Math 502 Mathematical Logic

Problem Set 2

Due Monday September 14

Do Exercise 2.19 from the Lecture Notes

- 1) Let T and T' be \mathcal{L} -theories with $T' \subseteq T$. We say that T' axiomatizes T if every model of T' is a model of T. Suppose T' axiomatizes T. Prove that $T \models \phi$ if and only if $T' \models \phi$ for all \mathcal{L} -sentences ϕ .
- 2) Let $\mathcal{L} = \{+, 0\}$. Prove that $Th(\mathbb{Z}) \neq Th(\mathbb{Z} \oplus \mathbb{Z})$.
- 3) Let $\mathcal{L} = \{R\}$. Let T_0 be the theory: $\forall x \ \neg R(x,x) \quad (R \text{ is irreflexive})$ $\forall x \forall y \ (R(x,y) \rightarrow R(y,x)) \quad (R \text{ is symmetric})$

 T_0 is the theory of graphs. Show how to axiomatize the following classes:

- a) complete graphs;
- b) acyclic graphs;
- c) graphs of valence 2 (i.e,. graphs where every element has an edge to exactly two other elements);
- d)[†] bipartite graphs. (Hint: First prove that a graph is bipartite if and only there are no cycles of odd length.]
- 4) a) Let \mathcal{L} be the language $\{+,0\}$ and consider the structure \mathcal{R} with universe \mathbb{R} where + is interpreted as the usual addition and 0 as zero. Show that there is no formula $\phi(v, w)$ such that $\mathcal{R} \models \phi(a, b)$ if and only if a < b for all $a, b \in \mathbb{R}$. [Hint: Find an \mathcal{L} -isomorphism not preserving <]
- 5) If ϕ is a sentence, the *spectrum* of ϕ is the set of all natural numbers n such that there is a model of ϕ with exactly n elements.
- a) Let $\mathcal{L} = \{E\}$ where E is a binary relation. Write down a sentence ϕ asserting that E is an equivalence relation and every equivalence class has exactly three elements. Show that the spectrum of ϕ is $\{n > 0: 3 \text{ divides } n\}$.

b) Let $\mathcal{L} = \{P, Q, f\}$ where P and Q are unary predicates and f is a binary function. Let ϕ be the conjuction of:

```
\exists x \exists y \ x \neq y \land P(x) \land P(y)
\exists x \exists y \ x \neq y \land Q(x) \land Q(y)
\forall z \exists x \exists y \ P(x) \land Q(y) \land f(x,y) = z
\forall x_1 \forall x_2 \forall y_1 \forall y_2 \ [(P(x_1) \land P(x_2) \land Q(y_1) \land Q(y_2) \land f(x_1,y_1) = f(x_2,y_2)) \rightarrow (x_1 = x_2 \land y_1 = y_2)]
```

Show that the spectrum of $\phi = \{n > 3 : n \text{ is not prime}\}.$

- c) Find a sentence with the spectrum $\{n > 0 : n \text{ is a square } \}$.
- d) Find a sentence with the specturm $\{p^n: p \text{ prime } n > 0\}.$
- e)^{††} Find a sentence with spectrum $\{p: p \text{ is prime}\}.$