Sand Bank Formation: Comparison between 2D and 3D Models

Giovanni Besio, Paolo Blondeaux and Giovanna Vittori

(Van Alphen & Damoiseaux, 1989)

Department of Environmental Engineering University of Genova -Italy • Sand banks are formed due to an instability mechanism of the sea bottom subject to tidal flow (Huthnance, 1982; Hulscher et al. (1993); Hulscher (1996); Besio et al. (2005))

Models available to predict sand banks appearance and their wavelength are:

- depth averaged models (Huthnance, 1982; Hulscher et al., 1993)
- > 3D models with shallow water approximation (Hulscher, 1996)
- ➢ fully 3D model (Besio et al. (2005))

Only the fully 3D model has predicted so far clockwise and counter-clockwise oriented sand banks

Department of Environmental Engineering ⁰ University of Genova -Italy

Aim of present contribution:

comparison between the predictions of sand banks orientation as obtained by means of the fully 3D and a depth-averaged models

Outline of presentation

- 1. Brief description of 3D model
- 2. Results on sand banks
- 3. Brief introduction of improved depth averaged model
- 4. Results of improved depth-averaged model
- 5. Conclusions

3D model

- Plane-averaged bottom subject to an elliptical tidal flow
- Stability of the basic flow with respect to 2D disturbances of the bottom (sand banks and sand waves)
- Fully 3D model
- Prediction of both sand banks (order of wavelength = a few Kilometers) and sand waves (order of wavelength ~100 m)

3D model (Besio, Blondeaux & Vittori, 2005 submitted to J. Fluid Mech)

HYDROYNAMICS

- unsteady 3D Reynolds equations with Coriolis terms + continuity
- Boussinesq closure with depth-varying eddy viscosity
- kinematic and dynamic boundary conditions at the free surface
- no-slip condition at the bottom

MORPHODYNAMICS

➢Sediment continuity equation

Bedload is computed according to Van Rijn (1991) and slope effects are accounted for

The suspended load is computed by evaluating the flux of sediment concentration c (c is obtained by integrating a convection-diffusion concentration equation)

PREDICTIONS OF SAND BANKS WITH THE 3D MODEL (Norfolk banks (UK))

Crests counter-clockwise oriented with respect to tidal flow with a typical distance of 8-10 Km e and a length of the order of Kilometers

Growth rate of bottom perturbation as a function of the horizontal wavenumbers

- wavelength=6 Km
- counter-clockwise oriented crests

(Zeeland banks (NL))

Figure 3.4: Bathymetry sand extraction area on the Middelbank, depth in dm – NAP (map from RWS, DNZ, 2003)

(Adapted from Hommes, 2004)

Clockwise oriented crests with respect to main tidal direction Average crests distance 4-5 Km Crests length ~ tens of Kilometres Simultaneous presence of sand banks and sand waves with wavelength ranging from 100 to 800 m

PREDICTIONS OF THE 3D MODEL: growth rate as a function of wavenumbers in the direction of the tide and in the orthogonal direction.

<u>1</u> <u>relative maximum</u>: sand banks clock-wise oriented with respect to the tidal current and with wavelength approximately equal to 4.5 Km <u>**2**</u> <u>relative maximum</u>: sand waves with wavelength approximately equal to a 300 m SAND BANKS AND TIDE ROTATION IN THE NORTH SEA Shadowed regions=clockwise rotating tidal ellipse Blank regions= counter-clockwise rotating tidal ellipse

A=clockwise oriented sand banks B=counter-clockwise oriented sand banks

Adapted from Soulsby (1983)

Coriolis effects induce a 3D distortion of the velocity profile

> The orientation of the sediment transport and depth-averaged velocity are different

Hydrodynamics:

- ✓ depth-averaged continuity and momentum equation
- ✓ Coriolis terms

Sediment transport:

- \checkmark transport rate related to depth-averaged velocity
- ✓ slope effect on sediment transport

 ✓ empirical correction to account for Coriolis effects which deviate velocity close to the bottom (de Swart & Hulscher, 1995)

$$(Q_x, Q_y) = \alpha |V|^b \left[\frac{(U\cos\varphi - V\sin\varphi, V\cos\varphi + U\sin\varphi)}{|V|} - \frac{c_\lambda}{\hat{r}} \left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y} \right) \right]$$

Values of $\boldsymbol{\phi}$ determined by means of the fully 3D model

Department of Environmental Engineering University of Genova -Italy

Clockwise rotating velocity vector $\phi=10^{\circ}$

➢ for e_{cc}=0 (unidirectional tide) counter-clockwise bedforms
➢ counter-clockwise bedforms (if h₀=30 m L= 8 Km)
➢ weak second mode (if h₀=30 m L= 3 Km)
➢ for e_{cc}=1 no preferred orientation

Counter-clockwise rotating velocity vector $\phi=10^{\circ}$

> for e_{cc}=0 (unidirectional tide) counter-clockwise bedforms
> clockwise oriented bedforms e_{cc}=0.2 (h₀*=30 m, L~15 Km)
> weak second mode ecc=0.2 (h₀*=30 m, L~7 Km)
> for e_{cc}=1 no preferred orientation- more unstable than clockwise rotating velocity vector

Growth rate of sand banks in the Zeeland region.

Growth rate of sand banks off Norfolk coast.

Department of Environmental Engineering University of Genova -Italy Semidiurnal tide (U $_0$ =0.7 m/s e $_{cc}$ = 0.2 clockwise rotating)

Semidiurnal tide ($U_0=0.4$ m/s $e_{cc}=$ 0.4 counter clockwise rotating)

sand banks L~4.6 Km (clock-wise)

H₀= 30 m

 $H_0 = 25 \text{ m}$

sand banks L~7.2 Km (counterclock-wise) • the orientation of the sand-banks appears to be related to Coriolis effects which cause a deviation of the direction of sediment transport (and bottom shear stress) from that of the depth averaged velocity

 the 2D depth-integrated model can predict sand bank orientation if improved to take into account the deviation of sediment transport from depthaveraged velocity

- the model should be calibrated by using a fully 3D model
- the new 2D model provides results qualitatively similar to those obtainable with the more computationally expensive 3D model

