502 Mathematical Logic

Problem Set 2

Due Monday September 14

Do Exercise 2.19 from the Lecture Notes

1) Let T and T^{\prime} be \mathcal{L}-theories with $T^{\prime} \subseteq T$. We say that T^{\prime} axiomatizes T if every model of T^{\prime} is a model of T. Suppose T^{\prime} axiomatizes T. Prove that $T \models \phi$ if and only if $T^{\prime} \models \phi$ for all \mathcal{L}-sentences ϕ.
2) Let $\mathcal{L}=\{+, 0\}$. Prove that $\operatorname{Th}(\mathbb{Z}) \neq \operatorname{Th}(\mathbb{Z} \oplus \mathbb{Z})$.
3) Let $\mathcal{L}=\{R\}$. Let T_{0} be the theory:
$\forall x \neg R(x, x) \quad$ (R is irreflexive)
$\forall x \forall y(R(x, y) \rightarrow R(y, x)) \quad(R$ is symmetric)
T_{0} is the theory of graphs. Show how to axiomatize the following classes:
a) complete graphs;
b) acyclic graphs;
c) graphs of valence 2 (i.e,. graphs where every element has an edge to exactly two other elements);
d) ${ }^{\dagger}$ bipartite graphs. (Hint: First prove that a graph is bipartite if and only there are no cycles of odd length.]
4) a) Let \mathcal{L} be the language $\{+, 0\}$ and consider the structure \mathcal{R} with universe \mathbb{R} where + is interpreted as the usual addition and 0 as zero. Show that there is no formula $\phi(v, w)$ such that $\mathcal{R} \models \phi(a, b)$ if and only if $a<b$ for all $a, b \in \mathbb{R}$. [Hint: Find an \mathcal{L}-isomorphism not preserving $<$]
5) If ϕ is a sentence, the spectrum of ϕ is the set of all natural numbers n such that there is a model of ϕ with exactly n elements.
a) Let $\mathcal{L}=\{E\}$ where E is a binary relation. Write down a sentence ϕ asserting that E is an equivalence relation and every equivalence class has exactly three elements. Show that the spectrum of ϕ is $\{n>0: 3$ divides $n\}$.
b) Let $\mathcal{L}=\{P, Q, f\}$ where P and Q are unary predicates and f is a binary function. Let ϕ be the conjuction of:
```
\(\exists x \exists y x \neq y \wedge P(x) \wedge P(y)\)
\(\exists x \exists y x \neq y \wedge Q(x) \wedge Q(y)\)
\(\forall z \exists x \exists y P(x) \wedge Q(y) \wedge f(x, y)=z\)
\(\forall x_{1} \forall x_{2} \forall y_{1} \forall y_{2}\left[\left(P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge Q\left(y_{1}\right) \wedge Q\left(y_{2}\right) \wedge f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)\right) \rightarrow\right.\)
\(\left.\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right)\right]\)
```

Show that the spectrum of $\phi=\{n>3: n$ is not prime $\}$.
c) Find a sentence with the spectrum $\{n>0: n$ is a square $\}$.
d) Find a sentence with the specturm $\left\{p^{n}: p\right.$ prime $\left.n>0\right\}$.
e) $)^{\dagger \dagger}$ Find a sentence with spectrum $\{p: p$ is prime $\}$.

