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Abstract

Models of agents that employ formal notions
of mental states are useful and often eas-
ier to construct than models at the sym-
bol (e.g., programming language) or physi-
cal (e.g., mechanical) level. In order to en-
joy these bene�ts, we must supply a coher-
ent picture of mental-level models, that is,
a description of the various components of
the mental level, their dynamics and their
inter-relations. However, these abstractions
provide weak modelling tools unless (1) they
are grounded in more concrete notions; and
(2) we can show when it is appropriate to
use them. In this paper we propose a model
that grounds the mental state of the agent in
its actions. We then characterize a class of
goal-seeking agents that can be modelled as
having beliefs.

This paper emphasizes the task of belief as-
cription. On one level this is the practi-
cal task of deducing an agent's beliefs, and
we look at assumptions that can help con-
strain the set of beliefs an agent can be as-
cribed, showing cases in which, under these
assumptions, this set is unique. We also
investigate the computational complexity of
this task, characterizing a class of agents to
whom belief ascription is tractable. But on a
deeper level, our model of belief ascription
supplies concrete semantics to beliefs, one
that is grounded in an observable notion {
action.

1 INTRODUCTION

Abstractions play an important role in our reasoning
ability. Arguably, the most fundamental abstraction
we use involves modelling other entities as having men-
tal states. We use it to model other biological entities
and perhaps even ourselves; it may even be used in

modelling complex mechanical entities. Indeed, Allen
Newell, in a famous paper [Newell, 1980], argues that
intelligent systems can be (approximately) described
at a level higher than the symbol (e.g., programming
language) level and the physical level, which he calls
the knowledge level .

Having a mental-level model o�ers many advantages.
First, it allows us to describe a system's behavior with-
out a detailed description of its lower-level, e.g., its
implementation as machine code, or its physical com-
ponents. A mental-level model is also much more ac-
cessible and intuitive to us. We can, therefore, use
it to critique a system by looking at its beliefs and
asking ourselves whether they make sense. Similarly,
we can examine a system's goals and criticize them.
And while a model at the symbol or physical level re-
quires detailed knowledge that is often not available,
we can usually construct a mental model of an agent
by observing its behavior or by using general knowl-
edge about the typical behaviors of this agent. An un-
derstanding of the way this behavior is implemented
within this agent is not necessary, as we know from our
experience. This makes possible the task of predict-
ing an agent's behavior without access to its program.
And as John McCarthy says [McCarthy, 1979],

(Ascription of mental states) is useful when
the ascription helps us understand the struc-
ture of the machine, its past or future behav-
ior, or how to repair and improve it. It is
perhaps never required even for humans, but
expressing reasonably brie
y what is actually
known about the state of a machine ... may
require ascribing mental qualities.

In order to use these abstractions we must provide the
foundations required for modelling agents at the men-
tal level. First, we need good models of the mental
level, i.e., its components, the way they interact and
the way they change over time. Yet, without ground-
ing these abstract notions in more concrete ones, we
are walking on thin ice, because it is not clear what
notions such as belief mean, nor when is it appropri-



ate to use them. And even those who may argue for
the `objective' existence of epistemic states in some
entities, are on shaky ground when it comes to mod-
elling computer systems and mechanical devices. The
abstract semantics for belief using Kripke structures
[Kripke, 1963, Hintikka, 1962], can only serve as the
�rst step towards an understanding of such notions.

In this paper we propose a model that grounds the
mental state of an agent in its actions. We develop a
formalmodel of the mental level, which is motivated by
work in decision theory [Luce and Rai�a, 1957] and the
work of [Rosenschein, 1985] and [Halpern and Moses,
1990] on knowledge ascription. The model is quite
simple and intuitive. It uses a number of components:
beliefs, utilities, and a decision-strategy to construct a
mental-level model. This model relates these compo-
nents among themselves and with the agent's behavior,
i.e., its choice of action. It is built upon a lower-level
description of the agent, which we will call the phys-
ical level . The relation of the various components at
the mental level and the agent's behavior is embodied
by the agency hypothesis, which implicitly de�nes the
states an agent believes in as those states that a�ect its
choice of action. This manner of grounding the notion
of beliefs in the agent's (observable) choice of action
provides a way of addressing the question of adequacy,
i.e., when can we actually use mental-level modelling.
The answer can be given through a characterization of
classes of behaviors that make this type of modelling
possible.

We start with a static model. In this model the agent
associates with each possible action a number of plau-
sible outcomes, which depend on the agent's beliefs.
The agent assigns a utility to each outcome, repre-
senting the relative desirability of this outcome. The
agent then uses its decision strategy to choose an ac-
tion based on the utilities of this action's outcomes.
We call the hypothesis that the the agent's (ascribed)
mental states relates to its action in this manner, the
agency hypothesis. The agency hypothesis grounds the
agent's beliefs in its choice of action.

Based on the static model we develop a more dynamic
model that also takes into account the issue of be-
lief change, and provide two interesting representa-
tion theorems. These theorems relate certain patterns
of belief change with a static representation of belief
based upon partial and total pre-orders.

With this model at hand we proceed to speci�cally ex-
amine the problem of belief ascription. Our abstract
view of belief ascription is that of constraining the (as-
cribed) beliefs of the agent by its (observable) choice
of action via the agency hypothesis. In order to ad-
dress the adequacy problem, we de�ne a class of goal-
seeking agents and show that they can be ascribed be-
lief within our framework. Unfortunately, in practice,
it is often the case that we cannot ascribe an agent
unique beliefs based on the available information. We

examine this issue and suggest two general heuristics
for choosing among multiple candidates. We give con-
ditions under which these criteria suggest unique be-
liefs. Another practical issue involves the computa-
tional complexity of belief ascription. We show that
although in general it may be di�cult (i.e., CO-NP-
hard), for some agents it is tractable.

On one level, belief ascription is the task of deducing
an agent's beliefs, and this paper attempts to address
some practical issues that arise in performing this task.
However, the deeper meaning of this work lies in the
semantics of beliefs as modelling tools de�ned by the
agent's choice of action.

1.1 A MOTIVATING EXAMPLE

To introduce the problem of belief ascription and the
motivation behind our proposed solution, we present
the following example.

Say we only care about four sets of worlds, described
by the propositions cold and rainy . Our agent, Alice,
has an accurate thermostat at home, but no windows.
In a cold^rainy world, there are two worlds Alice con-
siders possible: cold^rainy and cold^:rainy. Because
in all her possible worlds cold holds, Alice knows that
it is cold. In general, to determine what Alice knows,
we construct her set of possible worlds. [Halpern and
Moses, 1990] shows us how we can construct this set
given an appropriate description of Alice.

Alice does not know that it is rainy, but does she be-
lieve that it is rainy? It seems, that to answer this
question, more information is required. So suppose
we see Alice leaving home without an umbrella. This
seems to indicate that she does not believe it is rainy,
for otherwise she would have taken an umbrella. So
based on Alice's action we have deduced her beliefs.
However, to do so we implicitly assumed that Alice
does not like getting wet and that she had the choice
of taking an umbrella. That is, we used information
regarding Alice's desires and possible choices of action.

Let's be more precise. The following matrix describes
the outcome of Alice's two possible actions.

rainy :rainy

take umbrella dry,heavy dry,heavy,look stupid
leave umbrella wet,light dry,light

Suppose that Alice's preferences are described by the
following utility function:

rainy :rainy

take umbrella 5 �1
leave umbrella �4 10

A belief that :rainy is the only plausible world would
adequately explain Alice's behavior, as it will make



the choice of leaving the umbrella the preferred one.
Are other beliefs consistent with her behavior? Well,
she could not believe rainy to be the only plausible
world, for then she would have taken the umbrella.
Could she consider both worlds plausible? The answer
depends on her decision criterion. If she prefers to be
on the safe side, employing a maximin strategy, which
attempts to maximize the worst case outcome, then
had she believed both worlds to be plausible, she would
have taken the umbrella (with a worst case payo� of
�1) rather than leaving it (with a worst case payo� of
�4). But if Alice follows the principle of indi�erence,
which takes the average payo� across plausible states,
belief in both states is consistent, since leaving the
umbrella has a better average payo� (3) than taking
it (2).

Overview The next section describes a mental-level
model based upon the notions of knowledge, belief, de-
cision criteria, and utilities. In Section 3 this model
is used to de�ne belief ascription, and consequently,
provide a de�nition of belief based on choice of action.
As we will see, often we cannot ascribe unique beliefs
to an agent, and in Section 4 we suggest how one can
narrow the choice of appropriate belief ascriptions. In
Section 5 we add time to the static model of Section
2, enabling us to investigate the issue of belief change
in Section 6. In Section 7, having described a dynamic
picture of the mental level, we characterize a class of
agents to which belief can be ascribed using this model.
In Section 8 we look at complexity issues, i.e., how dif-
�cult is belief ascription and we characterize a class of
agents to whom belief ascription is tractable. In sec-
tion 9 we return to the issue of choosing among belief
assignments, characterizing a class of agents to whom
the criteria of Section 4 enable narrowing the choice to
a unique belief assignment. Section 10 concludes with
a discussion of related work and some of our assump-
tions. Proofs of all theorems appear in the appendix.

2 THE FRAMEWORK

Starting with a physical level description of a sys-
tem containing a single agent and an environment, we
review knowledge ascription, following [Halpern and
Moses, 1990]. Then, we introduce a number of new
elements, beliefs, decision criteria, and utilities, and
relate them to the agent's behavior. To make our de�-
nitions clear we will accompany them with a simpli�ed
version of McCarthy's famous thermostats example.

Example 1 In [McCarthy, 1979], McCarthy shows
how we often ascribe mental states to simple devices,
thermostats in that case. Our goal is to formalize this
informal discussion. We assume that we have a ther-
mostat in a room that controls the 
ow of hot water
into that room's radiator. The thermostat can either
turn-on or shut-o� the hot water supply to this radia-
tor. It chooses its action based on whether it senses the

temperature of the room to be above or below a certain
threshold value.

2.1 THE PHYSICAL LEVEL AND
KNOWLEDGE

An agent is described by a set of possible (local) states
and a set of possible actions. The agent functions
within an environment , which may also be in one of
a number of states. We refer to the state of the sys-
tem, i.e., that of both the agent and the environment
as a global state. W.l.o.g., we will assume that the
environment does not perform actions. The e�ects of
the agent's actions are a (deterministic) function of its
state and the environment's state.1 This e�ect is de-
scribed by the transition function. Together, the agent
and the environment constitute a state machine with
two components, with transitions at each state corre-
sponding to the agent's possible actions. It may be the
case that not all combinations of an agent's local state
and an environment's state are possible. Those global
states that are possible are called possible worlds.

De�nition 1 An agent is a pair A = hLA; AAi,
where LA is the agent's set of local states and AA
is its set of actions. LE is the environment's set of
possible states. A global state is a pair (lA; lE ) 2
LA � LE . The set of possible worlds is a subset

S of the set of global states LA � LE . A context2

C = h� i, consists of the transition function, � :
(LA � LE ) �AA ! (LA � LE ).

A context speci�es the environment (since LE is im-
plicit in � ) and the e�ects of the agent's actions on
the whole system. Later on, when we add time to the
picture it will also specify the possible starting points
of a system.

Example 1 (continued): For our thermostat LA =
f�;+g. � corresponds to the case when the thermo-
stat indicates a temperature that is less than the desired
room temperature and + corresponds to a temperature
greater or equal to the desired room temperature. How-
ever, we take into account the fact that the thermo-
stat may be mistaken in its measurement of the room's
temperature, which is indeed one of the situations Mc-
Carthy considers. The thermostat's actions, AA, are
fturn-on, shut-o�g. The environment's states, LE ,
are fcold,ok,hotg. We do not assume any necessary
relation between the states of the thermostat and the
environment. Therefore the set of possible worlds is
exactly LA � LE . We chose the following transition
function:

1A framework in which the environment does act can be
mapped into this framework using richer state descriptions
and larger sets of states, a common practice in game theory.

2Though context is an overloaded term, its use here
seems appropriate, following [Fagin et al., 1994].



cold ok hot

turn-on ok hot hot
shut-o� cold ok ok

In our example, the result of an action does not depend
on the state of the thermostat. To simplify matters
we assume that the thermostat is not a�ected by its
actions, although this does not matter in this example.

Knowledge can be ascribed to the agent using the no-
tion of a local state. An agent can distinguish between
two worlds in S if and only if its state in them, is dif-
ferent. Therefore, an agent whose local state is l can
rule out as impossible all worlds in which his local
state would have been di�erent, but cannot rule out
worlds in S in which his local state would have been
l. Knowledge corresponds to what holds in all worlds
the agent cannot distinguish from the actual world.

De�nition 2 The set of worlds possible at l,
PW(l), is fw 2 S : the agent's local state in w is lg.
The agent knows ' at w 2 S if ' holds in all worlds
in PW (l), where l is its local state at w.

Example 1 (continued): While the thermostat, by
de�nition, knows its local state, it knows nothing about
the room's temperature. This stems from the fact that
in our model we allowed for the possibility of a mea-
surement error by the thermostat, making all elements
of LA�LE possible, e.g., (�; hot) is a possible world.

If truth assignments (for some given language) are at-
tached to each world in S and a world s0 is de�ned to
be accessible from s whenever the agent's local states
in s and s

0 are identical, we obtain the familiar S5
Kripke structure.

The agent's observed, or programmed behavior is de-
scribed by the protocol.

De�nition 3 A protocol for an agent A is a func-
tion PA : LA ! AA.

Example 1 (continued): Our thermostat follows the
following protocol:

state � +
action turn-on shut-o�

2.2 THE AGENCY HYPOTHESIS

What is belief? Belief is part of an abstract description
of the agent's state. It sums up the agent's view of the
world, and is a basis for decision making. Therefore,
we make belief a function of the agent's local state,
represented by a belief assignment , which assigns to

each local state a nonempty subset of the set of pos-
sible worlds. These worlds are the worlds the agent
considers plausible.

De�nition 4 A belief assignment is a function, B :
LA ! 2S , such that for all l : B(l) 6= ; and B(l) �
PW (l).

Example 1 (continued): One possible belief assign-
ment, which would probably make the thermostat's
designer happy, is B(�) = f�; coldg and B(+) =
f+; hotg. From now on we will ignore the agent's local
state in the description of the global state and write,
e.g., B(+) = fhotg.

While knowledge (or PW (l)) de�nes what is theoret-
ically possible, belief de�nes what, in the eyes of the
agent, is the set of worlds that should be taken into
consideration. We remark, that (after adding interpre-
tations to each world) this approach yields a KD45
belief operator.3

However, our view is that belief really makes sense as
part of a fuller description of the agent's mental level.
In order to describe this mental level and to relate it to
the agent's behavior, additional notions are required.
We start with the agent's preference order over the set
of possible states, represented by a utility function.
This preference order embodies the agent's desires.

De�nition 5 A utility function is a function
u : S ! R.

It is well known ([von Neumann and Morgenstern,
1944]) that a utility function can represent preference
orders satisfying certain assumptions, which in this pa-
per we will accept. This means that for any two states
s1; s2: s1 is preferred over s2 i� u(s1) > u(s2).

Example 1 (continued): The goal of our thermostat
is for the room temperature to be ok. This can be rep-
resented by a utility function which assigns 0 to global
states in which the environment's state (i.e., the room
temperature) is hot or cold, and which assigns 1 to
those states in which the environment's state is ok.

When the exact state of the world is known, the re-
sult of following some protocol, P , is also precisely
known. (Remember that actions have deterministic
e�ects). We can therefore evaluate a protocol by look-
ing at the utility of the state it would generate at the
actual world. However, due to uncertainty about the
state of the world, the agent considers a number of
states to be possible. It can then subjectively assess
P in a local state l by a vector whose elements are the
utilities of the plausible states P generates, i.e., the
worlds generated by using P at B(l).

3Incidentally, this gives a relation between knowledge
and belief similar to the one proposed by Kraus and
Lehmann in [Kraus and Lehmann, 1988].



De�nition 6 Given a context C and a belief assign-
ment, B, with an arbitrary, �xed, order on the set
B(l), for every l; the perceived outcome of a proto-
col P in l is a tuple whose kth element is the utility of
the state generated by applying P in C, starting from
the kth state of B(l). 4

Example 1 (continued): We can construct the follow-
ing table for the thermostats possible actions:

cold ok hot

turn-on 1 0 0
shut-o� 0 1 1

If the thermostat `knew' the precise state of the world,
e.g., that it is cold, it would have no trouble choos-
ing the action turn-on as most preferred. When there
is uncertainty, e.g., B(l) = fcold; okg, the thermostat
associates a perceived outcome of (1; 0) with the ac-
tion turn-on, and a perceived outcome of (0; 1) with
the action shut-o�.

While utilities are easily compared, it is not a-priori
clear how to compare perceived outcomes, thus, how
to choose among protocols. A strategy for choice un-
der uncertainty is required, which depends on e.g., the
agent's attitude towards risk. This strategy is repre-
sented by the decision criterion, a function taking a
set of perceived outcomes, returning the set of most
preferred among them.

De�nition 7 A decision criterion is a function
� :

S
n2N

2R
n

!
S
n2N

2R
n

(i.e. from/to sets of

equal length tuples of reals), such that for all U 2S
n2N

2R
n

�(U) � U .

Two decision criteria we have encountered are max-
imin, which chooses the tuples in which the worst
case outcome is maximal, and the principle of indif-
ference which prefers tuples whose average outcome is
maximal5 (A fuller discussion of decision criteria ap-
pears in [Luce and Rai�a, 1957, Brafman and Tennen-
holtz, 1994]).

Returning to the example of Section 1, if Alice con-
siders two worlds plausible, rainy and :rainy, at
this order, the perceived outcome of the action take
umbrella is (5;�1), while the perceived outcome of
leave umbrella is (�4; 10). If Alice uses maximin she
prefers (5;�1), with a worst case outcome of �1, over
(�4; 10), with a worst case outcome of �4. She will
therefore take the umbrella. Under the principle of

4For simplicity we assume a �nite number of states. In
the general case we use functions instead of tuples, elimi-
nating the need to order B(l).

5With an in�nite set of tuples, maximin and the prin-
ciple of indi�erence may not have a set of most preferred
tuples. This is �xed by, for example, choosing some cuto�
point.

indi�erence, Alice prefers (�4; 10), with an average
utility of 3, over (5;�1), with an average utility of 2,
and will leave the umbrella. Notice how the perceived
outcome depends on Alice's beliefs. Had Alice believed
only :rainy to be plausible, the perceived outcome of
take umbrella would be a singleton, (�1).

We remark that decision criteria such as maximin can
be employed with preference relations satisfying as-
sumptions weaker than those of [von Neumann and
Morgenstern, 1944].

We come to a key de�nition that ties all of the com-
ponents we have discussed so far.

De�nition 8 The agency hypothesis: the agent
follows a protocol whose perceived outcome is most
preferred (according to the agent's decision criterion)
among the set of perceived outcomes of all possible
protocols.6

The agency hypothesis takes the view of a rational bal-
ance among the agent's beliefs, utilities, decision cri-
terion and behavior. It states that the agent chooses
actions whose perceived outcome is maximal according
to its decision criterion. Thus, the choice of the pro-
tocol is dependent upon B(l) and u, which de�ne the
perceived outcome, and �, which helps choose among
the di�erent protocols, based on their perceived out-
come. The agency hypothesis states that these com-
ponents are related via this `rationality' constraint.

3 ASCRIBING BELIEF

We now show how belief can be ascribed according to
our framework. We will assume that we are ascrib-
ing a complete belief assignment to an agent, i.e., one
that is de�ned in all local states. In many applica-
tions one can only ascribe partial belief assignments,
e.g., if observations of the agent's actions exist only in
some states. It is quite straightforward to generalize
our discussion to this case.

Belief can be ascribed once we have certain informa-
tion regarding the agent. We see this information as
putting the agent in some (extended) context, which
speci�es some of the elements of the rational balance
we have just discussed. Our strategy is to look for
belief assignments con�rming the agency hypothesis.
That is, beliefs that would lead an entity satisfying
the agency hypothesis to act according to the given
protocol when its utilities and decision criterion are
as given. This is a process of constraint satisfaction,
where our belief assignment is constrained by the given
extended context.

De�nition 9 An extended context is a 3-tuple,

6The agent's possible protocols, are implicitly de�ned
by the set of actions AA (cf. Def. 1).



C = h�; u; �i (where, �; u and � are as previously de-
�ned). Given an extended context C, a belief assign-
ment B is consistent with A's protocol, PA, if it
con�rms the agency hypothesis regarding A.

It is clear that this approach could be used to assign
other mental states that are part of the agency hypoth-
esis, e.g., we can ascribe goals (i.e., utilities) based on
the agent's beliefs, decision criterion, and actions. We
have chosen to concentrate on belief assignment. (This
choice is discussed in Section 10.) The problem of be-
lief ascription can now be formally stated as:

In an extended context C, what belief assign-
ments are consistent with the agent's proto-
col, if any?

Once we de�ne an agent's beliefs as those belief as-
signments that make it satisfy the agency hypothe-
sis, we obtain an interesting characterization of belief,
which stems from the grounding of beliefs in actions.
The agency hypothesis implicitly de�nes the states an
agent believes in as precisely those states that a�ect
its choice of action.

To better understand this, we must consider an hy-
pothetical case. Our framework attempts to do away
with some of the unnatural assumptions of other ap-
proaches (see the discussion in Section 10.2). How-
ever, in principle, one can examine the case where we
are supplied with information regarding how an agent
would act in some local state, under any set of possible
actions. In that case, we can determine whether some
state s is in B(l), by asking whether there are two ac-
tions, a1 and a2, such that both actions have precisely
the same outcome on all states in PW (l) n fsg, but
di�er on s. Roughly speaking, if one action is strictly
preferred to the other (i.e., would always be chosen),
we can conclude that s 2 B(l).7 Of course, in practice,
one has much less information, so that the choice of ac-
tion can only constrain the beliefs. Still, this approach
of de�ning belief as what a�ects one's choice of action
is built into the agency hypothesis. This de�nition of
belief is closely related to the de�nition of null-states
in [Savage, 1972], as well as the de�nition of belief in
[Morris, 1994].

Example 1 (continued): Given our knowledge of the
thermostat, what beliefs can we assign it? We know
the thermostat's protocol and goals. We will assume
that its decision criterion simply prefers tuples that
are not dominated by another tuple. Given this, we
have the following constraints on the thermostat's be-
liefs: B(�) � fcoldg and at least one of ok or hot are
in B(+). If the thermostat's beliefs violate these con-
straints, the perceived outcome of the action prescribed

7To make this precise, we would also need to have some

exibility in the values of the outcomes in the di�erent
states. But this is still in line with our explanation.

by its protocol would be strictly less preferred than the
perceived outcome of the other action.

Example 2 A simple game The following tree de-
scribes a one-person decision problem based on a game
that appears in [Kreps and Wilson, 1982]:

�
�
�

A
A
A
�
�
�

A
A
A

Y N

y n

0

1

x

Initially the agent decides whether to choose Y or N .
If Y is chosen a payo� of 1 is obtained, otherwise the
environment chooses either y, with a payo� of 0 to the
agent, or n, with a payo� of x > 1. While game theo-
reticians are mostly concerned with how games should
be played when the environment is another rational
agent, we ask a simple question: what can we say if
we observed the agent's �rst move to be N? This is
an interesting question because it is easy to construct
a two person game based on this decision problem, in
which N is not a `rational' move. Such behavior, while
perhaps irrational in some sense, can still be under-
stood as rational given certain beliefs, e.g., that the
environment will play n.

The following payo� matrix describes the agent's de-
cision problem (the di�erent states of the world corre-
spond to the environment's behavior if N is played):

y n

Y 1 1
N 0 x

Having chosen N , if the agent's decision criterion is
maximin then regardless of the value of x, the agent
must believe that the environment will play n. Belief
that y is plausible is inconsistent with the agent's be-
havior, since it would imply that Y should be chosen.

In the case of the principle of indi�erence, if x < 2,
N is chosen only if the agent believes only n to be
plausible. If x � 2 then a belief that both worlds are
plausible would also cause N to be preferred.

Another decision criterion is minmax regret. The re-
gret of performing action ACT in a state s is the dif-
ference between the best that can be done in state s and
the actual payo� of ACT in s. This decision criterion
prefers actions whose maximal regret is minimal. Here
is the `regret' matrix for our decision problem:

y n

Y 0 x� 1
N 1 0

For an agent following minmax regret, if x < 2 the



agent must believe n to follow N , otherwise it may
believe either n or fn; yg.

4 CHOOSING AMONG BELIEF

ASSIGNMENTS

As we observed in the thermostat example, there are
often more than one consistent belief assignment. This
is not surprising, as we often require additional as-
sumptions to ascribe unique beliefs to agents, or we
may need some lower level, implementation dependent,
information. Dennett [Dennett, 1987] paraphrases the
Duhemian thesis in this area, saying that belief and de-
sire attribution are under-determined by the available
data.

Indeed, one way of obtaining a unique belief assign-
ment in the thermostat example would be to use a bet-
ter model. That is, by using domain speci�c informa-
tion. Assume, for instance, that the thermostat prefers
not to change the course of action it is pursuing, if the
result is not expected to improve its utility, i.e., if cur-
rently it is supplying hot water to the radiator then, all
other things being equal, it prefers not to change this
and shut-o� the water supply. This assumption can
be incorporated into our model by adding the course
of action pursued into the state description and ap-
propriately changing the utility function to re
ect the
above consideration. In that case we may be able to
limit the number of consistent belief assignments

However, there are also domain independent assump-
tions and preferences that we can make when ascribing
beliefs. These assumptions narrow down our choice,
without changing the model used. We look at two
such assumptions.

A common bias is to favor models that o�er adequate
explanation of the data. This is the idea behind the
following:

De�nition 10 A consistent belief assignment is
choice complete (within an extended context) if for
all local states, the decision criterion returns a unique
perceived outcome.

Assume that in all local states no two protocols have
the exact same perceived outcome. In that case, given
a consistent choice complete belief assignment, no pro-
tocol is as preferred as the actual protocol. Thus, the
agent will not be indi�erent among a number of most
preferred protocols. In this sense, a choice complete
belief assignment fully explains/justi�es the agent's
choice of action.

Example 1 (continued): We have seen that any belief
assignment for state � that includes the state cold is
consistent. There are 4 such possibilities. However,
only one of them, B(�) = fcoldg is choice complete.
Given this belief assignment the agent must choose the

action turn-on, while given any of the other 3 belief
assignments, the agent is indi�erent to the choice be-
tween turn-on and shut-o�.

A di�erent modelling bias is toward greater general-
ity. Given a number of belief assignments that explain
some behavior equally well , the preference is for those
making fewer assumptions regarding the agent's be-
liefs. That is, belief assignments in which fewer worlds
are ruled out.

De�nition 11 A belief assignment B is more gen-
eral than B

0 if 8l 2 LA : B0(l) � B(l) and B 6= B
0.

Given a set of belief assignments, B, B 2 B is a most
general belief assignment (mgb) w.r.t. B if there is no
B
0 2 B such that B0 is more general than B.

Example 1 (continued): Any belief assignment that
is a non-empty subset of fok ; hotg is choice complete
for the state +. However, the most general choice
complete belief assignment for that state is precisely
fok ; hotg.

In the sequel we will usually assume that either the
generality bias is accepted or the combination of both
which prefers the most general in the set of consistent,
choice complete, belief assignments. As the following
lemma shows, in some sense, the latter is the best we
can do in terms of assigning beliefs that do not make
the agent's actions arbitrary.

Lemma 1 If B is most general choice complete, the
decision criterion satis�es the sure-thing principle8,
and in local state l two protocols have the same per-
ceived outcome, then there is no choice complete belief
assignment under which their perceived outcome in l

di�ers.

Example 1 (continued): To summerize, we have the
following unique most general choice complete belief
assignment for the thermostat:

state � +
belief cold not-cold

5 ADDING TIME

Because we assumed that the thermostat has no mem-
ory nor that the environment has some special dy-
namics, we were able to model them without explicitly
introducing time. However, time is essential for rea-
sonably modelling many situation. Indeed the added
dimension of time allows us to examine the way the
mental state of an agent changes as it obtains new
information.

8That is, if it chooses v out of fv; ug then it chooses
v � w out of fv � w;u � wg, where � is the concatenation
operator.



We incorporate time by adding the notion of a run,
a description of a full history of the system, and the
notion of an initial global state, a state from which the
system can start out.

De�nition 12 Let G0 � LA � LE be the set of ini-
tial (global) states. A run is a sequence of states
s0; s1; : : : such that si 2 LA � LE , s0 2 G0 and

(8k > 0) (9a 2 AA) : � (sk�1; a) = sk.
9 The ex-

tended system, R, is the set of all possible runs.

Having changed from static states to runs, we must
rede�ned some of our basic notions.

De�nition 13 The set of possible worlds, S = fsjs
is a global state appearing in a run in R g. A context
is rede�ned as C = h�;G0i and an extended context
is rede�ned as C = h�;G0; u; �i. We rede�ne the utility
function as u : R! R.

Applying a protocol P at a state s will generate a
unique run r whose initial state is s, where each state
of r is obtained by performing the action prescribed
by P at the previous state. This allows us to maintain
the notion of a perceived outcome because we can now
associate a utility with each protocol at each state, the
utility of the run that this protocol induces at that
state.10

One last adjustment; we de�ned a belief assignment as
a function B : LA ! 2S . This de�nition will make it
hard for us to investigate belief change, i.e., the rela-
tions between an agent's beliefs at di�erent states of a
run. For example, if the agent has a clock, then its lo-
cal state at two consecutive states of a run will di�er,
because in each the clock's value would be di�erent;
consequently, the states the agent considers plausible
at these local states would be disjoint. Rather than
add additional atemporal elements, such as an explicit
language, we overcome this problem by rede�ning a be-
lief assignment as assigning possible runs, rather than
possible worlds, i.e., B : LA ! R. Because runs are
atemporal object, this choice makes the fundamental
changes in an agent's beliefs more clearly visible. 11

6 BELIEF CHANGE

With time added to our model, we must start consid-
ering how the agent's mental state changes over time.
Belief ascription, as currently de�ned, allows erratic
change across local states. An extreme example would

9Finite runs are modelled by runs in which 9n8m sn =
sn+m.

10Notice the this requires extending the utility function
over su�xes of runs. This is quite straightforward given
our deterministic model of the environment.

11The interested reader may consult [Friedman and
Halpern, 1994], where belief change is investigated from
this perspective.
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Figure 1: The change in an agent's local state after
performing actions a and a

0, respectively.

be an agent whose local state changes from l to l0, such
that PW (l) = PW (l0), yet B(l) \ B(l0) = ;. Part of
our conception of agents involves an expectation that
their beliefs should change in a `sensible' way ([Al-
chourron et al., 1985]). Constraints on belief change
across states are also of immense importance if we are
to be able to predict an agent's behavior. Having as-
cribed beliefs to the agent based on past actions we
must have such constraints to deduce the agent's cur-
rent beliefs. Having deduced the new beliefs, we can
use them to predict the agent's choice of action.

We will look at two patterns of belief change that
we �nd reasonable and prove two representation the-
orems. The theorems show that there are two ways
of viewing these restrictions, either as constraints on
new beliefs imposed by the previous beliefs and the
new information, or as requiring a general static way
of representing the agent's beliefs. We can then incor-
porate these restrictions into our model by requiring
a belief assignment to be consistent in the static sense
of De�nition 9, and to exhibit the desired pattern of
belief change. This will rede�ne the problem of belief
ascription for agents that can acquire new information
while acting.

In what follows we will assume that the agent has per-
fect recall , i.e., its local state contains all previous local
states. This describes agents that do not forget. How-
ever, much of the following development also makes
sense when the agent has only partial memory of past
states. Perfect recall implies that an agent's local state
changes from one state to the next. Therefore, any two
states on the same run are distinguishable.

6.1 ADMISSIBILITY

Consider the following restriction on belief change: if
my new information does not preclude all of the runs
I previously considered plausible, I will consider plau-
sible all runs previously considered plausible, that are
consistent with this new information.

We can illustrate this using Figure 1. The agent is
initially in local state l, where the possible runs are
u; v; w and y. Assume that B(l) = fu;wg. After per-
forming action a the agent �nds itself in state l1. If the



agent's beliefs are admissible then B(l1) = fug. How-
ever, assume that B(l) = fu; vg and the agent arrives
at l2 after performing a. Now we cannot say anything
about the agent's beliefs at l2, even if its beliefs are
admissible (except of course B(l2) � fw; yg).

De�nition 14 A belief assignment B is
admissible,12 if for local states l; l0 such that l0 fol-
lows l on some run: whenever PW (l0)\B(l) 6= ; then
B(l0) = PW (l0)\B(l); otherwise l0 is called a revision
state and B(l0) � PW (l0) is otherwise not restricted.

If we were to assume that the worlds here are models
of some theory then, in syntactic terms, admissibility
corresponds to conjoining the new data with the ex-
isting beliefs, whenever this is consistent. It is closely
related to the probabilistic idea of conditioning our
beliefs upon new information. Most work on belief re-
vision makes additional requirements on beliefs follow-
ing inconsistent information (what we call a revision
state). We will return to this issue in the end of this
section.

We can shed additional light on this restriction by
the following representation theorem. This theorem
shows that we can either ascribe the agent beliefs that
change locally in accordance to the admissibility re-
quirement or we can ascribe the agent a more complex
static ranking structure that uniquely determines its
beliefs in each state. That is at each state l the set
B(l) is exactly the set of elements in PW (l) that are
minimal w.r.t. this ranking.

De�nition 15 A well founded ranking r of a set
Q is a mapping from Q to a well ordered set O. Given
a subset Q0 of Q, the elements minimal in Q0 are those
that have the minimal rank, i.e., are assigned the low-
est element of O by r.

A ranking of Q associates each member of Q with the
group of other members having the same rank and
orders these groups according to the rank assigned to
them. In general one speaks of a total pre-order with
a minimal element. The elements of lower rank are
considered to be better, more preferred, or more likely.

Theorem 1 Assuming perfect recall, a belief assign-
ment B is admissible i� there is a ranking function r

(i.e., a total pre-order) on the possible runs such that
B(l) = fs 2 PW (l) : sis r-minimal in PW (l)g.

6.2 WEAK ADMISSIBILITY

The requirement that belief assignments be admissi-
ble may seem too strong. A weaker requirement is the
following: if my new state is consistent with a run I

12This is not to be confused with the notion of admissi-
bility in game theory.

believed before, I should still believe in that run's pos-
sibility. However, unlike when my belief assignment is
admissible, once I learn that a run I considered plau-
sible before is in fact impossible, I may additionally
consider plausible runs which I did not consider plau-
sible before. However, if what I learn only rea�rm my
previous beliefs, i.e., I only learn that a run I did not
believe plausible is completely impossible, my beliefs
should not change. Formally:

De�nition 16 A belief assignment is weakly ad-
missible if when a local state l0 follows l,

1. B(l0) � B(l) \ PW (l0).

2. If B(l) � PW (l0) then B(l0) = B(l)

Looking at Figure 1 again, if the agent believed in u;w
in l and its state changes to l1 then it may believe ei-
ther in u or in u; v. However, if the agent only believed
u to be plausible in l, then at l1 its only consistent be-
lief is in u.

Fortunately, we can again relate the ascription of
weakly admissible beliefs to that of ascribing a static
partially ordered belief structures. Again, this struc-
ture determines the agent's beliefs at l by choosing the
minimal elements of PW (l) according to this struc-
ture.

De�nition 17 A partial pre-order on Q is a partial
subset of Q�Q that is re
exive and transitive.

Theorem 2 The beliefs of an agent with perfect re-
call are weakly admissible i� there is a partial order
< on the set of possible runs, such that its beliefs at
l correspond to the minimal runs in PW (l) according
to <.

Patterns of beliefs change similar to ours emerge in the
work of other researches (e.g., [Friedman and Halpern,
1994, Lamarre and Shoham, 1994]). Indeed, relations
between belief revision and belief update, and repre-
sentations using partial and total pre-orders are well
known. It was shown in [Katsuno and Mendelzon,
1991b] that any revision operator that satis�es the
AGM postulates ([Alchourron et al., 1985]) can be rep-
resented using a ranking of the set of possible states.
We require less to obtain the same representation.
The reason for this, besides our assumption of per-
fect recall, is our emphasis on belief ascription, rather
than on prescribing belief change. The need for ad-
ditional requirements arises when counter-factual rea-
soning has to be accounted for. Then, given a certain
state, all ways in which it can be revised must be ac-
counted for. On the other hand, we are not asking the
question of how the agent's beliefs would look like if it
were to take a di�erent action than the one prescribed
by its protocol; we only need to explain the particular
actions performed by the agent at di�erent states.



7 EXISTENCE - GOAL SEEKING

AGENTS

But when does a belief assignment exist? From the
point of view of modelling this question is crucial, and
Savage's answer to it ([Savage, 1972]), provides much
of the foundation of statistics and economic modelling.
In order to model programs, machines, or humans, us-
ing the various abstract mental states investigated in
AI, it is important to recognize the conditions under
which these modelling tools can be used.

Examining Savage's work we see that he is able to as-
cribe likelihood and utilities by imposing certain con-
sistency restrictions on the agent's actions. We will
follow a similar path. We �rst restrict ourselves to
a certain class of extended contexts and then require
the agent's protocol to satisfy two restrictions. We will
show that an agent satisfying these restrictions and op-
erating in the given class of extended contexts, can be
ascribed a unique most general choice complete belief
assignment.

The contexts we examine here are of a special kind that
is quite natural in many AI applications. Local states
are of two types, goal states and non-goal states. Runs
are �nite and their utility is determined by the last
local state, i.e., 1 if it is a goal state, and 0 otherwise.
We have a distinguished action, HALT, whose utility
(or more precisely, that of its outcome) in a goal state
is 1, and 0 otherwise.

We de�ne two rationality postulates on protocols, that
embody a notion of a goal-seeking agent. The rational
e�ort postulate says that the agent must halt when-
ever it is in a goal state, or when it is impossible to
reach a goal state. The rational despair postulate says
that to halt the agent must either be in the goal or be
able to show a possible world under which he can never
reach the goal. Notice that these postulates refer to
the set PW (l) describing the agent's knowledge, rather
than to B(l) (preventing possible circularity later).

Rational E�ort Postulate The protocol in a local
state l is either HALT or weakly dominates HALT.

Rational Despair Postulate The protocol in a non-
goal local state l is HALT only if for some s 2 PW (l)
there is no protocol that achieves the goal.

We will call an agent satisfying these postulates who
operates in the contexts described above and whose
decision criterion is consistent with weak dominance
(i.e., if v is preferred over v0 then v

0 does not weakly
dominate v13 ), a goal-seeking agent.

Theorem 3 If A is a goal seeking agent then it can
be ascribed a unique most general admissible belief as-

13Let v(i) be the ith element of v. We say that v0 weakly
dominates v if 8i v0(i) � v(i) and 9i v0(i) > v(i).

signment and a unique most general choice complete
admissible14 belief assignment.

Many people view rational choice as equivalent to ex-
pected utility maximization under some probability
distribution. While we �nd the probabilistic approach
most appropriate in many contexts, we do not share
this view (see the following discussion). Indeed, we
show that, in 0/1 utility contexts any behavior consis-
tent with expected utility maximization under some
probability distribution can be attributed belief in our
framework. Let us de�ne a B-type agent as one whose
beliefs are represented by a (subjective) probability as-
signment, whose preferences are represented by a 0/1
utility function, and whose decision criterion is based
on expected utility maximization w.r.t these probabil-
ity and utility assignments. However, we require that
when no action has an expected utility greater than 0
then HALT is performed.

Corollary 1 An agent that can be modelled as a B-
type agent is a goal-seeking agent, and consequently,
can be viewed as a perceived outcome maximizer, us-
ing some admissible belief assignment and a decision
criterion consistent with weak dominance.

8 COMPLEXITY - PRACTICAL

AGENTS

In the following theorems we will assume speci�c
(though very general) representation of the protocol
and the context. We defer these details to the end of
this section.

Theorem 4 The problem of �nding an mgb for the
goal cardinality criterion is CO-NP hard, where the
input consists of a description of the context and the
protocol as de�ned below.

This result shows that even for a simple commonsen-
sical criterion, computing an mgb may be very expen-
sive. A closer examination of its proof suggests that a
more practical view of belief may greatly help simplify
the problem. This may be described as the wishful-
thinking approach. The states I believe in are those I
consider plausible and from which I think I have some
chance of achieving the goal. Such beliefs may be in-
terpreted as not simply plausible worlds, but rather
practical plausible worlds, i.e. plausible world in which
I can do something to achieve my goal. For example,
in the game of bridge this is a common tactic for the
defenders. If it seems likely that the contract can be
made, the defenders play under the assumption that
they can actually bring down the contract, if this is
possible.

14The notion of generality as de�ned in Section 3 must
be adjusted in the case of admissible belief assignments.
See Section 8.



Practical beliefs can be captured by the following con-
straint: :K:3g ! B3g (where 3g is satis�ed in a
world in a run if the run eventually satis�es g). For
agents that can be consistently ascribed such beliefs
the problem of belief ascription becomes tractable.

Theorem 5 If the agent can be ascribed beliefs that
obey the following condition

:K:3g ! B3g

then the problem of �nding the mgb given the goal car-
dinality criterion becomes polynomial in the input size
� the maximal length of a run.

The representation The agent's state is described
by two components: his physical state and his mem-
ory. His protocol is a function of both. Both the
agent and the environment have a �nite number of
states and the transition function is described by a �-
nite state machine. The �nite state machine consists
of two components (i.e., it is a product of two �nite
state machines), one of them being the physical de-
scription of the agent, the other corresponding to the
environment. The actions of the agent and the envi-
ronment together determine the next state of both (i.e.
the physical state of the agent and the environment).
Thus, this models the common situation in which the
result of the agent's actions depend on his physical
state and on the state of the environment. The pro-
tocol may depend on the agent's history as well (i.e.,
not only on its physical state) and will be represented
as a decision tree of polynomial depth.

A more precise statement of the complexity in Theo-
rem 5 is that it is linear in the number of initial states
� the maximal length of a run �C, where C is the
time it takes to compute the next state given the cur-
rent state, and is bounded by the size of the protocol
� the size of the transition function.

9 CONDITIONS FOR A UNIQUE

BELIEF ASSIGNMENT

In Section 4 we looked at two criteria for choosing
among consistent belief assignments, in particular the
notions of generality and a most general belief assign-
ment (mgb) were introduced. Naturally, it is desir-
able to be able to point out a single consistent belief
assignment as most appropriate. If one accepts the
generality criterion, this translates into the question
of whether a unique most general belief assignment
exists. In general the answer is no and we provide a
counter example. However, after adopting the notion
of generality to �t the case of admissible and weakly
admissible belief assignments, we will show that for
monotone decision criteria we can give a positive an-
swer to the uniqueness question. All of our results can
be extended to the case of unique most general choice
complete belief assignments.

The question of uniqueness is closely related to a prop-
erty of decision criteria that we now discuss. Remem-
ber that the tuples on which we are making a decision
correspond to the perceived outcomes of a protocol in
some local state. An interesting question is the follow-
ing: If P is preferred over all other protocols when the
plausible worlds in PW (l) are B1(l) and also when the
plausible worlds are B2(l); is it still preferred when the
plausible worlds are B1(l) [ B2(l)? When B1(l) and
B2(l) are disjoint, a positive answer is reminiscent of
the sure thing principle, and is highly intuitive. We
call a decision criterion satisfying this property weakly
monotone. When B1(l) and B2(l) are not disjoint,
if this property is satis�ed, we say that the decision
criterion is monotone. The maximin and minmax re-
gret criteria satisfy this property, but the principle of
indi�erence, for instance, does not.

Theorem 6 If the decision criteria is monotone and
a belief assignment exists then there is a unique mgb.

It is easy to construct a counterexample when mono-
tonicity is not obeyed, using the principle of indi�er-
ence.

Example 3 We are presented with the following de-
cision problem.

s1 s2 s3 s4 s5

a1 2 2 11 2 2
a2 7 7 0 7 7

If we believe in fs1; s2; s3g or fs3; s4; s5g then accord-
ing to the principle of insu�cient reason we prefer to
take action a1. However, for there to be a unique mgb
their union, fs1; s2; s3; s4; s5g, must be consistent with
a1, yet given this set of beliefs we prefer action a2.

9.1 UNIQUE ADMISSIBLE BELIEFS

When an agent has admissible beliefs, the notion of
a most general belief makes little sense. Because of
its properties, we will usually have to make the belief
assignment less general in one state in order to obtain
one that is more general in another state

Example 4 Consider the following case: there are
four possible runs: a; b; c; d in the initial local state
l1. After the �rst action there are two possible local
states l2 and l3 corresponding to two sets of two runs
each: a; b and c; d.
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Assume that in l1 we can ascribe beliefs in a; b or a; b; c,
in l2 we can ascribe belief in a; b, and in l3 we can



ascribe belief in c or c; d. There are two admissible
belief assignments: B1 assigns a; b; c to s1, a; b to l2

and c to l3 while B2 assigns a; b to l1, a; b to l2 and
c; d to l3, none of which is more general than the other.
Note that B1 [B2 is not admissible.

However, the notion of a ranking helps us recognize a
preference criteria over admissible beliefs. In another
context, that of non-monotonic logics, worlds minimal
in a ranking structure are often described as `most
normal'. There, structures that are `thicker' at the
bottom are often preferred, because they make less as-
sumptions of non-normality. Our preference for such
structures is that the actions one takes initially, when
there is least knowledge, are the most crucial, thus the
assumptions made at the initial states, which corre-
spond to the minimally ranked states, are the most
crucial. We prefer belief assignments that take more
worlds into consideration in these stages. Such beliefs
are less likely to be inconsistent.

De�nition 18 An admissible beliefs assignment B is
more general than B

0 if, represented as ranking func-
tions, B and B

0 are identical up to some rank m, and
B
m � B

0m (recall that Bm is the mth rank of B).

We will refer to this de�nition of more general when
talking about mgb in the context of admissible beliefs.

Theorem 7 For agents with perfect recall, if the de-
cision criteria is monotone then the set of consistent
admissible belief assignments, if non-empty, contains
a unique mgb.

9.2 UNIQUE WEAKLY ADMISSIBLE
BELIEFS

For admissible belief assignments the property of set-
theoretic inclusion for more general belief assignments
had to be given up. This was unfortunate because the
de�nition of generality based on set-theoretic inclusion
guarantees that beliefs attributed to the agent accord-
ing to the mgb can be attributed given any consistent
belief assignment. Fortunately, for weakly admissible
belief assignments we can see, via their representation
as partial orders, that a most general belief assign-
ment in the set theoretic sense, exists. This is pleasing
because it would otherwise be di�cult to motivate a
de�nition of one partial order being more general than
another in which all partial orders were comparable.

Theorem 8 For monotonic decision criteria if the set
of belief assignments is not empty then a (set theo-
retic) most general weakly admissible consistent belief
assignment exists.

10 DISCUSSION

To conclude we re-examine the work presented in this
paper and some related research.

10.1 RE-EXAMINING THE
FRAMEWORK

The ability to model agents at the mental level is most
likely required for any form of arti�cial intelligence.
However, as an abstraction it is already useful for more
mundane modelling tasks. It is extremely important in
multi-agent domains, as agents must construct mod-
els of other agents, but it is also useful as a means of
describing and analyzing systems at an abstract, yet
highly intuitive, level. As such, a model of the men-
tal level should strive to be simple and intuitive. Yet,
it must also be precisely formulated with sound foun-
dations. We believe that the framework we presented
meets these criteria. In its formulation we aspired for
a framework that will shed light on the semantical and
theoretical issues of belief ascription without making
some of the problematic modelling assumptions made
in other frameworks (discussed next), that make their
use in practical applications di�cult.

Our work attempts to improve our understanding of
belief ascription on two levels, as a practical modelling
task and as a way of grounding the notion of belief in
an agent's choice of action through an ascribed deci-
sion making process. Belief in our framework, repre-
sents the agent's subjective information on the outside
world that is utilized in decision making. Thus, we
modelled beliefs as a function of the agent's local state,
for otherwise, the actual state of the world would af-
fect its beliefs, without a�ecting its state. We demon-
strated that for a large class of goal-seeking agents, be-
liefs can be ascribed within our framework. We have
also suggested two methods for narrowing the choice
among candidate belief assignments that under cer-
tain conditions point out a unique belief assignment
and investigated the computational feasibility of belief
ascription. While this is a di�cult task in the general
case, we showed that for certain types of agents, this
task is tractable.

One may ask why do we emphasize belief ascription,
when the framework supplies the basis for ascribing
utilities or a decision criterion. Ascription of these no-
tions is certainly important, but there are a number of
reasons for our choice. Belief and knowledge are by far
the most extensively researched mental states within
AI and philosophy (e.g. [Kripke, 1963, Hintikka, 1962,
Moses and Shoham, 1993, Katsuno and Mendelzon,
1991a, Alchourron et al., 1985, Goldzmidt and Pearl,
1992, Boutilier, 1992, del Val and Shoham, 1993,
Lamarre and Shoham, 1994, Friedman and Halpern,
1994]), and it is therefore important to understand
where they come from and how to ascribe them. More-
over, mental-level modelling is often used by us to con-



struct rough descriptive models. It is often the case
that an agent's goals are known. This su�ces to sup-
ply rough estimates of utilities. Knowing an agent's
decision criteria seems harder, but we have shown that
for `reasonable' protocols in 0/1 utility contexts, be-
liefs can be ascribed based on the trivial assumption
that the agent prefers weakly dominant tuples. These
contexts are natural in many CS applications. Addi-
tionally, while the plausible worlds for an agent in dif-
ferent situations may be unrelated, the decision crite-
rion is almost constant. Observing an agent's decision
criterion in one case seems a good indicator of its de-
cision criterion in other cases. Naturally, in normative
applications, such as analysis of protocols, the designer
can readily provide all the required information.

10.2 RELATED WORK

There has been some important research on ascribing
mental states to agents. One major research area is
plan ascription, an important task in discourse under-
standing and multi-agent systems (e.g.,[Kautz, 1990,
Konolige and Pollack, 1989, Pollack, 1990]). The
aims of the work on plan ascription is more spe-
ci�c than ours and plans are often ascribed based
on utterances (e.g., [Konolige and Pollack, 1989]).
More speci�cally, Konolige ([Konolige, 1990]) has done
some theoretical work on explanatory belief ascrip-
tion. His work looks at the question of how to ex-
plain known beliefs of an agent by ascribing this agent
additional beliefs. His work implicitly assumes a high-
level agent into whose beliefs we have some access,
usually through the utterances of that agent. He
then explains these beliefs based on other, ascribed,
beliefs. This work does not deal with the general
problem of belief ascription. Both [Konolige, 1990,
Konolige and Pollack, 1989] have a somewhat syntac-
tic 
avor, due to the use of argumentation systems and
derivational models. In contrast, our framework does
not employ some of the stronger techniques used in
these papers, but addresses more basic semantic issues
and is based upon a more general semantic model of
the mental level. It seems general enough to provide
the foundations for belief ascription based on utter-
ances, if utterances are treated as speech acts [Austin,
1962].

Most in
uential on our work was the knowledge as-
cription framework of [Halpern and Moses, 1990] and
the closely related work of [Rosenschein, 1985] on sit-
uated automata, which de�nes knowledge in a similar
manner. Halpern and Moses de�ne a formal notion of
knowledge that is grounded in the state space descrip-
tion of a system. The set of possible worlds of an agent
then emerges from the notion of a local state. We have
built our framework upon their framework. However,
the notion of knowledge does not take into account the
agent's actions, but is based strictly on the state-space
description of the domain. By adding action into the

picture, we are able to enrich the model.

The work of Savage [Savage, 1972] and Anscombe and
Aumann ([Anscombe and Aumann, 1963]) on subjec-
tive probability and choice theory is closely related
to our work. This work takes a similar view of the
notion of belief, i.e., as emerging from the represen-
tation of an agent's preference over actions. It shows
that given the preferences of an agent over possible
actions, where these preferences satisfy certain con-
straints, the agent can be viewed as acting as an ex-
pected utility maximizer under unique ascribed (prob-
abilistic) beliefs and utilities. This work is extremely
elegant, yet it has some limitations from our perspec-
tive. First, it is probabilistic, while much work on
knowledge and belief within AI, CS, and philosophy is
discrete. This means that it cannot provide the foun-
dation for these notions of belief. Secondly, there are
serious practical problems with its application to our
setting. The strength of the representation theorems
of Savage and Anscombe and Aumann, especially the
uniqueness property, stems from a number of strong
requirements. One must supply a total pre-order on
the set of all possible acts, i.e., all functions from
initial states to outcomes, many of which are purely
�ctional acts. This information will not be available
to an observer of the system, nor will it be easy for
a designer to come up with it. Another assumption
is that the state description is rich, i.e., that for any
natural n, there exists a partition of the set of states
into n subsets, all of which are equally likely. This
means that the number of states must be in�nite. In
addition, expected utility maximization has been crit-
icized as a normatively inadequate decision criterion
(see [Kyburg, 1988] and other papers in [G�ardenfors
and Sahlin, 1988]). It is certainly inadequate descrip-
tively, as many studies have shown (e.g., [Machina,
1989]) and is therefore problematic in modelling other
agents.

In contrast, we believe that our formalism is better
suited for many modelling tasks in AI and CS. Our
framework is discrete, thus relevant to the body of
work on discrete notions of belief. It also requires
much less information. We only assume awareness of
the agent's actual protocol ( e.g., through observations
or as a given speci�cation), and knowledge of the pos-
sible alternatives, that is, the agent's set of possible
actions. It does not require complete knowledge of
the preference relation among other protocols, nor the
additional richness assumption on the set of states.
Moreover, as we remarked earlier, it is straightforward
to apply our ideas when only part of the protocol is
known, for example, when we have seen the agent act
only in a subset of its set of possible local states.

Our greater generality cannot come without a price.
Because we require less information, in the general
case, we cannot supply a unique belief assignment, but
only constrain the set of consistent ones. Indeed, we



must also require information on the agent's preference
over speci�c outcomes (which in this paper took the
form of a utility function)15 and the decision criterion
(although we saw one example where the latter was
not necessary).

Another advantage of our framework is that it leaves
the decision criterion as a parameter. This gives us
added modelling 
exibility. On the one hand, our no-
tion of a decision criterion can be easily generalized
for our framework to cover expected utility maximiza-
tion as a special case. On the other hand, decision
criteria that allow for notions of preference that do
not satisfy the Von Neumann-Morgenstern axioms are
possible. This 
exibility is useful for descriptive pur-
poses, because we may want to model di�erent classes
of entities. But even for normative purposes one may
wish to relax these requirements. For example, we
may want our agent to act as if some goal's utility is
in�nitely greater than any other, e.g., the preservation
of human life. This can only be done if we relax the
Von Neumann-Morgenstern axioms.

We have stressed the problem of grounding before. Re-
search on abstract mental states is certainly impor-
tant. Yet, notions such as `beliefs', `goals',`intentions',
etc., are more meaningful if they can be embedded
in some concrete setting. A major contribution of
the work of [Halpern and Moses, 1990, Rosenschein,
1985] is supplying this concrete setting, showing how
the notion of knowledge arises in distributed systems
and in situated agents. In his 1985 Computers and
Thoughts speech [Levesque, 1986b], Levesque spoke
about making believers out of computers, thus sup-
plying a concrete interpretation of belief. However,
the actions of the systems Levesque was referring to,
all have to do with answering queries. Levesque's view
serves as a means of abstracting the constraint that
(for a meaningful investigation of knowledge represen-
tation schemes) the system's actions must depend on
the content of the data-structures used to represent
knowledge (see also [Levesque, 1986a, p. 258]). This
abstract view has proven to be extremely fruitful for
understanding the task of knowledge representation.
However, most systems (computer, mechanical or bio-
logical) are situated in some environment. Their goal
is usually much more general than correctly represent-
ing it, although that may be useful. Their actions
range from writing into �les to changing the tempera-
ture of a room. Therefore, there is much to be gained
by taking actions in general as the basis for ascribing
beliefs. If we do not de-contextualize belief by ignoring
the agent's actions, goals, etc., we may be able to ob-
tain a better understanding of these systems. Indeed,
we see our main conceptual contribution in grounding
the discrete notions of beliefs used in AI in the more
concrete (and empirically testable) notion of prefer-

15In Savage's framework, this is simply one aspect of the
ordering on acts.

ence over action. In modelling a system, ascribing it
beliefs makes sense if and only if the system is acting
as though these are its beliefs.
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A Proofs

Proof of Theorem 1
Perfect recall implies that worlds that were impossible
cannot become possible. For one direction note that
if the agent's belief are the accessible worlds of min-
imal rank then when we move into a new state the
possible worlds are a subset of the previous possible
worlds. Since the ranking is �xed, if any of the pre-
viously minimal worlds are possible then they remain
minimal, and no world that was not minimal can be-
come minimal. If none of the previous minimal worlds
is possible, then the new minimal worlds are not re-
lated in any way to the previous ones. For the other
direction, assume that B is admissible, we construct a
ranking function based on B. For simplicitywe assume
the initial states are all indistinguishable. We give an
algorithm for constructing the ranking. It may require
an in�nite number of steps to be completed. However,
each step produces a ranking that contains the pre-
vious one, i.e., all states that are part of the previous
ranking have the same rank, so the answer is the union
of running this algorithm for any �nite amout of time.
At stage n of the construction we consider the set of
local states that appear at time n � 1 of any possible
run. First, we assign all the states of B(li) to rank
0, where li is the initial local state and rank 0 is the
lowest. At the nth stage we look at all local states l
that are at stage n of some possible run and for every
state. For any such state l, if u 2 B(l) but has not
yet been assigned a rank, we assign it to rank n � 1.
We have to show that this reproduces the original be-
lief assignment. It clearly does at li. Assume that it
does at l, a local state that is nth in some run and



let l` be a child of l. If B(l0) contains a run that is
not in B(l) then by admissibility B(l) \ PW (l`) = ;.
Therefore, non of B(l0) appear at a rank smaller than
n, but all apear in rank n. We must also show that
no run in PW (l0) n B(l`) appears in rank n. But if
this was the case then in some local state appearing
at stage n or before, this state was believed. Clearly,
it could not have been in one of the ancestors of l0,
because that would violate admissibility. Therefore, it
must have appeared in a di�erent tree, but this tree
would contain completely di�erent possible runs.

Proof of Theorem 2
It is clear that beliefs based on a partial ordering of
states are weakly admissible. If s is minimal in a set
A, it is minimal in any subset of A containing s, and
the minimal items in a set A are the same as the min-
imal items in any subset of A that contains all these
minimal items. Assume that B is weakly admissible,
we will construct a partial ordering < such that for
each local state l our beliefs in l will be equal to the
minimal elements of PW (l) according to <. Let li

be the initial local state. We make all states of B(li)
incomparable and minimal. Let l be a local state fol-
lowing li (remember, we are assuming full history),
PW (l) � PW (li). If B(li) � PW (l) we change noth-
ing. If B(li) 6� PW (l) we choose some element s s.t.
s 2 B(li) but s 62 PW (l) and make all elements of B(l)
that are not in B(li) above it in the ordering (i.e., less
preferred), but incomparable to each other. This pro-
cess is performed breadth �rst. Elements that remain
unassigned in the end can be made less preferred than
the last element assigned.

Lemma 2 The belief assignment B
0 induced by the

above partial order equals B.

Proof : We prove by induction on the nodes of the tree
that B(l) = B

0(l) and that for all l, fs : s 2 B
0(l)g are

incomparable. For the initial local state, li, we have
constructed the partial order such that all elements of
B(li) are incomparable. Since all other worlds were
placed above some world in B(li) they are minimal
as well. Let l be some local state and l

0 its parent.
If PW (l) contains B(l0) than we know that nothing
changes in B

0 (because it is a partial order) and B

(because it is weakly admissible). Otherwise we have
made whatever worlds are in PW (l) but not in B(l)
above some world s that is no longer possible. This
makes all of them minimal, since s was incomparable
to other worlds in B(l0), we now have that all worlds
in B(l) are minimal in PW (l) w.r.t. B

0 and are in-
comparable.

Proof of Theorem 3
We construct an admissible belief assignment B. Let
l
i be the initial local state. If P performs HALT at
l
i then either it is a goal state and we choose B(li) =
PW (li) or otherwise there is a world s 2 PW (li) such

that the goal cannot be reached from s (using Rational
Despair). We let B(li) be set of all such worlds. If P
does not perform HALT we choose the maximal set,
S, of states under which P is weakly dominant, we
let B(li) = S. Such a set exists and is not empty,
since otherwise P must be HALT (applying Rational
E�ort). By de�nition of admissibility, for any state, l,
consistent with S (i.e., S\PW (l) 6= ;) we must de�ne
B(l) = S \ PW (l), therefore, we need to see that in
any state l consistent with S, P still weakly dominates
according to S \ PW (l). Assume the contrary. This
means that for some state s 2 S \PW (l), P does not
achieve the goal, while some other protocol, P', does
achieve the goal. But this means that there is some
protocol P" such that P" is the same as P up to l,
and the same as P' from l. P" weakly dominates P in
l
i. This contradicts our choice of P in l

i.

In states l not consistent with S (i.e., states in which
S\l = ;), we cannot achieve the goal using P . By the
Rational E�ort postulate this means that at these local
states the protocol must be HALT (since an action that
cannot achieve the goal in any state does not weakly
dominate HALT). By the Rational Despair postulate
this means that there is some world s 2 PW (l) from
which no protocol attains the goal. We let B(l) the
set of all such worlds.

Proof of Theorem 4
We give a reduction to the complement of the problem
of producing a guaranteed plan for goal achievement in
[Safra and Tennenholtz, 1993]. There the problem of
the existence of a guaranteed plan is shown to be NP-
hard. In that problem we are given a local state state l
consistent with n global states, along with a transition
function � and a set of goal states g. We are to show
that there is no guaranteed plan for achieving the goal
within a polynomial number of steps. We transform
this into the problem of computing the most general
belief assignment with the goal cardinality criterion by
adding a new action �a that moves us from all initial
states but one, s, to a goal state, but from s causes
us not to be able to reach the goal. s is part of B(l)
when the protocol consists of the action �a i� there is
no protocol that guarantees achieving the goal from l

(i.e., from all possible global states consistent with l,
including s).

Proof of Theorem 5
This condition means that if from some of the global
states consistent with the local state we can reach the
goal then the states I consider possible are those from
which the goal can be reached. Because of general-
ity this will mean that the states believed are exactly
those from which the goal can be reached. Computing
these states is simple. We check for each local state if
we can reach the goal from it using the protocol, if so
we believe in it. We can do so by simply simulating the
protocol on the set of initial states. This in fact gives



us the most general choice complete belief assignment
obeying the above requirement.

Proof of Theorem 6
Since the belief assignment has to satisfy local criteria,
i.e., for any local state the actual protocol maximizes
outcomes w.r.t. the decision criteria, it is easy to see
that because of monotony, if B and B

0 are belief as-
signments then so is B [B0. This ensures uniqueness.

Proof of Theorem 7
Given that the agents have complete histories we know
that we can think of their belief assignments as rank-
ings. Assume that B1 and B2 are two di�erent belief
assignments, none of which is more general than the
other. We show that we can construct an admissible
belief assignment that is more general than both. Let
l be a local state. W.l.g. assume that B0

1
6= B

0

2
(re-

member, Bi denotes the states in the ith rank of B..
We claim that an admissible belief assignmentB exists
such that B0 = B

0

1
[B0

2
.

First we show that for local states l such that PW (l)\
(B0

1
[ B

0

2
) 6= ; we are consistent. If PW (l) contains

only elements from B
0

1
or B0

2
, then nothing changes

since (because of admissibility) our beliefs there ac-
cording to B must be the same as one of B1 or B2,
and since both are consistent with the decision cri-
teria, there is no problem. If PW (l) contains states
from both, our beliefs will be the union of these and
due to monotonicity are still consistent. Otherwise, l
must be a revision state, in which case B(l) need not
be a�ected by our choice of B0 and we can arbitrarily
choose B(l) to be the same as B1(l). This gives us an
admissible belief assignment that is more general than
both B1 or B2.

Proof of Theorem 8
First observe that the union of two weakly admissible
belief assignments is a weakly admissible belief assign-
ment. Let B1 and B2 be such assignments. Let l be a
local state and l0 be some child of l. We know that all
members of B1(l) (resp. B2(l)) that are in PW (l0) are
inB1(l

0) (resp. B2(l
0)). Thus all members ofB1[B2(l)

that are in PW (l0) are in B1[B2(l
0). If all members of

B1(l) and B2(l) are in PW (l0) then B1(l) = B1(l
0) and

B2(l) = B2(l
0), so B1[B2(l) = B1 [B2(l

0). Therefore
B1 [B2 is weakly admissible.

To prove uniqueness we need to show that B1 [ B2

is consistent with the rationality criteria which is an
immediate corollary of monotonicity.


