CONTENTS

PART 1 (Issued 29 February 2000)
O'DONOGHUE, P.J. \& ADLARD, R.D.Catalogue of protozoan parasites recorded in Australia
PART 2 (Issued 30 June 2000)
BARTSCH, 1.
Rhombognathinae (Acari: Halacaridae) from the Great Barrjer Reef, Australia 165
BEVERIDGE, I.
Species of Discocelis (Platyhelminthes: Polycladida) from Queensland, with description of a new species 205
BEVERIDGE, 1. \& CRIBB, T.H.
Noroplana dishia (Schmarda) (Platyhelminthes: Polycladida) from Queensland 215
buckeridge, J.
Cirripedes as palaeoecological indicators in the Te Aute lithofacies limestone, North Island, New Zealand 221
CLIFFORD, H.T. \& PEMBERTON, M.R.
Stem casts of Leptophloeum australe (McCoy) Walton and the response of their leaf-cushion bases to compression 227
COOK, A.G. \& BANN, K.
Trace fossils from the Uipper Carboniferous Jericho Formation, central Queensland 235
COUPER, P.J, SCHNEIDER, C.I, HOSKIN, C.J. \& COVACEVICH, J.A. Australian leaf-tailed geckos: phylogeny, a new genus, two new species and other new data. 253
DAVIE, P.J.F. \& NG, P.K.L.
Bountiana, a new genus for Eriphia norfolcensis Grant \& McCulloch, 1907 (Crustacea: Brachyura: Eriphiidae) 267
DAVIES, V.T. \& LAMBKIN, C.L.
Malarina, a new spider genus (Araneae: Amaurobioidea: Kababininae) from the wet tropics of Queensland, Australia 273
DETTMANN, M.E. \& CLIFFORD, H.T.
Gemmae of the Marchantiales from the Winton Formation (Mid-Cretaceous), Eromanga Basin, Queensland 285
FRITH_{2} C.B. \& FRITH, D.W.
Bower system and structures of the Golden Bowerbird. Prionodura newtoniana (Ptilonorhynchidae) 293
FRITH, C.B. \& FRITH, D.W.
Attendance levels and behaviour at bowers by male Golden Bowerbirds, Prionodura newitoniana (Ptilonorhynchidae) 317
FRITH, C.B. \& FRITH, D.W.
Home range and associated sociobiology and ecology of male Golden Bowerbirds Prionodura newtoniana (Ptilonorlbynchidae) 343
FRÝDA, J.Some new Givetian (late Middle Devonian) gastropods from the Paffrath area (BergischesLand, Germany)359
GREER, A.E. \& SHINE, R.
Relationship between mass and length in Australian elapid snakes 375
HARTENSTEIN, V. R DWINE, K.A.
Freshwater dalyelliid flatworm, Gieysztoria superba sp. nov. (Dalyelliidae: Rhabdocoela) from southeast Queensland, Australia. 381
HERBERT, B. \& TIMMS, B.V.
A new species of Streptocephalus (Parastreptocephatus) (Crustacea: Anostraca: Streptocephalidae) from noth Queensland, Australia 385
HINES, B.M., HANNAH, D., VENZ, M. \& EYRE, T.
New distribution and habitat data for the vulnerable pygopodid, Delma torquata (Kluge, 1974) 391
HOARE, R.D. \&COOK, A.G.
Devonian and Early Carboniferous Polyplacophora from Western Australia 395
HOCKNULL, S.A.
Mesozoic freshwater and estuarine bivalves from Australia. 405
HOOPER, J.N.A, KELLY, M, \& KENNEDY, JA. A new Clathria (Porifera: Demospongiae: Microcionidae) from the western Indian Ocean 427
KENNEDY, J.A. \& HOOPER, JN.A.
New species of toxic Tedania from northern Vanuatu (Porifera: Demospongiae: Poecilosclerida: Tedaniidae) 445
KENNEDY, J.A.
Resolving the JJaspis stellifera' complex 453
RANDALL, JE, \& JOHNSON, J.W,
Perca lineata and P. vittata established as valid species of Plectarhinchus (Perciformes: Haemulidae) 477
McLOUGHLIN, S., TOSOLINI, A-M.P. \& DRINNAN, A.N.
Revision of an Early Cretaceous macroflora from the Maryborough Formation, Maryborough Basin, Queensland, Australia 483
OTTO, J.C.
Simognathinae (Acarina: Halacaridae) from the Great Barrier Reef and Coral Sea, description of thirteen new species 505
OTTO, J.C.
Halacaridae from the Great Barrier Reef and Coral Sea: the genera Lohmannella, Scoptognathides and Scaptognathus (Acarina: Halacaridae: Lohmannellinae) 535
PATERSON, R.A., CATO, D.H., JANETZKI, H.A. \& WILLIAMS, S,C.
An adult Dwarf Minke Whale Balaenoptera acutorostrata Lacepede, 1804 from Fraser 1sland, Queensland 557
RAVEN RJJ.
Taxonomica Araneae I: Barychelidae, Theraphosidae, Nemesidae and Dipluridae (Araneae) 569
RAVEN, RJJ. \& BAEHR, B.C.
Revised status of the genus Hetaerica Rainbow (Araneae: Zodaridae). 577
ROSS, A. \& NEWMAN, W.A.
A new coral-eating barnacle: the first record from the Great Barrier Reef, Australia 585
THOMSON, S.A.
A revision of the fossil chelid turtles (Pleurodira) described by C.W. De Vis, 1897 593
TREMUL, P.R.
Breeding, feeding and arboreality in Puradelma orientalis: a poorly known, vulnerable pygopodid from Queensland, Australia 599
VAN DYCK, S. \& CROWTHER, M.S.
Reassessment of northern representatives of the Antechinus stuartii complex (Marsupialia: Dasyuridae): A. subtropicus sp, nov. and A adustus new status. 611
VINK, C.J. \& SIRVID, P.J.
New synonymy between Oxyopes gracilipes (White) and Oxyopes mundulus L. Koch (Oxyopidae: Araneae) 637
WROE, S. \& MACKNESS, B.S.
Additional material of Dasyurus dunmalli from the Pliocene Chinchilla Local Fauna of Queensland and its phylogenetic implications 641
NOTES
CASTRO, P.
New records of trapeziid crabs (Crustacea: Brachyura: Trapeziidae) from the Coral Sea and northern Tasman Sea 204
PAL,MER, R,A. \& SHEA, G.M.
Eastern range extension for Morethia ruficauda courtesy of a cat stomach 226
CLIFFORD, H.T \& DETTMAN, M.E.
Fossil Typhar in Australia, 234
COOK, A.G.
Australonema from the Silurian of the Yass Basin, New South Wales 252
SHEA, G.M., SADLIER, R. \& JOHNSON, R.
The scincid lizard Egernia mcpheet Wells \& Wellington, 1984 in Queensland 266
RHODES, M.P. \& AMEY, A.P.
New locality for the endangered sheathtail bat, Taphozous troughtoni Tate, 1952 284
SMALES, L.R.
Nematodes from fish from the Keppel Islands, Keppel Bay, Queensland 384
McALPIN, S.
Addition to the herpetofauna of Queensland's Brigalow Biogeographic Region 394
NOAD, M.J.
A Southern Right Whale Eubalaena australis (Desmoulins, 1822) in southern Queensland waters 556
CHILVERS, B.L.Southern Right Whales Eubalaena australis (Desmoulins, 1822) in Moreton Bay,Queensland576

RHOMBOGNATIINAE (ACARI: HALACARIDAE) FROM THE GREAT BARRIER REEF, AUSTRALTA

I. BARTSCH

Bartsch, 1. 20000630 : Rhombognathinae (Acari: Halacaridae) from the Great Barrier Reet, Australia. Memoirs of The Queensland Muserm 45(2): 165-203. Brisbane, ISSN 0079-8835.

Abstract

Samples from tidal and subtidal zones from the Great Barriet Reef area offeastern Australia contained one species of Isobuctras and 11 of Rhombognathus. Three of these 12 shombognathine species, Isobactrus ponapensis Ahé, Rhombognathus papuensis Bartsch, and R. scuulatus Bartsch, have been recorded previously from areas outside castern Australia. The nine species R. cyrtonotus sp. nov., R. delicatulus sp. nov., R. Iathridius sp. nov., R. Jevigatus sp. nov., R. longipes sp . nov,, . reticulifer sp . nov, R. seminotatus sp , nov, R. tericulus sp . nov, and \mathcal{R}. validipes sp, nov, are described. A key is given to the eastern Australian thombognathines. I Eastern-Iustralia, Great Barvier Reef Halacaridac, rhomhognathines, now records, new species, descriptions, key.

Ilse Barrsch. Forschungsinstitut Senckenberg, Notkestp, 31, 22607 Hamburg, Germamy, (e-mail Burtsch@meeresforschung de); 29 Septemher 1999.

Rhombognathine mites inhabit intertidal and shallow subtidal substrata and matine and brackish waters. Rhombognathines are algivorous, accordingly they are found either on algal fronds or on substrata with epiphytes. Two rhombognathine genera, Rhombognathus and Isobactrus, are widely spread in the Pacific. To date, 34 species of Rhombognathus and nine of Isobactrus are recorded from the westem Pacific (Abé, 1998: Bartsch, 1999). Still the fauna of large areas is unknown, especially that of the Great Barrier Reef. To till this gap of knowledge, J.C. Otto took numerous samples in the Great Barrier Reef Marine Park which later proved to contain 12 thombegnathine species, representing two genera (Isoboctrus - 1 species and Rhombognathus - 11 species). Three of these species had been recorded previously, the others are new to science.

MATERLAL AND METHODS

The thombognathine mites from the Great Barrier Reef Marine Park area were collected and sorted by J.C. Otto, Australian Institute of Marine Science, Townsville.

The mites were cleared in lactic acid and mounted in glycerine jelly. Holotypes are deposited in the Museum of Tropical Queensland, Townsville (MTQ), paratypes and voucher specimens in the MTQ, the Queensland Museum, Brisbane (QM), the Western Australian Museum, Perth (WAM), the Zoological Institute and Zoological Museum, Hamburg (ZMH), and the author's halacarid collection (IB).

Abbreviations used: $\mathrm{AD}=$ anterior dorsal plate; $\mathrm{AB}=$ anterior epimeral plate; $\mathrm{AP}=$ anal
plate; $\mathrm{ds}-1$ to $\mathrm{ds}-5=$ first to fifth pair of dorsal setae; $\mathrm{E}=$ epimera, numbered I to IV ; $\mathrm{GA}=$ genitoanal plate; $\mathrm{GO}=$ genital opening; GP genital plate; $\mathrm{OC}=$ ocular plate(s); $\mathrm{P}=$ palp, $\mathrm{P}-2$ to P.4 = second to fourth palpal segment; pas $=$ parambulacral setae; $\mathrm{PD}=$ posterior dorsal plate; $\mathrm{PE}=$ posterior epimeral plate(s); pgs $=$ perigenital setae, numbered 1 to 5 from anterior to posteriot; sgs = subgenital setae. Legs numbered I to IV, Ieg segments I to 6 are trochanter, basifemur, telofemur, gehu, tibia and farsus.
Drawings were prepared with a camera lucida. Unless stated otherwise, adjunct and adanal setae are shown either in dorsal or in ventral aspect.
Length of the idiosoma is that from the anteriot margin of the AD to the end of the anal valves. The length of the PD includes the pair of posteriorly projecting cones. The position of a seta is given in a decimal system, with reference to the length of a plate from the anterior to posterior margin; the position of the legs with reference to the length of the idiosoma. The length of a leg segment is that along the dorsal margin. In the setation formula of the legs, the number of pas, solenidia and famuli is excluded. Unless stated otherwise, the setation formula of the telofemora presents the number of dorsal/ ventral setae. Measurements in micrometres unless otherwise stated.
In Rhombognathus, the number of adjunct setae on the AE and PE , the number of perigenital setae and the setation on the legs is known to vary, Each description is supplemented with notes on, gencrally unilateral, variants; the number of cases are in parentheses.

FIG. 1. Isobactrus ponapensis Abé, 1996; A, idiosoma, dorsal, male; B, idiosoma, ventral, female; C, genitoanal plate, male; D, ovipositor, female (genital spines of left half dashed); E, leg I, ventromedial, female. Scale bar = $50 \mu \mathrm{~m}$.

SYSTEMATICS

RHOMBOGNATHINAE Viets, 1927

Isobactrus Newell, 1947
TYPE SPECIES (by original designation). Isobactrus setosus $($ Lohmann, 1889 $)=$ Aletes setosus Lohmann, 1889.

DIAGNOSIS. Dorsal plates AD, OC and PD present, sometimes fused. AD with pair of setae. OC with 0 (rarely 1) setae, 2 gland pores and $0-1$ corneae. PD (or area representing PD) with 1-3 pairs of setae. Adanal setae absent. Ventral plates reduced, epimera I and II rarely fused in the median; epimera III with 1-2 setae, epimera IV with 1 seta which may insert within the striated integument. Genital plate not fused with anal plate. Females with 3(-4) pairs of pgs; males with 32-98 pgs. Gnathosoma short, generally concealed in dorsal aspect. Both pairs of maxillary setae on rostrum. Palps 4 -segmented. P-2 with 1 seta; P-3 without seta; P-4 with 3 (rarely 4) basal setae. Legs shorter than idiosoma. Tibiae I and II each with a pair of ventral setae; generally 1 seta bipectinate and 1 seta smooth.

Tarsi I, II and IV with 3 dorsal setae each (one species with 4 setae), tarsus III generally with 4 setae, rarely with 3 or 5 . Tarsi lack ventral setae. Solenidion on both tarsus I and II dorsolateral in position. Tarsi I-IV each with carpite (rod-like sclerite) between end of tarsus and central sclerite. Central sclerite lacks tine-like process. The 2 claws smooth or with tines.

Isobactrus ponapensis Abé, 1996
(Fig. 1)
Isobactrus ponapensis Abé, 1996: 17-24, figs 1-4.
MATERIAL. ㅇ, §, 1 tritonymph (MTQ), Great Barrier Reef, Long Island, Whitsundays, sand at $0.5 \mathrm{~m}, 28$ February 1997; coll. J.C.Otto. i, 1 tritonymph (QM S50961), collection data as above. 오 (IB), collection data as above.
DESCRIPTION. Idiosoma of female 322-335 long, of male 332. Gland pore on AD immediately anterior to ds-1 (Fig. 1A). OC wider than long. PD large, marginally foveate, reaching between OC. Setae ds-2 within striated integument. Setae ds-3 to ds- 5 on PD, ds- 3 and ds-4 anterior and level with insertion of leg III, ds-5
posterior to the level of leg IV. Epimera I and II with a seta each. Epimera III and IV separated by striated integument (Fig. 1B); EIII with ventral seta; succeeding seta within margin of EIV. Female GO surrounded by plate; anterior pair of pgs within striated integument, succeeding 2 pairs of pgs on and in margin of genital plate, respectively. Genital sclerites with 2 pairs of sgs. Ovipositor with 10 well-sclerotised genital spines (Fig. 1D); 2 pairs each anteroapically and posteroapically, the latter followed by pair of spiniform genital spines. Two pairs of anteroapical genital spines large, equal in size, each with median process flanked by 2 small tines. Posteroapical genital spines in shape similar to but slightly smaller than anteroapical pairs of genital spines. Male GP with 49 pgs; genital sclerites with 4 pairs of sgs (Fig. 1C). Gnathosoma slightly wider than long, Legs shorter than idiosoma. Leg chaetotaxy from trochanter to tarsus: legs I and II, 1, 2, 3, 2, 5, 3; leg III, $1,1,2,2,4,4 ; \operatorname{leg}$ IV, $0,1,2,1,4,3$. Ventromedial seta on tibia I (Fig. 1E) and II bipectinate. Apical pair of fossary setae delicately furcate. Carpite between tip of tarsus and central sclerite solid. Accessory process on claws with single tooth.
Idiosoma of tritonymph 272-278. Setae ds-2 and ds-3 within striated integument. Arrangement of gland pores as in adults. Small genital plate with pair of subgenital setae and pair of perigenital setae, another pair of pgs within striated integument. Shape and setation of legs same as in adults.

REMARKS. Isobactrus ponapensis was described originally on the basis of females, males and juveniles from Ponape, Micronesia (Abé, 1996). The individuals from the Great Barrier Reef are larger than the adults from Micronesia which have an idiosomal length of 255-280, and there are small differences in the insertion of the three pairs of setae on the PD - in the adults from the Great Barrier Reef the interval between ds- 3 and ds-4 is shorter than between ds-4 and ds-5, in those from Micronesia the distance ds-3 to ds-4 and ds-4 to ds-5 is almost the same.

The ovipositor of Isobactrus ponapensis bears 10 genital spines whereas the Northern Atlantic species I. setosus (Lohmann, 1889) and I. uniscutatus (Viets, 1939) have 11 genital spines (Bartsch, 1975a).

DISTRIBUTION. Micronesia, Ponape Island, from intertidal coarse coral sand (Abé, 1996),
and Australia, Great Barrier Reef, from shallow water sandy deposits.

Rhombognathus Trouessart, 1888

TYPE SPECIES (by original designation). Rhombognathus notops (Gosse, 1855) = Pachygnathus notops Gosse, 1855.

DIAGNOSIS. Dorsal plates AD, OC and PD present, sometimes fused. AD with pair of setae. OC with 2 setae, 2 gland pores, and $0-2$ corneae. PD with 1-2 pairs of setae. Adanal setae on anal plate. Ventral plates often fused. AE with 3 pairs of ventral setae plus 0-6 adjunct setae; PE with 1 dorsal, 3 ventral and 0-3 adjunct setae. Females with 1-45 pairs of pgs', males with 7-25 pairs of, generally plumose, pgs. Both pairs of maxillary setae on rostrum. Palps 4 -segmented. P-2 with 1 dorsal seta in distal half; P-4 with 3 basal setae; apically an often spur-like seta. Legs shorter than idiosoma. Tibiae with 2 ventral setae, one or both bipectinate. Tarsi I-IV with 3, 3, 3-4, 3 dorsal setae, respectively, and 0 ventral setae. Solenidion on both tarsus I and II dorsolateral in position. Tarsi with 2 claws. Central sclerite between claws lacks tine-like process. Carpite (rod-like sclerite) present between end of tarsus and central sclerite.

Rhombognathus cyrtonotus sp. nov.
(Figs 2, 3)
ETYMOLOGY. For the curved (kyrtos, Greek) back (notos, Greek), in contrast to the rather flattened idiosoma of the majority of Rhombognathus.
MATERIAL. HOLOTYPE, of (MTQ), Great Barrier Reef, $19^{\circ} 20.12^{\prime} \mathrm{S}, 149^{\circ} 02.85^{\prime} \mathrm{E}$, Elizabeth Reef, medium coarse sand at 10m, 24 December 1997; coll. J.C. Otto. PARATYPES. 2 ㅇ, 1 tritonymph (MTQ), collection data as above. 2 \& (QM S50962), collection data as above. 2 \& (ZMH A96/99), collection data as above. 49 (IB), collection data as above. OTHER MATERIAL. of (WAM 99/1439), Great Barrier Reef, Lizard Island, Site 'Washing Machine', coarse sand and rubble at 7 m depth, 14 October 1998; coll. J.C. Otto.

DESCRIPTION. Male, Idiosoma 202-211 long; holotype 211 long, 140 wide. Dorsum raised. AD, OC and PD separated (Fig. 2A). Plates uniformly covered with faint reticulum, each mesh subdivided. AD 57 long, 75 wide; anterior margin broadly arched, posterior margin rounded; gland pores in lateral margin; posterior line of internal muscle scars at 0.67 . OC 65 long, 48 wide; with 2 corneae, 2 gland pores and a pore canaliculus; posterior gland pore by 2-3 times its diameter removed from lateral margin of OC.

FIG. 2. Rhombognathus cyrtonotus sp. nov.; A, idiosoma, dorsal, male; B, idiosoma, ventral, male; C, posterior portion of idiosoma, ventral, male; D, gnathosoma, ventral, male; E , tip of tarsus IV, ventral (dorsal setae dashed), female; F, leg I, medial, female; G, leg II, medial, female; H, leg III, ventromedial, female; I, leg IV, ventral, female. asc = anal sclerite; av = anal valve. Scale bar $=50 \mu \mathrm{~m}$.

PD 127 long, 97 wide. Plate evenly and delicately reticulated; posteriorly with pair of narrow ridges but no wide costae. Posterior cones extending beyond median margin of PD. Pair of gland pores near posterior margin of PD. Anal sclerites small, squeezed between lamellar anal valves. Setae
ds-1 17 long; succeeding setae 7-8 long. Posterior seta on OC at 0.60 . PD in holotype unilaterally with 2 setae, else with pair of single setae. Adanal setae on anal valves.

Ventral plates AE, PE, GP and AP fused to a ventral shield (Fig. 2B), this shield 169 long.

FIG. 3. Rhombognathus cyrtonotus $5 p$. nov; A idiosoma, lateral, female; B , idiosoma, ventral, female; C , ovipositor, female (perigenital setae and genital spines of left side omitted); D, gnathosoma, lateral, female; E, fourth palpal segment, lateral; F. telofemur II, lateral, female; G, tarsus I, lateral, female (medial setae and claw omitted); H, tarsus II, lateral, female (medial setae and claw omitted); 1, posterior portion of idiosoma, tritonymph. gsp $=$ genital spines; pa $=$ papilla. Scale bar $=50 \mu \mathrm{~m}$.

Areas corresponding to AE and PE lack adjunct setae. On PE ventral setae shorter than dorsal seta, GO 27 long, 17 wide; not reaching the level of insertion of leg IV. Perigenital setae plumose, arranged trapezoidally; holotype with 7 and 9 setae lateral to GO and 1 pair of basilar setae, close together, posterior to GO (Fig. 2C). Spermatopositor 42 long, 45 wide; extending beyond anterior perigenital setae.

Gnathosoma 56 long, 48 wide; 1.2 times longer than wide (Fig. 2D). Rostrum 19 long, anteriorly narrowed; 2 pairs of maxillary setae inserted
adjacent; rostral tip with one slender and 1 very reduced pair of rostral setae. Tectum slightly convex.

Legs I and IV equal in length; approximately 0.7 of idiosomal length. Insertion of leg III at 0.51 , that of leg IV at 0.65 . Legs as in female (Fig. 2F-I). Chaetotaxy of trochanter to tarsus: $\operatorname{leg} \mathrm{I}, 1$, $2,3,3,5,3 ; \operatorname{leg}$ II, $1,2,3,3,5,3 ; \operatorname{leg}$ III, 1, 1,2,3, 5,4 , leg IV, $0,1,2,3,5,3$. Tarsus IV with 2 short, pectinate spiniform pas (Fig. 2E). Tarsus III with setiform medial pas and short, spiniform lateral pas.

FIG. 4. Rhombognathus delicatulus sp. nov., male; A, idiosoma, dorsal; B, idiosoma, ventral; C, posterior portion of idiosoma, ventral; D, gnathosoma, ventral; E, leg I, ventromedial; F, leg II, ventromedial; G, leg III, ventral; H , leg IV, ventral. asc = anal sclerite; av = anal valve. Scale bar $=50 \mu \mathrm{~m}$.

Carpites of tarsi I and II 5 long, those of tarsi III and IV 6 long. Each claw with accessory process but no further tines.

Female. Idiosoma 223-247 long. Areas with striated integument wider than in males; dorsum distinctly raised (Fig. 3A). PD somewhat shorter
than in male. Ventral plates AE, PE and GP fused to a ventral shield; AP separated by wedge of striated integument (Fig. 3B). AE and PE lack adjunct setae. GO not reaching the level of insertion of leg IV. GO surrounded by 5 (rarely 6) pairs of pgs; anterior pairs of pgs positioned
somewhat anterior to the level of insertion of leg IV. Genital sclerites each with 2 sgs. Genital acetabula obscured. Extended ovipositor approximately 55 long; with pair of small, cone-like papillae basally and 5 pairs of sclerotised genital spines apically (Fig. 3C); cach spine 6-7 long and ending with 5 tines.
Palps of gnathosoma extending beyond tip of rostrum (Fig. 3D). P-4 with one wide and 2 slender setae and a spur-like process (Fig. 3E). Chelicera 62 long; claw with serrate dorsal edge.

Length:width ratio of telofemora: 1.7, 1.8, 1.6, 1.6. Tibiae I and 11 slightly shorter than telofemora I and II. Tarsi I and II slightly shorter than tibiae; tarsi III and IV as long as tibiae III and IV, respectively. Telofemora I and II (Fig. 3F) each with $2 / 1$ dorsal/ventral setae, telofemora III and IV with $2 / 0$ setae. Ventrolateral seta on genu I long, stout and bipectinate (Fig. 2F); these setac on genua II and III short, seta-like; ventrolateral seta on genu IV slightly pectinate and larger than seta on genu III. Tibiae I-IV with 2, 1, 1, 2 bipectinate setae. Tarsus I with papilliform famulus, setiform solenidion and pair of doubled pas (Fig. 3G); tarsus II (Fig. 3H) without famulus, else similar to tarsus I. Tarsi III and IV resembling those of male.
Tritonymph. Idiosoma 185 long. PD smaller but with pair of ridges and reticulation as in adults. AE and PE separated. GP and AP fused; this GA with 2 pairs of pgs and 1 pair of minute sgs (Fig. 31). Number of setae of legs same as in adults; telofemora I-IV with $2 / 1,2 / 1,2 / 0,2 / 0$ setae.
Variations. Varieties in characters of adults: length of idiosoma, ㅇ: 223-247 (10); length of idiosoma, ot: 202-211 (2); number of adjunct setae on either side of AE: 0 (19), 1 (1); number of adjunct setae, PE: 0 (19), 1 (1); number of pgs on either side of GO, 우:5(16), 6 (4); number of pgs plus basilar setae in either half, $0: 7+1$ (3), $9+1$ (1); number of setae of leg segments 2 to 5 :

segment	$\operatorname{leg} I$	leg II	leg III	leg IV
2	$2(24)$	$2(24)$	$1(24)$	$1(24)$
3	$2 / 1(24)$	$2 / 1(24)$	$2 / 0(24)$	$2 / 0(24)$
4	$3(24)$	$3(24)$	$2(1), 3(23)$	$3(24)$
5	$5(24)$	$5(24)$	$5(24)$	$5(24)$

REMARKS. Rhombognathus cyrtonotus is characterised by the combination of: idiosoma wide; PD with 1 pair of setae; AE, PE and GP fused in both males and females; AE and PE generally lack adjunct setae; female with 5 pairs of pgs; in males pair of basilar setae posterior to GO; gnathosoma 1.2 times longer than wide; telofemora l-IV with $2 / 1,2 / 1,2 / 0,2 / 0$ setac, and
tarsal claw with accessory process but without additional tines.
R. cyrtonotus resembles R. cebuns Bartsch, 1983, a species recorded from the Philippines (Bartsch, 1983). Females of R. cyrtonotus are distinguished from R. cebuns by the number of perigenital setae - 5 pairs in R. cyrfonotus, 11 pairs of setae in R. cebuus. Male R. cyrfonotus have the pair of basilar setae posterior to the GO; in R, cebinus these setae are level with the posterior edge of the GO.
At low magnification, Rhombognathus cyrtonotus is separated from eastern Australian congeners by the combination of: idiosoma wide; anal sclerites narrow; gnathosoma short; telofemora I and II each with $2 / 1$ dorsal/ventral setae; claws with single tooth. In contrast to the majority of Rhombognathus species, the posterior gland pore on the OC of both adult and juvenile R. cyrtonotus is not close to the lateral margin but removed by $2-3$ times the diameter of that pore. Males can be separated from congeners on the basis of the position of the basilar setae.
In contrast to the majority of Rhombognathus species, tritonymphs of R. cyrfonotus have the genital plate fused with the anal plate.

Rhombognathus delicatulus sp. nov.
 (Figs 4-6)

ETYMOLOGY. For the delicate (delicatulus, Latin) omamentation of the dorsal plates.

MATERIAL. HOLOTYPE. of (MTQ), Great Barrier Reef, $19^{\circ} 22.36^{\circ} \mathrm{S}, 149^{\circ} 01.05^{\prime} \mathrm{E}$, Club 21 Recf, coarse sand and rubble at $15 \mathrm{~m}, 26$ December 1997; coll. J.C. Otto. PARATYPES, $9,0,1$ tritonymph (MTQ), collection data same as above. ㅇ and $\bar{\delta}$ (QM S50963), collection data same as above. ㅇ (WAM 99/1440), है (WAM 99/1441). collection data same as above. ㅇ, δ (ZMH A97/99), collection data same as above. 3 ㅇ, 2 ,, 2 tritonymphs (IB), collection data same as above. OTHER MATERIAL. δ° (MTQ), Great Barrier Reef, $19^{\circ} 20.12^{\circ} \mathrm{S}, 149^{\circ} 02.85^{\circ} \mathrm{E}$, Elizabeth Reef, coral rubble at $16-26 \mathrm{~m}, 24$ December 1997; coll. J.C. Otto. ठ (IB), Great Barrier Reef, $19^{\circ} 20.12^{\prime} \mathrm{S}, 149^{\circ} 02.85^{\prime}$ E, Elizabeth Reef, coarse sand and rubble at $10 \mathrm{~m}, 25$ December 1997; coll. J.C. Otto. 2 9, 26° (IB), Great Barrier Reef, $18^{\circ} 26.36^{\prime} \mathrm{S}, 146^{\circ} 42.24^{\prime} \mathrm{E}$. Bramble Reef, coarse sand at 5m, 9 April 1998; coll. J.C. Otto.
DESCRIPTION, Male. Idiosoma 223-260 long; holotype 235 long, 137 wide. Dorsal plates delicately reticulated (Fig. 4A); each mesh subdivided. AD 78 long, 75 wide; anterior margin rounded; posterior portion of AD triangular; posterior scars of muscle strings in an almost straight line at 0.60 relative to length of

FIG. 5. Rhombognathus delicatulus sp. nov.; A, tarsus I, lateral, male (medial claw and setae omitted); B, tarsus II, lateral, male (medial claw and setae omitted); C, tip of tarsus IV, ventral, male (dorsal setae dashed); D, idiosoma, ventral, female; E, ovipositor and two of the genital spines (enlarged), female; F, posterior portion of idiosoma, ventral, female; G, gnathosoma, lateral, female; H, tip of tarsus IV, ventral, female (dorsal setae omitted); I, idiosoma, ventral, tritonymph. gac = genital acetabula. Scale bar $=50 \mu \mathrm{~m}$.

AD. Pair of gland pores in lateral margins at the level of insertion of leg I. OC 67 long, 37 wide; with 2 corneae and 2 glands pores in lateral margin; pore canaliculus almost halfway between gland pores. PD 137 long, 85 wide; evenly reticulated; each mesh with $12-18$ minute pits. Anterior portion of PD rounded; posterior cones hardly extending beyond median margin of PD. Anal valves prolonged, extending beyond narrow anal sclerites. Dorsal idiosomatic setae small; ds-1 10 long and hardly longer than setae on OC
and PD. Posterior seta on OC at 0.44 relative to length of OC, that equals level of median edge. Single pair of setae on PD at 0.26 . Adanal setae on anal valves.

AE, PE, GP, and AP fused to a ventral shield (Fig. 4B); this shield 195 long. Integument of ventral plates delicately punctate. Portion representing AE with 1 pair of adjunct setae. No adjunct setae on PE. GO 27 long, 17 wide. Anterior margin of GO almost level with insertion of leg IV; interval between posterior
edge of GO and end of idiosoma 1.4 times length of GO. Perigenital setae plumose; arranged trapezoidally; on either side a line of 8 setas: basilar setae adjacent to GO and at 0.80 relative to length of GO. Spermatopositor 40 long, 45 wide; extending beyond GO and anterior perigenital setae (Fig. 4C).

Gnathosoma 67 long, 42 wide: 1.6 times longer than wide (Fig. 4D). Rostrum slender, 30 long, 11 swide. Basal pair of maxillary setae almost is long; succeeding adjacent pair of setae distinctly shonter. Tectum truncate.
Leg I inserted at 0.11, leg. IV at 0.64. Legs shorter than idiosoma. Leg I and IV subequal in length, about 0.8 times of length of idiosoma. Form of telofemora as in female. Tibiae cyl. indrical: each tibia slightly shorter than telofemur of that leg. Lee chactotaxy, from trochanter to tarsus: leg I, 1, 2, 5, 5, 5, 3; leg II, 1, 2, 5, 5, 5, 3; leg III, $1,1,3,3,5,4 ; \operatorname{leg} \operatorname{IV}, 0,1,3,3,5,3$. Telofemora I-IV wilh 4/1, 4/1, 3/0, 3/0 setae. Ventrolateral seta on both genu I and IV bipectinate (Fig. 4E, H); these setae on genua II and III slender (Fig. 4F, G). Tibia I with pair of stout, bipectinate setae: tibiae II and III each with slender, smooth ventrolateral and stout, bipectinate ventromedial seta. Tibia IV with large ventrolateral and shorter ventromedial seta; both bipectinate. Dursal selue on tarsi at low magnification plain, undes oil immersion delicate plumosity recognusable. Solenidion on tarsus [10 lone: lamulus papilliform, I long, positioned halfway between solenidion and dorsal fossary sets (Fig. 5A). Solenidion on tarsus ill 10 long (Fig. SB). TarsiI and II each with pair of doubled pas. Tarsus 111 with setilorm, tupathid medial pas and spiniform, pectinate lateral pas. Medial pas on tarsus IV long and plumose; 1ateral pas spiniform and intensely pectinate (Fig. 5C).

Campites on tarsi I and 186 long, on tarsi Ilf and IV $7-8$ long. Accessory process of claws with single tonth.
Female. Idiosoma 192-269 long. Dorsal aspec: same as in male. Setae ds-1 slightly longer than following setae. Ventrat plates AE, PE and GP fused; this ventral shield contiguous with anal plate, GO surrounded by 10 perigenital setac. Anterior pair of pgs level with ventral setae on epimera IV. Second pair of pgs almose level with anterior edge of GO (Fig. 5D). Interval between pgs-4 and pgs-5 slighty larger than between the other pgs. Genital sclerites 63 long. cach sclerite with 2 sgs. Ovipositor with 5 pairs of clawolike
genital spines: cash geaital spine with one lage medial tooth and 4-5 lateral teeth (Fig. 51). (ienital acctabula very small, pasitioned immediately posterios to the level of pes -1 (Fig. 5 F).
Gnathosuma 1.5-1.6 times longer than wide. Palps straight; extending beyond end of rostrum (Fig. 5G). Basal pair of rostral setae almost is long as apical pair of maxillary setae. Chelicessi 30 long. Cheliceral claw short.

Telofimora I-LV 1.9, 2.U.2.0, 1.9 times longer than high, Medial pas on tarsus IV setiform, delicatcly plumose: lateral pas spiniform. pectinate (Ftg. SII).
Trifomympho. Idincoma I82-212 long. PD smalles than in adults; median and lateral portions foveate, noi reticulate. Ventral plates AE, PE and GA separate. AE with pair of adjunct setac. No adjunct setae on PE. GP and Λ P fused (Fin. 51); GA with 2 pairs of pgss and 1 pair of ses; 3 pairs of minute genital acetabula. Leg chaetotany from trochanter to tarsus: legs I and $\operatorname{II}, 1,2,4,5,5,3$: leg \{114, 1, 1,3,3,5,4-1eg $15,0,1,2-3,2,5,3$. Telor femoralloIV with 3/1, 3:1,3:0 and 2-3/0 setite.
Variations. Amonest the material examinet. several individuals, e.g. from Elizabeth Reet' (MTQ), differ from those from the type locality in the following characters: gnathosomal base and rostrum short, gnarhosoma 3.3-1.4 times longer than wide (Fig. 6A, B); reticulation of PD rather prominent; $\mathrm{d} s-1$ abour twice the length of the succeeding setae: ds-3 slightly posterior to medial comer of OC; bipectinate ventral seta nn genulas lone as ventral setac of tibial (Fis- 6 fC); ventral seta on genu IV slender, not pecrinste (Fig. 6D): ventromedial seta on tibia IV slender, its pectination very faint or lacking; telofemora hardly longer than tibiac. Most marked is the short gathosoma. Within the zhombognathines, stech a difference in the length of the gnathesoma is inusual. Nonetheless, the specimens outlined are presently not regarded as belonging to a separate species.
Varieties of characters in adults: Iength of idiosoma, : : 192-269 (10): Ingth of idiosoma, \&: 223-260 (10); number of idfiunct setae on eittrer side of AE: () (2), 1 (33), 2(5); numher of adjunct setae en PE: 0 (40): number uf pag un either side ofGO, $9: 5(20)$; number of pes plus basilar setac

 lateral, temale, C, leg I, lateral, female, D, leg IV, medial, female. Scale bar - $50 \mu \mathrm{~m}$.
in cither half, 8 : $7+1(3), 8+1(10), 9+1$ (7): number of setae of leg segments 2 to 5 :

scgment	leg !	16811	$\log 111$	leg IV
\geq	- 74.4	$2(41)$	1(40)	11701
3	$\begin{aligned} & 3 / 1(1), \\ & +(1)(1) . \\ & +^{\prime} 1(38) \end{aligned}$	+1/1(41)	$\begin{aligned} & 3.0(34), \\ & 40411 \end{aligned}$	7/6)(1)
4	$5(40)$	$5(41)$	$3(40)$. 3 (40)
5	$5(40)$	S(211)	$5(4)$	$5(40)$

REMARKS. The most obvious characters of Rhombogntuthus delicaulus are: the uniformly reticulated PD with a single pair of setae; the ventral shield; the narrow anal sclerites surpassed by the anal valves, the low number of adjunct setae; the slender gnathosoma; the combination $4 / 1,4 / 1,3 / 0,3 / 0$ setac on the telofenmora I-1V; and the claws with a single tine. At a superticial glance, R. delicatuhus resembles the western Pacific R. neptunellus Bartsch, 1992, R. oblongus Bartsch, 1989a, R. teurimus Abé, 1996, and the western Australian R. psammophilus Bartsch. 1993.
R. neptumellus and R. teurimus differ from R. delicatmins in the outline of the AD , the insertion of ds-3 on the OC, and the shape of the
gnathosoma. The PD of R oblongus is more slender than that of R. delicatulus. R. psammophihus lacks the reticulation on the dorsal plates, the series of muscle scars is closer to the posterior margin of the AD , and the ds-4 are closer to the anterior margin of the PD than in R. delicatultus.

Rhombognathus lathridius sp. nox:
(Figs 7, 8)
ETYMOLOGY. Because of the shape of the body and legs, this species is believed to live hidden (lathridios, Greek) in sandy deposits.

MATERIAL. HOLOTYPE. δ (MTQ), Great Barrier Reef, 180 $48.92^{\prime} \mathrm{S}, 146^{\circ} 25.76^{\circ}$ E, Pandora Reef, St. 1, coarse sand Im, 22 January 1998: coll. J.C. Otto. PARATYPES. $2 \mathcal{B}^{\circ}, 1$ tritonymph (MTQ), collection data as above. 9 . \$(OM S50964), collection data as above. 29 (WAM 99/1442, 1443), collection data as above. ․ す\% (ZMH A98/(y), collection data as above. 4 ? , $38^{2}, 2$ trilonymphs (IB), collection data as above.

DESCRIPTION. Male. Idiosoma 229-254 long, holotype 248 long, 145 wide. Dorsal plates very faintly and minutely reticulated. AD, OC and PD

FIG. 7. Rhombognathus lathridius sp. nov.; A, idiosoma, dorsal, male; B, idiosoma, ventral, male (adanal setae illustrated both in A and B); C, posterior portion of idiosoma, ventral, male; D, gnathosoma, ventral, male; E, gnathosoma, dorsal, male; F, gnathosoma, lateral, male; G, tarsus II, lateral, male (medial claw and setae omitted); H, tip of tarsus IV, ventral, male (dorsomedial seta omitted); I, tarsus III, lateral, male (dorsomedial seta, medial pas and claw omitted); J, tarsus I, lateral, female (medial claw and setae omitted). ads = adanal seta. Scale bar $=50 \mu \mathrm{~m}$.
separated (Fig. 7A). AD 82 long, 72 wide; anterior margin with small, rounded process; posterior margin ovate. Pair of gland pores in lateral margins at the level of insertion of leg I. OC 67 long, 42 wide; each plate with single cornea; two gland pores in lateral margin; pore canaliculus between pores. PD 145 long, 80 wide. Anterior portion of PD triangular. Pair of gland pores at base of posterior cones. Dorsal
setae small; ds-1 approximately 10 long, not markedly longer than posterior pairs of setae. Setae ds-1 on AD posterior to the level of gland pores and at $0.52-0.54$. Setae ds- 3 at 0.52 relative to length of OC. Single pair of setae on PD at 0.27 . Adanal setae 7 long, on tube-like pedestals.

Ventral plates AE, PE, GP, and AP fused to a ventral shield (Fig. 7B). Surface of plate delicately punctate. AE with 2-3 pairs of adjunct

(Fig. 7C). Spermatopositor 37 long, 40 wide, extending somewhat beyond anterior perigenital setae.

Gnathosoma slender, 75 long, 46 wide, 1.6 times longer than wide (Fig. 7D). Rostrum 32 long, 15 wide, almost parallel-sided. Tectum truncate (Fig. 7E). Basal pair of maxillary setae in basal half of rostrum. Palps slightly flattened, extending beyond tip of rostrum. P-2 with long dorsal seta. Chelicera 71 long. Cheliceral claw narrow (Fig. 7F), 10 long, its dorsal margin smooth.

Legs short, without claws and carpite about half as long as the idiosoma. Insertion of legs III and IV at 0.47 and 0.64 , respectively. Number and arrangement of setae on trochanters to tibiae as in female. Tarsi I-IV with 3, 3, 4, 3 dorsal setae. Tarsi I and II each with pair of doubled pas; as in female, famulus on tarsus I 2 long (Fig. 7J), solenidion 6 long. Solenidion on tarsus II 10 long, conspicuously wide (Fig. 7G). Lateral pas on tarsus III flattened, bipectinate (Fig. 71); medial pas setiform. On tarsus IV dorsolateral fossary seta plumose; lateral pas flattened, bipectinate; medial pas plumose (Fig. 7H).

Carpite short, on tarsi I and II 4 long; on tarsi III and IV 5 and 6 long. Claws short and smooth, they lack accessory processes and tines.
Female. Idiosoma 235-254. In dorsal aspect similar to male, though areas of striated integument larger. Pair of setae on PD at 0.25-0.28. Ventral plates AE, PE, GP, and AP fused to a ventral shield (Fig. 8A). GO surrounded by 10 perigenital setae. Anterior portion of GO not extending to the level of insertion of leg IV. Four anterior pairs of setae positioned almost equidistant. Anterior pairs of pgs 15 anterior to GO but not extending beyond the level of insertion of leg IV. Genital sclerites with 2 pairs of sgs. Ovipositor with 5 pairs of claw-like genital spines (Fig. 8B); spines 5 long, 3 wide; each with 5-6 tines.

Legs I and II flattened. Telofemora I-IV 1.3, 1.3, 1.2, and 1.3 times longer than high, respectively. Tibiae I-IV slightly shorter than telofemora. Leg chaetotaxy: leg I (Fig. 8C), 1, 2, 7, 3, 6, 3; leg II (Fig. 8D), 1, 3, 7, 3, 6, 3; leg III (Fig. 8E), 1, 2, 4, 4, 5, 4; leg IV (Fig. 8F), 0, 2, 4, 5, 5,3 . Basifemora, genua and tibiae dorsally with short slightly plumose setae which are less than length of each segment, and 0-1 long smooth setae which are much longer than length of the segment. Ventral seta on genua delicately pectinate. Tibiae I-IV with $2,1,1,2$ bipectinate setae. Ventral setae on tibia I equal in length; on
tibia IV ventrolateral seta slightly smaller than ventromedial one. Slender ventrolateral seta of tibiae II and III as long as coarsely bipectinate ventromedial seta. Dorsal setae on tarsus IV smooth; lateral pas short, flattened, pectinate; medial pas slender, lightly plumose (Fig. 8G).
Tritonymph. Idiosoma 232 long. Shape of AD and OC similar to that of adults. PD shorter; ds-4 inserted at 0.22 . Plates AE, PE and GA separated (Fig. 8H), AE with 1-2 pairs of adjunct setae; PE with 1 pair of adjunct setae; GA with 2 pairs of pgs. Leg chaetotaxy, from trochanter to tarsus: leg I, 1, 2, 6, 3, 6, 3; leg II, 1, 3, 6, 3, 6, 3; leg III, 1, $2,3,3,5,4$; leg IV, $0,2,2-3,4,5,3$. Arrangement of pectinate setae on tibiae same as in adults. Tarsi III and IV each with flattened bipectinate lateral pas, and slender, setiform medial pas.
Variations. Varieties of characters in adults: length of idiosoma, ㅇ: $235-254$ (9); length of idiosoma, dै: 229-254 (6); number of adjunct setae on either side of AE: 1 (9), 2 (21), 3 (2); number of adjunct setae, PE: 1 (10), 2 (22); number of pgs on either side of GO, $9: 4$ (1), 5 (18), 6 (1); number of pgs plus basilar setae in either half, $\delta: 7+1$ (11), $8+1$ (1); number of setae of leg segments 2 to 5 :

segment	leg 1	leg II	leg IIt	leg IV
2	$2(28)$	$3(28)$	$2(27)$	$2(27)$
3	$5 / 2(28)$	$5 / 2(27)$,	$3 / 1(26)$,	$3 / 1(26)$,
		$6 / 2(1)$	$4 / 0(1)$	$4 / 1(1)$
4	$3(28)$	$3(27), 2(1)$	$4(26), 3(1)$	$5(27)$
5	$6(28)$	$6(28)$	$5(27)$	$5(27)$

REMARKS. In the shape of the body, gnathosoma and legs, Rhombognathus lathridius is similar to R. caudiculus Bartsch, 1983, R. conjunctus Bartsch, 1986, R. intermedius Schulz, 1933, R. latens Bartsch, 1993 and R. latibulus Bartsch, 1993.
R. latens, a species known from Western Australia (Bartsch, 1993), can be separated from the others on the basis of the two pairs of setae on the PD and the enlarged number of perigenital setae around the female GO. R. conjunctus, an inhabitant of the Mediterranean (Bartsch, 1986), has the dorsal plates AD, OC and PD fused to a dorsal shield. R. intermedius, widely spread in sandy deposits in the shores of the Baltic, North Sea and northeastern Atlantic (Bartsch \& Schmidt, 1979), has a short gnathosoma, slender telofemora and the adanal setae do not stand on small pedestals. R. caudiculus and R. latibulus, recorded from the Philippines and Western Australia (Bartsch, 1983, 1993), respectively, are most similar to R. lathridius, but the former species bears a single pair of adjunct setae on both

setae is level with the posterior margin of the GO; and the telofemora I-IV of R. latibulus bear $4 / 2$, 4/2, 2/1, 2/1 setac.

All specimens of R. lathridius have an elongate gnathosoma with a slender rostrum; there is no tendency of reduction of the gnathosomal length.

Tritonymphs of R. lathridius have the GP and AP fused, a character shared with R. cyrtonotus and R. delicatulus.

Rhombognathus levigatus sp . nov. (Figs 9, 10)

ETYMOLOGY. From levigare (Latin), to smooth, for the almost smooth surface of the dorsal plates.
MATERIAL. HOLOTYPE, ô (MTQ), Great Barrier Reef, $18^{\circ} 48.92^{\prime} \mathrm{S}, 146^{\circ} 25.76^{\prime} \mathrm{E}$, Pandora Reef, St. 1, coral rubble, $0.3 \mathrm{~m}, 22$ January 1998; coll. J.C. Otto. PARATYPES. 29, 1 tritonymph (MTQ), collection data as above. ${ }^{\circ}(\mathrm{QM}$ S50965), collection data as above. I (WAM 99/1444), collection data as above. of (ZMH A99/99), collection data as above. 우, δ° (IB), collection data as above.
DESCRIPTION. Male. Idiosoma 267-276 long; holotype 267 long, 173 wide. Surface of plates almost smooth; integument of lateral portions of AD and PD and medial portions of $O C$ pierced by minute pores (Fig. 9A). AD 98 long, 93 wide. Anterior margin arched; posterior margin broadly rounded. Posterior transverse line of muscle scars at 0.69 . OC 75 long and 48 wide. Lateral margin with 2 gland pores and, halfway between, a pore canaliculus. PD 140 long, 110 wide; wider than AD , and its anterior margin in the median truncate. Very slightly raised pair of oblong areolae with minute pores; posterior portion of PD faintly reticulated in the median and laterally, Anal sclerites not surpassed by anal valves. Setae ds-1 approximately 12 long; inserted at 0.44. Setae ds-2 and ds-3 on OC; ds-3 at 0.57. Single pair of setae on PD at 0.28 . Adanal setae on anal valves.
Ventral plates AE, PE and GP fused; GP and AP contiguous (Fig. 9B). Ventral shield from camerostome to tip of anal cone 219 long. AE and PE each with I pair of adjunct setae. GO 40 long, 23 wide. Perigenital setac plumose, arranged trapezoidally, with 11 setac in a line and 1 pair of basilar setae level with posterior edge of GO (Fig. 9D). Anterior edge of GO slightly surpassing the level of insertion of leg IV. Distance between posterior edge of GO and end of anal cone equalling length of GO. Genital sclerites with 2 pairs of sgs. Spermatopositor 60 long, 57 wide; extending beyond anterior pgs.

Gnathosoma short, 70 long, 58 wide, length:width ratio 1.2. Rostrum 25 long, 13 wide, triangular, shorter than gnathosomal base (Fig. 9C). Palps tighty appressed to rostrum. Chelicera 75 long (Fig. 9E). Cheliceral claw serrate.
Length of legs (claws included) 0.7 times that of idiosoma. Relative to length of idiosoma, insertion of legs III and IV at 0.55 and 0.72 , respectively. Telofemora I-IV each about 1.7 times longer than high. Tibiae 1 and II somewhat shorter than telofemora (Fig. 9F, G); tibiae 111 and IV as long as telofemora (Fig. 9H, I). Tarsil and II as long as these legs, tibiae; tarsi 111 and IV longer than tibiae III and IV, respectively. Leg chaetotaxy: leg I, $1,2,7,5,5,3 ; \operatorname{leg}$ II, $1,2,7,5,5$, $3 ; \operatorname{leg}$ III, 1, 2, 4, 3, 5, 4; leg IV, 0, 2, 4, 3-4, 5, 3. Telofemora I-IV with $5 / 2,5 / 2,3 / 1,3 / 1$ setae. On both genu I and II ventrolateral seta longer than ventromedial one; both setae almost plain. Tibiac I-IV with 2, 1, 1, 2 bipectinate spiniform setac. On tibia IV ventromedial spine shorter than ventrolateral onc. Tarsus III with 4 dorsal setac; distance between 2 basal ones equalling half height of tarsus. Tarsus I with 1- long papilliform famulus and 8- long setiform solenidion (Fig. 10^). As in female, solenidion on tarsus 11 10-11 long (Fig. 10D). Both tarsus I and II with pair of doubled pas. Medial pas on tarsus III setiform; lateral pas spiniform, delicately pectinate. Medial pas on tarsus IV long and plunnose, lateral pas short and bipectinate (Fig. 10B).
Carpites on tarsi I and II 8-9 long; carpites on tarsi III and IV 10 long. Accessory process on claws widened, about $4-5$ wide, bearing $5-6$ small tines. No tines on claw shaft.
Female. Idiosoma 285-305 long. Outline of dorsal plates as in male though ornamentation lightly reticulate. Median portion of AD between ds-1 reticulate. Anterior margin of PD truncate; setae ds-4 at 0.21-0.24. AE, PE and GP fused; this ventral shield separated from anal plate by narrow lateral wedges of striated integument. GO extending anteriad almost to level of insertion of leg IV. Area of genital plate with 5 pairs of pgs; two anterior pairs inserted distinctly anterior to GO (Fig. 10C). Genital sclerites with 2 pairs of sgs. Three pairs of tube-like genital acetabula. Genital spines claw-like. Tarsus III with spiniform lateral pas and 1-2 eupathid setiform medial pas (Fig. 10E). Lateral pas of tarsus IV similar to that of tarsus III; medial pas of tarsus IV slightly smaller than lateral pas.
Tritonymph. Idiosoma 248 long. Ventral plates separate; AE and PE each with a pair of adjunct

 tarsus IV, vental, male (dorsal setae omitted): C. idocoma, ventral, femsle D, rarsus II, bateral, female (medial claw and setae omitred; F, sip of tarsus III, ventral, femate (dorsal setac omitted): Fi, posterime portion of idionoma, ventral. fritonsmph ase-anal sclerite: as - anal valver grac - gemital icetabula Scale bar 50 gum.
setac. GP and AP separate (Fig. 10F). GP with 2 pairs of pgs and 1 pair of sgs. Telofemora l-IV with $4 / 2,4 / 2,3 / 1,2-3 / 1$ dorsal/ventral setae. Setation of the other segments same as in adults.
Variations. Varieties of characters in adults: length of idiosoma, female: 285-305 (5); Iength of idiosoma, male: 267-276 (3); number of adjunct setae on either side of $\triangle E: 1(12), 2$ (4); number of adjunct setae, PE: 1 (15), 2 (1); number of pgs on either side of GO, fenale: $5(10)$; number of pgs plus basilar setae in either half, male: $9+1$ (2) . $10+1(2), 11+1(2)$; number of setae of leg segments 2 to 5 :

segment	$\operatorname{leg} 1$	$\operatorname{leg} I 1$	$\operatorname{leg} 111$	leg IV
2	$2(16)$	$2(16)$	$2(16)$	$2(16)$
3	$4 / 2(2)$,	$4 / 2(2)$	$3 / 1(14)$	$2 / 1(4)$
	$5 / 2(14)$	$5 / 1(1)$,	$4 / 1(1)$	$3 / 1(12)$
	$5 / 2(13)$	$5 / 1(1)$		
4	$5(16)$	$5(16)$	$3(16)$	$3(15), 4(1)$
5	$5(16)$	$5(10)$	$5(16)$	$5(16)$

Anomaly. In one of the females the left OC is lacking and replaced by striated integument.

REMARKS. Rhombognathus levigatus is characterised by: smooth PD with single pair of setae; $\triangle E, P E$ and GP fused; area of AE and IPE cach with 1 pair of adjunct setae; female with 5 pairs of pgs; male with 10-12 pairs of plumose pgs; short gnathosoma 1.2 times longer than wide;
telofemora 1-[V with $5 / 2,5 / 2,3 / 1,3 / 1$ dorsal/ ventral setae. Slightly widened accessory process with 5-6 tines.

In the samples from the Great Barrier Reef, three species, Rhombognathus levigalus, R. reticulifer sp. nov. and R. serichlus sp. nov., have claws with the slightly widened accessory process bearing a few tines. In contrast to R. Jevigatus, the dorsal plates of R. reticulifer and R. periculus have a distinct reticulate omamentation and long ds-1. The three species also differ in the number of dorsal/ventral setae on the telofemora I to IV.

Compared to Rhombognathus species from other parts of the world, R. levigatus is similar to R. notopsoides Bartsch, 1979. R. semireticulatus Bartsch, 1977, R. smensis Bartsch, 1990, and R. ventralis Newell, 1984, R. noropsoides is a brackish water species from castern North America (Bartsch, 1979b), R. sinensis is recorded from southern China and Japan (Bartsch, 1990; Abé 1996), and R. semireticulatus and R. ventralis from the Eustem Pacific (Bartsch, 1977; Newell, 1984). The dorsal plates of R. notopsoides are distinctly ornamented, In R. semireticulatus, too, each of the dorsal plates bears a distinct umamentation, and, in contrast to R. levigarus, each of the telofemora I and 11 has 5 dorsal setae but only 1 ventral seta. In R. sinensis,
the arrangement of the setae on the telofemora I to IV is the same as in R. levigatus but the outline and the ornamentation of the PD is different, and the number of tines on the accessory processes is somewhat larger than in the latter species. The telofemora I to IV of R. ventralis bear $6,6,4,4$ setae, the ds- 1 are rather long, whereas in R. levigatus the ds-1 are short and the telofemora bear 7, 7, 4, 4 setae.

Rhombognathus longipes sp. nov.
(Figs 11-13)
ETYMOLOGY. From (Latin) longus, long, and pes, foot, leg, for the long legs.

MATERIAL. HOLOTYPE. of (MTQ), Great Barrier Reef, $18^{\circ} 25.93^{\prime} \mathrm{S}, 147^{\circ} 21.11^{\prime} \mathrm{E}$, Faraday Reef, coarse sand and rubble, $10 \mathrm{~m}, 13$ April 1998; J.C. Otto. PARATYPES. 38,20 , 1 protonymph (MTQ), collection data as above. i, ơ (QM S50966), collection data as above. 2 i (WAM 99/1445, 1446), collection data as above. One?, ठ (ZMH A100/99), collection data as above. 6 ? , $2 \mathbf{\sigma}^{\circ}, 1$ tritonymph, 2 deutonymphs (IB), collection data as above. OTHER MATERIAL. δ° (MTQ), Great Barrier Reef, $18^{\circ} 25.93^{\circ} \mathrm{S}$, $147^{\circ} 21.11^{\prime} \mathrm{E}$, Faraday Reef, coarse sand and rubble, $2 \mathrm{~m}, 13$ April 1998; J.C. Otto.

DESCRIPTION. Male. Idiosoma slender, 317-328 long; holotype 335 long, 185 wide. Dorsal plates with delicate reticulation. AD 112 long, 100 wide; anterior margin broadly rounded; posterior margin ovate. Line of internal scars at about 0.75 (Fig. 11A). OC 100 long, 55 wide; anterior cornea slightly larger than posterior one. Distance between gland pores 50 ; pore canaliculus almost halfway between gland pores. PD 167 long, 97 wide, 1.7 times longer than wide. Pair of posterior cones of PD almost extending to end of anal cone; each cone with gland pore. Setac ds-1 10-15 long, positioned in posterior half of AD at 0.64 , i.e. somewhat anterior to transverse line of scars. Second pair of setae on OC almost at 0.43. PD with single pair of setae at 0.16. Adanal setae distally on anal plate. Anal sclerites well developed.

AE, PE, GP, and AP fused (Fig. 11B). Area of AE with pair of adjunct setae, that of PE with 0 and 1 adjunct seta. GO 35 long, 25 wide; anterior margin level with insertion of leg IV. With 9 and 10 pgs on either side of GO; pair of basilar setae incorporated in line of pgs (Fig. 11C). Spermatopositor 52 long, 46 wide, slightly extending beyond GO.

Gnathosoma 90 long, 67 wide, 1.3 times longer than wide. Rostrum slender, apically pointed (Fig. 11D); almost as long as gnathosomal base. Narrow tectum truncate. Basal pair of maxillary
setae in middle of rostrum; apical pair almost as long as basal pair. Slender palps appressed to rostrum.
Legs slender; the four pairs similar in length and approximately 0.9 of length of idiosoma. Legs III and IV at 0.53 and 0.69 , respectively. Telofemora I-IV 2.7, 2.9, 2.7, 2.5 times longer than high. Leg chaetotaxy: leg I, 1, 2, 5, 5, 5, 3; leg II, 1, 2, 5, 5, 5, 3; leg III, 1, 1, 3, 3, 5, 4; leg IV, 0, 1, $3,3,5,3$. Telofemora I-IV with $4 / 1,4 / 1,3 / 0,3 / 0$ setae. Two basidorsal setae on telofemora I and II short, spiniform (Figs 11E, F). Bipectinate setae on tibiae I-IV numbering 2, 1, 1, 2 ; these setae on tibiac I, II and III conspicuously long; on tibia IV ventrolateral bipectinate seta distinctly longer than ventromedial one. Tarsi slender. Basal setae of tarsi III and IV inserted in apical half of these segments (Figs 12A, B). Two basal setae on tarsus III adjacent. Tarsus I slender, with elongate papilliform famulus and solenidion 14- long. Tarsi I and II with doubled pas; on tarsus III medial pas setiform, lateral pas short, spiniform (Fig. 12D); on tarsus IV medial pas long, plumose; lateral pas flattened, pectinate (Fig. 12E).

Carpites on tarsi I and II 10 long, those on tarsi III and IV 11-12 long. Claws short: rounded apex with small accessory process.
Female. Idiosoma 335-365 long. Dorsal aspect similar to that of male. AE, PE and GP fused. AE with 1 , rarely 2 adjunct setae on either side; PE with 1 , rarely 0 , adjunct seta. GO 85 long; genital sclerites each with 2 sgs . With 5 pairs of pgs (Fig. 12F). Two anterior pairs of pgs anterior to level of anterior edge of GO ; anteriormost pair of setae slightly anterior to level of insertion of leg IV; its distance to edge of GO equalling 0.3 times length of GO. Posterior pair of pgs distinctly removed from the other setae. Ovipositor in rest reaching beyond GO (Fig. 12F). Extended ovipositor long; with basal pair of conical papillae and 5 pairs of apical genital spines (Fig. 12G). Genital spines 8-9 long, each with 4 lateral tines. Gnathosoma with slender palps (Fig. 12H). P-4 with setae in basal whorl as illustrated (Fig. 12I); tip with 2 spurs and 1 setula. On tarsus IV medial pas shorter and less plumose than in male; lateral pas flattened and pectinate (Fig. 12J).
Tritonymph. Idiosoma 340 long, 185 wide. Posterior margin of AD truncate (Fig. 13A). OC short, only slightly extending beyond posterior gland pore; $d s-2$ within or just anterior to margin. PD much shorter than in adults. Ventral plates $\mathrm{AE}, \mathrm{PE}, \mathrm{GP}$, and AP separated. Posterior portion of AE with projecting triangular or obtuse

FIG. 11. Rhombognathus longipes sp. nov., male; A, idiosoma, dorsal; B, idiosoma, ventral; C, posterior portion of idiosoma, ventral; D, gnathosoma, ventral; E, leg I, medial; F, leg II, medial. Scale bar $=50 \mu \mathrm{~m}$.
pottion, similar as tigured in protonymph (Fig. 13E). AE and PE each with 1 pair of adjunct setae. GP with 2 pairs of pgs and 1 pair of sgs ; 3 minute pairs of internal genital acetabula (Fig. 13B). Telofemora I-IV with $4 / 1,4 / 1,2 / 0,2 / 0$ setae. Setation of the other leg segments same as in adults.

Deutonymph. Idiosoma 236-263 long. In dorsal aspect similar to tritonymph. GP and AP fused (Fig. 13C); plate with 2 pairs of minute internal genital acetabula.

Protonymph. Idiosoma 178 long, 105 wide. AD posteriorly truncate; PD short, ovate (Fig, 13D). AE with 3 pairs of setac (Fig. 13E); PE with 1 dorsal and 1 ventral seta. Genua I-IV with $4,4,3$, 3 setae; telofemora I -11I with $2 / 1,2 / 1,2 / 0$ setae, femur IV with $2 / 0$ setae.

Variations. Varieties of characters in adults: length of idiosoma, ㅇ: 335-365 (10); length of idiosoma, $\mathbf{\delta}$: 317-328 (8); number of adjunct setae on either side of AE: 1 (28), 2 (11); 3 (1); number of adjunct setae, PE: 0 (5), 1 (35);

FIG. 12. Rhombognathus longipes sp. nov.; A_{1} leg III, medial, male; B , leg IV, medial, male; C , tip of tarsus I, lateral, male (medial claw and setae omitted); D, tip of tarsus III, lateral, male; E, tip of tarsus IV, ventral, male (dorsal setae omitted); F, idiosoma, ventral, female; G, ovipositor, ventrolateral, female (spine in dotted line broken); H, gnathosoma, lateral, female; I, P-2 to P-4, lateral, female; J, tip of tarsus [V, ventral, female (dorsal setae omitted). Scale bar $=50 \mu \mathrm{~m}$.
number of pgs on either side, $\circ: 5(20)$; number of pgs on either side, $\delta: 8$ (8), 9 (7), 10 (1); number of setae of leg segments 2 to 5:

segment	leg I	leg II	leg III	leg IV
2	$2(40)$	$2(40)$	$1(40)$	$1(40)$
3	$4 / 1(40)$	$2 / 1(1)$,	$2 / 0(2)$,	$2 / 0(1)$
		$4 / 1(36)$,	$3 / 0(38)$	$3 / 0(39)$
	$5 / 1(3)$		$3(40)$	$3(40)$
4	$5(40)$	$5(40)$	$3(40)$	$5(40)$

 E, idiosoma, ventral, protonymph. Scale bar $=50 \mu \mathrm{~m}$.

REMARKS. Rhombognathus longipes can be separated lrom congeneric Australian species on the basis of the slender idiusoma with long, slender legs, leg I being almost as long as the idiosoma, R. longipes is most similar to R. longisetus Bartsch, 1999, a species known from New Caledonia. The most marked difference is the length ol the ds-1 - in R. longipes short. less than I/4 of the length of the AD , in R longisetus as long as the AD. Apart from few exceptions, e.g. the ds- 5 in the Mediterranean Copidognathus. gibbus (Trouessart. 1889) and C. majusculus (Trouessant, 1894), the length of a seta is generally a stable character within a species. Further distinguishing characters are: The position of the ds-1 (in R. longines inserted at 0.64 , in R. Fongiserus at 0.57), the length of the ovipositor (in R. longipes distinctly extending beyond the GO, in R. longisetus only slightly surpassing the GO), the arrangement of the pgs around the female GO (in R. longisetus almost equidistant whereas in R. longipes the posterior pair of the setae is distanced from the preceding pair). The male GA of R. longisetus has a postgenital papilla which is lacking in R. Iongisetus.

Rhombognathus papuensis Bartsch, 1989 (Figs 14, 15)
R/hmbognathus papucnsis Bartsch, |y89a: 236, figs 50-55 not Rhambognathos fapuensis - Chatterjee, 1495, 282-284. ligs 1-14.
MATERIAL ? δ° (MTQ), Great Barrier Reef, Magnetic Island, Ama Bay, socky listoral, algae at $0.5 \mathrm{~mm}, 16$ March 1998; coll. J.C. Otto. ©, \% (QM S5̃0967), collection data
as above. \%. ठ' (MTQ), Great Barrier Reef, $18^{\circ} 41.29{ }^{\circ} \mathrm{S}$, $147^{\circ} 05.83^{\prime} \mathrm{E}$, Loadstone Reef, Halimeduat 3-6m, 11 April 1998; coll. I.C. Onto. Q, δ (OM $\$ 50968$), collection data as before. 49, 1 tritonymph (IB), collection data as before. S. 1 tritonymph (IB). Great Barrier Reef, $19^{\circ} 20.12^{2} \mathrm{~S}$, 149002.85'E, Elizabech Reef, Halimeda sp. (Chlorophyta) at $10 \mathrm{~m}, 25$ December 1997; coll. J.C. Otio.

DESCRIPTION (based on specimens from shallow water habitats from Magneric Island). Idiosomal length of female 310, of male 277-285. Dorsal plates with foveate sculpturing. Posterior AD broadly rounded; foveate areolae distinct in area anterior to short ds-1. OC large, with 2 comeas and 2 short setae; 2 gland pores and one pore canaliculus in lateral margin. PD with pair of wide costae; foveate areolae lateral and medial to costac (Fig. 14A). PD with single pair of setae, in females inserted at 0.24 , in males at 0.31 . Ventral plates $A E, P E$ and $G A$ fused. On either side of AE and PE (0-)1 adjunct setae. Female with pair of lateral wedges between GP and AP; 5 pairs of pgs inserted almost equidistant (Fig. 15F). Male with 9-13 plumose pgs arranged in a line on cither side of GO, and pair of basilat setac adjacent to posterior part of GO (Fig. 14B). Spermatopositor 75 long, 66 wide, extending far beyond GO (Fig. 14C).

Gnathosoma short; length:width ratio 1.1 (Fig. 15A). Rostrum conical, short, hardly more than $1 / 3$ of length of gnathosoma. Basal pair of maxillary setae longer than apical pair. Palps short.

Legs I and II slightly shorter than legs III and IV. Telofemora I to IV approximately 2.4 times longer than high. Telofemora I and II longer than

 of idiosoma, ventral. Scale bar $=50 \mu \mathrm{~m}$.
telofemora UII and IV (Figs 15B-E). Tibiac I-IV almostequal in length. Tarsi I and II about as long as these legs' tibiae; tarsi III and IV distinctly Ionger than tibiae. Leg chaetotaxy (rare variants in parentheses): leg 1, 1, 2, (4-)6, (4*) 5, 5, 3; $\operatorname{leg} \mathrm{II}$, 1, 2, (5-)6, 5, 5, 3: leg III, 1, 2, 3, 3, 5, 4; leg IV, 0, $2,3(-4), 3,5,3$. Telofemora I-IV with (3/1, 3/2) 4/2, (3/2) $4 / 2,3 / 0,3 / 0$ dorsal/ventral setae. Ventral seta on genu I slender. Tibiae I-IV with 2, $1,1,2$ bipectinate setae. Two basal setae on tarsus III inserted adjacent. Two disfal fossary setae on all tarsi equal in size and barbate. Tarsus I with papilliform famulus and slender, setiform solenidion (Fig. 15G),

Claws widened; truncate edge of this portion 17 wide and provided with $18-20$ tines. Apical end of claw separated from truncate and widened portion (Fig, 1SH).
Variations. Varieties of characters in adults: length of idiosoma, $:: 310(2)$; length of idiosoma, कै: 277-285 (2); number of adjunct setae on either side of AE: 0 (1), 1 (7); number of adjunct setae, PE: 0 (1), 1 (6); number of pgs on either side of $\mathrm{GO}_{\text {, }}$?:5 (4); number of pgs plus basilar setae in either halt, 0 : $9+1$ (1), $12+1$ (2), $13+1$ (1): number of setae of leg segments 2 to 5 :

segment	leg I	leg If	$\operatorname{leg} 111$	leg IV
2	$2(8)$	$2(8)$	$2(8)$	$2(8)$
3	$3 / 3(2)$,	$3 / 2(3)$,	$3 / 0(8)$	$3 / 0(8)$
	$3 / 2(1)$	$4 / 2(4)$		
	$4 / 2(4)$			
4	$4(1) .5(7)$	$5(8)$	$3(8)$	$3(8)$
5	$5(8)$	$\$(8)$	$5(8)$	$5(8)$

REMARKS. The specimens from the Elizabeth Reef and Loadstone Reef, from 10 m and $3-6 \mathrm{~m}$
depth, respectively, differ slighttly from the above outlined characters. Females are 204-275 long and males 223-241 long. The dorsal plates are more distinctly reticulated. The PD is slightly more slender; its costae are distinctly separated from the reticulate remainder. The number of pgs on the male GP is slightly smaller. The widened truncate edge of the claws are 12 wide.

Variation in the number of setae in specimens from the Elizabeth Reef and Loadstone Reef is as follows: number of adjunct setae on either side of AE: 1 (17); rumber of adjunct setae on PE: 1 (17), 0 (1); number of pgs on either side of GO, female: 5 (6); number of pgs on either side plus basilar setae, malc: $9+1$ (5), $10+1$ (1); number of setae of leg segments 2 to 5:

segment	$\operatorname{leg} 1$	$\operatorname{leg} 11$	$\operatorname{leg} 131$	$\operatorname{leg}(\mathrm{~V}$
2	$2(17)$	$2(18)$	$2(18)$	$1(2), 2(16)$
3	$3 / 2(1)$	$4(2(18)$	$210(6)$,	$210(1)$
	$4 / 2(16)$	$3(12)$	$3 / 0(17)$	
4	$5(17)$	$5(18)$	$3(17)$	$3(18)$
5	$5(17)$	$5(18)$	$5(17)$	$5(18)$

The tritonymphs from Elizabeth Reef and Loadstone Reef are characterised by: Idiosoma 205-229 long. Ventral plates separated. GP separate from AP. AE with 1 pair of adjunct setac; PE with 0-1 adjunct setae. GP with 2 pairs of pgs, I pair of sgs. Leg chaetotaxy from trochanter to tarsus (rare variants in parentheses): $\operatorname{leg} \mathrm{I}, 1,2$, (4-) $5,5,5,3 ; \operatorname{leg}$ II $1,2,(4-) 5,5,5,3 ; \operatorname{leg}$ III, 1, 2, $2,3,5,4 ; \operatorname{lcg} \operatorname{IV}, 0,2,2,3,5,3$. Telofemora I-IV with (2/2) $3 / 2,(3 / 1) 3 / 2,2 / 0,2 / 0$ dorsal/ventral setac. Two basal setae on tarsus III adjacent. Edge of claws 8 wide, with approximately 15 tines.

FIG. 15. Rhombognathus papuensis Bartsch; A, gnathosoma, ventral, male; B, leg I, medial, male; C, leg II, medial, male; D, leg III, medial, male; E, leg IV, ventromedial, male; F, idiosoma, ventral, female; G, tarsus I, lateral, female (medial claw and setae omitted); H, tip of tarsus III, medial, female. Scale bar $=50 \mu \mathrm{~m}$.

The specimens from the Great Barrier Reef differ slightly from those from Papua New Guinea (Bartsch, 1989a). In the specimens from Papua, the setae on the PD insert further posterior, and the wedges between GP and AP seem to be larger than in adults from the Great Barrier Reef. Unless more material will prove the opposite, the individuals from Magnetic Island, Elizabeth Reef and Loadstone Reef are considered as conspecific with R. papuensis.

The individuals recorded from the Indian Ocean (Chatterjee, 1995) are not conspecific with Rhombognathus papuensis. According to the description of that species, the OC are much wider than in R. papuensis and the PD bears 2 pairs of setae (Chatterjee, 1995: Fig. 1).

DISTRIBUTION. New Guinea, $10^{\circ} \mathrm{S}, 148^{\circ} \mathrm{E}$, shallow water (Bartsch, 1989a) and Great Barrier Reef, from shallow water to 10 m depth.

Rhombognathus reticulifer sp. nov.

(Figs 16, 17)
ETYMOLOGY. For the dorsal plates which bear (ferre, Latin) a reticulum (Latin).

MATERIAL. HOLOTYPE. ס (MTQ), Great Barrier Reef, $19^{\circ} 20.12^{\prime} \mathrm{S}$, $149^{\circ} 02.85^{\circ} \mathrm{E}$, Elizabeth Reef, large chunks of coral rubble at $10 \mathrm{~m}, 24$ December 1997; coll. J.C. Otto. PARATYPES. 29 (MTQ), collection data as above. ㅇ, δ (QM S50969), collection data as above. 아, 10 ($\mathrm{ZMH} \mathrm{Al} 101 / 99$), collection data as above. $\mathrm{\delta}^{\hat{\prime}}$ (IB), collection data as above. OTHER MATERIAL. 7 ㅇ.20, 2 tritonymphs (IB), Great Barrier Recf, $19^{\circ} 20.12^{\prime} \mathrm{S}$, $149^{\circ} 02.85^{\prime}$ E, Elizabeth Reef, Halimeda (Chlorophyta) at $15 \mathrm{~m}, 24$ December 1997; coll. J.C. Otto.

DESCRIPTION. Male Idiosoma slender, 186205 long; holotype 203 long, 132 wide. Dorsal plates coarsely reticulated (Fig. 16A); meshes 8-10 long and faintly subdivided. Plates with delicate pores. AD 62 long, 65 wide. Anterior margin arched, posterior margin broadly rounded. Transverse series of muscle scars level with 0.80 . OC 54 long, 30 wide. Each plate with 2 small comeae, 2 gland pores in lateral margin and pore canaliculus halfway between gland pores. PD 105 long, 62 wide; not as wide as AD. Plate evenly reticulated; meshes 8-11 long. Posterolateral portions of PD hardly projecting beyond median portion of plate. Pair of gland pores in postcrolateral margin of PD. Anal sclerites extending beyond anal valves. Setae ds- 140 long, inserted on AD. Setae ds-2 and ds-3 on OC; ds-3 at 0.51. PD with single pair of setae, inserted at 0.25 and 0.29 .

Ventral plates AE, PE, GP and AP fused to a ventral shield (Fig. 16B). Shield delicately punctate. Area of AE with 1-2 adjunct setae; PE with I pair of adjunct setae. GO 28 long, 16 wide. GO extending to the level of insertion of leg IV. Perigenital setae arranged trapezoidally; holotype with 7 pairs of setae in a line and 1 pair of basilar setae near posterior edge of GO. Pgs plumose. Spermatopositor 37 Iong, 40 wide; extending beyond anterior pair of pgs (Fig. 16C).
Gnathosoma short; 57 long, 46 wide; 1.2 times longer than wide (Fig. 16D). Rostrum short, 22 long, triangular.

Legs I and IV almost equal in length, about 0.7 of length of idiosoma. Insertion of legs III and IV level with 0.56 and 0.71 , respectively. Length: height ratio of telofemora l-IV 1.7, 1.7, 1.5, 1.6 (Figs 16E-H). Telofemora and tibiae of each leg almost equal in length. Tarsi III and IV only slightly longer than these legs' tibiae. Leg chaetotaxy, from trochanter to tarsus: leg I, 1, 2, 6, 5, 5, 3; leg II, 1, 2, 6, 5, 5, 3; leg 111, 1, 1, 3, 3, 5, 4; leg IV, $0,1,3,3,5,3$. Lateral seta on each
basifemur II and III long, about twice height of these segments. Telofemora I-IV with $4 / 2,4 / 2$, $3 / 0,3 / 0$ setae. Dorsolateral seta on telofemur III hardly longer than the 2 dorsomedial setae. Ventral seta on genu I delicately pectinate. Tibiae I-IV with 2, 1, 1, 2 bipectinate ventral setae. Ventrolateral seta on both tibia II and III almost as long as ventromedial seta. Two basal setae on tarsus $1 I I$ inserted close together. On each of the tarsi 2 distalmost dorsal setae slightly plumose. Tarsus I with short papilliform famulus, 1 long; solenidion 7 long (Fig. 17A); ambulacrum flanked by pair of doubled pas (Fig. 17B). Apart from absence of famulus, tarsus II similar to tarsus I; solenidion 8 long (Fig. 17C). Medial pas on tarsus III setiform, lateral pas short, pectinate (Fig. 17D); pas on tarsus [V (Fig. 17E) more plumose than on tarsus III.
Carpites on tarsi I and 1I 5-6 long; carpites on tarsi III and IV 6-7 long. Accessory processes of claws widened; 4 wide, with $7-8$ small tines (Figs 17D, E).
Female. Idiosoma 217-241 long. Areas with striated integument between plates larger than in males. Female PD somewhat shorter, ds-4 at $0.20-0,23$ relative to length of PD. Ventral shield including AE, PE and GP; AP separated from ventral shield by wedges of striated integument (Fig. 17F). Anterior margin of GO not reaching the level of insertion of leg IV. Genital acetabula small, often obscured. Five pairs of pgs arranged in a wide ring around $\mathrm{GO} ; 2$ anterior pairs of pgs anterior to the level of insertion of leg IV. Genital spines claw-like, with median tooth and 4-5 smaller teeth along lateral margin. Genital sclerites with 2 pairs of sgs. Palps extending slightly beyond rostrum. Chelicera 70 long, 16 wide; dorsal margin of its claw dentate. Pas on tarsus III similar to male tarsus; pas on tarsus IV (Fig. 17H) less plumose than on male tarsus IV.
Tritonymph. Idiosoma 151-195 long. OC more narrow and PD shorter than in adults (Fig. 171). Reticulate pattern same as in adults. Setae ds-1 long; setae ds-4 near anterior margin of PD. Ventral plates AE, PE, GP, and AP separated (Fig. 17J). Posteromedian margin of AE convex. AE and PE each with I pair of adjunct setae. Genital plate small; with 2 pairs of pgs and 1 pair of sgs. Gnathosoma short; 1.1 times longer than wide. Legs I and II with 1, 2, 4, 5, 5, 3 setae, from trochanter to tarsus; leg III with $1,1,2,3,5,4$ setae, and leg IV with $0,1,2,3,5,3$ setae. Telofemora L-IV with $3 / 1,3 / 1,2 / 0$, and $2 / 0$ setae.
Variations. Varieties of characters in adults: length of idiosoma, of: 217-241 (11); length of idiosoma, $\delta: 186-205$ (6); number of adjunct

FIG. 16. Rhombognathus reficulifersp. nov., male; A, idiosoma, dorsal; B, idiosoma. ventral: C, posterior portion of idiosoma. ventral; D, gnathosoma, sentral; E, leg I, medial; F, basifemur to tarsus II, medial; G, leg III, medial; H, leg IV, medial. Scale bar $=50 \mu \mathrm{~m}$.
setae on either side of AE: 1 (29), 2 (5); number of adjunct setae on PE: 0 (3), 1 (30), 2 (1); number of pgs on either side of GO, $9: 5(20), 6(2)$; number of pgs plus basilar setae in either half, $0: 7+1$ (11), $8+1$ (1); number of setae of leg segments 2 to 5 :

segment	leg I	leg II	leg III	leg IV
2	$2(34)$	$2(34)$	$1(34)$	$1(34)$
7	$3 / 2(4)$	$1 / 2(4)$	$2 / 0(7)$	$2 / 0(9)$,
	$41(1)$	$4,2(30)$	$21(1)$	$21(1)$,
	$4 / 2(29)$		$3 / 0(26)$	$3 / 0(24)$
4	$5(34)$	$5(34)$	$3(34)$	$3(34)$
5	$5(34)$	$5(34)$	$5(34)$	$5(34)$

FIG. 17. Rhombognathus reticulifer sp. nov., A, tarsus I, lateral, male (medial claw and setae omitted); B, tip of tarsus I, ventromedial, male (dorsolateral fossary seta omitted); C, tarsus II, lateral, male (medial claw and setae omitted); D, tip of tarsus III, ventral, male (dorsal setae omitted); E, tip of tarsus IV, ventral, male (dorsomedial fossary seta omitted); F, idiosoma, ventral, female; G , gnathosoma, lateral, female; H , tip of tarsus IV, ventral, female (dorsal setae omitted); I, idiosoma, dorsal, tritonymph; J, idiosoma, ventral, tritonymph. Scale bar $=50 \mu \mathrm{~m}$.

REMARKS. Rhombognathus reticulifer is characterised by the combination: dorsal plates distinctly reticulated; ds-1 much longer than the succeeding setae; PD with single pair of setae; in males all ventral plates fused; females with wedges of striated integument between ventral shield and AP ; area representing AE and PE generally with 1 adjunct seta on either side; males with 8 pairs of pgs, females with 5 pairs of pgs; gnathosoma short, 1.2 times longer than wide;
telofemora I-IV with $4 / 2,4 / 2,3 / 0,3 / 0$ setae; accessory process on claws slightly widened, with 7-8 tines.

Amongst the rhombognathines from the Great Barrier Reef, the species R. levigatus and R. tericulus sp. nov. (description below) are most similar to R. reticulifer. The smooth PD of R. levigatus is wider than in R. reticulifer, and the telofemora II to IV of R. levigatus bear $5 / 2,5 / 2$, $3 / 1$, and $3 / 1$ setae. Discriminating characters
between R. reticulifer and R. tericulus are outlined after the description of the latter species.
R. ventralis Newell, 1984 and R. lateralis Newell, 1984, both known from the South American Pacific coast (Newell, 1984), resemble R. reticulifer in general aspect. These two species have, in contrast to R. reticulifer, 4 setae on telofemur IV.

Rhombognathus scutulatus Bartsch, 1983

Rhombognathus sctutututus Bartsch, 1983: 413-415, figs 46-57. Rhombognathus scutulatus Bartsch, 1993: 20, 21, lig. 1A-C; Chaterjee, 1995: 284, figs 15-19.

MATERIAL. os (MTQ), Great Barrier Reef, Cape Ferguson, AIMS beach, algae at low tide mark, 2 March 1997; coll. J.C. Otto. ㅇ, o' (QM S50970), collection data as before. ơ (1B); collection data as before. \%, ot (MTQ), Great Barrier Reef, Magnetic Island, Alma Bay, rocky littoral, algae at $0.5 \mathrm{~m}, 16$ March 1998; coll. J.C. Otto. 2 ?, ô (IB); collection data as before.
DIAGNOSIS. Female idiosoma 300-335, male 285-310 long. Dorsal plates AD, OC and PD fused. Dorsal shield with foveate ornamentation. Dorsal idiosomatic setae subequal in size. Area representing ${ }^{\prime}$ 'D with single pair of setae. Ventral plates AE, PE and GP fused in females and males; GP partly fused with AP. Areas of AE and PE each with 1 pair of adjunct setae. Female with 5 pairs of pgs and 2 pairs of sgs. Males with 9-13 pairs of trapezoidally arranged plumose pgs, 1 pair of basilar setae and 2 pairs of sgs. Gnathosoma 1.16 times longer than wide. None of the setae on genua I-IV pectinate. Telofemora I to IV with $4 / 2,4 / 2,3 / 0,3 / 0$ setae. Tarsi I-IV with 3, 3, 4, 3 dorsal setae. Apical fossary setae with their distal portion flattened, pilose. Accessory process of claws widened; claw with 22-24 tines.
Variations. Varieties of characters in adults: length of idiosoma, $9: 300-335$ (4); length of idiosoma, $8: 285-310$ (5); number of adjunct setae on either side of AE: $0(1), 1(17)$; number of adjunct setae on PE: 1 (17), 2 (1); number of pgs on either side of $\mathrm{GO}, 9: 5(8)$; number of pgs on either side plus basilar setae, 0 : $9+1$ (2), $10+1$ (3), $11+1$ (2), $12+1$ (1), $13+1$ (2); number of setae of leg segments 2 to 5:

scgment	leg !	$\operatorname{leg} I I$	$\log 111$	leg IV
2	$2(18)$	$2(18)$	$2(18)$	$2(18)$
3	$4 / 2(18)$	$4 / 2(17)$,	$2 / 0(1)$,	$2 / 0(1)$,
		$4 / 3(1)$	$3 / 0(17)$	$3 / 0(17)$
4	$5(18)$	$5(18)$	$3(17) .4(1)$	$3(18)$
5	$5(18)$	$5(18)$	$5(18)$	$5(18)$

REMARKS. In the samples from the Great Barrier Reef area, Rhombognathus scutulatus is the only species with a dorsal shield.

DISTRIBUTION. Philippines; eastern and western coast of India; Western Australia (Bartsch, 1983, 1993; Chatterjee, 1995). Found in a variety of tidal and shallow subtidal algal substrata.

Rhombognathus seminotatus sp. nov.

(Figs 18, 19)
ETYMOLOGY. For the sculpturing of the PD with half (semi, Latin) of the plate being omamented (notatus, Latin).

MATERIAL. HOLOTYPE. © (MTQ), Great Barrier Reef, Cape Ferguson, AlMS beach, algae at low tide mark, 2 March 1997; coll. J.C. Otto. OTHER MATERIAL. ㅇ, δ (MTQ), Great Barrier Reef, Magnetic Island, Alma Bay, rocky littoral, algae at $0.5 \mathrm{~m}, 16$ March 1998; coll. J.C. Otto. 우, δ (QM S50971), collection data as above. 9 (7MH A102/99), collection data as above. 2 ㅇ, $2 \sigma^{\circ}$ (IB), collection data as above.

DESCRIPTION. Male. Idiosoma slender 278313 long; holotype 278 long, 161 wide. AD 100 long, 82 wide. Anterior and posterior margin broadly rounded. Median portion with reticulate ornamentation; anterior, lateral and posterior portions smooth (Fig. 18A); lateral areas pierced by minute pores. Transverse line of muscle scars at 0.78 . OC 75 long, 48 wide; with 2 corneae; gland pores in lateral margin. PD 130 long, 85 wide. Posterolateral cones of PD hardly extending beyond posteromedian margin of the plate; each cone with a gland pore. Median and posterolateral portions of PD reticulate; costae slightly raised, smooth apart from minute pores. Anterior portion of PD in holotype almost smooth; in other specimens that portion covered by delicate epicuticular reticulum (Fig. 18C). Anal valves not extending beyond anal sclerites. Setae ds-1 30 long, inserted on AD at 0.50 . Succeeding setae 15 long; posterior seta on OC in posterior half of the plate. PD with single pair of setae at 0.28 . Adanal setae on anal valves.

Ventral plates $\mathrm{AE}, \mathrm{PE}, \mathrm{GP}$, and AP fused to a ventral shield (Fig. 18B); shield 218 long. Areas representing AE and PE each with a pair of adjunct setae. GO extending anteriad far beyond the level of insertion of leg IV. GO 45 long, 21 wide. Distance to end of anal cone equalling length of GO. Perigenital setae arranged trapezoidally, 12 and 14 plumose setae in line and 1 pair of basilar setac at the level of 0.8 relative to length of GO (Fig. 18D). Genital sclerites with 2 pairs of sgs. Spermatopositor 62 long, 62 wide; extending beyond anterior pair of pgs.

Gnathosoma short, 71 long, 57 wide; length: width ratio 1.24 (Fig. 18E). Tectum slightly arched

FIG. 18. Rhombognathus seminotatus sp. nov. malc; \wedge, idiosoma, dorsal; B, idiosoma, ventral; C, anterior portion of PD; D , posterior portion of idiusoma, ventral; E , gmathosoma, ventral; \mathfrak{F}, gnathosoma, lateral; G , tecturn and $P^{2}-1$ to $P^{2}-3$, dorsal. Scale bar $=50 \mu \mathrm{~m}$.
(Fig. 18G). Rostrum 25 long; apex pointed. Palps short, appressed to the rostrum. P-4 directed ventrad (Fig. 18F), generally obscured in dorsal aspect (Fig. 18G).

Legs approximately 0.8 times of Jength of idiosoma. Insertion of leg I at 0.12 , that ofleg IV at 0.72 relative to length of idiosoma. Telofemora 1-IV 2.5, 2.4. 2.3, and 2.3 times longer than ligh. Telofemora I and 11 markedly longer than tibiae 1 and II, respectively (Fig. 19A, B), telofemora lII and IV somewhat longer than these legs, tibiae (Figs 19C, D). Tarsi I and II approximately as long as tibiae 1 and II; tarsi III and IV longer than tibiae. Leg chactotaxy: leg $1,1,2-3,5-6,5,5,3$; leg II, 1, 2, 6, 4-5, 5, 3; leg III, 1, 2, 3-4, 2-3, 5, 4; $\operatorname{leg} \operatorname{IV}, 0,2,3,3,5,3$. None of ventrolateral setae on genua bipectinate. Tibiae I-IV with 2. 1, 1, 2 bipectinate setae. On tibia IV ventromedial seta
smaller than ventrolateral one. Paired dorsal setae of tarsi slightly plumose. Tarsus III with 4 dorsal setae: the 2 basal ones inserted adjacent. Solenidia on tarsi 1 and 119 and 11 long. respectively. Famulus on tarsus 1 papilliform, 2 long (Fig. 19F). Tarsi I (Fig. 19E) and II each with pair of doubled pas. Medial pas on tarsus III setiform, lateral pas spiniform, bipectinate. Medial pas on tarsus IV long, plumose (Fig. 19H).
Tarsi 1 and II each with 9 - 10 long carpite; tarsi III and IV with 12 long carpite. Claws distally widened, with 12-13 tines. End of claw clearly set off from line with tines.
Fenule. Idiosoma 310-322. Striated integument between dorsal plates wider than in males. AE , PE and GP fused to a ventral shield. Narrow striated integument separates anal plate from ventral shield. GO 67 long, 45 wide, extending to
the level of insertion of leg IV. Seven to nine pairs of pgs arranged in a wide ring around GO (Fig. 191); anterior pair of pgs level with insertion of leg IV. Genital sclerites with 2 pairs of sgs.
Variations. Several individuals from Magnetic Island have the dorsal plates covered by an epicuticular reticulum, the reticulum formed by delicate droplets (Fig. 18C).

Varieties of characters in adults: length of idiosoma, 우: 310-322 (4); length of idiosoma, ס : 2 278-313 (5); number of adjunct setae on either side of AE: 1 (20); number of adjunct setae on PE: 0 (3), 1 (17); number of pgs on either side of GO, female: 7 (3), 8 (4), 9 (3); number of pgs plus basilar setae in either half, male: $10+1$ (1), $11+1$ (5), $12+1$ (2), $13+1$ (1), 14+1 (1); number of setae of leg segments 2 to 5 :

segment	leg I	leg II	leg III	leg IV
2	$2(17), 3(1)$	$2(18)$	$2(18)$	$2(18)$
3	$2 / 1(1)$,	$4 / 2(18)$	$20(3)$,	$20(1)$,
	$4 / 1(1)$,		$3 / 0(14)$,	$3 / 0(17)$
	$4 / 2(15)$		$3 / 1(1)$	
4	$5(18)$	$4(1), 5(17)$	$2(1) .3(17)$	$3(17), 4(1)$
5	$5(18)$	$5(18)$	$5(18)$	$5(18)$

REMARKS. Rhombognathus seminotatus is characterised by the distally widened claws bearing 12-13 tines. Other characters are: AE and PE each with pair of adjunct setae; females with 7-9 pairs of pgs, males with 11-15 pgs; telofemora I-IV with $4 / 2,4 / 2,3 / 0,3 / 0$ setae. In the majority of species the 2 basal setae on tarsus III insert immediately adjacent.

The majority of congeners of the Great Barrier Reef area have claws which are smooth or have an accessory process with 0-8 tines, other species have distally widened claws with more than 15 tines (R. papuensis, R. scutulatus), whereas R. seminotatus has 12-13 tines. Widened claws are present also in the eastem Pacific species R. atuy Abé, 1990, R. guamensis Bartsch, 1989, and R. sinensoideus Bartsch, 1992, recorded from Hokkaido, Guam, New Guinea, and southern China, respectively (Abé, 1990; Bartsch, 1989a, 1992). In contrast to R. seminotatus, the PD of both R. atuy and R. sinensoideus has 2 pairs of setae. The claws of R. guamensis have unusually wide tines, evidently wider than in R. seminotatus. R. insularis Bartsch, 1989, a species from islands of the Hawaii Archipelago (Bartsch, 1989a) and R. lateralis Newell, 1984, recorded from South America (Newell, 1984), also have claws similar to those of R. seminotatus. The three species can be distinguished on the basis of the setation of the telofemora 1 to IV; in R. insularis there are $5 / 2,5 / 2,3 / 1,3 / 1$ dorsal/ventral
setae, in R. seminotatus 4/2, 4/2, 3/0, 3/0 setae, and, according to Newell (1984), the setal formula of the telofemora I-IV in R. lateralis is 6 , 6, 3-4, 4.

Females of R. seminotatus can be rapidly discriminated from congeners on the basis of the combination of: GA with 7-9 pairs of pgs; AE, PE and GP fused to a ventral shield; and claws with approximately 12 tines. The other rhombognathine species from the Great Barrier Reef area have 5 pairs of perigenital setae. A high number of perigenital setae, similar to that in R. seminotatus, is present in the Subantarctic species R. auster Bartsch, 1989b and R. darwini Newell, 1984, the eastern Pacific R, ellipticus Bartsch, 1977, and the northeastern Atlantic R. procerus Bartsch, 1975b, but none of these species have claws with a widened accessory process bearing more than 10 tines.

Rhombognathus tericulus sp . nov.
 (Figs 20, 21)

ETYMOLOGY, Tericulus, an anagram of reticulus which refers to the reticulate omamentation of the dorsal plates.

MATERIAL. HOLOTYPE. ठ (MTQ), Great Barrier Reef, $18^{\circ} 25.25^{\prime} \mathrm{S}, 146^{\circ} 40.65^{\circ} \mathrm{E}$, Bramble Reef, chunks of coral rubble, $3-6 \mathrm{~m}$, 10 April 1998; coll. J.C. Otto. PARATYPES. ㅇ, δ (QM S50972), collection data as above. 20 (MTQ), collection data as above. OTHER MATERIAL. 오 (MTQ), Great Barrier Reef, $19^{\circ} 20.12^{\circ} \mathrm{S}$, $149^{\circ} 02.85^{\prime} \mathrm{E}$, Elizabeth Reef, coarse sand and rubble, 3 m , 25 December 1997; coll. J.C. Otto. đ̛ (QM S50973), same collection data as before. ${ }^{*}$ (WAM 99/1447), same collection data as before. $ㅇ, \delta$ (IB), same collection data as before. 2\%, ©, 1 tritonymph (IB), Great Barrier Reef, $18^{\circ} 41.91^{\prime} \mathrm{S}, 147^{\circ} 06.49^{\circ} \mathrm{E}$, Loadstone Reef, coarse sand and rubble at $2 \mathrm{~m}, 12$ April 1998; coll. J.C. Otto. \circ (IB), Great Barrier Reef, $18^{\circ} 42.05^{\prime} \mathrm{S}, 147^{\circ} 05.98^{\circ} \mathrm{E}$, Loadstone Reef, coarse sand and rubble, $8 \mathrm{~m}, 12$ April 1998; coll. J.C. Otto, 2 ㅇ (MTQ), Great Barrier Reef, $14^{\circ} 36^{\prime} \mathrm{S}, 145^{\circ} 38^{\prime} \mathrm{E}$, Yonge Reef, coarse sand and rubble, $9 \mathrm{~m}, 10$ October 1998; coll. J.C. Otto. $\%, 0$ (ZMH A103/99), collection data as before. 2 ㅇ, δ (IB), collection data as before.

DESCRIPTION. Male. Idiosoma 205-223 long; holotype 220 long, 143 wide. Dorsal plates conspicuously reticulated (Fig. 20A). AD 75 long, 75 wide; reticulation of anterior portion of plate indistinct; posterior line with muscle scars inserted at 0.72 . OC 68 long, 42 wide; distinctly projecting beyond posterior gland pore. PD 127 long, 82 wide; prominent reticulation uniformly covering the plate. Posterior margin of PD not extending beyond anal cone. Setae ds-I very long, approximately 40 ; inserted in anterior half of AD and close to the level of gland pores.

 III, medial, male; D, ley IV, medial, male; E, tip of tarsus I, ventral (dorsal setac omitted); F. tarsus I, lateral, male (medial claw and setae omitted); (i, tarsus II. lateral, male (medial clan and setac onitted): II, tip of tarsus IV, medial, male (lateral setae and claw dashed); I, idiosoma, ventral, female. Scale bar $=50 \mu \mathrm{~m}$.

Following setae $10-12$ long. Setae ds-4 on PD at 0,37 . Adanal setae on anal plate.

Ventral plates AE, PE and GA fused (Fig. 20B). Area of AE and PE each with one pair of adjunct setae. Marginal setae long. GO 30 long, 19 wide; distance to apex of anal cone more than length of GO. On either side of GO line with 8 plumose pgs and 1 basilar seta; the latter inserted anterior to posterior end of GO (Fig. 20E). Spermatopositor 32 long, 39 wide.

Gnathosoma short, 65 long, 52 wide. Rostrum 27 long. Tectum truncate (Fig. 20C). Chelicera 70 long; its claw wide, cutting edge serrate (Fig. 20D). Palps short.

Four pairs of legs subequal in length and approximately 0.7 of length of idiosoma. Legs III and IV inserted at 0.56 and 0.71 , respectively. Telofemora I-IV 1.3-1.4 times longer than high. Telofemora I and II slightly longer than tibiae of these legs; telofemora III and IV slightly shorter

FIG. 20. Rhombognathus tericulus sp. nov., male; A , idiosoma, dorsal; B , idiosoma, ventral; C , gnathosoma, lateral; D, tip of chelicera; E, posterior portion of idiosoma, ventral; F, leg I, ventromedial; G, leg II, ventromedial; H, leg III, ventral; I, leg IV, ventral. Scale bar $=50 \mu \mathrm{~m}$.
than tibiae. Leg chaetotaxy, from trochanter to tibia: leg 1, 1, 2, 5, 5, 5, 3; leg 11, 1, 2, 6, 5, 5, 3; leg III, 1, 1, 4, 3, 5, 4; leg IV, 0, 1, 4, 3, 5, 3. Telofemora I-IV with $4 / 1,4 / 2,3 / 1,3 / 1$ setae (Fig.

20F-I). Tibiae I-[V with 2, 1, 1, 2 bipectinate ventral setae. Distal pair of fossary setac delicately plumose. As in female, solenidion on tarsus I setiform, 7 long; famulus 1 long (Fig.

21E）．Tarsi I and If each with pair of doubled pas． Lateral pas on tarsi III and IV ilattened，peceinate； medial pas on tarsus 111 setiform，on tarsus IV plumose（Fig．21A）．

Carpites on tarsi 1 and If 5 long un larsi III and IV 6 long．Accessory process on each ol clans sidened and with 3－4 minute tines（Fig．21A），
Female．Idiosoma 205－260 long．In dorsal aspect similar to male Ventral plates AL，DE and Ol＇ fused；GP and AP laterally separated by wedges uf striated integument（Fig，21B）．With 5 pairs of $\mathrm{pgs} ; 2$ anterior pars positioned anterior to GO ． GO 52 long．Genital sclerites with 2 pairs of sgs． Ovipositor with 5 pairs of genital spines，7－11 long and ending with $5-6$ tines（Fig，21C）． Length：width ratio of gnathosoma 1．23．Rostrum shonter than gnathosomal base（Fig．211））．On tarsus IV，lateral pas tlattened and pectinate， medial pas setiform（Fig．21F）．
Trifomuph．Idiosoma 204 long．Ornamentation ut dorsal plates boveate rather than reticulate （Fig．21G）．Posterior margin of AD truncate， ending immediately posterior to line of musele scars．OC and PD smaller than in adults．Ventral plates separated；Gl＇and AB＇nol Jused（Fig．2111）． Posteriur margin of AF．conver．λ E and I＇E each with pair of adjunce sette．（if＇with 2 pairs of pes athl 1 pair olsses．Number of selacof trochanter to tihia of legs［ and II： $1,2,4,5,5$ ；of legs III and SV 1．1．4．3．5，and $0,1,2,3.5$ ．Telotemeras 1－1V with $3: 1,3 / 1,3 / 1$ ，and $2 / 0$ setae，tespectively．
Jariadions．Varieties al characters in adults： length of idiosoma，ㅇ：205－260（10）；length of idiosoma，उ：205－223（8）；number of adiunct sctae on either side of AE： 0 （1），1（36），そ（2）； number of adjunct setae on PE：I（38）， 2 （2）： mumber of pas an either side，of GO P：5（20）； number of pgs plus basilar scua in either half，of： $6+1(1), 7+1(7), 8+1(11), 9+1(1)$ ；number of setace of leg segments 2 to 5 ：

vegraent	legy	l－sil	$10 \geq 111$	Iselv
2	－140）	工 1401	（1－4）	1（218）Sill
3	$\begin{aligned} & 3 / 1(6) \\ & d^{\prime}(3(3) \end{aligned}$	$\begin{aligned} & 3 / 2(3) \\ & 4.1(k) \\ & 4!3(27) \end{aligned}$	$\begin{aligned} & 30(2) \\ & \exists: 1(3 E) \end{aligned}$	$\begin{aligned} & 2112) \\ & 3 \prime(17) \\ & -11(1) \end{aligned}$
4	$5(41)$	Sıla）	2111．3．39）	$31410)$
5	514il）	$51+1$	－5111）	（ +11 ）

REMARKS．Rhomborgnathus sericulus closely pesembles R ，reticulfer．In both species the PD is reticulate，the ds－l are very long，AE and PE each have 1 pair of adjunte setae，the anal cone is of normal size，the gnathosoma is short，the leg chactotasy is tather similat，the distally widened anex of the claws bears few small tines．Dif－ fitences are：R ．fericilus has a mure prominemt
reticulation，its PD is wider，the telofemora are shomer，the telofemora III and IV each have 3il dorsal／ventral setac，and there are only 3－4 tines on the apex of the claws．Tritonymphs of R ． tertithes have alluvate［PD，whercas the PD of R ． reviculfer is reticulated；the ciP of R ．reviculus is latger than in R ．rencultior．

Both species are casily separated from similar－ sized Indo－West Pacitic spectes on the basis ol the enlarged $d s-1$ ．

Rhombognathus validipes sp．nov．

 （Fis：22，23）E゙I YMOLOGY．For its strone（Malihas，Latin）leas focs． 1 Atm）．

MATIRIAI．IIOLOTYPE（MTQ），Civens Barrier Reci，18 $16.46^{\circ} \mathrm{S}, 147$－22．88＇E，Mymidon Reef，dead coral overgrtum with algax at 3－15m． 13 April 199% ；d．c． Omn，PIRATYPES，P（QN S59974），collection data as
 above，（）TIISR MATERIAI．． 1 tritomymph（ATOL，Creat Bamich Recf．Lndine Recf，ollCape Tribulation，growth on coralk at for，16 November 1997；coll．I．（＇．（）nc． 8 （113）． collection data as above．

DESCRIPITON FOMmale．Idmsuma 315－353 long，holotype 327 long， 217 wide．Dorsal plates separated from cach other by wide areas at striated integument（Fis．22A）AD 97 lone． 103 wide；anterior margin broadly rounded，posterior margin ovate，Pair of gland pores in lateral margin．Line with muscle scars at approximately 0.7 ．OC slender， 75 and 85 long， 28 wide；lateral margin with 2 comeace and pore canaticulus；the latter closer 10 pusterion than to anterior gland pore．OC with 2 comeac，the posterior one suhtivided．PD 122 long．Integument withon pair of slightly raised costae wilts delicate nones： median purtion of plate widn faint reticulate onn－ mentation．lair of gland pores in postetelateral comers，the latter slighty exiending heyond ruedian margin of PD．Anal sclerites of normal size，fot exiended by anal valves．Setae ds－1 IS longe slighly wider and twice the length of the： posterine setae；ds－ 1 insented at 0.50 retative to fength of AD．Setae ds－2 and ds－3 on OC，the posterior one at fi，64－0．68．Setae ds－4 and ds－5 on P＇La anterior pair at（ 0,05 ，pesterior seta at 0.47 ． Adamal setac on anal plate．

Ventral plates AL：，Pliand GP fused to a ventral shichd；median purtion of AB contiguous in ventral shicld，clse separated by pair of wide taterul wedges ofstriated integument（Fig．22ß）． AE with 2－3 pairs of adjunct sctac；PE with ？ adjunco setae．Distance from camerostome to（iol

FIG. 21. Rhombognathus tericulus sp. nov.; A, tip of tarsus IV, ventrolateral, male (dorsomedial fossary seta omitted); B, idiosoma, ventral, female; C, ovipositor, lateral, and 3 genital spines (enlarged), female (spines of opposite side dotted); D, gnathosoma, ventral, female; E, tarsus I, lateral, female (medial claw and setae omitted); F, tip of tarsus IV, ventral, female (dorsal setae omitted); G, idiosoma, dorsal, tritonymph; H, idiosoma, ventral, tritonymph. Scale bar $=50 \mu \mathrm{~m}$.

165; GO 67 long. With 5 pairs of pgs, anterior pair of pgs at the level of insertion of leg IV. Genital sclerites with 2 pairs of sgs. Ovipositor with 10 pairs of genital spines (Fig. 22C); each spine trifid with equal-sized tines.

Gnathosoma 105 long, 77 wide, 1.36 times longer than wide. Gnathosomal base large (Fig. 22D). Rostrum 27 long, 20 wide, triangular in outline (Fig. 22E), much shorter than gnathosomal base. Rostrum with 2 pairs of maxillary setae and pair of long lateral rostral setae. Palps appressed to and slightly surpassing rostrum.

Legs stout; their length approximately 0.7 of that of idiosoma. Legs III and IV inserted at 0.54 and 0.68 relative to length of idiosoma. Telofemora I and II shorter than these legs' tibiae, telofemora III and IV slightly shorter than tibiae. Telofemora I and II 1.5 times longer than high (Fig. 22F, G); telofemora III and IV 1.1-1.2 times
longer than high (Figs 22H, 23A). Leg chaetotaxy: leg 1, 1, 2, 7, 6-7, 7, 3; leg II, 1, 3, 7, 7, 7, 3; leg III, 1, 2, 4, 3, 6, 4; leg IV, 0, 2, 3, 4, 6, 3. Telofemora I and II each with $5 / 2$ dorsal/ventral setae, telofemora III and IV with $3 / 1$ and $3 / 0$ dorsal/lateral setae, respectively. Ventral seta on each of genua I-IV bristle-like, slightly serrate. Both ventral setae on each of tibiae I-IV stout and serrate or bipectinate. Tarsus III with 4 dorsal setae; the 2 basal setae distinctly separated. Basal fossary setae at basis of claw fossa; 2 apical fossary setae inserted within fossa area. On tarsi III and IV apicalmost (dorsolateral) fossary seta near tip of tarsi and resembling medial pas. Tarsi I and II each with dorsolateral solenidion, 10 and 12 long, respectively (Fig. 23B, C); apex with pair of doubled pas. Famulus on tarsus I papilliform. Tarsi III and IV each with setiform medial pas and scaliform pectinate lateral pas.

FIG. 22. Rhombognathus validipes sp. nov., female; A, idiosoma, dorsal; B, idiosoma, ventral; C, ovipositor, lateral (spines of opposite side dotted); D. gnathosoma, lateral; E, gnathosoma, ventral: F, leg I, ventromedial: G, leg II, medial; H, leg III, medial. Scale bar $=50 \mu \mathrm{~m}$.

Carpites of tarsi I-IV 6, 7, 10, 10 long. Claws smooth.

Tritonymph. Idiosoma 267-291 long, 173 wide. Posterior margin of AD more truncate than in female. OC slender as in female; posterior cornea

FIG. 23. Rhombognathus validipes sp. nov., female; A, leg IV, medial, female; B, tarsus I, lateral, female (medial claw and setae omitted); C, tarsus II, lateral, female (medial claw and setae omitted); D, tip of tarsus IV, lateral, female; E, idiosoma, dorsal, tritonymph; F, idiosoma, ventral, tritonymph. Scale bar $=50 \mu \mathrm{~m}$.
subdivided (Fig. 23E). Ventral plates AE, PE, GP, and AP separated. AE with 1-2 pairs of adjunct setae; PE each with 2 adjunct setae. GP ovoid (Fig. 23F); with 2 pairs of pgs and 1 pair of sgs. Three pairs of genital acetabula adjacent to primordial genital slit. Gnathosoma as in male. Leg chaetotaxy: leg I, 1, 2, 6, 7, 7, 3; leg II, 1, 3, 6, 7, 7, 3; leg III, 1, 2, 4, 3, 6, 4; leg IV, 0, 2, 3, 4, 6, 3. Telofemora I and II each with $4 / 2$ dorsal/ventral setae, telofemora III and IV with $3 / 1$ and $3 / 0$ dorsal/lateral setae, respectively. Tibiae I-IV each with 2 stout ventral setae.

Variations. Varieties of characters in adults: length of idiosoma, female: 315-353 (4); number of adjunct setae on either side of AE: 2 (6), 3 (2); number of adjunct setae on PE: 1 (1), 2 (7); number of pgs on either side of GO, female: 5 (8); number of setae of leg segments 2,4 and 5 , and number of dorsal/ventral setae of telofemora I and II and dorsal//ateral setae of telofemora III and IV:

segment	leg I	leg II	leg III	leg IV
2	$2(8)$	$3(8)$	$2(8)$	$2(8)$
3	$5 / 2(8)$	$5 / 2(8)$	$3 / 1(7)$	$3 / 0(8)$
4	$6(1), 7(7)$	$7(8)$	$3(7)$	$4(8)$
5	$7(8)$	$7(8)$	$6(7)$	$6(8)$

REMARKS. Adults and juveniles of Rhombognathus validipes are characterised by the two pairs of setae on the PD , whereas the other species from the Great Barrier Reef have a single pair of setae.
In the rhombognathine fauna presently known from northeastern Australia, the two species Rhombognathus lathridius and R. validipes have smooth claws, R. validipes is larger than the psammobiont R. lathridius; its gnathosoma is wider and the adanal setae do not arise from small pedestals as in R. lathridius.
In dorsal and ventral aspect of the idiosoma and the outline of the gnathosoma and the claws, R. validipes resembles R. leurodactylus Krantz, 1976 and R. robustus Bartsch, 1977, both are
recorded from the eastern Pacilic coast (Krantz, 1976; Bartsch, 1977). In contrast to the two latter species, the OC of R. validipes are more slender. Other characters which separate R. validipes from R. leurodactylus are: the number of setae of the telofemora I-IV $-5 / 2,5 / 2,3 / 1,3 / 0$ in R. validipes, but $3 / 2,3 / 2,2 / 1,2 / 1$ in R. leurodactylus; the number of perigenital setae in females, 5 pairs in R. validipes, no more than 3 pairs in R. leurodactylus. Tibiae I-IV of R. robustus bear $6,6,5,5$ setae, those of R. validipes 7, 7, 6, 6 setae.

KEY TO ADULT RHOMBOGNATHINES OF THE GREAT BARRIER REEF

1. Gnathosoma completely hidden beneath AD . OC wider than long: without seta. PD with 3 pairs of setae. Venter with small plates and large areas of striated integument (Fig. 1B) Isobactrus ponapensis Gnathosoma extending beyond anterior margin of ${ }^{\circ}$ idiosoma. OC longer than wide; with 2 setae. PD with 1-2 pairs of setae. Ventral AE and PE fused to ventral shicld.

Rhembognathus

KEY TO ADULT RHOMBOGNATHUS

1. Plates AD, OC and PD separate

All dorsal plates fused. Claws with more than 20 tines scutulatus
2. Anterior margin of AD evenly rounded (Fig. 2A). Anal plate without pedestals
AD with minute frontal process. Adanal setac on small pedestals (Fig. 7A); gnathosoma 1.5 times longer than wide; telofemora I-IV with $5 / 2,5 / 2,3 / 1,3 / 1$ dorsal/ ventral setae. Claws smnoth lathridius
3. Telofemoral-IV with 4-5/1-2, 4-5/1-2,3/0-1,3/0-1 dorsal/ ventral setae

4
Telofemora I-IV with 2/1, 2/1, 2/0, 2/0 dorsal/ventral setae . cyrtonotus
4. Claws widened and provided with more than 10 tines (Figs 15H, 19E)
Claws smooth or with accessory process, the latter with 1-8tines (Figs $5 \mathrm{H}, 17 \mathrm{E}$)
5. Claws with 12-13 tines. Setae ds-1 longer than following setae (Fig. 18A); female with 7-9 pairs of pgs (Fig. 191); male with 11-15 pairs of pgs. seminotatus Claws with 18-20 tines. Setae ds-1 hardly longer than following setae (Fig. 14A); female with 5 pairs of pgs (Fig. 15F); male with $10-14$ pairs ofpgs . . . papuensis
6. Length of ds-1 not exceeding twice length of following setae (Figs 4 Λ, 9A)
Setae ds-1 3-4 times longer than following setae (Figs $16 \mathrm{~A}, 20 \mathrm{~A}$); anal valves not extending beyond anal sclerites; dorsal plates reticulate,
7. Telofemora I and II each with $4 / I$ dorsal/ventral setac. . 8 Telofemoral and II each with $5 / 2$ dorsal/ventral setae . 9
8. Lenglh:height ratio of telofemora 1.9-2.0; anal valves extending beyond small anal sclerites (Fig. 4C) delicatulus Telofemora slender, length:height ratio 2.5-2.9; anal cone of normal shape with anal valves and anal sclerites similar in size (Fig. 11C)
longipes
9.OC 1.6 times longer than wide; two corneae equal in shape; PD with single pair of setae (Fig. 9A); claws with accessory process(Fig. 10A) levigatus
OC slender, more than 2.5 times longer than wide: posterior cornea subdivided; PD with 2 pairs of setae (Fig. 22A); claws smooth (Fig. 23B) validipes
10. PD with large-sized, faint reticulum, its meshes $8-10 \mu \mathrm{~m}$ long (Fig. 16A); telofemora I-IV with $4 / 2,4 / 2,3 / 0,3 / 0$ dorsal/ventral setae; claws with $7-8$ minute tines (Figs 17B, E)

- reticulifer PD with conspicuous and dense reticulation (Fig. 20A): telofemora I-IV with $4 / 1,4 / 2,3 / 1,3 / 1$ dorsal/ventral setae; claws with 3-4 minute tines (Fig. 21A, F)
tericulus

DISCUSSION

In the Great Barrier Reef area, 11 species of Rhombognathus and 1 of Isobactrus were found. Future collections will certainly result in records of more species. The number of Rhombognathus species is similar to that known from southwestern Australia, viz. 10 species (Bartsch, 1993), and from the boreal and warm temperate northwestern Pacific, 11 species from Hokkaido (Abé, 1996) and 8 species from the Hong Kong area (Bartsch, 1992). The number of species of Isobactrus recorded from the north- and southwestern Pacific area is small. Isobactrus ponapensis is the first representative of this genus from the shores of Australia. The low number of records of Isobactrus may partly be due to the lack of collections from adequate habitats.

Species of Rhombognalhus recorded from various regions of the Pacific and the tropical Indian Ocean are summarised in Table 1. The knowledge of the rhombognathine fauna in the Pacific and Indo-West Pacific region still is poor, and several of the published records are based on sporadic and short-time sampling activities with halacarids being just one of the accessory taxa. Accordingly, the data summarised in Table 1 far from completely mirror the number and distribution of the genus Rhombognathus in these geographic regions. The status of Rhombognathus denticulatus Sokolov, 1952 is not clear; the absence of a bipectinate seta on tibia III may be an evidence of close relationship to the genus Isobactrus.

Noteworthy is the low number of wide-spread species. R. leurodactylus obviously is an amphi-Pacific boreal species. The species was taken on the shores of Oregon/US (Krantz, 1976) and all around Hokkaido/Japan, here both on the coastlines influenced by subarctic water currents (Okhotsk Sea and Western North Pacific) and by the warm (subtropical) Kuroshio current (Japan Sea) (Abé, 1996). R. sinensis inhabits a wide

TABLE 1. Species of Rhombognathus and their records from the eastern and western Pacific and the tropical Indian Ocean. I = North America; II = Hawaii; III = Galapagos; IV South America; V = Northern Japan and Sea of Japan; VI = Southern China; VII = Philippines, Papua, New Guinea, Guam, New Caledonia; VIII = Northeastern Australia; IX = New Zealand; X = Antarctic Pacific; XI = Western Australia; XII = Tropical Indian Ocean; * $=$ taxonomic status not clear; $x ?=$ record in need of re-identification.

Species	Geographical Area												References
	1	II	III	IV	V	VI	VII	VIII	[X	X	XI	XII	
adeliensis Newell, 1984										x			Newell, 1984
ambiguus Newell, 1984										x			Newell, 1984
arenarius Bartsch, 1992						x							Bartsch, 1992
atuy Abé, 1990					x								Abé, 1990, 1996
biscutatus Bartsch, 1993											x		Bartsch, 1993
caudiculus Bartsch, 1983							x						Bartsch, 1983
cebuus Bartsch, 1983							x						Bartsch, 1983
compressus Abé, 1996					x								\| Abé, 1996
cyrtonotus sp. nov.								x					\| present paper
darwini Newell, 1984				x									Newell, 1984
delicatulus sp. nov.								x					present paper
denticulatus Sokolov, 1952*					x								Sokolov, 1952
dictyotus Bartsch, 1992						x							Bartsch, 1992
dissociatus Abé, 1990					x								Abé, 1990, 1996
ellipticus Bartsch, 1977			x										\| Bartsch, 1977
eltanini Newell, 1984				x									Newell, 1984
ezoensis Abé, 1990					X								Abé, 1990, 1996
felicis Newell, 1984				X									Newell, 1984
foveolatus Bartsch, 1993											x		\| Bartsch, 1993
fractus Bartsch, 1979									\times				Bartsch, 1979a
glaber Bartsch, 1989		x											Bartsch, 1989a
guamensis Bartsch, 1989							x						Bartsch, 1989a
heterosetosus Bartsch, 1977			x										Bartsch, 1977
hirtellus Bartsch, 1992						x							Bartsch, 1992
incertus Abé, 1996					x								Abé, 1996
insularis Bartsch, 1989		x											Bartsch, 1989a
lacunosus Bartsch, 1979									x				Bartsch, 1979a
\|latens Bartsch, 1993											x		Bartsch, 1993
lateralis Newell, 1984				x									Newell, 1984
lathridius sp. nov.								x					present paper
latioulus Bartsch, 1993											x		Bartsch, 1993
lepidus Bartsch, 1993											x		Bartsch, 1993
leurodactylus Krantz, 1976	x				x								Krantz, 1976; Abé, 1996
levigatus sp. nov.								x					present paper
longipes sp. nov.								x					present paper
longiscutatus Bartsch, 1977			x										Bartsch, 1977
longisetus Bartsch, 1999							x						Bartsch, 1999
lubricellus Bartsch, 1989		x											Bartsch, 1989a
marginalis Bartsch, 1993											x		Bartsch, 1993
medialis Abé, 1996					x								Abé, 1996
multisetosus Newell, 1984				x									Newell, 1984
neotenus Abé, 1996					x								Abé, 1996
neptunellus Bartsch, 1992						x							Bartsch, 1992

TABLE 1. (cont.)

Species	Geographical Area												References
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	
novaezelandicus Bartsch, 1985									X				Bartsch, 1985
oblongus Bartsch, 1989							x						Bartsch, 1989a
pacificus Newell, 1984				X									Newell, 1984
papuensis Bartsch, 1989							x	x					Bartsch, 1989a, present paper
placidus Bartsch, 1993											x		Bartsch, 1993
plumifer Trouessart, 1889				x									Newell, 1984
psammophilus Bartsch, 1993											x		Bartsch, 1993
reticularus Krantz. 1976	x												Krantz, 1976
reticulifer sp. nov.								x					present paper
robustus Bartsch, 1977			x										Bartsch, 1977
\|scutulatus Bartsch, 1983							x	x			x	x	Bartsch, 1983, 1993; Chatterjee, 1995; present paper
semiarmatus Bartsch, 1983							x						Bartsch, 1983
seminotatus sp. nov.								x					present paper
semireticulatus Bartsch, 1977			X										Bartsch, 1977
setellus Bartsch, 1992						x							Bartsch, 1992
setifer Bartsch, 1983							x						Bartsch, 1983
similis. Bartsch, 1977			x									x ?	Bartsch, 1977 , Chatterjee, 1995
sinensis Bartsch, 1990					X	X							Bartsch, 1990
sinensoideus Bartsch, 1992						x							Bartsch, 1992
tenuiformis Abé, 1996					x								Abé, 1996
tericulus sp. nov.								x					present paper
terminalis Sokolov, 1952					x								Sokolov, 1952
teurinus Abé, 1996					x								Abé, 1996
thalassinus Bartsch, 1993											x		Bartsch, 1993
validipes sp. nov.								x					\| present paper
ventralis Newell, 1984				x									Newell, 1984
verrucosus Bartsch, 1992						X							Bartsch, 1992

range along the coast of Asia, from Hokkaido to Hong Kong (Abé, 1996; Bartsch, 1992). R. scutulatus is an Indo-West Pacific species; records are from the Philippines, eastern and western coast of India, Western Australia (Bartsch, 1983, 1993; Chatterjee, 1995) and, now, from eastern Australia. From the Indian Ocean, Chatterjee (1995) published a record of R. similis Bartsch, 1977, a species also known from the Galapagos Islands (Bartsch, 1977); because of differences in the arrangement of the perigenital setae in females, the eastern Pacific and Indian Ocean specimens may belong to different species. R. papuensis is known from Papua New Guinea (Bartsch, 1989a) and eastern Australia. Though often not identical species, there are close similarities between the rhombognathines of
northeastern Australia and the Philippines, e.g. R. lathridius/R. caudiculus and R. cyrtonotus/R. cebuus.

On the basis of data on the geography and ecology of rhombognathines, Bartsch (1982) concluded that within Isobactrus many of the species have a high tendency to tolerate environmental changes but a low speciation rate. In contrast, within Rhombognathus there seems to be a high evolutionary potential. Rather than tolerate a wide range in the environmental parameters, species genetically diversify, and when being brought into a new habitat, exposed to changing hydrographic or climatic challenges or biological interactions, new species evolve in the local scene. The large numbers of Rhombognathus may be the result of adaptations to the numerous niches in the Great Barrier Reef area.

In the material from the Great Barrier Reef Marine Park area at hand, a few individuals could not be identified, they demonstrated characters of two species, namely R. delicatulus and R. tericulus. Are these specimens extreme variants, separate species, or hybrids? Nothing is reported on genetic barriers, or hybridisation, between halacarid species sharing a habitat. In the course of the author's studies in the northern Atlantic, thousands of rhombognathines have been examined microscopically. The variation of characters is low, apart from a few anomalies. namely deformations, intersexes which showed characters of both males and females, or adults with unilaterally a leg form and setation equalling that of juveniles. Hybrid-like forms, with characters of two species, were not found. The rhombognathine fauna of the northern Atlantic includes the genera Isobactrus, Metarhombognathus, Rhombognathides and Rhombognathus. From the Pacific and Indian Ocean only Isobactrus and Rhombognathus are known. The genus Rhombognathus is characterised by a large number of different forms; there are species with a slender, elongate idiosoma, others are short and Ilattened; some species are small and cryptic, others very large; species have short legs with wide segments or the telofemora and tibiae are elongate and the legs almost as long as the idiosoma; the numbers of setae of the legs vary considerably. Beside the wide range of interspecific differences, the genus is characterised by a high intraspecific variability. In contrast to Rhombognathus, Isobactrus demonstrates a considerable uniformity. The shape of the idiosoma and legs is rather similar in all species and even interspecific difference in the setation is small within the faunas of the northern and southern oceans, respectively.

ACKNOWLEDGEMENTS

It thank Dr J.C. Otto for collecting, sorting and providing the halacarid mites described in this paper.

LITERATURE CITED

ABE, H. 1990. Three new species of the genus Rhombognathus (Acari, Halacaridae) from Japan. Zoological Science 7: 517-535.
1996. Rhombognathine mites (Acari : Halacaridae) from Hokkaido, Northern Japan. Publications of the Seto Marine Biological Laboratory 37: 63-166.
1998. Rhombognathine mites. Taxonomy, phylogeny, and biogeography. (Ilokkaido University Press: Sapporo).

BARTSCH, 1. 1975a. Ein Beitrag zum System der Rhombognathinae (Halacaridae, Acari). Zur Morphologie der Tarsalregion und des Ovipositors. Zoologischer Anzeiger 194: 193-200.
1975b. Ein Beitrag zur Rhombognathinen-Fauna (Halacaridae, Acari) der Bretagncküste. Acarologia 17: 53-80.
1977. Interstitielle Fauna von Galapagos. XX. Halacaridae (Acari). Mikrofauna des Meeresbodens 65: 1-108.
1979a. Five new species of Halacaridae (Acari) from New Zealand. New Zealand Journal of Marine \& Freshwater Research 13: 175-185.
1979b. Halacaridae (Acari) von der Atlantikküste Nordamerikas. Beschreibung der Arten. Mikrofauna des Meeresbodens 79: 1-62.
1982. Zur Gattung Rhombognathus (Acari, Halacaridae), Übersicht über alle Arten, deren Verbreitung und eine Bestimmungstabelle. Zoologische Jahrbücher, Abteilung Systematik, Geographie und Biologie der Tiere 109: 83-97.
1983. Zur Halacaridenfauna der Philippinen. Beschreibung von fün [Arten der Gattung Rhombognathus (Acari, Halacaridae). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 7: 399-416.
1985. New species of Halacaridae (Acari) from New Zealand. New Zealand Journal of Zoology 12: 547-560.
1986. New species of the genus Rhombognathus (Acari, Halacaridae), and a key to Mediterranean Rhombognathus. Mesogee 46: 3-7.
1989a. Rhombognathinae (Halacaridae, Acari) aus dem Pazifik. Beschreibung sieben neuer Arten. Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 9: 229-246.
1989b. Rhombognathus auster, a new rhombognathine mite (Acari, Halacaridae) from southern South America. Zoologica Scripta 18: 423-425.
1990. Halacaridae (Acari) of Hong Kong. Pp. 661-665. In Morton, B. (ed.) The marine flora and fauna of Hong Kong and Southern China II. (University Press: Hong Kong).
1992. Hong Kong rhombognathine mites (Acari : Halacaridae). Pp. 251-276. In Morton, B. (ed.) The marine flora and fauna of Hong Kong and Southern China III. (University Press: Hong Kong).
1993. Rhombognathine mites (Halacaridae, Acari) from Rottnest Island, Western Australia. Pp. 19-43. In Wells, F.E., Walker, D.I., Kirkman, H. \& Lethbridge, R. (eds) The marine flora and fauna of Rottnest Island, Western Australia. (Western Australian Museum: Perth).
1999. Rhombognathus longisetus, a new halacarid mite (Rhombognathinae, Halacaroidea, Acari) from New Caledonia. Cahiers de Biologie marine 40: 15-20.
BARTSCH, I. \& SCHMIDT, P. 1979. Zur Verbreitung und Ökologie einiger Halacaridae (Acari) in den

Sandstränden der Ostsee (Kieler Bucht), der Nordsee (Sylt) und des Europäischen Nordmeeres (Tromsö). Mikrofauna des Meeresbodens 74; 1-37.
CHATTERJEE, T. 1995. Record of three species of Rhombognathus (Halacaridae: Acari) from Indian Ocean Region. Journal of the Bombay Natural History Society 92: 282-286.
GOSSE, P.H. 1855. Notes on some new or little-known marine animals. The Annals and Magazine of Natural History (2nd series). 16: 27-36.
KRANTZ, G.W. 1976. Arenicolous Halacaridae from the intertidal zone of Schooner Creek, Oregon (Acari : Prostigmata). Acarologia 18: 241-258.
LOHMANN, H. 1889. Die Unterfamilie der Halacaridae Murr. und die Meeresmilben der Ostsee. Zoologische Jahrbücher, Abteilung Systematik, Geographie und Biologie der Tiere 4: 269-408.
NEWELL, I.M. 1947. A systematic and ecological study of the Halacaridae of eastern North America. Bulletin of the Bingham oceanographic Collection, New Haven 10: 1-232.
1984. Antarctic Halacaroidea. Antarctic Research Series 40: 1-284.

SOKOLOV, I.I. 1952. Vodjanye klešci. II. Halacarae. Fauna SSSR 5: 1-201.
SCHULZ, E. 1933. Zur Halacaridenfauna der Kieler Bucht. Schriften des naturwissenschaftlichen Vereins für Schleswig Holstein 20: 96-105.
TROUESSART, E. 1888. Note sur les acariens recueillis par M. Giard au laboratoire de Wimereux. Compte rendu hebdomadaire des séances de l'Académie des Sciences 107: 753-755.
1889. Revue synoptique de la famille des Halacaridae. Bulletin scientifique de la France et de la Belgique, (série 3) 20:225-251.
1894. Note sur les acariens marins (Halacaridae), récoltés par M. Henri Gadeau de Kerville sur le littoral du départment de la Manche. (Juillet-Août 1893). Bulletin de la Société des amis des sciences naturelles, Rouen 9: 139-175.
VIETS, K. 1927. Die Halacaridae der Nordsee. Zeitschrift für wissenschaftliche Zoologie 130: 83-173.
1939. Meeresmilben aus der Adria (Halacaridae und Hydrachnellae, Acari). Archiv für Naturgeschichte, Neue Folge 8: 518-550.

NEW RECORDS OF TRAPEZIID CRABS (CRUSTACEA: BRACHYURA: TRAPEZIIDAE) FROM THE CORAL SEA AND NORTHERN TASMAN SEA. Memoirs of the Queensland Museum 45(2): 204. 2000:Trapeziid crabs belonging to Tetralia and Trapezia are obligate symbionts of reef-building corals, while species of Quadrella inhabit antipatharians, alcyonaceans, gorgonians and azooxanthellate corals. The trapeziids inhabiting the Coral Sea region were studied by Castro (1997). Examination of collections deposited in the Australian Museum. Sydney (AM), Queensland Museum, Brisbane (QM) and the Muséum National d'Histoire Naturelle, Paris (MNHN) has revealed the presence of additional species for the region. Two species are recorded for the first time from eastern Australia and two from New Caledonia. Five species of Tetralia, twelve of Trapezia and three of Quadrella are now known from the Coral Sea and northern Tasman Sea. Only one wide-ranging Indo-West Pacific species, Trapezia tigrina Eydoux \& Souleyet, 1848 , remains unknown from the region.

Quadrella coronata Dana, 1852
For synonymy see Castro, 1999a: 95.
AMP17448, ô, ¢, New Caledonia, Îlot Amadée, 30-35m, 12 Sept. 1929, B. Conseil \& G. Bangibout. New record for New Caledonia. The only previous Coral Sea record was from southwestern Vanuatu (Castro, 1997). The species is known from across the Indian Ocean and the western Pacific (Castro, 1999a), To additional species, Q. maculosa Alcock, 1898 and Q. serenei Galil, 1986 (the Vanuatu specimen referred to as Q. maculosa by Castro, 1997; see Castro, 1999a: 96), is also known from the Coral Sea.

Tetralia vanniniii Galil \& Clark, 1988
For synonymy see Castro, 1999a: 103.
AMP17232, $2 \delta^{\circ}$, Queensland, North East Cay, Herald Group, $17^{\circ} 20^{\prime}$ S, $148^{\circ} 28^{\prime}$ E, 6 Nov. 1964, D.F. Mc Michael \& J.C. Yaldwyn; QMW25176, ${ }^{\circ}$, \circ, Wreck Reef, Porpoise Cay, $22^{\circ} 17^{\circ} \mathrm{S}, 155^{\circ} 25^{\circ} \mathrm{E}$, outer reef slope, $12 \mathrm{~m}, 10$ May 1988 , J. Short \& S. Mullers; AMP39689, \%, \circ, Sugarloaf Island, Lord Howe Island, $31^{\circ} 30.2^{\prime} \mathrm{S}, 159^{\circ} 04.3^{\prime} \mathrm{E}, 17 \mathrm{~m}, 27 \mathrm{Dec}$. 1979 , N. Coleman. First record for the Coral Sea region. The species is found through most of the Indo-West Pacific region.

Trapezia formosa Smith, 1869
For synonymy see Castro, 1998: 178.
AMP38228, δ, 오, Elizabeth Reef, reef flat near 'Yoshin Maru Iwaki' wreck, $29^{\circ} 55.8^{\circ} \mathrm{S}, 159^{\circ} 01.3^{\prime} \mathrm{E}$, small coral head, J.K. Lowry \& R.T. Springthorpe. First record from eastern Australian waters. The only previous Coral Sea record was from the Chesterfield Islands (Castro, 1997). The species is widely distributed across the Indo-West Pacific and castern Pacific regions (Castro, 1998).

Trapezia lutea Castro, 1997
Trapezia lutea Castro, 1997: 84-87, tigs 2C, D, 3A-C, pls 2C, 5 A .
QMW25186, 20 , 우, Queensland, Flinder's Reef, off Cape Moreton, $26^{\circ} 59^{\prime}$ S, $153^{\circ} 29^{\circ}$ E, P.J.F. Davie \& J. Short. First record from eastern Australian waters. Previous Coral Sea records were from New Caledonia and the Loyalty and Chesterfield Islands (Castro, 1997). The species is widely distributed through most of the Indo-West Pacific region; first recorded from Indonesia by Castro (1999b: 52).

Trapezia punctipes Castro, 1997
Trapezia punctipes Castro, 1997: 87-89, figs 4A-C, pl. 2D.
MNHN-B26249, ㅇ, New Caledonia, Baie St. Vincent, $22 E 25^{\prime}$ S, 166 E50 ${ }^{\circ}$ E, Aug. 1961, Y. Plessis. The species was described from material collected at Lizard Island, northern Queensland. This is the first record from New Caledonia. It is generally uncommon; known from the Andaman Sea coast of Thailand to the Mariana Islands and Fiji (Castro, 1999b).

Acknowledgements

I thank Penny Berents (AM), Alain Crosnier (IRD), Paris), Peter Davie and John Short (QM) for making this material available.

Literature cited

CASTRO, P. 1997. Trapeziid crabs (Brachyura: Xanthoidea: Trapeziidae) of New Caledonia, eastern Australia, and the Coral Sea. In Richer de Forges, B. (ed.) Le benthos des fonds meubles des lagons de Nouvelle-Calédonie (Sédimentologie, Benthos). Études et Théses 3: 59-107.
1998. Systematic status and geographic distribution of Trapezia formosa Smith, 1869 (Crustacea, Brachyura, Trapeziidae), a symbiont of reef corals. Zoosystema 20(2): 177-181.
1999a. Trapeziid crabs (Crustacea, Brachyura, Xanthoidea, Trapeziidae) of the Indian Ocean and the Red Sea, Zoosystema 21(1): 93-120.
1999b. Results of the Rumphius Biohistorical Expedition to Ambon (1990), Part 7. The Trapeziidae (Crustacea: Brachyura: Xanthoidea) of Indonesia. Zoologische Mededelingen Leiden 73: 27-61.
DANA, J.D. 1852. Conspectus Crustaceorum, et. Conspectus of the Crustacea of the Exploring Expedition under Capt. Wilkes, U.S.N., including the Crustacea Cancroidea Corystoidea. Proceedings of the Academy of Natural Sciences of Philadelphia 6: 73-86.
GALIL, B. \& CLARK, P.F. 1988. On a collection of Acroporainhabiting trapeziids (Crustacea Brachyura Xanthoidea) from East Africa. Tropical Zoology 1: 137-151.
SMITH, S.I. 1869. Notes on new or little known species of American cancroid Crustacea. Proceedings of the Boston Society of Natural History 12: 274-289.
P. Castro, Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, U.S.A.; 12 May 2000.

SPL(IES (IF DISCOCELIS (PLATYHELAINTIIS F'ULY(LADIDA) FRKM QUEENSLAND, WITII DESCRIPTION OF ANEW SIPECIES

\author{

1. BEVERIDGF:
}

Beveridge 1.20000630 : Species of Discucelis (Platy helminthes: Polveladida) from Queensland, with description of a new species. Afemoirs of the Qucensland Ahuseum 43(2):205-213. Brishane. ISSN 0079-8835.

Two species of Discocclis are described from intertidal waters from northern Queensland. The first species is characterised by the marginal eyes extending to the posterior region of the body, the presence of a seminal vesicle, cerebral eyes distributed more or less in anterior and posterior groups and a male antrum with complex lobes in dorso-ventral views. This species differs clearly from all congeners and is mamed D. porvimuculata sp. nov. The second has mareinal eyes exiending to the level of the cerebral organ, cerebral eyes arranged more or less in wo groups, lacks a seminal vesicle and has proszatoids in the wall of the male antrum as well as in the penis papilla itself, The species is closely related to D. puaillo Kato, 1938. It is probably distinct but is not named owing 10 the poor description of D. musilla. The records presented suggest that several species of Discocelis are present in Australian coastal waters and that the distribution of prostatoids seen in dorso-ventral views of the male antrum provides useful characters for distinguishing species within the genus. \square Polycladida. Discocelis new species, faxanam:

1. Beveridge, Department of Veterinary Sctence, Universim of Akhourne. Parkville 3052. Melbournc. Australia: 24 April Jygy.

The polyclad tamily Disencelidac Laidlaw: 1903 is a cosmopolitan family of essentially intertidal polyclads characterised by the presence of maryinal eyes and small secretory organs, termed prostatoids, associated with the male reproductive system (Faubel, 1983). The family is currently represented by a single Australian species. Discocelis australis Hyman. 1959, found under rocks in the intertidal region close to Sydney (Hyman, 1.959) and from West 1., South Australia (Prudhoe, 1982). Faubel (1983) transferred D. australis to the related genus Thalamoplana Laidlaw, 1904, distinguished Irom Discocelis Ehrenberg, 1836 by possessing separate male and female gonopores. By contrast, Prudhoe (1985) considered that Thalamoplana warranted only sub-generic rank.
The presence of only a single Australian representative of the family is probably the result of lack of collecting rather than the family being poorly represented in Australian intertidal waters. This paper reports the presence of two additional species of Discocelis from Townsville, Queensland, one of which is clearly a new species.

METHODS

Polyclads were collected at low-tide from under rocks on exposed mud-flats. Fixation followed the technique of Newman \& Canson (1995) in which polyclads were placed on tilter paper in a dish of sca-water and when fully
extended, the filter paper was rapidly placed on a block of frozen fixative, either 4% formaldehyde in sea-water or lormaldehyde-calcium acetatepropylene glycol-propylene phenoxetnl. Foilowing fixation, worms were dehydrated in a graded series of ethanols, cleared in methyl salicylate and mounted in Canada balsam. The median posterior sections of individual polyclads were removed using a scalpel blade, embedded in paratfin and serial longitudinal sections, cut at is thickness of $7 \mu \mathrm{~m}$, were stained with Gill's haematoxylin and cosin. Drawings were made using a drawing tube attached to an Olympus BH microscope. Measurements are presented in millimetres as the range followed by the mean in parentheses.

All specimens collected have been deposited in the Queensland Muscum (QM).
Type specimens of D. australis from New South Wales (Australian Museum W3685) were compared with the new material.

POLYCLADIDA Lang, 1884 ACOTYLEA Lang, 1884
DISCOCELIDAE Laidaw: 1903
Discocelis parvimaculata sp. nov.
(Figs 1-6)
MATERIAL HOLOTYPE: Rowe's Bay, Townsvilk, Uld ($19^{\circ} 16^{\circ}$ S, $146^{\circ} 49^{\circ}$ E), 17.vi.1997, coll. 1. Beveridze whole mount, unstained (QM G217321); 2 colour slides.

FIG. 1. Discocelis parvimaculata sp. nov., entire polyclad, dorsal view, showing pattern of pigmented maculae and extent of marginal eyes (ME arrows). Scale bar $=1 \mathrm{~mm}$.

PARATYPES: 5 entire specimens and fragments of 1 specimen, whole mounts; I set of sections stained with haematoxylin and eosin, Rowe's Bay, Townsville, Qld, coll. I. Beveridge, 1.vii.1994, 29.vi. 1995 (QM G217322-7, serial sections G217328).

DESCRIPTION. Large, oval polyclads; holotype non-gravid specimen 13 long, 10 wide; gravid specimens, 18-21(19) long, 7-12(10) wide; dorsal surface fawn, darker in centre, covered with numerous small brown circular areas of pigment, larger brown patches in central regions, becoming smaller towards periphery (Fig.1); ventral surface pale grey; nuchal tentacles absent; cerebral organ 0.41×0.55 in holotype, 0.39-0.48 $(0.43) \times 0.46-0.56(0.51)$ in paratypes, 2.58 from anterior extremity in holotype, 2.94-4.60(3.77) in paratypes; marginal eyes 3-4 deep, extend to posterior quarter of body, number of rows of

FIG. 2. Discocelis parvimaculata sp, nov., cerebral organ, tentacular and cerebral eyes showing variation between individual specimens (see Fig. 3). Scale bar $=0.1 \mathrm{~mm}$.
ocelli diminishes posteriorly; in most specimens, including holotype, eyes reach level of gonopore; in some specimens, eyes encircle body; cerebral eyes arranged in elongate groups, on either side of mid-line, 41-65 ocelli anterior to cerebral organ, 5-20 posterior to cerebral organ, anterior and posterior groups usually but not invariably separated (Figs 2,3); tentacular eyes with 25-40 ocelli per cluster; ruffled pharynx in mid-body, with 10-12 lateral folds, 11 in holotype; mouth at posterior end of pharynx, 4.9 from posterior end in holotype, 7.0-8.1(7.6) in paratypes; single gonopore 3.13 from posterior end in holotype, 5.5-6.8(6.0) in paratypes; antrum masculinum voluminous, folded in both dorso-ventral views and sagittal sections; in ventral views (Figs 4,5), antrum with prominent anterior lobe containing penis papilla and two lateral lobes each partially subdivided; in sagittal section (Fig. 6), several muscular lobes descend from dorsal surface of antrum; antrum with numerous pyriform prostatoids opening into lumen; in ventral view, prostatoids arranged in subcircular cluster on penis papilla and on posterolateral margins; in sagittal sections, prostatoids present on all pendant processes; no prostatoids present in wall of antrum; prostatoids of two histological types; most with faintly eosinophic content; prostatoids

FIG. 3. Discocelis parvimaculata sp. nov., cerebral organ, tentacular and cerebral eyes showing variation between individual specimens. $\mathrm{CE}=$ cerebral eyes; $\mathrm{CO}=$ cerebral organ; $\mathrm{TE}=$ tentacular eyes. Scale bar -0.1 mm .

FIG. 4. Discocelis parvimaculata sp. nov., gonopore and genital complex, ventral view. $\mathrm{G}=$ gonopore; $\mathrm{L}=$ Lang's vesicle; $\mathrm{P}=$ prostatoids; $\mathrm{U}=$ uterine duct; VD $=$ vas deferens. Scale bar $=0.1 \mathrm{~mm}$.

FIG. 5. Discocelis parvimaculata sp. nov., ventral aspect showing cerebral organ, eyes, pharynx and genital complex. $\mathrm{C}=$ cement glands; $\mathrm{G}=$ gonopore; L $=$ Lang's vesicle; $\mathrm{M}=$ mouth; $\mathrm{PH}=$ pharynx; $\mathrm{U}=$ uterine duct; $\mathrm{VD}=$ vas deferens. Scale bar $=0.1 \mathrm{~mm}$.

FIG. 6. Discocelis parvimaculata sp. nov., median sagittal section showing mouth, gonopore and histological details of genital ducts. $\mathrm{C}=$ cement glands; $\mathrm{IN}=$ intestine; $\mathrm{L}=$ Lang's vesicle; $\mathrm{M}=$ mouth; $\mathrm{P} 1=$ eosinophilic prostatoids, $\mathrm{P} 2=$ basophilic prostatoids; $\mathrm{PH}=$ pharynx; $\mathrm{SV}=$ seminal vesicle. Scale bar $=0.1 \mathrm{~mm}$.
at anterior extemity of antrum and on ventral or anterior surfaces of pendant processes of penis papilla with basophilic content; penis papilla fleshy, prominent, in anterior part of antrum; ejaculatory duct simple, straight; prostate absent; ejaculatory duct leads to pyriform seminal vesicle with thin but highly eosinophilic wall, passes ventrally, divides; walls of spermiducal bulbs highly muscular; vasa deferentia thin-walled, pass anterolaterally from male complex, to level of mouth, then divide; posterior branches coil posteromedially, uniting posterior to Lang's vesicle. No separate female gonopore; vagina opens into male antrum immediately posterior to common gonopore; vagina with thick muscular watls, ciliated lining, curves anteriorly to short, horizontal region; uterine canals empty into vagina immediately anterior to termination of vagina into prominently Y-shaped Lang's vesicle; uterine canals extend anteriorly on either side of pharynx; cement glands prominent in horizontal region of vagina, extend posteriorly and laterally into parenchyma, branched distally.

Discocelis sp.

(Figs 7-12)
MATERIAL. Two specimens, Rowe's Bay, Townsville, Qld, 1.vii. 1994, coll. I. Beveridge, whole mount and serial sections stained with haematoxylin and cosin (QM G217329-30, serial sections G217331).

DESCRIPTION. Oval polyclads; gravid specimens 12-16 long, 5-8 wide; dorsal surface fawn, darker in centre, covered with numerous brown circular areas of pigment, larger patches in central regions, becoming smaller towards periphery (Fig. 7); ventral surface pale grey; nuchal tentacles absent; cerebral organ 0.33-0.45 \times
0.42-0.44, 2.5-4.6 from anterior extremity; marginal eyes in rows 3-4 deep, extend around anterior quarter of body, reach level of cerebral organ; cerebral eyes arranged in elongate groups, either side of mid-line, 31-42 ocelli anterior to cerebral organ, more or less separate from 4-7 posterior to cerebral organ (Figs 8,9); tentacular eyes with $18-30$ ocelli per cluster; ruffled pharynx in mid-body, with 10 lateral folds; mouth at posterior end of pharynx, 5.2 from posterior end; single gonopore 3.4 from posterior end; antrum masculinum voluminous; prominent anterior penis papilla, circular in ventral view (Figs 10,11), with numerous prostatoids; wall of antrum encircling penis papilla bearing single row of prostatoids; antrum with 2 laterally directed branches on each side, immediately anterior to gonopore; anterior pair of lateral branches with row of prostatoids along posterior margin; in sagittal section (Fig. 12), large muscular penis papilla descends from dorsal surface of antrum, with numerous pyriform prostatoids; prostatoids present in wall of antrum, restricted to anterior ventral region; prostatoids with faintly eosinophic content; ejaculatory duct simple, straight; prostate absent; seminal vesicle absent; ejaculatory duct divides into vasa deferentia which pass anterolaterally from male complex, to level of pharynx, then re-divide; posterior branches coil posteromedially, uniting posterior to Lang's vesicle. No separate female gonopore; vagina opens into male antrum immediately posterior to common gonopore; antrum anterior to vaginal opening, prominent, muscular with thicker epithelium; vagina with thick muscular walls, ciliated lining, curves anteriorly; uterine canals empty into vagina anterior to prominent dorsal loop; vagina passes ventrally to enter

FIG. 7. Discocelis sp., entire polyclad, dorsal view, showing pattern of pigmented maculae and extent of marginal eyes (ME arrows). Scale bar $=1 \mathrm{~mm}$.

Y-shaped Lang's vesicle; uterine canals extend anteriorly on either side of pharynx; cement glands prominent, extend posteriorly and laterally into parenchyma.

DISCUSSION

Both species described above belong to the family Discocelidae since they possess marginal eyes and prostatoids opening into the male antrum (Faubel, 1983; Prudhoe, 1985). Generic distinctions within the family are not well defined, and although both Faubel (1983) and Prudhoe (1985) accept the validity of Discocelis, Adenoplana Stummer-Traunfels, 1933 and Coronadena Hyman, 1940, their definitions of these genera differ. In addition, Thalamoplana Laidlaw, 1904, accepted by Marcus \& Marcus (1966), de Beauchamp (1961) and Faubel (1983), was not accepted as a valid genus by Prudhoe (1985). Both species described here differ from Coronadena in lacking the 7-11 large prostatic organs arranged radially around the male antrum in addition to the more numerous small prostatoids. Adenoplana was characterised by Stummer-Traumfels (1933) as having an interpolated prostatic organ. Faubel (1983) by contrast interpreted the prostatic organ of

FIG. 8. Discocelis sp., cerebral organ, tentacular and cerebral eyes showing variation between individual specimens (see Fig. 9). $\mathrm{CE}=$ cerebral eyes; $\mathrm{CO}=$ cerebral organ; TE = tentacular eyes. Scale bar $=0.1 \mathrm{~mm}$.

Adenoplana as an ejaculatory duct lined with a glandular epithelium. Whatever the precise definition of the structures involved may be, Adenoplana differs from the species described here in possessing distinctly separate gonopores.

The remaining genera, Discocelis and Thalamoplana, are distinguishable on the basis of gonopores, with the former possessing a single gonopore and two gonopores in the latter. However, D. australis, which Faubel (1983) assigned to Thalamoplana, possesses a single gonopore, a feature which was confirmed by examination of the type specimens, while D. insularis Hyman, 1955 has the male and female systems opening at essentially the same point, which as Prudhoe (1985) has observed, is intermediate between the condition present in the type species of the two genera. For the present, Faubel's (1983) separation of Discocelis from Thalamoplana is accepted but australis is considered, following Prudhoe (1985), to be a

FIG. 9. Discocelis sp., cerebral organ, tentacular and cerebral eyes showing variation between individual specimens. Scale bar $=0.1 \mathrm{~mm}$.

FlG. 10. Discocelis sp. gonopore and genital complex, ventral view. $\mathrm{G}=$ gonopore; $\mathrm{L}=$ Lang's vesicle; $\mathrm{P}=$ prostatoids; $V D=$ vas deferens. $S c a l e$ bar $=0.1 \mathrm{~mm}$.
member of Discocelis. Both species described above are therefore assigned to Discocelis which consists of D. australis, D. tigrina (Blanchard, 1847), D. fulva Kato, 1944, D. japonica Yeri \& Kaburaki, 1918 and D. pusilla Kato, 1938. The type species, D. lichenoides (Mertens, 1832), is considered unrecognisable (Hyman, 1959; Faubel, 1983; Prudhoe, 1985) and was treated as a species inquirenda by Faubel (1983).
Within Discocelis, the first species described above is immediately distinguishable from all congeners on the basis of the extent of the eyes, which in other species extend only as far as the region of the cerebral organ but in this species extend to, or almost to, the posterior end of the body. The marginal eyes also extend to the posterior part of the body in Adenoplana and Coronadena. The species described here differs from all congeners except D. australis in

FIG. 11. Discocelis sp., ventral aspect showing cerebral organ, eyes, pharynx and genital complex. $\mathrm{C}=$ cement glands; $\mathrm{G}=$ gonopore; $\mathrm{L}=$ Lang's vesicle; M $=$ mouth; $\mathrm{PH}=$ pharynx; $\mathrm{U}=$ uterine duct; $\mathrm{VD}=$ vas deferens. Scale bar $=0.1 \mathrm{~mm}$.
possessing a seminal vesicle, though this was described as a muscular organ in D. australis by Hyman (1959) but has a thin, highly eosinophilic wall in the specimens described above. The specimens described here differ from D. tigrina

FIG. 12. Discucclis sp., median sagittal section showing mouth, gonopore and histological details of genital ducts. $\mathrm{C}=$ cement glands; $\mathrm{IN}=$ intestine; $\mathrm{L}=$ Lang" vesicle; $\mathrm{P}=$ prostatoids; $\mathrm{VD}=$ vas deferens. Scale bar = 0.1 mm .
and D. cunstralis in having a male antrum which forms live distinet lobes in dorsoventral views. In both of the other species the antrum is rounded. based on plate 13, fig. I of Lang (1884) for D. figrina and observations of the type specimens in the case of D. custrulis. The morphology of the male antrum in dorsoventral view has not been described for the remaining species. The separation of the cerebral eyes into two clusters separates the species described here from D. figrima, D. ansiralis and D. filvaz and the colour patern of the dorsal surface, with numerous brown circular areas separates the species from D. finlva which lacks a distinctive pattern (Kato, 1944). The two types of prostatoids, one with eosinophilie content and the other with basophilic content may also distinguish this species from all congeners, although Kato (1944, lig. 2) illustrated two types of prostatoids in D. fillia. but did not describe the differences shown in the illustration. The morphological differences noted therefore indicate that the described specimens represent a new species for which the name D. parvinaculates is proposed based on the small size of the dorsal maculae compared with other

FIG. 13. Schematic representation of genital atrium of Discocelis tigrina, redravn from Lang (1884).
species in which the patterns on the dorsal surlace have been adequately deseribed.
The second species described above is distinguishable from D. unseralis and D. parvimactulatu in lacking a seminal vesicle and from the latter species in having the marginal eyes testricted to the anterinr region of the body. It differs from D, figrina in having the mouth at the posterior end of the pharynx rather than in the middle and in having the cerebral eyes divided into anteriur and posterior groups. In addition, the arrangement of the prostatoids in ventral view (Fig. © (0) dithers from that found in D. tigrinu in which they are arranged in a U-shaped cluster around the anterior half of the penis papilla, with two lateral rows extending posteriorly (Lang. 1884, pl. 13, lig. 1).
The species is therefore most closely related to D. fithoa, D. japonica and D. pusille, all from Japan. The specimens are distinguishable from D. fulva since this species has no dorsal colour pattern, has numerous cerebral eyes arranged in a

FlG . 14. Schematic representation of genital atriun of Dhscacelis pusilla, redrawn from Kato (1938).

FIG. 15. Schematic representation of genital atrium of Discocelis fulva, redrawn from Kato (1944).
single elongate group and, according to the illustrations of the species, has prostatoids of two distinct sizes (Kato, 1944, fig. 2) (Fig. 15).
D. japonica differs in having 15-16 eyes in each posterior cerebral cluster rather than the 4-7 in the present specimens, and differs in the anatomy of the antrum masculinum and distribution of prostatoids (Fig. 16). In D. japonica, there are a number of projections into the antrum apart from the penis papilla, while in the current specimens only the penis papilla projects into the antrum. In addition, in D. japonica, a particularly elongate projection, lying dorsal to the vagina bears numerous prostatoids on both surfaces (Kato, 1937, fig. 2), while in the present specimens, the region of the antrum anterior to the vaginal opening is devoid of projections and prostatoids. Unfortunately, no ventral views of the antrum of D. japonica have been published. Finally, there are prostatoids in the ventral wall of the antrum in the current species and these are lacking in D. japonica.

The species described here is most similar to D. pusilla in colour pattern, having eyes restricted to the anterior part of the body, mouth at the posterior end of the pharynx and cerebral cyes divided into anterior and posterior clusters with only one or two ocelli in the posterior clusters (Kato, 1938). The genital atrium is also similar in that there is, according to the illustration of the species (Kato, 1938, fig. 3) a large penis papilla projecting into the antrum masculinum (Fig. 14), although Kato (1938) stated in the description that there were many muscular villus-like projections, as in D. japonica. Furthermore, there are no prostatoids in the posterior region of the antrum. The most obvious differences between the present specimens and D. pusilla are that there appear to be very few prostatoids in the antrum of D. pusilla and that prostatoids do not occur in the ventral wall of its antrum.

However, Kato's (1938) specimens of D. pusilla, were evidently immature as he describes the prostatoids as rudimentary and Lang's vesicle as being represented merely by a mass of nuclei. As a conseqence, the number and distribution of prostatoids may not have been reliably determined in D. pusilla. The current specimens may therefore be D. pusilla or may represent a new species. However, since only two specimens are available and since D. pusilla has been inadequately described, no new name is proposed for them.

The descriptions presented here indicate that Discocelis is represented in Australia by several species rather than the single species, D. australis, currently known (Hyman, 1959). While one of the two additional species found can unequivocally be identified as new, limitations in the descriptions of existing species prevent a definitive name being applied to the second species.

The descriptions presented above suggest that in addition to the distribution of marginal eyes, the occurrence of cerebral eyes in a single band or two groups, and the presence of a seminal vesicle, the distribution of prostatoids within the antrum masculinum as seen in ventral views of cleared specimens provide useful taxonomic characters. In D. tigrina, the prostatoids are arranged in an arc anterior to the gonopore (Lang, 1884), in D. parvimaculata, the prostatoids are arranged in a cluster in the anterior lobe of the antrum and along the postero-lateral margins while in the un-named species the prostatoids occur throughout the penis papilla and are present along the posterior margin of one pair of lateral diverticula within the male antrum. The type specimens of D. australis were examined but they are now very dark and the distribution of prostatoids cannot be determined. In the remaining species, this character has not been investigated, but current observations suggest that it might provide additional features for the separation of species within the genus Discocelis.

FIG. 16. Schematic representation of genital atrium of Discocelis japonica, redrawn from Kato (1944).

FIG. 17. Schematic representation of genital atrium of Discocelis australis, redrawn from Hyman (1959).

ACKNOWLEDGEMENTS

Dr L.R.G. Cannon of the Queensland Museum is thanked for comments on a draft of this manuscript.

LITERATURE CITED

de BEAUCHAMP, P. 1961. Classe des Turbellaries. Turbellaria (Ehrenburg, 1831). In Grassé, P.P. (ed.) Traité de Zoologie 4(1): 35-212 (Masson: Paris).
FAUBEL, A. 1983. The Polycladida, Turbellaria. Proposal and establishment of a new system. Part 1. The Acotylea. Mitteilungen aus dem hamburgischen zoologischen Muscum und Institut 80: 17-121.
HYMAN, L. 1959. Some Australian polyclads (Turbellaria). Records of the Australian Museum 25: 1-17.
KA'TO, K. 1937. Polyclads collected in Idu, Japan. Japanese Journal of Zoology 7: 211-232.
1938. Polyclads from Amakusa, Southern Japan. Japanese Journal of Zoology 7: 559-576.
1944. Polycladida of Japan. Journal of the Sigenkagaku Kenkyusyo 1: 257-318.

LANG A. 1884. Die Polycladen (Seeplanarien) des Golfes von Neapel und der angrenzenden Meeresabschnitte. Eine Monographie. Fauna und Flora des Golfes von Neapel, Leipzig 11: i-xi, 1-688.
MARCUS, E. \& MARCUS, E. 1966. Systematische Uebersicht der Polycladen. Zoologische Beitrage 12: 319-343.
NEWMAN, L.J \& CANNON, L.R.G. 1995. The importance of the fixation of colour, pattern and form in tropical Pseudocerotidae (Platyhelminthes, Polycladida). Hydrobiologia 305: 141-143.
PRUDHOE, S. 1982. Polyclad turbellarians from the southem coasts of Australia. Records of the South Australian Museum 18: 361-384.
1985. A monograph on polyclad turbellaria. (Trustees of the British Museum (Natural History): London).
STUMMER-TRAUNFELS, R. von. 1933. Polycladida (continued). Pp. 3485-3596. In Bronn, H.G (ed.) Klassen und Ordnungen des Tier-Reichs (IV). (Vermes) (Leipzig).

NOTOPLANA DUBIA (SCHMARI)A) (PLATYHELMINTHES: P()LYCLADIDA)FROM QUEENSLAND

I. BEVERIDGE AND T.H. CRIBB

Beveridge, I. \& Cribb, T.H. 200006 30. Notoplana dubia (Schmarda) (Platyhelminthes: Polycladida) from Queensland. Memoirs of the Queensland Museum 45(2): 215-220. Brisbane. ISSN 0079-8835.

The intertidal polyclad Notoplana dubia (Schmarda) (Platyhelminthes) is reported for the first time from Australian coastal waters in Queensland. The significance of morphological differences observed between the Queensland specimens and the original descriptions are discussed as well as relationships with congeners in Australia and southeast Asia. \square Polycladida, Acotylea, Notoplana dubia, new record.
I. Beveridge, Department of Veterinary Science, University of Melbourne, Parkville 3052, Melbourne, Australia; T.H. Cribb, Department of Microbiology \& Parasitology, University of Queensland, St Lucia 4072, Australia: 28 April 1999.

Species of the polyclad genus Notoplana Laidlaw, 1903 occur commonly in the intertidal zone in southern Australia (Prudhoe, 1981, 1982). The commonest species, N. australis (Schmarda, 1859), has a wide distribution, ranging from South Australia to Sydney (Prudhoe, 1981, 1982) and occurs also in New Zealand. Of the remaining known species, N. longiducta Hyman, 1959 and N. longisaccata Hyman, 1959 have been described from the Sydncy region, while N. distincta Prudhoe, 1982 and N. longicrumena Prudhoe, 1982 occur in South Australia (Hyman, 1959; Prudhoe, 1981, 1982). No species have been reported from northerm Australian waters although several members of the genus occur in New Britain and southeast Asia (Prudhoe, 1985).

Faubel (1983) subdivided Notoplana based on the presence or absence of a penis stylet and transferred N. longiducta and N. longisaccata to a new genus, Notocomplana Faubel, 1983, leaving N. australis, N. distincta and N. longicrumena in Notoplana. Prudhoe (1985) adopted a less formal approach, subdividing the genus into four groups to facilitate identification, the subdivision being based on the presence or absence of a penis stylet, penis papilla and penis sheath. Prudhoe's (1985) groups A and B correspond with Faubel's (1983) detinition of Notoplana. Therefore, based on Faubel's (1983) definition, there are currently three species of Notoplana in southern Australia, all occurring south of the latitude of Sydney.

This paper reports the finding of a species of Notoplana from northeastern and southeastern Queensland and its identification as N. dubia (Schmarda, 1859), the type species of the genus.

METHODS

Polyclads were collected at low-tide from under rocks on exposed mud-flats. Mangroves (Avicennia spp.) were the dominant trees on the shorelines. Fixation followed the technique of Newman \& Cannon (1995) in which polyclads were placed on filter paper in a dish of sea-water and when fully extended, the filter paper was rapidly placed on a block of frozen fixative, either 4% formaldehyde in sea-water or formaldehydecalcium acetate-propylene glycol-propylene phenoxetol. Following fixation, worms were dehydrated in a graded series of ethanols, cleared in methyl salicylate and mounted in Canada balsam. One polyclad was stained in Mayer's haematoxylin prior to dehydrating and clearing. The median posterior sections of two polyclads were removed using a scalpel blade, embedded in paraffin and serial longitudinal sections, cut at a thickness of $7 \mu \mathrm{~m}$, were stained with Gill's haematoxylin and eosin. Drawings were made with a drawing tube attached to an Olympus BH microscope. All measurements are in millimetres and are presented as the range for 10 specimens.

All specimens collected have been deposited in the Queensland Museum (QM).

Specimens from Queensland were compared with the type specimens of Centrostomum dubium from the Naturhistorisches Museum, Vienna (NMV) and of Notoplana evansi Laidlaw, 1903, now a junior synonym, from the British Museum (Natural History) (BMNH). In addition other specimens in BMNH and the Swedish Museum of Natural History, Stockholm (SMNH) were examined and compared with those from Queensland.

POLYCLADIDA Lang, 1884
 ACOTYLEA Lang. 1884
 LEPTOPLANIDAE Stimpson, 1857

Notoplana dubia (Schmarda, 1859)
(Figs 1-6)
Centrostumum duhium Schmarda, 1859
imogene iruncuta Schmarda. 1859
Leptoplane duhia Lang. 1884
Aistoplana evarisi Laidlaw, 1903
\IATERIAL. Four spreimens, Port Denison, 5 km S of Bowen, Qld, (20 $2^{\circ} \mathrm{S}, 148^{\circ} 12^{\prime} \mathrm{E}$) coll. I. Beveridge, 3.vii. 1994 (Q1I G217332-5, senial sections G217343): 2 specimens, Scarborough, Moreton Bay, ()Id, ($27^{\circ} 12^{\circ} \mathrm{S}$, $153^{\circ} 7^{\prime}$ E) coll. Г.H. Cribb, 15.v. 1994 (G217336-7): 4 specimens, Wellington Point. Moreton Bay; Qld. (27027'S, 153414E〉coll. T.1. Cribb, 11.v,1994, 8.iii.1995. 1.in. 1997 (G217338-41, serial sections G217342).
DESCRIPTION, Large, oval polyclads; mature specimens 22-30 long. $13-16$ wide; immature specimens 18-20 long, 9-11 wide; dorsal surface brown, darker in centre, ventral surface pale grey; nuchal tentacles diminutive, 3,9-5.6 from anterior margin; cerebral organ $0.54-0.57 \times 0.52-0.61$; eyes arranged in two elongate groups, on eithes side of mid-line, 45-55 anterior to cerebral organ, 15-18 posterior to cerebral organ; mouth 6.8-8.0 posterior to cerebral organ; ruffled pharynx in mid-body. with 10-16 lateral folds; male genital pore 2.8-3.9 posterior to mouth; antrum masculinum elongate, with folds; penis papilla elongate, prominent, with distinctive penis sheath; penis stylet prominent, 0.57-0.65 long, sclerotised, brown in colour; ejaculatory duct convoluted, leads to spherical prostate with epithelial tubes lying parallel to cjaculatory duct: seminal vesicle large, muscular, convoluted, passes dorsally then ventrally, terminating blindly; vasa deferentia enter seminal vesicle anterior to its extremity, coil posterolaterally then turn anteriorly to testes, Female genital opening 2.0-2.8 from male antrum, 4.6-6.5 from posterior end; vagina externa prominent with thick walls. leading to elongate, horizontal vayina media surrounded by masses of cement glands; vigina media passes anteriorly almost to level of male genital opening, terminating in blind diverticulum; diverticulum clearly visible in sections, not distinguishable in whole mounts, pasterior to diverticulum, vagina interna passes dorsally either as sinuous tube, or, in less mature specimens in a coil, then leads posteriorly; uterine canals empty into vagina interna immediately anterior to termination of vagina in inconspicuous Lang's vesicle; no histological differentiation noted between vagina interna and Lang's vesicle;

FIG. 1. Sotoplana dubia, whole polyclad. Scale bar $=$ 1 mm .
uterine canals extend anteriorly on either side of ${ }^{*}$ pharynx.

DISCUSSION

The polyclad described above belongs to Notoplanc, as detined by Fuubel (1983), since it lacks a sucker, possesses cerebral and tentacular but not marginal eyes, an interpolated prostate subdivided into longitudinal chambers and a prominent penis stylet. The species belongs to Prudhoe's (1985) group Λ since it possesses both a penis stylet and a penis sheath. It most closely resembles the type species, N. dubia, in possessing a large, muscular, convoluted seminal vesicle, an elongate vagina media surrounded by cement glands and an extremely diminutive Lang"s vesicle.
N. clubia has been described on a number of occasions. The uriginal description by Schmarda (1859) is very bricf but Stummer-Traunfels (1933) provided a comprehensive redescription

FIG. 2. Notoplana dubia, tentacles and cercbral organ, $\mathrm{c}=$ cerebral organ; $\mathrm{e}=\mathrm{eye}$; $\mathrm{t}=$ tentacle. Scale bar $=$ 0.2 mm .
based on the original specimens. The original description of Laidlaw's (1903) species, N. evansi, was poor, but the species was redescribed in some detail by Bock (1913), prior to the name being made a synonym of N. dubia by StummerTraunfels (1933). Hence, there is ample published data on the anatomy of N. dubia. The specimens described above from coastal Queensland agree in virtually all respects with published descriptions of the anatomy of N . dubia, with the exception of the diverticulum of the vagina media present in the Queensland specimens, which is not mentioned in any of the published descriptions. The type specimen in NMV was examined (NMV 13345) but consisted only of the anterior half of the specimen preserved in alcohol; the serial sections of the posterior region of the body were missing. The type of N. evansi (BMNH 1949.13.19.7) consists of the anterior part of the body mounted in balsam and nine slides of transverse serial sections. Because of the transverse orientation of the sections, the features of the vagina interna were not easy to distinguish, but there was no obvious indication of a diverticulum or of a coiled or sinuous ascending vagina. In the specimens of N.

FIG. 3. Notoplana dubia, mouth and pharynx, showing positions of male and female genital openings. $\mathrm{e}=$ eye; $\mathrm{g}=$ cement glands; $\mathrm{I}=$ intestine; $\mathrm{m}=$ mouth; $\mathrm{ph}=$ pharynx; $1=$ tentacle; $u=$ uterine duct: vd $=$ vas deferens. Scale bar $=0.5 \mathrm{~mm}$.

FIG. 5. Notoplana dubia, male genital system, ventral view. $\mathrm{p}=$ penis; $\mathrm{pr}=$ prostate; $\mathrm{ps}=$ penis stylet; $\mathrm{sv}=$ seminal vesicle. Scale bar $=0.1 \mathrm{~mm}$.
coiled in immature specimens with the coils extending into a sinuous or straight duct as the animal matures. The necessity of caution in interpreting coiled or folded structures in polyclads which may be subject to maturation and method of fixation has been emphasised by Prudhoe (1985) and Cannon \& Grygier (1991).

In spite of these limitations, the current specimens have been identified as N. dubia. However, the possibility cannot be excluded that the current descriptions of N. dubia include two species, one with and one without an anterior diverticulum to the vagina media.

Other species of Notoplana recorded by Prudhoe (1985) from the Indo-West Pacific region were N. willeyi Jacubova, 1906 from New Britain, N. mortenseni Bock, 1913 and N. parvula Palombi, 1924 from Borneo and N. tavoyensis Prudhoe, 1950 from Burma. N. mortenseni was transferred to Pleioplana by Faubel (1983) and N. tavoyensis to Notocomplana.
N. willeyi was described from Blanche Bay, New Britain and is similar to N. dubia in many anatomical features, differing in being relatively narrower and in possessing a more obvious Lang's vesicle (Jacubowa, 1906). Jacubowa (1906) also distinguished N. willeyi from N. dubia (=evansi) based on colour, though there is no difference in colour between the two species

FIG. 6. Notoplana dubia, transverse section through genital openings. $\mathrm{d}=$ diverticulum; $\mathrm{g}=$ cement glands; $1 \mathrm{v}=$ Lang's vesicle; $p=$ penis; $p r=$ prostate; $s v=$ seminal vesicle; $t=$ tentacle; $u=$ uterine duct; $v=$ vagina; $v d=$ vas deferens. Scale bar $=0.1 \mathrm{~mm}$.
based on Willey's (1897) notes and those described above. She also distinguished the two species based on the position of the female genitalia, but the precise difference utilised were not specified (Jacubowa, 1906). Thus the differentiation of N. willeyi from N. dubia remains to be verified. Of particular interest in the description of N. willeyi is the illustration by Jacubowa (1906) (pl. 8, fig.8) of a small anterior diverticulum to the vagina media. Her sections were apparently slightly oblique making the significance of the diverticulum difficult to evaluate, but the structures illustrated warrant further investigation.
N. parvula is readily distinguishable from N. dubia since it possesses only a short vagina media and has far fewer cerebral eyes (Palombi, 1924, pl. 2, fïg.15).
N. dubia is a widespread species occurring off the coasts of Burma, Malaysia and Sri Lanka (Bock, 1913; Stummer-Traunfels, 1933; Prudhoe, 1950). The present report extends this distribution to the east coast of Australia.

ACKNOWLEDGEMENTS

Thanks are due to Dr L.R.G. Cannon for comments on a draft of the manuscript, Dr Cannon and Dr R.A. Bray for help with obtaining relevant literature and to Drs D. Gibson, U. Jondelius and H. Stattmann for access to specimens in their collections.

LITERATURE CITED

BOCK, S. 1913. Studien über Polycladen. Zoologiska Bidrag, Uppsala 2: 29-344.
CANNON, L, R. G. \& GRYGIER, M.J. 1991. The turbellarian Notoplana comes n.sp. (Leptoplanidae: Acotylea: Polycladida) found with the intertidal brittlestar Ophiocoma scolopendrina (Ophiocomidae: Ophiuroidea) in Okinawa, Japan. Galaxea 10: 23-33.

FAUbEL, A. 1983. The Polycladida, Turbellaria. Proposal and establishment of a new system. Part I. The Acotylea. Mitteilungen aus den hamburgischen zoologischen Museum und Institut 80: 17-121.
HYMAN, L. 1959. Some Australian polyclads (Turbellaria). Records of the Australian Museum 25: 1-17.
JACUBOWA, L. 1906. Polycladen von NeuBritannien und Neu-Caledonien. Jenaische Zeitschrift für Naturwissenschaft 41: 113-158.
LAIDLAW, F. F. 1903. On a collection of Turbellaria Polycladida from the Straits of Malacca (Skeat Expedition, 1899-1900). Proceedings of the Zoological Society of London 1: 301-318.
NEWMAN, L.J. \& CANNON, L.R.G. 1995. The importance of the fixation of colour, pattern and form in tropical Pseudocerotidae (Platyhelminthes, Polycladida). Hydrobiologia 305: 141-143.
PALOMBI, A. 1924. Policladi pelagici. Raccolte planctoniche fatte dalla R. Nave 'Liguria' nel viaggio di circonnavigazione del 1903-05: Pubblicazioni del Istituto di Studi Superiori Pratici e di Perfezionamento in Firenze, Sezione di Scienze Fisiche e Naturali 3: 3-25.
PRUDHOE, S. 1950. On some polyclad turbellarians from Burma. Annals and Magazine of Natural History (12)3: 41-50.
1981. Polyclad turbellarians from the southern coasts of Australia. Records of the South Australian Museum 18: 361-384.
1982. Polyclad flatworms (Phylum Platyhelminthes). Pp. 220-227. In Shepherd, S.A. \& Thomas, I.M. (eds) Marine Invertebrates of Southern Australia, Part 1. (Handbook Committee of the South Australian Government: Adelaide).
1985. A monograph of the polyclad Turbellaria. (Trustees of the British Museum (Natural History): London).
SCHMARDA, L.K. 1859. Neue wirbellose Thiere beobachtet und gesammelt auf einer Reise um die Erde 1853 bis 1857. Bd.I. Turbellarien, Rotatorien
und Anneliden. 1. Hälfte. (W. Engelmann: Leipzig).
STUMMER-TRAUNFELS, R. von. 1933. Polycladida. In Bronn's Klassen und Ordnungen des Tierreichs, 4, Abteilung 1c, Lieferung 179,

3485-3596. (Akademisches Verlagsgesellschaft: Leipzig).
WILLEY, A. 1897. Letters form New Guinea on Nautilus and some other organisms. Quarterly Journal of Microscopical Science 39: 153-159.

CIRRIPEDES AS PALAEOECOLOGICAL INDICATORS IN THE TE AUTE LITHOFACIES LIMESTONE, NORTH ISLAND, NEW ZEALAND

JOHN BUCKERIDGE

Buckeridge, J. 200006 30: Cirripedes as palaeoecological indicators in the Te Aute Lithofacies Limestone, North Island, New Zealand. Memoirs of the Queensland Museum 45(2): 221-225. Brisbane. ISSN 0079-8835.

The Te Aute lithofacies limestone complex lies on the east coast of New Zealand's North Island. It is comprised of a series of uniform to poorly bedded calcarenites and coquinas of late Neogene age. This limestone complex was deposited off-shore, to the east of the current land mass, and during the late Tertiary-Quaternary period was structurally accreted to the mainland as a series of longitudinal prisms. This paper reviews the current interpretation of the depositional environment, which implies a facies change in the limestone from shallow water in the west, to deeper water in the east. Primarily utilising barnacle palaeobathymetry, it is shown that one of the oldest and most westerly limestones (the mid-Pliocene Titiokura Limestone) was deposited in moderately deep water.
Living barnacles have clearly defined bathymetric ranges and temperature tolerances. When barnacles are abundant in fossil remains, especially of late Cainozoic age, they are often useful palaeoenvironmental indicators. The barnacle fauna of the Titiokura Limestone is characterised by the presence of the deep water balanomorph Pachylasma. Species of Pachylasma are widely distributed in the living shelf fauna, being found in middle to outer shelf environments, although on very rare occasions specimens may be found living in waters as shallow as 55 m . Therefore, on the basis of the abundant and comparatively well preserved plates of Pachylasma, it may be inferred that the Titiokura Limestone accumulated in moderately deep, off-shore conditions.
This interpretation is confounded however, by the presence, in the same horizons, of a species of an exclusively intertidal balanomorph, Epopella. Whilst it is apparent that the bathymetric ranges of some taxa change through time, all known species of Epopella are demonstrably intertidal to uppermost subtidal. They are also characteristic of temperate waters.
Sedimentological observations suggest that the Titiokura limestone is a mixed thanatocoenosis that accumulated in the middle to outer shelf environment. Shallow water elements were introduced as components within submarine avalanches and slurry deposits. Intertidal temperature regimes were probably similar to those currently existing along the New Zealand coastline. \square Te Aute lithofacies limestone, balanomorph cirripedes, Quaternary, palaeobathymetry, palaeotemperatures, submarine avalanches.

John Buckeridge, Auckland University of Technology, P.O. Box 92006, Auckland, New Zealand; 7 July 1998.

Cirripedes (barnacles) are very much a Cainozoic phenomenon. Charles Darwin was so taken with their post-Cretaceous abundance that he described Tertiary seas as abounding "with species of Balanus to an extent now quite unparalleled in any quarter of the world' (Darwin, 1854). The Sessilia, or 'acom' barnacles, are also the ocean's great opportunists, their choice of substrate, both animate and inanimate, being unparalleled amongst the invertebrates. Many sessile barnacles have become sufficiently specialised to be host specific (Buckeridge, 1998). Cirripede palaeoecology is a relatively recent pursuit (Foster \& Buckeridge, 1987), with bamacles traditionally interpreted by non-cirripede specialists as shallow water taxa. However improved sampling techniques, in conjunction with deep
ocean surveys and recent advances in cirripede phylogeny and biogeography, show a distribution extending well beyond shelf and slope, with taxa recorded from depths in excess of 4000 m (Buckeridge, 1997; 1999).

What is of great interest however, is the palaeoecological inferences that we can make regarding balanomorph barnacles through time. The earliest confirmed balanomorphs are known from the Palaeocene of the Chatham Islands (Buckeridge, 1983; 1993; 1996). These include taxa within the genera Bathylasma and Pachylasma in what, from sedimentological and associated faunal associations, are clearly shallow water sediments (Buckeridge, 1993), No deep water sessilians are known from the early Palaeogene.

FIG. 1. Schematic representation of preferred environments for 'primitive' balanomorph families in time. Vertical scale: estimated water depth (in metres). A, Pachylasmatidae and Bathylasmatidae; B, Archaeobalanidae; C, Tetraclitidae; D, Chthamalidae. All taxa are interpreted as arising in shallow water environments, with the absence of pachylasmatids and bathylasmatids from shallow water, and chthamalids from all except the uppermost intertidal, being a result of competition, particularly from selected archaeobalanids and the balanids. The balanids become abundant in the Miocene, with many species being characterised by active feeding, high metabolism and early onset of sexual maturity.

The first deeper water balanomorphs are recorded from the earliest Miocene, Cape Rodney Formation in Auckland's Hauraki Gulf (Buckeridge, 1983). There, large numbers of disarticulated plates of Bathylasnza aucklandicum (Hector, 1888), are found in beds surrounding fossil sea mounts. The inferred depth of deposition for these beds is in excess of 100 m . In the Neogene, species of Bathylasma and Pachylasma are not found in shallow water facies anywhere, with only one living species, Pachylasma japonica Hiro, 1933, being found occasionally at depths of less than 80 m . The deepest water balanomorph known is the bathylasmatid Tetrachaelasma tasmanicum Buckeridge, 1999, which is extremely abundant, both living and as 'sub-fossil', adjacent to deep sea mounts of the

South Tasman Rise in depths of $2200-3600 \mathrm{~m}$. Preliminary investigations of the balanomorph fauna at, and adjacent to, these sea mounts show distinct zonation of the Sessilia, with the balanomorph species Bathylasma alearum (Foster, 1978), and the verrucomorph Altiverruca gibbosa (Hoek, 1883) restricted to a shallower zone of $800-2300 \mathrm{~m}$. An important characteristic of the deep sea barnacle accumulations is that they have a very low biodiversity. This is certainly the case with the Tetrachaelasma beds on the South Tasman Rise; further, the lowest horizons of the Cape Rodney Formation contain abundant Bathylasma aucklandicum, but rarely any associated macro-fauna except another deep water barnacle, Metaverruca recta (Aurivillius, 1898). Interestingly, stratigraphically higher
fossiliferous horizons in the Cape Rodney Formation are supplemented by an influx of shallow water elements, introduced as 'turbid slurries'.

Modern shallow water and intertidal environments in New Zealand and Australia are dominated by chthamalids, tetraclitids and balanids (Fig. 1). The first two groups are known only from shallow water; chthamalids, in particular, are confined to the upper littoral zone, whilst tetraclitids extend to the middle littoral. Providing no evidence of transportation can be demonstrated, this restriction makes both of these families very useful in defining shallow water marine facies.

THE TE AUTE LIMESTONE COMPLEX

The Te Aute lithofacies limestone is a dominant part of the physiography of the central to southern east coast of New Zealand's North Island (Fig. 2). It is comprised of a series of uniform to poorly bedded calcarenites and coquinas of late Neogene age. This limestone complex was deposited off-shore, to the east of the current land mass, and during the late Pliocene-Quaternary was structurally accreted to the mainland as a series of longitudinal prisms.

The term 'Te Aute Limestone' was first used in 1887 by James Hector in his summary of Alexander McKay's geological report for the region (Hector, 1887; MacKay, 1887). At that time, Te Aute was the name of an area characterised by extensive limestone outcrops, south of Hastings in central Hawke's Bay. The term 'Te Aute lithofacies limestone' was coined by Beu (1995) and reflects a greater complexity in the limestones of the region than was perhaps perceived by earlier authors, such as Kingma (1971) and Beu et al. (1980), Beu (1995) established that the Te Aute lithofacies limestone was deposited from Tongaporutuan to early Nukumaruan age (late Miocene to earliest Pleistocene).

Of particular note is the type and nature of the biota comprising the Te Aute lithofacies limestone. Unlike tropical limestones, which are characterised by high levels of lime mud (Campbell et al., 1988), the temperate conditions under which the Te Aute lithofacies limestone was deposited has resulted in a much higher proportion of skeletal material. Of particular interest here is the remarkable dominance of barnacle remains in many horizons. Kamp et al. (1988) recognise the barnacle content to be approximately $13-22 \%$ of total rock volume, with the highest percentage characteristic of the Scinde Island Formation (outcropping near Napier). The
most impressive 'cirripede dominated lithologies', however, occur in horizons of the Castlepoint Formation, also of Nukumaruan age, which outcrop to the southeast of the Te Aute limestones. In a coarse coquina outcropping at Castlepoint, I have estimated balanomorph content (primarily Fosterella tubulatus (Withers, 1924)), to be close to 50%.

PALAEOENVIRONMENT OF THE TE AUTE LITHOFACIES LIMESTONE

Although barnacle limestones are not common, sediment dominated by shells of the barnacles Notobalanus vestitus (Darwin, 1854) and Austromegabalanus decorus decorus (Darwin, 1854), is currently accumulating at depths of 30 m in the Hauraki Gulf, Auckland. Inner to middle shelf deposits, dominated by species of the balanomorph Fosterella, were a feature of cooler southern seas in the Pleistocene (Buckeridge, 1983). However, with the extinction of Fosterella in the early Holocene, no barnacle species has moved to dominate the shelf environment to the same degree.

Better sampling and recording of the living fauna in recent years has shown that balanomorph barnacles can be significant contributors to sediments forming at depths of 2000 m or more (e.g. extensive beds of Tetrachaelasma spp. are known from the Southern Ocean ofi Madagascar. Chile, Cape Horn and Tasmania). In some of these locations, the barnacle shells are found to comprise more than 90% of the calcitic remains (Newman \& Ross, 1971; Buckeridge, 1999).

The balanomorph shells preserved in the Te Aute lithofacies limestone are comprised of calcite rather than aragonite (as for many bivalve molluses). The greater chemical stability of calcite has contributed to the dominance of balanomorphs in many limestone horizons, although this is not the prime factor for their abundance. The environment suited barnacles, especially the now extinct Fosterella fubulatus that is so common in Nukumaruan lithologies. Apart from molluscs, the other relatively abundant groups preserved are bryozoans, which possess both aragonitic and calcitic skeletons. According to Kamp et al. (1988), bryozoans never reach the abundance of the barnacles in the Te Aute lithofacies limestones.

PALAEOTEMPERATURES. Barnacles are generally of value in interpreting palaeotemperatures through association, e.g. species of the reef coral symbionts Hexacreusia and Crensia are characteristic of tropical seas. The

FIG. 2. East coast of New Zealand's North Island, showing localities mentioned in text and distribution of Pliocene "Te Aute lithofacies limestones" and Mesozoic Basement. TL = summit outcrop of the Titiokura Limestone, $\mathrm{AL}=$ Kahuranaki outcrop of the Awatapa Limestone. (Modified from Kamp et al., 1988).
tetraclitid, Austrobalanus imperator (Darwin, 1854), is currently known from shallow tropical and subtropical seas off central and northeast Australia. It has also been recorded from the Oligocene of the South Island, a period when sea temperatures were at least as warm as the present. Not surprisingly, it is not found in present New Zealand waters. Species of Epopella, another tetraclitid, are found throughout New Zealand and Southern Australia. Epopella sp. is also present in the Awapapa Limestone, outcropping on the slopes of Mount Kahuranaki (Fig. 2). Chthamalids are useful indicators of temperature, with the endemic New Zealand species Chamaesipho brunnea (Moore, 1944) restricted
to warm, temperate intertidal environments. Beu (1995) and Milliman (1974) suggest that the Te Aute lithofacies limestone was deposited in 'shallow subtidal waters'. If this is accepted, the absence of intertidal species (with thick, solid shells like C. brunnea), indicates that temperatures were likely to have been cool temperate. This is consistent with the molluscan evidence of Beu (1995).

PALAEOBATHYMETRY. Current interpretation of the depositional environment (Kamp et al., 1988; Beu, 1995), implies a facies change in the limestone deposits, from shallow water in the west, to gradual deepening conditions in an easterly direction. Further to the east again, shallower conditions developed, with the uplift of the East Coast Highlands. It is perceived that a broad NE-SW trending, open seaway, with strong tidal currents (the 'Ruataniwha Strait') characterised the waters between the two land masses.

In Kamp et al. (1988) and Beu (1995) it is proposed that 'large carbonate sand dune-forms' colonised by a barnacle-bivalve-bryozoan assemblage, formed at the margins of the Ruataniwha Strait, and in a moderately high energy 'tidal' environment, migrated to deeper water (i.e. mid-channel), However, Beu (loc, cit.) also refers to Milliman (1974) who states that the porous nature, low resistance to abrasion and fragility of barnacle plates ensures that they 'do not survive transportation from living sites of more than a few tens of metres'. Strong cross bedding, with tangential foreset beds in tabular sets is recognised by Beu (loc. cit) as confirming that the depositional environment was shallow, and dominated by strong tidal currents.

There are some unusual anomalies here, particularly in light of the barnacles present in some mid-Waipipian limestones in the west and central regions. The Titiokura Limestone, outcropping to the northwest, is characterised by a mixed assemblage of barnacles, including Pachylasma sp., Austromegabalanus miodecorus Buckeridge, 1983, and Epopella sp. c.f. E. plicata (Gray, 1843). The Awapapa Limestone, which outcrops in the central region south of Hastings, also possesses a mixed barnacle assemblage, including A. miodecorus, Notobalanus vestitus, Fosterella tubulatus and Epopella sp., but lacking Pachylasma. As discussed earlier, Pachylasma comprises exclusively deep water taxa; further, like Epopella the shell is non-porous. If the shell is moderately thick, as is the case with large specimens of Epopella, it is
likely that transportation, albeit with some abrasion, is possible for distances of many hundreds of metres. What is even more important is that Epopella is found in the same horizons as Pachylasma.

ANALYSIS

A revised sedimentary regime for the New Zealand mid-Pliocene is proposed here. Utilising barnacles as indicators of palaeobathymetry, it is suggested that the western deposits, such as the Titiokura Limestone, represent a depositional environment in water depths of 100 m (or more). Shallow water sediments, building up on the margins of the Ruataniwha Strait, were triggered by local overloading, and perhaps micro-seisms, to carry intertidal elements, including Epopella, as slurries into the deeper water. The process, although not unlike traditional turbidites, differs primarily in scale, with the distances sediment being transported, and the energy involved in that process, being at least an order of magnitude less than anticipated in 'flysch' deposition. Nonetheless, the mixed thanatocoenosis that the Titiokura Limestone represents is consistent with deposition from a submarine avalanche, which, during the process of its journey, incorporated intertidal (Epopella), subtidal (Austromegabalanus) and deep water elements (Pachylasma).

It is also proposed that the Awapapa Limestone, with a barnacle fauna comprising elements from intertidal (Epopella), subtidal (Austromegabalanus and Notobalanus) and upper-mid shelf (Fosterella) environments, formed in a similar manner, but was deposited at depths of only $30-40 \mathrm{~m}$. Although there are some similarities, the Awapapa Limestone almost certainly formed in slightly shallower conditions than the extraordinary 'Fosterella coquinas' of the Castlepoint Formation, outcropping further to the south.

ACKNOWLEDGEMENTS

I thank Dr Alan Beu, Institute of Geological and Nuclear Sciences, Wellington for thoughtful discussion at the inception of this study. Mark Northover, Learning Technology Centre, UNITEC, provided assistance in the production of Figure 2.

LITERATURE CITED

BEU, A.G. 1995. Pliocene limestones and their scallops. Institute of Geological and Nuclear Sciences Monograph 10: 1-243.
BEU, A.G., GRANT-TAYLOR, T.L. \& de Homibrook, N.B. 1980. The Te Aute Limestone facies,

Poverty Bay to Southern Wairarapa. 1:125,000. New Zealand Geological Survey Miscellaneous Map Series 13 (2 sheets) and Map Notes (36pp.). (Department of Scientific and Industrial Research: Wellington).
BUCKERIDGE, J.S. 1983. The fossil barnacles (Cirripedia: Thoracica) of New Zealand and Australia. New Zealand Geological Survey Paleontological Bulletin 50: 1-151.
1993. Cirripedia and Porifera. In Campbell H.J., et al. (ed.) Cretaceous-Cenozoic geology and biostratigraphy of the Chatham Islands, New Zealand. Institute of Geological and Nuclear Sciences, Monograph 2: 1-240.
1996. Phylogeny and Biogeography of the Primitive Sessilia and a consideration of a Tethyan origin for the group. Crustacean Issues 10: 255-267.
1997. Cirripedia : Thoracica. New ranges and species of Verrucomorpha from the Indian and Southwest Pacific Oceans. Mémoires du Muséum national d'Histoire naturelle 176: 125-149.
1998. A new coral inhabiting barnacle, Chionelasmus crosnieri sp, nov. (Cirripedia: Balanomorpha) from New Caledonia, Southwest Pacific. Zoosystema 20(2): 167-176.
1999. A new deep sea barnacle, Tetrachaelasma tasmanicum sp. nov. (Cirripedia: Balanomorpha) from the South Tasman Rise, South Pacific Ocean. New Zealand Journal of Marine and Freshwater Research 33: 521-531.
CAMPBELL, C.S., KEANE, S,L. \& HEAD, PS. 1988 Non-tropical carbonate deposits on the modern New Zealand shelf. Sedimentary Geology 60: 71-94.
DARWIN, C. 1854. A monograph on the sub-class Cirripedia, with figures of all species. The Balanidae, the Verrucidae. (Ray Society: London).
FOSTER, B.A. \& BUCKERIDGE, J.S. 1987. Barnacle Palacontology. Crustacean Issues 5: 43-62.
HECTOR, J. 1887. Progress report, 1874-76. Geological Survey of New Zealand, Reports of Geological Expeditions during 1874-76. 9: i-xiii.
KAMP, P.J.J., HARMSEN, F.J., NELSON, C.S. \& BOYLE, S.F. 1988. Barnacle-dominated limestone with giant cross-beds in a non-tropical, tide swept, Pliocene forearc seaway, Hawke's Bay, New Zealand. Sedimentary Geology 60: 173-195.
KINGMA, J.T. 1971. Geology of the Te Aute Subdivision. New Zealand Geological Survey Bulletin 70.
McKAY, A. 1887. Report on country between Caps Kidnappers and Cape Turnagain. Geological Survey of New Zealand. Reports of Geological Expeditions during 1874-76 9: 43-53.
MILLIMAN, J.D. 1974. Recent sedimentary carbonates. Part 1-marine carbonates. (Springer-Verlag: Berlin).
NEWMAN, W.A. \& ROSS, A. 1971. Antarctic Cirripedia. American Geophysical Union Antarctic Research Series 14: 1-257.

EASTERN RANGE EXTENSION FOR MORETHIA RUFICAUD.I COURTESY OF A CAT STOMACH. Wemoirs of the Quecnsland Mruenm 45/2): 220. IM00:Identilieation of mammalian remsuman Irum predator pellets and seats has provided valuable information on the distributions of many spectes. Smith 61477) identitied If species of native mammats that had not been previously recorded in the Flinders Ranges of South Australia from ow pellet deposits found in caves. More recently, analy sis of carniv ore scamled to a number of simnificant range extensions of species that are raxe indior difficult to devect using conventional fauna cenusing fechniques (for example Merk (Triges, 1497 and refercnces withial.

Such techniques have not been as successlat fire reptiles. which usually lack the hard budy parts required for identification following passage through the gut of a predator. stomach contents of predutors, lowever, otfer a letter chance of idemtling teptile remains to species level. Probably the beal known result from this type of sampling was the rediscovers al the Adelanic pyemy blue-tomele (Thiqua whehadenerst ifum the stanach of an esstern brown snake
 thole repurts is considerable range extension for Aforestita raficozauf following the identification of this species from the stomueh of a feral cat Irom Dramanimu Lakes Nathenal Park in far-westem Qurensland.

The skink remains (hindhody, petvie region and tuil base) were found in the stomach of a male cat shot by the Park Ranger during the day al the Diamantina (iates ($23^{\circ} 42^{\circ} \mathrm{S}$. $141^{\prime} 08^{\prime} E$) un the 1 th June 1994, I he remains were identitied on the combinution ut size and colouration, particutarly the Whath, intensity and position of the pale dorsolateral siripes. and the reddish tail brase (UM Jo3647). The seasonally dry shrublands and stony hills of the Hamilton Range that she Diamantina River cuts al the Diamantina Gate is very smmar to the preferred habitav of II raficimhde described by Cumger (1092).

Cogget (1992) lists the distribution of Th ruflicunduas the nothwestern scction of the continent, from west at the Northern Icritors;Queensland border. exlending to the Vesterm Austrulian coast and noth to the Nomhern Jerritors coast. More recently: M. mificonda was recorded in the "pinifex dunctields of the northern Simpsion Desern $123^{\circ} 46^{\circ} \mathrm{S}$, $138^{\circ} 28^{\circ} \mathrm{E}$) is western Queenshand (Downey \& Dichmarn. 1493). and from lann Hill Nationsl Park in far nomhwestern Qucensland (18035 ${ }^{\circ} \mathrm{S}, 138^{\circ} 35^{\circ} \mathrm{B}$) (Mckiay \& Clarke, 1999). No voucher specimens wite collected from these sites. Λ number of M roficundu were alsio prev inusly observed me the IImestone ridees at the Riversleigh fossil site $(75 \mathrm{~km}$ southeast ol' Lawn Hill National Park) in May 1487 (P. Coupera pers. comm.). A wacher specimen of thes spectes from Riversleigh (20km norliweest of the homestead) was collected in May 1989. but has only recemly been loded with the Uueensland

. Hel:artand (1092) faiked to uncover any further reeorde of this species in an extensive review of historical information on the funa of the Channel Country biotegion of shuthwestern Oueensland. Oup record extends the known range of this species by appoximately 270 bem in an casterly direction frum the Simpuon Desert reward and ther Grolikm th the southeas from the Lawn l Sill National I'ark obsen ation.

A review of cat dies by Dickman (1996) found that rentites werc oflatively cummen tiefury items during summer especially in drier arcas. Cats tend to prey mosily on noctumal species and dragons, which reflects their nocturnal humting habits, Flowerer, under the dry conditions experienced in the Diamantina region during 1944. cats were commonly seen hunting on midu wimter difs. This type of behaviour was not observed in the subsequent yeurs of the sudy when conditions improved and staple prey species were more abundant (R. Palmer, pers. ohs). Thus, it is nut surprising that cat stumachs collected during 1994 comained a barge number of diumal repliles.

Acknowledgments

this work was pam or a largerstudy on leral cats funded by Enviromment Australia, Thanks goes to 'Chook' Robertson for providing this and other cat stomachs.

Literabure Cited

ARUSTRONG, G. \& RE:ID.J. 8003. Jteredscovery ofthe Alelade prgmy blue-lonktue (lifiqua mblifolifensis\} (Peters, 1863).

 Braks: Sydrey).
IJCKMAN. C, R. Ity (ENENICH5 of the impacts of leral eats an Austrathan natuse fatnis. (INCA: CemberTa
DOWNEY, F.J. \& DICKMAN, CR 1943, Macra and microhahtat rehationships among lizardes of sundrute desen int ventral Australia, Pp. 133-138. In Lunney, D. \& Avers, D (eds) Iferpelulogy in Australis: a diverse disciplime, (Royal Tonlogient Socery of New South Wales: Mosmant.
MstARL,AND, 1), (94)2. Fauna of Ihe Channel Counsry hiogeographic repion, south west Queensland. Repord to the Uumensland 1) erurthemt of Einvimmment and Heritags.
 Lawn llill National Park, Cixdr of Cappentaria, Qucensland

WEAK, PD, ATRUCGS, B. 1997 Extension th the ramee of the
 Bay. Nest suth Wales. Australlan Mammalogy (ul(1). 123-125
SM11/H. M. 1977, Remsits of mammals. includitus Nickomma
 Hinders Ranues, SA Aumadian Wildlite Renearch + : 154-170
R.1. Palmer: Deporment of Zoolnge and infomolog:

STEM CASTS OF LEPTOPHLOEUM AUSTRALE (MCCOY) WALTON AND THE RESPONSE OF TIEIR LEAF-CUSHION BASES TO COMPRESSION

1I. TRF,VOR (LIFFORL) AND MICHAEL, R, IEMBERTON

Clifford. H.I. \& P'enbenon. M.R. $2001110630:$ Stem casts of Leptophioreun unspule (McCoy) Walton and the response of their leaf-cushion bases to compression. Acmuirs of the' Queconland M1Hsemm-45(2): 227-233. Brisbane. ISSN 0H79-8835.

The distribution pattems of the widths of leaf-eashion bases on the sutfaces of Leprophinerna anstrale casts may be used to deternine whether they were elliptical or circular in stetion prior to their compression. (iven the ouline shape of a cast and ins maximum width and length in section the diameter of the original shem can be calculated. © Leptophfacum. cast. leaf-cushion. compression.
 Pemherton. Liniversing of Qucensfand. Si Luciu 11)72. Ausfraliar: I1) July 子998.

C'asts and moulds of Leprophacum suestrale (McCoy) Walton have been teported from Upper Devonian and Lower Carboniferous fresh-water deposits throughout Laurasia (Arderson \& Anderson, 1985; Cai do Wang. 1995; Dawson 1862. McCoy, 1874) and Gomdwana except for South America and Antaretica (Edwards \& Berry. (1991). The absence of the species from these two continents may merely relleet inadequate collecting because in those times they were closely eonnected with the remainder of Gondwana (Scotese \& Mckermw. 1990).

The casts derive mainly from the infilling of hollow stoms whose central tissues decayed leaving only a thin sheath of outer contex and leaf-cushion bases. The evidence for the stems of Leptophloeum being herbaceous is compelling. None of the casts studied taper and none bear the scars of shed branches as do those of Lepidodendron (Ulodememen): the outlines of the leaf-cushion bases, irrespective of the cast diameter, are all of the same shape and mect along their margins; in contrast the leal-cushion bases on larger Lepidodendron casts are often laterally distended and are moreor less steparated thereby confirming that they grew out from stems which had experienced secondary growth. Assuming the stems of Leptophlocum were herbaccous they may be compared with those of present-day Agare spp. which shortly ather flowering rapidly decay except for a sheath of encircling leal-bases. Though ignne stems are initially erect and circular in section (Fig. 1) the dying or dead flowering stems soon tupple to the ground where, under the influence of gravity. firy become elliptical in outline. As a result ol the slow decay of the sheathing lear-bases, with
the passage of time, the miune avis of the ellipse becomes shorter and its major axis Jonger.

Intilling and bunal of the hollow stems of Leprophlocumansorveresults in the tormationest intemal casts on whose surlaces are imprinted the outines of the leat-cushion bases as seen from the centre of the stem (Fig. 2A). Their outlines are rhomboidal and they have concave surtaces (Fig. 2C). Therefore the leal-cushion impressions on moulds derived from these casts are thomboidal in outline with convex surfaces. Casts of whole stem segments with datails of the stem surlates preserved therem are tare and readily distinguished from internal casts. Depending upon the amount of decay experienced hy the stem surlace. prior to the formation of the cast, the outlines of the leaf-cushion bases are more or less distinet but their surfaces are always convex (Fig. 2B, LH). Consequently the surfaces of the leal-cushion bases on moulds derived from such casts are concave.

By far the majority of casts derive from decaying stems which are aligned parallel to the hedding planes of the host sediments. In section these casts are elliptical in outline with their major axes disposed parallel to the bedding planes and so are presumed to have formed from axes that had toppled over at the site of grow tho or had been transported to a swamp before infillineOnly two casts with cylindrical sections bave been noted. One had croded from its investing matrix and was collected from a surticial deposit (Queenstand Mines Deparment L1526): the other was ereet and preserved in situ (Morris. 1977).

FIG1. Erect decaying stem of. Igave viviparez.

MATERIAL AND METHODS

An internal cast of leprophluenm custrate Which isellipticul in section and has the pattern of leal-cushion bases preserved over its whole surface was the starting point for these studies (Clifford, 1996). Assuming, that before buria! and compression, the cast was circular in section, the Iength of its perimeter, was ascertained by muttiplying the number of leaves per whorl by the width of the least distorted leaf-cushion base on its surface. Using this length the diameter of the uncompressed stem was calculated. The result revealed that the length of the major axis of ${ }^{*}$ the elliptical cast and that of the diameter of the uncompressed circular cast were similar thereby confirming that during compression the widit of the cast had not expanded in the plane at right angles to the direction of the applied pressure. Therefore, it can be assumed that when compressed, buried casts sufier litte or no lateral expansion. Because the shape and width of leaf-cushion bases in each whorl are similar, their distribution around a circular stem may be expressed as equal ares on the perimeter of the circle which results from sectioning the stem at right angles to its length. Likewise, the distribution of teaf-cushion bases around the perimeter of the ellipse detived by compression of a circle may also be represented by a series of

FIG. 2. Diagrammatic view of a decaying stem of leptophtoctum austrate and iwo casts derived theretrom: A, transverse section of stem; B. longitudinal section ot stem; C , internal cast; D, stem cast. ca. cavity; Je, leaf-cushion; It, leaf-trace; ast. outer stem lissue.
equal-lengh ares. The procedure for determining the co-ordinates which detine the margins of the individual leaf-cushion bases around the perimeter of an ellipse is complex. However. with the advent of symbolic smanipulators such as Maple, mathematical problems like those encountered in this paper are easily solved. Maple V Release 4 was chosen to furnish these results as described in Appendix 1. Whereas during the compression of a circle into an ellipse the length of its perimeter is conserved, the length of the major axis of the ellipse always exceeds the diameter of the parent circle (Fig. 3).
To explore the responses of leaf-cushion base widths to compression, a circular cast of unit diameter (for practical purposes the unit employed was 100 mm) with 32 leaves per whorl was taken as a model. This number of leaves was chosen both because it is close to that observed on the cast previously studied (Clifford, 1966) and is exactly divisible by four thereby giving a whole number per quadrant. The theoretical responses of leaf-cushion bases to compression were investigated for the four uncompressed elliptical and one circulat cast whose sections are illustrated in Fig. 3. The perimeters of all sections

FIG. 3. Circle (a) and four of the ellipses (b-e) which result from its compression.
are of the same length and each bears the same number of evenly distributed equal-sized leaf-cushions. The circular cast was subjected to four levels of compression (Fig. 4) and the elliptical to 3, 2 and 1 level respectively (Fig. 5). The dispositions of the leaf-cushion bases around the perimeters of the sections of the theoretical casts may be calculated as arc lengths but because of the irregularities which occur on cast surfaces it is customary to measure the widths of their leaf-cushion bases in terms of the chord lengths joining their margins. Therefore to permit direct comparisons of the amount of change in the widths of leaf-cushion bases which occurs during compression, chord rather than arc lengths were investigated throughout this study. With theoretical models chord lengths are calculated from the co-ordinates which define the boundaries of the leaf-cushion bases, but on casts the chord lengths are measured directly with a pair of dividers.

RESULTS

The relationships between arc and chord lengths for two leaf-cushion bases from the same whorl about the perimeter of two casts, one of which is circular and the other elliptical in section, are shown in Table 1.

The manner in which the widths of leafcushion bases, expressed as chords, vary on the surfaces of theoretical casts of Leptophloeum that have been subjected to several levels of compression are given in Table 2 for an initially circular, and in Table 3 for initially elliptical, casts. In both Tables the width of the leaf-cushion bases is expressed as a fraction of that prior to their compression.

FIG. 4. Circle (a) and four of the ellipses (b-e) which result from its compression subject to the condition that the major axes of the ellipses and the diameter of the circle have of the same length.

DISCUSSION

Whereas for a circle the relationship between chord and arc lengths is constant for leaf-cushion bases arranged around its perimeter, with an ellipse this relationship depends on the position of the leaf-cushion base on its perimeter (Table 1). On surfaces of little curvature arc and chord lengths are similar, but when the curvature is considerable arc lengths are conspicuously longer than chord lengths. Nonetheless, except where the curvature is extreme, the difference between the length of the chord and its associated arc is insufficient for the former not to stand as a surrogate for the latter. Indeed, the greater the compression the more closely the chord length approximates to the arc length on surfaces of minimum compression (Table 1). It is clear from

TABLE 1. Chord lengths expressed as a fraction of their associated arc lengths for two nodes on the perimeters of a circle and those of four ellipses derived therefrom by compression, a-e and 1-8 as in Fig. 4.

Perimeter	Chord length		
	Node 1	Node 8	
a	0.99839	0.99839	
b	0.99947	0.99486	
c	0.99981	0.98393	
d	l	0.99994	0.96106
e	l	0.99999	0.95799

TABLE 2. Relative widths of leaf-cushion bases expressed as a fraction of their original widths for eight nodes around a quadrant of the perimeters of four elliptical casts derived by compression without lateral expansion of one initially circular in section. b-e and 1-8 as in Fig. 4.

Node no.	Length of minor axis of ellipse as a percentage of the diameter of the parent circle			
	80 (b)	60 (c)	30 (c)	20 (d)
1	1.00	1.00	1.00	1.00
2	0.94	0.97	0.96	0.96
3	0.96	0.92	0.90	0.89
4	0.92	0.86	0.81	0.78
5	0.89	0.79	0.71	0.66
6	0.85	0.71	0.59	0.50
7	0.82	$0.6+$	0.48	0.35
8	0.80	0.61	0.41	0.22

Tables 2 \& 3 that irrespective of whether the cast was originally circular or elliptical in section, the widths of leaf-cushion bases, respond in a similar, though not identical, manner to compression.

Furthermore, the amount by which successive leaf-cushion bases differ in width around the perimeter of the cast reflects both its original shape and the amount of compression it has experienced. If the original cast was circular in section a reduction in width by 10% or less is experienced only by those leaf-cushion bases immediately adjacent to the position of minimum curvature on its surface. That is, in proceeding from the position of minimum to that of maximum curvature on the cast surface there is a relatively rapid decrease in leaf-cushion base widths but the amount of decrease between successive nodes is not constant. Close to the positions of greatest and least curvature on the cast surface the difference in the widths of adjacent leaf-cushion bases is less than for pairs of leaves midway between the two (Fig. 6A).

In contrast, if prior to its compression the cast was elliptical in section, a reduction of 10% or less in width is experienced by several, rather than a few of the leaf-cushion bases close to the position of minimum curvature. Furthermore, in progressing from the position of least to greatest curvature on the surface of the cast the differences in the widths of successive leaf-cushion bases increases consistently (Fig. 6B).Therefore, provided they are sufficiently represented, the relative widths of successive leaf-cushion bases in the same whorl offer a reliable guide to the

TABLE 3. Relative chord widths of leaf-cushion bases expressed as a fraction of their original widths for eight leaves disposed around the perimeters of three families of ellipses each resulting from the compression of an ellipse. $n-p, r-s$ and u as in Fig. 5; numbers $1-8$ also as labelled in Fig. 5 .

Node no.	Minor axis of initial cast/minor axis of compressed cast					
	$\begin{gathered} 40 / 30 \\ (\mathrm{n}) \end{gathered}$	$40 / 20$ (o)	$\begin{gathered} 40 / 10 \\ (\mathrm{p}) \end{gathered}$	$\begin{gathered} 30 / 20 \\ (\mathrm{r}) \end{gathered}$	$\begin{gathered} 30 / 10 \\ \text { (s) } \end{gathered}$	$20 / 10$ (u)
1	1.00	1.00	1.00	1.00	1.00	1.00
2	0.99	0.99	0.99	1.00	1.00	1.00
3	0.98	0.97	0.96	0.99	0.99	1.00
4	0.96	0.93	0.91	0.98	0.97	0.97
5	0.93	0.87	0.87	0.96	0.94	0.98
6	0.88	0.78	0.71	0.93	0.88	0.96
7	0.81	0.65	0.53	0.85	0.75	0.92
8	0.76	0.52	0.30	0.70	0.45	0.68

cross-sectional shape of the cast before its compression.

GENERAL DISCUSSION

The shape of a cast prior to its compression though of interest, is often of less importance than a knowledge of the length of the diameter of the stem from which it derived. If the leafcushion pattern on an elliptical cast indicates it was originally circular in section, then the lengths of its major axis and that of the stem diameter are the same. However, if the pattern of leaf-cushion bases indicates that prior to its compression the cast was elliptical in section, estimation of the diameter of the original axis is more complicated. The complexity arises because two processes are involved. The first of these is the collapse, under the influence of gravity, of the original circular hollow stem into one elliptical in outline before becoming infilled to form a cast; the second is the response of that cast to compression. Because the girdle of leaf-cushion bases encircling the decaying circular stem forms only a narrow band of tissue its collapse under the influence of gravity results in the stem assuming one of an infinite number of elliptical outlines. The length of the major axis of this ellipse is fixed prior to its being infilled to form a cast (Fig. 1). With one exception, the lengths of the major axes do not provide a direct estimate of the size of the original cast. The exception is when the transectional area of the cast approaches zero in which circumstance the length of the perimeter of the ellipse approaches twice that of its major axis. Such ribbon-like casts are abundant and derive from hollow stems which have collapsed completely

FIG. 5. Ellipses resulting from the compression of three ellipses (b-d of Fig. 4), each subject to the constraint that the length of its major axis is not affected by the compression.
or almost so, before being infilled to form a cast. The surface of such ribbon-like casts corresponds with that of the parent stems and so their leafcushion bases have convex surfaces (Fig. 2D).
When the minor axis of the elliptical section is much shorter than its major axis, the perimeter of the original circular stem can still be estimated provided the amount of compression is known. One estimate of this amount is provided by the cast previously reported upon (Clifford, 1996). During compression its cross-sectional area was reduced to 50% of the original. As this cast is typical of all others encountered it has been assumed that they too will have experienced a similar amount of compression. Therefore the lengths of minor axes of casts known to have been elliptical in section before compression will have been reduced by a half although their major axes will not have changed in length. The minor
axis of the uncompressed cast must be twice that of the observed cast, a statement that is confirmed by the following relationship between the area of an ellipse and that of its axes:

A - π ab

where A is the area of the ellipse, a is the length of its semi-major axis, b is the length of the semi-minor axis.
Given the lengths of the semi-major and semi-minor axes of an ellipse the length of its perimeter may be calculated. For high accuracy it would be necessary to use elliptical integrals to resolve the problem but for the present purposes the following approximation is sufficiently accurate:

$$
\mathrm{P}=\frac{\pi}{3}\left(\mathrm{a}+\mathrm{b}+\sqrt{8\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}\right)
$$

where P is the perimeter, a and b are defined as above.
It should be noted that to determine the perimeter of a cast prior to its compression the value of b to be employed is twice that observed on the compressed cast. The above discussion has assumed that the shape of the cast previous to its compression was determined from a study of the dimensions of the leaf-cushion bases on its surface. However, even if the leaf-cushion pattern is incomplete or absent an estimate of the diameter of the original cast is still possible assuming that during compression about half its volume has been lost. Accepting such loss the shape of a cast which is elliptical in section prior to compression may be determined by comparing the length of twice its minor axis with that of its major axis. If the two lengths are similar the original cast will have been circular in outline; if double the length of the minor axis is less than that of the major axis the original cast will have been elliptical in outline. These results stem from the simple relationship between the area of an ellipse (of which the circle is a special example) and the length of its two axes. Should twice the length of the minor axis exceed the length of the major axis it would follow that the cast had lost less than 50% of its original volume, a situation as yet not encountered. The procedure for determining the diameter of a stem whose cast was elliptical before its compression will now be demonstrated using data from a specimen in the collection of the Australian Museum (F6449). The outline of the cast as seen in transection is shown in Fig. 7 together with some points on the perimeter of the ellipse calculated from its maximum and minimum width. The close

FIG. 6. A, The lengths of the leaf-cushion base widths, expressed as a fraction of their uncompressed value, for 16 leaves arranged around the semi-perimeters of the four ellipses (b-e) illustrated in Fig. 4; B, The lengths of leaf-cushion base widths expressed as a fraction of their uncompressed value for 16 leaves arranged around the semi-perimeters of the ellipses n-p,r-s and uillustrated in Fig. 5; node numbers 1-8 and their mirror images (italics) as in Figs 4 and 5 .
agreement between the outline of the cast (Fig.7, a) and the superimposed points supports the view that the cast arose by deformation of one which was circular in section.

Doubling the length of the minor axis of the ellipse (Fig. 7, a), without altering the length of its major axis results in a new ellipse (Fig. 7, b) which may be taken to represent the transectional outline of the cast prior to its compression. However, as it is postulated that the uncompressed cast arose by the infilling of a circular but hollow stem which had collapsed into an ellipse under the influence of gravity, the length of the perimeter of the uncompressed cast and that of the stem will be the same. The width of the persistent outer stem tissues within which the uncompressed cast is formed may be neglected for it is small compared with the diameter of the cast. The perimeter of the uncompressed cast may be calculated from the formula cited above, and using the result, the diameter determined of a circle with the same length perimeter. This circle (Fig. 7, c) may be taken to represent the outline of the original stem. It should be noted that whereas the transectional area of the compressed cast is only 40% that of the stem it is 50% that of the uncompressed cast. The difference between these two numbers arises because during the deformation of a circle into an ellipse the length of the perimeter is unchanged
but the enclosed area is reduced. Had cast F6449 resulted from the direct compression of a specimen which was circular in section it would have lost c. 80% of its volume. In this circumstance the length of the diameter of the uncompressed cast and that of the major axis of the compressed elliptical cast would have been the same. If such a large loss of volume is acceptable, the width of the uncompressed cast would be intermediate between the length of the major axis of the cast and that of the diameter of a circle derived on the assumption that the hollow stem had collapsed into an ellipse before infilling and then losing 50% of its volume. At present only one cast is known whose surface pattern is sufficiently well preserved to allow its precompression, transectional area to be estimated with confidence. Therefore until further data are available it is necessary to accept that 50% compression of Leptophloeum axes is the norm, at least in eastern Australia, and to use this value together with the maximum and minimum widths of casts to calculate their precompression diameters .

ACKNOWLEDGEMENTS

It is a pleasure to thank the Director of the Australian Museum and Dr Sue Palfrey of the Queensland Mines Department for providing hospitality and access to the collections in their

FIG. 7. Outline of an internal cast of Leptophloeum australe (Australian Museum F6449) as seen at right angles to its length (a). Points on the perimeter of an ellipse whose major and minor axes are the same lengths as the maximum and minimum widths of the cast $(+)$. Ellipse whose major axis is the same length as that of the cast but twice its area in section (b). Circle with same perimeter as that of ellipse b (c).
charge; Dr Alex Cook for his critical appraisal and support of the project; Natalie Camilleri for her conversion of my rough drawings and diagrams into such fine Figures.

LITERATURE CITED

ANDERSON, J.M. \& ANDERSON, H.M. 1985. Palaeoflora of Southern Africa- Prodromus of Southern African megafloras Devonian to Lower Cretaceous. (A.A. Balkema: Rotterdam).
CAI, C. \& WANG, Y. 1995. Pp. 1-689. In Li, X. (ed.) Fossil floras of China through the geological ages. (Guangdong Science \& Technology Press: Quangzhou).
CLIFFORD, H.T. 1996. Geometrical study of a cast of Leptophloeum australe (McCoy) Walton from Queensland. Memoirs of the Queensland Museum 39(2): 227-231.
DAWSON, J.W. 1862. On the flora of the Devonian Period in Northeastern America. Quarterly Journal of the Geological Society, London: 296-330.
EDWARDS, D. \& BERRY, C. 1991. Silurian and Devonian. Pp. 117-53. In Cleal, C.J. (ed.) Plant fossils in geological investigation. (Ellis Horwood: London).
McCOY, F. 1874. Lepidodendron (Bergeria) australe (McCoy). Pp. 37-39. In Prodromus of the palaeontology of Victoria. Decade 1. (Geological Survey of Victoria: Melbourne).
MORRIS, N. 1977. Carboniferous floras of eastern Australia. Unpubl. PhD thesis, University of Newcastle, Australia.
SCOTESE, C.R. \& McKERROW, W.S. 1990. Revised world maps and Introduction. In McKerrow, W.S. \& Sotese, C.R. (eds) Palaeozoic palacogeography and biogeography. Geological Society Memoir 12: 1-21.

APPENDIX 1

Method of calculation using symbolic manipulator; Maple V Release 4. Maple V Release 3,4 or 5 can be used for the determination of the various calculations required in this paper and these problems are now discussed in general. Given the circumference of a circle, so that its diameter can be calculated, it is required to find the major and minor axes of ellipses which result from keeping their perimeters fixed as that of the original circle, but whose minor axes are reduced to some fraction of its radius. To find the perimeter of an ellipse it is necessary to calculate an elliptical integral which must be evaluated numerically. In fact, the perimeter is given by:
$P=4 \int_{0}^{\frac{7}{2}} \sqrt{a^{2} \cos ^{2} u+b^{2} \sin ^{2} u} d u$
where a and b are the semi-major and semi-minor axes of the ellipse. Maple allows the setting up of this integral in terms of a and b and, once the circumference of the original circle is ascertained, it is possible to calculate the semi-major axes of the ellipses whose semi-minor axes are reduced in a given ratio of their original value (Fig. 3). To do this a numerical method must be set up which starts with an initial approximation to the solution and then uses a steepest descent method to generate closer and closer approximations to the required solution. The degree of accuracy can be chosen as desired. Once the new ellipses have been found the positions of the margins of the leaf-cushion bases must be calculated. Again this must be done numerically. If it is assumed that the leaves are equally spaced around the perimeters of the ellipses then, since the perimeters have been calculated, the arc lengths corresponding to the widths of the leaf-cushion bases are known - it was assumed there were eight leaves per quadrant (see Fig. 4). A similar steepest descent method is now used to step round the perimeter of the ellipse, successively finding the co-ordinates which define the margins of each leaf. This method was also used to produce Tables 2 and 3. Once the co-ordinates of these leaf-margins have been found, those on the contracted ellipses with the same major axes but smaller minor axes are found by merely holding their X co-ordinates constant and decreasing their Y co-ordinates in the appropriate ratios of the required contraction (see Fig. 4). Information on the Maple program can be obtained from M.R. Pemberton at c-mail mrp(a) maths.uq.edu.au

FOSSIL TYPHA IN AUSTRALIA. Memoirs of the Qucensland Museum 45(2): 234. 2000:- Recent investigation of oil shales recovered from a bore put down in the Casuarina Basin, about 25 km SE of Rockhampton, Queensland has revealed seeds and fruits in the sediments. These were encountered in the course of a palynological study and would have otherwise been overlooked on account of their small size. In a forthcoming paper the seeds have been assigned to Typhaceae and the fruits to Restionaceae (Detmann \& Clifford, in press). Because seeds of Typhaceae are operculate it is important they not be confused with moss capsules. The two are usually readily distinguished; unlike a seed the moss capsule is usually attached to a seta and has a peristome which is revealed when the operculum separates from the theca. However, if the moss capsule has become detached from its seta and lacks a peristome it will resemble a Typha seed whose chalazal region has been damaged. These considerations led us to reconsider the identity of Muscites yallournesis Clifford \& Cookson which was described on the basis of a single specimen isolated from a sample of brown coal (Clifford \& Cookson, 1953) of Miocene age from Yallourn (Blackburn \& Sluiter. 1994).

A comparison of the cell structure of the operculum of M. yallournensis with that of the extant Typha domingensis Pers. revealed no significant differences (Fig. 1). Further support for the view that the specimen of M. yallournensis is a seed of Typha rather than a moss capsule is provided by the collar of cells from within which the operculum is shed and the ragged skirt of cells around the base of the supposed "capsule". Both of these are features of Typha seeds and are clearly visible on the photograph of the holotype of M. yallournensis. Accordingly, the species is here formally transferred to that genus.

Systematic Palaeobotany

TYPHACEAE
Typha yallournensis (Clifford \& Cookson) comb. now: (Fig. 1A-C)
Muscites valloumensis Clifford \& Cookson, 1953: 54-55.
MATERIAL. HOLOTYPE: NMV P1572f; Latrobe Valley Coal Measures, Yallourn Seam; Miocene.
REMARKS. There are no previous reports of Typha (type specics T. Iatifolia L.) from the Australian fossil flora though Maclphail et al. (1994) and Blackburn \&\& Sluiter (1994) report the presence of macro- and/or microfossils with affinities to Typhaceae and Sparganiaceae but make no positive identifications to either. Therefore Typha vallournensis (Clifford \& Cookson) comb. nov. becomes the first detinite fossil record of the genus from Australia.

Elsewhere fossil Typha seeds have been described from Mastrichian and younger sediments of Europe (Chandler, 1963; Collinson, 1983; Herendeen \& Crane, 1995). Seeds of T. latissima A. Braun closely resemble those of T. yallournensis but until the anatomy of the latter is known the iwo species cannot be regarded as conspecific.

Acknowledgements

We thank the Director of the Museum of Victoria and Dr S. McLoughlin, University ol'Melbourne for arranging access to the negative of the holotype of Typha yallournensis.

Literature Cited

B1,ACKBURN, D.J. \& SLUITER, I.R.K. 1994. The Oligo-Miocene tloras of south-eastern Australia. Pp. 328-367, In Hill, R.S. (ed.) History of the Australian vegetation: Cretaceous to Recent. (Cambridge University Press: Cambridge).
CIIANDLER, M.E.J. 1963. Revision of the Oligocene floras of the Isle of Wight. Bulletin of the British Museum (Natural History) Geology, London 6: 321-384.
CLIFFORD, H.T.\& COOKSON, I.C. 1953. Muscites yalloumensis, a

FIG. 1. Typha yallournensis (Clifford \& Cookson) comb. nov. and T. domingensis Pers. A-C, T. yallournensis, holotype (NMV P15724). A seed body showing chalazal region at base $(\times 60)$. B-C, detached operculum ($\times 60$ and $\times 120$). D-G, T. domingensis. D, E, G, QM F50036 seed showing partially detached operculum and chalazal region at base ($\mathrm{D}, \times 33, \mathrm{E}, \times 133, \mathrm{G}, \times 50$). F. specimen QM $F 50037$, detached operculum in lateral view ($\times 133$).
fossil moss capsule from Yalloum, Victoria. The Bryologist 56; 53-55.
COLLINSON, M.E. 1983. Palaeofloristic assemblages and palacoccology of the Lower Oligocene Bembridge Marls, Hamstead Ledge, Isle of Wight. Botanical Journal of the Linnean Society 86: 177-225.
DETTMANN, M.E. \& CLIFFORD, H.T. in press Monocotyledon fruits and seeds and an associated palynotlora from Eocene/ Oligocene sediments of coastal centrat Queensland, Australia. Review of Palaeobotany and Palynology.
HERENDEEN, P.S. \& CRANE. P.R. 1995. The fossil history of the monocotyledons. Pp. 1-21. In Rudall, P.J., Cribb, P.J., Cribb, D.F. \& Humphries, C.J. (eds) Monocotyledons: systematics and evolution. (Royal Botanic Gardens: Kew).
MACPHAIL, M.K., ALLEY, M.F., TRUSWELL, E.M. \& SLUITER, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp.189-261. In Hill, R.S. (ed.) History of the Austratian vegetation: Cretaceous to Recent. (Cambridge University Press: Cambridge).
11. Trevor Clifford, Oucensland Mutseum, PO Box 3300, South Brishane 4101, Australia, Mary E. Dettmann, The University of Queenstand, St Lucia, 4072, Australia. 11 Jamary 2000.

CENTRALQUEENSLAND

ALEX G COOK AND KERRIE BANN

Cook, A. \mathbf{G} \& Bann, K. 201000630 : Trace fossits firon the Upper Carboniferous Jepicho Formation. central Queensland. Aemmiry of the Quecrstand ifusenn $45(2): 235.251$. Brishane. ISSNV (1074)-8535.

Abstract

Anew trace fussil assemblaye from lacustrine deposits alt the Lipper Carboniferous dericho Fommation, Joe Joe Group, Galilee Basin, Queensland, is deseribed; it is similar to the [Tmfolozia ichnocoenosis found in ather parts of Gondwamaland duting the Late Carboniterous to Early Permian. The assemblage comprises enclusively ol hedding-parallel tracks interpreted as anthropod locomotor' traces. mainly Tusmumudus ghessmeri ichnosp. nov. and Aphaichms ulphaensis iclnogen. al ichnosp. now. Other new taxa are Isopmdichmus equechstarzhensis ichenosp. nov.a Rusophacrus devisi ichmosp. bov. and trails. Ouccnsland.

 -insmalia; In September fugs.

Delicate and diverse trace fossil assemblages are known lrom Late Carboniferous to Early Permian of Gomdwanaland most notably the Dwyka Series, South Africa (Savage, 1471; Anderson, 1975, 1976, 1981), South America (Rocha-Campos, 1967; Aceñolaza \& Buatois, 1991, 1493; Buatnis \& Manganc, 1993. 1994, 1995) and Australia (Chapman, 1929; Glacsiner, 1957). Unifomity in these Gondwanan ichnofaunas allows recognition of inter alia Umfolozia. Isopodichnus and Mermia ichnocoenoses (Λ ceñolaza \& Buatois. (903) which are useful biogeographic and broad biostratigraphic indicators, as well as rellecting widespread glacial conditions or their onset. This paper is concerned with well-prescrved trace fussils from shallow quarries of the Jotichu Formation alonst the Sedecford-Alpha Rd, SSE: of Alpha, central Queensland (Queensland Museum Locality QML 093).

The Jericho Furmation is a dominamly fine-grained, siliciclastic unit forming part of the Joe Joe Group of the Galilee Basin. The unit was formally defined by Gray \& Swarbrick (1975) who moted arthropod trails and suggested a lacustrine depositional environment in assuciation with periglacial conditions. Biostratigraphic control on the Jue Joc Group was teviewed by Jones \& Truswell (1992) who placed the Jericho Formation in the latest Carboniferous (Stephamian), postdating the onset of glaciation. In order to clucidate the depositional context for these trace fossils we examined reenered core firm the sane sequence.

DEPOSITIONAL SETTING

Lxamination of interval $770-740 \mathrm{~m}$ in (iSQ Jericho No. 1 (sce Swarbrick, 1974: lig. 2) revealed a fining upward sequence, interpreted as a deepening alluvial to lacustrine environment (Fig. 1). Ar the base of the unit, unbioturbated. medium- 10 coarse-grained pebbly sandstone represents alluvial deposition. Above, the sequence grades to fine-grained sandstone ti ith a A Aacarmichmus ichnofabric and possible escape traces, which we interpret as a dellaic envinonment. The sequence grades progressively jmo a bioturhated, interbedded sandstone and siltstone unit with sinaeresis cracks. contorted bedding and flame stuctures, possibly reflecting influx of sediment due to storms or seasonal input in a lacustrinc enviromment. The upper portion of this unit is composed ol pinstriped siltstone and very fine-grained sandstone with Tasmanadia, This parl of the sequence we interpret to represent seasonal varves, The trace fossil assemblage is interpreted as a Rusophycus ichnofacies. The top 7.5 m of the section enntains bioturbated, interbedued very fine-grained sandstone and siltstone and tetlects deposition in a distal, quiet lacustrine environment. The sequence is overlain by a series of prograding deltaic deposits.

RUSOPHYCUS ICHNOFACIES. In this study the eponymous ichnogenera are not italicised (following Bromley, 1996), because it is a facies and not an ichnotaxon that is under discussion (this is in line with the usage of fasa in biostratigraplical zomes. e.g. Bitrons \%nne).

FIG. 1. Graphic \log of GSQ Jericho No. 1 interval $770-740 \mathrm{~m}$, showing relative depostional energy, interpreted depositional environments and ichnofabrics adapted from Taylor \& Goldring (1993).

This assemblage falls into the Rusophycus ichnofacies that was suggested tentatively by Bromley (1996: 249) to represent a freshwater (fluvial and shallow lacustine) ichnofacies dominated by Repichnia and Cubichnia.

In the Jericho Formation the Rusophycus ichnofacies is characterised by Repichnia, Cubichnia and Praedichnia (Table 1).
Aceñolaza \& Buatois (1993) reviewed late Palaeozoic trace fossil assemblages of Argentina and identified four ichnocoenoses pertaining to differing lacustrine and fluvial sedimentary facies. They regarded the Umfolozia ichnocoenosis as representing arthropod activity within a shallow lake, and the Isopodichnus ichnocoenosis as representing activity within ephemeral, shallow pools, and channel and floodplain deposits. The Queensland material belongs within an Umfolozia ichnocoenosis, with arthropod crawling traces dominant. Keighley \& Pickerill (1996) reviewed the interwoven taxonomic status of Isopodichus, Rusophycus and Cruziana, and provided a convincing argument against retaining Isopodichnus, placing ribbon like members of that taxon in

Cruziana, and bilobate coffee-bean shaped members within Rusophycus. However Trewin (1976), Pollard (1985) and Aceñolaza \& Buatois (1993) pointed out that Isopodichnus is generally smaller, with flaring ends. Furthermore the genus has a significant ecological and stratigraphic utility, and is here retained.

FUNCTIONAL INTERPRETATION. The absence of body fossils associated with the assemblage makes identification of the track-maker(s) difficult. The biserial nature of many of the traces indicates that they were made by arthropods. In Wadeichnus, interpreted antennae marks strengthens the arthropod identification. Groove markings on Isopodichnus queenslandensis, interpreted to have been made by telson drag, and the presence of paired scratch marks suggestive of at least 5 pairs of appendages on the related Rusophycus devisi, throws some light on the organisms responsible. The bifurcate distal appendage marks in Alphaichmus indicate that appendages were in the equally biramal (primitive) state, possibly representing activity of syncarid crustacea.

Terminology follows Osgood (1970) for 'trail', 'track', 'pair' and 'imprint'. 'Distal' and 'proximal' refer to the distance from the axis of the trace fossil, 'medial' pertains to features within the axial zones of tracks and 'lateral' to those in the marginal zones. Most material is preserved in hyporelief and all descriptions should be read as such. No attempt is made to establish higher order systematics.

SYSTEMATIC PALAEOICHNOLOGY

Isopodichnus Bornemann, 1889

TYPE SPECIES. Isopodichnus problematicus Bomemann 1889, from the Triassic of Germany.

REMARKS. Isopodichnus is a problematic ichnogenus, and has been variably placed in Rusophycus and Cruziana, with considerable taxonomic confusion, further obfuscated by well known intergradation between the three ichnogenera (also see below). Full accounts and differing opinions on its resolution are given by Osgood (1970), Hantzschel (1975) Keighley \& Pickerill (1996) and Bromley (1996). The problems are intertwined and we do not propose to resolve this significant controversy. Bromley (1996:184) provided the most accurate summary of this nomenclatural debate: 'I cannot see how Isopodichnus can be considered available other than a muddled junior synonym of both Cruziana

TABLE 1. Ethological classification of ichnotaxa described from the Jericho Fmn near Alpha.

Ethological classification	Ichnotaxon	Figure numbers
Repichnia	Isopodichmus queenslandicus	Figs 2A, B, 13B
Cubichria	Rusophycus devisi	Hig. 3
Repichnia	Tasmanadia glaessmeri	Figs 6, 7
Repichnia with Praedichnia	Wadeichmus maryae	Fig. 4
Repichnia with Praedichnia	Alphaichnus alphaensis	Figs 8, 9, 10A, 12, ? $10 \mathrm{~B}, \mathrm{C}$
?Fugichnia	Indet. sweep and scurry marks	Fig. 13D
?Praedichnia	Indet. paired appendage marks	Fig. 12

and Rusophycus'. The taxonomic stand of Keighley \& Pickerill (1996) would have Isopodichmus queenslandensis within Cruziana. We retain Isopodichnus here as a genus-ofconvenience awaiting resolution of the tripartite nomenclatural confusion. We note the considerable difference in the classic Early Palaeozoic Cruziana morphology and this material. The dichotomy between type specimens of Cruziana and those of Isopodichmus must be further investigated.

Isopodichnus queenslandensis ichnosp. nov.
(Figs 2A,B, 11 (part), 12B)
ETYMOLOGY. From Queensland.
MATERIAL. HOLOTYPE: QMF32233. PARATYPES: QMF34026, 39062 all from QML993.

DIAGNOSIS, Exclusively elongate and continuous Isopodichnus.

DESCRIPTION. Straight, gently curved or weakly sinuous ribbon-like trail, up to 7 mm wide consisting of (in hyporelief) 2 parallel marginal longitudinal furrows and a central (axial) channel containing up to 6 subparallel longitudinal striae. Axial channel occupying slightly over $1 / 2$ track width, with numerous fine longitudinal threads and a weak central ridge deviating from the mid-line along the length of the trail. Outermost longitudinal ridge in the axis with sporadic but numerous oblique, short striae. Marginal ridges with fine obliquely transverse striae, extending sub-perpendicularly beyond the edge of the trail. In some specimens these striae bifurcate, particularly as the trail shallows. There are numerous tiny ($1-2 \mathrm{~mm}$ wide) examples of the track (Fig. 9, large arrow) preserved in epirelicf,
the marginal parts of the track are slightly more pronounced than in larger specimens.

REMARKS. The central threads represent the drag marks of a telson with furcae, with the sporadic striae representing setae on the furcae. Short imprints on the edge of the track represent appendage marks. The relative depth of the track reflects the softness of the muddy substrate. The elongate nature of the trace and the internal striae separate this ichnospecies from material figured as Isopodichmus osbornei Glaessner, 1957: pl. 10, fig. 2a,b (partim); fig. 3, pl. 11 figs 1-3) from the Carboniferous near Seaham, NSW. The holotype of Isopodichmus queenslandensis is associated with Rusophycus. Smaller representatives of this taxon are interpreted as representing juveniles.

Rusophycus Hall, 1852

TYPE SPECIES. Significant problems with the nominate type ichnospecies are still to be resolved (Keighley \& Pickerill, 1996).
REMARKS. Osgood (1970) restricted Isopochichnus Bornemann to small Rusophycus-like imprints of non-trilobite origin as well as to those of trilobite origin. Hantzschel (1975) suggested that Rusophycus be restricted to identifiable trilobile resting traces based on a genetic and stratigraphic methodology rather than an ethological/morphological approach. Use of /sopodichmus for small short traces was discussed by Glaessner (1957), Osgood (1970), Birkenmajer \& Bruton (1971) and Hantzschel (1975). Keighley \& Pickerill (1996) argued against Isopodichmus and placed bilobate coffee-bean shaped members in Rusophycus. Buatois \& Mangano (1993) followed this using Rusophycus for non-marine, late Palaeozoic traces with this short bilobate morphology.

In the Alpha material Isopodichnus queenslandensis and Rusophycus devisi are associated and intergrade (Fig. 3C).

Rusophycus devisi ichnosp. nov.
(Figs 3, 7Λ (part))
ETYMOLOGY. For C.IV. De Vis, who described the lirst trace fossils from Queensland (De Vis, 1911).

MATERIAL. HOLOTYPE: QMF32232, PARATYPES: QMF34026 (several specimens), 34090, 34069 (several specimens), all from QML993.
DIAGNOSIS. Small, elongate longitudinally subsymmetrical to irregular bilobate trace, showing at least 5 curved paired ridges in hyporelief within each lobe.

FIG. 2. $\mathrm{A}_{4} \mathrm{~B}$, lsopndichmus queenslandensis ichnosp. nov:; $\mathrm{A}, \mathrm{QMF} 34026 \times 2 ; \mathrm{B}, \mathrm{F} 32233$ holotype $\times 2$. C.D. Whateichmes maryae ichnogen. ot ichnosp. nov.; C. F34065 $\times 1 ;$ D, F39061 $\times 1$.

FIG. 4. Hadeichmus manyac ichnogen. et ichnosp. nov. A, holotype QMF39063, $\times 1 ;$ B, F39065, $\times 2$.

Isopodichnus (Fig. 3B). QMF32233 shows Rusophycus in association with Isopodichnus (Fig. 3D) where the track may have been utilised twice by the same type of trace-producing organism. Other specimens are associated with Tasmanadia.

Tasmanadia Chapman, 1929
TYPE SPECIES. Tasmanadia twelvetreeensis Chapman, 1929 from the Upper Carboniferous Wynyard Tillite, Tasmania.

REMARKS. Chapman (1929) erected Tasmanadia for purported Cambrian annelid body fossils, reinterpreted to be Carboniferous arthropod tracks by Glaessner (1957) and Gulline (1967). Bromley \& Asgaard (1979) regarded Tasmanadia as a junior synonym of Diplichnites but contrarily indicated significant differences in the fine morphology of the tracks; their extreme "lumping' view where many arthropod track genera were synonymised is not here adopted.

Tasmanadia glaessneri ichnosp. nov.
(Figs 6, 7A (part))
ETYMOLOGY. For the late M. F. Glaessner.
MATERIAL. HOLOTYPE: QMF39069. PARATYPES: QMF32229, 34054, 34060, 34065, 34081, 34083, 34088, 34090, all from QML993.

DIAGNOSIS. Biserial track $8-11 \mathrm{~mm}$ wide, of 2 near-symmetrical rows of fine ridges, nearly perpendicular to the track axis, in close, slightly divergent pairs.
DESCRIPTION. Track biserial, elongate, gently curved, of near symmetrical rows of fine ridges in hyporelief, $8-11 \mathrm{~mm}$ in total width, with $3-4 \mathrm{~mm}$ between inner ends of rows of ridges. Fine ridges in closely spaced pairs diverging slightly or subparallel, individually very weakly arcuate, perpendicular to the track axis. Sporadically finer, more strongly divergent appendage marks marginal to the track pairs. Rare lengthwise, but short marks along the track axis. Some specimens over 500 mm long.

REMARKS. The paired track marks indicate Tasmanadia. This material is differentiated from the type species by the greater divergence of the distal ends of the ridges forming the track pairs. Permichnium Guthörl, 1934 has slightly more divergent paired ridges, but they emerge from subcircular foot impressions, lacking in this material. Maculichna Anderson, 1975 possesses rows of paired spots, and lacks the paired divergent elongate marks of this material.

FIG. 5. Interpreted schema for Wadeichnus maryae ichnogen. et ichnosp. nov. based on holotype specimen, $\times 2$.

Umfolozia Savage 1971 also possesses a series of paired and complexly arranged dots in contrast to the simplicity of this material. Specimens of this ichnotaxa grade into Rusophycus and Alphaichnus, the latter evidenced by the rare occurrence of fine marks adjacent to the paired ridges. Shallow undertracking suggests greater substrate firmness than for Alphaichmus and Isopodichmus.

Alphaichnus ichnogen. nov.
TYPE SPECIES. Alphaichnus alphaensis ichnogen. et sp . nov.

DIAGNOSIS. Biserial, gently curved, to straight trace consisting of subsymmetrical rows of up to three sets of paired ridges which are distally

 specimens and indeteminate sweep traces (small arrows). $\times 1 ; \mathrm{B}$, further detail same specimen $\times 1$.,

FIG. 7. A, Tasmanadia glaessneri inchosp. nov., QMF39069 holotype, (arrow) with associated Rusophycus devisi ichnosp. nov. and indeterminate traces $\times 1$. B, indet. appendage marks, QMF34067 $\times 2$.

 track on different part of same slab $\times 2$.
branched and have short fine striae. Axis with or without arcuate ridges or transverse oblique ridges.

> Alphaichnus alphaensis ichnogen. et sp. nov. (Figs 8-11)

ETYMOLOGY. From the town of Alpha.
MATERIAL. HOLOTYPE: QMF34084. PARATYPES: QMF32231, 34033, 34039, 34043, 34057, 34059, 34066-34068, 34072.

DIAGNOSIS. As for genus.
DESCRIPTION. Long, straight to gently curved, irregular biserial trace, without closing loops, up to 18 mm outer width, 8 mm inner width. Internal organisation complex of subparallel track sets of up to 3 pairs of variable length transverse ridges, each of which may be distally bifurcate or trifurcate, with short, very fine longitudinal striae perpendicular to their length. Length of individual ridges in each set increasing towards the margin of the track. Central zone of the track with up to 3 distinct or 2 axially connected, curved transverse ridges, or a series of up to 4 irregularly disposed oblique short ridges. On some specimens additional asymmetrical curved transverse ridges at the margins of the track. Individual pairs highly variable, but approach symmetry when the trace is nearly straight. Longitudinal striae, oblique and arcuate ridges sporadic along length of track, within the axial zone. In some specimens medial arcuate, symmetrical ridges, with tiny longitudinal striae with a series of adaxially disposed divergent ridges at their margins, and a number of lateral short marks fanning around the individual paired ridges.
REMARKS. There are a large number of biserial arthropod tracks superficially similar to this material, but most lack the internal variablity and complexity of this ichnotaxon, particularly within the track axis. Diplichnites govenderi Savage, 1971, lacks the flaring and branching of individual tracks, lacks medial ridges and is, in general, a simpler trace. The considerable variation in this genus reflects similar morphological variation encountered by Anderson (1975) in Umfolozia Savage, 1971, but Umfolozia bears appendage marks and sinuously arranged oval marks in the medial zone and lacks the complexity of medial arcs and branching ridges present in Alphaichnus.
Walter (1983) discussed many late Palaeozoic ichnotaxa attributed to arthropods. Heterotripodichnus divaricatus Walter and H. longitarsalis Walter approach the present material in
complexity, but in both, the appendage marks are more longitudinally arranged within the trace.

Irregular morphology makes the identification of repeat distances difficult. Repetition of medial ridges is interspaced by 5 track pairs, which suggests minimum track repetition. Track pairs are interpreted as appendage marks with their distal bifurcations and other branchings representing the 2 roughly equally-sized rami. Medial oval and arcuate marks are interpreted as pleopod imprints and withdrawal marks. Longitudinal striae on the appendage marks setae. Distal fine arcuate marks are interpreted as traces of antennae.

The differing depth of track penetration displayed by the many slabs examined with undertracks suggests that substrate firmness was variable, but was high in the case of generation of this track compared to the occurrences of Isopodichmus queenslandensis.

Wadeichnus ichnogen. Nov.
TYPE SPECIES. Wadeichnus maryae ichnogen et ichnosp. nov.
ETYMOLOGY. For Mary Wade.
DIAGNOSIS. Biserial track of elongate, lobate, longitudinally disposed marks, consisting of up to 5 elongate striae, terminating in a horseshoeshaped depression within which the striae fan slightly; with or without marginal arcuate ridges perpendicular to track axis, and with or without a bounding pair of longitudinal fine ridges.

Wadeichnus maryae ichnogen. et ichnosp, nov.
(Figs 2C, D, 4, 5, 12C)
MATERIAL. HOLOTYPE: QMF39063. PARATYPES: QMF39065, 39061.

ETYMOLOGY. For Mary Wade.
DIAGNOSIS. As for genus.
DESCRIPTION. Biserial, somewhat discontinuous track, up to 14 mm wide, of symmetrical or subsymmetrical lobate marks, up to 8 mm long, of 3-5 longitudinal striae which diverge slightly within a horseshoe-shaped depression, accompanied by marginal fine ridges, papillate, which are perpendicular to the trace axis and a pair of longitudinal fine threads at the margin of the trace. Some specimens show a central thread running lengthwise along the trace. In two specimens the orientation of the appendage marks (striae sets) are oblique to the trace axis.

HIG. 9. A. Alphaichmus alphachsis ichnogen. et ichnosp. nov. QMF32231 \times 1. B, C, cf. Alphaichmus. QMF34036 and F39064 respectively.

REMARKS. The arcuate ridges perpendicular to the axis are interpreted as antennae marks elongate striation pairs as pleopod marks and horseshoe depressions (in hyporelief) interpreted as withdrawal markings (sensu Osgood, 1970). The sporadically present central thread may be a telson drag mark. It is likely that the specimen assigned to ef. Alphaichnus (Fig. 9B,C) is
transitional between Alphaichnus and this ichnotaxon. Wadeichnus probably was formed on a semifirm substrate with only minimal contact of the arthropod body and the surface sediment.

FIG. 10. Alphaichnus alphaensis ichnogen. et ichnosp. nov. QMF39068 $\times 1$.
indet. appendage marks
(Fig. 7B)

MATERIAL. QMF34067.

DESCRIPTION. Small elongate series, 11 mm long and 5 mm wide of arcuate or lunulate to v -shaped wrinkle marks in hyporelief, up to 6 in
an individual series, with discontinuous sets in close association.

REMARKS. These marks probably represent asymmetrical appendage falls upon the substrate with subsequent, but penecontemporaneous plastic deformation, probably on a low slope. The lack of material available and the unusual

FIG. 11. Alphaichnus alphaensis ichnogen. et ichnosp. nov. QMF34084, holotype (small arrow) part of composite slab, $\times 1$. Isopodichnus queenslandensis, juvenile specimens (large arrow). Note the numerous indeterminate appendage marks (open triangles).
morphology prevents any accurate assignment. Anderson (1975) described bedding surface slump structures similar to those found in the Alpha material.
indet. paired appendage marks
(Fig. 11 (part))

DESCRIPTION. Almost all slabs containing Wadeichnus and Alphaichnus have isolated, shallon small paired or more rarely single holes (in epirelief). They are commonly triangular with one apex deeper, or they are subquadrate with no directional shallowing. Pairs are separated by $2-3 \mathrm{~mm}$. No continuity in sets of pairs can be identified.

REMARKS. We interpret these holes as appendage pluck-out or withdrawal marks

FIG. 12. A, Alphaichnus alphaensis ichnogen. et ichnosp. nov., and indeterminate 'sweep' mark, QMF34066 $\times 2$. B, Isopodichnus queenslandensis ichnosp. nov. QMF39062, showing sinuosity, $\times 1$. C, Wadeichnus maryac ichnogen. et ichnosp. nov. QMF39061 $\times 2$. D, indeterminate scurry marks QMF39067 $\times 1$.
associated with isolated substrate interactions. The association of these holes with the more complex traces shows differing behaviour between the maker of Alphaichmus and the originator of these marks, but we cannot determine whether it would be a similar animal.

indeterminate 'sweep' marks

(Fig. 6 (part))

MATERIAL. QMF34090

REMARKS. On a number of specimens are elongate curved and recurved ridges which lack repetitive association or are in groups of 1 or 2 . These ridges are up to 25 mm long, and $<1 \mathrm{~mm}$ thick, gently curved with a stepped weak bilateral symmetry, if at all. These structures are interpreted as sweep marks from some organism; they are much too small and non-persistant to be Undichnia (sensu Anderson, 1976; Buatois \& Mangano, 1994) and are indeterminate. The material resembles Stialia pillosa Smith of Walker (1985), but lacks the abundant scratch marks.

indeterminate scurry marks

(Fig. 12D)

MATERIAL. QMF 39067.

REMARKS. Small, disordered set of weakly to strongly divergent ridges with an impersistent, marginal sinuous set of bordering threads. Imprints (ridges in hyporelief) are in groups of 3 or more and are short, sporadically divided and bear fine transverse striae. The specimen is interpreted as a set of arthropod pleopod marks where the pleopods bear setae and are probably biramal. The trace architecture is inferred as resulting from an arthropod scurrying across the firm substrate. The sinuous threads are interpreted as antennae marks.

ACKNOWLEDGEMENTS

We thank Mary Wade and Peter Jell for their assistance and encouragment: Luis Buatois \& Gabriela Mangano, Geological Survey of Kansas, Ron Pickerill, University of New Brunswick for providing important literature; Tony Wright for topotype material of Isopodichmus osbornei from Scaham: Natalie Camilleri, Paul Tiemey, Chris \& Dawn Schnur, Terry Smith and Colin McHenry are thanked for assistance in the field; Jeff Wright is thanked for his patience with photographs. Amy Robinson
for her assistance with preparation, Barry Webby for helpful criticism on the manuscript.

LITERATURE CITED

ACEÑOLAZA, F.G \& BUATOIS, L.A. 1991. Trazas fosiles de Palcozoico superioir continental argentino. Ameghiniana 28: 89-108.
1993. Nonmarine perigondwanic trace fossils from the late Paleozoic of Argentina. Ichnos 2: 183-201.
ANDERSON, A.M. 1975. Turbidites and arthropod trackways in the Dwyka glacial deposits (early Permian) of southern Africa. Transactions of the Geological Society of South Africa 78(2): 265-273
1976. Fish trails from the Early Permian of South Africa. Palaeontology 19: 397-409.
1981. The Umfolozia arthropod trackways in the Permian and Ecca Series of South Africa. Journal of Paleontology 55: 265-273.
BIRKEMAJER, K. \& BRUTON, D.L. 1971. Some trilobite resting and crawling traces. Lethaia 4: 303-319.
BORNEMANN, J.G. 1889 . Über den Buntsandstein in Deutschland und seine Bedeutung für die Trias. Beiträge, Geologic , Paläontologie 1: 1-61.
BROMLEY, R.G. 1996. Trace Fossils: Biology, taphonomy and applications. (2nd edn). (Chapman \& Hall: London).
BROMLEY, R.G. \& ASGARD, U. 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord, east Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 28: 39-80.
BUATOIS, L.A. \& MANGANO, M.G. 1993. Trace fossils from a Carboniferous turbiditic lake: implications for the recognition of additional non-marine facies. Ichnos 2: 237-258
1994. Pistas de peces en el carbonifero de la cuenca Paganzo (Argentina): su significado estratigrafico y paleoambiental. Ameghiniana 31:33-40.
1995. The paleoenvironmental and palaeoecological significance of the lacustrine Mermia ichnofacies: an archetypical subaqueous non-marine trace fossil assemblage. Ichnos 4: 151-161.
CHAPMAN, F. 1929. On some remarkable annelid remains from the Arthur River, N.W. Tasmania. Proceedings of the Royal Society of Tasmania 1928: 1-5.
DE VIS, C.W. 1911. Annelid trails. Annals of the Queensland Muscum 10: 12-14.
GLAESSNER, M.F. 1957. Palaeozoic arthropod trails from Australia. Paläontologische Zeitschrift. 31: 103-109.
GRAY, A.R.G. \& SWARBRICK, C.F.J. 1975. Nomenclature of late Palaeozoic strata in the northeastern Galilee Basin. Queensland Government Mining Journal 76: 344-352.

GULLINE, A.B. 1967. The first proved Carboniferous deposits in Tasmania. Australian Journal of Science 29: 332-333.
GUTHÖRL, P. 1934. Die Arthropoden aus dem Carbon und Perm des Saar-Nahe-Pfalz-Gebeites. Abhandlungen der Preussischen Geologischen Landesanstalt 164: 1-219.
HALL, J. 1852. Palacontolgy of New York Vol. 2. (Albany: New York).
HAZNZSCHEL, W. 1962. Trace fossils and Problematica. Pp. W177-245. In Moore, R.C. (ed.) Treatise on invertebrate paleontology, Part W: (Geological Society of America \& University of Kansas Press: New York \& Lawtence).
1975. Trace Fossils and Problematica (2nd cdn). Part W. Miscellania Supplement 1. In Teichert. C. (ed.) Treatise on Invertebrate Paleontology. (Gcological Socicty of America \& University of Kansas Press: Boulder, Colorado \& Lawrence, Kansas).
JONES, M.J. \& TRUSWELL, E.M. 1992. Late Carboniferous and Early Permian palynostratigraphy of the Joc Joe Group, southem Galilee Basin, Queensland, and implications for Gondwanan stratigraphy, BMR Journal, Geology and Geophysics 13(2): 143-185.
KEIGHLEY, D.A. \& PICKERILL, R.K. 1996. Small Cruziana, Rusophycus, and related ichnotaxa from eastern Canada: the nomenclatural debate and systematic ichnology. Ichnos 4:261-285
OSGOOD, R.G. 1970. Trace fossils of the Cincinnati area. Palacontographica Americana 6: 281-439.

POLLARD, J.E. 1985. Isopodichnus, related arthropod trace fossils and notostraceans from Triassic fluvial sediments. Transactions of the Royal Society of Edinburgh, Earth Sciences 76: 273-285.
ROCHA-CHAMPOS, A.C. 1967. The Tubarão Group in the Brazilian portion of the Parana Basin. Pp. 27-102. In Bigarella, J.J., Becker, R.D. \& Pinto, 1.D. (eds) Problems in Brazilian Gondwana Geology. (Curitiba: Brazil).
SAVAGE, N.M. 1971. A varvite ichnocoenosis from the Dwyka series of Natal. Lethaia 4: 217-233.
SWARBRICK, C.F.J. 1974. Stratigraphic drilling report- GSQ Jericho 1. Qucensland Govemment Mining Journal 75(872): 210-215.
TAYLOR, A.M. \& GOLDRING, R. 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, London 150: 141-148.
TREWIN, N.H. 1976. Isopodichmus in a new trace fossil assemblage from the Old Red Sandstone. Lethaia 9: 29-37.
WALLKER. R.G. 1984. Facies Models. (Geoscience Canada: Toronto).
WALTER, H. 1983. Zur Taxonomie, Okologie und Biostratigraphie der Ichnia limnischterrestrischer Arthropoden des mitteleuropaischen Jungpalaozoikums. Freiberger Forschungshette Reihe C 382: 146-193.

AUSTRALONEMA FROM THE SILURIAN OF THE

 YASS BASIN, NEW SOUTH WALES Memoirs of the Oueensland Museum 45(2): 252. 2000:- The gyronematine gastropod Australonema Tassell has hitherto not been recorded from the Silurian of Australia despite its abundance in Australian Early Devonian gastropod faunas (Tassell, 1980) and its presence in the Silurian elsewhere (Gubanov \& Yochelson, 1994). Australonema recovered from the Barrandella Shales of the Yass Basin NSW extends the range of the genus within Australia. It confirms that Silurian Australonema belong to base stock of Gyronematinae, whose plesiomorphic state is characterised by one order of cords, lacking nodes. The specimen here described was recovered from the Barrandella Shales, Hattons Comer near Yass NSW. Recent work, summarised by Strusz (1989; 17), assigned a Ludlovian (Gorstian) age to the Barrandella Shale. This occurrence establishes the presence of basal stock of this subfamily in Australia prior to a significant Devonian diversification of gyronematines.> Systematic Palaeontology ARCHAEOGASTROPODA
> TROCHIINA Cox \& Knight, 1960
> PLATYCERATOIDEA Hall, 1859
> HOLOPEIDAE Wenz, 1938
> GYRONEMATINAE Knight, 1956

Australonema sp.

(Fig.1)
Material. QMF40825. Collected A.J. Wright., Barrandella Shales, Hattons Corner, Yass, NSW.
Description. Large turbiniform shell 41 mm high, 33 mm wide, anomphalous, sutures impressed. Shell profile well rounded, meeting suture at an angle of approximately 15° from horizontal. Mid-whorl at periphery. Upper whorl face bears 4 strong cords which lack nodes. Lower whorl face with at least 1 cord, but imperfectly preserved lower face omament otherwise. Growth lines are fine and numerous, orthocline to very slightly opisthocline. Protoconch unknown.
Remarks. The specimen is noteworthy but I am reluctant to erect a new species based on a single occurrence. Australonema australis (Etheridge Jr, 1890) from the Lilydale Limestone has more numerous spiral cords. The specimen is closest to Australonema sp. A of Tassell (1980) from the Silurian of Dudley, UK, but it also has a greater number of cords on the whorl face.

Acknowledgements

I thank Tony Wright for forwarding the specimen and Natalie Camilleri for photography.

Literature Cited

TASSELL, C.B. 1980. Further gastropods from the Early Devonian Lilydale Limestone, Victoria. Records of the Queen Victoria Museum 69: 3-27.
ETHERIDGE Jr R. 1890. Descriptions of Upper Silurian fossils from the Lilydale Limestone, upper Yarra district, Victoria. Records of the Australian Museum 1(3): 60-67.
GUBANOV, A.P. \& YOCHELSON, E.L. 1994. A Wenlockian (Silurian) gastropod shell and operculum from Siberia. Journal of Palaeontology 68(3): 486-491.
STRUSZ, D.L.1989.Australian Phanerozoic Timescales 3: Silurian Bureau of Mineral Resources, Geology and Geophysics Record 1989/33: 1-28

Alex G. Cook., Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 10 September 1999.

FIG. 1. Australonema sp. QMF40825. $\times 1 ; \mathrm{A}$, apertural view; B, side view.

AUSTRALIAN LEAF-TAILED GECKOS: PHYLOGENY, A NEW GENUS, TWO NEW SPECIES AND OTHER NEW DATA

P.J. COUPER, C.J. SCHNEIDER, C.J. HOSKJN AND J.A. COVACEVICH

Couper, P.J., Schneider, C.J., Hoskin, C.J. \& Covacevich, J.A. 200006 30: Australian leaf-tailed geckos: phylogeny, a new genus, two new species and other new data. Memoirs of the Queensland Museum 45(2): 253-265. Brisbane. ISSN 0079-8835.

Phylogenetic analyses of the leaf-tailed geckos, based on DNA sequences from the mitochondrial cytochrome b gene, show that Saltuarius, as currently constituted, is paraphyletic. Saltuarius cornutus, S. salebrosus, S. wyberba and S. swaini form a well-supported monophyletic group which is the sister group to the apparently monophyletic Phyllurus. 'Saltuarius' occultus is the sister group to the clade containing Phyllurus and all other Saltuarius spp. Thus, 'Saltuarius' occultus represents a long, independent. evolutionary lineage within the leaf-tailed geckos and is recognised from both morphological and molecular data as distinct at the generic level (Orrayagen. nov.). Orraya gen. nov, can be distinguished from all other Australian padless carphodactylines by a combination of four apomorphies, the most obvious being greatly elongated cervical vertebrae. The phylogenetic analyses also revealed genetically distinct populations from Chaelundi State Forest, New South Wales and Oakview State Forest, southeast Queensland. These specimens are assigned to S. wyberba and P. caudianmulatus respectively, pending examination of more material. Description of Phyllurus amnicola sp. nov. and I'. championae sp. nov, brings to 12 the number of leaf-tailed geckos from eastern Australia, The former, known only from Mt Elliot, NEQ, is separated from its congeners by a combination of characters (large size; very small, spinose body tubercules; a leaf-shaped tail with the anterior-most band broken, but spanning full tail width; and a partially-divided rostral with 5-6 scales along its dorsal margin). Phyllurus championae sp, nov. from only two localities (Cameron Ck and Blue Mtn, MEQ), is the only Phyllurus species with a leaf-shaped tail and a fully divided rostral scale. Large genetic distances between P - amnicola sp. nov., P. championae sp. nov, and previously recognised Phyllurus spp. further support the recognition of these species. They join a long list of rainforest reptile taxa known from only single localities or very narrow ranges. The distribution of 'leaf-tails' reflects the preservation of ancient taxa in relictual rainforest and elevated heath fragments in eastem Australia. Despite these narrow ranges, and because all collection localities for leaf-tails are in reserves, for conservation purposes under IUCN definitions, they should be classed 'Data Deficient'. \square Reptilia, Gekkonidae, Phylhurus spp., Saltuarius spp., Orraya gen. nov, phylogeny; eastern Australia.

Patrick Couper \& Jeanette Covacevich, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; Christopher J. Schneider, Department of Biology: Boston University: Boston MA 02215, USA; Conrad Hoskin, Department of Zoology \& Entomology, University of Queensland, St Lucia 4072. Australia; 7 February 2000.

Australia's rainforests and adjoining moist sclerophyll forests and heaths are well known for their high diversity and for many species confined to either single localities, or very narrow ranges. Leaf-tailed geckos from such forests well illustrate these characteristics. For nearly 200 years of discovery and description of Australia's reptiles, only two species of 'leaf-tails', Phyllurus platurus (Shaw, 1790) and P. cornutus (Ogilby, 1892) $=$ Saltuarius cormutus (Ogilby,1892), were known. Morphological studies since 1975 have resulted in the recognition of many new species and the genus Saltuarius Couper, Covacevich \& Moritz, 1993 - P. caudiannulatus Covacevich, 1975; P. isis

Couper, Covacevich \& Moritz, 1993; P. nepthys Couper, Covacevich \& Moritz, 1993; P. ossa Couper, Covacevich \& Moritz, 1993; S. salebrosus (Covacevich, 1975); Saltuarius occultus Couper, Covacevich \& Moritz, 1993 and S. swaini (Wells \& Wellington, 1985). Eight of the 12 presently known species have narrow distributions with four confined to single localities. Molecular analyses, which have both confirmed and refined previous morpho-logically-based taxonomic work on these padless Australian carphodactyline geckos, commenced in the mid-1990s. For the first time, a combination of both methods was used in the description of S. wyberba Couper, Schneider \&

Covacevich, 1997. From joint morphological/molecular comparisons and field work in previously unexplored rainforests, we can now present a phylogeny (based on DNA sequences from the mitochondrial cytochrome b gene), erect a new genus to accommodate 'Saltuarius' occultus and provide substantial new data (including descriptions of two new species) on Phylhurus spp.

METHODS

GENETICS. A 399 base pair fragment of the mitochondrial cytochrome b gene, corresponding to codons 1-133, was amplified and sequenced from at least two individuals from each species of leaf-tailed gecko (Appendix 1). Protocols for amplification and sequencing follow those outlined in Couper et al. (1997). Sequences were aligned by eye using the translated amino acid sequences. For phylogenetic analyses, each nucleotide position was treated as a single character with up to four unordered states. The most parsimonious tree was found using equalweights parsimony (all characters equally weighted and unordered), as well as a variety of weighting schemes. Additionally, maximum likelihood analyses, with a variety of models of nucleotide substitution were performed. In all analyses, sequences from Carphodactylus laevis Günther, 1897 were used as an

FIG. 1, Phylogeny of leaf-tailed geckos based on a 399 base pair fragment of MtDNA cytochrome b gene. Sequences from Carphodactylus laevis were used as an outgroup to root the tree and bootstraps $>50 \%$ are presented (see Appendix 1 for specimen details). * Possible new species; here referred to Saltuarius of. wyberba, pending collection of more specimens. outgroup to root the tree. Bootstrap resampling and parsimony criteria were used to assess support for the recovered phylogeny. PAUP* 4.0b2 (Swofford, 1999) was used for all phylogenetic analyses.

MORPHOMETRICS. All specimens examined are held in the Queensland Museum. Measurements were taken using Mitutoyo electronic callipers. Supralabials, infralabials and subdigital lamellae were counted on both sides of specimens examined. External morphological characters follow Covacevich (1975) and Couper et al. (1993). Skeletal definitions follow Bauer (1990). Abbreviations: SVL, snout to vent length; T, tail length, from posterior margin of cloaca to tip of tail; TT, attenuated tip of original tail; HL, head
length; HW, head width; S, snout length; L1, length of front leg, axilla to tip of longest digit; L2, length of hind leg, groin to tip of longest digit; NL, neck length, axilla to posterior margin of ear.
PHYLOGENY. The mitochondrial cytochrome b DNA sequence data contained 183 parsimonyinformative characters which provided good resolution of the phylogenetic relationships among species of leaf-tailed geckos. One hundred heuristic searches with random taxon addition and all characters unordered and equally weighted resulted in three equally parsimonious trees of 620 steps (C.I $=0.463$). The strict consensus of these trees, which differed only in the placement of P. platurus, is shown in Fig. 1. Bootstrap support for the clade containing all

Saltuarius, except 'Saltuarius' occultus (here recognised as generically distinct) is relatively high, while support for the monophyly of Phyllurus is somewhat weaker. Phylogenetic analyses and bootstrap resampling with various weighting schemes to account for differences among codon positions in rates of substitution and transition/transversion ratios resulted in the identical topology with similar bootstrap support to the equal weights bootstrap tree. Similarly, maximum likelihood analyses under a wide range of nucleotide substitution models (JukesCantor, HKY85G, General time reversible) resulted in trees that did not differ from the equal weights parsimony tree. Species in the genus Phyllurus, exclusive of P, amnicola, are characterised by a derived karyotype as well as a number of morphological synapomorphies (see Phyllurus spp. nov.). The karyotype of P. amnicola is unknown but morphological synapomorphies are consistent with the DNA sequence data in supporting the inclusion of P. ammicola in the genus Phyllurus.

Authorships for three sections of this paper (Orraya gen. nov., Phyllurus amnicola sp. nov. and Phyllurus championcte sp. nov.) do not follow that of the paper as a whole.

Orraya gen. nov. Couper, Covacevich, Schneider \& Hoskin (Fig. 2)
Saltuarins occultus Couper, Covaccvich \& Moritz, 1993.
A parsimony analysis of morphological and karyotypic characters performed by Couper et al. (1993) resulted in the recognition of two monophyletic subgroups within the leaf-tailed geckos -Phyllurus Goldfuss, 1820 (P. caudianmilatus, P. isis, P. nepthys, P. ossa and P. platurus) and Saltuarius Couper, Covacevich \& Moritz,1993 (S. cornutus, S. occultus, S. salebrosus and S. swaini). These clades were strongly supported in a bootstrap analysis present in 98% of pseudoreplicates. However, Couper et al. (1993) also observed '... evidence for grouping of S. swaini, S. cornutus and S. salebrosus to the exclusion of S. occultus ...' and that Saltuarius occultus has skeletal characters (elongation of the cervical vertebrae and 3 lumbar vertebrae) that are unique amongst its congeners. Derived characters, including elongate cervical vertebrae, along with DNA sequences from the mitochondrial cytochrome b gene (Fig. 1, Table 1), support the recognition of a new genus to accommodate 'Saltuarius' occultus. In our phylogenetic analyses, this taxon is the sister
group to the clade containing Phyilurus spp and Saluarius spp.

TYPE SPECIES. Orraya occultus (Couper, Covacevich \& Moritz, 1993).
ETYMOLOGY. 'Orraya' is the Morrobalama language word for 'older brother' (Gunnawarra, N. \& Kullakulla, M., 1994) refering to the phylogenetic relationship between occultus and its Phyllurus and Saltuarius 'siblings'. Peach Ck, the type locality of Orraya occultus drains the Mcllwraith Ra. the traditional land of the Morrobalama.

DIAGNOSIS. Orraya gen. nov. can be separated easily from all other Australian padless carphodactyline genera by the following combined apomorphies: cervical vertebrae greatly elongated; three lumbar vertebrae (defined as non-ribbearing vertebrac, immediately anterior to sacrum); male preanal organs greatly enlarged; regrown tail with broad, spinose tubercules on margins. A detailed description of Orraya occultus (as Saltuarius occultus) was provided by Couper et al., 1993: 104-106. For details of original tail, see Lethbridge et al., 1994.

Phyllurus spp.

NEW SPECIES. The new species (from M1 Elliot, NEQ and Cameron Ck/Blue Mtn, MEQ) are assigned to Phyllurus by the following synapomorphies: anterior-most autotomy septum in fifth caudal vertebra; no enlarged postmental scales; tail finely- attenuated and terminating in a small knob; rostral scale partially, or totally divided; males without preanal pores (polarity determined by Bauer, 1990). This assignment is supported further by the following character states (after Couper et al., 1993): nostril not in contact with rostral scale; anterior margin of interclavicle with a distinct process; axilla invaginated; epipubic cartilage small to moderate and original tail simply flared.

Phyllurus amnicola sp. nov.
Hoskin, Couper, Schneider \& Covacevich
(Fig. 3)
ETYMOLOGY. From the Latin 'dwelling by a river', a reference to the type locality.

MATERIAL. HOLOTYPE: QMJ64408 o , Alligator Ck, Mt Elliot, Bowling Green Bay NP ($19^{\circ} 28^{\prime} \mathrm{S}, 146^{\circ} 59^{\prime} \mathrm{E}$) NEQ, C. Hoskin \& J. Gratten, 1 Feb 1998. PARATYPES: QMJ64406-07, J67852 as for holotype.
DIAGNOSIS. P. amnicola can be separated from its congeners by the following combined characters: large size (maximum SVL $>110 \mathrm{~mm}$);

FIG. 2. Orraya occultus (QMJ62596), Peach Ck, Mcllwraith Ra., Cape York Peninsula ($13^{\circ} 45^{\prime} \mathrm{S}, 143^{\circ} 19^{\circ} \mathrm{E}$) NEQ. (Jeff Wright)
spinose body tubercules very small; leaf-shaped tail with anterior-most band broken but spanning full tail width; rostral partially divided with 5-6 scales along its dorsal margin. (Note: SVL includes three specimens measured by one of us (CJH) in the field (20.104 mm , $\% 113 \mathrm{~mm}$). These measurements have been included in the diagnosis but not in the morphometrics for the species description.)

DESCRIPTION. SVL (mm): 90.3-103 ($\mathrm{n}=4$, mean $=96.5$). Proportions as $\%$ SVL: Ll 43.9-45.1 $(\mathrm{n}=4$, mean $=44.6)$: L 2 53.8-58.9 $(\mathrm{n}=$ 4, mean $=56.2) ;$ T $86.1(n=1)$; TT $36.9(n=1)$; HLL 27.7-29.1 $(\mathrm{n}=4$, mean $=28.2)$; 1 WW 20.7-21.4 $(\mathrm{n}=4$, mean $=21.1) ;$ S 12.4-13.2 $(\mathrm{n}=4$, mean $=$ 12.7); NL 20.7-23.3 $(\mathrm{n}=4$, mean $=21.6)$.

Head large, depressed, triangular, distinct from neck; covered in small granules which are intermixed with larger conical tubercles; skin of head not co-ossilied with skull; deep, vertical groove partially dividing rostral scale ($\mathrm{n}=4$); rostral excluded from nostril; 5-6 scales along the dorsal margin of rostral shield ($n=3$); ear opening elliptical, vertical, much less than half as large as eye; supralabials $15-16(n=8$, mean $=$ 15.5); infralabials $13-15(\mathrm{n}=8$, mean $=13.9)$. Neck broad. Body depressed, covered in small granules; dorsal granules intermixed with larger conical tubercles; tubercles very small on back, llanks and sides of neek; basal scales surrounding Hank tubercules not enlarged; no enlarged tubercules or granules on ventral surface of body. Preanal pores absent. Axilla moderately to deeply invaginated. Limbs long, covered in small pointed tubercles dorsally; lacking enlarged tubercules on ventral surface, except on upper forelimb; digits strong, strongly compressed
distally; subdigital lamellae (fourth toe) 22-25 (n $=8$, mean $=20.3$). Original tail $(n=1)$ depressed, flared, contracted at base and attenuated at tip, terminating with a minute rounded knob; dorsal surface of flared portion with prominent enlarged spinose tubercules on basal $1 / 3$ rd and along margins; 6 rows of minute spines across basal portion of attenuated tail-tip; attenuated tip accounts for 42.9% of total tail length; ventral surface smooth with a slight depression along midline (excluding attenuated tip), Regenerated tail ($n=3$) depressed, broad and strongly flared, contracted at base and attenuated at tip; covered with uniform granules, except on basal margin which has small spinose tubercules; ventral surface without groove along midline.
Pattern. In spirit, dorsal base colour beige with irregular dark brown blotches on head, body and limbs; blotches on body tend to be aligned transversely. Limbs banded; digits strongly banded; inner anterior digit with reduced pigment. Body and limbs ventrally off-white to cream (immaculate); labials off-white, mottled with brown. Original tail dorsally tan/grey, marked with irregular dark brown blotches; six cream bands on tail, only those on attenuated portion (4) extending to ventral surface; ventrally cream, peppered with brown specks. Regenerated tail lacking cream bands; dorsally tan/grey, mottled with dark brown blotches; ventral surface similar, but with reduced pigmentation.
Skeletal Features. Material examined: (radiographs) QMJ64406-08; (alizarin stained) QMJ67852. Supraocular portion of frontal grooved; anterior process of interclavicle pronounced; epipubic cartilage moderately expanded; presacral vertebrae 26; sacral vertebrae 2 ; Jumbar vertebrae 2 ; first autotomy

FIG. 3. Phyllurus amnicola sp. nov. (holotype, QM1J64408; QM photographic collection, image ref. NW982), M1 Elliot, NEQ. (Jeff wright)
septum on postsacral vertebra 5; abdominal vertebrae bearing reduced ribs 4; rib-free cervicals 3; sternal ribs 3; mesosternal ribs 2.

Holotype Data. QMJ64408, if; SVL 90.3mm; L1 40.6 mm ; L2 53.2 mm ; T 77.8 mm ; TT 33.4 mm ; HL 25.1mm; HW 18.8 mm ; S 11.3 mm ; NL 19. 0 mm : supralabials $15 / 16$; infralabials $15 / 14$; subdigital lamellae 22/22.

COMPARISON. Phyllurus amnicola can be confused with only its congeners. P. amnicola is distinguished from P. caudiannulaus by tail shape (flared vs cylindrical); from P. platurus by pattern of original tail (flared portion with distinct white bands vs without white bands); from P. isis by pattern of original tail (anterior-most band spanning full width of tail vs anterior band reduced, with two narrowly-spaced midline blotches); from P. nepthys by colour/ pattern of ventral surface (immaculate vs peppered with brown specks); from P. championae by spinosity of original tail (enlarged spinose tubercules restricted to anterior third of tail and tail margins vs tail covered with spinose tubercules) and from P. ossa by the rostral groove/s (one groove partially dividing rostral vs $1-3$ grooves, usually 3 , only rarely 1 or 2 , partially dividing rostral). P. amnicola is further distinguished from P. isis and P. ossa by the
number of scales along dorsal margin of rostral shield ($5-6$ vs $9-11$ and $8-11$, respectively).

GENETICS. Phyllurus amnicola shows a 21-27\% sequence divergence from all other Phyllurus spp. for the cytochrome b portion of mtDNA (Table 1, Fig. 1). The phylogenetic position of P amnicola as the sister group to the remaining Phyllurus is not strongly supported by the cytochrome b data (Fig.1), but morphological characters support its placement in a monophyletic Phyllurus.

HABITAT \& DISTRIBUTION. Mt Elliot, Bowling Green Bay NP, 30 kms SE of Townsville ($19^{\circ} 28^{\circ} \mathrm{S}, 146^{\circ} 59^{\circ} \mathrm{E}$) NEQ (Fig. 4). Found amongst boulders at 450 m , in a moist 'tongue' of forest along a creek running from the rainforested upper slopes of Mt Elliot (Fig. 5). Dense rainforest is the dominant vegetation above 750 m . A recent survey (CJH and J. Gratten, Oct., 1999) showed P. amnicola to be relatively common between $400-1000 \mathrm{~m}$ along a major drainage line. Surveys on the summit of Mt Elliot have failed to locate this species.

HABITS. Most specimens were found head down, on granite boulders close to permanent water. Several were foraging on rocks directly above flowing water and one was observed

FIG. 4. Occurrence of Phyllurus spp. in eastern Australia; $1=P$. annicola, $2=P$. ossa, $3=P$. nepthys, $4=P$. isis, $5=P$. championae, $6=P$. caudiannulatus, $7=P$. platurus ,
foraging in a thin film of water in the splash zone of a cascade. All specimens, but one, have been found on rocks. The exception was on a thin tree trunk amongst boulders. Activity began soon after dark, even during persistent rain. Of 27 specimens (140^{\star} 's, 11 ''s and 2 juveniles) encountered during two nights (Oct., 1999), 70\% had regenerated tails. This proportion was similar in both sexes.

REPRODUCTION. One gravid female, captured and released (4 Feb., 1998), contained a single, shelled egg. A male (QMJ67852) that died in captivity (Dec., 1998) was sexually mature, with

FIG. 5, Alligator Ck, Mt Elliot, NEQ, the type locality for P. amnicola sp. nov. (Conrad Hoskin)
sperm present in its epididymis (inferred by opacity). Fourteen mature females were encountered on the first two nights of Oct., 1999. Eight of these carried well-developed, shelled eggs (3 with 1 egg, 4 with 2 eggs, 1 with 3 eggs).
CONSERVATION. P. ammicola is one of the most narrowly restricted reptile species in Queensland. However, it is well protected. The only known locality for this species is in Bowling Green Bay NP which is not subject to any known threatening processes. The potential effect of fire on pockets of riparian rainforest at and near the type locality is not known.

Phyllurus championae sp. nov.
Schneider, Couper, Hoskin \& Covacevich
(Fig. 6)
ETYMOLOGY, Named for Irene Champion, a Resource Ranger with Queensland Parks and Wildlife Service, Mackay, MEQ, who focussed the attention of one of us (CJS) on Cameron $\mathrm{Ck} /$ Black Mtn, as a phytogeographically interesting area, possibly pointing to the presence of unusual fauna.

FIG. 6. Phyllurus championae sp. nov. (QM photographic collection, image ref. NX758) Cameron Ck, MEQ. (Jeff Wright)

MATERIAL. HOLOTYPE: QMJ64847 ${ }^{\circ}$, Cameron Ck, 6.5 km WNW Koumala ($21^{\circ} 34^{\prime} 24^{\prime \prime} \mathrm{S}, 149^{\circ} 11^{\prime} 06^{\prime \prime} \mathrm{E}$) MEQ, P. Couper \& C. Hoskin, 18 April 1998. PARATYPES: QMJ62757-58, J62766, J63907, J64845-46, J64848, locality as for holotype; J64854-64 Blue Mtn ($21^{\circ} 36^{\prime}$ S, $\left.148^{\circ} 58^{\prime} \mathrm{E}\right) \mathrm{MEQ}$.
DIAGNOSIS. P. championae almost invariably (18/19) has a fully divided rostral scale. This feature, combined with a leaf-shaped tail, distinguish it from all other Phyllurus spp. A specimen of P. championae with an only partially divided rostral could be confused with some specimens of P. ossa which have a rostral partially divided by a single groove. (This is a rare state in P. ossa which usually has 2 or 3 partial grooves). From such specimens of P. ossa, 'partial single groove' specimens of P. championae can be distinguished readily by a straight groove vs a Y -shaped groove.
DESCRIPTION. SVL(mm): 33.3-80.6 ($\mathrm{n}=19$, mean $=61.5$). Proportions as \% SVL: L1 41.2$48.0(\mathrm{n}=19$, mean $=44.0) ;$ L2 52.5-60.5 $(\mathrm{n}=19$, mean $=56.50)$; T 64.2-81.7 $(\mathrm{n}=8$, mean $=75.7)$; TT 28.9-40.7 $(\mathrm{n}=8$, mean $=35.7)$; HL 28.9-31.8 $(\mathrm{n}=19$, mean $=30.1)$; HW 23.1-26.4 $(\mathrm{n}=19$, mean $=24.40) ;$ S 12.4-14.6 $(n=19$, mean $=13.1)$: NL 18.8-23.6 $(\mathrm{n}=19$, mean $=20.6)$.

Head large, depressed, triangular, distinct from neck; covered in small granules which are intermixed with larger, conical tubercles, extremely prominent on snout; skin of head co-ossified with skull; deep, vertical groove totally dividing rostral scale $(\mathrm{n}=18$) or (rarcly) partially dividing rostral scale ($\mathrm{n}=1$); rostral excluded from nostril; $5-8$ scales along dorsal margin of rostral shield (n $=10$); ear opening elliptical, vertical, much less than half as large as eye: supralabials 12-14 ($\mathrm{n}=38$, mean $=13.3$, mode $=14$); infralabials $11-15$ ($\mathrm{n}=38$, mean $=12.7$, mode $=13$). Neck broad. Body depressed, covered in small granules; dorsal granules intermixed with larger, conical tubercles; tubercles small on back, pronounced on tlanks, most prominent on sides of neck; basal scales surrounding flank tubercules only slightly enlarged; no enlarged tubercules or granules on ventral surface of body. Preanal pores absent. Axilla deeply invaginated. Limbs long, covered in large pointed tubercles dorsally; without enlarged tubercules on ventral surface, except on upper forelimb; digits strong, compressed distally; subdigital lamellae (fourth toe) $16-20(\mathrm{n}=38$, mean $=17.9$, mode $=17)$. Original tail $(\mathrm{n}=8)$ depressed, flared to carrot-shaped, contracted at base and attenuated at tip, terminating with a

FIC 7. A, Cumeron Ck , MEQ, the type locality for P. championue sp. nov. B, dry rainforest below the summit of Blue AMn, MEQ, the second known Jocality for P. chumpionue sp. nov. (Conrad Hoskin)
minute rounded knob; covered dorsally with numerous moderate-sized, spinose tubercules which become smaller along the ventebral line: tubercles terminate approximately half-way along the attenuated tip which is long: 8 rows of enlarged spines across the basal portion of attenuated tail-tip: attenuated tip accounts for $38-52 \%$ of total tail length; ventral surface smooth, or with slight depression along midline. Regenerated tail: $(\mathrm{n}=10)$ depressed, broad and strongly flared, contracted at base and attenuated at tip; with small, spinose tubercules which are most prominent around the edges; ventral surfice without groove along midline. The Cameron Ck specimens are significantly smaller than those IFom Blue Mtn (max $S V L=69 \mathrm{~mm}, \mathrm{n}=7$, small juveniles excluded, mean $=61.9 \mathrm{~mm}$ vs max SVL $=81 \mathrm{~mm}, \mathrm{n}=9$, small juveniles excluded, mean $=$ 69.6mm; Student's T-Test, $t_{1.4}=2.14,0.05>$ $1>(0.025)$.

Pafrerm. In spirit, dorsal base culour mid brown with irregular, black blotches on head, hody and
limbs. Digits obscurely banded; inner anterior digit not significantly lighter than others. Budy and limbs ventrally offitwhite to cream; labials off-white, mottled with brown. Original tail dorsally tan. heavily mottled with black (almost entirely black in hatchlings); five white bands on tail, only those (2-3) on attenated portion extending to ventral surface; ventrally cream with grey mottling. Regenerated tail lacking cream bands; dorsally, tan/grey with black blotches: ventral surface similar, but with reduced pigmentation.

Sketetal Fentures Material examined: (radiographs) QMiJ63907, J64845-48, J64854-55, J64858-59. J64864: (alizarin stained) QMJ64863. Supraocular portion of frontal that; anterior process of interclavicle pronounced; epipubic cartilaye not expanded; presacral vertebrae 26; sacral vertebrae 2; lumbar vertebrae 2; first autotomy septum on postsacral vertebra 5: abdominal vertehrae bearing reduced ribs 4: rib-free cervicals 3: stemal ribs 2; mesosternal ribs 3.

TABLE 1. Kimura 2-parameter distance estimates (Kimura, 1980) between species and populations within species for 399 bp cytochrome b sequence data. Species are numbered in the same order across the top of the data matrix. See Appendix 1 for specimen details.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	S. salebrosus Blackdown	-													
2	S. salebrosus Bulburrin	00625	-												
3	S. cornutus Atherton	01833	01760	-											
4	S. cornutus MalbonThompso	01872	0.1722	0.0076	-										
5	S. cornutus BigTableland	02039	0.1785	00894	00960	-									
6	S. cf. wyberba Chaelundi	01987	0.2119	0.2677	0.2726	0.2733	-								
7	S. ef. wyberba Chaelundi	01987	0.2119	0.2677	02725	02733	0.0054	-							
8	S. wyberba Girraween	0.2280	0.2376	0.2640	0.2687	0.2921	0.1321	01321	-						
9	S. wyberba Girraween	0.2244	0.2384	- 2602	0.2648	0.2878	0.1288	0.1288	00025	-					
10	S. wyberba Girraween	0.2208	D 2347	02563	02610	0.2835	0.1255	0.1255	00050	00025	-				
11	S. Swaini Lamington	0.2251	0.2087	02296	0.2383	02627	0.1520	0.1600	0.1733	0.1700	01668	-			
12	S. swani MtTamborine	02244	02081	02260	02346	02585	01514	01594	01727	01694	0.1661	00050	-		
13	P. nepthys Eungella	0.2980	0.3093	0.2862	0.2862	0.2756	0.2514	02610	0.2889	0.2849	0.2810	0.2602	0.2594	-	
14	P. nepthys Finch Hatton	0.2929	0.3041	02813	02813	0.2806	0.2561	0.2658	02840	0.2800	02761	0.2555	0.2548	00025	-
15	P. isis	03051	02911	02966	03065	02973	0.2591	02688	02797	02757	02718	02642	02591	0.1544	0 1581
16	P. ossa MtDryander	0.2765	0.2679	0.2909	0.3007	0.2774	0.2453	0.2546	0.2869	0.2876	0.2836	02591	0.2585	0.1512	0.1549
17	P. ossa Conway	02757	02765	0.2966	0.3065	02884	0.2457	02551	0.2925	02933	0.2893	02642	0.2636	01516	0.1553
18	P. ossa MiOssa	03020	02831	03033	03134	02748	02719	02719	0.3042	03051	03010	02992	02983	0.1416	0.1452
19	P. championae sp. nov.	03001	0.3010	0.3218	0.3271	03136	0.2685	0.2786	02942	0.2951	02911	02893	0.2885	0.1563	0.1600
20	P. platurus	0.2510	02752	02496	0.2586	0.2702	0.2499	02596	02414	02376	02339	02518	0.2510	0.1936	0.1975
21	P caudiannulatus	02610	0.2853	0.2829	0.2925	0.3130	0.2650	02749	0.2789	0.2797	0.2757	0.2983	0.3024	0.2405	0.2450
22	P. cf. caudiannulatus Oakvie	0.2742	0.3010	0.2558	0.2649	0.3094	0.2699	02799	0.2781	0.2742	0.2702	0.2642	02681	0.2056	0.2097
23	P. amnicola sp. nov.	0.2579	0.2496	0.2688	0.2734	0.2859	02563	02470	0.2514	0.2476	0.2438	02558	0.2508	0.2420	0.2376
24	P. ammicola sp. nov.	0.2534	0.2451	02688	0.2734	0.2861	02516	02424	02470	0.2432	0.2395	02514	0.2508	0.2376	0.2333
25	Orraya (gen nov.) occultus	0.2632	0.2640	0.2309	0.2351	0.2575	0.2336	02336	02565	0.2572	0.2534	0.2489	0.2482	0.2427	0.2383
26	C. laevis BrgTableland	03033	02893	0.2448	0.2491	0.2759	0.2702	0.2801	02880	0.2840	0.2880	0.2656	02649	0.2521	0.2568
27	C. laevis Atherton	03074	0.3033	0.2530	02574	0.2803	0.2845	02948	0.3020	02980	0.3020	0.2558	02642	0.2559	02606
		15	16	17	18	19	20	21	22	23	24	25	26	27	
15	P isis	-													
16	P. ossa MiDryander	01230	-												
17	P. ossa Conway	0.1235	0.0206	*											
18	P. ossa MtOssa	0.1306	0.0595	00568	-										
19	P. championae sp. nov.	01682	0.1727	0.1694	01787	-									
20	P. platurus	02000	0.1857	0.1853	0.1941	0.1970	-								
21	P. caudiannulatus	02383	0.2145	02194	02280	0.2223	0.1887	-							
22	P. cf. caudiannulatus Oakvie	02333	0.2211	0.2217	02145	0.2390	0.1853	0.1452	-						
23	P. amnicola sp. nov.	02097	0.2450	0.2488	02442	0.2310	02123	0.2451	02687	-					
24	P. amnicola sp, nov.	02139	0.2405	0.2442	02398	0.2266	0.2081	02407	02640	00025	-				
25	Orraya (gen. nov.) occultus	02290	0.2046	0.1931	01970	0.2555	0.2122	0.2563	02451	0.2314	02272	-			
26	C. laevis BrgTableland	0.2555	0.2656	0.2713	0.2829	0.2450	0.2390	0.2831	0.2951	02625	0.2579	0.2092	-		
27	C. laovis Atherton	0.2782	0.2791	02849	02970	0.2580	0.2383	0.2870	0.2749	0.2773	02726	0.2127	0.0599	-	

Holotype Data. QMJ64847, ©; SVL 59.28mm; L1 25.57 mm ; L2 32.80 mm ; T 48.13 mm ; T'T 24.13 mm ; HL 17.81 mm ; HW $14.20 \mathrm{~mm} ; \mathrm{S}$ 7.77 mm ; NL 11.34 mm ; supralabials $13 / 14$; infralabials 13/13; subdigital lamellae 18/17.

COMPARISON. P. championae can be confused with only its congeners. P. championae is distinguished from P. caudiannulatus by tail shape (leaf-like vs cylindrical); from P. platurus by colour pattern of anterior portion of original tail (with white bands vs without white bands): from P. amnicola by spinosity of original tail (tail covered with spinose tubercules vs enlarged spinose tubercules restricted to anterior $1 / 3$ rd of tail and tail margins); from P. isis by spinose flank tubercules (pronounced vs very small): from P. nepthys by colour/pattern of ventral surface (plain vs peppered with brown specks)
and from P. ossa by rostral groove/s (usually one groove dividing rostral, or a straight vertical groove partially dividing rostral vs 1-3 grooves, usually 3 , only rarely 1 or 2 , partially dividing rostral).

GENETICS. P. chanmionae shows 16-24\% sequence divergence from all other Phyllurus spp . for the cytochrome b portion of mtDNA (Table 1). The Cameron Ck and Blue Mtn populations showed no within, or between, population polymorphism. Phylogenetic analyses firmly place P. championae within the monophyletic MEQ species group of Phyllurus (P. isis, P. nepthys and P. ossa, Fig. 1), though its precise relationship to these taxa is not well resolved.

HABITAT \& DISTRIBUTION. P. championae is known from only two localities, Cameron Ck $\left(21^{\circ} 34^{\prime} 24^{\prime \prime} \mathrm{S}, 149^{\circ} 11^{\prime} 06^{\prime \prime} \mathrm{E}\right.$) and (21 km to the west) Blue Mtn ($21^{\circ} 36^{\prime}$ S, $148^{\circ} 58^{\prime} \mathrm{E}$) MEQ, (Fig. 4). The type specimens were collected at altitudes between 200 m (Cameron Ck) and 700 m (Blue Mtn) in notophyll rainforest/microphyll rainforest.

HABITS. All specimens have been on rocks or on the trunks of trees near rocks. The Cameron Ck ($21^{\circ} 34^{\prime} 24^{\prime \prime} \mathrm{S}, 149^{\circ} 11^{\prime} 06^{\prime \prime} \mathrm{E}$) specimens were collected on the edges of a permanent creek on the eastern side of Black Mtn (Fig. 7a). Blue Mtn ($21^{\circ} 36^{\prime} \mathrm{S}, 148^{\circ} 58^{\prime} \mathrm{E}$) specimens were active on a scree slope, in dry rainforest, just below the summit(Fig. 7b). Activity began soon after dark.

REPRODUCTION. Gravid females were present in the Cameron Ck population during Dec., 1996/Jan., 1997. A female measuring 68.7 mm SVL and weighing 6.2g (QMJ62757) laid two oval-shaped eggs on 6 Jan., 1997. These measured $18.35 \times 9.01 \mathrm{~mm}$ and $17.72 \times 8.90 \mathrm{~mm}$ and weighed 1.0 g and 0.9 g , respectively. The relative clutch mass (RCM (1) after Greer, 1989) equalled 30.6%. This corresponds closely with that of P. platurus (29%, Greer, 1989).
A male (QMJ64863, SVL 72.3 mm) from Blue Mtn, collected on 19 Apr., 1998, was in peak reproductive condition with sperm present in its epididymis (inferred by opacity) and a turgid testis. From this we infer that mating may occur in autumn and that females store sperm through winter. A similar reproductive strategy has been suggested for P. platurus (Greer, 1989).
CONSERVATION. P. championae appears to be common at both localities from which it is known. Suitable similar habitat in adjacent areas may support this species. Blue Mtn is freehold and thus, potentially, could be cleared. However, given that the known leaf-tail site is on an elevated scree slope, the chance that this area would be further disturbed by stock or humans seems remote. Cameron Ck, the type locality, is in State Forest and may be subject to timber harvesting.

Phyllurus caudiannulatus

The discovery of specimens treated tentatively as P. caudiannulatus (QMJ62817, J63849-53, J63857) at Oakview SF ($26^{\circ} 07^{\prime} 23^{\prime \prime} \mathrm{S}, 152^{\circ} 19^{\circ} 01^{\prime \prime} \mathrm{E}$), SEQ extends the range of this species 195 km south of the only other known population (Bulburin SF, $24^{\circ} 31^{\prime} \mathrm{S}, 151^{\circ} 29^{\circ} \mathrm{E}$), SEQ.

Morphological differences between the Oakview and Bulburin populations cannot be fully assessed presently, due to small sample size. Surveys in the intervening areas should help assess the significance of these differences. For conservation purposes, the Oakview population of 'P. caudiannulatus' must be recognised as a genetically distinct unit (Fig. 1), given its geographic and genetic isolation and its uncertain taxonomic status.

KEY TO AUSTRALIAN LEAF- TAILED GECKOS

1. Nostril in contact with rostral scale 2

Nostril not in contact with rostral scale 6
2. Neck extremely elongate and slender O. occultus

Neck broad
3
3. Throat strongly tuberculate S. salebrosus Throat smooth 4
4. Lower flank tubercules hooked and surrounded by spinose, basal scutes.
Lower flank tubercules not as above . 5
5. Original tail bluntly tipped with large tubercules

Original tail finely tipped with only minute tubercules
. S. wyberba
6. Tail cy lindrical P. caudiannulatus

Notas above (leal-shaped) 7
7. Anterior portion of original tail without white crossbands or blotches P. platurus
Notas above (with white crossbands) 8
8. Venter distinetly "peppered' with brown . . . P. nepthys

Not as above (plain) 9
9. Rostral scale completely divided P. championae Not as above (partially divided) 10
10. Rostral scale partially divided by 2 or 3 grooves, occasionally by a single Y-shaped groove . . . P. ossa Not as above (partially divided by a straight groove). . 11
11. Anterior flared portion of original tail uniformly covered with enlarged spinose tubercules P. championae
Not as above
12
12. Tail predominantly black, with distinct white blotehes present on either side of the vertebral line P. isis
Not as above (tail predominantly tan/grey, with anteriormost bands broken, but spanning tail width)
P. amnicola

DISCUSSION

Twelve species of leaf-tailed geckos in three genera occur in eastern Australia ($13^{\circ} 45^{\prime} \mathrm{S}$ $33^{\circ} 53^{\prime}$ S). Nine are obligatory rainforest/adjacent wet sclerophyll forest species: Mcllwraith Ra., NEQ, Orraya occultus (Couper, Covacevich \& Moritz, 1993); Wet Tropics (Big Tableland Paluma), NEQ, S. cornutus (Ogilby, 1892); Mt Elliot, NEQ, Phyllurus amnicola Hoskin, Couper, Schneider \& Covacevich, 2000; Mt

Dryander - Mt Ossa, MEQ, P. ossa Couper. Covacevich \& Moritz, 1993; Mt Blackwood and Mt Jukes, MEQ, P. isis Couper, Covacevich \& Moritz 1993; Clarke Ra. (Mt David - Crediton), MEQ, P. nepthys Couper, Covacevich \& Moritz, 1993; Black Mountain and Blue Mountain, MEQ, P. championae Schneider, Couper, Hoskin \& Covacevich, 2000; Many Peaks Ra. and Oakview State Forest, SEQ, P. caudianmulatus Covacevich, 1975; Great Dividing Range and foothills and Border Ranges (Mt Tamborine Buladelah), SEQ-MENSW, S. swaini Wells \& Wellington, 1985. Two species are confined to heaths associated with either sandstone or granites: Girraween National Park, SEQ, S. wyberba Couper, Schneider \& Covacevich, 1997, and Hawkesbury R. region, MENSW, P. platurus (Shaw, 1790). One species, S. salebrosus, occurs amongst sandstone in open forests: Blackdown Tableland - Cracow, MEQ. It is also found in rainforest in the Many Peaks Range ($24^{\circ} 31^{\prime} \mathrm{S}$, $151^{\circ} 29^{\circ} \mathrm{E}$), where it is sympatric with P. caudianmulatus. This is the only known area to support more than one species of leaf-tail.

The genetic analyses (Fig. 1, Table 1) show that the depth of divergence amongst leaf-tails is high and that more-than-trivial differences between some taxa/populations remain to be clarified. Relative rates tests show that substitution rates among lineages do not differ significantly suggesting that a molecular clock may apply. By using the break-up of Gondwanaland to estimate substitution rates in this portion of cytochrome b among carphodactyline geckos from Australia, New Zealand and New Caledonia (Schneider, unpublished) it is estimated that the Kimura two-parameter distance between two lineages accrues at a rate of ca. 0.0042 ± 0.0002 per million years (0.0021 per lineage per million years). Using this calibration, the split between Saltuarius sensu stricto and Phylhurus is ca. $58-74$ mya. The divergence among species in MEQ is ca. 31-38mya, and this is nearly identical to the estimated time of divergence between the Oakview and Bulburin populations of P. caudianmulatus. Estimating genetic distances among taxa using only transversions (which are more likely to accrue linearly with time) does not substantially change these time estimates. "Saltuarius wyberba' populations from Chaelundi SF, NSW $\left(30^{\circ} 01^{\circ} 07^{\prime \prime} \mathrm{S}, 152^{\circ} 30^{\circ} 02^{\prime \prime} \mathrm{E}\right)$ and Girraween, SEQ ($28^{\circ} 50^{\circ} \mathrm{S}, 151^{\circ} 56.04 \mathrm{E}$, the type locality) differ to the same degree as P. isis (from Mt Blackwood, $21^{\circ} 02^{\prime} \mathrm{S}, 148^{\circ} 56^{\circ} \mathrm{E}$) and P. ossa (Mt Ossa, $20^{\circ} 56^{\prime} \mathrm{S}, 148^{\circ} 49^{\circ} \mathrm{E}$, only 14 km to the
north). However, more specimens must be examined before the status of the Chaelundi Saltuarius specimens can be determined.

Recognition of Orraya occultus as distinet from the other large leaf-tails (Saltuarius spp.) is significant given the general paucity of endemism in the reptiles of the Mcllwraith Ra. rainforest isolate. (Couper et al., 1993 observed this in relation to the Wet Tropics rainforests where $2 / 3$ of the rainforest reptile species are endemic to the area). Orraya is the sole terrestrial vertebrate genus not represented in rainforest isolates further south.
The discovery of P. amnicola on Mt Elliot, NEQ is noteworthy for two reasons. First, recognition of this species brings to two the number of vertebrate species endemic to Mt Elliot (the other species is the microhylid frog. Cophixalus medonaldi Zweifel, 1985), highlighting the evolutionary uniqueness of this rainforest isolate. Second, it extends the range of Phyllurus some 200 km NW of its previously-known, northern limit of occurrence (Mt Dryander, $20^{\circ} 15^{\prime} \mathrm{S}$, $148^{\circ} 33^{\prime} \mathrm{E}, \mathrm{MEQ}$), across what has been termed the 'Burdekin Gap' (Joseph et al., 1993). This expanse of dry woodland between Mt Elliot $\left(19^{\circ} 30^{\prime} \mathrm{S}, 146^{\circ} 58^{\circ} \mathrm{E}\right)$, NEQ and Bowen ($20^{\circ} 01^{\prime} \mathrm{S}$, $148^{\circ} 15^{\circ} \mathrm{E}$), MEQ has separated the faunas of two major zoogeographic regions, the Wet Tropics and Central Mackay Coast, for an "evolutionarily long period' (Joseph et al., 1993). There is a deep divergence between P. ammicola and its congeners immediately south of the Burdekin Gap (ca. 50-60 mya). The mtDNA sequence divergence between P. annicola on the one hand, and P. championae, P. isis, P. nepthys, P. ossa, on the other, is thus nearly as great as that between these species and those of Saltuarius spp . With the recognition of P. amnicola, there is now an overlap in the max SVL between the largest member of Phyllurus (P. amnicola, max SVL $=113 \mathrm{~mm}$) and the smallest species of Saltuarius (S. wherba, max SVL $=$ 109 mm).
Description of P. championae brings to four the number of Phyllurus species known to be confined to rainforests of the Central Mackay Coast Biogeographic Region, MEQ. Couper et al. (1993) commented on aspects of the zoogeography of the other species confined to this area, all within 100 km of each other (P. isis,, ? nepthys and P. ossa). It is now clear that the species of leaf-tailed geckos in rainforests of MEQ represent the relictual distribution of an ancient group. It has been thought that

Pleistocene ice age contraction of rainforest resulted in speciation among rainforest endemics, but the deep genetic divergence among leaf-tailed geckos precludes any role for Pleistocene speciation.

Whether P. caudiannulatus (sensu stricto) occurs between Bulburin and Oakview State Forests, SEQ or is confined to the northernmost locality, remains to be ascertained. If the latter is the case, the Oakview ' P. caudiannulatus' may represent another new species, pointing to a replication of patterns of relictual isolation already observed in MEQ.

Most leaf-tails (Phylurus spp., Saltuarius spp. and Orraya occultus) are very narrowly distributed. Several (Orraya occulus, P. amnicola, P, isis and P. nepthys) are known from only single localities. Four other species (S. cornutus, S. swaini, S. wyberba and P. caudiannulatus) are narrowly distributed, being confined to small rainforest or rainforest and heath blocks. Under IUCN (1994) criteria, notwithstanding narrow distributions, all species should be categorised 'Data Deficient'. Higher IUCN categories, which reflect concerns based on such single locality/ narrow ranges are all tied to knowledge of declines in populations and/or potential threatening processes. Virtually all known leaf-tail localities are in state conservation or timber reserves where, generally speaking, threats are presently low. Impacts of possible future timber harvest in some areas are not known. However, most of the known, still healthy leaf-tail localities have, in the past, already been selectively logged, some extensively.

ACKNOWLEDGEMENTS

This work was supported financially by the Queensland Museum, Co-operative Research Centre for Tropical Rainforest Ecology and Management (University of Queensland), Centre for Conservation Biology (University of Queensland) and the Forest Ecosystem Research and Assessment Unit of the Department of Natural Resources (Comprehensive Regional Assessment Project). We are grateful for assistance in the preparation of this paper from Robert Adlard, Gary Cranitch, Ben Hamley, Luke Hogan, John Hooper, Michael Koch, Jacob Gratten, Heather Janetzki, Keith McDonald, Edward Meyer, Geoff Monteith, Craig Moritz, Geoff Smith, Joanna Sumner and Steve Wilson. Andrew Amey and Lauren Keim helped to improve the key.

LITERATURE CITED

BAUER, A.M. 1990. Phylogenetic systematics and biogeography of the Carphodactylini (Reptilia: Gekkonidae). Bonner Zoologische Monographien 30: 1-217.
COUPER, P.J., COVACEVICH, J.A. \& MORITZ, C. 1993. A review of the leaf-tailed geckos endemic to eastern Australia: a new genus, four new species, and other new data. Memoirs of the Queensland Museum 34(1): 95-124.
COUPER, P.J., SCHNEIDER, C.J. \& COVACEVICH, J.A. 1997. A new species of Saltuarius (Lacertilia: Gekkonidae) from granite-based, open forests of eastern Australia. Memoirs of the Queensland Museum 42(1): 91-96.
COVACEVICH, J. 1975. A review of the genus Phylhurus (Lacertilia; Gekkonidae). Memoirs of the Queensland Museum 17(2): 293-303.
GREER, A.E. 1989. The biology and evolution of Australian lizards. (Surrey Beatty \& Sons: Chipping Norton, Sydney).
GUNNAWARRA, N. \& KULLAKULLA, M. 1994. Morrobalama-English. In Ogilvic, S. (compiler). A wordlist of the Morrobalama (Umbuygamu) language of Cape York, Australia. (Umagico Council: Umagico).
IUCN SPECIES SURVIVAL COMMISSION, 1994. IUCN Red List Categories. Prepared by the IUCN Species Survival Commission as approved by the 40 th meeting of the IUCN Council, Gland, Switzerland, 30 Nov., 1994. (IUCN Council: Gland).
KIMURA, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative sludies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
LETHBRIDGE, P.J., HAWKES, T.A., ANTHONY, M. \& MCGREGOR, M. 1994. New data on Saltuarius occultus, a recently described, poorly known leaf-tailed gecko. Memoirs of the Queensland Museum 37(1): 194.
SWOFFORD, D.L. 1999. PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). Version 4. (Sinauer Associates Inc: Sunderland, Massachusetts).

APPENDIX 1

SPECIMENS EXAMINED. The following have been examined in addition to other material cited in Couper et al., 1993.
Morphology:
P. caudiannulatus = QMJ15619 (holotype), J33684-86, J33706, J33709, J62817, J63849-53, J63857
P. isis = QMJ53511 (holotype), J53485-86, J53518, 153480, J53591, J53602-3
P. nepthys - QMJ34058 (holotype), J34057, J35114, J57031, J65511, J65575, J65578, J65580, J65582, J65584, J65674
P. ossa - QMJ53444 (holotype), J53389, J53392, J53426, J53428, J53443, J53445, J53447, J56311, J56773, J56791
P. platurus - QMJ160, J31978, J56880-81, J56895

Orraya accultus - QMJ37040 (holotype), J37037, J37038-9 J60717, J62596
C. taevis - QMJ31004, J65410-11, J65419

Genetics:
Phollurus amnicola - liver samples from QMJ64406-7 (Mi Elliot - $19^{\circ} 28^{\prime} \mathrm{S}, 146^{\circ} 59^{\circ} \mathrm{E}$).
P. caudiannulanus - (Bulburin SF - $24^{\circ} 31^{\circ} \mathrm{S}, 151^{\circ} 29^{\circ} \mathrm{E}$) liver sample from QMJ51103.
P. caudiannulatus (Oakview - $26^{\circ} 07^{\prime} 23^{\prime \prime} \mathrm{S}, 152^{\circ} 19^{\circ} 01^{\prime \prime} \mathrm{E}$) livet sample from QMJ62817.
P. championae - liver samples from QMJ62757-58, 162766, J63907 (Cameron Ck - $21^{\circ} 34^{\prime} 24^{\prime \prime} \mathrm{S}, 149^{\circ} 11^{\circ} 06^{\prime \prime} \mathrm{E}$) and 4 liver samples from the following series:- J $64854, ~ J 64857$, J64859, J64861-62 (Blue Mtr $=21^{\circ} 36^{\prime} \mathrm{S}, 148^{\circ} 58^{\prime} \mathrm{E}$)
P. isis - tail tips from Mt Blackwood ($21^{\circ} 02^{\prime} \mathrm{S}, 148^{\circ} 56^{\prime} \mathrm{E}$).
P. nepthys - liver samples from QMJ51101 \& 151098 (Finch Hatton NP $-21^{\circ} 06^{\circ} \mathrm{S}, 148^{\circ} 38^{\circ} \mathrm{E}$)
P. ossa - tail tips from Mt Ossa ($20^{\circ} 56^{\circ} \mathrm{S}, 148^{\circ} 49^{\circ} \mathrm{E}$), Brandy CK $\left(20^{\circ} 21^{\prime} \mathrm{S}, 148^{\circ} 41^{\prime} \mathrm{E}\right)$ and Mt Dryander $\left(20^{\circ} 15^{\prime} \mathrm{S}\right.$, $148^{\circ} 33^{\circ} \mathrm{E}$).
P. platurus - liver samples from QMJ56880-1 (via Gosford $33^{\circ} 24^{\circ} \mathrm{S}, 151^{\circ} 21^{\circ} \mathrm{E}$).
Saltuarius cornulus - liver samples from QMJ51632 (Malbon Thompson Ra.- $17^{\circ} 07^{\prime} \mathrm{S}, 145^{\circ} 54^{\prime} \mathrm{E}$) and tail tips from Atherton ($17^{\circ} 16^{\circ} \mathrm{S}, 145^{\circ} 29^{\prime} \mathrm{E}$) and Big Tableland ($\left.15^{\circ} 43^{\circ} \mathrm{S}, 145^{\circ} 17^{\prime} \mathrm{E}\right)$.
S. salebrosus = liver samples from QMJ51091 (Blackdown Tableland - $23^{\circ} 46^{\circ} \mathrm{S}, 149^{\circ} 06^{\prime} \mathrm{E}$) and J 51090 (Bulburin SF$24^{\circ} 31^{\circ} \mathrm{S}, 151^{\circ} 29^{\circ} \mathrm{E}$).
S. swaini - liver samples from QMJ51640 (Lamington NP$28^{\circ} 14^{\prime} \mathrm{S}, 153^{\circ} 08^{\prime} \mathrm{E}$) and J 51095 (Mt Tamborine $27^{\circ} 58^{\prime} \mathrm{S}, 153^{\circ} 11^{\prime} \mathrm{E}$).
S. wyberba - liver sample from QMJ5 1633 and tail tips (Girraween NP - $28^{\circ} 50^{\circ} \mathrm{S}, 151^{\circ} 55^{\prime} \mathrm{E}$)
S. cf wyberba - (Chaelundi SF population - $30^{\circ} 01^{\prime} 07^{\prime \prime} \mathrm{S}$, $15230^{\prime} 02^{\prime \prime} \mathrm{E} \& 30^{\circ} 03^{\circ} 04^{\prime \prime} \mathrm{S}, 152^{\circ} 21^{\circ} 36^{\prime \prime} \mathrm{E}$) tissues from AMR141964-5.
Orraya occultus - tissues from QMJ60717, J62596 (Mcllwraith Ra. - $13^{\circ} 45^{\circ} \mathrm{S}, 143^{\circ} 19^{\prime} \mathrm{E}$).
Carphodactylus laevis - tails from Big Tableland ($15^{\circ} 43^{\prime} \mathrm{S}$, $145^{\circ} 17^{\prime} \mathrm{E}$) and Mt Bartle Frere ($17^{\circ} 24^{\circ} \mathrm{S}, 145^{\circ} 49^{\circ} \mathrm{E}$).

THE SCINCID LIZARD EGERNLA MCPHEEI WELLS \& WELLINGTON, 1984 IN OUEENSLAND. Alemoirs of the Oueensland Museum 45(2): 266. 2000:- Saxicoline members of the Egernius striolata complex in eastern Australia have had a complex taxonomic history, Cogger (1960) demonstrated ecological and morphological separation of sympatric saxicoline and arboreal species of this complex in the Warrumbungle Ranges, NSW, identifying the arboreal species as E. striolata and describing the saxicoline species as E. saxarilis saratilis. Other saxicoline populations from SE Australia were described as E. saxatilis intermedia, the subsnecies name relerring to the internediate morphology of these populations, which were allopatric to E. striolata. Subsequently, some workers have assumed that all saxicoline members of the complex in SE Australia, including the New England Tableland, are E. saxatilis (see I Iorton. 1972; Cogger, 1988). Wells \& Wellington (1984) named an additional species, E. mopheef, from 3 specimens from the Coffs Harbour area, NSW, but did not differentiate it from either subspecies of \mathcal{E}. saxatilis, or resolve the limits of the distribution of either species. The description of E, saxatilis intermedia refers to two atypical northern NSW specimens subsequently reidentified as E. mophcef (see Shea \& Sadlier, 1999 for the reidentitication and type status).

A single Queensland Muscum record of E. sumatilis was reported from SE QId, close to the NSW border, by Covacevich \& Couper (1991). The specimen on which this record was based was exchanged with the United States National Museum (USNM) in 1976, and was not re-examined prior to publication of the record.

We here report re-examination of this specimen (formerly QM J28654, now USNM 203953), another specimen from nearby, and an unambiguous photographic record from a third Qucensland locality, and identily all three as Egernia mopheci. Thus, this species is added to, and E. saxatilis removed from the list of Queensland reptiles (Covacevich \& Couper, 1991).

USNM 203953, preserved I Aug.1973, is one of a litter of more than three borm to a wild-caught female from near Giirtaween, SE Old, collected 2 Dec.1972. It is brown dorsally, with 28 midhody scales, 23 lamellae below the fourth toe, and dorsal seales smooth. The snout-vent length is 61.6 mm , and tail length 79 mm (TL/SVL 128.2%).

On 27 Jan. 1999, two large adult individuals were closely observed on a large rock outcrop at the summit of the McPherson Range ai Moss Garden ($28^{\circ} 177^{\circ} \mathrm{S} 152^{\prime \prime} 26^{\circ} \mathrm{E}$) on the NSW:Old border by GS and RS. One (Australian Museum R153859) was on the NSW side ol the border lence, while the other, not collected, was observed one metre distant on the Qld side of the fence. The rock outcrop created an exposed sumny area in what was otherwise wet sclerophyll/ rainforest. The collected specimen has 30 midbody scales, 23/22 lamellae below the fourth toe, dorsal scales bluntly keeled snout-vent length 124 mm . and tail length 157 mm (TL/SVL 126.6\%)

At least three individuals were observed, and one photographed, by RJ on 6 April1997, on the southern peak of Mi Mitchell. SEQId ($28^{\prime \prime} 04^{\circ} \mathrm{S} 152^{\circ} 23^{\prime} \mathrm{E}$), inhabiting closed rocky grassland with shrubs and grasstrees, above a mosaic of wet selerophyll/rainforest. The photographed individual displayed dark brown dorsum, bright orange body venter, and bluntly keeled dorsal scales

Based on unpublished studies by the senior author, t mepheei is distributed along the coast and E side of the Great Dividing Range of NE NSW, from the Barrington Tops area to the records reported herein. These records are the most inland localities known for the species, and probably represent a migration along the Clarence River valley from more coastal populations. The species is differentiated from the
egengraphically proximate E. striolata in its larger size (SVL up to 143 mm vs 119 mm), more chocolat--brown dorsal coloration (vs grey), more brightly coloured venter (bright orange to orange-yellow vs dull orange-yellow to yellow) longer tail (tail length $=0.907$ (snout-vent length ${ }^{1.077}$ vs tail length $=1.352$ (snout-vent length $)^{1.941}$; tail length as $\%$ of SVL $111.6-143.0 \%$, mean $=127.1 \%$ vs $95.7 \%-123.3 \%$, mean $=$ 109.6%) and greater number of lamellac below the fourth toe (21-28, mean $=24.7$ vs $16-26$, mean $=20.2$). It may be differentiated from E. saxatilis by having dorsal scales bluntly keeled in adults and smooth in juveniles (as in E striolater, vs sharply keeled in adults, more weakly keeled in juveniles), fewer midbody scale rows ($27-32$ vs $35-41$, mean $=37.0$ for E.s. scexatilis, $30-42$, mean $=34.5$ for E. intermedits) and a reduced dark uppor lateral zone (vs strong) The nearest populations of E. saxatilis are in the Warrumbungle Mtns (E. s. saxatilis) and on the Newnes Plateau W of Sydney (E. s. intermedia). Egernia mcpheei and F. striolata, which are allopatrically distributed, both inhabit crevices in trees and rocks when in isutation from other members of the complex, so that the ecological separation observed by Cogger (1960) between E. striolata and E ravailis in sympatry is not applicable in this instance.

Comparative Material

 R62338, R66154-57, R68236, R68474-75. R71401, R76514, R90602, R93468
 Corthen Jemtory Musum R1808-10
fi striolatu: AM R1050. K1054-55, R14v9, R1825, R2005, R2896-98. R4171 RY315. R9405-05, R11055, R115964-h, R11547a-b. R13849, R14\%1-67, R15250 R15254-61). R1528+86. R15288. R15290, R15376, R15538-4. R15551)-59, R16778-79
 R21671, R20731-35, R2144, 127980-81, R280)27-30, R30328, R31597-98, R31771)-72 R+1803009. R41811-14. R+1818-24, R41827-29, R41831, R41840-41, R+3439-57

 17, :), J14246, J28526-27, 130095-96, 5307717, J30664, 131862, J34125, J34797 135+13. South Australay Mucum R15418

Acknowledgements

We thank G. Zug for providing data on USNM 203953.

Literature Cited

COGGER, H.G. 1960. The ecology, morphology, distribution and speciation of a new species and subspecies of the genus Egernius (Lacertilia: Scincidae). Records of the Australian Aluseum 25(5):95-105
1988. Reptiles and amphibians of"Australia. 5th Edrn. Pp. xxi. 688 (Reed Books; Frenchs Forest).
COVACEVICH, J.A. \& COUPLR, P.J. 1991. The reptile records. Pp 45-140. In Ingram, G..I. \& Kaven, R.J. (eds) An atlas 01 Queensland's froges, reptiles, birds and mammals. (Queensland . (useum: Brisbane).
HORTON, D.K. 1972. Evolution in the genus Egerotics (Lacertilia Scincidae). Joumal of Herpetology $6(2): 101-109$
SHIEA, G.M. \& SADLIER, R.A. 1999. A catalogue of the non-fossi amphibian and reptile lype specimens in the collection of the Australian Museum: iypes currently, previously and purportedly present. Technical Reports of the Australian . Huseum 15: 1-91.
WELLS,R.W. \& WELLINGTON, C.R. 1984. A synopsis of the class Reptilia in Australia. Australian Joumal ofllerpetology 1(3-4) 73-129
G. IV Shea. Dept of Teterinary Anaramy \& Patholngy, Sydney Universit); Sydnev 2006; R. Sadlier, Australian Museum. College St, Sydney 2000; R. Johnson. Environmental Protection Agency; PO Box 981, Roma 4455, Australia; 14 Fehruary 2000.

BOUNTIANA, A NEW GENUS FOR ERIPHIA NORFOLCENSIS GRANT \& MCCULLOCH, 1907 (CRUSTACEA: BRACHYURA: ERIPHIIDAE)

PETER J.F. DAVIE AND PETER K.L. NG

Davie, P.J.F \& Ng, P.K.L. 20000630 : Bountiana, a new genus for Eriphia norfolcensis Grant \& McCulloch, 1907 (Crustacea: Brachyura: Eriphiidae). Memoirs of the Queensland Muscum 45(2): 267-272. Brisbane. ISSN 0079-8835.

Abstract

Eriphia norfolcensis is separated from Eriphia sensu stricto and placed into a new genus Bountiana. The two genera differ in many features including carapace shape, eye size and shape; differentiation of efferent branchial openings; length of second antennular segment; length and disposition of basal antennal segment; conformation of gonopod 2 ; and distinctness of suture between male thoracic sternites 2 and 3 . A lectotype is designated for E. norfolcensis Grant \& McCulloch, 1907. \square Brachyura, Eriphiidae, Eriphia, Norfolk Island, Lord Howe Island, Australia, new genus.

P.J.F Davie, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia: P.K.L. Ng, Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore; 21 March 2000.

Eriphia Latreille, 1817 (type species Cancer spinifrons Herbst, 1785, a junior synonym of Cancer verrucosus Forskål, 1775) (Eriphiidae sensu $\mathrm{Ng}, 1998$) currently contains seven species, viz, E. verrucosa (Forskål, 1775), E. gonagra (Fabricius, 1781), E. sebana (Shaw \& Nodder, 1803), E. smithii MacLeay, 1838, E. scabricula Dana, 1852, E. squamata Stimpson, 1860, E. granulosa A. Milne Edwards, 1880, and E. norfolcensis Grant \& McCulloch, 1907. Eriphia verrucosa is found in the Mediterranean, E. gonagra is known from the western Atlantic, and E. squamata is known only from the Pacific coast of tropical America. Three species, Eriphia sebana, E. smithii and E. scabricula all have wide Indo-West Pacific distributions. The remaining species, Eriphia norfolcensis is only known from Norfolk Island, Lord Howe Island and the coast of New South Wales. Examination of a series of specimens of E. norfolcensis shows that this species is aberrant within Eriphia, and more closely allied to Globopilumnus Balss, 1933. A new genus is here established for E. norfolcensis.

Measurements provided are of the carapace width and length respectively (including spines). G 1 and G2 are abbreviations for male first and second gonopods respectively. Specimens are deposited in the Australian Museum (AM), Sydney, and Queensland Museum (QM), Brisbane.

ERIPHIIDAE Alcock, 1898
Bountiana gen. nov.
TYPE SPECIES. Eriphia norfolcensis Grant \& McCulloch, 1907, by monotypy.

ETYMOLOGY. Named after H.M.S. Bounty, in remembrance of the group of mutineers who lived undiscovered in the South Seas for so long. The ancestors of the mutineers were, many years later, moved from Pitcairn Island to Norfolk Island where their descendents live to this day.

DIAGNOSIS. Carapace transversely oval, strongly vaulted anteriorly; regions poorly defined. Front obliquely deflexed, with transverse ridge either side of notch. Anterolateral margin with three small, blunt, well separated, spines. Eyes relatively small with small corneas (see Fig. 3A). Efferent branchial openings not distinct, almost completely covered by third maxillipeds, endostomial ridges weak, not forming circular opening with epistome; antero-external margin of third maxillipeds rounded; third maxillipeds gaping. Second antennular segment very short, less than half length of basal segment. Basal antennal segment with outer distal lobule just touching front, and placed close to inner angle of orbit (Fig. 3A); orbit closed. Chelipeds asymmetrical. Fingers of chelipeds gaping. Ambulatory legs short, stout; dactyli very short. Gonopod 2 flagellum subequal in length to basal portion. Suture between male thoracic sternites 2 and 3 distinct.

REMARKS. The ovate, longitudinally strongly convex and bulging carapace of Eriphia norfolcensis immediately separates it from typical Eriphia species, which are hexagonal or transversely hexagonal, and only moderately convex. This alone is sufficient to necessitate the establishment of a new genus, Bountiana, for Eriphia norfolcensis. There are also, however,

FIG. 1. Bountiana norfolcensis (Grant \& McCulloch, 1907), lectotype male, $12.2 \times 18.1 \mathrm{~mm}$, Norfolk Island; A, dorsal view; B, ventral view.
many other characters of generic significance and these are summarised in Table 1. All species of Eriphia, including the type species, E. verrucosa (Forskål, 1775), have been examined and taken into account when constructing Table 1; this material forms part of a separate revision of Eriphia by S.K. Koh \& P.K.L. Ng (unpubl. data).

Bountiana norfolcensis is closer in general appearance to species of Globopilumnus, the only other genus within the Eriphiidae. It can be effectively separated from this genus because in Globopilumnus the supra- and infra-orbital angles do not meet, such that the antenna enters the orbit through an orbital hiatus.

FIG. 2. Bowntiana norfolcensis (Grant \& McCulloch, 1907), female, $16.5 \times 11.8 \mathrm{~mm}$, QM1W24902, Norfolk 1sland: A, dorsal view; B, frontal view showing claws.

 (QM1124) (b.a.s = basal antennal segment; i.o. inner orbital angle).

FIG. 4. Third maxillipeds; A, Boumtiana norfolcensis (Grant \& McCulloch, 1907), female, $16.5 \times 11.8 \mathrm{~mm}$, QMW24902; B, Eriphia scabricula Dana, 1852, male, $19.3 \times 13.3 \mathrm{~mm}$, QMW 12117 , Lady Elliot Island, SE Qld.

29, AMP5256, 5 8 , ㅇ, Lord Howe I., A.R. McCulloch. AMP10328, ō, $\%$, Lord Howe I., reef, April, 1932, A.A. Livingstone. AMP6285, ${ }^{\circ}$, AMP6842, ovig. 오, AMP7889, 우, Shell Harbour, NSW, $34^{\circ} 35^{\circ}$ S, $150^{\circ} 53^{\prime} \mathrm{E}, 1923$, G. McAndrew. AMP11285, §, Harbord, NSW, $33^{\circ} 47^{\prime} \mathrm{S}, 151^{\circ} 17^{\prime} \mathrm{E}, 24.11 .1947$, E. Pope. AMP17289, 2 ㅇ (18.9×13.0; $10.9 \times 7.8 \mathrm{~mm})$, 3 ô $(9.3 \times 6.7$; $11.5 \times 8.3 ; \quad 18.2 \times 12.4 \mathrm{~mm})$, Slaughter Bay, Norfolk I., under coral rubble and weed, outer reef crest, low tide, 21.03 .1969, D.J. Griffin. QMW24902, 2 웅 $(16.5 \times 11.8 ; 18.5 \times 12.8 \mathrm{~mm}), 2 \sigma^{6}$ $(16.3 \times 11.2 ; 18.3 \times 12.6 \mathrm{~mm})$, same data as AMP17289.

DESCRIPTION. Carapace transversely ovate, strongly vaulted anteriorly; dorsal surface smooth except for

Bountiana norfolcensis

(Grant \& McCulloch, 1907)
(Figs 1, 2, 3A, 4^, 5)
Eriphia norfolcensis Grant \& McCulloch, 1907: 151, pl. 1; McNeil \& Ward, 1930:381; Holthuis, 1968:218.
Pseudozius sp. Bennett, 1964: 67-68, figs 62-68, 132; Dell, 1968: 17-18; Guinot, 1968: 330-331.
MATERIAL. LECTOTYPE: AMG5827, ठ ($12.2 \times$ 18.1 mm), Norfolk 1., Tasman Sea, $29^{\circ} 02.5^{\prime} \mathrm{S} 167^{\circ} 57^{\prime} \mathrm{E}$, F.E. Grant. PARALECTOTYPES: AMG5827, of $(10.8 \times 15.7 \mathrm{~mm})$, 1 juvenile ($7.5 \times 10.0 \mathrm{~mm}$), Norfolk 1. , Tasman Sea, $29^{\circ} 02.5^{\prime}$ S $167^{\circ} 57^{\circ}$ E, F.E. Grant. OTHER MATERIAL: AMP446, \uparrow, AMP448, $\%$, AMP449, δ, Lord Howe I., no ather data. AMP4032, ot $(7.6 \times 11.0 \mathrm{~mm})$, of $(9.8 \times 14.4 \mathrm{~mm})$, AMP5254, os $(10.0 \times 14.6 \mathrm{~mm}), 2 q(10.7 \times 15.6,8.7 \times 12.6 \mathrm{~mm})$, Lord Howe I., $31^{\circ} 33^{\prime}$ 'S $159^{\circ} 05^{\circ}$ E, E.A. Briggs. AMP5255, ठै, scattering of low tubercules anterolaterally; regions poorly defined, gastric region weakly separated by grooves. Front with transverse ridge, deflexed downwards, slightly denticulated. Eyes relatively small with small corneas. Infraorbital margin with about eight denticles. Anterolateral margin armed with four widely separated, low tubercles. Second antennular segment very short, less than half length of basal segment. Antennae very short, not reaching orbital margin; basal antennal segment with outer distal lobule just touching front, and placed very close to inner angle of orbit. Third maxillipeds gaping medially; outer surfaces relatively smooth, pubescent with long stiff setae; merus irregularly pentagonal, slightly

TABLE 1. Differences between Bountiana gen. nov. and Eriphia Latreille, 1817.

	Bountiana	Eriphia
Carapace	strongly vaulted anteriorly	moderately convex to almost flat anteriorly
Eyes	relatively small with small comeas (see Fig. 3A)	large, corneas bulbous (see Fig. 3B)
Carapace shape	transversely oval	sub-hexagonal
Efferent branchial openings	not distinct, almost completely covered by third I maxillipeds (Fig. 3A), endostomial ridges weak, not forming circular opening with epistome	very distinct, not covered by third maxillipeds (Fig. 3B), endostomial ridges strong, forming circular opening with epistome
Third maxillipeds	antero-external margin rounded (Fig. 4A)	antero-external margin sub-auriculiform (Fig. 4B)
Antennules	second segment very short, less than half length of basal segment (Fig. 3A)	second segment long, three-quarters or more length of basal segment (Fig, 3B)
Antennal position	basal antennal segment with outer distal lobule just touching front, and placed very close to inner angle of orbit (Fig. 3A)	basal antennal segment with outer distal lobule not touching front, and widely separated from inner angle of orbit (Fig. 3B)
Ambulatory dactylus	short and stout	long and slender
Gonopod 2	17agellum subequal in length to basal portion	flagellum distinctly shorter than basal portion
Male thoracic sternites	suture between sternites 2 \& 3 distinct	suture between sternites 2 \& 3 not discernible

FIG. 5. Bountiana norfolcensis (Grant \& McCulloch, 1907), lectotype male, $12.2 \times 18.1 \mathrm{~mm}$, AMG5827, Norfolk Island; A, enlargement of apex of gonopod 1; B, gonopod 1; C, gonopod 2.
notched at distal outer margin, antero-external margin rounded, not sub-auriculiform; with a few long, stiff setae. Efferent branchial openings not distinct, almost completely covered by third maxillipeds, endostomial ridges weak, not forming circular opening with epistome. Pterygostomial region smooth. Suborbital region relatively smooth.

Chelipeds markedly dimorphic; inner margins of all segments pubescent; distal end of merus pubescent, surfaces smooth. Distal blunt spine present at ventral surface of basis-ischium. Carpus with acute spine on median-inner margin, smaller one present ventrally; surfaces tuberculated anteriorly. Chelae relatively short, stout, with longitudinal rows of tubercles. Pubescence present on entire dorsal surface of palm, less dense on ventral surface. Small basal non-molariform tooth present on dactylus. Fingers of major chela strongly curved, closing with a prominent gape. Cutting edges of fingers of minor chela minutely denticulated. Female claws similar to male.

Ambulatory legs short, stout, smooth, both anterior and posterior margins with prominent long and short setae; merus with minute tubercles anteriorly.

Anterior male thoracic sternites smooth. Abdominal surfaces smooth. Gl short, stout,
broad at base tapering distally, terminating in broad tip; long stout spinules present on distal half of inner edge, longest medially; minute spinules on outer surfaces over distal third. G2 relatively long, slender; distal half forming curled flagellum.
REMARKS. Since Grant \& McCulloch (1907) described the species from Norfolk Islands, there have been only two subsequent reports by McNeil \& Ward (1930) and Holthuis (1968). McNeil \& Ward (1930) added Lord Howe Island and New South Wales as localities for this species.

The Pserdozius sp. of Bennett (1964) from Campbell Island, south of New Zealand, is without doubt synonymous with Bountiana norfolcensis. This was first noted by Guinot (1968:330) whilst reviewing Pseudozius and we concur with her conclusion. Furthermore, Dell (1968: 17) provided strong evidence that this species could not have come from Campbell Island, and must have been collected from an unknown locality elsewhere in the Pacilic. This is based on the fact that it has not been recorded since, despite subsequent extensive collecting expeditions to the island. Also it was apparently collected during a trip by the government vessel Hinemoa whose captain, Mr J.A. Bollons, was notoriously inaccurate in recording where specimens were found.

Grant \& McCulloch's (1907) original specimens (AMG5827) were examined and a lectotype male $(12.2 \times 18.1 \mathrm{~mm})$ is here designated.
DISTRIBUTION. Norfolk Island, Lord Howe Island, and New South Wales, Australia.

ACKNOWLEDGEMENTS

We thank Penny Berents and Roger Springthorpe of the Australian Museum, Sydney, for assistance during our respective visits, and loan of specimens. Also we express our gratitude to S.K. Koh and S.H. Tan for help with photographs and drawings.

LITERATURE CITED

BALSS, H. 1933a. Beiträge zur Kenntnis der Gattung Pilummus (Crustacea Dekapoda) und verwandter Gattungen. Capita Zoologica 4(3): 1-47.
BENNETT, E.W. 1964. The Marine Fauna of New Zealand: Crustacea Brachyura. New Zealand Oceanographic Institute Memoir No. 22. Bulletin. New Zealand Department of Scientific and Industrial Research 153: 1-120.
DANA, J.D. 1852. Crustacca. United States Exploring Expedition during the years $1838,1839,1840$, 1841, 1842 under the command of Charles

Wilkes, U.S.N. Vol. 13: 1-685 (1852), 686-1618 (1853), Atlas (1855): 1-27.

DELL, R.K. 1968. Notes on New Zealand crabs. Records of the Dominion Museum 6(3): 13-28.
FABRICIUS, J.C. 1781. Species Insectorum exhibentes eorum Differentias, specificas, Synonyma auctorum, Loca natalia, Metamorphosia adectis Observationibus, Descriptionibus, Vol. 2. (Hamburg \& Kilonii).
FORSKAL, P. 1775 . Descriptiones animalium avium, amphibiorum, piscium, insectorum, vermium; quae in itinere orientali observavit Petrus Forskảl. (Hafniae). 1-19, I-XXXIV.
GRANT, F.E. \& MCCULLOCH, A.R. 1907. Dccapod Crustacea from Norfolk Island. Proceedings of the Linnean Society of New South Wales 32(1): 151-6.
GUINOT, D. 1968a. Recherches préliminaires sur les groupements naturels chez les Crustacés Décapodes Brachyoures. VI. Les Carpilinae. Bulletin du Muséum National d'Histoire Naturelle, Paris Ser. 2, 40(2): 320-334.
HOLTHUIS, L.B. 1968. Are there poisonous crabs? Crustaceana 15(2): 215-222.
LATREILLE, P.A., 1817. Nouveau dictionnaire d'histoire naturelle, appliquée aux arts, à l'agricullure, à l'économie rurale et domestique, 亩 la médecine, etc. Vol. 10.
MACLEAY, W.S. 1838. On the Brachyurous Decapod Crustacea brought from the Cape by Dr Smith. Pp.

63-72. In Illustrations of the Annulosa of South Africa; being a portion of the objects of natural history collected during an expedition into the interior of South Africa, under the direction of Dr Andrew Smith, in the years 1834. 1835, and 1836; fitted out by 'The Cape of Good Hope Association for Exploring Central Africa'. Illustr. Zool. S. Arrica Invest. (London).
McNEILL, F.A. \& WARD, M. 1930. Carcinological Notes. No.1. Records of the Australian Museum 17(9): 357-83.
NG, P.K.L. 1998. Crabs. Pp. 1045-1155. In Carpenter, K.E. \& Niem, V.H. (eds) FAO Species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 2, Cephalopods, crustaceans, holothurians and sharks. (Food and Agriculture Organisation: Rome).
SHAW, G \& NODDER, F.P. 1803. Vivarium Naturae, sive rerum naturalium, variae et vividae icones, ad ipsam naturam depictae et descriptae. Crustacea. Pls 589-612, unnumbered pages. In The naturalist's miscellany, or coloured figures of natural objects, drawn and described immediately from nature. (London).
STIMPSON, W. 1860. Notes on North American Crustacea, in the Museum of the Smithsonian Institution. No. 11. Annals of the Lyceum of Natural History of New York 7: 177-246(49-118).

MALARINA, A NEW SPIDER GENUS (ARANEAE: AMAUROBIOIDEA: KABABININAF)EROM THE MET TROPICS (HF QTFEVSLANO, AUSTRAIIA

VALERIE TODD DAVIES AND CHRISTINE L. LA:UBKIN

Abstract

Davies, V.T. \& Lambkin, C.L. 200006 30: Malarina, at new spider genus (Araneae: Amaurobioidea: Kababinimaes from the Wet Tropics of Queensland, Australia. Menwirs of the Uueensland Afuscum 45(2): 273-283. Brisbane, ISSN 0079-8835.

Four species of Mufarina gen, nov, are described indicating the local endemism of species in North Queensland. These are M. monteithi, M. masseyensis, M.collina and M. cartwell. A cladistic analysis suggests that the Kababininae form a well supported monophyletic group though its placement in a family remains problematical, \square Malurina, Aronera. K̈abobininae. spider; Qucensland.

Falerle Tadd Davies, Queensland Museum, PO Bor 33011, Souh Brisbane 1101: Chrisime L. Lambkin Deparmment of Zoology 解 Entomologl: E'niversibj of Oueensland. St Lucia 4072. Australia: 17 Aoreh. 1999.

Malarina is the third genus to be described in the Kababininac, the others being Kabahina Davies, 1995 and Carbinet Davies, 1999. For nomenclatural purposes Davies is designated the author of this new genus and its species' names.

METHODS

All the spiders are from rainforests in the Wet Topies region of North Queensland between latudes $17^{\circ} 16^{\circ}$ and $18^{\circ} 36^{\circ}$ S. Collection methods include litter-sieving followed by heat extraction in funnels, pit-fall collection, pyrethrum spraying of tree-trunks and fallen logs, hand collecting from under logs in daylight and night collecting. Co-ordinates are given in square brackets when these are not given in the original data. Measurements are in millimerres. Notation of spines follows Platnick \& Shadab (1975). The illustrations were drawn with the aid of a camera lucida; the left male palp is illustrated. All material is lodged in the Queensland Museum (QM).

Table 1 lists anatomical ahbreviations used in the text and in Table 3: abbreviations on illustrations are explained in the legends to ligures. Collectors: DC, D. Cook; DY, D, Yeates: GBM. G.B. Monteith; GT, G. Thompson: HJ, H. Janetzki; RR, R. Raven; SH, S. Hamlet; VED, V.E. Davies.

SYSTEMATICS

KABABININAE

DIAGNOSIS. Epigynum with medial atrium (previously referred to as "fossa"), which is wider than long; spermathecas posterior or lateral to atrium. Male palp with rounded tegulum with prolateral groove; the course of sperm duct
showing clearly. Membraneous conductor: median apophysis absent. Tibial apophysis with ventral and dorso-retrolateral branches. Posterion spinnerets long with slender terminal segment (Fig. 1F).
DESCRIPTJON. Three clawed. Carapace highest in foveal region (Fig. 1B); posterior cyc row straight or slightly recurved; AME reduced (Fig. 1C). Chelicera with two retromarginal and two promarginal reeth (Fig. IE): prolateral filamentous seta at base of fang longer than other setae, Labium about as wide as long: stemum pointed posteriorly (Fig. 1D). Legs 1423; feathery hairs, ridged cuticle. Tarsal trichobollria in a single line increasing in length distally: bothrium collariform. Tarsal organ slit-like broadening distally. Male palpal embolus with or without proximal embolic apoplysis. Cribellum (two fields) present or absent in females, absent in males; proximal calanistrum with one row of setae; large broad colulus present when cribellum is absent. Two major ampullate gland spigots of unequal size on female ALS, one and a nubbin in male.

Malarina gen nov

ETYMOLOGY. Derived from the Aboriginal word. nocler, meaning spider's web in the Dyirbal language of North Qucensland.

TYPE SPECIES. M. montcilhr.
DIAGNOSIS. Cribellate spider (cf. Carbinezr) with paracribellar spigots on female [MAS. Epigynum having a posterior knob and narrow postero-lateral insemination ducts (cf. Ḱabafina which lacks the well-marked epigynal knob ant has wide anterior insemination ducts). Embolus

FIG. 1. A-L, Matarina monteithi sp.nov. A-I, Q: A-C. carapace (dorsal, lateral, frontal); D, endites and stermum; E, chelicera; F , spinnerets (lateral); G-I, epigynum (ventral, dorsal, lateral). J-L, ó: J, palp (ventral); K, L, tibial apophysis (retrolateral. dorsal).
and conductor arising antero-ventrally on tegulum (Fig. 5A); the embolus having an claborate embolic apophysis like Curbinea but here it is unbranched. Male palpal tibia with 2-4
long ventral sctae reaching about half way up cymbium (Fig. 1J) and a small sub-central prolatero-dorsal spine (Fig. 1L); the tibial apophysis is dorso-retrolateral.

TABLE 1. List of anatomical abbreviations.

AL	abdomen length
ALE	anterior lateral eyes
ALS	anterior lateral spinnerets
AME	anterior median eyes
APOPH	apophysis
AW	abdomen width
CAL	calamistrum
CB	cymbium
CH	cheliceral
CL	carapace length
CR	cribellum
CW	carapace width
E	embolic
EPIG	epigynal
ID	insemination duct
MAP	major ampullate spigots
MT	metatarsal
PCR	paracribellar spigots
PLD	prolaterodorsal
PLE	posterior lateral eyes
PLS	posterior lateral spinnerets
PME	posterior median eyes
PMS	posterior median spinnerets
RTA	retrolateral tibial apophysis
T	tarsal
TRICH	trichobothria

Malarina monteithi sp. nov.
(Figs 1A-L, 2A, B, 6; Table 2)
ETYMOLOGY. For Dr GB. Monteith, entomologist, who has collected widely in the tropics of N Queensland.

MATERIAL. HOLOTYPE: ${ }^{\circ}$, Malanda Falls, $17^{\circ} 21^{\prime}$ 'S, $145^{\circ} 35^{\prime} \mathrm{E}, \mathrm{N}$ Qld, 750 m , pyrethrum spray logs and trees, 31 Dec. 1989, GBM (QM S35253). PARATYPES: N Qld, 2 on, same data as holotype (S35254); ㅇ, 2 o', Millaa Millaa Falls, $17^{\circ} 28^{\prime} \mathrm{S}, 145^{\circ} 36^{\prime} \mathrm{E}, 800 \mathrm{~m}$, sieved litter, 17 May 1995, GBM (S35255); i, The Crater Nat. Park, $17^{\circ} 26^{\circ} \mathrm{S}, 145^{\circ} 29^{\prime} \mathrm{E}, 950 \mathrm{~m}$, pyrethrum logs, 28 Dec. 1989, GBM (S 35256); ${ }^{\text {º }}, 3$ 早, Maalan State Forest ($17^{\circ} 35^{\prime}$ S, $145^{\circ} 35^{\prime} \mathrm{E}$) in and under logs, 20-24 April 1978, VED, RR (S 35257); 아, Majors Mtn $\left(17^{\circ} 38^{\circ} \mathrm{S}, 145^{\circ} 32^{\prime} \mathrm{E}\right.$) same data (S35258); ㅇ, Mt Father Clancy, Maalan, litter, 21 April 1978, RR (S35259); ; , Ravenshoe, $17^{\circ} 39^{\prime} \mathrm{S}, 145^{\circ} 30^{\prime} \mathrm{E}$, 920 m , pitfall, 1 Dec.1997-5 Feb. 1998, GBM, DC (S39202); δ°, Red Rd turnoff, $17^{\circ} 49^{\circ} \mathrm{S}, 145^{\circ} 33^{\prime} \mathrm{E}$, Tully Falls Rd, pitfall, 8 Dec. 1989-5 Jan. 1990, GBM, GT, HJ (S35263).

DIAGNOSIS. Small (2.8-3.6) cribellate spiders; proximal calamistrum. The insemination ducts are simple. The embolic apophysis has two long setae extending beyond the rest (Fig. 2B).
DESCRIPTION. Female. CL 1.4, CW 1.1, AL 1.7, AW 1.2. Carapace with two dark longitudinal bands (Fig. 1A); highest at fovea. Viewed from top, eye rows straight. Ratio of AME:ALE: PME:PLE is 6:10:10:10. Legs 1423 (Table 2),

TABLE 2. Palp and leg measurements (mm) of ㅇ (δ°) Malarina monteithi sp . nov.

	Femur	Patella/ Tibia	Metatarsus	Tarsus	Total
Palp	$0.6(0.8)$	$0.6(0.9)$	-	$0.5(0.9)$	$1.7(2.6)$
Leg I	$1.5(1.8)$	$2.0(2.3)$	$1.4(1.9)$	$0.9(1.2)$	$5.8(7.2)$
II	$1.3(1.5)$	$1.6(1.8)$	$1.1(1.4)$	$0.7(0.9)$	$4.7(5.6)$
III	$1.1(1.4)$	$1.4(1.5)$	$1.1(1.3)$	$0.7(0.7)$	$4.34 .9)$
IV	$1.5(1.8)$	$1.9(2.2)$	$1.5(1.9)$	$0.8(1.0)$	$5.7(6.9)$

banded. Notation of spines: Femora, I, D010, P010; II, D110, P001; III, D100, P001; IV, D110, P001, R001. Patellac, I, D001; II, D100; III, D001; IV, 001. Tibiae:I, V020; II, V010; III, D100, P001, R011; IV, D100, P011, V110, R011. Metatarsi, all spined with a distal whorl of 4-5. Epigynum (Figs1 G-1) short insemination ducts with anterior loop to spermathecae. These are large, together exceeding the width of the atrium. Cribellum with two fields; ALS with two major ampullate spigots and about 20 pirifom spigots and some tartipores; PMS with an anterior minor ampullate spigot, and about 12 other spigots two cylindrical spigots (mesal and posterior). four smaller paracribellar spigots with strobilate shafts and about six aciniform spigots. PLS with spigots of two sizes. Females varied in length from 2.8-3.6.
Male, CL 1.5, CL 1.2, AL 1.7, AW 1.1. Coloration and eyes like female. Legs 1423 (Table 2). Notation of spines: Femora, I, D110, P010; II, D110, P001, R001; III, D110, P001, R011; IV, D100, P001, R001. Patellae, I, D001; Ill, D001; IV, D001. Tibiae, I, D100, P010, V020, R001; II, D001, P011, V020, R001; III, D101, P011, V111, R011; IV, D101, P011, V111, R011. Metatarsi spined, with distal whorl 4-5. Male palp (Fig. $1 \mathrm{~J}-\mathrm{L}$), sperm duct looping over retrolateral tegulum and forward again to base of embolus. Embolic apophysis fringed with a prolateral cluster of hair-like setae and five plate-like setae terminally (Fig. 2A,B). Under (strictly dorsal to) these there is also a row of straight setae, two of which are longer than the rest and protrude beyond them.
DISTRIBUTION. Collected from sites on the Atherton Tableland (Fig. 6).

Malarina masseyensis sp.nov.

(Figs 2C,D, 3A-F, 6)
ETYMOLOGY. From the type locality, Massey Range.
MATERLAL. HOLOTYPE: \ddagger, Massey Range, $17^{\circ} 16^{\prime} \mathrm{S}$, $145^{\circ} 49^{\prime} \mathrm{E}, 1250 \mathrm{~m}$, sieved litter, 10 Oct. 1991, GBM, HJ (QM S35260). PARATYPES: δ, $¢$

FIG. 2. A-D, ô Malarina spp.nov. embolic region of đ̀ palp. A, B, M. monteithi (ventral, prolateral); C, D, M. masseyensis sp.nov. (ventral, prolateral). $\mathrm{c}=$ conductor, $\mathrm{e}=$ embolus, ea $=$ embolic apophysis, $\mathrm{k}=\mathrm{keel}, \mathrm{ps}=$ plate-like setae.
(S39185); ㅇ, Massey Range, 4 km W of Centre, Bellenden Ker, 1250m, 9-11 Oct. 1991, GBM, HJ, DC (S35261); \%, Bellenden Ker Range Summit, $17^{\circ} 16^{\prime} \mathrm{S}, 145^{\circ} 51^{\prime} \mathrm{E}$, 1560 m , in litter, 28 Oct. 1983, GBM, DY, GT (S35294); $;$ Bellenden Ker, Cable Tower 3, 1054m, under logs, 17-24 Oct. 1981, Earthwatch/QM, (S35295); o̊, Bellenden Ker Range, pitfall trap, $500 \mathrm{~m}, 17-24$ Oct. 1981 , Earthwatch/QM (S 39186).

DIAGNOSIS. Larger spider ($\%$'s 3.9-4.7) than M. monteithi. Epigynum with simple insemination ducts; spermathecae together not exceeding the width of atrium (cf. M. monteithi). Palpal tibia with two large distal prolaterodorsal spines (cf. M. monteithi) as well as the sub-central spine.

DESCRIPTION. Female. CL 2.1, CW 1.5, AL 2.3, AW 1.3. Carapace without dark longitudinal bands. Eyes similar to M. monteithi. Legs 1423: I, 8.6; II, 6.7; III, 6.3; IV, 8.1, not markedly banded. Epigynum (Fig. 3A-C) with simple insemination
ducts with a transverse loop before entering spermathecae. Length 3.9-4.7.
Male. CL 1.9, CW 1.2, AL 2.0, AW 1.3. Legs: I, 9.1; II, 7.0; III, 6.3; IV, 8.6. Palp (Fig. 3D-F): large conductor; embolic apophysis curves strongly with marked keel; plate-like setae absent (Fig. 2C,D). Palpal tibia with two stout prolaterodorsal spines distally (Fig. 3F). Length 3.2-3.9.

DISTRIBUTION. Collected from sites on the Bellenden Ker/Massey Range (Fig. 6).

Malarina collina sp,nov.
 (Figs 4A-D, 5A,B, 6)

ETYMOLOGY. Latin collis, a hill, referring to the location.
MATERIAL. HOLOTYPE: ㅇ. Palmerston Nat. Park $\left(17^{\circ} 34^{\circ} \mathrm{S}, 145^{\circ} 41^{\prime} \mathrm{E}\right.$) under logs, July 1992 , J. Wunderlich (QM S35262). PARATYPES: 20 0°, 2 ㅇ, same data as holotype (S39187); ठ, Upper Boulder Ck, 8 km N. Tully, $17^{\circ} 50^{\circ} \mathrm{S}, 145^{\circ} 54^{\prime} \mathrm{E}, 250 \mathrm{~m}$, pitfalls, 4-7 Dec. 1989, GBM,

F1G. 3. A-F, Maharina massevensis, Λ-C, o epigynum (ventral, dorsal, lateral); D-F. of palp; D, F. (ventral, retrolateral); F, tibial apophysis (dorsal).

GT, HJ (S35264); © ${ }^{\circ}$. Boulder Ck via Tully, $7^{\circ} 50^{\circ} \mathrm{S}$, $145^{\circ} 54^{\circ} \mathrm{E} .650 \mathrm{~m}$, sieved litter, $27 \mathrm{Oct} .1983, \mathrm{GBM}, \mathrm{DY}$ GT (S35265); ; same data (S39188).
DIAGNOSIS. Small spiders ($母^{\circ}$'s 2.4-3.6). Insemination ducts coiled (cf. M. monteithi, M. massevensis). Tibial apophysis shorter and broader than M, monteithi (Fig. 4D). All setae on embolic apophysis about same length (cl. M.
monteithi). Without two long prolaterodorsal spines on palpal tibia (cf. M. masseyensis).

DESCRIPTION. Female. CL 1.5, CW 1.1, AL 1.8, AW 1.1. Legs, 1, 6.7:1I, 5.3; ПII, 4.7; 1V, 6.4. Epigynum (Fig. 4A-C) with coiled insemination ducts. Length 2.4-3.6
Male. CL 1.5, CW 1.1, $\Lambda \mathrm{L} 1.4$, AW 1.0. Legs, 1, $6.5 ;$ II, 5.1 ; 1II, 4.5; IV, 6.4. Palp (Figs 4D, 5A, B),

FIG. 4. A-I, Malarina spp. nov, A-D, ,H. collina sp.nov: A-C, \%, epigynum (ventral, dorsal, lateral); D, ठै 4 tihial apophysis. E-I, M. carchell sp. nov.; E-H, epigynum (ventral, ventral cleared, dorsal, lateral); I, © palp (ventral).

FIG. 5. A-F, Malarina spp. A, B, A. collina B: A, D palp; B, embolic region (prolateral). C-F, M. cartwell; C-E, Q spigols; C, ALS (right); D, PMS; E, paracribellar spigots (pc) on PMS. F, 万 palp, tibial apophysis.

TABLE 3. Characters and character states. * Multistate claracter treated as unordered.

1. AME: as large or larger than ALE (0) smaller (1)
2. Retromarginal CH teelly $2+(0): 2$ (1); 1 (2):0 (3)
3. Promarginal CH teth: $3+(0) ; 3$ (1) $: 2(2) ; 0$ (3)
\$. Long prolateral seta at base ol fang: absenf (0); present (1)
4. Large frontal CH seta: absent (0) present (1)
5. CH lamina: absent (0); present (1)
6. Fovcal atea highesta absent (0): presunt ((1)
7. $Z \operatorname{leg}$ lis shoner than leg IV (0); equal to or lumger than leg IV (1)
8. Sitridulatory rideses on ê cenxa I: absent (1)); preseme (1)
9. Enlarged ventral spines on tibia and MT I. If; absent (1): present (1)
10. l'eathery hairs: absent (u): present (1)
11. MT preening comb: absent (0); presert (1)
12. MT TRICH: $2+10$: 1 (1)
13. [TRIC'H: $0(0) ; 21$ (J): duuble raw (2)
14. TT rode abkent (0): Jresent (1)
15. C'K spimme lields: 2 (6). I (1): rabsen (2)
17.* CR spiguts: abscre (0); longitudinally ribbed (1): amulate (2)
18.* (CAL: absent (0), proximal (1); medial (2)
16. MAP $=$ ALS: 2 (0): 1 and nubbin (1): 1 (2)
17. MAP \& ALS: mesal (0): anteriur (1)
18. PCR \& PM5: one shaft per base (0); more than one whath (1): ahsent (2)
19. EPIG gonopores: absent (1); presen(1 (1)
20. Medial EPIG atrium: absent (0); present (1)
21. ID; absent (0); simple (1); Inosely cuilet (2); tioltly conled (3)
25.* Posterior LPIG scape; ahsent (1)); short (1); medium (2); long (3): small knob (4)
22. EPIG acellular lateral projections: absent (0): present (1)
23. Edirection : straight (0); clockwise(1):anti-clockwise (2)
24. Provimal L: APOPH:alssent (0); unbranched (1); hranehed (2)
25. E APOPH 2-3 Jong setae: absent (n) 'present (1).
30.* E APOPH plate-like setse: abscnt (0); small (1): large (2)
26. PLID setae E AJOHLl; absent (0): present (1)
27. ParE process: present (0): absent (1).
33.* Cunductor: ulsent (0); rounded (1); Iarge "T-whaned (2); 3-shaped - falciform (3)
28. 2^{0} conductor= 3bsent (0); present (1)
29. Median APOPH: absent (0): present (1)
30. Orientation of CB to bulh: dorsal (1): rnesal (1)
31. Paracymbium: absent (0); present (1)
32. RTA to CB length: absent (0); quarter or less (1) ; thind (2): nalt (3): moce than hall ($\$$)
33. RTA dorsal branch: absent (0): present (1)
34. R'TA lateral edget straight (0); inturned (i)
35. Palpal libia with 2 stout dorsal spines: absent (0); presem (1)
36. Papipal patctial APOPAF: absent (0) present (1)
all setae on embolic apophysis about same length. Broad colulus. ALS with one major ampultate spigot and nubbin, about 17 piriform spigots and some tartipores. PMS with large anterior spigot (minor ampullate) and 16 spigots of uneven size. Length 2.6-3.1

DISTRIBUTION. Collected at lower altitudes at Palmerson Nat. Park and the Walter Hill Range (Fig. 6).

Fifg. 6. Map of North Queensland showing the distribution of Malarimes spp.

Malarina cardwell sp.nov:
 (Figs 4E-I, 5C-F, 6)

ETYMOLOGY. For the locality, Cardwell Range.
MATERIAL, HOLOTYPE: 早, Mt Macalister. $18^{\circ} 18^{\circ} \mathrm{S}, 145^{\circ} 56^{\circ} \mathrm{E}$ Cardwell Ra.s $800-900 \mathrm{~m}, 13-16 \mathrm{Jan}$. 1987. SH (QM S35266). PARATYPES: © ${ }^{\text {a }}$ M1 Macalister. Coardwell Ra, 1000 m, sieved litter, 20 Dec. 1986. GBM. GI ($\$ 35267$): $9, \delta$, Mt Macalister, Cardwell Ra, 850 m , pitfall traps 18-20 Dec. 1986, GBM GT, SH (S39189); 30.900 m , pittall trap, 18 Dec., 1986-14 Jan. 1987. (S39190); Z, pitfall, 18 Dec. 1986-14.14n. 1987 (S39191): $40^{\circ}, 5^{2}$. Upper Broadwater $\mathrm{Ck}, 18^{\circ} 19^{\circ} \mathrm{S} .145^{\circ} 59^{\prime} \mathrm{E}^{\prime}$, Curdwell Ra., 750 m , pitfalls, 18 Dec. 1986-14 Jan. 1987. GBM, Gri, SH ($\$ 35268$); 2?, Mt Graham. $18^{\circ} 25^{\prime} \mathrm{S}, 145^{\circ} 52^{\prime} \mathrm{E}, 8 \mathrm{~km}$ N Abcrgawrie, $600-700 \mathrm{mi}$, pitfall.
 Ra., Main Rd., W side, $18^{\circ} 13^{\circ} \mathrm{S}, 145^{\circ} 47^{\prime} \mathrm{E}, 700 \mathrm{~m}$, pittall traps, 10 Dec. 1986-11 Jan. 1987, GBM, GT. SH (S39192); q, Kimma Ka., Mt Smoko turnoff, $18^{\circ} 12^{\circ} \mathrm{S}, 145^{\circ} 46^{\circ} \mathrm{E}$. 600 m (S39193); ©, Broadwater Park。35km NW Ingham, $18^{\circ} 12^{\prime} \mathrm{S}, 145^{\circ} 53^{\prime} \mathrm{E}, 500 \mathrm{~m}$, pitfall, 22. Dec. $1986-3$ Jarr. 1987. SH (S35271). © Wallaman Ealls, $18^{\circ} 36^{\circ} \mathrm{S}^{\circ}$ $145^{\circ} 48^{\circ} \mathrm{E} .620 \mathrm{~mm}$, pittalls in open forest, 5-12 Feb. 1996. GBM (S35264); \% Hinchinbrook I., $18^{\circ} 22^{\circ} \mathrm{S}, 146^{\circ} 13^{\prime} \mathrm{E}_{\mathrm{o}}$ 10m, sieved litter, 9 Nov. 1984, VED, GT, J, Gallon ($\$ 35270$); 0 ., Hinchinbrook I., Gayndah Ck, 10 m , pittalls 8-17 Nov. 1984, VED, J. Gallon (S39194); \% 20", same data (S39195); \% ㅇ. 8-18 Nov. 1984, GBM. GT. DC. (S39196).

DIAGNOSIS. Small spiders (${ }^{1}$ s 2.9-3.1). Irnsemination ducts tightly coiled presenting dark lateral spots on ventral surface (ct. all other spp.)

TABLE 4. Data matrix. Unknown characters are represented by '?', inapplicable characters by ' $=$ '.

Taxa	Character Number				
	1	10	20	30	40
Wandella barbarella Gray	033001010	0000000212	000-0-0000	000000000-	00
Dictymidae sp	120000010	0001001112	1010300100	0012001010	000
Badumna longinqua (Koch)	010000010	0000100110	0111100100	0013010010	000
Paramatachia decorata Dalmas	010000010	0000101120	0010100100	0013000010	001
Desis sp.	110000010	0000202002	1-10300100	0013010010	000
Quemusia aquilonia Davies	111000010	0000100110	0210100200	0013100010	000
Jalkaraburra alta Davies	111000010	0000102000	0-10100200	0013100010	000
Amphinecta milina Forster \& Wilton	110000000	001010200?	0-10200100	0011010010	000
Amaurobius fenestralis (Stroem)	000000010	0010100110	0010100100	0011010011	000
Storenosoma terranea Davies	112000001	0010102001	0-10100100	0011010011	000
Otira sp.	112000001	0010112001	0-10100100	0011010011	000
Tasmarubrius milvinus (Simon)	112000000	0010102000	0-10101100	0011010111	000
Procambridgea sp.	100100010	0000100110	0110100100	0011000010	000
Stiphidion facetum Simon	011100010	0100100120	0110100100	0012000010	000
Stiphidion adornatum Davies	011100010	0100100120	0110300100	0012000010	000
Midgee binnaburra Davies	102110000	1000102001	0-10100100	0011000010	000
Midgee thompsoni Davies	102110000	1000102001	0-10200100	0011000010	000
Dardurus spinipes Davies	100100010	1000101110	0211100100	0011000010	001
Manjala plana Davies	110110010	1000100111	0?11100100	0013010010	000
Malala lubinae Davies	100010010	1000102001	0-10100100	0013000010	000
Kababina alta Davies	112100110	0100100110	0011100100	0011000040	000
Carbinea longiscapa Davies	112100110	0100102000	0-11130120	0011000040	000
Carbinea breviscapa Davies	112100110	0100102000	0-11110120	0011000010	000
Carbinea wunderlichi Davies	112100110	0100102000	0-11120120	0011000020	000
Carbinea robertsi Davies	112100110	0100102000	0-11120120	0011000030	000
Malarina monteithi sp. nov.	112100110	0100100110	0011140111	2111000010	000
Malarina masseyensis sp. nov.	112100110	0100100110	0011140111	0111000010	010
Malarina collina sp, nov.	112100110	0100100110	0011240110	2111000010	000
Malarina cardwell sp. nov.	112100110	0100100110	0011340110	1111000010	100

Tibial apophysis short with inturned lateral margin. (cf. other spp.)

DESCRIPTION. Female. CL 1.6, CW 1.2, AL 1.8, AW 1.3. Legs, I, 6.9; II, 5.5; III, 5.0; IV, 6.8. Epigynum (Fig. 4E-H) with tightly coiled insemination ducts. Spinnerets (Fig. 5C-E), ALS with two major ampullate spigots and about 17 piriform spigots. PMS with a large anterior spigot (minor ampullate) and about 12 other spigots including 2 (mesal and posterior) with larger shafts (cylindrical) and 3-4 with strobilate shafts (paracribellar). PLS with spigots of two sizes. Length 2.6-3.4.

Male, CL 1.4, CW 1.1, AL 1.5, AW 1.1. Legs, I, $6.4 ;$ II, $5.5 ; 111,4.8 ;$ IV, 6.4. Palp (Fig. 4I), embolic apophysis with all setae about same length; plate-like setae reduced in length. Tibial apophysis short with inturned edge (Fig. 5F). Length 2.9-3.1.

DISTRIBUTION. Collected from Kirrama/ Cardwell Ra., Seaview Ra. and Hinchinbrook I. (Fig, 6).

RELATIONSHIPS OF MALARINA

A cladistic analysis examined 42 characters (Table 3) for relationships of the 4 Malarina spp and 25 other taxa. Outgroup comparison was with the Australian filistatid spider Wandella barbarella Gray and an undescribed Australian dictynid. A data matrix for the 29 taxa, names and authors given (Table 4), was assembled in McClade 3.01 (Maddison \& Maddison, 1992).

The data was analysed in PAUP version 3.1.1. (Swofford, 1993) and replicated in Hennig 86 Version 1.5 (Farris, 1988). A heuristic search of the data with 10 random-addition sequences and TBR branch swapping generated two most parsimonious trees differing only in placement of M. masseyensis - either with M. monteithi or basal to a clade containing M. monteithi, M. collina and M. cardwell. The preferred tree (Fig. 7) has length $123, \mathrm{CI}=0.53, \mathrm{Cl}$ excluding uninformative characters $=0.49, \mathrm{RI}=0.73, \mathrm{RC}=$ 0.39. Characters were mapped in CLADOS version 1.2 (Nixon, 1992) with DELTRAN optimisation.

FIG. 7. Preferred most parsimonious tree showing the cladistic relationships of some Amaurobioidea (branch support for nodes in bold type).

Branch support (Bremer, 1994) for the nodes on the preferred most parsimonious tree was calculated using Autodecay (Eriksson \& Wikstrom, 1996) and is given in bold type beneath each node in Fig. 7.

CONCLUSIONS

Wandella and Dictynidae sp. appear as distinct from the ingroup which is regarded as the superfamily Amaurobioidea. Again this is composed of two clades, one including Desis (Desidae) and Amphinecta (Amphinectidae), the other including Amaurobits (Amaurobiidae), Stiphidion (Stiphidiidae) and the metaltellines Quemusia and Jalkaraburra. The Kababininae, with the addition of Malarina spp. continues to form a well supported monophyletic group (Davies, 1999).

The families at the base of the clade are paraphyletic therefore the placing of Kababininae within any of the existing families remains problematic. The group appears to be closest to the Stiphidiidae but this is based on a single character (feathery hairs) which is also found in other genera not represented here.

While the Kababininae is well supported as is the Stiphidiidae, the other families are either paraphyletic (eg. Desidae as presently constituted) or poorly supported. Support for placing the Kababininae within the Stiphidiidae is low. Further descriptions and cladistic analyses of the Amaurobioidea are necessary to determine family relationships and placement of genera.

ACKNOWLEDGEMENTS

We are indebted to our colleague Dr G.B. Monteith for his and co-workers' collections from the Wet Tropics region of north Queensland. Since 1993 the field trips have been supported by the Wet Tropics Management Authority which
also supports Kylie Stumkat, SEM technician. We thank the Council of the Australian Biological Resources Study for funding rainforest surveys during which some of this material was collected and for the financial support of illustrator and co-author, Christine Lambkin, who also set up the phylogenetic analysis resulting in the cladogram. We are grateful for the support of other members of the Queensland Museum, particularly Jennifer Cannon and Katic Laws for their help in preparation of this paper.

LITERATURE CITED

BREMER, K. 1994. Branch support and tree stability. Cladistics 10: 295-304.
DAVIES, V.T. 1995. A new spider genus (Araneae: Amaurobioidea: Amphinectidae) from the wet tropics of Australia. Memoirs of the Queensland Museum 38(2): 463-469.
1999. A new spider genus from north Queensland, Australia (Araneae: Amaurobioidea: Kababininae). Journal of Arachnology 27: 25-36.
ERIKSSON, T. \& WIKSTROM, N. 1996. Autodecay version 3.0 (Stockholms universitet Stockholm: Sweden).
FARRIS, J.S. 1988. Hennig 86 Version 1.5. (Port Jefferson: New York).
MADDISON, W.P. \& MADDISON, D.R. 1992. MacClade: analysis of phylogeny and character co-evolution, Version 3 documentation. (Sinauer: Sunderland).
NIXON, K.C. 1992. Clados Version 1.2. (L.H. Bailey Hortorium, Cornell University: Ithaca).
PLATNICK, N.I. \& SHADAB, M.U. 1975. A revision of the spider genus Gnaphosa (Araneae Gnaphosidae) in America. Bulletin of the American Museum of Natural History 155: 1-16.
SWOFFORD, D.L. 1993. PAUP. Phylogenetic Analysis using Parsimony Version 3.1. (Illinois Natural History Survey and Smithsonian Institution: Champaign \& Washington).

NEW LOCALITY FOR THE ENDANGERED SHEATHTAIL BAT, TAPHOZOUS TROUGHTONI TATE, 1952. Memoirs of the Queensland Museum 45(2): 284. 2000:- Taphozous troughtoni was first described by Tate (1952). Subsequently, the taxon was considered a subspecies (McKean \& Price, 1967) but was re-established as a full species by Chimimba \& Kitchener (1991). It is known from only six specimens, four of which are lodged in the Australian National Wildlife Collections in Canberra (Chimimba \& Kitchener, 1991). The three known localities are all in the vicinity of Mount Isa in NW Queensland. The species has not been recorded for 34 years.

We have identified a specimen of T. troughtoni among specimens in the Queensland Museum collection. This specimen, registration number QMJ 17608 , was originally registered as Tadarida australis, but was later re-identilied as Taphozous australis. We examined QMJ17608 while verifying identifications of Taphozous australis specimens outside of the species' known distribution (Churchill, 1998).

QMJ17608 is an adult female. It is in spirit (70% alcohol) and in fair condition, although the back of its head has been badly damaged. We identified it as an emballonurid by its tail protruding from the upper surface of the uropatagium, and in the genus Taphozous by its wing pouches and lack of throat pouch. We determined QMJ17608 to be T. troughtoni on the basis of lengths of its forearm, metacarpal III, and skull dimensions. Its forearm was slightly longer than the four T, troughtoni (76.2 vs $72.7-75.6 \mathrm{~mm}$) specimens of Chimimba \& Kitchener (1991), and did not overlap with any other Taphozous (Table 1).

It can be difficult to distinguish between Taphozous georgianus and T. troughtoni from external characters Examination of morphometric data in Chimimba \& Kitchener (1991: 211, table 1b) indicate that the external character with the least overlap between these species is the size of the digit III metacarpal. The length of this character in the specimen we examined was $68.0 \mathrm{~mm}, 0.1 \mathrm{~mm}$ below the range of T. troughtoni $(68.1-70.2 \mathrm{~mm}, n=4)$, and 2.1 mm above that of Taphozous georgianus ($52.7-65.9 \mathrm{~mm}, \mathrm{n}=302$) (Chimimba \& Kitchener, 1991).

The locality recorded for QMJ17608 is 'two miles S.E. Cloncurry" $\left(20^{\circ} 43^{\circ} \mathrm{S}, 140^{\circ} 32^{\circ} \mathrm{E}\right)$. It was collected on 15 September 1969, although the identity of the collector was not recorded. The 1971 edition of the Cloncurry 1:100,000 map (PCC 7056) indicates the probable locality is south of the North Western Highway, close to Mount Avarice, with quarries and numerous mines within five kilometres. This record is around $60-65 \mathrm{~km}$ to the east of existing locality records for T. troughtoni, and so extends its known range. The three other locality records for this species are close to each other (50 km) around Mt lsa.

An additional specimen and collection locality for this species is noteworthy as only six specimens of this species have been collected from three localities (Tate 1952; Chimimba \& Kitchener 1991). This species has not been seen since 1967 (Duncan et al., 1999). The national conservation status of T. troughtoni determined by the Action Plan for Australian Bats (Duncan et al., 1999) is "endangered", while its conservation status in Queensland is 'endangered' (Nature Conservation Act 1994 (and amendments)). A management recommendation determined by Duncan et al. (1999) is to examine museum specimens of Taphozous georgianus from

TABLE 1. Dimensions of morphological characters of QMJ17608, T. georgianus and T. troughtoni (from Chimimba\& Kitchener, 1991). All measurements in mm.

Character	QMJ17608	T. georgianus	T. troughtoni
Body length	77.1	61.6-80.0	79.4-86.3
Tail length	33.8	22.9-39.4	31.5-36.9
Ear length	24.7	16.5-24.1	22.4-27.1
Ear width	12.1	11.8-25.6	16.2-19.9
Tragus length	7.0	4.9-8.9	7.7-9.4
Forearm length	76.2	$61.1-73.4$	72.7-75.6
Tibia length	32.3	24.2-30.8	30.6-31.8
Pes length	15.7	9.8-14.7	13.8-15.5
Digit II metacarpal length	65.1		
Digit ILI metacarpallength	68.0	52.7-65.9	68.1-70.2
Digit III phalanx I	23.3	17.7-23.7	22.2-24.6
Digit IIt phalanx II	26.1	19.8-29.1	25.4-28.4
Digit IV metacarpallength	54.8		
Digit IV phalanx I	15.9		
Digit IV phalanx It	11.6		
Digit V metacarpal length	47.3		
Digit V phalanx I	15.9		
Digit V phalanx II	71.8		
Inter upper canine distance	4.5	3.4-4.5	4.5-4.8
Inter lower canine distance	3.2	2.6-3.3	3.2-3.4
Zygomatic width	14.7	12.1-14.4	14.7-14.9

northwest Queensland for additional records of T. troughtoni. Our findings indicate that examination of presumed Taphozous australis specimens may also result in further records of T. troughtoni.

Literature Cited

CHIMIMBA, C.T. \& KITCHENER, D.J, 1991. A systematic revision of Australian Emballonuridae (Mammalia: Chiroptera). Records of the Western Australian Museum 15: 203-265.
CHURCHILL., S. 1998. Australian Bats, (New Holland: Sydney).
DUNCAN, A., BAKER, G.B. \& MONTGOMERY, N. (eds) 1999. The Action Plan For Australian Bats. (Environment Australia: Canberta).
McKEAN, J.L. \& PRICE, W.J. 1967. Notes on some Chiroptera from Queensland, Australia. Mammalia 31: 101-119
TATE, G.H.H. 1952. Results of the Archbold Expeditions No. 66. Marmals of Cape York Peninsula, with notes on the occurrence of rain forest in Queensland. Bulletin of the American Museum of Natural History 98: 563-616.
M.P. Rhodes, Queensland Parks and Wildlife Service, PO Box 155, Albert Street, Brisbane 4001; A.P. Amey, Queensland Museum, PO Box 3300, South Brisbane 4101; Australia; 10 April 2000.

GEMMAE OF THE MARCHANTIALES FROM THE WINTON FORMATION (MID-CRETACEOUS), EROMANGA BASIN, QUEENSLAND

MARY E. DETTMANN AND H. TREVOR CLIFFORD

Abstract

Dettmann, M.E. \& Clifford, H.T. 200006 30: Gemmae of the Marchantiales from the Winton Formation (mid-Cretaceous), Eromanga Basin, Queensland. Memoirs of the Queensland Museum 45(2): 285-292. Brisbane. ISSN 0079-8835.

> Hepatophyte gemmae are described from latest Albian sediments of the Winton Formation, Eromanga Basin, Queensland. The discoid gemmae are borne on a single-celled stalk and midway along each lateral margin there is a shallow notch in which is situated a growing point. The gemmae are comparable to those of extant Marchantiales and are referred to Marchantites marguerita sp, nov. \square Marchantiales, gemmae, Late Albian, Eromanga Basin, Queensland.

Mary E. Dettmann, Department of Botany, University of Queensland, St Lucia 4072; H. Trevor Clifford, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 28 March 2000.

Hepatophytes are believed to have formed an important component of the mid-Cretaceous vegetation of Australia as indicated by the widespread, sometimes abundant occurrence of diverse hepatic-like spores in Albian and Cenomanian sediments (Dettmann, 1994). However, apart from the likely affinity of Triporoletes Mtchedlishvili to the Marchantiales, ordinal or family alliance of the sporae dispersae remains speculative. Further support for the presence of the Marchantiales in the Albian flora of southeastern Australia is provided by the thalli taxa, Hepaticites discoides Douglas and H. profusus Douglas, both of which are accepted as representatives of a possibly extinct, marchantialean group (Krassilov \& Schuster, 1984). Spores associated with fertile H. discoides conform with the spore genus Triporoletes and its junior synonym Rouscisporites Pocock (Douglas, 1973).

In contrast to the common occurrence of hepatophyte megafossils, particularly H. profusus, at some Albian localities in the Otway Basin (Douglas, 1973), there are no records of hepatophyte thalli in Albian-Cenomanian megatloras described from elsewhere in Australia. These include the Burrum and Styx compression floras (Walkom, 1919); the Winton flora, known from impressions and permineralised cones and foliage taken from outcrops (McLoughlin et al., 1995; and references cited therein); and recently described compressions and cuticles recovered from core material of subsurface strata (Pole, 1999; 2000, Pole \& Douglas, 1999). During palynological processing of a core from the Winton Formation in GSQ Thargomindah No. 3,
numerous mesofossils including megaspores, fern sporangia, and discoid hepatophyte gemmae were recovered. This account details the gemmae and illustrates associated fern sporangia.

MATERIAL AND METHODS

The gemmae were isolated from a siltstone intersected at 163.5 m in GSQ Thargomindah No. 3 , a continuously cored stratigraphic borehole drilled by the Geological Survey of Queensland at $27^{\circ} 16^{\prime} \mathrm{S}, 142^{\circ} 55^{\prime} \mathrm{E}, 120 \mathrm{~km} \mathrm{NW}$ of Thargomindah within the Eromanga Basin, SW Queensland (Figs 1, 2). A routine check of organic matter extracted from the sediment after treatment with 50% hydrofluoric acid followed by thorough washing in distilled water revealed the presence of numerous small discoid plant fossils up to $440 \mu \mathrm{~m}$ in diameter. These were picked from the residue and transferred to small petri dishes prior to mounting in glycerine jelly on glass microscope slides. No further chemical treatment was required, and indeed mild oxidation in dilute nitric acid resulted in destruction of the disc-shaped fossils. After recognising that the discs represented hepatophyte gemmae, a thorough search was undertaken for any associated hepatophyte tissues; none was found, except for occasional hepatophyte-like dispersed spores (Triporoletes reticulatus (Pocock) Playford, T. simplex (Cookson \& Dettmann) Playford, and T. radiatus (Dettmann) Playford). Other plant meso/microfossils represented in the residue included fem sporangia, woody tissues and palynomorphs. Fern sporangia were picked from unoxidised portions of the residue and mounted either in glycerine jelly for light

FIG. 1. Map of Australia showing location of GSQ Thargomindah No. 3 and Eromanga Basin.
microscope examination or on stubs and sputter coated with gold for scanning electron microscope analysis. Palynomorphs were extracted after treatment with nitric acid for 2 minutes, followed by thorough washing in distilled water, brief immersion in 1% ammonium hydroxide and further washing in distilled water prior to mounting for light microscope analyses.
The palynoflora contained in the sediment indicates assignment to the upper part of the Phimopollenites pannosus spore-pollen Zone (of Helby et al., 1987) and thus a latest Albian age.
Gemmae of living Marchantia berteroana Lehm. et Lindenb., Lunularia cruciata (L.) Dum. and Neohodgsonia mirabilis (Perss.)Perss. were examined after clearing in a mixture of glacial acetic acid and hydrogen peroxide in proportions 7:1 to remove chlorophyll and cell contents. The gemmae were then washed in distilled water and mounted in glycerine jelly on microscope slides.
Type and other figured specimens are lodged in the Queensland Museum, Brisbane. Registered numbers of that institution are designated in Table 1.

FIG. 2. Stratigraphic sequence in GSQ Thargomindah No. 3, and sampling horizon.

SYSTEMATIC PALAEONTOLOGY

HEPATOPHYTA

 MARCHANTIALESMarchantites Brongn., 1849
emend. Walton, 1925
TYPE SPECIES. Marchantites sezamnensis Brongn., 1849.

Marchantites marguerita sp. nov.

(Fig. 3A-K)
ETYMOLOGY. For the late Margaret Derham, beloved sister and friend of MED.

MATERIAL. HOLOTYPE: QMF50093. Fig. 3A-C. Gemma discoid, $430 \mu \mathrm{~m}$ long, $350 \mu \mathrm{~m}$ greatest width, with a stalk scar at one end, and a notch on opposite sides on the periphery situated lateral to the stalk. Cells polygonal, $30-40 \mu$ in diameter, with anticlinal walls up to $6 \mu \mathrm{~m}$ high.
DIAGNOSIS. Gemmae discoid, 1-2 cells thick and sometimes with a short, one-celled stalk up to $60 \mu \mathrm{~m}$ long and $60 \mu \mathrm{~m}$ wide. In outline each gemmae is bilaterally symmetrical about the vertical axis. A pair of shallow notches occurs opposite to each other on the perimeter of each gemmae midway between the apex and stalk. Cells adjacent to stalk elongate (up to $80 \mu \mathrm{~m}$ long, $30-40 \mu \mathrm{~m}$ wide), elsewhere isodiametric, pentagonal to hexagonal, $25-40 \mu \mathrm{~m}$ in diameter

FIG. 3. Micrographs of Alarchantites marguerita sp, nov.; A-C, holotype. A, $\times 100 ; \mathrm{B}$, basal cells at site of stalk attachment $\times 300 ; \mathrm{C}$, cells in region of notch, $\times 300 ; \mathrm{D}, \mathrm{E}$. whole specimen, $\times 200$, and detail of noth cells, $\times 300$; F,G. specimen with stalk attached, $\times 100$, and detail of stalk coll, $\times 150 ; 11,1$. specimen $\times 150$ and $\times 100 ; \mathrm{J}, \mathrm{K}$. specimen, $\times 100$, and detail of cells, $\times 300$.
and with anticlinal walls 2-6pm high. hut grading to $20 \mu \mathrm{~m}$ in diameter at the growing points centred in each lateral notch.

DIAENSIONS. (longitudinal \times lateral dimensions) $200-(320)-440 \mu \mathrm{~m} \times 160-(270)-400 \mu \mathrm{~m}$ (20 specimens).

 cells, $\times 300$; D,E, specimen with stalk cell, $\times 100$ and detail of stalk, $\times 150$. F-I. Gemmae of Luntlaria cruciata (L.) Dum; F-H, specimen, $\times 100$, and detail of cells in central and basal regions, $\times 300$; I, specimen, $\times 100$.

TYPE LOCALITY. GSQ Thargomindah 3, 163.5 m ; upper P. pannosus Zone, latest Albian.

REMARKS AND COMPARISON. In possessing a single-celled stalk and peripheral lateral notches in each of which is centred a small growing point, the discoid fossils are
morphologically consonant with gemmae of Marchantia L. (Marchantiaceae) and Lunularia Adanson (Lunulariaceae). Cells of Marchantites marguerita are more similar in size ($25-40 \mu \mathrm{~m}$ in diameter) to those of gemmae of Marchantia berteroana (cells $25-40 \mu \mathrm{~m}$ in diameter; Fig.

4A-E) than those of Marchantia polymorpha L. (Smith, 1955: fig. $30 ; 15-30 \mu \mathrm{~m}$ in diameter) and Lunularia cruciata (cells $15-30 \mu \mathrm{~m}$; Fig, 4F-1). The monospecific Neohodgsonia (N. mirabilis) H. Persson, (Marchantiaceae) also has disc-shaped gemmae, but they differ from those examined of Marchantia and Lunularia in possessing only one growing point associated with a lateral or subapical notch. Plate-like gemmae occur in several extant taxa of the Metzgeriales, but in these there is only one growing point, which is situated at the margin opposite to the stalk (Watson 1964).
The likely Marchantiales origin of the fossil gemmae may argue for assignment to Marchantiolites Lunblad, also demonstrated to be consistent with the Marchantiales. However, Marchantiolites is based on thalli with rhizoids on the undersurface and air pores on the upper surface, and is thus inappropriate for the gemmae described here. Pending recovery of the gemmae in organic association with hepatophyte thalli, the fossils are included in the broader category Marchantites.
DISCUSSION. Because of their firm thalli and preference for growing on mineral soil adjacent to stream banks, members of the Marchantiales are likely candidates for burial and subsequent fossilisation. Indeed from the Triassic onwards marchantioid-type thalli are well known (Krassilov \& Schuster, 1984). It is therefore surprising that Marchantia-like gemmae have not been previously recognised.
The similarity of Marchantifes marguerita to gemmae of extant Marchantia and Lunularia suggests that growth habitats of the Winton hepatophytes were within the range of those occupied by the extant genera, both of which are restricted to temperate climates. The Thargomindah region of the Eromanga Basin was situated at $\sim 55^{\circ} \mathrm{S}$ during the latest Albian. Palaeotemperature data are lacking but those deduced from belemnites and bivalves from the underlying marine sequence indicate sea water temperatures of $12-16^{\circ} \mathrm{C}$ (Dettmann et al., 1992). Temperatures adduced from Global Grossplots are near $15^{\circ} \mathrm{C}$ (Frakes, 1997) and from other sources approximate $10^{\circ} \mathrm{C}$ (Frakes, 1997, Fig. 4). Today, the $15^{\circ} \mathrm{C}$ MAT isotherm passes through
southern New South Wales/northern Victoria at latitudes close to $35^{\circ} \mathrm{S}$ and the $10^{\circ} \mathrm{C}$ MAT isotherm to the south of Tasmania (Anon, 1988).
Associated with the fossil gemmae are numerous fern sporangia, one type possibly osmundaceous (Fig. 5A-D; apical annulus and containing in situ Osmundacidites cf. wellmanii Couper), and another with a vertical annulus and containing Cyathidites minor Couper (Fig. 5E-I). Also represented are lycophytic and hydropteridean megaspores and a restricted spore-pollen flora dominated by filicean spores referable to Ruffordiaspora Dettmann \& Clifford (Schizaeaceae), Baculatisporites Thomson \& Pflug and Osmundacidites Couper (Osmundaceae), and Cyathidites Couper. Hepatic spores (Triporoletes reticulatus, T. simplex and T. radiatus), gymnosperm (Araucariacites Cookson ex Couper, Podocarpidites Cookson ex Couper, Microcachryidites Cookson ex Couper) and dicotyledonous angiosperm pollen (Phimopollenites Dettmann) occur in Jow frequencies.

ACKNOWLEDGEMENTS

Grateful acknowledgment is extended to the Queensland Department of Mines and Energy for enabling sampling of core material; Dr Mike Pole, Department of Botany, University of Queensland for assistance with sample collection; Dr David Bedford, Royal Tasmanian Botanical Gardens for provision of material of Marchantia berteroana; and Dr Patrick Brownsey, Museum of New Zealand - Te Papa. Tongarewa, New Zealand for provision of material of Neohodgsonia mirabilis. We acknowledge helpful reviewers comments of Dr D. Cantrill and Dr J. Douglas. MED extends sincere thanks to Dr P. Jell Acting Director, Queensland Museum for providing facilities. The research was supported by Australian Research Council Grant A 19531899 to MED and Professor George Stewart.

LITERATURE CITED

ANON. 1988. Climatic averages of Australia. (Bureau of Meterology: Canberra).
DETTMANN, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp. 143-170. In Hill, R.S. (ed.) History of the Australian vegetation. (Cambridge University Press: Cambridge).

FIG. 5, A, B, Osmundaceous sporangia, $\times 150$. C, D, Osmundacidites wellmanii Couper, $\times 750 ;$, spore associated with sporangium, D, dispersed spore, E, Baculatisporites comaumensis (Cookson) Potonié, dispersed spore $\times 750$. F-I, Fern sporangia with vertical annulus; $\mathrm{F}, \times 400, \mathrm{G}$, with in situ spores, $\times 200, \mathrm{H}, \mathrm{I}$, $\times 250$ J, Cyathidites minor Couper, spore from sporangium, $\times 750$. K, Triporoletes simplex (Cookson \& Dettmann) Playford, dispersed spore, $\times 750$.

TABLE 1. Register of figured specimens. * denotes holotype.

Taxon/Fig. No.	Slide	Co-ordinates (England Finder)	Registered No.
Gemmae			
Lunularia cruciata			
Fig. 4F-H	LUN/2	K28/1	QMF50110
Fig. 41	LUN/1	L34/2	QMF50111
Marchantia berteroana			
Fig. 4A-C	MAR/1	Q41	QMF50112
Fig. 4D,E	MAR/1	K26/3-4	QMF50113
Marchantites marguerita			
Fig. 3A-C *	THA 163.5/A2	M27	QMF50093
Fig. 3D,E	THA 163.5/A5	E37/1	QMF50094
Fig. 3F,G	THA 163.5/A11	O52/4	QMF50095
Fig. 3H	THA 163.5/A8	G29	QMF50096
Fig. 3I	THA 163.5/A2	C16/4	QMF50097
Fig. 3J,K	THA 163.5/A1	K41/1	QMF50098
Sporangia			
Osmundaceous sporangia			
Fig. 5A.	THA 163.5/A7	P38	QMF50099
Fig. 5B	THA 163.5/K	F29/4	QMF50100
Sporangia with vertical annulus			
Fig. 5F	THA 163.3/A6	J33/3	QMF50101
Fig. 5G	THA 163.5/A3	H27	QMF50102
Fig. 5H	THA 163.5/A16	L38/1	QMF50103
Fig. 5I	THA 163.5/A 16	M37	QMF50104
Spores			
Baculatisporites comaumensis			
Fig. 5E	THA 163.5/2	F31	QMF50105
Cyathidites minor			
Fig. 5J	THA 163.5/2	K50/2	QMF50106
Osmundacidites wellmanil			
Fig. 5C	THA 163.5/2	J45/3	QMF50107
Fig. 5D	THA 163.5/2	Q46/4	QMF50108
Triporoletes simplex			
Fig. 5K	THA 163.5/2	J43	QMF50109

DETTMANN, M.E., MOLNAR, R.E., DOUGLAS, J.G., BURGER, D., FIELDING, C., CLIFFORD, H.T., FRANCIS, J., JELL, P., RICH, T., WADE, M., RICH, P.V., PLEDGE, N., KEMP, A. \& ROZEFELDS, A. 1992. Australian Cretaceous terrestrial faunas and floras: biostratigraphic and biogeographic implications. Cretaceous Research 13: 207-262.
DOUGLAS, J.G. 1973. The Mesozoic floras of Victoria. 3. Geological Survey of Victoria Memoir 29: 1-185.
FRAKES, L.A. 1997. Grossplots: a method for estimating the temperature state of the Earth and Australia, Cretaceous to Middle Miocene. Australian Journal of Botany 45: 369-372.
HELBY, R., MORGAN, R. \& PARTRIDGE, A. 1987. A palynological zonation of the Australian Meso-
zoic. Association of Australasian Palaeontologists Memoir 4: 1-94.
KRASSILOV, V. \& SCHUSTER, R.M. 1984. Palaeozoic and Mesozoic fossils. Pp. 1172-1193. In Schuster, R.M. (ed.) New manual of bryology Vol. 2. (Hattori Botanical Laboratory, Nichinan: Myazuki, Japan).
McLOUGHLIN, S., DRINNAN, A.N. \& ROZEFELDS, A.C. 1995. A Cenomanian flora from the Winton Formation, Eromanga Basin, Queensland, Australia. Memoirs of the Queensland Museum 38: 273-313.

POLE, M. 1999. Latest Albian-Cenomanian monocotyledonous leaves from Australia. Botanical Journal of the Linnean Society 129: 177-186.
2000. Mid Cretaceous conifers from the Eromanga

Basin, Australia. Australian Systematic Botany
13: 153-197.
POLE, M.S. \& DOUGLAS, J.G. 1999. Bennettitales, Cycadales and Ginkgoales from the mid Cretaceous of the Eromanga Basin, Queensland, Australia. Cretaceous Research 20: 523-538.

SMITH, G.M. 1955. Cryptogamic botany, Vol.2, Bryophytes and Pteridophytes. (McGraw Hill: New York).
WALKOM, A.B. 1919. Mesozoic floras of Queensland. Parts 3 and 4. The floras of the Burrum and Styx River Series. Queensland Geological Survey Publication 263: 1-76.
WATSON, E.V. 1964. The structure and life of Bryophytes. (Hutchinson: London).

BOWER SYSTEM AND STRUC'TURES OF TIE GOLDEN BOWERBBRD, PRIONODURA NEWTONIANA (PTILONORIHYC'HIDAE:

CLIFFORD B. FRIIH AND DNWN W. IIRIII

 293-316. Brishanc: ISSN (0074-8835.

Abstract

We examined 60 Golden Bowerbird, Prionuthres nemwomano, bawer sites, involving a total of 48 main (decorated) tower structures during 1078-1907. Only une main bower siructure was decorated actively at any bower nite during any one season. Bower sites were traditional ($n=A y$) or addmentary ($n-11$). 'lraditional sites were dispersed spatially throughoul suitable fopography ar un average of one per 4.2 ha, and at a mear nearest meighbour distance of $151 \pm 44 \mathrm{~m}(\mathrm{n}=12)$. Cighty-fomer per cent of 25 traditional sites were teyularly attended consecutively for 20 scasons. Kudimentar sites were located $78 \pm 36 \mathrm{~m}$ Irom iraditional sites and were ravely active for more than two seasons. Traditional boners consisted of a became two tower structures. Each bower had a bower perch of woody vine, nean-horizontal living sapling, fallen dead branch or tree root averaging $4.6=6.5 \mathrm{~cm}$ diancter, Where they abutted the bower perch, wower sticks were aligned tightly into a platlarm(s), unon which decorations, typically greyish-green lichen Usmed sp. and creamy-white seed pods of Welicone broadbeniana, were placed. Mean minimum age of a traditional bower was $9.6 \pm$ 6.3 years ($n=48$), at a mean of two per site over time. Six sucli howers were attended for 20 scasons. Mean distance of anew traditional bower structure from the replaced sme was 14.3 \% 12.7 mm . New main bower structures started as small single arhorent conicat of may pule-shaped structures. It took two to three seasons for them to reach full size. Foutcen arthoreul fowers of main bowers subsequently became terrestrial, because sticks nceumulated beneath them. Smalf arborsal and terrestrial subsidiary bover structures, built at a mean distance of $5.4=4,2 \mathrm{~m}$ from main bower structures, sometines formed the hases for a new main one; suggesting a function of subsidiary structures. We eonelude that while bover' size and shape are not conservative in this bowerbird, she plallomen arcals) upon which decorations were phaced, are conservative in heing specilically located, better constucted and in being decorated, The signiticance of hower fom and adfult male plumage in the

The Golden Bowerbind, Priomodura mewreminma. represents a distinctive monotypic genus endemic fo the Atherton Region of the Australian Wet Tropics, tropical northeast Queenslund above 680 mm asl (Blakers et alo, 1984: Nix \& Switzer, 1941). This species, the smallest bowerbird (25 cm in length and averaging 75g), is strikingly sexually dimorphic, Adult-plumaged males are predominantly brilliant yellow on their underparts, brownish olive above with a small bright yellow crest on the central crown, and a larger yellow nape patch. Females and immature mates are pale grey below and brownish olive above.

The Golden Bowerbird is one of 16 , olthe total 19, bowerbird species (Ptilonorhynchidac) that has a polygynous mating system, in which males are promiscuous and females build and atlend nests alone. Males build a large stick bower (Fig.

1) of the "maypole" type, as dos the four gardener buwerhirds of the New Guinea genus amblyornis. This is quite unlike the cleared 'court' of 'Semopoevers the "mat" aldecumbated fern fronds" of Archboldia. or the stick or grass "avenuc" lype bowers of Ptilonorkynchus, Chlumydera attod Sericultus spp. (Marshall, 1954; (iilliard, 1969: Couper \& Furshaw, 1977; Borgia. 1986; Frith. 1989; Frith ct al., 1994, 1996a,1): Fith \& Frith, 1989, 1943, 1994, 1995; Donaghey, 1981, 1996). Bumers of most bowerbird species require rebuilding of major refurbishment withit and between each display season, but maypole bnwers of Gulden Bowerhirds. and of some of the closely relared gardener bowerhirds, persist year to year (Pructi-Jones \& Pruett-Iones, 1982, 1983).
The Golden was the last bowerbird 10 be discovered in Anstralia. For jterearly history see

FIG. I. A traditional twin tower bower and its adult male Golden Bowerbird owner. Note where tower sticks meet the bower perch (black in this picture) they are more skillfully placed and aligned, into a discrete "platform', than are sticks of the rest of the structure. Decorations are placed on and adjacent to these 'platforms' and those seen here are beard lichen Usnea spa, seed pods of Aclicone broadhentiank and the creamy white flowers of Darlingia darlingiana (one in bird's bill).

Chisholm \& Chaffer (1956). Bowers were first described by Broadbent (in Campbell, 1900), Day (in North, 1904); Broadbent, 1902; North. 1909; Sharp (in North, 1914) and De Vis (in Mathews, 1926). Photographs of a bower appeared in Jackson (1909), but it was not until much later that more bowers were described (Bourke \& Austin, 1947; Warham, 1962; Chisholm \& Chaffer, 1956; Chaffer. 1958 , Chisholm, 1957, 1963; Gilliard, 1969; Marshall, 1954). Bowers typically consist of two stick towers, which may or may not be of equal height. or a bulky and irregularly-shaped single massif of sticks with a bower perch protruding from one side. Structures vary considerably (Frith, 1989). Each tower is built upon and around a supporting central sapling(s) or tree. Twin tower bowers are up to Im apart and are interconnected by a living or dead, arboreal or terrestrial, horizontal or
near-horizontal, perch. Bower decorations are placed on the more neatly-aligned tower sticks adjacent to and on the bower perch. These include: greyish-green lichen Usnea sp., creamy-white seed pods of Melicope hroadhentiana, and whitish tlowers of several plant species (Chisholm \& Chaffer, 1956; Chaffer, 1958; 1984; Warham, 1962, Frith \& Frith, 2000a). Several other, smaller, stick subsidiary bower structures ('gunyahs' of Broadbent, in Campbell, 1900), are built close to the main (decorated) bower structure. Bower building/maintenance/decoration reaches a peak during the display season, from late AugustDecember on the Paluma Range. Such activity declines during the heavier wet season rains of January and/or February, and when birds are moulting. Renewed, post-moult, activily commences in mid-March and April (Frith \& Frith, 2000a,b).

FIG. 2. Dispersion of 41 traditional bower sites of male Golden Bowerbirds: 12 in study area 1,10 in study area 2, and 19 in adjacent extralimital areas. Each 50 ha study area measured $1 \times 0.5 \mathrm{~km}$. Those numbered are the 25 traditional sites examined seasonally (S78-S97; see Table 4). Note: single lines show creek systems, double parallel lines represent the dirt road from Paluma Township (entering at bottom) to Paluma Dam (to north) with a side track through SA1; the dotted line shows a snig-track through SA2 forest.

Bowerbird studies are numerous, but few deal systematically with variation in bower/court structures/sizes (as opposed to bower decorations) or provide comparative measurements of them. Exceptions are those of Borgia (1985) for the Satin, Diamond (1987) for Vogelkop, Amblyornis inornatus, Lenz (1993) for Regent, Sericulus chrysocephalus, Frith \& Frith (1994) for the Tooth-billed, Scenopoeetes dentirostris, Frith et al. (1996a) for Archbold's, Archboldia papuensis, and Frith et al. (1996b) for Great Bowerbirds, Chlamydera nuchalis. The present study, carried out during 1978-1997, provides the first detailed information on variation in the structure and size of bowers of Golden Bowerbirds. It includes information on bower site location and dispersion, bower site constancy, bower age and bower building. Data on male seasonal activities at bowers, including attendance levels, bower maintenance, vocalisations, displays, decoration theft, and home ranges are presented elsewhere (Frith \& Frith, 2000a,b), as
will be data on bower ownership, male survival and home ranges (Frith \& Frith, unpubl. data).

METHODS

STUDY AREA. This study was performed in upland tropical rainforest, classified as simple notophyll vine forest (Tracey, 1982), at about 850 m asl, 7 km from Paluma Township on the Paluma Range, NE Queensland. The main 50ha study area (SA1, at $19^{\circ} 00^{\circ} \mathrm{S}, 146^{\circ} 10^{\circ} \mathrm{E}$) measured $1 \times 0.5 \mathrm{~km}$ and was permanently gridded with metal stakes (see also Frith \& Frith 1994, 1995). A narrow dirt road bisected the length of the broad main ridge line of SA1 (Figs 2, 3). To the north of this road was a broad flattish ridge $30-50 \mathrm{~m}$ wide and 600 m long; with a discrete hill from which a slope, dissected by gullies, fell steeply down to a perennial creek. To the south the ridge was flatter and wider (240 m); interspersed with patches of Calamus-dominated undergrowth and a system of creeks, except at the western end where it rose to a ridge and another

FIG. 3. Dispersion of 15 traditional (0) and 10 rudimentars $(+)$ bower sites of male Golden Bowerhirds in study area 1 and outside (distance indicated in figure) its perimeter. Note: one rectangular quadrat $=2$ ha; number in top right hand comer of each $=$ topographic type predominant $(>75 \%)$ in that quadrat. Faint lines indicate location of seasonal gullies.
hill. Beyond this area the terrain dropped away steeply. A second hill-side study area (SA2) of the same size was not gridded. It was contiguous with SA1 and extended northwestwards up a hill to 950 m asl. An old forestry snig-track bisecting a narrow ridge provided access up this hill (Fig. 2). Both study areas were searched systematically for bowers by CBF during August 1978-February 1981 for a total of 975 h , besides innumerable unrecorded hours of random searching during the course of this and other bowerbird studies (Frith \& Frith, 1994, 1995, 1998). Extralimital areas along tracks and ridges for a distance of up to 2 km beyond SA1 and SA2 were also casually searched, as were other areas around Birthday Creek Falls and Paluma Dam.

DEFINITIONS. 'Site' describes the location of any active bower found, and any replacement bower(s) built subsequently during the course of the study. A traditional bower site was one attended for at least two seasons (Frith \& Frith, 1994). A traditional bower was a large and well-established (single or twin tower) structure that was regularly attended, maintained, and decorated, throughout subsequent seasons by its traditional adult male owner. In a few instances, after the disappearance of a long-term traditional adult male owner, a traditional bower site was irregularly attended by immature (female-
plumaged) males, who either maintained the existing traditional bower or built a new rudimentary structure at that site (Frith \& Frith, 2000b). Such a rudimentary bower subsequently became larger, and a traditional one, once an adult male again attended the site regularly.
A rudimentary bower site was one established near a traditional site by the construction of a rudimentary bower. Such bowers were poorly constructed, maintained, decorated and irregularly attended for only a few days/weeks each season, by immature males. We use regularly attended to imply full-time seasonal attendance by traditional owners at traditional bowers, and 'irregularly attended' to imply part-time seasonal attendance by immature males at traditional or rudimentary bowers. We refer to a display season by the year in which it started ($\mathrm{S} 78, \mathrm{~S} 79 \mathrm{etc}$).

BOWER SITES, THEIR LOCATION AND DISPERSION. We located 60 bower sites and 98 main bower structures (Table 1). Each bower site was plotted and each bower numbered (site number followed by suffix a, b, etc., for every bower built at a site) and tagged with a scored aluminium label on a tree supporting a bower tower.
The possible influence of differing topography upon bower structure and dispersion of 12 traditional bower sites in SA1 was examined.

TABLE 1. Number of bower sites, bower types (traditional or rudimentary) and bower structure of male Golden Bowerbirds and the type of bower structure (single or twin tower) when first found on the Paluma Range, north Queensland. $*=$ at least 14 became twin tower bowers during the study.

	Total number		Number of old bowers (before 1978)			Number of new bowers (1978-1997)		
	Sites	Bowers	Single tower	Twin towers	Total	Single tower*	Twin towers	Total
Traditional	49	86	1	11	12	30	44	74
Rudimentary	11	12	3	0	3	8	1	9
	60	98	4	11	15	38	45	83

Various quadrat grid sizes were uniformly applied to a topographic map of the study area to find the most suitable grid size that resulted in each quadrat containing $>75 \%$ of a given topographic type (see Frith \& Frith, 1995). This proved to be a grid of 25 quadrats each of 2 ha, or $200 \times 100 \mathrm{~m}$. Each quadrat was assigned to the topographic type predominating (Fig. 3) as follows: 1) very steep slopes of $>40^{\circ}$ dissected by gullies (8ha); 2) steep hill slopes of $20-40^{\circ}$ (4ha); 3) hill tops with $10-20^{\circ}$ slopes (4ha); 4) gentle hill slopes of $5-10^{\circ}$ (6ha); 5) ridge-side with $<10^{\circ}$ slopes (8ha); 6) open flat or $<5^{\circ}$ sloping areas (6ha); 7) disturbed flat areas with dense understorey dominated by Calamus (4ha); 8) flattish to $<5^{\circ}$ sloping areas dominated by creek systems and dense understorey (10 ha). To test whether dispersion of bower sites was random, the numbers of sites per quadrat was compared to expected Poisson distributions. Coefficients of dispersion (C.D: variance to mean ratio) were calculated as a quantitative description of dispersion. This method is based on the variance being equal to the mean in the Poisson distribution. Variance to mean values of 1.0 imply random, >1 implies clumped, and <1 implies a regular or spatially uniform distribution (Sokal and Rohlf, 1969). The significance level of an observed deviation of the C.D. from 1.0 was determined by a t -test ($\mathrm{n}-1$, one-tailed), the t -value being calculated by dividing the difference between the C.D. and 1.0 by the standard error of the deviation.

Mean distances between traditional bowers at 12 traditional sites in SA1 and at three other sites just outside its perimeter (Fig. 3) were estimated in two ways. First, nearest neighbour distances (NND) between sites were analysed using the method of Clark \& Evans (1954). In this method: when two sites are closer together than they are to any other ones then the same distance is included twice. Secondly, although bower sites were not arranged linearly in this area, we estimated the mean inter-bower distance. This involved taking
the measurement from one bower to the next closest and so on throughout the whole 50ha. This allowed us to compare linear inter-bower distances with those presented in other bowerbird studies.

BOWER CHARACTERISTICS. Seventy-seven traditional bowers were measured and photographed. The following measurements were taken: height and base circumference of each tower and, in twin tower bowers, the distances between tower bases and apices', the type, axis direction, height and diameter of the bower perch and, in twin tower bowers, the length of perch exposed between the platforms of the towers; the number and girth at breast height (gabh) of saplings and trees incorporated into each tower. Number and size of associated arboreal and terrestrial subsidiary structures were measured and their distances relative to the main bower perch plotted. Means are given \pm one standard deviation.

To give an indication of relative bower size we estimated bower volume by multiplying tower height with base circumference. Spearman rank correlation (one-tailed test corrected for ties) was applied to test whether there was a correlation between bower size (= volume) and situation ($=$ degree of slope) at 42 traditional sites. When we measured two bowers at a site ($n=6$) we took the mean value of each measurement.
BOWER SITE CONSTANCY, BOWER AGE, BOWER BUILDING AND STRUCTURAL CHANGES. To provide data on site constancy we examined 25 traditional bower sites from S78-S97 but excluding S91, S94 and S96 (Fig. 1). Our absences during these latter seasons did not affect our results as all sites save one (site 27) remained actively attended by birds during the subsequent season(s). We omitted season 91 because it was excessively dry, bowers were seldom attended and were poorly decorated. Rainfall typically averaged 259 mm (S78-S90) for September-November; but in S 91 only 94 mm of rain fell, mostly after 12 November.

FIG. 4. Shapes and sizes of single tower bowers. (scales = a one metre stick marked every 10 cm or CBF (180 cm tall) or DWE (162 cm tall) in picture), A, hower 37a: a compact single tower wilh a curved vine bower perch (right) with small terrestrial subsidiary (Iclt in background). April 1979. B, bower 23a: a bulky single
 sticks to the right end of the bower perch never became a second tower and the bower changed little in shape or size over six seasons. C, bower 22a: an amorphous three-peaked massif with a rotten bower perch on the ground thett of photograph). Iprillway The owner had replaced this hower whthanew one beptember 1979 (see Fig. 11C). D, bower 19a: an arborcal tower with a bower perch 161 cm above ground. April 1979. The few irrgularly-placed sticks to the right end of the bower perch subsequently became a second tower. E, bower 2a: a tall massif supported by a vine that also formed the bower perch 116 cm above ground. April 79 . It later became a twin tower structure.

The 25 traditional bower sites intolsed a total of 51 bowers. These bowers were described, phoougraphed and or measured during apris 1979, August 1984 and Fehruary 1990; and in
other seasons if their structure changed notably: Photngraphes were taken from the same lecation and herght each time, so that temporal changes in bower shape and structure could be assessed
accurately. These data provided us with information on age of bowers, changes to bower structure and bower building.

RESULTS

BOWER SITES, THEIR LOCATION AND DISPERSION. Traditional Bower Sites. We located 49 traditional bower sites (Table 1): 12 in SA1, 10 in SA2, 19 in adjacent extralimital areas (see Fig. 2), two near Birthday Creek Falls and six around Paluma Dam. Bower sites had medium to large forest trees, many saplings, and the odd tree ferns above and around them. Woody lianas and climbing pandans were common, but large stands of Calamus were not close to bowers. Canopy foliage cover was estimated above 37 sites: 12 having a coverage of $>90 \%, 7$ of $80-90 \%$, 11 of $70-80 \%$, five of $60-70 \%$ and 2 of $50-60 \%$. Thus, 51% of sites had a cover of $>80 \%$, and 81% of $>70 \%$.

The direction of ground slope down and away from the bower was recorded for 45 bower sites: 20 were on a N to E bearing of $0-90^{\circ}, 11$ on E to S bearing of $100-175^{\circ}, 2$ on a S to W bearing of $210-240^{\circ}, 8$ on a W to N bearing of $280-360^{\circ}$ and 4 were on flattish ground with no slope. The degree of slope on which bowers were placed at 45 sites were as follows: 17 on flat to 10° gentle slopes, 9 on $11-20^{\circ}$ slopes, 6 on $21-30^{\circ}$ slopes, 7 on $31-40^{\circ}$ slopes and 6 on $41-45^{\circ}$ slopes. Thus, bowers were built on slopes that averaged $21 \pm$ 15°, with 71% being on slopes of $<31^{\circ}$. On $0-10^{\circ}$ slopes bower size ($=$ volume; see Methods) averaged $740 \pm 214 \mathrm{~cm}^{3}$, on $11-20^{\circ}$ slopes 589 $\pm 208 \mathrm{~cm}^{3}, 21-30^{\circ}$ slopes $625 \pm 223 \mathrm{~cm}^{3}, 31-40^{\circ}$ slopes $620 \pm 240 \mathrm{~cm}^{3}$, and $41-45^{\circ}$ slopes $684 \pm$ $393 \mathrm{~cm}^{3}$. There was no significant correlation between bower size and degree of slope built upon ($\mathrm{r}_{\mathrm{s}}=0.22, \mathrm{P}>0.05$).

Bower sites were on flatter terrain and along ridge slopes either side of tracks or road, on gentle slopes and ridges immediately around the hill crest, and below steeper slopes where terrain levelled (Fig. 2). The 12 traditional sites in SAl averaged one per 4.2 ha , and were spatially dispersed throughout suitable topographic types ($C D=1.45, t=1.54, P>0.1$). Eight of the 12 were located on flat to gently sloping ($<10^{\circ}$) ground (mean $=$ one per 3.8ha) of topographical types 4, 5,6 and 8 (Fig. 3). The remaining four sites (1,3, 6 and 17) were located in topographical types 1 and 2 (one per 3.0 ha), on steeper ground. No bower sites were found in topographic types 3 and 7.

In $\mathrm{S78}$, the mean inter-bower linear distance from one site to the next closest one in SA1 ($\mathrm{n}=$ 12), and three additional sites (7,21 and 29) just outside its perimeter (see Fig. 3), was $165 \pm 41 \mathrm{~m}$ (range 110-222m). Mean NND distance was 151 $\pm 44 \mathrm{~m}$ (range $110-222 \mathrm{~m}$). During seasons S78-S90, the mean NND of bowers at these 15 sites varied from 138 ± 52 to $151 \pm 47 \mathrm{~m}$ (mean of mean $=147 \mathrm{~m}$). Differences were due to temporary disuse of bower site 20 during S87 and S88, and the establishment of replacement bowers at different locations within a site.
Rudimentary Bower Sites. We found 11 rudimentary bower sites (Table 1): ten in SAl (including one just outside it; see Fig. 3) and another 140 m outside SA1. Eight were on flat to gentle $\left(<11^{\circ}\right)$ slopes and the others on $21-30^{\circ}$ slopes. Canopy cover was $70-85 \%(\mathrm{n}=3)$. Rudimentary sites in SAl averaged $78 \pm 36 \mathrm{~m}$ (n $=8$) from a traditional bower site. Of 11 rudimentary sites, three were attended for one season, one for two, and four non-consecutively for two, three ($\mathrm{n}=2$) and four seasons. Three others were abandoned when found (pre-S78).

BOWER CHARACTERISTICS. Structure and Size of Traditional Bowers. Traditional bowers were single or twin tower structures of sticks of varying lengths, texture and diameter (Fig. 1). Only one (the main) bower structure at any bower site was attended consistently, maintained and decorated during a season. We examined a total of 86 traditional bowers at 49 traditional sites: 12 were disused old bowers (11 being twin towered) that had been active before S 78 , but the other 74 were attended during some part of the study (Table 1). Of the 86 bowers, 36% had a single tower and 64% two towers when found. At least 14 single tower bowers subsequently became twin tower bowers (see Table 4), thus increasing the percentage of twin tower bowers to 80 .

Single tower bowers varied greatly in shape and size from: a single compact conical structure with a curved vine bower perch (Fig. 4A); a single bulky, irregular-shaped large massif with a sloping living sapling bower perch (Fig. 4B); a huge amorphous multi-peaked massif with a base circumference 615 cm and a rotten ground bower perch (Fig. 4C); an entirely arboreal structure with bower perch 161 cm above ground (Fig. 4D); to a 205 cm tall single massif with a "liane' bower perch 116 cm above ground (Fig. 4E). Single tower bowers had only one platform, even though a handful of sticks was placed at the opposite end of the bower perch in a few cases (see Fig. 4B,D)

FIG 5. Shapes and sizes of twin tower bowers. A, hower 29b: a bower with one tower ferrestrial and the other

 1, brower 10a a hower with gwo widely-spaced amorphous fowsers. The s ine bower perch aloo partly supports the wher on the right. Apil fa79. Ihis hower chamed lotte during the catire study (ree Table d). Aote: it is easy to we how a bower like this mas have urignated from two low abomed subsidiares such as the ones in Fis. 8B. I. bower loa: a sheletal hemer is ith a romen hower pereh that. despite its appearance, was regularly atfended from
 rotted alvay.
it which stat the scound tower eould be built to develop a twin tower structure.

A fort either arboreal (Fig. SA) or termestrial (Fig. 5B) twin bowers had markedly

TABLE 2. Size (cm) and volume $\left(\mathrm{cm}^{3}\right)$ of single and twin tower traditional bowers of male Golden Bowerbirds on the Paluma Range, north Queensland. * = sample sizes vary because not all parameters of each bower were measured of each bower; ** $=$ height (base to top apex) \times base circumference.

asymmetrical towers. Eleven bowers had one larger terrestrial tower and a smaller arboreal one when first found. At least six arboreal towers subsequently became terrestrial due to an accumulation of dropped sticks beneath the structure. Typically, however, twin bowers had two well-formed towers with one tower taller and/or more massive than the other and their towers extending down to the ground. They varied greatly in shape and size: from a compact U-shaped structure (Fig. 5C) to widely-spaced neat (Fig. 5D), more amorphous (Fig. 5E), or skeletal (Fig, 5F) structures. The towers of the largest terrestrial bower were 174 and 198 cm tall, with base circumferences of 5 m and 3 m respectively (Fig. 6A). In two bowers both towers were arboreal, with their bower perches 2 m above ground (Fig. 6B).

Mean bower measurements for 15 single, and 60 twin, tower bowers are given in Table 2, where ranges exhibit the cumulative variation of bower structure outlined above. Single tower bowers averaged 13% taller, 21% larger around the base, and 29% bulkier (volume), than the larger tower of a twin bower. Moreover, their mean volume was similar to that of the mean combined volume of both towers of twin structures ($=654 \mathrm{~cm}^{3}$). In 55 twin bowers, the larger tower was both bulkier and taller than the smaller one, but in five bowers the bulkier tower was the same height $(\mathrm{n}=3)$ or slightly shorter ($\mathrm{n}=2$; by 19 and 34 cm). Distances between tower apices averaged $98 \pm$ $21 \mathrm{~cm}(\mathrm{n}=34)$, and between their bases $25 \pm$ $18 \mathrm{~cm}(\mathrm{n}=38)$. The bases of eight twin tower bowers were connected beneath the bower perch by the amalgamation of sticks of each tower (see Figs 5C, 10F).

Towers were built around, and supported by, saplings and vines ($<25 \mathrm{~cm}$ gabh) and/or trees ($>25 \mathrm{~cm}$ gabh). Larger single towers, and those of twin bowers, encompassed more such supports than did the smaller tower of a twin (Table 3). The gabh of saplings within bowers averaged $7.9 \pm$ 5.7 cm , and of trees $62.8 \pm 23.6 \mathrm{~cm}$. Of 272 examined tower supports, 83% were saplings, 12% trees and 5% vines (12 woody vines and a Calamus vine). Four of the vines and two of the saplings also formed the bower perch.

The bower perch protruded from a single tower bower, or connected the two towers of a twin (see Figs 4-6). The axis of the bower perch was at right angles to the axis of the inter-tower bower 'avenue'. Bower perch compass alignment was recorded at 49 traditional bowers: 20 were aligned between $0-45^{\circ}, 8$ between $45-90^{\circ}$, 9 between $90-135^{\circ}$ and 12 between $135-180^{\circ}$. The bower perch in 61 bowers consisted of: a woody vine (43%), living saplings leaning toward the horizontal (24%), a rotting dead branch or vine (24%) or a narrow tree root (3%; see Figs 4 \& 5). Bower perches averaged $4.6 \pm 6.5 \mathrm{~cm}$ in diameter (Table 3). The top of bower perches averaged $42 \pm 40 \mathrm{~cm}(\mathrm{n}=59)$ above ground; but if the 4 atypically arboreal towers, with resultant unusually high perches, are excluded (see above) the average becomes $33 \pm 19 \mathrm{~cm}$.
Where tower sticks met the bower perch they were conspicuously more neatly and tightly aligned into what we term a platform(s); see Fig. 1. Whereas single tower bowers had only one platform, twin structures had a platform at either end of the exposed bower perch. The mean length of exposed bower perch of twin tower bowers was $18 \pm 8 \mathrm{~cm}(\mathrm{n}=49)$, but the platforms of 4 such bowers actually met atop the bower perch

FIG. 6. Largest and highest twin tower howers. A, bower 18 a: the largest terrestrial twin structure had 174 and 198 cm tall towers with base circumperences of 5 m and 3 m pespectively. A hurizontal fiving sapling formed its hower perch. April 1979. B, bower 34 b: the highest arboreal twin structure had both towers and is vine bower perch $2 m$ above ground. Octoher 1495 , Note: the sticks of the swo plationns ertend to meet und fuse atop the

(sec Figs 5C \& 6B). [3ower decorations were placed only on platform sticks and those just heside/above them (Fig. 1). The relative quantities of each decoration type and their placement (i.e. on one or both platfons) varied from bower to bower and season to season. During peak display season, decorations consisted of a carpet (30-40) pieces) of greyish-green lichen Usmea sp, and $5-20$ sprigs of ereamy-uhite dehisced ripe fruit with attathed hlack seed (sced pods hereather) of melicope, Melicope hroadbentiuna (see Fig. 1). Other, less frequently used, decorations included creamy-white llowers of jasmine (Jasminitm kajewskii), Brown Silky Dak (Darlingia darlingiana) and Dendrobium spp. orchids.
Structure and Size of Rudimentary Bowers. We examined 12 rudimentary bowers at 11 rudimentary sites (one site had two bowers huilt/attended during dilferent seasons; see Table 1). These were pourly constructed, maintained, decorated and attended irregularly for only a few days/ weeks each season, by immature males. They consisted of a conical-shaped lonse mass of sticks lacking a plarform, ot with only an ill-detined one, and often lacking a bower perch or decorations (Fig. 7A). Height of their towers averaged $\$ 4 \pm 12 \mathrm{~cm}(\mathrm{n}=9: 3$ being too old to measure), and mean volume $304 \pm\left[88 \mathrm{~cm}^{3}(\mathrm{n}=\right.$ 3). Only one rudimentary bower had a second tower, a mere 50 cm tall pile of sticks placed on the ground.

Following the disappearance of their long-term traditional adult male owners, a few traditional sites were irregularly attended by immature mate(s) who built new rudimentary bower structures there. Rudimentary bowers an traditional sites were better formed, wiff a bower perch and more obvious platfonm (see Fig. 7B), than those built at rudimentary sites. They were all conical single towers (mean height $=95 \pm 25 \mathrm{~cm}$, $\mathrm{n}-5$; mean volume $312 \pm 102 \mathrm{~cm}, \mathrm{n}=2$). Some became a larger, and a traditional, bower once an adult male again regularly attended the site.

Structure and Size of Subsidiary Bower Siructures. The frequent use, by males, of one or more favoured horizontal perches around bower sites resulted in birds placing, or leaving. sticks on them at the point they diverged from the trunk. Such sticks accumulated, became fused by fungi, and thus developed, over time, into subsidiary structures. Some subsidiaries were in the immediate vicinity of the main bower(s); (see Figs $4 \Lambda, 5 \mathrm{~F}$), while others were up to 20 m distant.
We recorded 36 terrestrial and 115 arboreal subsidiary structures at 46 traditional bowers: located at an average of $5.3 \pm 4.2 \mathrm{~m}$ from the main bowet perch, and averaging 3.3 (range 1-16) in number per site (Table 3). All but four of the 46 bowers had several arboreal subsidiary structures (mean $=2.7$, rance $=1-13$), hut only 18

 sample sizes vary because not all parameters of each bower ware measured．＊＊$=$ mean of jomeans．

	Гower suffarts						Bawer yerches			
	Saplingsivines			Treen						
	Single tower nowers \＆ larger sower of min bowers	Smaller tower of twin bowers	Ginh 3 breast beloht	Single fower howers ${ }^{2}$ largel forme of livir browers	Smaller tower of ［w：1 thycion	Givth at breast helath	Lyposed lenstle	Hegheer point（alj Innecis）	1 Hichest poinl lex－ arhoreal buwers）	Drancter
Sample number＊	50	35	511	511	35	27	4.9	59	55	55
Mean	3.8	1.4	7.4 ＊	0.54	0.1	62．84\％	17.7	41.7	32.6	4.6
sed．	2.6	1.3	S．${ }^{\text {\％}}$	0.7	D． 8	33.6	8.1	393	18 心	6.5
Range	1－12	$0-5$	1－13	$0-3$	$0-1$	28．5－133	0－3x	3.2010	F－x	1．4－-1

had terrestrial ones（mean $=2$ ，range $=1-5$ ）．The height of arboreal subsidiaries，from their base to apex，averaged $168 \mathrm{~cm}($ range $=36-388 \mathrm{~cm})$ and that of the terrestrial ones 69 cm \｛range $=$ $15-106 \mathrm{~cm}$ ）from ground to apex．
Terrestrial subsidiary structures were built mostly around saplings，but a few incorporated a Iree（Fig．8A）．Two subsidiaries were often built close together（ $<$ Im apart）on the same horizontal plane and resembled a miniature twin tower bower（Fig．SB）．A few subsidiary structures． particularly such pairs of them，subsequently became the basis for new nnain bowers．Arboreal subsidiaries were built where a branch forked horizontally from a sapling／tree trunk（Fig．8C）． or where a leaning sapling or vine crussed a sapling／tree trunk（Fig．8D）．Most（ $\mathrm{n}=90$ ）were too high（ $>1.5 \mathrm{~m}$ above ground at base）to measure．Those nearer the ground（ $<1.5 \mathrm{~m}$ ）were usually larger and conical，and averaged 61 cm （range $20-120 \mathrm{~cm}, n=25$ ）tall（Fig．SD）．As dropped sticks accumulated beneath them $(n=3)$ ， such arhoreal structutes became terrestrial ones． We recorded only one terrestrial and three arboreal subsidiaries at rudimentary bower sites．
Bower Site Constancy and Bower Age．Of the 25 traditional bower sites monitored seasonally （S78－S97），84\％were attended every season for 20 years（Fig．2；Table 4）．Of the 4 remaining sites：site 20 was attended for 18 （unattended S87－S88），site 27 also for 18 （unknown in 596. and derclict in S97），site 16 for 11，and site 21 for 5 （ $\mathrm{S} 78-\mathrm{S} 82$ ）consecutive seasons．

Twin tower bowers were established and attended for the first S and 14 seasons at bower sites 20 and 27 respectively，but when their long－term adult male owners disappeared

Siuhaidiary homber xtructures					
1 crre	trial	Arboreal		Total	［istarce
Number	1 teiwht	Numbet	1feigh shove pround	natumer per butver sike	from bower perch
18	18	42	42	15	46
2	68800	27	$168{ }^{\mathrm{m*}}$	33	252
1	26	2.6	94．9	3.3	\＄15
1.5	15．1（6）	1.18	26．988	1.817	（1－2000

immature males took over and huilt and attended nedinemtary bowers（2 at site 20 and L at 27. Table 4）．Site 16 had 2 single tower traditional bowers attended consecutively by 2 adult males over 11 seasons（until 888 ）and was then abandoned（Table 4）．There was only a rudimentary bower at site 21 in 578 ，but $14 m$ away was a disused large twin tewer flatened hy a tree fall；it had obviously been attended during previous seasons．Its rudimentary bower did not change（S78－S82），was not replaced，and was only irregulary attended by one to several immature males before being abandoned．

The 25 traditional sites had a total of 51 bowers at them during the study（Table 4）．Seven of these 25 sites had one main bower， 12 two bowers， 4 three and 2 four bowers；al a mean of 2 per bower site over time．Two bowers（15a and 20d）re－ mained rudimentary for many seasons belore becoming larger and traditional ones（see bel（ux）． whereas three other rudimentary bowers（2）（）． 21a，27b）did not progress and were abandoned （Table 4）．Thus，of the 51 bowers， 48 were／ became traditional and 3 remained rudimentary： The mean minimum＇life＇of a traditional bower was $9.6=6.3(11=48)$ years．Six traditiontal

FIG. 7. Shapes and sizes of rudimentary bowers. A, this newly-built rudimentary bower (30) was first found at a new rudimentary site in August 1979. B, this rudimentary bower (21a) was built at a traditional site after a tree had destroyed the previous twin tower structure. It never increased in size and the site was eventaully abandoned.
bowers were attended for a minimum of 20 seasons (Table 4).

BOWER BUILDING AND STRUCTURAL CHANGES. We observed construction of 10 traditional bowers. Four ($1 \mathrm{a}, 17 \mathrm{~b}, 45 \mathrm{~b}, 45 \mathrm{c}$) started as completely new arboreal structures, 4 ($3 \mathrm{~b}, 6 \mathrm{~b}$, $20 \mathrm{~b}, 47 \mathrm{~b}$) developed from an existing subsidiary bower structure, and 2 (15a, 20d) were built from existing rudimentary bowers, as follows:

In S78 we found only a derelict (pre-S78) bower at site 1. In March 1979 a handful ol'sticks had been newly-placed on a dallen horizontal sapling where it met a vertical tree, 20 m distant from the derelict structure. This new bower (1a) resembled a sparse arboreal subsidiary, but it was decorated with two sprigs of melicope seed pods and one piece of lichen placed on Freycinetia sp. vine above the bower perch (Fig. 9A). By April 1980 the structure was a small conical arboreal subsidiary. By June 1980 it was an untidy tower of unfused sticks, lacking a platform and resembling a terrestrial rudimentary bower decorated with 10-12 lichen pieces (Fig. 9B, compare with Fig. 8A). By S80 it was a small terrestrial single tower, and by $S 81$ a larger massif with a well-formed platform. Its bower perch subsequently slipped to the ground and a small handful of sticks placed on it 14 cm from the large tower. By S82 this bower was a terrestrial twin, its second tower much the smaller (Table 4). It took 3.5 years to reach this stage.

Bower 17 a was flattened by a tree fall in S 85 . In November 1986 we found a small conical arboreal bower (17b), of loosly-placed unfused sticks, where a leaning sapling crossed a vertical one, about 45 m from the flattened bower and 63 cm above ground. By October 1987 this was a
terrestrial single tower, and a pile of sticks had been placed further along (20 cm) the sapling where it crossed a large tree. By February 1990 the latter pile of sticks was a small second arboreal tower, and by November 1991 this was larger and terrestrial. It thus took four years for this bower to become a large twin tower structure (Table 4).

In December 1979 we found a newlyconstructed small single conical arboreal tower of unfused sticks, piled between the vertical trunks of three saplings, 50 cm above ground. This new bower (45b) was 20 m from a derelict one of the previous season (Table 4). In S80 bower 45 b was still small, but by S 81 was a substantial terrestrial single tower bower that remained so until $S 88$, but by which time it had deteriorated. In October 1989 replacement bower 45 c , about 20 m from 45 b , was a single tall arboreal tower 60 cm above ground. By September 1990 it was at twin tower bower with its second tower an arboreal one. By November 1991 both towers had become terrestrial (Table 4).

Four traditional bowers developed from an existing arboreal (6 b and 47 b) or terrestrial (3 b and 20b) subsidiary bower (Fig. 9C,D). These took two to four years to become large single (47b) or twin (3b, 6b, 20b) tower structures (see Table 4). Traditional bower site 15 was attended only by immatures males from S78-S87, and its bower was small and rudimentary. When an adult male took over the site in S88 the rudimentary structure, unchanged for many years, became a larger single tower bower. By S90 it was a twin structure (see Table 4). Similarly, in S 89 bower 20d was a new loosely-constructed rudimentary terrestrial tower attended by immature males. It

FIC 8. Shapes and sizes of subsidiary bower structures. A, this terrestrial subsidiary was tin from the main bower structure (20a) in Apri\& 1979. When bower 20a (see Fig. 5C) was damaged by a tree fall in January 1981, this terrestrial structure formed the basis of the new hower (20b). By S82 it was a twin tower bower, B, often two arboreal subsidiaties were buit close together $(<1 \mathrm{~m}$ apart) on the sanne horizontal support so that they resembled a miniature twin tower bower. April 1979. C, arboreal subsidiaries were usually buitt where a tranch forked horizontally from the trunk of a sapling/tree. April 1979. D, this arboreal subsidiary was built where a vine crossed the trunk of a small tree. April 1979. Note: This subsidiary deteriorated but could have hecome an arboreal bower such as the one shown in Fig. 4D.
remained so until at least S 93 , but by S 97 it was a substantial single tower bower (its ownership unconfimed).

Numerous bowers progressed through stages of structural development similar to the above. Of the 48 traditional bowers examined at 25 traditional sites, 20 were initially single towers, but 14 of them were changed subsequently into twin structures (Table 4 and Fig. 10A-D). The original tower of these bowers remained the larger of the two. Morcover, the main towers of 8 arhoreal (2 single and 6 twin) bowers subsequently became terrestrial ones, as did the
smaller towers of 6 lwin tower bowets (Table 4 and Fig. 10E,F).

Most seennd towers started as arboreal structures, because the bower perch was above ground. For example, bower 19 a was an arhoreal (128 cm tall) single tower in 578 , with but a handful of sticks at the far end of its buwer pereh (see Fig. 4D). lleavy rains in January 1981 caused the entire bower structure to slip toward the ground (bower perch from 161 cm down to (60) cm). In 582 it was an arboreal twin bower, the handful of sticks having been developed into the second tower, but both towers soon became

FI(i. 9. Buwer construction at traditional sites. A, B, bower la: this was little more than a handful of newly-placed sticks on a fallen frorizontal sapling where it met a vertical tree in March 1979 (A) but by June 1980 (B) this had become a terrestrial tower of unfused sticks that lacked a platform. By September 1982 it was a twin tower structure. C , bower 6b: this originated in March 1980 from an arboreal subsidiary. The subsidiary formed the main tower and a second smaller tower was subsequently built at the opposite end of the bower perch about a small tree (right). This photograph was taken in August 1984, three and half years since building was commenced. D. bower 3b: this originated from a terrestrial butk! may pole-shaped subsidiary. May 1952. The subsidiary became the main tower and the handful of sticks on the right hand end of the bower perch later became the second tower/platform.
terrestrial, as dropped sticks accumulated beneath them. Similarly, bower 2 a obviously started as an arboreal single tower, but sticks steadily accumulated beneath it until they reached its base and thus formed a huge single terrestrial massif (see Fig. 4E). It became even larger during subsequent seasons, but it was not until S90 that we noted the beginnings of a sccond tower at the opposite end of its bower perch (see Table 4).

The height of some single, and the larger of some twin, towers changed surprisingly little from season to season (Fig. 11A,B), whereas others increased in bulk as sticks were added (Figs 11C,D). Some reached the same or greater height (but not the bulk) of the larger tower (Table 4). After several seasons, some bowers deteriorated and became smaller as their towers
decomposed or collapsed (Table 4). For example, in S 78 bower 27a was a 'classic' twin tower structure with well-formed platforms (Fig. 11E). By February 1990 it had deteriorated, and its bower perch collapsed (Fig. 11F). It was replaced in $\$ 92$, as were bowers $19 a$ and 22b, after the extremely dry S91. Replacement was due to general bower deterioration, including the collapse of a main tower support and/or bower perch ($n=$ 13), trec fall $(\mathrm{n}=6)$ or mammal damage $(\mathrm{n}=2)$. The mean distance of a replacement bower from the replaced one was $14.3 \pm 12.7 \mathrm{~m}$.

We did not seasonally monitor subsidiary bower structures, but in August 1984 we did note that most of those recorded in S79 were dcteriorating, or had disappeared, and new ones had replaced them at other locations about the main bower on the bower site.

DISCUSSION

We discuss our results in the light of previous Golden Bowerbird bower studies, and compare them mostly with data for the closely related rainforest-dwelling bowerbirds Scenopoeetes, Archboldia and Amblyornis spp. (see Kusmierski et al., 1993).

BOWER SITES, THEIR LOCATION AND DISPERSION. Traditional bower sites of Golden Bowerbirds were found on flattish to gently sloping ground along ridge flanks above steeper slopes, and mostly with $>70 \%$ canopy cover above. None occurred on hill or ridge crests, or in disturbed forest dominated by Calanius palms and creek lines and their adjacent, typically steeper, slopes were avoided. Bowers have been described as occurring in similar sites on the Atherton Tableland (Day in North, 1904; Bourke \& Austin, 1947; Chisholm \& Chaffer, 1956; Chaffer, 1958; Warham, 1962; Gilliard, 1969; Crome \& Moore, 1989; Frith \& Frith, unpubl. data).

Bowers of the closely related gardener bowerbirds in New Guinea occur mostly on ridge crests or slopes below them (Simson, 1907; Rand in Mayr \& Rand, 1937; Gilliard, 1969; Schodde \& McKean, 1973; Diamond, 1972, 1987, 1982a). Pruett-Jones \& Pruett-Jones (1982) examined 46 active bowers of Macgregor's Bowerbird, Amblyornis macgregoriae, on Mt Missim, Kuper Range and found 87% on ridge crests and the remainder $3-30 \mathrm{~m}$ below crests on relatively level areas of the slope. They concluded that the habitat variables influenced the choice of bower site by Macgregor's Bowerbird rather than the selection of the ridge itself. They found such things as degree of canopy closure ($>80 \%$), slope and width of the ridge important factors for site selection. They found 42 bowers of Macgregor's Bowerbird spaced linearly and regularly along ridge crests at an inter-bower distance of $169 \pm$ 64 m . This figure is comparable with our Golden Bowerbird linear inter-bower measurement of $169 \pm 40 \mathrm{~m}$, rather than our NND of $151 \pm 44 \mathrm{~m}$ (see RESULTS). Diamond (1987) estimated that distances between five Vogelkop Bowerbird, Amblyornis inornatus, bowers were several 100 m . He pointed out that this was similar to the inter-bower spacing in Macgregot's Bowerbird and the 0.5 km separation for eight bowers of the Golden-fronted Bowerbird, A. flavifrons (Diamond, 1982a).

Dispersion in Macgregor's Bowerbirds appears to be largely the result of socially interacting
males utilizing available favoured topography. Its mating system has been characterized as being intermediate between lek behaviour and territoriality, with birds maintaining even dispersion in part by "buffering their display space against intruder pressure' (Pruett-Jones \& Pruett-Jones, 1982; pers. obs.). Traditional bower sites of the Golden Bowerbird averaged one per 4.2 ha and were spatially dispersed, not clumped (contra Gilliard 1969: 321), throughout suitable topography. Male Golden Bowerbirds disperse their bower sites over suitable topography and habitat in an even way, similar to Macgregor's Bowerbird and apparently as a result of a similar social system. Dispersion of the bowers of Archbold's Bowerbird is also relatively even throughout suitable habitat (Frith et al., 1996a) and not clumped into leks (contra Diamond, 1982b).

Leks have been defined as requiring the following characteristics: clumped distribution of males; the ability of females to freely choose mates; no parental care by males; and no resources of value to females available at male display sites other than sperm (Bradbury, 1981). True lek behaviour has not been demonstrated in any bowerbird species (Donaghey, 1981; PruettJones \& Pruett-Jones, 1982; Diamond, 1986a; Borgia, 1986; Oakes, 1992; Lenz, 1993; Frith \& Frith, 1995; Frith et al., 1996a,b, this study), as this requires that males at their bowers be in visual contact (Frith \& Beehler, 1998). Rainforestdwelling Tooth-billed Bowerbirds may be the only exception, as courts on the Paluma Range showed a dispersion intermediate between an even spread and true (i.e. exclusive) clumping (true lek) over suitable habitat (Frith \& Frith, 1995). It remains to be demonstrated conclusively, that 'clumping' of male Tooth-bill courts does form a lek, albeit an exploded one. It is possible the dispersion of courts was the result of males utilising the only appropriate topography available, as appears to be the case in Golden and gardener bowerbirds.

Rudimentary bower sites and structures were short-lived, built and used sporadically by one or more immature males during one, several consecutive, or non-consecutive seasons. Similar rudimentary structures have been described for Macgregor's (Pruett-Jones \& Pruett-Jones, 1982), Regent (Chaffer, 1984; Lenz, 1993), Satin (Vellenga, 1970; Donaghey, 1981; Borgia, 1986), Archbold's (Frith et al., 1996a), Great and Spotted (Frith \& Frith, unpubl. data) Bowerbirds. Rudimentary bowers of Amblyomis spp., probably built by younger males, are often found at lower

FIG. 10. Seasonal changes to the towers of traditional bowers. A, B, bower 34 a: this was a single tower bower in April 1979 (A) but by August 1984 (B) was a twin tower structure with its main tower then 180 cm tall. C,D, bower 8a: this uas a single tower bower in April 1979 (C) but by February 1990 (D) was a massive twin tower structure. E,F, bower 33a: this had one of its towers small and arboreal in April 1979 (E) but by August 1984 (F) both towers were terrestrial. Note: sticks of both towers were fused beneath the bower perch.
altitudes than the traditional bower structures presumably built/owned by older males (Diamond, 1986b, 1987 and references therein).

BOWER CHARACTERISTICS. Previously the bower of the Golden Bowerbird was thought to consist only, or typically, of two towers, and with one tower usually taller than the other (De Vis in Meston, 1889; Campbell, 1900; Meston in Mathews, 1926; Cooper \& Forshaw, 1977;

Johnsgard, 1994; Schodde \& Tideman, 1988; Donaghey, 1996). Our findings clearly show that bowers may be of one or two towers, and that their size and shape varies greatly (Table 4). In the case of traditional bowers, the structure of a single tower averaged some 20% larget than the average size of the larger tower of a twin structure. Moreover, its mean volume was similar to that of the mean combined volume of both towers of a twin
structure. Thus, single tower bower structures may demonstrate to conspecifics that the owning male has expended similar effort in building as have males constructing a twin tower bower.
Golden Bowerbird bower perches or their 'avenues' did not exhibit a pattern of compass orientation, as is the case in several true avenue bower builders in which the avenue is aligned on or about the north-south axis (see Frith et al,, 1996b). This orientation apparently enhances illumination of bower decorations and the displaying males (Marshall, 1954; Frith et al, 1996b). We did find that almost twice as many bower perches of Golden Bowerbirds were orientated to within 45° of the north-south axis, or the north-south half of the compass, than were to within 45° of east-west, or the east-west half of the compass rose. Thus, given bower perches were at right angles to the avenue between twin tower bowers, the orientation of the 'avenue" was predominantly within the east-west half of the compass. We can offer no explanation for these observations at present.
Sticks of Golden Bowerbird bowers, other than recently placed ones, become firmly fused together by the action of a fungus (Mathews, 1926; Chisholm \& Chaffer 1956; Warham, 1962; Frith 1989, this study) ubiquitous to the lower forest sub-canopy (Jackson in Chisholm, 1957). Certainly, birds do not glue sticks together with saliva, or anything else, as suggested by some authors (e.g. Schodde, 1976; Diamond, 1987; Schodde \& Tidemann, 1988).
Our long-term observations of rudimentary and traditional bowers indicated that most bower sticks are placed in a somewhat dishevelled fashion, resulting in great variation in bower shape and bulk. Their untidy construction suggests gross bower features are of less significance to females than is the discrete part of them modified into a 'platiorm(s)' for the exclusive placement of decorations. While traditional single or twin towered bowers varied greatly, they all had a conspicuous platform of more carefully and better aligned finer sticks to one end, or both ends, of the display perch. In view of bower structure quality in other bowerbirds (Borgia 1985, 1995; Borgia et al., 1985), it is possible that the quantity and quality of sticks/construction incorporated into the bower platform(s) is of significance to mate selection by females. Older and more dominant male Satin Bowerbirds that retain more bower decorations mate more often (Borgia 1985, 1995; Borgia et al., 1985). This suggests that bower platform(s)
and their decoration represent characters of significance in female Golden Bowerbird mate selection. For a discussion and review of the significance of bower decoration, see Frith \& Frith (2000a).

Broadbent (in Mathews, 1926) noted that larger main bowers of Golden Bowerbirds were surrounded by several 'gunyahs', dwarf-like hut structures, that we term subsidiary structures. Bulmer (in Gilliard, 1969:305-6) reported similar subsidiary structures in Macgregor's Bowerbird. Of 151 subsidiary bower structures we recorded, 76% were arboreal and the remainder may have been originally arboreal. Often two such subsidiary structures, placed at an interval along the same length of horizontal branch, resembled a diminutive bower (Fig. 8B). Four such subsidiary structures had sticks added to them to subsequently replace, and become, the main bower.
It is possible that some subsidiary structures, around the main bower, at a traditional site are 'the casual products of social activity in non-breeding periods' (Chisholm \& Chaffer, 1956: 13). Sharp (in Chisholm, 1929) claimed that only (adult) male Golden Bowerbirds attended large bowers and that subsidiary structures are built by females, but this is erroneous and may be a result of misidentification of female-plumaged, immature, males at such structures. It is our experience that these are initiated by the traditional bower owner, as a result of a bird leaving sticks at a favoured singing/perching perch(es). Adult males actively decorated only their single main bower structure, but would occasionally temporarily leave the odd decoration on a subsidiary one.

BOWER SITE CONSTANCY, BOWER AGE, BOWER BUILDING AND STRUCTURAL CHANGES. Most (84%) Golden Bowerbird bower sites were attended over 20 consecutive courtship seasons, predominantly by adult males (Table 4 and Frith \& Frith, unpubl. data). Bower sites of Satins have persisted for up to 30 years (Vellenga, 1980), Spotteds for 13 years (Frith \& Frith, unpubl. data), Greats for 13 years (Frith et al., 1996b), Tooth-bills for 20 years (Frith \& Frith, 1995; unpubl. data) and Archbold's Bowerbird for 11 years (Frith et al., 1996a).

The mean minimum active 'life' of a Golden Bowerbird traditional bower structure was $9.6 \pm$ $6.3(\mathrm{n}=48)$ years. The main causes of structure replacement were deterioration due to age, the collapse of a tower(s) resulting from loss of supporting plants, or a falling tree directly

FIG. 11. Seasonal changes to the shape of traditional twin tower bowers, A, B, bower 3 a: this changed little in size and shape between April 1979 (A) and February 1990 (B) despite the collapse of the dead trunk that was supporting the main tower. C.D. how er 22b; this changed litte in on erali shape from between September 19-1) (C) and February 1990 (D), save becoming more massive. E,F, bower 27a: this changed dramatically in size and shape between April 1979 (E) and February 1990 (F), becoming smaller as its towers decomposed and collapsed.
damaging the bower and/or opening the canopy above the bower site. The larger traditional stick maypole bowers of Amblyornis spp. also persist year to year (Pruett-Jones \& Pruett-Jones, 1982, 1983; pers. obs.). Conversely, bowers of the avenue-building Chlamydera, Sericulus and Ptilonorhynchus bowerbirds are refurbished and reused, or are replaced annually at the traditional
bower site, but not always at the same location (Vellenga, 1980; Donaghey, 1981; Lenz, 1993, and references therein). Male Tooth-billed Bowerbirds annually re-create their court, more often than not in exactly the same place (Frith \& Frith, 1994, 1995). Archbold's Bowerbirds typically renovate bowers at the beginning of each season (Frith et al., 1996a).

Earlier descriptions of Golden Bowerbird bower building were simplistic. For example, Day (in North, 1904) and Marshall (1954) noted that when a bower is first built it consists of sticks and twigs placed around two small trees growing about a metre apart. Each season sticks are added to the structures around two saplings until they are joined to form a U-shaped structure. In the centre, near the bottom of the U, a horizontal vine, stick or root is left bare (i.e. the bower perch). Our findings clearly demonstrate, however, that males in fact started each bower structure at a point above ground, where a leaning or horizontal branch (sapling, vine, fallen branch) crosses a vertical sapling or small tree trunk. New main bower structures started as small, single, arboreal, conical or maypole-shaped structures. They typically became fully terrestrial later, when dropped/fallen sticks accumulating on the forest floor reached their bases. Some bowers remained single tower bowers while others continued to grow into twin towers taking two to three seasons for them to reach full size.

Towers of some traditional bowers changed in shape and size from one season to the next, and often incorporated more saplings as they increased in size, whereas towers of others changed little from one season to the next. Dropped sticks may accumulate beneath the bower perch to there fuse to form a solid wall or 'a sort of hedge' (cf. Chisholm \& Chaffer, 1956: 11); thus reinforcing the false impression of the structure originating on the ground. That most, if not all, Golden Bowerbird bowers originated above ground is a significant finding, given that all bowerbird species were thought to begin bower construction on the ground until Borgia \& Sejkora (in Kusmierski et al., 1997: 310) stated that the Vogelkop Bowerbird builds its bower 'from the top down'. Thus the 'foundation' of the Golden (and Vogelkop?) Bowerbird's bower is not the clearing/cleaning of an area of ground (contra Stresemann 1953).

Diczbalis (1968) noted that male Macgregor's Bowerbirds start to clear a space around a young sapling, plucking off its leaves, bringing moss to form a basal ring around the sapling and 'trimming the space between base of sapling and the outside ring till it is clean and level. At the same time, the bird was bringing in its beak dry sticks and arranged these with its beak into spoke like shape around the sapling' to form a tower. He noted the structure was completed within a month, but would be improved and strengthened throughout the display season. Considering the
arboreal beginnings of Golden Bowerbird bowers, clarification of bower development of the closely related Amblyornis species would be valuable. Were the original bowers of Amblyornis and Archboldia spp. arboreal, or has Prionodura 'raised' its point of initial bower construction from the terrestrial form of its ancestors?

SIGNIFICANCE OF BOWER FORM AND ADULT MALE PLUMAGE IN THE GOLDEN BOWERBIRD. The bowers, their decoration, the levels of attendance at them by males, and the plumage morphology and courtship displays of the Golden Bowerbird are of particular interest within the bowerbirds with regard to the 'transferral effect' postulated by Gilliard (1956, 1969). This theoretical effect suggests that, within several bowerbird genera, the degree of ornate/colourful plumage in adult males is inversely proportional to the complexity of their bowers. Thus, males of species developing more complex bowers, as external symbols of their dominance/fitness, have been able to replace their personal, and possibly costly (in making them conspicuous to predators), plumage ostentation with a bower structure and its decoration. The more impressive examples of this relationship occur within Amblyornis and the Sericulus-Ptilonorhynchus-Chlamydera clade. While the Golden Bowerbird is clearly most closely related to, and originated from ancestral, gardener bowerbird stock (Schodde, 1976; Sibley \& Monroe, 1990; Kusmierski et al., 1993, 1997) it does not conform to the transferral effect discernible within these maypole builders. The maypole bower of the Golden has certainly lost some of the intricacies of Amblyornis bowers, in that it lacks a terrestrial moss base 'dish' (as in Macgregor's and Golden-fronted Bowerbirds) and its sticks do not form a 'hut' roof over a moss 'Jawn' or "court' (as in Streaked A. subalaris and Vogelkop Bowerbirds). Nevertheless it is a massive stick structure, with a discretely located platform(s), the construction of which is commenced above the ground. To what extent the arboreal point of initial bower construction is related to the significantly divergent adult male plumage in Golden Bowerbirds merits investigation.
Given its bower and, for present purposes, considering the Golden Bowerbird a member of Amblyornis, the transferral effect would lead one to predict a drab adult male plumage; at least no more colourfully ornamented than are the yellow- and orange-crested (but otherwise dully
plumaged) simple maypole-building Goldenfronted and Macgregor's Bowerbirds. How then is the, apparently contradictory, massive maypole-bower building yet brilliantly-plumaged adult male Golden Bowerbird to be interpreted? Its colourful plumage is not dorsally confined to a crest, as in gardener and Archbold's Bowerbirds, but is also extensive on the nape and tail feathers. Moreover, the entire ventral surface of the bird is brilliantly colourful. This extensive colourful pigmentation of both dorsal and ventral plumage is, among bowerbirds, more reminiscent of adult male regent bowerbirds (Sericulus spp.). Adult male Regent Bowerbirds perch on exposed forest canopy branches, to advertise their bower location, and subsequently descend to the bower. During this initial advertisement, and descent, their bright plumage is doubtless conspicuous to females. Thus, we concur with Schodde's (1976) suggestion that, while bower-based courtship has apparently ornamented/coloured the dorsal plumage of more terrestrially-displaying adult male bowerbirds, the morphology of adult male Golden Bowerbirds, with bright underparts, reflects its elevated bower perch. It also reflects an extensive courtship flight display (Frith \& Frith, 2000a). We view the bright central crown patch and the nape patch of the adult male Golden Bowerbird as homologous to the extensive crest of the gardener (especially Amblyornis flavifrons and A. macgregoriae) and Archbold's Bowerbirds. These characters, together with the brilliant yellow long forked tail, entire underparts, and pale iris lead us to concur with Kusmierski et al. (1993) in considering the Golden a highly ornamented bowerbird (contra Moller \& Cuervo, 1998).

ACKNOWLEDGEMENTS

The first three years of these studies were performed by CBF as a post-graduate student of Monash University, Melbourne. For this opportunity he is most grateful to Alan Lill for support, encouragement, advice and friendship and to the then Zoology Depariment, Monash University for practical help. The initial three years were financed in part by National Geographic Society Grants 1709 and 1870 to Alan Lill, Monash University. Andreé Griffin provided valued company and assistance in the field in various ways. We thank Derek Goodwin for most kindly translating Stresemann (1953) from the German.

LITERATURE CITED

BLAKERS, M., DAVIES, S.J.J.F. \& REILLY, P.N. 1984. The atlas of Australian birds. (Royal Australasian Omithological Union \& Melboume University Press: Melbourne).
BORGIA, G. 1985. Bowers as markers of male quality. Test of a hypothesis. Animal Behaviour 35: 266-271.
1986. Sexual selection in bowerbirds. Scientific American 254: 70-79.
1995. Why do bowerbirds build bowers? American Scientist 83: 542-547.
BORGIA, G, PRUETT-JONES, S. \& PRUETT-JONES, M. 1985. The evolution of bowers as markers of male quality. Zeitschrift Tierpsychologie 67: 225-236.
BOURKE, P. A. \& AUSTIN, A. F, 1947. The Atherton Tableland and its avifauna. Emu 47: 111.
BRADBURY, J.W. 1981. The evolution of leks. Pp 138-169. In Alexander, R.D. \& Tinkle, D.W. (eds) Natural selection and social behavior: research and new theory. (Chiron Press: New York).
BROADBENT, K. 1902. Field-notes on the birds of Bellenden-Ker, Queensland. Ibis: July.
CAMPBELL, A. L. 1900. Nests and eggs of Australian birds. (The author: Melbourne).
CHAFFER, N. 1958. Additional observations of the Golden Bower-bird. Emu 58: 133-137.
1984. In quest of Bower Birds. (Rigby: Adelaide).

CHISHOLM, A.H. 1929. Birds \& green places. (Dent \& Sons: London).
1957. Concerning the Golden Bowerbird. Emu 57: 52.
1963. The Golden Bower-bird at the nest and bower. Emul 62 : 251-256.
CHISHOLM, A.H. \& CHAFFER, N. 1956. Observations on the Golden Bower-bird. Emu 56: 1-39.
CLARK, P.J. \& EVANS, F.C. 1954. Distance to nearest neighbour as a measure of spatial relationships in poplulations. Ecology 35: 445-453.
COOPER, W.T. \& FORSHAW, J.M. 1977. Birds of Paradise and Bower Birds. (Collins: Sydney).
CROME, F.H.J. \& MOORE, L.A. 1989. Display site constancy of bowerbirds and the effects of logging on Mt. Windsor Tableland, North Queensland. Emu 89: 47-52.
DIAMOND, J.M. 1972. Avifauna of the Eastern Highlands of New Guinea. Publications of the Nuttall Ornithological Club No. 12: 1-438.
1982a. Rediscovery of the Yellow-fronted Gardener Bowerbird. Science 216: 431-434.
1982b. Evolution of bowerbirds' bowers: animal origins of aesthetic sense. Nature 297: 99-102.
1986a. Biology of the birds of paradise and bowerbirds. Annual Review of Ecology and Systematics 17: 17-37.
1986b. Animal art: variation in bower decorating style among male bowerbirds Amblyornis inornatus. Proceedings of the National Acadamy of Sciences USA 83: 3042-3046.
1987. Bower building and decoration by the bowerbird Amblyornis inornatus. Ethology 74: 177-204.

DICZBALIS, S. 1968. Observations on the Crested Bowerbird Amblyornis macgregoriae. Miscellaneous Report of the Yamashina Institute 5: 199-201.
DONAGHEY,R.H. 1981. The ecology and evolution of bowerbird mating systems.(Unpubl. PhD thesis: Monash University, Melbourne).
1996 Bowerbirds. Pp. 138-187. In Strahan, R. (ed). Finches, bowerbirds and other passerines. (Angus \& Robertson: Sydney).
FRITH, C. 1989. A construction worker in a rainforest. Birds Intemational 1: 29-39.
FRITH, C.B. \& BEEHL.ER, B.M. 1998. The Birds of Paradise: Paradisaedae. (Oxford University Press: Oxford).
FRITH, C.B. \& FRITH, D.W. 1989. Miscellaneous notes on the bowerbirds Chlamydera cerviniventris and C. lauterbachi (Ptilonorhynchidae) in Papua New Guinea. Australian Bird Watcher 13: 6-19.
1993. Courtship display of the Tooth-billed Bowerbird, Scenopocetes dentirostris; its behavioural and systematic significance. Emu 93: 129-136.
1994, Courts and seasonal activities at them by male Tooth-billed Bowerbirds, Scenopocetes dentirostris (Ptilonorhynchidae). Memoirs of the Queensland Museum 37: 121-145.
1995. Court site constancy, dispersion, male survival and court ownership in the male Tooth-billed Bowerbird, Scenopocetes dentirostris (Ptilonorhynchidae). Emu 95: 84-98.
1998. Nesting biology of the Golden Bowerbird Prionodura newtoniana endemic to Australian upland tropical rainforest. Emu 98: 245-268.
2000a. Bower attendance and behaviour at them by male Golden Bowerbirds, Prionodura newtoniana (Ptilonorhynchidae). Memoirs of the Queensland Museum 45(2): (this issue).
2000b. Home range and associated sociobiology and ecology of male Golden Bowerbirds Prionodura newtoniana (Ptilonorhynchidae). Memoirs of the Queensland Museum 45(2): (this issue).
FRITH, C.B., FRITH, D.W. \& MOORE, G.H. 1994. Home range and extra-court activity in the male Tooth-billed Bowerbird, Scenopoeetes dentirostris (Ptilonorhynchidae). Memoirs of the Queensland Museum 37: 147-154.
FRITH, C.B., BORGIA, G. \& FRITH, D.W. 1996a. Courts and courtship behaviour of Archbold's Bowerbird Archboldia papuensis in Papua New Guinea. lbis 138: 204-211.
FRITH, C.B. FRITH, D. W. \& WIENEKE, J. 1996b. Dispersion, size and orientation of bowers of the Great Bowerbird Chlamydera nuchalis (Ptilonorhynchidae) in Townsville City, tropical Queensland. Corella 20: 45-55.
GILLIARD, E.T. 1956. Bower ornamentation versus plumage characters in Bower-birds. Auk 73: 450-451.
1969. Birds of paradise and bower birds. (Weidenfeld \& Nicolson: London).

JACKSON, S.W. 1909. In the Barron River Valley, North Queensland. Emu 8: 233-285,
JOHNSGARD, P.A. 1994. Arena birds. (Smithsonian Institution Press: Washington).
KUSMIERSKI, R., BORGIA, G., CROZIER, R. \& CHAN, B. 1993. Molecular information on bowerbird phylogeny and the evolution of exaggerated male character. Journal of Evolutionary Biology 6: 737-752.
KUSMIERSKI, R., BORGIA, G., UY, A., \& CROZIER, R.H. 1997. Labile evolution of display traits in bowerbirds indicates reduced effects of phylogentic constraint. Proceedings of the Royal Society of London B 264:307-313.
LENZ, N.H.G 1993. Behavioural and reproductive biology of the Regent Bowerbird Sericulus chrysocephalus (Lewin, 1808). (Unpubl. PhD thesis, Griffith University, Brisbane).
MARSHALL, A.J. 1954. Bower-birds - their displays and breeding cycles. (Clarendon: Oxford).
MAYR, E. \& RAND, A.L. 1937. Birds of the 1933-1934 Papuan expedition. Bulletin of the American Museum of Natural History 73: 1-248.
MATHEWS, G.M. 1926. Birds of Australia. Vol. 12. (Witherby: London).
MESTON, A. 1889. Bellenden-Ker Range (Wooroonooran), North Queensland. Parliamentary Paper: Brisbane.
MOLLER, A.P. \& CUERVO, J.J. 1998. Speciation and feather omamentation in birds. Evolution 52: 859-869.
NIX, H.A. \& SWITZER, M.A. 1991. Rainforest animals - atlas of vertebrates endemic to Australia's wet tropics. Kowari 1: 1-112.
NORTH, A. J. 1904. Nests and eggs of birds found breeding in Australia and Tasmania. Vol. 1. (Australian Museum: Sydney).
1909. Notes on Newton's Bowerbird. Februray. Victorian Naturalist 25:160-168.
1914. Nests and eggs of birds found breeding in Australia and Tasmania. Vol. 4. (Australian Museum: Sydney).
OAKES, E.J. 1992. Lekking and the evolution of sexual dimorphism in birds: comparative approaches. The American Naturalist 140: 665-684.
PRUETT-JONES, M.A. \& PRUETT-JONES, S.G. 1982. Spacing and distribution in Macgregor's Bowerbird (Amblyornis macgregoriae). Behavioral Ecology and Sociobiology 11: 25-32.
1983. The Bowerbird's labour of love. Natural History 9: 9-54.
SCHODDE, R. 1976. Evolution in the birds-of-paradise and bowerbirds, a resythesis. Proceedings of the 16th International Ornithological Congress, Pp. 137-149. (Australian Academy of Science: Canberra).
SCHODDE, R. \& MCKEAN, J.L. 1973. Distribution, taxonomy and evolution of the Gardener Bowerbirds Amblyornis spp in eastern New Guinea with descriptions of two subspecies. Emu 73: 51-60.

SCHODDE, R. \& TIDEMAN, S.C. (eds) 1988. Reader's Digest complete book of Australian birds. (Reader's Digest Services: Sydney).
SIBLEY, C.G. \& MONROE, B.L. JR. 1990. Distribution and taxonomy of birds of the world. (Yale University Press: New Haven).
SIMSON, C.C. 1907. On the habits of the birds-ofparadise and bowerbirds of British New Guinea. Ibis 1: 380-387.
SOKAL, R.R. \& ROHLF, F.J. 1969. Biometry. (Freemam: San Francisco).
STRESEMANN, E. 1953. Laube und Balz der Laubenvogel (Ptilonorhynchidae). Die Vogelwarte 16: 148-15.

TRACEY, J.G. 1982. The vegetation of the humid tropical region of North Queensland. (CSIRO: Melbourne).
VELLENGA, R.E. 1970. Behaviour of the male Satin Bowerbird at the bower. The Australian Bird Bander 8: 3-11.
1980. Distribution of bowers of the Satin Bowerbird at Leura, NSW, with notes on parental care, development and independence of young. Emu 80: 97-102.
WARHAM, J. 1962. Field notes on Australian bowerbirds and cat-birds. Emu 61: 1-30.

TABLE 4. Continuity of 51 bower structures at 25 traditional bower sites of male Golden Bowerbirds on the Paluma. Range, north Queensland and structural changes over 20 consecutive seasons, from 1978-1997. * $=$ AS $=$ arboreal subsidiary; $\mathrm{TS}=$ terrestrial subsidiary; $\mathrm{A}=$ arboreal; $\mathrm{T}=$ terrestrial; $\mathrm{NM}=$ not measured; $\mathrm{NC}=$ no change; $\mathrm{STB}=$ single tower bower; $\mathrm{TTB}=$ twin tower bower; $\mathrm{RB}=$ rudimentary bower; $* *=$ bowers found when under early construction.

TABLE 4. cont.

Bower site and number	Number of seasons ($=\mathrm{S}$) bower site attended	When examined	Main tower		Second tower		Status history *	Figure number
			Height (cm)	A or T *	Height (cm)	A or T *		
6 a	2 (S78-S79)	Mar-79	93	T	75	T	TTB	
$6 \mathrm{~b}^{* *}$	19 (S80-S97)	Mar-80	30	A			AS	
		Oct 80	NM	T	NM		STB	
		Sept 81	NM	T	NM	A	TTB	
		Aug 84	110	T	65	T	TTB	9 C
		Feb 90	145	T	87	T	TTB	
7 a	$\begin{gathered} 18 \text { or } 19(\$ 78-\mathrm{S} 95 \text { or } \\ \text { S96) } \end{gathered}$	Apr 79	104	T	81	T	TTB	
		Aug 84	120	T	100	T	TTB	
		Feb 90	111	T	111	T	TTB	
7 b	1 or 2 (S96 or S97)	Oct 97	NM	T	NM		STB	
8 a	8 (S78-S85)	Apr 79	118	T			STB	10 c
		Aug 84	NC	T			STB	
8 b	3 (S86-S88)	Nov 86	NM	T			STB	
8 a	9 (S89-S97)	Aug 89	NM	T		A	TTB	
		Feb 90	1070	T	55	T	TTB	10D
10a	20 (S78-S97)	Apr 79	122	T	83	T	TTB	5 E
		Oct 85	NC	T	NC	T	TTB	
		Feb 90	114	T	88	T	TTB	
15a**	15 (S78-S92)	Apr 79	109	A			RB	
		Sept 84	NM	T			RB	
		Sept 88	NM	T	NM		STB	
		Feb 90	169	T	610	T	TTB	
15 b	5(S93-S97)	Dec 93	30	T			STB	
		Oct 97	NM	T	20	T	TTB	
16 a	8 (S78-S85)	Apr 79	150	T			STB	SF
		Aug 84	NC	T			STB	
16 b	3 (S86-S88)	Nov 86	BM	T			STB	
17a	8 (S78-S85)	Apr 79	107	T	98	T	TTB	5D
17b**		Aug 74	NC	T	NC	T	TTB	
	12 (\$86-S97)	Nov 86	NM	A			STB	
		Oct 87	NM	T			STB	
		Feb 90	168	T	121	A	TTB	
		Oct 97	NM	T	NM	T	TTB	
19a	14 (\$78-S91)	Apr 79	128	A			STB	4D
		Oct 82	NM	A	NM	A	TTB	
		Aug 84	110	A	30	A	TTB	
		Nov 86	NM	T	NM	T	TTB	
		Feb 90	120	T	51	T	TTB	
19 b	4 (S92-S97)	Nov 82	60	T	35	T	TTB	
		Oct 97	100	T	100	T	TTB	
20a	2 (\$78-S79)	Feb 79	151	T	120	T	TTB	5 C
20 b **	6 (S80-S85)	Apr 79	66	T			TS	8A
		Jan 81	66	T	66		STB	
		Sept 82	NM	T	NM	T	TTB	
		Aug 84	110	T	110	T	TTB	
20 c	1 (S87)	Oct 86	NM	T			RB	

TABLE 4. cont.

ATTENIDANCE LEVELS AND BBHIAVIOUR AT BOWERS BY MALE GOLDEN BOWERBIRDS, PRIONODURA NEHTONJ.AN. 1 (PTILONORIIYNCIIIDAE)

CLIFFORDB, FRITH AND DAWN W. FRITH

1riths, C.B. de lritt. D.W. $20000630:$ Altendance levels and behaviour at bowers by male Golden Bowerbirds, Prionoduro morroniana (Ptilonorhynchidae). Memors of the Quccraslund AMseum -15(2): 317-3H1. Brisbane. ISSN D079-8835.

Abstract

Attendance levels boher maintenance, and behtwiour of male Golden Bowerbirds Prionodura mewfoniana at their bower sites were sudied over the display sersomsor 1982 and 1983 in 50 ha of upland rainforest. The display season iypically started in late Augustearly September and temminted in Decemberadnuary when wet seasun rams commenoed. but its length varied year to year apparentiy in rosponse to climate and or fond avaifability. During scason 1982 males spent an atverage of 36% of daylight at their bowern: Jtancan of 2.7 visits per hour, and ench visit averagine 8 mins. Duming season 1983 , males spent Innecr at bowers (mear $=63 \%$); at a mean of 3.4 visits per hour, and each visit averaging 11 mins. Lower attendance in 1082 involved all males during each month and difterent times uf the day, and was attributed to excessively dry conditions, bower activity ceased by carly December. Males spent un average 6% ol their time at bower sites giving advertisement song, 8% other calls, 4% maintaning bowers. 2% displacement chasing and displaying, and the remainng 80% perehed silently athove their bower. Vocalisations were given from habimally-used, mostly horizontal (40 on) perehes averaging 9.3 m from the bawer perch and 5.6 m above ground. Advertisement sonze consisted of a prolonged, pulsating rarle repeated an alverage of nine times, with each series averaging 33 secs, Oither calls inchuded squeals. screcches, frolf-y fistles, aculds, fror-and cicadd-like thetes, given as single notes or as a medley with fine vocal avian minicry of at least 22 model species. Most (95\%) bower decorations were collected away from the hower bite; having heen harvested, or stolen from at nelghbouring tival's bower. Others were tetrieved from a "stom" near the bower, where they had been left previousty: Intruding rival bower-owners managed to steal a decoration on 83% of their visits, obviously being most successful ($10(1 \%$) in the owner's absence. Of' 144 displacement chases of hirds from a howerbower site. 76% were directed at conspecilics and 24% at other birds (ai least seven spp.). Males instantly displaced and thased onf" conspecific visitors (79%), mostly from the bower perch. Males wer seen to display to a female-plumaged individual 261 imess, 20 times being betoreatier displacement chases. Three disnlay elements were performed by males at bower sites: Bon, floudmod ant Shake, and Fighthoncr. A totalorltadisplays consisted of one ($n=78$), or a combination of $(n=68)$, these elements, and an element was often repeated more than onec duringa display: there being no apparent sequence of elements. Contalation was not winnessed. \square Golifers behoverur moalisunimas.

Clifford B. Frith and Dawn If. Firith. Honurary Research Fellen's of the Quensland

Until recently the Colden Bowerhird Prionothere nowronithat remamed one of the least studed of bowerbirds. The first quantitative studies of its nesting biology, dispersion and constancy of hower siles, variation and seasonal changes in hower struetures, home ranges and associated sociobiology and ccology have only recently appeared (Frith \& Frith, 1998. 2000a, 2000b). Male attendance levels at bowers have been evamined in other bowerbird spucies (Veselovsky. 1978; Donaghey. 1981: Pruett-Jones \& Pruett-Jones. 1982, 1985; Frith \& Frith, 1944: Lenc. 19y3), but until this study no such data were available for Golden Bowerhirds. Previous
contributions provide qualitative casual ohservations of male bower attendance and helaviour, but no quantitative data (Bourke ce Austin, 1947: Marshall. 1954: Chisholm \& Chaffer, 1956: Warham. 196: (hafter, 1984).

The display scason and male attandance of the Golden Bowerbird starts in late Ausust/early September with bower-owners giving loud, prolonged, ratte-like advertisement song above traditional bowers, adding fresh sticks, and placing decorations upon them (Frith, 1989; Frith \& Frith, 200(a,b). Other hower calls include squeals, sereceches, ctoaks, rasps and churrings (Schodde \& Tideman. 1988; Frith. 1989:

Donaghey, 1996). Males also produce fine vocal avian mimicry, as do other bowerbird species (Loffredo \& Borgia, 1986; Frith \& Frith, 1990a,b; 1993; 1994; Frith \& McGuire, 1996; Frith et al., 1996). All individually known bowerbirds regularly attending and vocalising at bowers have proved to be male (Marshall, 1954; Vellenga, 1980; Gilliard, 1969; Cooper \& Forshaw, 1977; Frith \& Frith, 1993).

Male Golden Bowerbirds spend most time at their bower site perched silently above and around their bowers, the remaining time being spent in calling, displaying, and maintaining and/or decorating the bower (Frith, 1989). The bower consists typically of one or two roughly conical towers of accumulated sticks constructed around one or several supporting saplings and/or small trees, a perch protruding from single towers or connecting twin tower bowers (Frith \& Frith, 2000a). Where tower sticks meet the bower perch they are more skilfully placed and aligned to form a discrete 'plattorm' where bower decorations are excusively placed. Frith \& Frith (2000a) considered the platform(s) the most significant part of the bower structure. For further introduction, and details of structures and dispersion, see Frith \& Frith (2000a).
Males display on their bower perch by bowing and nodding, with drooped wings, sometimes with a bower decoration held in the bill. They also display by flying and hovering around the immediate bower area (bower site), thus dramatically emphasising their brilliant yellow plumage (Chisholm \& Chaffer, 1956; Chaffer, 1958, 1984; Schodde \& Tidemann, 1988). Copulation has not been observed, and may occur on or close to the bower. Males leave their bower site to forage, bathe, collect new bower sticks and harvest, or steal, decorations. That male bowerbirds steal decorations from the bowers of rivals, with a preference for particular colours and items, has long been known (Marshall, 1954 and references therein), but has been only briefly alluded to with respect to Golden Bowerbirds (Frith, 1989). It has been described for several bowerbird species (Borgia, 1985b,c, 1986; Borgia \& Gore, 1986; Pruett-Jones \& PruettJones, 1994; Frith \& Frith 1993, 1994, 1995; Hunter \& Dwyer, 1997).

In this contribution, we initially define and deseribe seasonality of bower attendance over the first three display seasons of our study (1978-80) in relation to rainfall, temperature and fruit and insect food availability. However, most data
presented here deal with bower site attendance levels of males over two display seasons (1982-83), diurnal, monthly and seasonal variations in these, and behaviour and vocalisations at the bower. We discuss these results in the context of knowledge of this and other bowerbirds.

METHODS

STUDY AREA AND CLIMATE. The main study area comprised 50ha of upland tropical rainforest, at about 875 m asl, on the Paluma Range ($19^{\circ} 00^{\prime} \mathrm{S}, 146^{\circ} 10^{\circ} \mathrm{E}$), northeastern Queensland, 7 km from Paluma Township and 80 km north of Townsville. This area, measuring $1 \times 0.5 \mathrm{~km}$, was permanently gridded with metal stakes (see Frith \& Frith, 2000a: fig. 2). The rainforest has been classified as simple notophyll vine forest (Tracey, 1982).
Annual rainfall and temperature show marked seasonality on the Paluma Range (Frith, 1984; Frith \& Frith, 1985, 1994; D. Frith \& C. Frith, 1990). The dry season extends from AprilNovember, with June-August the driest and coldest months. Rainfall and temperatures increase during September-October and decrease during April-May. The hotter wet season is from December-March, with most rain falling during January-March.

DEFINITIONS. Bower site describes the location of a traditional bower; regularly attended, maintained and decorated throughout each season by the traditional adult male owner (Frith \& Frith, 2000a). A traditional bower owner was an individually-marked (colour-banded), bower-attending, bird known to have attend a particular bower during at least one previous season(s). Male attendance refers to known individual males perching, calling, displaying at or maintaining their own bower. Thus a male visiting the bower of another to steal a decoration was not attending it. As we could see only the male bower-owner during most displays we refer to them as 'displays', as distinct from 'courtship displays' (i.e. display directed at a conspecific). We use 'regularly attended' to imply full-time seasonal attendance by traditional owners at traditional bower sites, and write about males unless stated otherwise. To 'harvest' a bower decoration was to obtain it from a plant or the forest floor, as distinct from stealing it from the bower of a rival male. We refer to a display season by the year in which it started (S78, S79 etc).

FIG, 1. Monthly fainfall ($=$ columns) from August 1978-December 1983, incorporating five display seasons ($\mathrm{S} 78-\mathrm{S83}$), and monthly averages for $1978-1990(=\mathrm{a})$) on the Paluma Range, north Queensland.

ANNUAL SEASONALITY OF BOWER ATTENDANCE BY MALES. Seasonality of bower attendance was assessed during S78-S81 by (a) estimating numbers of bower decorations on bowers at our visits (see Frith \& Frith, $2000 \mathrm{a}-\mathrm{b}$) and subjectively categurising them as being poorly (<10 decorations), moderately (10-20) or well (>20) decorated; (b) noting hon many times we heard advertisement songs at traditional bower sites during 280 h of transect foraging walks from August 1979 to Febnaary 1981; and (c) collecting defaecated seeds un black mesh catchment traps suspended beneath favoured perches above or adjacent to, up to ten. bowers at regular intervals during December 1978-May 1979 and September 1979-February 1981.

Seasonality of bower attendance during S78-S81 was examined in relation to rainfall (Fig. 1), temperature, relative fruit crop and insect numbers (Fig. 2). We collected tree fruiting phenology data from 602 trees during September 1978-April 1979, and thereafter about 500 of these tres were examined at six- (July 1979-August 1980) or eight- (November 1980-February 1981) weekly intervals (Frith \& Frilh 1985, 1994). Diumal insect populations were monitored each month from August 1978-April 1979, and July 1979-February 1981. using Malaise traps (Frith \& Frith, 1985). We present here the mean diumal number of all insects trapped per month, and for Coleoptera separately because 80% of any animals remains
found in faccal samples during August 1978-February 1981 were coleopteran (Frith \& Frith, unpubl, data).

MALE BOWER ATTENDANCE LEVELLS. Male bower attendance levels were monitored during the peak display period of 7 September-15 November 1982. Season 82 was cxceptionally dry and bower attendance decreased considerably by early Noveinber. We therefore repeated ubservations the following season, during 3 November-5 December, when rainfall was only just below average, and bowers were regularly attended. Observations over two seasons provided comparative data on seasonal, monthly and diunal variations.

Six adjacent bowers were monitored during hoth seasons (bowers 1, 2, 3, 4, 19 and 20; see Frith \&e Frith. 2000a: lig. 2). We established cryptic canvas hides sia metres from each bower two weeks hefore starting observations. Each observation lasted six uninterrupted hours, during $0600-1200$ or $1200-1800 \mathrm{~h}$, over peak seasonal activity. Each cycle of observations consisted of two (at $0600-1200 \mathrm{~h}$ and at 1200)-1800h) periods at each of the six bowers (thus $12 \times$ 6h observations). When a cycle was completed we repeated it. Observation periods at three sets of two adjacent buwers (bowers 1 and 3 at 260 m apart; 2 and 4 at 210 m apart: 19 and 20 at 130 m apart) were made simultaneously by us, DWF in one hide and CBF in another. During 582 we made 150, 147 and 72 h of direct observation

FIG. 2. A, mean monthly temperatures ($=\mathbf{\square}$) and percentages of trees ($=$ columns) sampled monthly that were in fruit. B, mean monthly numbers of all diurnal insects (= columns) and of only Coleoptera ($=\mathbb{\square}$) sampled by Malaise traps. C, mean monthly numbers of defaecated seeds (= columns) collected beneath Golden Bowerbird singing perches and the number of advertisement songs $(=\boldsymbol{\square})$ heard during track transect walks (see Methods), from August 1978-February 1981 and incorporating three display seasons ($\mathrm{S} 78-\mathrm{S} 80$), on the Paluma Range, N Queensland.
T.ABLE 1. Bower site attendance levels by indiv idual male Golden Buwerbirds during the display seasons of 1982 (September, October and November) and 1983 (November). * = minimum number for males at bowers 2, 4,19 and 20 who may have been at that site pre-S78; ** $=$ immature plumage in season 82 , adult plumage in season $83 ;{ }^{* * *}=$ a different adult male regularly attended this bower site during the first two September watches; ${ }^{* * * *}=$ a different adult male each season; see Methods.

Season	Bower site number	Number of seasons owned	Hours and (numbers) of observations	Absence		Presence	
				Mean mins per absence	\% of total time absent	Mean mins per presence	$\%$ of total time present
1982	1	5	46 (8)	12.1	67.9	5.9	32.1
	2	5	$60(10)$	13.8	67.1	6.9	32.9
	3**	1	60 (10)	16.2	66.4	8.6	33.6
	4***	5	60 (10)	11.6	53.0	10.4	47.0
	19****	5	66 (12)	13.0	63.5	7.6	36.5
	20	5	63 (11)	17.3	66.9	9.1	33.1
Total/Mear/\%			357 (61)	13.9	64.0	8.0	36.0
1983	1	6	$12(2)$	7.8	47.5	8.2	52.5
	2	6	24 (4)	5.5	38.8	8.8	61.2
	3**	2	12 (2)	7.8	32.6	16.7	67.4
	1	6	18 (3)	5.2	35.0	9.6	65.0
	19***	1	18 (4)	9.6	38.8	14.2	61.2
	20	6	18 (4)	6.3	31.4	13.5	68.6
Total/Mean/\%			102 (19)	6.6	37.0	11.0	63.0

during September, October and November, respectively. Fieldwork terminated in November due to extremely dry conditions resulting in males irregularly attending bowers. During S83 we made 90 h of direct observation during November, until heavy rains hampered fieldwork. The last 12 h observation cycle in November had to be postponed until 5 December, but December data are combined with November results herein. Fieldwork then ceased because continuing torrential rains resulted in males irregularly attending bowers.

To analyse diurnal variation we subdivided the totals for male attendance levels into four periods (0600-0900, 0900-1200, 1200-1500, 1500-1800h). This made data directly comparable with a similar study of Tooth-billed Bowerbirds Scenopoeetes dentirostris (see Frith \& Frith, 1994). We used the same periods to analyse vocalisation frequencies (see below).

Determining actual time a bower-owning male spent at his bower site was often difficult. Most times we saw an absent male return by flying to one of his favoured perches, or onto his bower perch. However, sometimes the first indication of his renewed presence was when he called. If he remained out of sight but continued to call we assumed he was present, especially if later he flew to another perch, to the bower, or away from his bower site. If we did not re-sight or hear him
we considered his time present to be ended at his last recorded call, even though he may have subsequently remained above the bower for some (limited, in our experience) time. We usually saw the male fly off, but sometimes he would fly unseen higher into the canopy and we were unsure if he had left, unless he gave progressively distant vocalisations as departing. Thus, times presented in Tables 1-3 for males spent at their bower sites are minimums. Having said that, the times we recorded each of the six males at their bower sites were similar each season. This suggests that any discrepancy between the time we recorded present and the actual time involved may be minimal. Single call notes (see below), occasionally heard some distance ($>30-40 \mathrm{~m}$) from bower sites during a male's apparent absence, were discounted as indicative of his presence, as we could not confirm they were in fact given by the bower owner.
BOWER OWNERSHIP. Males were mist-netted at or near bowers and marked with a metal Australian Bird and Bat Banding Scheme band and a unique two colour band combination (= marked), and released at the capture location. Banded males included not only the owners of the six bowers under intensive observation, but also males intruding from adjacent bowers.

Males attending four of the six bowers in S82 had regularly attended their respective bowers as

TABLE 2. Monthly bower attendance by male Golden Bowerbirds during September, October and November of the display season of 1982 .

Months	Bower site number	Hours and (numbers) of observations	Absence		Presence	
			Mean mins per absence	$\%$ of total time absent	Mean mins per presence	\% of total time present
September	1	12 (2)	13.6	75.3	4.6	24.7
	2	24 (4)	18.6	72.5	7.2	27.5
	3	24 (4)	18.3	67.2	9.6	32.8
	4	24 (4)	15.6	48.8	16.4	51.2
	19	27 (5)	14.7	60.0	9.5	40.0
	20	27 (5)	16.9	57.2	13.6	42.8
Total/Mean/\%		138 (24)	16.4	62.0	10.3	38.0
October	1	24 (4)	11.2	62.0	7.0	38.0
	2	24 (4)	11.4	62.6	6.8	37.4
	3	24 (4)	13.4	61.5	8.5	38.5
	4	24 (4)	10.0	54.6	8.5	45.4
	19	27 (5)	10.4	63.1	6.4	36.9
	20	$\begin{gathered} 24(4) \\ 147(25) \end{gathered}$	16.1	70.2	7.0	29.8
Total/Mean/\%			11.8	62.0	7.3	37.6
November	1	12 (2)	12.7	72.2	5.0	27.8
	2	$12(2)$	11.8	65.3	6.4	34.7
	3	12 (2)	18.5	74.4	6.8	25.6
	4	$12(2)$	10.5	58.1	7.4	41.9
	19	12 (2)	17.9	-72.1	7.2	27.9
	20	12 (2)	21.1	82.2	4.9	17.8
Total/Mean $/ \%$		72 (12)	14.8	71.0	6.3	29.0

adult-plumaged individuals since at least S78. In S83 three of them (at bowers 2, 4 and 20) remained in attendance, but the male at bower 19 had been replaced by another male we first caught (at bower 19) in adult plumage in May 1982. The male attending bower 1 in S 82 was first caught as an immature in March 1979, when he had just taken the site over and was building a new bower there. He acquired adult-plumaged in S80. The male attending bower 3 was still immature (female-plumaged) during the first season (S82) of this study. We first banded him in March 1979, at a point 140 m from bower site 3 . He attained adult-plumage during the second season (S83) of this study.

MALE BEHAVIOUR AT BOWERS. Male behaviour at bowers was categorised as: periods of advertisement song, or other calls (including single notes and medleys); bower maintenance; displacement chases; displays; and silence. Advertisement song and other calls were given from favoured perches above or within 15 m of the bower, and were timed and totalled separately as they involved no other behaviour. Single calls were too brief (mostly $<2 \operatorname{secs}$) to time
meaningfully, and so we estimated their totals by allowing 2secs for each. Calls given during bower maintenance, displacement chases and display periods were, however, included in time periods totalled for those activities. The number, behaviour and vocalisations of female-plumaged and adult male visitors/intruders to bowers were monitored and their presences timed. Numbers of decoration thefts by rival bower-owners were recorded. Numbers, distances from bowers, and heights of habitually-used perches were noted. The length of time favoured perches were used at bower sites 2, 4 and 19 during S82 was recorded.

Bower maintenance periods included time a male was on the bower perch and adding a decoration or a stick to it, or adjusting and/or tidying. Most visits to the bower perch were solely for maintenance, but some were exclusively to display. Sometimes a male displayed on the bower perch before starting maintenance. In the latter case each behaviour was timed separately. Similarly, when a display was instantly followed by a displacement chase both periods of behaviour were treated separately even when directed at the same visitor/intruder.

TABLE 3. Variation in diurnal bower attendance levels of male Golden Bowerbirds during the display seasons of 1982 and 1983.

Season/time	Month	Hours and (number) of observations	Absence		Presence	
			Mean mins per absence	$\%$ of total time absent	Mean mins per presence	\% of total time present
$\begin{aligned} & 1982 \\ & 0600-0900 \end{aligned}$	September	33 (11)	9.8	57.3	7.4	42.7
	October	36 (12)	7.4	51.6	7.0	48.4
	November	18 (6)	9.0	62.3	5.6	37.7
Total/Mean/\%		87 (29)	8.6	56.0	6.8	44.0
0900-1200	September	39 (13)	11.5	49.5	11.7	50.5
	October	39 (13)	12.3	59.3	8.7	40.7
	November	18 (6)	13.8	65.0	7.9	35.0
Total/Mean/\%		96 (32)	12.3	56.4	9.7	43.6
1200-1500	September	33 (11)	24.9	69.2	12.4	30.8
	October	36 (12)	15.5	71.8	6.4	28.2
	November	18 (6)	21.7	82.4	5.1	17.6
Total/Mean/\%		87 (29)	19.4	73.0	7.8	27.0
1500-1800	September	33 (11)	29.1	74.9	10.6	25.1
	October	36 (12)	12.4	67.1	6.4	32.9
	November	18 (6)	16.1	73.1	6.2	26.9
Total/Mean/\%		87 (29)	17.2	71.3	7.3	28.7
$\begin{aligned} & 1983 \\ & 0600-0900 \end{aligned}$	November	30 (10)	5.5	34.2	10.4	65.8
0900-1200	\| November	30 (10)	6.2	37.2	10.2	62.8
1200-1500	November	25 (9)	8.4	44.3	10.6	55.7
1500-1800	\| November	17 (6)	6.1	31.7	12.5	68.3

Each period of display included one to several display elements. A display element consisted of any one of the three distinct displays performed by male Golden Bowerbirds.
Chi-squared tests and Student's two-tailed t-tests were used for statistical comparisons. Percentage data were normalised by applying arcsin transformation. Means are given as \pm one standard deviation. In some instances we also present standard error, to facilitate comparisons with data presented by other bowerbird studies.

RESULTS

ANNUAL SEASONALITY OF BOWER ATTENDANCE BY MALES. Regular seasonal attendance of traditional sites and bowers, by their traditional owners, typically started on the Paluma Range in late August/early September. The commencement, length, and termination, of a display season varied from year to year, primarily in response to climate and/or fruit phenology, as illustrated by results of the first three seasons of our study (August 1978 to February 1981).

We recorded the seasonally first bower advertisement songs during 14-17 August at the start of S78, and by 21 August some bowers had a few decorations on them. By early September most bowers were moderately decorated, with new sticks added to them. From the second week of September until the end of December bower sites were regularly attended by their traditional owners. Rainfall was slightly above average for the time of year (Fig. 1). Temperatures increased during these months, from an average of $19^{\circ} \mathrm{C}$ in September to $25^{\circ} \mathrm{C}$ in December, and fruits and insects were plentiful (Fig. 2A, B). Bowers remained moderately decorated and attended until the end of December, but then activities decreased as rainfall increased. During the last week of January, 594 mm of rain fell and bower attendance ceased. Rain continued throughout February, to 15 March, as bower decorations deteriorated. No advertisement song was heard, but limited faeces beneath favoured perches indicated some males had briefly visited bower sites (Fig. 2C). During brief dry spells, one or two fresh decorations were sometimes placed on bowers. There was then a brief period of renewed activity during late March to the first week of

May, but bowers were poorly decorated and few advertisement songs given (Fig. 2C).
Bowers were undecorated/unattended during June/July 1979, and not until 19 August did we hear the first advertisement song, marking the commencement of S79. During September 1979, rainfall was average for the month and temperatures rose, but the fruit crop was sparse and remained so throughout the display season (Figs 1,2A). Insects, including Coleoptera, were less abundant than the previous season (Fig. 2B). October and November were exceptionally dry and hot with rainfall (64 mm) well below the seasonal average (230 mm). During November, fewer advertisement songs were heard and, while bowers were poorly/moderately decorated, faecal samples indicated males were attending bowers if not maintaining them (Fig. 2C). It remained dry until 25 December; by which time bower attendance had declined, few calls were given, and bower decorations dried and were not replenished. It rained heavily from the last week of December until 12 March, with little or no bower attendance. As in the previous year, there was renewed activity during March, as rains eased, that lasted until about the second week of May.
There was a notable increase in available fruit crop during winter months of 1980 (Fig. 2A). Some bower owners placed a few decorations on traditional bowers by mid-June-July, started advertisement song, and accumulating faeces indicated males were now spending time at bowers (Fig, 2). This winter attendance continued through to August, possibly because of a larger fruit crop. By August 1980 all bowers were regularly attended, despite lack of rain (Fig. 1). Temperatures increased notably in September, insects were abundant, and fruit plentiful; and bowers were well attended as indicated by faeces at them (Fig. 2). Rainfall during SeptemberDecember was near seasonal average, but from 1 January was excessive, falling every day until 26th (2201 mm ; see Fig. 1). Bower decorations deteriorated during January and, while no advertisement song was heard, faeces indicated males occasionally visited bower sites (Fig. 2C).
We did not monitor bower activities as closely over the next three years, but seasonal trends showed a similar pattern with regard to relative rainfall, In S81 bower activities commenced during mid-August and lasted until mid-November when, due to heavy rain (468 mm), they slowed and then ceased in December (Fig. 1). During

October and November of 882 it was exceptionally dry (71 mm), and bower activity levels were similar to those described for \$79 (see above). The display season commenced earlier the following season, much as for S80. In S83 rainfall was near the seasonal average, and bower activities persisted until the commencement of the January rains. Bower attendance levels, and behaviours and vocalisations at traditional bowers during S 82 and S 83 , are discussed in detail below.

RELATIVE LEVELS OF BOWER ATTENDANCE BY MALES. Seasonal variation. During S82 males spent an average of 36% of total time at their bowers (Table 1), proportional differences between individuals not being significant $\left(\chi^{2}=4.46, \mathrm{P}>0.30\right.$.). During S 83 males spent an average of 63% of total time at their bowers (Table 1), proportional differences between individuals likewise not being significant ($\chi^{2}=$ $2.72, \mathrm{P}>0.70$). Males spent an average of 8 ($\mathrm{SE}=$ $0.8)$ and 11 ($\mathrm{SE}=1.3$) mins at bowers per presence, and absences averaged $13.9(\mathrm{SE}=1.7)$ and $6.6(\mathrm{SE}=0.7) \mathrm{mins}$ during S 82 and S 83 respectively. Mean number of visits per hour was 2.7 (range 2.2-3.3) and 3.4 (range 2.6-4.2) during S82 and S83 respectively. Thus, all males attended their bowers for far less (27%) time, less frequently, and for less time per visit, during S82 than during S83 (Table 1).
Monthly variation. During S82 there was a significant difference between the proportion of total time individual males spent at bowers during September ($\chi^{2}=13.74, \mathrm{P}<0.02$), because not all started attending bowers at the same time and/or with the same intensity (Table 2). At bower 1 , the owner was not sighted on 13 September (the first S82 observation), but two immature males were briefly ($<5 \%$ of observation) seen adjusting its decorations and sticks. These young males gave occasional screech and scold notes near the bower, but no advertisement song. No birds were here on 14 September but at our next observation, on the 27th, the traditional owner was regularly attending; but at a mean duration per presence lower than other males (Table 2).
At bower 4, male attendance was notably high in September 1982 (Table 2); apparently because a male new to it, in his first year of adult plumage, was regularly attending (51% of total time) on 9 and 10 September (the first two S82 observations). We assumed he was the new owner, but during our next two observations, of 21 and 22

FIG. 3. The percentage of total time that each of six adult male Golden Bowerbirds spent attending their traditional bower site, during bi-weekly periods of the display seasons of 1982 (1 Sept.-15 Nov. 1982) and 1983 (Nov. I- Dec. 15), relative to the amount of rain (column) that fell during each period. Symbols indicate the bower sites: $\dagger \quad 1, \square=2, \bullet=3, \mathbf{\square}=4,0=19, \cup 20$ (see Tables $1 \& 2$).

September, the traditional owner was in regularly attendance (50% of total time); presumably having displaced the challenger. Mean duration per presence of the challenger (28.9 mins) during the first two September observations was far greater than that of the owner (11.4 mins) during the latter two observations, and was greater than that of other individuals during September or any other month (Table 2). Male attendance at bower 4 remained relatively high throughout S 82 .
September S 82 rainfall was average, but October was exceptionally dry and hot (only 6 mm of rain, on the 4th; Fig. 1). Male bower attendance levels increased little during October over those of September, actually decreasing slightly in the middle of the month, with mean duration per presence lower (Table 2, Fig. 3). There was no significant difference between the proportion of total time individual males spent at bowers ($\mathrm{x}^{2}=3.54, \mathrm{P}>0.50$). November rainfall (68 mm) was well below the average (157 mm), the first two weeks being particularly dry (21 mm). By mid-November bowers were poorly maintained and decorated, few advertisement songs were given, and attendance levels decreased considerably (Table 2, Fig. 3). There was a significant difference between time individual males spent at bowers during November ($\chi^{2}=11.55$, $\mathrm{P}<0.05$), because they stopped attending bowers at different times (Table 2). Despite much more
rain in December, attendance levels did not recover, males were rarely sighted at bowers.
In S 83 rainfall was near average (Fig 1). Although we made observations only during November 1983, bower attendance by all individuals was much higher (63%) than in September (38%), October (38%) or November (27%) of S 82 (Tables 1, 2; Fig. 3). There was no significant difference between the proportion of total time individual males spent at bowers ($\chi 2=$ $2.72, \mathrm{P}>0.70$) in November of S 83 .
Diurnal variation. During 0600-0900, 0900-$1200,1200-1500$ and 1500-1800h of S82 males spent $44,44,27$ and 29% of total time attending bowers respectively, differences between these proportions being significant ($\chi^{2}=7.15, \mathrm{P}<0.10$). Thus males spent much more S 82 time attending bowers in mornings than afternoons, a trend apparent during September, October and November (Table 3).
During the same four diurnal periods of S83 males spent 66, 63, 56 and 68% of total time attending bowers respectively, differences between these not being significant ($\chi^{2}=1.41$, $\mathrm{P}>0.70$). Thus, male attendance levels at bowers were much higher in S83 than in S82, both in mornings (by 21%) and afternoons (by 34\%). Mean duration per bower attendance was higher throughout the day in S83 than in S82 (Table 3).
MALE BEHAVIOUR AT BOWERS. Habitual perches. Males had several favoured perches

TABLE 4. Time-budgeted activities performed by individual male Golden Bowerbirds at bower sites during the display seasons of 1982 (September, October and November) and 1983 (November). * = immature male during season $82 ; * *=$ data for bower 3 excluded; see Results.

above and around their bower, on which they gave advertisement vocalisations, perched silently, or preened. Of a total 947 occasions (S82 and S 83 combined) that males were recorded perched above/around the bower, 99.6% involved horizontal branches, mostly of saplings or small trees, and the remainder horizontal to gently sloping vines. Where some of these horizontal branches abutted the plant's vertical trunk (5% of perches used), males sometimes
placed sticks to form small arboreal subsidiary bower structures. During S82 males used an average of 11.7 ± 3.9 perches per observation period $(n=61)$, at a mean of $4.9 \pm 2.5 \mathrm{~m}$ above ground, and $9.5 \pm 2.6 \mathrm{~m}$ distant from the bower perch. During S83 these figures were $13.1 \pm$ $4.1 \mathrm{~m}, 6.3 \pm 1.9 \mathrm{~m}$ and $9.0 \pm 2.6 \mathrm{~m}(\mathrm{n}=19)$ respectively. During S 82 males at bowers 2,4 and 19 spent 15% of their time perched above their bowers on perches known to be favoured ones.

Advertisement song. This consisted of a prolonged pulsating rattle note, typically lasting one or two seconds, that was usually repeated a number of times. It was difficult to precisely locate a bird giving this call, and others. Occasionally males gave only one rattle, or a series of one to three, when first arriving back at the bower and before commencing a much longer song (up to 27 rattles being recorded). Number of rattles per song averaged eight in S 82 and nine in S 83 , each song averaging 36 and 30 secs respectively (Table 4). During some visits males only maintained bowers, and did not give advertisement song, whereas during others they gave several sets of rattle song (10 songs being the most during a single visit). Males gave advertisement song on 48% of 1706 bower visits in S82, and on 61% of 645 visits in 883 .
Males spent 6.4 and 5.1% of time present at bowers giving advertisement song during \$82 and S 83 respectively (Table 4). There was no significant difference between the proportion of time individual males spent giving advertisement song at their bowers each season (82: $\chi^{2}=1.57$, $\mathrm{P}>0.90 ; 83: \chi^{2}=2.02, \mathrm{P}>0.80$), nor were differences between them for the two seasons significant (arcsin transformation $\mathrm{t}_{10}=1.39$, $\mathrm{P}>0.20$). Mean duration of each song period was similar during each month of S82 (Tables 5 \& 6).

During September of $\$ 82$, as males reestablished themselves, individuals spent more time at bowers giving advertisement song (7.5\%) than in October (5.9\%) and November (5.0\%). Mean duration of each song was also longer (Table 5). The male at bower 1 did not start bower attendance until late September, but was particularly vociferous (Table 5). The lower S82 October and November figures may have reflected extremely dry conditions; but in S83, when climate was more favourable, males still spent only 5.1% of their presence giving advertisement song (Table 4; Figs 1,2).

Males spent more of their presence at bowers giving advertisement song during mornings than afternoons during S82 and S83 (Table 6); proportional differences between diurnal periods (data for both seasons combined) being significant (arcsin transformation, $\mathrm{t}_{4}=5.33, \mathrm{P}<0.01$). Mean duration of songs was similar at different times of day (Table 6). In S82 males performed 37, 43, 11 and 9% of songs ($\mathrm{n}=819$) during $0600-0900$, 0900-1200, 1200-1500 and 1500-1800 h respectively. In S83 they performed $46,27,14$ and 13% of songs ($\mathrm{n}=391$) during the same periods respectively.

Other calls. These consisted of single calls or a continuous medley of them. Single ones were a squeal, screech, scold-rasp, or wolf whistle as follows: squeal was a high-pitched thin and variable note; screech a variable, harsher and lower, but louder and more assertive, note sometimes delivered with a rather braying-like quality; scold-rasp a loud and urgent note(s); and wolf-whistle a powerful, two note, harsh and dry, squeal/screech notes with the same cadence and timing as a human 'wolf-whistle'.

Single calls, such as screech and wolf-whistle, were mostly given as males approached or lefi their bower site, or when conspecifics were close. They were also heard some distance away from bowers, while owners were absent and presumably foraging. The scold-rasp was sometimes given when an inter-specific bird, larger than the bower-owner, such as a Spotted Catbird, Ailuroedus melanotis, or Satin Bowerbird, Pillonorhynchus violaceus, came close to or onto the bower. Once when an Australian Brush-turkey, Alectura lathami, walked over a bower the male owner scolded it for 60secs, until it left.

During S82 and S83 males gave single calls for 1.2% and 0.4% of time present at bowers, respectively (Table 4). The proportion of single calls given was broadly similar each month of S82 (Table 5), and for different times of the day (Table 6), during both seasons.
A medley included a continuous series of single calls interspersed with frog- and cicada-like notes, a single rattle with a squeal(s) and/or vocal avian mimicry. At least 22 bird species were identified as models for mimicry performed: White-headed Pigeon, Columba leucomela; Red-tailed Black Cockatoo, Calyptorhynchus banksii; Sulphurcrested Cockatoo, Cacatua galerita; Australian King-Parrot, Alisterus scapularis; Crimson Rosella, Platycercus clegans; a cuckoo; Noisy Pitta, Pitta versicolor; Yellow-throated Scrub Wren, Sericornis cilreogularis; Large-billed Scrubwren, S. magnirostris; Brown Gerygone, Gerygone mouki; Mountain Thombill, Acanthiza pusilla; Bridled Honeyeater, Lichenostomus frenatus; Grey-headed Robin, Heteromyias albispecularis; Chowchilla, Orthonyx spaldingii; Eastern Whipbird, Psophodes olivaceus; Bower's Shrike Thrush, Colluricincla boweri; Barred Cuckoo-shrike, Coracina lineata; Pied Currawong, Strepera graculina; Victoria's Riflebird, Ptiloris victoriae; Spotted Catbird; Tooth-billed Bowerbird; Satin Bowerbird and many small passerine notes we did not identify.

TABLE 5. Monthly time-budgeted activities performed by individual male Golden Bowerbirds at bower sites during September, October and November of the display season of 1982. * = immature male during season 82; ** $=\%$ of time present with data for bower 3 excluded; see Results.

Months	Bower site number	Advertisement song		Other calls			Maintenance	
				$\begin{aligned} & \text { Single } \\ & \% \text { of time } \\ & \text { present } \end{aligned}$	Medley			
		Mean secs per song	$\%$ of time present		Mean secs per call	$\%$ of time present	Mean secs per period	$\%$ of time present
September	1	40	16.2	0.7	58	2.2	47	10
	2	54	8.7	1.7	150	7.0	71	7.8
	3*	37	4.6	1.4	439	38.8	46	2.6
	4	31	5.9	1.1	197	6.2	50	2.5
	19	40	8.1	0.8	195	3.5	47	3.2
	20	34	7.5	0.8	80	3.1	63	3.3
Total/mean/\%		38	7.5	1.1	237 (140**)	9.7 (5.8**)	54	4
October	1	38	8.4	1.2	69	3.4	66	7.7
	2	33	6.7	1.8	77	2.1	71	7.3
	3*	39	5.4	2.9	227	30.0	74	8.5
	4	35	4.7	1.2	77	2.9	50	7.3
	19	33	5.4	1.0	66	1.9	67	7.9
	20	36	4.6	1.4	138	8.0	52	5.1
Total/mean/\%		36	5.9	1.6	144 (87**)	7.9 (5.0**)	28	7.4
November	1	34	4.8	1.1	139	5.8	80	6.0
	2	31	5.6	0.5	142	2.8	64	5.6
	3*	28	5.2	1.1	195	37.1	51	6.0
	4	30	5.5	0.4	79	2.6	43	5.6
	19	31	2.5	1.5	121	4.0	37	4.0
	20	36	7.0	0.3	94	3.7	87	11.3
Total/mean/\%		31	5.0	0.8	154 (112**)	8.5 (5.4**)	56	6.1
		Displacement chases		Display		Silence		
Months	Bower site number	Mean secs per chase	$\%$ of time present	Mean secs per display	\% of time present	\% of time present	$\begin{aligned} & \text { Total time } \\ & \text { present } \end{aligned}$	
September	1	30	0.3	23	- 0.4	70.2	178	
	2	0	0	36	0.6	74.2	396	
	3*	22	0.3	33	0.1	52.2	472	
	4	66	0.9	56	0.3	83.5	737	
	19	23	0.2	62	0.5	76.7	646	
	20	31	0.8	49	0.8	83.8	693	
Total/mean/\%		37	0.5	48	0.5	76.8	3122	
October	1	36	1.1	59	1.3	76.9	547	
	2	9	0.2	53	1.3	80.6	539	
	3*	19	0.6	75	1.4	51.2	554	
	4	47	1.4	61	0.9	81.6	656	
	19	38	0.2	58	1	82.6	597	
	20	32	0.7	48	1.5	78.7	429	
Total/mean/\%		30	0.7	58	1.2	75.3	3320	
November	1	29	0.7	71	3.6	78	200	
	2	18	0.4	63	3.4	81.7	250	
	3*	0	0.0	44	1.6	49	184	"
	4	31	0.5	74	2.9	82.5	302	
	19	10	0.3	84	1.4	86.3	201	
	20	39	4.0	0	0	73.7	128	
Total/mean/\%		28	0.8	67	2.4	76.4	1265	

Golden Bowerblods nimicked mare than one call ufia given bird species. Forexample, hoth the whistle call and adam flock note of C'rmson Roscllas, the whistled single note and the "cheep-cheep' ereeting calls of Grey-headed Rohins, the whip-crack song and the 'chip-chas' Ealls of Eustern Whipbirds, the single "tick" note. "c-i-or" and "any-higher" calls of Spotted Cambirds, and both "chuck' and coarse rattling thightalarm calls of Tooth-billed Bowerbirds. We unce witnessed mimicry of the Dlight wing-noise of adult male Victoria"s Riflebirds.
Mimicry was sometimes opportumistre; that is io say in immediate response to the call or sighting of a model hird species. For example, a male Golden Bowerbird returned to his bower to find a Spoted Cathird perched three theters from it and then immediately mimicked a eatbird call. even though the visitor was silent. Neighbouring Gulden Bowerbirds often instantancously respond in each others vocalisations, as hetween males at howers 19 and 201 located 130 m apart. When sune male gave as songe of rumles the neighbour would imnediately do likewise.
During $\$ 82$ and $\$ 83$ males gave medleys fons 8.7 and 5.9% of their time present at howers. these vocalisations averaging 177 and letosees, respectively (Table 4). The higher precentage ol medleys in 582 was primarily due to the vocal ellorts of the immature male at bower 3, in his tirst scason ufregular atendance, During. $\$ 82$ he spent 35% or his bower presence giving medleys, aleraging 278 sces in duration (Table 4). This percentage was lights every monh of SS? (Table 5). This immature gave some medleys from the tuwer perch, unlike adult males', (for a total of Smins). Adult males gave medleys for an average Iff only 5.4% of thme, at an average of 111 see duration, from favoured perches. By excluding thiver 3 data. results for S82 were similar to thuse oft $\mathbf{S} 83$ (sce Tables $4-6$). The male at bower 3 was in adult plumage in $\$ 83$ and during this, has second year of segular bower attendance, gave fewer medley calls (Table 4). The new (but adult-plumaged) male at botver 19 in $\$ 83$ gave a greater proportion of medleys. and for longer periods, than other males during that season (see Table A).
During S82 males gave more ulternoon medleys than morning ones, a trend retlected not just hy the male at bower 3 (see abure) but by uther individuals (Table 6). During S\$3 such diumal variation was now apparem, and males spent more of lleir lime giving medleys during both

Woth-12013 ard l200-1800h than during these periods in S8?
OfI工K and 125 medley walling periuds in $S 82$ and $\$ 83$. Be conlimmel' a conspecitic (usually female-plumaged) was near/at the bosser on 1.9% and 29% of occisions, respectively. Medley calls were sometimes given before/after displacement chases or displays (see 'Table 7).
Bolver maintenance. Bower maintenance involved a male placing a newly collected decuration/stick on the bower, flying down to the ground below the hower perch to retrieve a fillen decoration, or tlying up onto a tower in adjust/move a stick. It also included brier visits (1) the bower to inspect and/or to remove a leat from the structure. Sometimes the nwner flew on a nearby vertical sapling (0.1 m from the bower) specifically to be able to inspect his newly adjusted buwer decorations/sticks: betore roturning to continue bower maintenance, fll ime off io a favoured perch, or flying directly out of the bower site.
Males flying fo their bower to maintain it sere usually silent (77% alo 615 such visits in $\$ 82$ and S83), but during 140 onther visis trales called brietly as they landed on their bower perch. Sueh calls included: a single rathe with one or sun squeat (s) ($\mathrm{n}=1(1 \mathrm{i}$) a single matte with squenk Followed by briefmimicry arscrech ies ($n=10$). at single rante with a cicade or soreech call $(n=0)$. or just one rafles squed, mimicry or screech in $=$ 20). Most such calls (94% accurred when males were the carrying anything, Males remained silent once decorating/maintaining howers.
Males returning to their bower site with a decoration or stick usually went directly to the bower, to add it to the structure. Most decorations. (95%) were collected by males during their absence from the bower, having harvested them or stolen them Irom aneighbouring bower. Afer times (5%) males did not leave the bower atea fo collect a decoration, but merely flew to a tree (often out of (hur sight) to retum within-3nsess with a decuration. Un lour such occasions we: confirmed the male had gone to a 'stome bo retrieve a decoration. We also lwice saw a male tly from his hower with a decoration to 'store' it inatreecrevice 'Three limes we sam antale takea decoration from his bower to place it on a
 and return it lo his hower. Unlike bower decarations, most sticks $(77 \%$) were collected neas
 were usually collected one at a time, but a couple

TABLE 6. Variation in diurnal time-budgeted activities performed by individual male Golden Bowerbirds at bower sites during the display seasons of 1982 and 1983. * = data for bower 3 excluded; see Results.

Season/time	Month	Advertisement song		Other calls			Maintenance	
				Single	Medley			
		Mean secs per song	\% of time present	$\%$ of time present	Mean secs per call	$\%$ of time present	Mean secs per period	$\%$ of time present
$\begin{aligned} & 1982 \\ & 0600-1200 \end{aligned}$	September	40	10.2	0.9	129	4.9 (3.3*)	57	5.4
	October	38	7.5	1.4	106	5.0 (1.5*)	69	8.8
	November	32	6.9	0.5	171	6.2 (2.1*)	56	5.8
Total/mean/\%		38	8.5	1.1	124	5.2 (2.4*)	62	6.8
1200-1800	September	30	2.5	1.4	398	18.6 (5.0*)	42	1.3
	October	30	3.4	1.8	185	12.1 (4.8*)	51	5.2
	November	28	2	1.3	142	12.3 (4.8*)	57	6.5
Total/mean/\%		30	2.8	1.6	236	14.6 (4.9*)	51	4.0
$\begin{aligned} & 1983 \\ & 0600-1200 \end{aligned}$	November	30	6.2	0.3	114	6.1	41	2.6
1200-1800	November	30	3.4	0.5	104	5.7	37	3.3
		Displacement chases		Display		Silence	Total time present (mins)	
Season/time	Month	Mean secs per chase	$\%$ of time present	Mean secs per display	\% of time present	\% of time present		
$\begin{aligned} & 1982 \\ & 0600-1200 \end{aligned}$	September	39	0.7	48	0.6	77.3	2016	
	October	32	0.8	61	1.3	75.2	1999	
	November	37	0.6	62	2.1	77.9	785	
Total/mean/\%		35	0.7	58	1.1	76.6	4800	
1200-1800	September	13	0.1	31	0.3	75.8	1106	
	October	26	0.7	53	1.1	75.7	1321	
	November	24	1	73	2.8	74.1	480	
Total/mean/\%		25	0.5	56	1.1	75.4	2907	
$\begin{aligned} & 1983 \\ & 0600-1200 \end{aligned}$	November	40	1.0	45	1.2	82.6	2316	
1200-1800	\| November	32	0.5	41	1.0	85.6	1536	

of times two or three sticks fused together were carried in. Most sticks were taken from the ground, but three times a male broke a dead stick off a sapling.

During S82 males visited bowers 451 times to maintain them, adding a new decoration on 222 (49%) occasions, and a stick on 47 ; remaining visits involving only maintenance. Of 222 decorations, 56% were beard lichen (Usnea sp.), 32% the creamy-white persistent flowers, or seed pods of Melicope (Melicope broadbentiana), 3\% jasmine (Jasminium kajewskii) or orchid (Dendrobium sp.) flowers, and 9% unidentified. During S83 males visited their bowers 168 times to maintain them; adding a new decoration on 64 (38%), and a stick on five, occasions. Remaining visits involved only maintenance. Of 64 decorations, 36% were beard lichen, 20% Melicope, 22% jasmine or Brown Silky Oak (Darlingia
darlingiana) flowers, and 22% unseen or unidentified.

Males spent more time in bower maintenance during S82 (5.8\%) than during S83 (2.8\%), and for longer durations per period (Table 4). There was no significant difference between the proportion of time various individual males spent maintaining their bowers each season ($82: \chi^{2}=$ $1.33, \mathrm{P}>0.90 ; 83: \chi^{2}=6.5, \mathrm{P}>0.20$), but differences between them for the two seasons were significant (arcsin transformation $\mathrm{t}_{10}=6.92$, $\mathrm{P}<0.001$). In September S 82 most individuals spent less time maintaining bowers, particularly in the afternoon, than during October and November (Tables 5, 6).

In S82 males performed 48,22, 13 and 17% of total maintenance visits ($\mathrm{n}=451$) during 0600-0900, 0900-1200, 1200-1500 and 15001800 h, respectively. Most decorations (70% of
222) and sacks (72\% of 47) were cullected during the moming ($060(0)-1200 \mathrm{~h})$. In $\$ 83$ males performed 24. 29, 30 and 17% of total maintenance visits ($n=\mid 64$) during the same neriods. respectively: Most decorations (67% of 64) were added in the menning ($060010-1200 \mathrm{~h}$). Of the five \$83 stick collections (see above). Iwo were in the morning athed thee the afternoon.
Disphacement chases. When a conspecilic or other birl landed on the bower perch, or one near it, bower-owners uswally responded by flying ath. and displacing, the visitor to chase it out of the bower site. While chasing, the bower-ownes orien fanned his tail and, when landing on the bower perch to displace the visitur, gave a single rutfle with sequeal(s). During the ensuing chase, calls also included a simgle rante followed by chada and/or other briel mimicry.
of 95 displacement chases observed during $\$ 82,80$ were directed at conspecilies. 11 at other hirds, and recipients of four were unseen. Of 49 displacement chases seen during S83, 29 were directed all conspecifies. nine at other birds, and decipients of 11 were unseen. 'Thus, of 144 displacement chases, 76% were directed at ennspecifics and 24% at other hirds. Other sexecies included: White-fhroated Tree-creeper, Commbates lencophatras (n - 1): Brided Honeyeater ($n=1$), Yellow-throated Scmb-wren ($n=2$); Grey-headed Robin ($n=10$); Eastern Whapbird ($\pi-2$); Bower's Shrike-thrush ($12=1$); and small unidentificd passerines $(n=3)$, 'leas of these chases involved displacenient from the bower perch and the others (e.g. Yellow-throated Scrub-wtern. Eastern Whipbird, Gircy-headed Robin) from within 5 m of if . An Nustralian Brush-lurkey $(n=1)$, Spotted Cathird $(n=2)$ and Satin Bowerhird $(\mathrm{n}=4)$ perching close 10 and/or on the hower were not chased, but were scolded.

Duriug S82 and S83 conspecifics. Tvere seen visilitg heswers on 13 (6and 46 occasions, respectively. Of these 182 visitations: 103 were by female-plumated (0nmarked/sex unknown) individuals; 25 by non-bower-ouning immature (lennale-plumaged) males (identitied by bands and/or behavour); and 54 by neighouring (marked) hower-owners (Table 7). We usually saw ouly one visilor at a time, on ot neat a bower perch, bull four times we continned a second visitor simullaneously in the bowet area.
Female-phamaged individuals (gendes unknown) were fustive as they approached at hover, usually vith several perches. When they reached the boiner perch they adopted a "slecked"
and/an 'frosen' posture and peered about, withous calling or touchne decorations. Duringe9 of 103 visils by female-plomaged visiones, the hower-owner was present at the bower site (Tatle 7). On 80 of these 99 sisits the mbater typically instantly displaced and chased off the visilur. mustly (81%) From the bewer pereh. Alter being chased away. some individuals ($n=8$) immediately cireled hack to the bower pereh. only to be chused oll again by the owner Convecutive displacement of the same visiting individual from a bower perch involved" ($n-6$) $3(\mathrm{n}=1)$ or $4(\mathrm{n}=1)$ chases. Owners brictly displayed to some (18%) female-plumaged birds when they dirst arrived, but once the visitn :eached the bower prech it was displaced ant chased away. Alter same chases (8%) ournes relumed bo their hower, sometimes accompanica by the same visitur, to then display (Table 7). On 19 of the 99 visits hy female-plumaged birds they' Were not chased away; the owner displaying to (n) $=6)$, of ighoring them as they perched above $(n=$ f) or on $(11=5)$ the bower perch. These visitors may have been lemale
Non bower-ownme innnuture males ware seen to visit bower sites tive times in the ownes's absence and 20 limess in the owner's presence. these visits averaging $38 \operatorname{secs}$ (Table 7). During an owner's ubsence young males spent more time (mean visit duration $=10$ asces) on the bower, adjusting decurations ant/or sticks, han when an awnet was present (mean visit duration $=24$ secs). On 18 visits in the owner's presence yound males ware typically instantly displaced and chesed ont by the owner, and always so from the bower perch. sometimes givine une ur two squeal/screved calls as they were chased. Some individuals $(n=4)$ immediately circleen biach to the houer perth after the chase. only to be chased again. Consecutive clases dinected at the Same individual iwolyed $2(n=2), f(n=1)$ and 6 ($n=$ 1) chases. Tivice an uwner displityed and/or gave madley talls when a young male first artived neat his bower, but when the visitor reached the bower peteh it was displaced and chased. Aller two suth ehases the owner returned to the hower to display briefly (Tahe 7). On two visits in one owner's presence. young males were not chased away, but ihis was hecause the male-owner of bower 3 was immature. He tulerated another young male on his bower for 100 and 15% sees (see alse helow).
Male hower owners visited adjacent males bowers 54 times, 35 beivit in an owner's absence and (9) in an ouncres presence. On II of the latter visits lle inttuder was chasca oflt the bower perch

TABLE 7. Conspecific visits to six Golden Bowerbird bower sites (data for S 82 and S 83 combined) and the bower owners reaction to them when in attendance.

Visiting conspecifics			Femaleplumaged: sex unknown	Non-bowerowning young males	Bowerowning males	Total/Mean/\%
	No. to bower perch		76	22	50	148
	No. to other perches($<5 \mathrm{~m}$ distant)		27	4	5	35
	Total number of visits		103	25	54	182
	Mean time per visit (secs)		52	38	17	36
	Bower-owner absent (No.)		4	5	35	4.4
	Bower-owner present (No.)		99	20	19	138
	Displacement chases	No. from bower perch	64	18	10	92
		No. from other perches ($<5 \mathrm{~m}$ distant)	15	0	1	16
		Total number	80	18	11	109
		\% of times owner present	81	90	58	79
	Displays	No. before a chase	14	2	1	17
		No. after a chase	6	2	0	8
		No., without a chase	6	0	0	6
		Total number	26	4	1	31
	Medley calls	No. before a chase	6	1	0	7
		No. after a chase	19	1	1	21
		No. before a display	6	0	0	6
		No. after a display	21	0	0	21
		No. with no chase or display	10	2	1	13

by the owner, but 4 times successfully stealing a decoration. Displacement chases twice involved body contact between adult males. One owner rapidly displaced a rival from his bower perch to grapple with him, the two tumbling toward the ground before separating. The marauder then flew off, pursued by the owner. On 8 of the 19 intrusions there was no chasing; twice the intruder flying off at the owner's return before it could steal. On 6 occasions a thief stole unmolested in the presence of the immature male owner of bower 3 .

Thieves managed to steal a decoration during 83% of their visits to bowers of rival males, obviously being most successful (100%) in the owner's absence. Time spent at a rival's bower was brief (mean $=17 \mathrm{secs}$). Decoration theft between adjacent bower-owners was rife. Having apparently noted a neighbouring rival male's absence, by lack of his calls, bower-owners often flew immediately in the direction of the presumably unattended bower to then immediately return with a decoration. For example, when the male at bower 19 was absent (DWF observing there), his immediate neighbour at bower 20 (CBF simultaneously observing there) would fly
to bower 19 and immediately return to his own bower with a stolen decoration.

During our second (14 September) S82 observation, the immature owner of bower 3 was challenged for the site by a male in his first year of adult plumage. Both birds were present at the site for 211 of the 360 min observation. Some of this time they perched close to each other, the immature owner continuously giving medley calls with mimicry, frog-like notes and scolds (for 139 mins); and the adult-plumaged challenger frog-like notes, scolds and sometimes mimicry. At other times they chased each other in prolonged tail-fanning flights about the bower, or in short flights from perch to perch while fluttering/flicking wings in agitated manner. The adult was mostly chased by the immature, but sometimes this was reversed, the immature twice displacing the adult from a perch but four times the reverse. The adult once performed Bow and Head nod and shake displays. The immature retained his site, however, and attained adult plumage the following season.

Males spent little ($<1 \%$) time present at bower sites in performing displacement chases (Tables 4-6). Displacement chases averaged 34 secs, but varied much between individuals.

Disphays. Males pertormed three basic display elements (Buw, Head mil and whake, and Fisghthoner) at bower sites. In the Bow the male Luwered his bill and luead rigidly downvards ankl erected his crown and nape feathering, thus emphasising this hrilliant yellow "crest", while his wings were slighty to fully drooned (depending on display intensity) and occasionlally llicked. The tail was pulled forward bencath the lowered bead, and somelimes held to one side.

The Hoad nod and shake involved the male modding his rigdly downward-pointing hill ind hoad up and down with erect head plumage and when displaying infensely, also shaking his head from side to side. Ashenodded he peered intently ah. and sometimes pecked, his pereh (usually a sertical sapling trunk). This display also emphasised the yollow ecntral crown and nape "crest'. The wings wete slightly to fully diooped and necasionally futered. Bow and. Heou nod fand shake, or vice versa, may be perfomed consecutively on the same perch when displaying is intense.

In Flightherer display a male flew with slow and deliberate "buttertly-like" heats of extensivelyBpened wings around his bower at $0.5-4 \mathrm{~m}$ (usually 1-2m2) above ground, oscasionally with a decoration in his bill. During this display tlight the tail may bo fully funned during briet midollight hovers, this exposing the sellow outer rectrices. Also in this display, males lypically stoppeal to hover in frumt of a vertical sapling trunk or its leaves, with bill up touching the stem/leaves, while repentedly isnd attemately fully fanning and closing the tail. The bird then nlew 'buttertly-like' in another sapling to perform the hover/tail fannugg Utisplay again. During Fligh/fower the male may hriefly perch on a vertical sapling stem where he may also perform a Head noel unds hake display.

Each display consisted of once, two. or atl the above three elements. An element was often repeated during a display. During $\$ 82$ and $\$ 83$ we recorded a total of 146 displays, involving 238 separate elements: 62 Bows, 104 Houd nod and shakes and 72 Fligh/huvers (Table 8). Of the 62 Bow clements: 48% were performed on bower perches, 44% on vertical sapling trunks and 8% on horizontal perches. The Bow was performed alone (24%) or, during wther display's, was performed before (23%) or after (24\%) Ifeadnod and shake, or before (11%) or after 113% a Flighllhover (see Table 8).

Or'a total or $10+$ Hecud nexd und shakes: 13% were performed on bawer perches; 75\% on
vertical sapling trunts: and 12% on horizontal perches (Table 8). Most (9) (\%) times a male performed the Hewd nad and shake un une perch unly, hut a tew times flew to ne ($n=5$) ortam (n $=5$) addilonal perches in emninuous disphay; This fiead nud und shake was pertormed alone (38\%) or, during other displays, was perfummer before (174\%) us after (14% \% filuw or before (14%) (rafler (17%) Flight/rover'(see [ables).

Of a total of 72 FItghthmer displays: 96\% were performed at vertical sapling trunks ut feaves and the remainder at decorased hower platforms. prior so landiag on the buwea perch. The number of hoyers given during a Flighllumer display varied. Most tithes $(n=52)$ à male pertormed only uge hover: but at whes limes perfurmed ? $(n=9), 3(n=5),+(n=1)$ ur 5 ($n=1$). Four mlight displays lacked a hover. Flighthorer was performed abue (33%) ar. during wher displays. Was pertiomed betione (11%) or after (10%) Bow or before (25%) or alter (21\%) Hewd mox ank shutke (see Table 8). We could discem no elear sequence in which the three display elements might typicatly to pero fommed, possibly because no emmplete successtil courtship. tu copulation, wals ubserved.

When males landed on their bower perels is display (Bow or llead noil und shuke) they sometimes gave one raule and sumeal, hut ons other perches eave only a scgueal(s). Dunimy FlightHoner displays males nften gave : squeal(s) andior briel' mimicty, as llying liom ore perch ow another (Tamle S). During Bow and Head nodandstratee displiyy given on lanwer arti other perches, males occasionally ($91 / 1$) held a decoration in the bill, hut only twice wher a lemale-plumaged individual was known lo be in the area. Points of saplings used during displays averaged 2.1 ± 1.3 matove ground, and were 3 . $\pm 1.8 \mathrm{~mm}(\mathrm{n}=36)$ from bowers.
Total numbers of elements performed during each display (including repetition of any elcments; see above) are summarised in Table © Must displays involved one (63%), two (23%) or three 116%) elements; but five displays consisted of four, sis ($n=31$ and nine. Of the 238 eleroents observed: 18 (1.4 per display) were perfonned exclusisely on hower perches, 137 (1.4 per display) on'al vertical perches, 13 (1.1 nor display) (mh horizontal perches and 70 (3.0 per display) on a combination of perch types (Tahic 9). There was no apparent sequence to display cements of rotal displaying sime only 12\% was on the hower perch.

TABLE 8. Number and sequence of display elements ($\mathrm{n}=238$) performed by male Golden Bowerbirds at their bower sites during 146 displays, and the number of times males called and carried a decoration in their bill during display (data for display seasons of 1982 and 1983 combined). $*=$ hovers performed in front of vertical trunk or its leaves; ${ }^{* *}=$ hovers directed at the bower tower before landing on the bower perch; see Results.

	Display elements		Bow	$\left\|\begin{array}{c} \text { Head nod and } \\ \text { shake } \end{array}\right\|$	Flight/ hover	Total number of display elements	$\%$ of total number
Display elements	Number given on/directed at *	bower perch	30	13	3**	46	19.3
		\|vertical support	27	79	69	175	73.6
		horizontal perch	5	12	0	17	7.1
		Total number	62	104	72	238	
	Number of single elements only		15	39	24	78	32.8
	Number given with other elements	before a bow	-	18	8	26	10.9
		before a nodk shake	14	-	18	32	13.5
		I before a fligh/ hover	7	15	-	22	9.2
		after a bow	-	14	7	21	8.8
		atter a nod\& shake	18	-	15	33	13.9
		after a flight/ hover	7	15	-	26	10.9
		Total number	62	104	72	238	
Calls	No. given on bower perch		12	8	0	20	8.4
	No. given on other perches		4	13	14	31	13.0
Decoration held in bill	No. held on bower perch		10	4	0	13	5.5
	No. held on other perches		3	6	0	9	3.8

Numbers of elements during a display did not increase as S 82 progressed, possibly because it was extremely dry. During September, October and November 56, 46 and 61% of displays involved one element, 33, 29 and 26% two, and 11, 11 and 18% three elements respectively. Two six-element displays occurred in late October, and one four-, one six- and one nine-element display in November of S82. During November of S83, display involved one (79\%), two (19\%) or three (2%) elements.
Of the total 146 displays by bower-owning males we saw a female-plumaged individual simultaneously at the bower site 26 times (22 on the bower perch and 4 perched close by; see Table 7). On these 26 occasions males displayed before/after a displacement chase ($\mathrm{n}=20$) or displayed only ($n=6$); performing one display element ($\mathrm{n}=17$: five Bows, five Head nods and shakes, and seven Flight/hovers), or two ($\mathrm{n}=5$), three $(n=3)$ or nine $(n=1)$ elements.
The longest display observed (17 mins) involved performing display elements nine and three times, each group of them interspersed with much medley calling. A female-plumaged individual was perched on a vertical sapling initially, but then moved to the lower side of a bower tower to perch motionless, with sleeked plumage, and stare at the male. Once, when the visitor landed on the bower perch, it was
immediately displaced and chased by the owner. As in all other display/calling sequences with a female-plumaged individual present, this did not terminate in copulation.
Males spent little (1.1\%) time displaying during S82 or S83 (Table 4). During S82 fewer and briefer displays were recorded in September, during both mornings and afternoons, than in November despite decreasing bower attendance during the latter (Tables 5, 6). Mean display duration was 67 secs (Tables 4-6).
Silence and other behaviour. Males spend much time silently on perches above their bower, when they preen, bill-wipe, sun, change perches, turn 180° to face the opposite direction to sing or to better listen to neighbours' calls, or forage locally. When males returned from an absence, having obviously bathed, they flicked their wings, shook and fluffed their damp feathers and continuously preened. Once during a brief rain shower a male shook his wings and fluffed his plumage, before bathing by flying into sapling foliage and briefly fluttering/hovering amongst the wet leaves. On two occasions (at 0942 and 1245) different males perched in direct sunlight above the bower and sunned themselves; with erected breast, rump, head and nape feathers, down-pressed tail and drooped wings. We witnessed males fly from a favoured perch ($\mathrm{n}=$ 28) to snatch an insect from nearby foliage or
trunk, or to hawk ($\mathrm{n}=2$) an insect from the air. Males were twice seen to fly to take a vine fruit, twice to feed on a fruit on the ground and twice to retrieve fruit from a food store near the bower (a crevice in a vertical trunk).

The proportion of time at a bower that males spent silently (other than during bower maintenance periods, displays or chases) averaged 76% during S82 and 84% during S83 (Table 4). The lower S 82 figure was in part due to the continuous medley calls given by the male establishing himself at bower 3. Periods of silence were similar for each individual for each month (Table 5), and during different times of the day during S82 (Table 6).

DISCUSSION

ANNUAL SEASONALITY AND RELATIVE LEVELS OF BOWER ATTENDANCE BY MALES. Paluma Range male Golden Bowerbirds typically started attending traditional bowers in late August/early September, as temperatures initially rise from mid winter ones, approximately 6 to 8 weeks before females commenced egg-laying (Frith \& Frith, 1998). On the Atherton Tableland, especially at slightly lower and thus warmer altitudes, the display season starts a few weeks earlier (Marshall, 1954; Frith \& Frith, unpubl. data). Bower attendance declined in December; particularly when pre-wet season rains commenced (Warham, 1962; Frith \& Frith, 2000b and this study). During the wet season proper, few advertisement songs were heard, decorations deteriorated, and few males briefly visited bowers to add decoration during dry spells. Males moult at this time (Frith \& Frith, unpubl. data). A brief period of activity occurred in late March-early May, when bowers were poorly decorated and few songs given, as noted by Warham (1962) on the Atherton Tableland. This post-courtship activity is in part reflected by infrequent attendance of traditional bowers by immature males, a situation also found in Tooth-billed Bowerbirds at the same location (Frith \& Frith, 1994; 2000b).

Seasonal variation in time invested at/on bowers by male Golden Bowerbirds may vary year to year subject to prevailing weather conditions, particularly excessive wet season rains and drought, and thus food resource availability (see Lenz, 1993; Frith \& Frith, 1994; and this study). During abnormally dry seasonal conditions (as in S79 and S82 of this study), when rainforest fruit crop was poor and invertebrate numbers and biomass low, not only was the
display season shorter and male attendance at bowers reduced, but fewer females attempted to nest or did so successfully (Frith \& Frith, 1998). A similar situation was recorded for Paluma Range Tooth-billed Bowerbirds during the dry S79 (Frith \& Frith, 1994; 2000b). During seasonally typical conditions, male Golden Bowerbirds attended their bowers at consistent levels throughout the day, as did Macgregor's Bowerbirds Amblyornis macgregoriae (see Pructt-Jones \& Pruett-Jones, 1982), but in adversely dry conditions they did so almost twice as much during the mornings than during afternoons. Drought conditions had similar impacts upon both sexes of a polygynous, lekking, neotropical hummingbird (Stiles 1992).
Adult male Golden Bowerbirds ($n=7$) spent an average of 50% (range $32-69 \%$) of daylight within $15-20 \mathrm{~m}$ of their bowers, at a mean of 2.9 (range 2.2-4.2) bower visits per hour and each averaging 9.5 mins in duration. The former figures are similar to those found for male Macgregor's Bowerbirds $(\mathrm{n}=5)$ that spent an average of 54% (range 20-75\%) of daylight within $15-20 \mathrm{~m}$ of their bowers, but did so at a mean of 1.4 bower visits per hour (range 0.6-2.0) and each averaging 4.6 mins in duration (PructtJones \& Pruett-Jones, 1982). Both species are predominantly frugivorous (Pruett-Jones \& Pruett-Jones, 1985; Frith \& Frith, unpubl. data). Male Tooth-billed Bowerbirds, almost exclusively frugivorous during their peak courtship and mating season, spent an average of 64% of daytime at or near $(<10 \mathrm{~m})$ their courts, at a mean of 2.9 court visits per hour and each visit averaging 23 mins in duration (Frith \& Frith, 1994). Male rainforest Satin Bowerbirds, with a 67% fruit component of annual diet, spent an average of 73% of daytime within 50 m of bowers (Donaghey, 1981). A male Great Bowerbird, Chlamydera nuchalis, a species considered predominantly frugivorous (Diamond, 1986a; Schodde \& Tidemann, 1988), but probably less so than the above species, spent 47% of daylight hours at or near his bower at peak mating season (Veselovsky, 1978).

Regent Bowerbird. Sericulus chrysocephalus, annual diet includes 81% fruit, and yet males spent a mere 3% of daytime at or near their bowers at an average of 0.43 bower visits per hour, and each visit averaging 6.7 mins in duration (Lenz, 1994). Similarly, a Flame Bowerbird, S. aureus, spent 6% of daytime at/near its bower (Dwyer \& Minnegal in Coates, 1990) and a Fire-maned Bowerbird, S. bakeri,

TABLE 9. The number of display elements ($n-238$) performed by male Golden Bowerbirds during 146 displays on the bower perch and elsewhere in the bower site (data for the display seasons of 1982 and 1983 combined). * -these include bower perches, horizontal perches and vertical sapling trunks that Bow and Head nod and shake display elements were performed on, and vertical tree trunks or its leaves that the Flight/hover display were directed at; ** = during a display any element may be performed more than once; see Results.

		Number of display elements per display**						Total no. of displays (\% of total)	Total no. of display elements (\% of total)
		one	two	three	four	six	nine		
	Bower	12	0	0	0	1	0	13 (8.9)	18 (7.6)
	Vertical	68	21	9	0	0	0	$99(67.8)$	$138(58.0)$
	Horizontal	10	1	0	0	0	0	11 (7.5)	12 (5.0)
	Bower to vertical	0	7	1	0	0	0	8 (5.5)	17 (7.1)
	Bower to vertical to bower	0	1	1	0	1	0	3 (2.1)	$11(4.6)$
	Vertical to bower	0	2	1	0	0	0	3 (2.1)	7 (3.0)
	Vertical to bower to vertical	0	0	2	1	1	0	$4(2.7)$	16 (6.7)
	Vertical to horizontal	0	2	2	0	0	1	5 (3.4)	19 (8.0)
	Total number (\% of total)	$\begin{gathered} 91 \\ (63.1) \end{gathered}$	$\begin{gathered} 34 \\ (23.2) \end{gathered}$	$\begin{gathered} 16 \\ (10.2) \end{gathered}$	$\begin{gathered} 1 \\ (0.7) \end{gathered}$	$\begin{gathered} 3 \\ (2.1) \end{gathered}$	$\begin{gathered} { }^{1} \\ (0.7) \end{gathered}$	146	238

< 1% of daytime at its bower (Mackay, 1989 and in Lenz, 1993). An explanation postulated for this exception is that regent bowerbirds, Sericulus spp., represent an early stage in the evolution of bower-building, in which bowers have not yet replaced elaborate male nuptial plumage. Male Regent Bowerbirds initiate courtship in the forest canopy, before accompanying the female to the bower where a prolonged courtship display primarily presents colourful nuptial plumage (and less so bower/decorations) to the female (Lenz, 1994). Thus the bower plays a less significant role in courtship.

It has been observed that a disproportionately large percentage of tropical rainforest-dwelling passerines, with a polygynous mating system based upon court/bower/arena displaying promiscuous males, are predominantly frugivorous. The seasonal abundance of rainforest fruits, economically undefendable because of their spatial/temporal distribution, both promotes the emancipation of males from nest duties and enables females to raise offspring unaided by conspecifics (Snow, 1976, 1982; Frith \& Beehler, 1998). This said, Donaghey (1981) found that both adults and nestlings of the monogamous Green Catbird, Ailuroedus crassirostris, are more frugivorous than the polygynously breeding Satin Bowerbird, and noted that frugivory is but one of many factors involved in the evolution of avian promiscuity. Male Golden Bowerbirds also store, or cache, fruit foods around their bower site (Frith, 1989 \& pers. obs.), as do male Macgregor's Bowerbirds (Pruett-Jones \&

Pruett-Jones, 1985). Such storing of fruits around bowers would enable males to spend more time in bower attendance.

MALE BEHAVIOUR AT BOWERS. Habitual perches, vocalisations and silence. Bowerattending male bowerbirds studied to date advertise their bower location with specific calls given (Tooth-billed Bowerbird excepted) relatively infrequently from favoured perches (Gilliard, 1969; Veselovsky, 1978; Donaghey, 1981; Frith \& Frith, unpubl. data). Male Golden Bowerbirds gave the distinctive bower advertisement rattle, single notes (squeal, screech, scold-rasp and wolf-whistle) and a medley of calls that included much mimicry of frog- and cicada-like notes, and fine vocal avian mimicry, from habitual perches. The Tooth-billed, Archbold's (Archboldia papuensis), gardener (Amblyornis spp.), Regent, Satin, Spotted (Chlamydera maculata), Western (C. guttata), Great, and Fawn-breasted (C. cerviniventris) Bowerbirds include avian mimicry in their bower advertisement and/or other non courtship vocalisations (Marshall, 1950; Gilliard, 1969; Bradley, 1987; Loffreddo \& Borgia, 1986; Frith, 1989; Lenz, 1993; Frith \& McGuire, 1996; Frith ct al., 1996, \& pers. obs.). Male bowerbirds usually use a distinctly different, quieter and more complex, subsong in courtship display that, in the case of all of the above except the Chlamydera species, includes avian mimicry. During this study we did not hear Golden Bowerbirds giving subsong mimicry while displaying, but have done so subsequently. We
observed that long medleys of calls including much mimicry were given before/after display posturing, and particularly if a female-plumaged bird was present (see Table 7). We think it likely that this is more informative to females than advertisement song, as it has been demonstrated that female Satin Bowerbirds use the quality of more intimate male mimicry to assess the relative merits of prospective mates (Loffredo \& Borgia, 1986).

Immature males lacking a bower gave medley calls with mimicry when visiting bowers, as did younger adult males in their first year of bower ownership (Frith \& Frith, 2000b and this study). Adult males gave fewer medleys with mimicry, but it is possible that the quality of their avian vocal mimicry is higher than that of younger birds. Among competing male Satin Bowerbirds, older males produce longer bouts of higherquality avian vocal mimicry than do younger males and also gain higher mating success (Loffredo \& Borgia, 1986). Thorpe (1985) stated that there is some evidence that variety in male bird song is attractive to females, and suggested that mimicry may simply be a way of increasing repertoire size. Robinson \& Curtis (1996) demonstrated that most mimicry content of lyrebird (Menura spp.) calls is learned, is culturally transmitted, and its quality and sequence (of model spp) could therefore provide conspecifics, particularly females assessing male quality, with a clear indication of potential mate experience/ age/survival.

Male Golden Bowerbirds spent 80% of their time present at bower sites in perching silently above the bower, this being 9% more than in Macgregor's Bowerbird (Pruett-Jones \& Pruett-Jones, 1982). While adult make Regent Bowerbirds spent only 17% of time present at the bower site in perching silently this figure merely reflects the small proportion (3%) of total daylight they spent at bowers (see above; Lenz, 1994). It would appear that male Satin Bowerbirds spent 87% of time present at the bower site in silence (Donaghey, 1981: 181-182). In marked contrast, male Tooth-billed Bowerbirds spend $<2 \%$ of time perched at the court in silence, most of their time there (96%) being spent singing loudly, Court advertisement vocalisations of Tooth-bills are thus much more frequent, males having no epigamic adult plumage but a most elaborate vocal display (Frith \& Frith, 1994).
Bower maintenance. Male Golden Bowerbirds spent an overall average of 4% of time at the bower site in maintaining the bower structure/
decorations. In more typical climatic conditions males spent an average of 3% of time at the bower site in bower maintenance, but during adversely dry conditions spent almost twice this time doing so. The limited time birds spent on the bower presumably reflects (a) the low maintenance required once it is largely built (given its fungusfused and 'traditional' nature) and decorated; and (b) the fact that adult male nuptial plumage remains a predominant part of courtship in this species. Limited compatible figures for bower maintenance by: Macgregor's (12\%; PruettJones \& Pruett-Jones, 1982), Tooth-bills (1.2\%; Frith \& Frith, 1994), Regent (61\%; Lenz, 1994), Satin Bowerbirds (8% of all daylight; Donaghey, 1981) are variable. The figure for Tooth-bills is so low because males spend so much of daylight above the court (but at its site); whereas the high figure for the Regent, which builds a most rudimentary and sparsely-decorated bower, is because males spend little time at the bower site (Lenz, 1994).
In restricting its decorations to beard lichen, melicope seed pods and whitish flowers, the Golden Bowerbird is far less catholic in bower decorations than all other polygynous bowerbirds with the exception of the Tooth-bill which uses only leaves of various plants (Frith \& Frith, 1993, 1994) and the Fawn-breasted Bowerbird which uses only green fruits, leaves and the occasional flower (Peckover, 1970; Pruett-Jones \& Pruett-Jones, 1994). Bower decorations of greater signiticance to some bowerbird species are items rare in the birds' environment (Frith \& Frith, 1990c; Frith et al., 1996), and an abundance of such decorations on bowers enhances the mating success of the bower owner (Borgia, 1985b, 1986; Borgia \& Gore, 1986). Thus, rare decorations might indicate something significant to females, and rival males, about the owner's fitness/dominance levels. But are bower decorations used by Golden Bowerbirds rare in their habitat? The answer needs to be framed in the context of extensive undisturbed upland rainforest, lacking the roads, tracks and clearings of today. In this context, we suggest that melicope seed pods would have been relatively hard to find, as M. broadbentiana is a pioneer shrub (Hyland \& Whiffin, 1993) that is today found on track/clearing edges. Before the latter were available the plant would have been largely confined to areas of small-scale natural forest damage, such as larger tree falls and cyclones.
While beard lichen is far more widespread in upland forest than the melicope it is sun-loving
and would, in extensive primary upland forest, have been predominantly confined to woody twigs and branches of upper canopy and emergent trees - an exposed part of the forest not typically frequented by Golden Bowerbirds (pers. obs.). Fresh orchid flowers are never spatio-temporally abundant in Australian upland rainforest and in any event, like the whitish flowers of other plants, provide inferior bower decorations because they wilt and need replacement. Golden Bowerbirds can thus be seen to fit the broad pattern of male bowerbirds using some items that are relatively rare as bower decorations.

Adult males brielly visited the bower of rival males, usually in their absence, in order to steal bower decorations. Such decoration theft has been documented for several other bowerbirds; including the Tooth-billed (Frith \& Frith, 1993, 1994), Vogelkop (Diamond, 1986a,b, 1987, 1988), Regent (Lenz, 1994), Satin (Borgia 1985b; Borgia \& Gore 1986; Hunter \& Dwyer, 1997), Fawn-breasted (Coates, 1990) and Yellow-breasted (C. lauterbachi) Bowerbirds (Pruett-Jones \& Pruett-Jones, 1994).

Bower marauding is known in Macgregor's, Vogelkop, Regent, Satin, Spotted, Fawn-breasted and Yellow-breasted Bowerbirds (Pruett-Jones \& Pruett-Jones, 1994). While male Golden Bowerbirds may (but not observed) steal the odd, unfused (i.e. recently placed), stick from the bower apex of a rival male, we did not see any attempt to damage ('maraud' of Pruett-Jones \& Pruett-Jones 1994: 609) a bower of a rival. Bowerowning male Macgregor's Bowerbirds attempt to damage bowers of rivals as well as steal their decorations, including the moss of the tower base (Bulmer in Gilliard, 1969: 305; Pruetl-Jones and Pruct-Jones, 1982; pers, obs.). Stealing of the latter is noteworthy, suggesting it may function as decoration (analogous to beard lichen on Golden Bowerbird bowers) and not a structural element.

It has been demonstrated that a strategy of bower decoration theft by males is an evolutionally stable one, as opposed to the contrary strategy of guarding bowers and not stealing (Pruett-Jones \& Pruett-Jones, 1994). Male Satin Bowerbirds with more decorations on bowers tend to steal more often than they are stolen from (Borgia \& Gore, 1986). This is because relative levels of bower decoration enable females to assess an individual male's quality (fitness), based upon his success in conflict with rival males. The greater numbers of more favoured
decorations on a bower positively influenced relative male mating success (Borgia, 1985a,b, 1986; Borgia et al., 1985; Pruett-Jones \& Pruett-Jones, 1994). Bower quality has also been found to correlate well with relative male mating success in both Satin and Regent Bowerbirds; and males of both species mostly maraud and damage bowers of their nearest neighbours, their most likely sexual competitors (Borgia, 1986; Lenz, 1993). The reason for thoft by rival males is thought to be sexual selection resulting from females choosing to mate only with males "honestly advertising' their fitness with such 'rare' bower decorations (cf. Zahavi \& Zahavi, 1997).
Displacement chases and displays. As 81% of all female-plumaged conspecifics perching on the bower were immediately displaced and aggressively pursued out of the bower site by the bower-owning male Golden Bowerbirds it is likely, in view of what is known of other bowerbirds, that such behaviour typically greets females as well as adult and immature males. Of the 19% of visiting female-plumaged birds not immediately chased otf, half were displayed to and half ignored. Adult males displaced and chased immature and adult males from their bower/site but we only twice saw physical combat, as did Chisholm \& Chalfer (1956).

Display by a male conccaling himself from a visiting female, by crouching behind a court tree or central maypole bower base to give subsong with mimicry, is typical initial Tooth-billed, Macgregor's and Streaked (Amblyornis subalaris) Bowerbird courtship (Diczbalis, 1968; Gilliard, 1969; Frith \& Frith, 1993 \& pers. obs.). We saw no male Golden Bowerbird attempting to hide from a visiting female to give subsong with mimicry during this study, but have subsequently done so. In hindsight, we understand this was due to limited field of view from hides, a point of great importance to students of bowerbird behaviour (Frith \& Frith, unpubl. data).

It is probable that the three basic display elements we observed are performed during successful courtship, perhaps in a typical progressive sequence, but as we witnessed few displays to (unsexed) female-plumaged birds (n $=26$), and no copulations, we could not conlirm this. The Head nod and shake display is only broadly similar to postures and movements known to be performed by courting male Gardener and Archbold's bowerbirds (Gilliard, 1969; Frith et al., 1996; pers. obs.). The Bow display, which enhances the contrastingly
brilliant yellow mid-crown patch and nape 'crest', appears unrecorded in other bowerbirds.

The Flight/hover display is unique to the Golden Bowerbird. This is not surprising, as this display clearly functions to visually present both the (uniquely within Ptilonorhynchidae) brilliantly coloured dorsal and ventral contour and flight plumage of adult males. The deliberate slow flight display punctuated with hover(s) with conspicuously repeated tail-fanning, to expose the pure yellow outer rectrices, is visually spectacular. This might be performed with a bower decoration held in the bill (Chaffer in Chisholm \& Chaffer, 1956; and this study). The closest any other bowerbird comes to a courtship flight display is the vigorously repeated to-and-fro 'extra-bower' fluttering flight/lcaps, between vertical sapling stems, by closely related Macgregor's Bowerbird (Stevens in Greenway, 1935; Mackay \& Cheeseman, 1990; pers. obs.). It has been noted that bowers of Macgregor's Bowerbird are often built adjacent to numbers of vertical sapling trunks (Gilliard, 1969: 302; Pruett-Jones and Pruett-Jones, 1982), and they might be a prerequisite bower site feature to accommodate the "flight' display. In the light of this, and in view of the elements of its Flight/ hover display, it is possible saplings appropriate for hovering at/perching on might influence bower site selection by Golden Bowerbirds.

Male Golden Bowerbird behaviour at bower sites is mostly cryptic, given they are displacement chasing and/or displaying for $<2 \%$ of their total time present there. Males apparently depends largely upon bower/decorations and, subsequently, their colourful plumage to impress females, rather than a complex bower. Thus, it has been observed that in this bowerbird, unlike most, untidy bower construction and variation in their shape/bulk suggests gross bower features are of less significance to females than is the discrete and relative small part of them modified into a 'platform(s)' for the exclusive placement of decorations (Frith \& Frith, 2000a). Maintenance and decoration of the platform(s) requires but a small proportion of bower attendance time, once the basic bower is accumulated. The platform(s) does, however, provide a quickly and easily located 'marker' (cf. Borgia, 1985a; Borgia et al., 1985) for females seeking older, more experienced, males to assess as potential mates.

No data were obtained on relative reproductive success rates within male Golden Bowerbird populations. The possibility that older males are
more successful than younger rivals has been found, or indicated, to be the case in other non-lckking bowerbirds (Borgia, 1985a) and in unrelated lekking passerines in which promiscuous males court females at traditional sites (Lill, 1974a, b; McDonald, 1989a,b, Andersson, 1991). Clearly, promiscuous adult males establishing themselves within a lek, exploded lek or more dispersed population, enjoy a high survivorship (Frith \& Frith, unpubl. data). Evidence from sexually dimorphic polygynous bowerbirds, and other species, suggests that the strong mating skew in favour of older individuals has forced males into a long-term mating strategy involving much-delayed morphological and physiological development (Beehler \& Foster, 1988; Collis \& Borgia, 1992; Frith \& Beehler, 1998).

Bower site ownership by Golden Bowerbirds is highly stable over years, with few successful attempts by newcomer (predominantly younger) males to establish themselves within bower-owning male society. Given this scenario, and that experience/age has been found to play a highly significant role in relative male bowerbird mating success (Loffredo \& Borgia, 1986; Collis \& Borgia, 1992; Borgia, 1995), there is a high expectancy of the latter within local male Golden Bowerbird populations. This remains to be tested.

ACKNOWLEDGEMENTS

The lirst three years of these studies were performed by CBF as a post-graduate student of Monash University, Melbourne. For this opportunity he is most grateful to Alan Lill for support, encouragement, advice and friendship and to the then Zoology Department, Monash University for practical help. The initial three years were financed in part by National Geographic Society Grants 1709 and 1870 to Alan Lill, Monash University. Andreé Griffin provided valued company and assistance in the field in various ways. We also thank Gay Crawley and Stephen Garnett for field assistance during September and October 1982.

LITERATURE CITED

ANDERSSON, S. 1991. Bowers on the savanna: display courts and mate choice in a lekking widowbird. Behavioural Ecology 2: 210-218.
BEEHLER, B.M. \& FOSTER, M.S. 1988. Hotshots, hotspots, and female preference in the organization of lek mating systems. American Naturalist 131: 203-219.
BORGIA, G. 1985a. Bowers as markers of male quality. Test of a hypothesis. Animal Behaviour 35: 266-271.

1985b. Bower decoration and sexual competition in the Satin Bowerbird (Ptilonorinnchus violaceus). Behaviour, ecology and sociobiology 18:91-100.
1985 c . Bower quality, number of decorations and mating success of male Satin Bowerbirds (Ptilonorhynchus violaceus), an experimental analysis. Animal Behaviour 33: 226-271.
1986. Sexual selection in bowerbirds. Scientific American 254: 70-79.
1995. Why do bowerbirds build bowers? American Scientist 83: 542-547.
BORGIA, G. \& GORE, M.A. 1986. Feather stealing in the satin bowerbird (Ptilonorhynchus violaceus): male competition and the quality of display. Animal Behaviour 34: 727-738.
BORGIA, G, PRUETT-JONES, S. \& PRUETT-JONES, M. 1985. The evolution of bower-building and the assessment of male quality, Zeitschrift für Tierpsychologie 67: 225-236.
BOURKE, P.A. \& AUSTIN, A.F. 1947. The Atherton Tablelands and its avifauna. Emu 47: 87-116.
BRADLEY, J.M. 1987. Vocal behaviour and annual cycle of the Western Bowerbird Chlamydera guttata. Australian Bird Watcher 12: 83-90.
CHAFFER, N. 1958. Additional observations of the Golden Bower-bird. Emu 58: 133-137.
1984. In Quest of Bowerbirds. (Rigby: Adelaide).

CHISHOLM, A.F. \& CHAFFER, N. 1956. Observations on the Golden Bower-bird. Emu 56: 1-38.
COATES, B.J. 1990. Birds of Papua New Guinea including the Bismarck Archipelago and Bougainville. Vol. 2. (Dove Publications: Brisbane).
COLLIS, K. \& BORGIA, G. 1992. Age-related effects of testosterone, plumage, and experience on aggression and social dominance in juvenile male Satin Bowerbirds (Ptilonorlynchus violaceus). Auk 109: 422-434.
COOPER, W.T. \& FORSHAW, J.M. 1977. The Birds of Paradise and Bower Birds. (Collins: Sydney).
DIAMOND, J.M. 1986a. Biology of birds of paradise and bowerbirds. Annual Review of Ecology and Systematics 17: 17-37.
1986b. Animal art, variation in bower decorating style among male bowerbirds Amblyornis inornatus. Proceedings of the National Academy of Science 83: 3042-3046.
1987. Bower building and decoration by the bowerbird Amblyornis inornatus. Ethology 74: 177-204.
1988. Experimental study of bower decoration by the bowerbird Amblyornis inornatus, using coloured poker chips. American Naturalist 131: 631-653.
DICZBALIS, S. 1968. Observations on the Crested Bowerbird Amblyornis macgregoriae. Miscellaneous Report of the Yamashina Institute 5: 199-201.
DONAGHEY, R.H. 1981. The ecology and evolution of bowerbird mating systems. (Unpubl. PhD thesis, Monash University: Melbourne).
1996. Bowerbirds. Pp. 138-187. In Strahan, R. (ed.) Finches, Bowerbirds \& other Passerines of Australia. (Angus \& Robertson: Sydney).
FRITH, C.B. 1989. A construction worker in the rainforest. Birds International 1:29-39.
FRITH, C.B. \& BEEHLER, B.M. 1998. The Birds of Paradise: Paradisaeidae. (Oxford University Press: Oxford).
FRITH, C.B. \& FRITH, D.W. 1985. Seasonality of insect abundance in an Australian upland tropical rainforest. Australian Journal of Ecology 10: 31-42.
1990a. Notes on the nesting biology of the Great Bowerbird Chlamydera nuchalis (Ptilonorhynchidae). Australian Bird Watcher 13: 137-148.
1990b. The nesting biology of the Spotted Bowerbird Chlamydera maculata (Ptilonorhynchidae). Australian Bird Watcher 13:218-225.
1990c. Archbold's Bowerbird Archboldia papuensis (Ptilonorhynchidae) uses plumes from King of Saxony Bird of Paradise Pteridophora alberti (Paradisaeidae) as bower decoration. Emu 90: 136-137.
1993. Courtship display of the Tooth-billed Bowerbird Scenopoectes dentirostris and its behavioural and systematic significance. Emu 93: 129-136.
1994. Courts and seasonal activities at them by male Tooth-billed Bowerbirds Scenopoeetes dentirostris (Ptilonorhynchidae). Memoirs of the Queensland Museum 37: 121-145.
1995. Court site constancy, dispersion, male survival and court ownership in the male Tooth-billed Bowerbird, Scenopoeetes dentirostris (Ptilonorhynchidae). Emu 95:84-98.
1998. Nesting biology of the Golden Bowerbird Prionodura newtoniana endemic to Australian upland tropical rainforest. Emu 98: 245-268.
2000a. The bower system and structures of the Golden Bowerbird, Prionodura newtoniana (Ptilonorhynchidae) on the Paluma Range, north Queensland. Memoirs of the Queensland Museum 45(2): (this issue).
2000b. Home range and associated sociobiology and ecology of male Golden Bowerbirds Prionodura newtoniana (Ptilonorhynchidac). Memoirs of the Queensland Museum 45(2): (this issue).
FRITH, C.B. \& McGUIRE, M. 1996. Visual evidence of vocal avian mimicry by male Tooth-billed Bowerbirds Scenopoeetes dentirostris (Ptilonorhynchidae). Emu 96: 12-16.
FRITH, C.B., BORGIA, G \& FRITH, D.W. 1996. Courts and courtship behaviour of Archbold's Bowerbird Archboldia papuensis in Papua New Guinea. Ibis 136: 153-160.
FRITH, D.W. 1984. Foraging ecology of birds in an upland tropical rainforest in north Queensland. Australian Wildife Research 11: 325-347.
FRITH, D.W. \& FRITH, C.B. 1990. Seasonality of litter invertebrate populations in an Australian upland tropical rainforest. Biotropica 22: 181-191.

GILLIARD, E.T. 1969. Birds of Paradise and Bower Birds. (Weidenfeld \& Nicolson: London).
GREENWAY, J.C. Jr 1935. Birds from the coastal range between the Markham and the Waria Rivers, northeastern New Guinea. Proceedings of the New England Zoological Club 14: 15-106.
HUNTER, C.P. \& DWYER, P.D. 1997. The value of objects to Satin Bowerbirds Ptilonorhynnchus violaceus. Emu 97: 200-206.
HYLAND, B.M.P. \& WHIFFIN, T. 1993. Australian Tropical Rain Forest Trees - an interactive identification system. Vol. 2. (CSIRO: Melbourne).
LENZ, N.H.G. 1993. Behavioural and reproductive biology of the Regent Bowerbird Sericulus chrysocephalus (Lewin, 1808). (Unpubl. PhD thesis, Griffith University: Brisbane).
1994. Mating behaviour and sexual competition in the Regent Bowerbird Sericulus chrysocephalus. Emu 94: 263-272.
LILL, A. 1974a. Social organization and space utilization in the lek-forming White-bearded Manakin, M. manacus trinitalis Hartert. Zeitschrift für Tierpsychologie 36: 513-530.
1974b. Sexual behaviour in the lek-forming Whitebearded Manakin (M. manacus trinitalis Hartert). Zeitschrift für Tierpsychologie 36: 1-36.
LOFFREDO, C.A. \& BORGIA, G. 1986. Male courtship vocalisations as cues for mate choice in the Satin Bowerbird (Ptilonorhynchus violaceus). Auk 103: 189-195.
McDONALD, D.B. 1989a, Correlates of male mating success in a lekking bird with male-male cooperation. Animal Behaviour 37: 1007-1022.
1989b. Cooperation under sexual selection: Agegraded changes in a lekking bird. American Naturalist 134: 709-730.
MACKAY, R.D. 1989. The bower of the Fire-maned Bowerbird Sericulus bakeri. Australian Bird Watcher 13: 62-64.
MACKAY. R.D. \& CHEESEMAN, G 1990 . Extra-bower display of Macgregor's Bowerbird Amblyornis macgregoriae. Muruk 4: 63-64.
MARSHALL, A.J. 1950. The function of vocal mimicry in birds. Emu 50: 5-16.
1954. Bower-birds their displays and breeding cycles - a preliminary statement. (Oxford University Press: Oxford).

PECKOVER, W.S. 1970. The Fawn-breasted Bowerbird (Chlamydera cerviniventris). Proceedings 1969, Papua New Guinea Scientific Society 21:23-35.
PRUETT-JONES, M.A. \& PRUETT-JONES, S.G. 1982. Spacing and distribution in Macgregor's Bowerbird (Amblyornis macgregoriae). Behaviour, Ecology and Sociobiology 11: 25-32.
PRUETT-JONES, S.G. \& PRUETT-JONES, M.A. 1985. Food caching in the tropical frugivore, Macgregor's Bowerbird (Amblyornis macgregoriae). Auk 102: 334-341.
1994. Sexual competition and courtship disruptions: why do male bowerbirds destroy each other's bowers? Animal Behaviour 47:607-620.
ROBINSON, F.N. \& CURTIS, H.S. 1996. The vocal displays of the lyrebirds (Menuridae). Emu 96: 258-75.
SCHODDE, R. \& TIDEMANN, S.C. 1988. Reader's Digest complete book of Australian birds. (Reader's Digest: Sydney).
SNOW, D.W. 1976. The web of adaptation: bird studies in American tropics. (Collins: London).
1982. The Cotingas. (British Museum (Natural History): London).
STILES, F.G. 1992. Effects of a severe drought on the population biology of a tropical hummingbird. Ecology 73: 1375-1390.
THORPE, W.H. 1985, Mimicry, vocal. Pp. In Campbell, B. \& Lack, E. (eds) A dictionary of birds. (Poyser: Calton).
TRACEY, J.G. 1982. The vegetation of the humid tropical region of North Queensland. (CSIRO: Melbourne).
VELLENGA, R.E. 1980. Distribution of bowers of the Satin Bowerbird at Leura, N.S.W., with notes on parental care, development and independance of the young. Emu 80: 97-102.
VESELOVSKY, Z. 1978. On the biology and behaviour of the Great Grey Bowerbird, Chlamydera nuchalis. Journal für Omithologic 119: 74-119.
WARHAM, J. 1962. Field notes on Australian bowerbirds and cat-birds. Emu 62: 1-30.
ZAHAVI, A. \& ZAHAVI, A. 1997. The handicap principle, a missing piece of Darwin's puzzle. (Oxford University Press: Oxford).

CLIFFORD B. FRITII AND DAWN W I RIII

Frith. C.B. \& Frith, D.W. 200006 30: Home tanere and associated sociobiology nod ecology of male Golden Bowerbirds Prionodura nemanniana (Ptilonorhynchidac). Ahemoirs of the Queevshand, Ifuseum 45(2): 343-357. Brisbone. 18SN 0n79-8835.

Abstract

ffome range and social interactions of male (iolden Bowerbirds, frionochurd mewfontant. during display seasons and other months of the year, prion fo and during hower ownership, to December, the wet season rains terminating activity at buwers. A brief period of posi-moult activity occurred in late March to early May: A waditional bower owner never occupied more than one traditional bower site simultancously or consecutively. 1 raditiona! bower sites were usually attended by traditional (>2 seasons) bower owners, in a few instances $(\mathrm{n}=3$) the disappearance of a long-term traditional stee uwner resulted in it being temporarily visited for a season('s) by immature males, until one hecnme established as ins new awner. Similarly, a rudimentary bower site $(n-4)$ was established near ($50-150 \mathrm{~m}$) a traditional site if the latter lost its long-term owner. The rudimethary sile was then irregularly attended by immature males, until one became the new ownes of the adjaccut tenditional site, Young boiverless males actively attended bower sites during peali display season (380\% of sightings of them) and during the post-peak display season of March to carly May (45% of sightings). From five to two years before athining Iradilional bowar ownershipo immature males visited many bower sites, at an average distance of 39 Im from the one they eventually came to occupy. The year before attaining full bower site occupancy this distance diministred, to an avernge 186 m , as older immature-plumaged birds focused their aclivities nearer the site they would eventually occupy. Most males were adult-plumaged by the time they canc to actively accupy a traditional site fill time, but a few were in immature/sub-adult plumage. Tradifional owners lell bowers to forage, bathe, drink, and collect sticks and decorations. They foraged relatively close (mean $=110 \mathrm{~m})$ to their bowers, overlapping foraging ranges of neighbouring rival males on occasion. They visited uther howers (mean distance-191m), mostly (82%) during the display season, to sted decorations. The mean distance fravelled from bower sites for all purposes averaged 143 m , with a median of $121 \mathrm{~m}(\mathrm{n}=152)$. Fatimated mean home range size of eight adult males was 7ha (range 3-10ha). DGolden Bowerhird, Prionadura newtoniana, Ptilonorizunchicdec: home remges, bower actursition. sochal imteractions.

Cluford B. Fyin and Dann II: Firith, Honuram Reweareh Fellows af the Queenstand Minseum, 'Primodura'. PO Box 581, Malanda 4885. Australia: 17 September 1990.

Interest in bowerbirds (Ptilonorhynchidae) has seen a recent revival, due to their significance to studies of the evolution of social systems and sexual selection theory (Donaghey; 1981 ; PruettJones \& Pruett-Jones. 1982, 1983; Burgia, 1986; Frith \& Frith 1993. 1995; Lenz 1993). Buwer structures and building behaviour of male bowerbirds provide opportunities to examine the cvolution of symbolic, externalised, sceondary sexual characters (Frith \& Frith, 1993. 1999:7 Borgia, 1995), the evalution of culturally transmitted traits (Diamonci, 19859) and origins of aesthetic sense in animals (Diamond, 1982. 1986b). In view of almost no knowledge of its triology and the potential significance in theoretical considerations of animat social
orgunisations and mating systems in gencral, and to the evolution of same in bowerbirds particularly, we hegan studying Golden Bowerbirds Prionodura newivesunam, in 1978.

We examined 60 traditional bower sites, involving a total of 98 main (decorated) bower structures, during 1978-1997 on the Paluma Range. and presented a comparative and quantilied review of them (Frith \& Frith, 2000a). A rraditional bower was a large, well-established, structure built at a traditional site that was regularly attended, maintained and decorated throughoul subsequent scasons by its traditional adult male ownet. We also described short-tem, rudinentary, bowers buill by inmature males all bower sites established ness to traditional unes

FIG. 1. Dispersion of 15 (including 3 just outside) traditional (\bullet) and 10 (including one on the perimeter) rudimentary $(+)$ male Golden Bowerbird bower sites within $50 \mathrm{ha}(1 \times 0.5 \mathrm{~km})$ study area 1 (SA1). Only rudimentary sites at which marked individual birds were sighted are numbered. Faint lines indicate seasonal drainage gullies. Grid marks are indicated at each 200 m within the 1 km southern boundry on the figure. Bower sites just on/outside the perimeter of SAl are plotted within the boundary line and their actual distances outside it indicated.
(Frith \& Frith, 2000a), a scenario observed in other bowerbirds (Vellenga, 1970, 1980; Donaghey, 1981; Pruett-Jones \& Pruett-Jones, 1982; Chaffer, 1984; Borgia, 1986; Lenz, 1993; Frith \& Frith, 1994, 1995, 1999a; Frith et al, 1996).

During the display season (late AugustDecember), bower-owning males perch above their bowers and give loud advertisement song and other vocalisations including fine vocal avian mimicry, maintain and decorate their bowers, evict rival males and display to potential mates (Frith \& Frith, 2000b). Advertisement song consists of a prolonged, pulsating rattle. Other calls include squeals, screeches, wolf-whistles, scolds, frog- and cicada-like notes, given as single notes, or as a medley together with fine vocal avian mimicry of >22 model species. Males leave their bower site to harvest sticks and decorations, and steal decorations from rival males for their bower, and to bathe and forage (Frith \& Frith, 2000b). They are predominantly frugivorous but also eat beetles, cicadas, and spiders (Frith, 1989; Donaghey, 1996; Frith \& Frith, unpubl. data). Availability of fruits, in both time and space, may affect profoundly the home ranges of bowerbirds, but data detailing home ranges of fixed-point courting promiscuous male
frugivorous bowerbirds are available only for the Satin, Ptilonorhynchus violaceus (Donaghey, 1981), Macgregor's (Pruett-Jones \& Pruett-Jones, 1983) and Tooth-billed, Scenopoeetes dentirostris (Frith et al., 1994) bowerbirds.

The present study provides the first information on distances travelled by traditional bower-owning male Golden Bowerbirds away from their bower sites. It also describes for the first time activities of immature males prior to becoming the owners of traditional bowers. Seasonal activities at, and away from, bowers during different times of the year are discussed. Data on male attendance levels and their time-budgeted activities at bowers are presented elsewhere (Frith \& Frith, 2000b). Results of long-term studies of male survival, histories of bower ownership by individual males, and acquisition of adult plumage will appear elsewhere.

METHODS

STUDY AREA. This study was carried out in upland rainforest, at about 850 m asl, on the Paluma Range, 7 km from Paluma Township and 80 km north of Townsville, northeastern Queensland. The study area ($19^{\circ} 00^{\prime} \mathrm{S}, 146^{\circ} 10^{\prime} \mathrm{E}$) was a 50 h plot, $1 \times 0.5 \mathrm{~km}$, permanently gridded
with metal stakes (Fig. 1). For a detailed description of this area, see Frith \& Frith (2000a). The present study deals mostly with the ownership and movements of male Golden Bowerbirds based at 15 traditional and 4 rudimentary bower sites within, or just outside the perimeter of our study area (Fig. 1). In a few instances, however, birds marked as immature males and resighted within our study area eventually took up ownership of traditional bower sites ($n=6$) beyond it. For the location of these bower sites (numbers 16, 22, 23, 24, 33 \& 34) see Frith \& Frith (2000a: fig. 2).

DEFINITIONS. Definitions of bower sites and structures appear in Frith \& Frith (2000a), and of the display season and vocalisations in Frith \& Frith (2000b). We refer to a display season by the year in which it started (S78, S79 etc). An immature male was one in female-plumage and a sub-adult male one with some to almost complete adult male plumage intruding into female plumage. We use 'regularly attended' to imply full-time seasonal attendance by traditional owners at traditional bowers, and 'irregularly attended' to imply part-time seasonal attendance by immature males at traditional or rudimentary bowers. All statements refer to males unless stated otherwise.
HOME RANGES. Movements of individually marked malcs were examined over six display seasons (S78-S84) and additional months of the year. Intensive fieldwork was from 1 August 1978 to 28 February 1981, save 1 May to 18 July 1979 when we were absent (but relative bird activity at bowers was then assessed by Andreé Griffin). In studying Golden and other bowerbird species during this period, 1547 hours were spent carrying out systematic work: 788 h during four hour random walks, 572 h during fixed transect walks, and 187 h of random searching for nests (see Frith, 1984; Frith \& Frith 1994, 1995, 1998). Of the total $1547 \mathrm{~h}, 893 \mathrm{~h}$ were during display season months August-December; 282 h during fanuary-February when it was excessively wet and/or males were moulting (Frith \& Frith, unpubl. data); 268 h during March-May when there was some post-moult activity at bowers; and 104h during winter months June-July. We also spent 343 h mist-netting at bowers, as well as marking/retrapping individuals elsewhere during a standardised avifaunal netting programme (Frith \& Frith, unpubl. data).

Fieldwork continued through the display season months of S81-S84, and non-display season months of June 1981, February, May and

August 1982, June 1983 and March 1984. During S82 and S 83 we made observations at six bower sites in September-November 1982 for 369 h , and November-December 1983 for 102h. Sightings of marked birds at bowers are presented here, but levels of attendance at bowers and time-budgeted activities at them appear elsewhere (Frith \& Frith, 2000b). We continued netting at bower sites and for a general avifaunal netting programme during S81-S84.

Each captured bird was metal banded and with a unique two colour band combination ($=$ marked). Biometrical, morphological and moult data will appear elsewhere (Frith \& Frith, unpubl. data). Band colours on bower-owning birds were confirmed each season by direct observation at bowers, to avoid disturbance by retrapping, although many birds were retrapped opportunistically away from bowers. Band colours were also noted during bird sightings at and away from bowers during other fieldwork. The present study deals with 26 contirmed males, first marked during $\mathrm{S} 78-\mathrm{S} 81$ in adult $(\mathrm{n}=11$) or immature ($\mathrm{n}=$ 15) plumage. Numbers of sightings of marked individuals at bower sites were totalled for the months of August-December, January-February, April-May and May-July (S78-S84), in view of the above.

RESULTS

BOWER SITES AND EXISTING OCCUPANCY.

 Traditional Bower Sites with Traditional Owners. Fifteen traditional bower sites were monitored during S78-S84: 12 within the study area and 3 (7,21 and 29) just beyond it (Fig. 1). All save site 21, which was abandoned after 5 seasons, remained active throughout this study. Twelve of the 15 traditional bower sites were regularly attended over different seasons by a total of 20 individual traditional bower owners. An adult never occupied more than one traditional bower site, simultaneously or consecutively.Traditional Bower Sites Lacking Traditional Owners. Three of the 15 traditional bower sites (5, 15 and 21) lacked traditional owners throughout the study (Fig. 1). The bower at site 5 was a large and traditional one but those at sites 15 and 21 were rudimentary structures. These three bowers sites were irregularly attended by immatures, as follows:

During S78-S84 we made 114 sightings of female-plumaged individuals (43 sightings of 19 marked males, and 71 of unmarked birds whose behaviour indicated they were male) at sites 5,15 and 21 . Most (62%) of the 114 sightings were at
traditional bower site 5 , with fewer sightings at the rudimentary bowers of traditional sites 15 (14%) and 21 (24%). These data are biased, however, because we visited site 5 most often, because more consistent activity was to be observed there. During these sightings we observed immature birds giving single call notes (25 times), continuous medley calls with mimicry (33 times), and advertisement song typical of traditional bower-owners, only 9 times. The latter song was only heard during the display season, but other calls, although mostly (57%) heard during August-December, were also given during January-February (19\%), March-April (19\%) and May-July (5\%).

At these traditional sites, young males rearranged bower sticks and/or decorations, or brought in new ones obtained elsewhere. Bowers had few (<10) decorations, in part because neighbouring adult traditional bower-owners stole them (confirmed by five observations of such thefts). Up to four young males often visited such sites together, where they called, displacementchased each other whilst flicking/fluttering their wings, and sometimes performed brief display postures.
Rudimentary Bower Sites Lacking Traditional Owners. Four rudimentary bower sites were established near to (mean $=104$, range $30-150 \mathrm{~m}$) traditional bower sites during S78-S84 and were active for one (site 42), two (site 25) or three non-consecutive (sites 30 and 44) seasons. Another rudimentary site (28) was 150 m from traditional site 31 (both sites being outside SAI beyond traditional site 6 - see Figs 4D \& 6A). These rudimentary sites were irregularly attended by immatures, but adults visited them occasionally, presumably to steal decorations.

Rudimentary bower sites were usually lirst established near a traditional site after the disappearance of the latter's owner. For example, the adult owner of traditional site 31 had been badly injured (base of his rear skull bald, torn and bleeding) prior to being seen at his bower on 29 November 1978. The next day we netted and marked him at nearby rudimentary site 28 , where we had sighted a sub-adult and two immatures on several previous occasions. We saw this adult male again in April 1979, his head now healed, being chased about his own traditional site by an unmarked immature. We did not see the healed adult again, and in S79 an unmarked adult occupied traditional site 31 and the adjacent rudimentary site was abandoned.

In October 1979 we marked an apparently diseased adult at rudimentary site 42 , who may have been the present/previous owner of nearby traditional site 45 (Fig. 1). This bird's plumage was in poor condition and he had a swollen (21.5 mm long $\times 14.6 \mathrm{~mm}$ diameter) hard fatty 'bag', possibly an infected preen gland, above his central tail feather bases. He was not seen again, and an immature (black/red) took over traditional site 45 during the latter part of S 79 .

Rudimentary bowers were usually established during the non-display months of March-July, by immatures which had previously limited their activities to the area surrounding the adjacent traditional site. Sometimes two or three immatures temporarily attended such a rudimentary bower site. By the beginning of the following display season (August/September) the immature(s) would challenge the owner of the adjacent traditional site for occupancy, and by late October/ early November the victor exclusively occupied it. The rudimentary site was then abandoned.

During S78-S84 we made 30 sightings of female-plumaged individuals (15 subsequently confirmed males and 15 unmarked birds that were probably male) at four rudimentary bowers (sites 25, 30, 42 and 44 ; see Fig. 1). During these sightings we heard medley calls with mimicry 14 times, and advertisement song only 3 times. We saw adult males at rudimentary sites 5 times, but did not contirm if they visited them to steal decoration.
ACQUISITION OF A TRADITIONAL BOWER SITE. Fifteen males were marked as immatures: 13 were first captured at an average of $317 \pm$ 243 m (range $110-900 \mathrm{~m}$) from, and two at, the traditional bower site they subsequently came to occupy. Of these 15 individuals, 14 were first captured within the study area: 8 at/near site $5 ; 2$ at site $21 ; 1$ at rudimentary site 44 (sites lacking traditional owners); and 3 at sites 1,3 and 6 (sites with traditional owners). The initial capture sites of each of these 14 individuals are indicated in Fig. 2. The 15th bird (pink/red) was lirst captured at a traditional site outside the study area, but subsequently visited bowers within it (see Fig. 31)).

Males in Adult Plumage. Nine of the 15 marked immatures had acquired adult-plumage before first occupying a traditional bower site. The year in which two of these nine became adult was unknown (orange/orange and green/white; see Fig. 2). Six of them were in their first year of adult plumage when acquiring a traditional bower site,

FIG. 2. Schematic plan to scale of localities at which 14 immature male Golden Bowerbirds were captured and marked within study area SA1. The traditional site they subsequently came to occupy and the distance to it from the point of their first capture are indicated. Note: $b=b l u e ; g=$ green; $k=b l a c k ; ~ n=$ pink; $o=$ orange; $p=$ purple; r $=$ red; $\mathrm{w}=$ white ${ }^{*}$ * = capture sites not at bower sites; $\bullet=$ traditional bower sites with traditional owners; $\mathrm{x}=$ traditional bower sites lacking traditional owners; $+=$ rudimentary bower site. Bower sites actually located immediately beyond the SA1 perimeter are here plotted within the boundary line (see Fig. 1 for their distance beyond it).
and another had been adult plumaged for one year, as follows:
Black/white was marked at site 5 in March 1980 as an immature. During March-July 1980 he visited traditional sites with traditional owners, including site 27 (which he later came to own), as well as sites 5 and 15 lacking traditional owners (Fig. 3A). During S80 he was seen at/near site 5 and also at site 6 , and its nearby rudimentary bower site 30 , while a challenge was underway for ownership of traditional site 6 (see below). Over the next three years (1981-83) we saw him four times, the last being at rudimentary site 30 when he was possibly again challenging for site 6. In August 1984 he was the new owner of traditional site $27,110 \mathrm{~m}$ from site 5 where marked 4.5 years previously (Fig. 3A).
White/blue was marked at site 5 in April 79 as an immature. During April 1979-July 80 he visited sites with traditional owners, including site 29 (which he later came to own), as well as sites 5, 15 and 21 lacking traditional owners (Fig. 3B). From August 1980-December 81 he was mostly seen at/near site 5. Early in September 1982, in his first year of adult plumage, he regularly attended site 4 and we assumed he was its new owner, but later that month he was displaced by the owner of the previous season. By

September 1983 white/blue was the new owner of traditional site 29, 235m from site 5 where marked 4.5 years previously (Fig. 3B).
White/orange and black/purple were marked at site 5 in March 1980, as immatures. They subsequently took ownership of traditional sites 23 and 33, being 580 and 670 m distant from site 5 , respectively (Fig. 2). From March 1980 to November 1982 white/orange visited various bowers in the study area but in S84, 4.5 years after marking, he became the new adult-plumaged owner of site 33 (Fig. 3C). Black/purple was re-sighted twice after marking, once in March 1980 at site 27, and again there in January 1981 when in sub-adult plumage and in company of immature white/orange (Fig. 3C). In S82, 2.5 years after marking, black/purple was the adultplumaged owner of site 23. Another immature, pink/red, was marked in December 1978 at traditional site 24 , beyond SAI but near sites 23 (220 m distant) and 33 (165 m distant). We saw him six times in SA1 during November 1979 to May 1982, including once with immature white/ orange at sites 15 and 27 (Fig. 3D). In S83 he was the new adult owner of site 24 , almost five years after being marked there. Thus, the above three males, often sighted together, as immatures, occupied adjacent traditional sites when adults.

FIG. 3. Schematic plans to scale showing movements of seven immature male Golden Bowerbirds prior to them attaining adult plumage and then acquiring a traditional bower site, during S78-S84 within parts of study area SA1. Number of sightings, months they were made and the season (S) an individual male acquired a traditional bower site are noted within Fig. 3A-E. Bower sites actually located immediately beyond the perimeter are here plotted within the boundary line (see Fig. 1 for their distance beyond it). Distances travelled to bower sites beyond the SA1 boundry are indicated. = traditional bower sites with traditional owner; $\mathrm{x}=$ traditional bower site lacking traditional owner; and $+=$ rudimentary bower site; * = sightings made other than at bowers.

Two young males took over traditional sites the year after we marked them: orange/black was marked in sub-adult plumage in October 1978 at
traditional site 6 and was next seen in S 79 , as the newly adult-plumaged owner of traditional site 16, 275 m from site 6 (see Fig. 3E). Orange/green
was marked at site 5 in April 1979, as an immature. During March-July 1980, having just moulted into adult plumage, he challenged the traditional owner at site 27 , being seen there 23 times; including 9 in the traditional owner's presence (Fig. 3E). During August-October of S80 both adults apparently attended site 27. Twice in late October we saw the challenger chasing the owner from the immediate bower area, and in early November he had become the new owner.
Males in Immature Plumage. Six of the 15 marked immatures remained in immature plumage when first occupying a traditional bower site, as follows:
Blue/orange was first marked 230 m from bower site 5 in March 1979. From then until July 1980 we sighted him 17 times (see Fig. 4A). During S80 and S81 blue/orange remained closer to bower site 3 , which he subsequently came to occupy. By May 1982 blue/orange had built a new bower based upon a pre-existing terrestrial subsidiary structure at site $3,20 \mathrm{~m}$ from the old one. He attained adult-plumage in 1983.

Pink/purple, first marked in December 1981 140 m from site 3 , was seen visiting site 3 and nearby traditionally-owned bowers several times (Fig. 4B). In early September 1982 he regularly attended bower site 1 before being displaced later that month by the owner of the previous season. In S84, still in immature plumage, he was the new owner of site 17 . He acquired adult plumage the following year.
During early S78 the bower at traditional site 6 was attended by an adult male, that we marked there on 11 October, but was unseen again after 17 November. Another male, blue/purple, originally marked as an immature 205 m from site 6 in January 1979 , was seen four times at site 6 during February-March, and once at site 5 in April (Fig. 4C). During the winter months of 1979 a new rudimentary site (site 30) was established, 35 m from site 6 (Figs $1 \& 4 C$), and an immature male(s) was attending it but we could not confirm if he was banded. By October immature male blue/purple was the new occupant of site 6, and no more activity was seen at rudimentary site 30 that season. Our last sighting of blue/purple was in May 1979.

Red/purple, first marked in April 1979, started attending rudimentary site 30 together with immature black/white in July 1980, when a challenge was again underway for ownership of traditional site 6 (see above). By late November of $\mathrm{S} 80 \mathrm{red} / \mathrm{purple}$ was the established new
occupant of site 6 (Fig. 4D). Red/purple may have acquired traditional site 6 early, due to the disappearance of immature-plumaged blue/purple (see above), because he did not become adultplumaged until 1984, four years after becoming the traditional owner of that site. The bower at rudimentary site 30 was not attended until June 1983, when we saw red/purple (still the owner of site 6) there with black/white. Both birds were now in sub-adult plumage and black/white was possibly again challenging for site 6 , but red/ purple remained its traditional owner. Rudimentary site 30 was not used again.
Two other immatures had just acquired traditional sites (1 \& 45) when first marked. Each site had a derelict bower, which had been abandoned for at least one season. Attendance by these two young males during their first nine months of occupancy was sporadic; as follows:

In March 1979 we found a handful of sticks, 20 m from the old bower at site 1 and we marked its immature builder purple/green. In S79, he added little to the new structure, but was seen at rudimentary site 25 (first located by us in S78) and at sites 7,15 and 27 , some 580,625 and 770 m from site 1, respectively (Fig. 5). By S80 he was in adult-plumage and the new traditional owner of site 1 . Rudimentary site 25 was abandoned.
In December 1979 we found a small new bower under construction at site $45,30 \mathrm{~m}$ from the derelict one. Its builder was immature black/red, who we marked at traditional site 21 (lacking a traditional owner) in October 1979 (Fig. 5). In March 1980 black/red was calling at newly established rudimentary bower site $42,100 \mathrm{~m}$ from site 45 . By S80 he was the new traditional owner at site 45 . Rudimentary site 42 was abandoned. Black/red was sub-adult in S81 and adult plumaged in S82.

HOME RANGES. Of Non-traditional Bower Owners. Of 15 immatures, 13 did not own a traditional site when marked and two (purple/ green, black/red) were just acquiring one. Threc of the 13 bowerless immatures (orange/black, green/blue and green/white) were not sighted after initial capture until adult bower-owners (see Fig. 2). During S78-S84 we made 182 sightings of the remaining 10 individuals: 113 at bower sites and 69 elsewhere (usually foraging; Table 1). Of the 113 sightings at bower sites: 38% were during August-December (courtship season), 5\% January-February (wet season), 45\% March-May (post-moult activity) and 12\% June-July (Table 1).

PICi. 4. A-I), Schematic plans to scale show ing movements of four immature male (iolden Bowerbirds prior to them oecups ing a traditional bower site while still wearing immature plumage, during S78-884 within parts of study area SAI. Number of sightings, months they were made, and the season (S) an indiv idual male acquired a traditional bower site are noted. Bower sites actually located immediately hey ond the perimeter are here ploted within the boundary line (see Fig. 1 for their distance beyond it). Distances travelled to other bower sites beyond the $\$ 11$ boundary are indicated. o traditional site with traditional owner; $x=$ traditional bower site lacking traditional owner; and $+=$ rudimentary bower site; * $=$ sightings made other than at bowers.

Of 113 sightings at bower sitcs: 58% were at traditional sites owned by traditional owners; 39% at sites 5,15 and 21 , lacking traditional owners; and 3% at rudimentary bower sites. These relative proportions varied, however, with individual bird age. Five to two years before the young males owned a traditional site these proportions were 51,45 and 4%, but one year before such ownership they were 67,31 and 2%, respectively (see Table 1). These differences
reflect the fact that in the year before occupying a traditional site, birds visited it more often, and particularly during March-July (24 of 25 sightings). Between five to two years before establishing bower tenure, immatures visited traditional bower sites more distant (mean $=$ 391 m) from their site of future occupancy than they did during the year immediately prior to occupying it (mean $=186 \mathrm{~m}$). But sightings of birds away from bowers involved distances

TABLE 1. Histories of sightings of 10 male Golden Bowerbirds marked as immatures (female-plumage) during different periods of months from August 1978-December 1984 at various bower site types and elsewhere. * $=$ only 4 individuals were marked 5 seasons before coming to own a traditional bower site; the other 6 individuals were marked $3(\mathrm{n}=3), 2(\mathrm{n}=2)$ and $1(\mathrm{n}=1)$ season before bower occupancy; $* *=$ numbers in parenthesis are sightings of the young males at the bower site of their future occupancy; ${ }^{* * *}=$ number of sightings at traditional bower sites 5,15 and 21 without a traditional owner; $* * * *=1$ sighting represented up to 4 conspecifics visiting a bower simultaneously; see Results.

No. of seasons individuals were marked prior to occupying a traditional bower (no. of individuals *)	Sightings at bower sites						Sightings elsewhere		
	At traditional bower sites		At rudimentary bower sites	At all bower sites	In company of of a conspecific (s) ****	Mean distance (m) from bower site of future occupancy	In total	In company of a conspecific(s) ****	Mean distance (m) from bower site of future occupancy
	with atraditional owner **	lacking a traditional owner ***							
August-December									
$5(\mathrm{n}=4)$	2 (1)	0	0	2	1	165	0	0	0
$4(\mathrm{n}=4)$	4 (2)	5	1	10	3	408	7	1	88
$3(\mathrm{n}=7)$	0	4	0	4	0	230	5	5	315
$2(\mathrm{n}=9)$	10 (1)	1	0	11	2	516	1	0	264
$1(\mathrm{n}=10)$	5	11	0	16	2	211	10	2	185
Total/mean	21 (4)	21	1	43	8	332	23	8	201
January-February									
$5(\mathrm{n}=4)$	0	0	0	0	0	0	0	0	0
$4(\mathrm{n}=4)$	2	0	0	2	2	625	0	0	0
$3(\mathrm{n}=7)$	1	0	0	1	0	925	0	0	0
$2(\mathrm{n}=9)$	1	0	0	1	0	400	0	0	0
$1(\mathrm{n}=10)$	2 (2)	0	0	2	0	0	1	0	205
Total/mean	6 (2)	0	0	6	2	650	1	0	205
March-May									
$5(\mathrm{n}=4)$	4 (1)	7	0	11	4	356	6	1	150
$4(\mathrm{n}=4)$	3	3	0	5	3	444	7	2	325
$3(\mathrm{n}=7)$	2	3	0	6	1	358	8	0	166
$2(\mathrm{n}=9)$	2	6	1	9	7	250	5	0	202
$1(\mathrm{n}=10)$	16 (15)	4	0	20	4	197	4	0	54
Total/mean	27 (16)	23	1	51	19	316	30	3	144
June-July									
$5(\mathrm{n}=4)$	0	0	0	0	0	0	4	1	124
$4(\mathrm{n}=4)$	1	0	0	1	1	220	5	1	312
$3(\mathrm{n}=7)$	0	0	0	0	0	0	0	0	0
$2(\mathrm{n}=9)$	1	0	1	2	0	255	0	0	0
$1(\mathrm{n}=10$)	9 (9)	0	1	11	0	40	6	2	39
Total/mean	11 (9)	0	2	13	1	193	15	4	165
August-July									
$5(\mathrm{n}=4)$	6 (2)	7	0	13	5	344	10	2	142
$4(\mathrm{n}=4)$	10 (2)	8	1	19	9	430	19	4	225
$3(\mathrm{n}=7)$	3	7	1	10	1	430	13	5	265
$2(\mathrm{n}=9)$	14 (1)	7	2	23	9	415	5	2	207
1 ($\mathrm{n}=10$)	32 (26)	15	1	48	6	186	19	4	123
Total/Mean	65 (31)	44	4	113	30	345	69	15	177

FIG. 5. Schematic plan to scale of the movements of two immature male Golden Bowerbirds that had just occupied a traditional bower site while still wearing immature plumage, during S78-S84 within parts of study area SA1. Number of sightings are indicated. Bower sites actually located immediately beyond the perimeter are here plotted within the boundary line (see Fig. 1 for their distance beyond it). = traditional site with traditional owner; $\mathrm{s}=$ traditional bower site lacking traditional owner; and $+=$ rudimentary bower site.
closer to the site of their future occupancy, particularly during the season prior to bower ownership (see Table 1).

Of a total of 182 sightings, at bower sites and elsewhere, a marked immature was seen with 1 (n $=29), 2(\mathrm{n}=8), 3(\mathrm{n}=7)$ or $4(\mathrm{n}=1)$, marked or unmarked, female-plumaged conspecifics (see Table 1). Twice we saw an immature together with an adult, other than the bower owner, at a bower site. Most sightings (67%) of marked immatures at bower sites 5, 15 and 21 involved two or more individuals, particularly during MarchMay (63% of sightings).
Of Traditional Bower Owners. During S78-S84 we made 152 sightings of 18 of the total 20 individually marked traditional bower-owners of 12 traditional bower sites in SA1. Sixty-eight were of birds at bower sites neighbouring their own, and 84 elsewhere (Table 2). Of the former 68 sightings: 71% were at traditional sites occupied by a traditional owner; 20% at traditional sites (5,15 and 21) irregularly attended by immatures; and 9\% at rudimentary bower sites attended by young males (Table 2). It is noteworthy that all visits to rudimentary sites were by immatures in their first year of traditional bower-ownership (see Males in immature plumage).

Most visitations (82% of 68 sightings) to other bower sites, particularly traditional ones with traditional owners (92%), occurred during display months of late August-December (Table 2). We confirmed that $>57 \%$ of such visits were to steal decorations (Table 2). Nearly all thefts were from adjacent sites, although a few males travelled further afield to steal (Fig. 6A). Thefts only occurred during the display season.
Distances travelled to other bower sites and elsewhere varied little during different months of the year (summarised in Table 2). Visits by males to bower sites other than their own involved an average distance of 191 m ($\mathrm{n}=68$, range $40-488 \mathrm{~m}$) with a median of 195 m , and to elsewhere (usually to forage) averaged 110 m ($\mathrm{n}=84$, range $13-300 \mathrm{~m}$) with a median of 88 m (Table 2). Thus, males remained closer to their traditional sites when foraging (or harvesting a decoration) than in visiting other bowers. Foraging home ranges rarely overlapped those of neighbouring male bower owners (Fig. 6B). Mean distance travelled from bower sites to all localities averaged $144 \mathrm{~m}(\mathrm{n}=152)$ with a median of 121 m . By plotting all sightings of marked owners at eight traditional bower sites (i.e. Fig. 6A and B combined), and drawing polygons based upon the outermost for each (Fig. 6C), we estimated

TABLE 2. Histories of sightings of 18 traditional bower-owning male Golden Bowerbirds at 12 traditional sites during different periods of months from August 1978-December 1984 at bower sites other than their own and elsewhere. * $=$ number of sightings at traditional bower sites 5, 15 and 21 lacking a traditional owner; ** = decoration theft confirmed, but some other sightings probably also involved theft; ${ }^{* * *}=$ one sighting was with one conspecific; see Results.

	Sightings at bower sites							Sightings elsewhere		
	At traditi	nal bower es	Al rudimentary	At al] bower sites	For decoration	In company of a	Mean distance (m)	Away from their	In company of a	Mean distance (m)
Months	with a traditional owner	lacking a traditional owner *	bower sites		thett **	$\underset{* * *}{\text { conspecific }}$	travelled to other bower sites	bower site	$\underset{* * *}{\substack{\text { conspecific }}}$	travelled to other bower sites
AugustDecember	45	9	2	56	39	1	205	35	4	125
January- February	2	0	0	2	0	0	168	9	0	106
MarchMay	1	3	3	7	0	1	156	28	1	110
June-July	0	2	1	3	0	2	175	12	0	102
Total/ mean	48	14	6	68	39	4	191	$8+$	5	110

mean overall home range to be 7ha (range 3-10ha).

On nine occasions we saw an adult in the company of an immature, four whilst an adult visited another traditional site, and five times while foraging in the same fruiting tree (Table 2). While bower owning males vigorously displaced, and then chased, rival males out of their bower site, we recorded only one instance of apparent territoriality beyond bower sites. Adult males, from two adjacent bower sites, were aggressively challenging each other along a 200 m length of narrow trail in rainforest equidistant between their bower sites. The birds gave scold and other calls, and flicked their wings in agitated fashion, while flying back and forth along their respective sides of, but not across, the trail. On another occasion two adult males foraged in the same fruiting tree without aggression.

DISCUSSION

Most traditional Golden Bowerbird bower sites are occupied by successive generations of adult males (Frith \& Frith, 2000a; unpubl. data). Takeovers of traditional sites usually involved an intruding male being in his first year of adult plumage. In a few instances, a traditional bowerowner was not replaced immediately by another adult male and, then, one of three things happened. a) A short-term rudimentary bower site was established close to the vacated traditional site, by immature males building a rudimentary structure there. This was abandoned once one male began regular attendance at the
traditional site. b) A vacated traditional bower site was temporarily and irregularly attended by immature males who maintained the existing traditional bower, or built a rudimentary one. Such a new rudimentary bower might subsequently become a larger traditional one, as a new owner regularly attended the site (Frith \& Frith, 2000a, unpubl. data). c) But rarely, a traditional site was simply abandoned. Abandoned traditional sites may, however, be re-established during subsequent seasons.

An immature male Golden Bowerbird wanders among the male population for at least five to six years before attaining first signs of adult plumage (Frith \& Frith, unpubl, data). This wandering period possibly permits the novice to experience the social/sexual environment, while his female appearance avoids stimulating aggressive responses from adult males. This provides a gradual 'apprenticeship' into the intensely competitive male mating hierarchy, as has also been postulated for males of the sexually dimorphic polygynous manakin (Pipridae) and bird of paradise (Paradisaeidae) species (Lill, 1974a,b; Snow, 1976; Frith \& Beehler, 1998). It has been suggested that the long retention of female plumage by males of such species might be part of a mating strategy, involving sexually active males thus concealing their reproductive status (Rohwer et al. 1980, Laska et al., 1992). Immature male Goldens moved extensively about the habitat visiting bower sites, mostly during display months of late August-December, and during the brief period of renewed activity that occurred in late March-

FlG. 6. Schematic plans to scale of the movements of 18 traditional male owners of 12 traditional Golden Bowerbird bowers: A , to ncighbouring bower sites; or B , to elsewhere; usually when foraging within part of study area SA1, during S78-S84. C, Approximated home ranges, produced by encompassing all bower visits and sightinge elsewnere into polygoms. Note: a number in parenthesis after a bower site number indicates the number of consecutive indis itual tratitional owners during this study. Smaller typeface numbers on aron lines indicate the mumber of movements visits. Bower sites actually lowated immediately beyond the perimeter are here plotted within the boundars line (see Fig. I for ther distance beyond it). Distances fravelled to other bower sites beyond SAI are indicated. $\bullet=$ traditional site with traditional owner; $\mathrm{x}=$ traditional bower site lacking traditional owner*, and $+=$ rudimentary bower site.
early May. I having completed their moult, youre males were also notably active at traditional sites during March-early May, when traditional owners were less often in athendance and completing itheir moult (Frith \& Frith, unpubl. data). One y car hefore becoming full-ime bower owners themselves, immatures spent more tinie at tradifional sires necupied by maditional owners, especially at the site they were challenging for and subsequently nccupicd. Such visits increased notably during March-fuly of the season of subsequentenure the challenger having usually just attained adult plumage.

Bower attendance by traditionat owners at their Ohn sites was mainly during display and breeding thonths (Frith \& Frith, 1998, 200(b). During this time nl year they frequently visited bowers of rival males to steal decorations (Tahie 2). In recent years buwer decoratoun theth has been studied intensively in other species, and it has been demonstrated that males steal predominantly from immediate neighhours (Borgia,
 Frith. 1903, 1994, 1995, 20006), Our observations show Gioblen Bowerbirds do lihewise, as demonstrated in Figure b. for a discussion on buswer decorations and their thef see Frith \& lisith (20006).

Distances Graditional bower-uwning Golden Howerbirds travelled from 'their own bower to ohter bover sites to steal decorations averaged 191 m (median 195 m). Distanes covered to burage and harvest decorations, were shorter $($ mean $=11(0 \mathrm{~m}$, median $=88 \mathrm{~m})$. The overall median distance males travelled from the irhower sites was 121 m . This datter digure for male boter-owning Macgegor"s Bowerbird was 88 m (Pruct-Jones \& Pruct-Jones, 1983) and lar cout-owning Tooth-billed Bowerbirds was 59ms (fritls et. al, 1994), despite the latter species Iravelling longer distances to bathedrink of ereeks (nnt observed in Colden Bowerhirds by us). Similarly, the median distance of 88 m travelled by Goldens to lorace is mure than datble that (32 m) ohserved in Tooth-hilts (Frith et al., 1994). These diflerences may rellect the sparsely and evenly dispersed males/howers of Macgregor's and Goldens, in contrast with the delascly clumped, dispersion of Tonth-hills" courts, it comblalso indicate the relative abundance of foods of the latter species.

Male Satin Bowerbitds were finund to mostly (82%) Forase within 5 imm of their bowers dumbe the breeding season of Uewher-Deecmber
(Donaghey, 1981). These ate tar more insects during lhis pericol that at other times ($40-50 \%$ os ${ }^{-1}$ their Noventher-December diet). During winter. however, 81% of horaging males were up to 200 m from their howers, and the turthest 350 mm . Male Satins do nol form leks, but disperse bowers linearly along forest edges at a mean inter-bower distance of 312 m (Donaghey, 1981) (1) $5(\mathrm{Hm}$ (Marchant, 1192). The latter author wrote of males thus having sa territory of about 20 has Vellenga (1980) wrote of each adult male Satin holding a territory that included the rudimentary bowers of (dominated) younger males. Atflough temituriality beyond the bawer site would be less surprising in this more insectivorous bowerhire than in highly frugivorous mes (Hechler \&o Pruett-Jones, 1983; see below) this requires study and clarification.

We estimated the mean yearoonthad hume rauge of (ane or several consecutive) (iolden lionverhird mate owners of cight traditional houer sites to be 7 hat. Nean hame ringe of four radio-tracked adult male Tooth-billed Buwerbirds was determined to be 9.5 ha, although males foraged over a sulnaller area (Frith et al., 1994), Daka available lor fixed-poim-displaying polygynous and fingivorous species of other passerine groups so studied melude the neotropical Manakins, ath Cotingas (Cotingidac), (Snow, 1970); Snow, 1962a,b, 1992: Lill, 1974 a, b, 1976: McDunald, 1989; Thery, 1990; Prum cl al., 1996). These studies found that adull males delend a focal display site, or ierritory, while foraging over a far more extensive undefended area, or tome range. Beeher and Pruct-Jones (1983) reviewed spatial dispersion oladul males in nime polygynous bire of paradise species, in which males are known or presumed to be promiscuous and to court at fixed point display sites (Frith \& Beeller, 1998). They related dispersion to diets, innd lound that males of species with a predominantly arthropod diet were lerriturial whilst thuse of preduminantly: frugivorous ones were not. Obligate insectivores deferned exchusive territories, highly Fugivar. ous species formed leks, and species with intentrediate diets showed intermediate paterns. of dispersion. Thus while males of all spectes defend their display sites, noly those of the more insectivorous species defend al foraging lerritury while males of more frugivorous ones torage over an undelended home range.

Adult male Golden Bowerbirds vigorously defended their bower site against rivals, but we satw too little of adnt males ionether away fronn howers to assess the nature of interactions there.

While male Macgregor's Bowerbirds aggressively defend bower sites, few aggressive interactions occurred away from them (Pruett-Jones \& Pruett-Jones, 1982). Our findings suggest the observation that 'Although males do not defend territories in the usual sense, they do occupy areas over which they exert dominance. We do not mean that males exclude rivals from the area (beyond the bower site) or prevent them from foraging there, but that they do prevent rivals from establishing courtship sites' (Beehler \& Foster, 1988) is applicable to male Golden Bowerbirds. Further field work is required to clarify the question of (undefended) foraging home range versus the extent of (defended) territory in this species.

Fruit in tropical rainforest is largely economically undefendable by passerine birds, as a result of its spatial and temporal unpredictability (Snow, 1976; Lill, 1976; Beehler, 1983; Beehler \& Pruett-Jones, 1983; Frith \& Beehler, 1998). Thus the loss of extensive territoriality in predominantly frugivorous species, such as the Golden Bowerbird. Fruit availability in time and space may therefore have profound effects upon home ranges of bowerbirds (Beehler \& PruettJones, 1983; Frith et al., 1994). Male bowerbirds must remain close to their bowers if they are to successfully defend their structures and decorations from rivals, and attract and mate females (Frith \& Frith, 1993). They attempt to maximise time spent at their bowers, as do Tooth-billed Bowerbirds at their courts (Moore, 1991; Frith \& Frith, 1994). This is predictable behaviour for a population of promiscuous males that must compete for opportunities to fertilise numerous females at a fixed focal site during a relatively brief mating season (Frith \& Frith, 1993, 1995).

Snow (1976) considered a predominantly frugivorous dict the main pre-condition to a polygynous mating system, in which rainforest dwelling male passerines spend most of their time in advertising/attending/defending a traditional focal courtship area and performing elaborate courtship. Seasonal abundance of fruit in the habitat is theoretically so great as to enable males to be emancipated from nesting duties, and females to nest alone and unaided. In tropical rainforest-dwelling and predominantly frugivorous Golden Bowerbirds, and in many other ecologically similar passerines, the fruit diet would appear to have greatly influenced the evolution of a polygynous mating system, associated morphology, male survival and longevity, dispersion, local courtship sites with
territoriality limited to them, and undefended home ranges (Snow, 1976; Frith \& Beehler, 1998).

ACKNOWLEDGEMENTS

The first three years of these studies were performed by CBF as a post-graduate student of Monash University, Melbourne. For this opportunity he is most grateful to Alan Lill for support, encouragement, advice and friendship and to the then Zoology Department, Monash University for practical help. The initial three years were financed in part by National Geographic Society Grants 1709 and 1870 to Alan Lill, Monash University. For constructive criticism of an earlier draft of this contribution we thank David Snow.

LITERATURE CITED

BEEHLER, B.M. 1983. Frugivory and polygamy in birds of paradise. Auk 100: 1-12.
1989. The birds of paradise. Scientific American 261: 116-23.
BEEHLER, B.M. \& FOSTER, M.S. 1988. Hotshots, hotspots, and female preference in the organization of lek mating systems. American Naturalist 131:203-219.
BEEHLER, B.M. \& PRUETT-JONES, S.G. 1983. Display dispersion and diet of birds of paradise, a comparison of nine species. Behavioral Ecology and Sociobiology 13:229-38.
BORGIA, G. 1985. Bower decoration and sexual competition in the Satin Bowerbird (Ptilonorhynchus violaceus). Behaviour, ecology and sociobiology 18: 91-100.
1986. Sexual selection in bowerbirds. Scientific American 254: 70-79.
1995. Why do bowerbirds build bowers? American Scientist 83: 542-547.
CHAFFER, N. 1984. In quest of bowerbirds. (Rigby: Adelaide).
DIAMOND, J.M. 1982. Evolution of bowerbirds' bowers: animal origins of aesthetic sense. Nature 297: 99-102.
1986a. Biology of the birds of paradise and bowerbirds. Annual Review of Ecology and Systematics 17: 17-37.
1986b. Animal art: variation in bower decorating style among male bowerbirds Amblyornis inornatus. Proceedings of the National Academy of Sciences USA 83: 3042-3046.
DONAGHEY,R.H. 1981. The ecology and evolution of bowerbird mating systems'. (Unpubl. PhD thesis: Monash University, Melbourne).
1996. Bowerbirds. Pp, 138-187. In Strahan, R. (ed.) Finches, Bowerbirds \& Other Passerines of Australia. (Angus \& Robertson: Sydney).
FRITH, C.B. 1989. A construction worker in the rainforest. Birds International 1:29-39.

FRITH, C.B. \& BEEIILER, B.M. 1998. The birds of paradise: Paradisaeidae. (Oxford University Press: Oxford).
FRITH, C.B. \& FRITH, D.W. 1993. Courtship display of the Tooth-billed Bowerbird Scenopoeetes dentirostris and its behavioural and systematic significance. Emu 93: 129-136.
1994. Courts and seasonal activities at them by male Tooth-billed Bowerbirds Scenopoeetcs dentirostris (Ptilonorhynchidae). Memoirs of the Queensland Museum 37: 121-145.
1995. Court site constancy, dispersion, male survival and court ownership in the male Toothbilled Bowerbird, Scenopoeetes dentirostris (Ptilonorhynchidae). Emu 95: 84-98.
1998. Nesting biology of the Golden Bowerbird Prionodura newtoniana endemic to Australian upland tropical rainforest Emu 98: 245-268.
2000a. The bower system and structures of the Golden Bowerbird, Prionodura newtoniana (Ptilonorhynchidae) on the Paluma Range, north Queensland. Memoirs of the Queensland Museum 45(2): (this issue).
2000 b . Bower attendance and behaviour at them by male Golden Bowerbirds, Prionodura newtoniana (Ptilonorhynchidae). Memoirs of the Queensland Museum 45 (2): (this issue).
FRITH, C.B., BORGIA, G. \& FRITH, D.W. 1996. Courts and courtship behaviour of Archbold's Bowerbird Archboldia papuensis in Papua New Guinea. Ibis 136: 153-160.
FRITH, C.B. \& FRITH, D.W. \& MOORE, G. 1994. Home range and extra-court activity in the male Tooth-billed Bowerbird, Scenopoeets dentirostris (Ptilonorhynchidac). Memoirs of the Queensland Museum 37: 147-54.
FRITH, D.W. 1984. Foraging ecology of birds in an upland tropical rainforest in north Queensland. Australian Wildlife Research 11: 325-347.
LASKA, M.S., HUTCHINS, M., SHEPPARD, C., WORTH, W. \& BRUNING D. 1992. Reproduction by captive unplumed maleLesser Bird of Paradise Paradisaca minor, evidence for an alternative mating strategy? Emu 92: 108-11.
LENZ, N.H.G. 1993. Behavioural and reproductive biology of the Regent Bowerbird Sericulus chrysocephalus (Lewin, 1808). (Unpubl. PhD thesis, Griffith University: Brisbane).
LILL, A. 1974a. Social organization and space utilization in the lek-forming White-bearded Manakin, M. manacus trinitalis Hartert. Zeitschrift für Tierpsychologie 36: 513-530.
1974b. Sexual behaviour in the lek-forming White-bearded Manakin (M. manacus trinitalis Hartert). Zeitschrift für Tierpsychologie 36:1-36.
1976. Lek behaviour in the Golden-headed Manakin Pipraerythrocephala in Trinidad (West Indies). Advances in Ethology 18: 1-84.
MARCHANT, S. 1992. A Bird Observatory at Moruya, NSW 1975-84. Eurobodalla Natural History Society Occasional Publication No. 1; 1-99.
McDONALD, D.B. 1989. Cooperation under sexual selection: Age-graded changes in a lekking bird. American Naturalist 134: 709-730.
MOORE, G.J. 1991. Seed dispersal by male Toothbilled Bowerbirds Scenopoeeles dentirostris (Ptilonorhynchidae), in north-east Queensland rainforest: Processes and consequences. (Unpubl. PhD thesis, James Cook University of North Queensland: Townsville).
PRUETT-JONES, M.A. \& PRUETT-JONES, S.G. 1982. Spacing and distribution in Macgregor's Bowerbird (Amblyornis macgregoriae). Behaviour, Ecology and Sociobiology 11:25-32.
1983. The bowerbird's labor of love. Natural History 9: 49-55.
PRUETT-JONES, S.G \& PRUETT-JONES, M.A. 1994. Sexual competition and courtship disruptions: why do male bowerbirds destroy each other's bowers? Animal Behaviour 47: 607-620.
PRUM, R.O., KAPLAN, J.D. \& PIERSON, J.E. 1996. Display behaviour and natural history of the Yellow-crowned Manakin (Heterocerus flawivertex: Pipridae). Condor 98: 722-735.
ROHWER, S., FRETWELL, S.D. \& NILES, D.M. 1980. Delayed maturation in passerine plumages and the deceptive acquisition of resources. American Naturalist 115: 400-437.
SNOW, B.K. 1970. A field study of the Bearded Bellbird in Trinidad. Ibis 112: 299-329.
SNOW, D.W. 1962a. A field study of the Black and White Manakin, Manacus manacus, in Trinidad. Zoologica 47: 65-104.
1962b. A field study of the Golden-headed Manakin, Pipra erythrocephala, in Trinidad, W.I. Zoologica 47: 183-198.
1976. The Web of Adaptation: bird studies in American tropics. (Collins: London).
1982. The Cotingas. (British Museum (Natural History): London).
THERY, M. 1990. Ecologie et comportement des oiseaux Pipridae en Guyane: leks, frugivorie et dissemination des graines. (Unpubl, PhD thesis, University of Paris: Paris).
VELLENGA, R.E. 1970. Behaviour of the male Satin Bowerbird at the bower. The Australian Bird Bander 8: 3-11.
1980. Distribution of bowers of the Satin Bowerbird at Leura, NSW, with notes on parental care, development and independence of young. Emu 80: 97-102.

SOME NL:W GIVETIAN (LATE MIDDLE DEVONIAN) (AASTROP()DS FROM THE PAFFRATH AREA (BERGISCHES LAND, GERMANY)

JIRI FRÝDA

Frýda, J. 200006 30: Some new Givetian (late Middle Devonian) gastropods from the Paffrath area (Bergisches Land, Germany). Memoirs of the Queensland Museum 45(2): 359-374. Brisbane. ISSN 0079-8835.

Revision of Givetian (Middle Devonian) gastropods from the Paffrath area (Bergisches Land, Germany) has identified a large number of new taxa described herein. These are Retispira tasselli sp. nov., Stenoloron (Paffratholoron) goldfussi subgen. et sp. nov., Quadricarina (Blodgetlina) reticulata subgen. et sp. nov., Kirchneriella gen. nov., Eiserhardtia inepta gen. et sp. nov., Cerithioides whidbornei sp. nov., Plagiothyra multispiralis sp. nov., Naticopsis (Paffrathopsis) subgen. nov., Paffrathia lotzi gen. et sp. nov., Cookiloxa pulchra gen. et sp. nov., Palacozygopleura (Rhenozyga) subgen. nov. and Heteroloxonema gen. nov. \square Gastropods, Devonian, Givetian, Germany:

Jiri Frýda, Czech Geological Survey: Klárov 3, 11821 Praha l, Czech Republic. (fryda@cgu.cz); 14 Jamuary 2000.

During the last fifteen years the number of studies on Devonian gastropods has increased rapidly (e.g., Blodgett \& Rohr, 1989; Blodgett, 1992, 1993; Blodgett \& Johnson, 1992; Kase \& Nishida, 1986, 1988; Horný, 1992, 1994; Horný \& Iordan, 1993; Frýda, 1992, 1998c,d, 1999b; Frýda \& Manda, 1997; Frýda \& Bandel, 1997; Gubanov et al., 1995; Cook, 1993, 1997; Cook \& Camilleri, 1997; Bandel \& Frýda, 1998). Impetus for increased interest in this relatively neglected group of Devonian fossils were the seminal studies of Blodgett et al. $(1988,1990)$ who identified the great potential utility of Palaeozoic gastropods as palcobiogeographic indicators. In addition, research focused on the higher taxonomy of the Devonian gastropods, based on protoconch morphology, has shown that during Devonian time a large change-over occurred from a fauna of typical Early Palaeozoic cast, to one of a more modern aspect (see Frýda, 1999a and references therein). Revision of the Givetian (Middle Devonian) gastropods from Germany (Frýda, 1998a) have identified a large number of new taxa and revised material untouched for up to 150 years (Goldfuss, 1844). The results of this revision have only partially been published (Bandel \& Frýda, 1998, 1999; Frýda, 1998b, 1999a) and the majority of them have been prepared for monographic publication. Because new taxonomic names established in an unpublished study (Frýda, 1998a) are prepared to be used in non-taxonomic studies by other authors, there is a problem with their priority as well as the fact that some of them would be nomina mida. For this reason, some new Givetian (Middle Devonian) gastropods
from the Paffrath area (Bergisches Land, Germany) are established herein. Monographic treatment with detailed descriptions of all species belonging to newly established taxa as well as the evaluation of their palaeogeographical and stratigraphical distributions is in preparation (Frýda \& Bandel, in prep.). All described gastropods come from the collection of Dr Volker Ebbighausen and are deposited in the Senckenberg Muscum in Frankfurt au Main (Germany).

SYSTEMATIC PALAEONTOLOGY

AMPHIGASTROPODA Simroth, 1906 BELLEROPHONTOIDEA M'Coy, 1851
BELLEROPHONTIDAE M'Coy, 1851
KNIGHTITINAE Knight, 1956

Retispira Knight, 1945

TYPE SPECIES. Retispira bellireticulata Knight, 1945,
REMARKS. Retispira (Knight, 1945) is a complex genus within Knightitinae later regarded as a subgenus of Knightites Moore, 1941 (Knight et al., 1960). Batten (1972) suggested that Retispira represents a separate genus and this was followed by Gordon \& Yochelson (1987). Retispira ranges from the Devonian to the Permian.

Retispira tasselli sp. nov.
(Fig. 1F-J)
ETYMOLOGY. For the Australian paleontologist Chris Tassell.

MATERIAL. 6 specimens from Herrenstrunden, locality 9, Bergisches Land, Germany (coll. Ebbighausen). Holotype: figured herein as Fig. 1F,G.

FIG. 1. A-C, Stenoloron (Paffratholoron) goldfussi sp. nov. A, Holotype, oblique view $\times 3.5$; B, Holotype, apical view $\times 3.6$; C, Paratype, apertural view $\times 3.8$. D, E, Quadricarina (Blodgettina) reticulata sp. nov. D, Holotype, basal view showing a reticular pattern $\times 4$; E, Holotype, apertural view $\times 5$. F-J, Retispira tasselli sp. nov. F, Holotype, lateral view showing a shell ornamentation $\times 4.8$; G, Holotype, dorsal view $\times 4.8$; H, Paratype A, dorsal view $\times 7$; I, Paratype B, dorsal view $\times 4.5$; J, Paratype C, apertural view $\times 5$.

TYPE LOCALITY. Buicheler Schichten, Middle Devonian (Givetian). Herrenstrunden, Bergisches Land, Germany.

DIAGNOSIS. Species of Retispira with small shell having a broad, flat selenizone raised above the shell dorsum; shell narrowly and deeply phaneromphalous; lateral portions of whorl profile rounded into narrow umbilici without any angulation; apertural lip of mature whorl is slightly expanded on its lateral and umbilical portions; shell ornament consisting of spiral and collabral lirae forming a reticulate pattern of longitudinally elongated rectangles.

DESCRIPTION. Small bellerophontid shell bearing a broad, flat selenizone raised above shell dorsum. Shell narrowly and deeply phaneromphalous. Whorl profile slightly concave on each side of selenizone and gently convex in dorsolateral portions. Lateral portions of whorl profile curve into narrow umbilici without any angulation. Shallow and wide sinus in anterior margin of the outer lip culminates in a slit generating a raised selenizone. Selenizone bounded by two distinct spiral threads; width of the selenizone about 15% of width of shell dorsum. Apertural lip of the mature whorl slightly expanded on its lateral and umbilical portions. Shell ornament consists of spiral and collabral lirae; collabral lirae widely spaced and more expressed than closely spaced spiral lirae; spiral lirae crossing the collabral lirae form a reticulate pattern of longitudinally elongate rectangles. Distances of both spiral and collabral lirae vary considerably during the ontogeny.

REMARKS. Retispira tasselli resembles Retispira leda (Hall, 1861) from the Middle Devonian of North America in its similar whorl expansion in the adult whorl. However, R, tasselli sp. nov. differs by having a narrower shell, raised selenizone and by the absence of omamentation of its selenizone, Bellerophon elegans de Ferussac \& Orbigny, 1840 noted by Archiac \& Verneuil (1842: 354 , pl. 29, fig. 2) from the Paffrath region is similar to Retispira tasselli and most probably also belongs in Retispira. It is distinguished from the latter by the absence of a raised selenizone. Retispira tasselli is also similar to Retispira sp. of Blodgett (1992) from the Eifelian of Alaska, but may be distinguished by its more raised selenizone.

Rollins et al. (1971) discussed similarities of Retispira and Bucanopsis which have similar shell shapes. Merriamites Blodgett \& Johnson, 1995 (=Merriamella Blodgett \& Johnson, 1992,
previously occuppied homonym), based on the Middle Devonian species Merriamites eurekae from Nevada, is also similar to Retispira in having a reticulate omamentation. Merriamites differs from Bucanopsis, the latter having an ornament of spiral threads, in having a much broader longitudinal keel on the inner floor of the whorl, a prominent reticulate pattern and a prominent, rounded parietal tooth. The presence of a keel on the inner floor of the whorl is a character by which Bucanopsis and Merriamites (both are placed in Carinaropsinae) differ from Retispira. Similarities in these genera with some Knightitinae were also noted by Blodgett \& Johnson (1992).

ARCHAEOGASTROPODA Thiele, 1925 GOSSELETINIDAE Wenz, 1938

Stenoloron Oehlert \& Oehlert, 1888 Stenoloron (Paffratholoron) subgen. nov.

TYPE SPECIES. Stemoloron (Paffiratholoron) goldfussi sp. nov.

ETYMOLOGY. Paffratholoron, for the type locality:
DIAGNOSIS. Subgenus of Stenoloron Oehlert \& Oehlert, 1888 having low spired, phaneromphalous shell with slowly expanding whorls.

REMARKS. Stenoloron (Paffratholoron) subgen. nov. has slowly expanding whorls. The distance of the upper suture from the shell periphery (measured in the apical view) is about 15% of its total shell width. This value is double (i.e. 30%) in the generic type species, Stenoloron viennayi (Oehlert \& Oehlert, 1888). In addition, Devonian species of Stenoloron Ochlert \& Oehlert, 1888, such as Stenoloron subaequitera (Chapman, 1916) from the Early Devonian of Australia, Stenoloron minor Blodgett \& Johnson, 1992, from the Middle Devonian of North America, and Stenoloron pollens Pemer, 1903 from the Early Devonian of Europe have similar values of whorl expansion as the type species (i.e. about 30%). For this reason the species described below is placed in a new subgenus.
Stenoloron (Paffratholoron) goldfussi sp. nov. (Fig. 1A-C)

ETYMOLOGY. For the German paleontologist August Goldfuss, who studied Devonian gastropods of the Paffrath area.

MATERIAL. 3 specimens from Unterthal, Paffrath area Bergisches Land, Germany (coll. Ebbighausen). Holotype: figured herein as Fig. $1 A, B$.

TYPE LOCALITY, Unterer Plattenkalk, Middle Devonian (Givetian), Unterthal, locality 63, Bergisches Land, Germany.

DIAGNOSIS. As for subgenus.
DESCRIPTION. Small, turbiniform shell with a wide umbilicus, width about one quarter of total shell width. Width of shell having about 7 whorls measures about 15 mm . Sides of shell slightly convex (i.e. cyrtoconoid) due to decrease of the pleural angle in the last two whorls. Narrow, slightly convex selenizone situated high on the whorl bounded by a single shallow groove on the each side. Whorl profile above the selenizone rounded and nearly subhorizontal at the upper suture; sutures are shallow. Suture just below its selenizone in younger whorls; in the mature whorl, the distance of the lower groove bounding the selenizone and the lower suture is about one half of selenizone width. Shell surface smooth.
The initial portion of the shell is lost in the holotype but it is preserved in another specimen from the same locality figured herein as Fig. 1C. The high spired early whorls distinctly protrude above the upper, convex shell surface. During the further shell growth, the pleural angle continually increases, but in the last two whorls it again slightly decreases. For this reason the sides of the early shell are concave and slightly convex in the mature shell.

REMARKS. Stenoloron (Paffratholoron) goldfussi sp. nov. is the only species assigned to the subgenus. It is distinguished from the species of Stenoloron (Stenoloron) by shape of its manywhorled shell and characteristic slow expansion. The selenizone in Stenoloron (Paffratholoron) goldfussi sp. nov. is wider than in the generic type species Stenoloron (Stenoloron) viennayi and Stenoloron (Stenoloron) subcequitera (Chapman, 1916), but is simliar in width to Stenoloron (Stenoloron) minor Blodgett \& Johnson, 1992. Stenoloron (Paffratholoron) goldfussi represents the youngest occurrence of the genus, previously reported from the Early Devonian and Silurian. The only other Middle Devonian species known is Stenoloron (Stenoloron) minor Blodgett \& Johnson, 1992 from the Eifelian of central Nevada.

EOTOMARIIDAE Wenz, 1938

Quadricarina Blodgett \& Johnson, 1992 Quadricarina (Blodgettina) subgen. nov.

TYPE SPECIES. Quadricarina (Blodgettina) reticulata sp. nov.

ETYMOLOGY. For the American paleontologist Robert B. Blodgett.

DIAGNOSIS. Similar to Quadricarina (Quadricarina), with low spired shell having distinctly raised selenizone above the whorl surface; shell ornament consisting of reticulate pattern.

REMARKS. Quadricarina Blodgett \& Johnson, 1992 is represented by four Middle Devonian species. Three species, including its type species Quadricarina glabrobasis Blodgett \& Johnson, 1992, come from the Eifelian of Nevada. Blodgett \& Johnson (1992) also include Pleurotomaria lenticularis Goldfuss, 1844 from the Givetian of Germany. The turbiniform, phaneromphalous shells of Quadricarina species are characterised by a selenizone bordered by two pairs of revolving cords. A gently concave selenizone is situated at mid-whorl height. Shell ornament consists of fine collabral ribs. Quadricarina (Blodgettina) subgen. nov., is similar to hitherto known species of Quadricarina (Quadricarina) in general shell shape and the position of the selenizone, but differs in having a distinctly raised selenizone above the whorl surface and reticulate shell ornament.

Quadricarina (Blodgettina) reticulata sp. nov. (Fig. 1D, E)

ETYMOLOGY. In reference to the presence of reticulate ornamentation.

TYPE LOCALITY. U. Plattenkalk limestones, Middle Devonian (Givetian), Unterthal, locality 63, Bergisches Land, Germany.

MATERIAL. 10 specimens from Unterthal, locality 63 , Bergisches Land, Germany (coll. Ebbighausen). Holotype: figured herein as Fig. 1D,E.
DIAGNOSIS. As for subgenus.
DESCRIPTION. Small, turbiniform shell with a selenizone situated at shell periphery. Mature spire consisting of about six whorls, width approximately 13 mm . Outer lip of aperture forms a shallow sinus culminating in a peripheral carina that gives rise to a flat selenizone; selenizone distinctly protruding above whorl surface. Selenizone bordered by two pairs of revolving cords; outer pair forming its margin and inner pair spaced between outer cords. Inner cords always slightly thinner than the outer cords. Very narrow groove between the inner cords. Upper and lower whorl surfaces convex; sutures deep and impressed. Whorl profile below selenizone forms a rounded shell base with a deep, funnel-
like umbilicus. Width of umbilicus about one quarter of total shell width. Whorls embrace below the selenizone. Distance between lower margin of selenizone and lower suture greater than width of the flat, protruding selenizone. Shell ornament above and below spiral and collabral threads forming a reticulate pattern. About 25 spiral threads below the selenizone form small tubercles where they are crossed by collabral threads.

REMARKS. Quadricarina (Blodgettina) reticulata subgen. et sp. nov, may be distinguished from all species of Quadricarina (Quadricarina) by the presence of peripheral carina bearing a selenizone and by its reticulate ornamentation. However, it resembles Quadricarina sp. nov. B of Blodgett \& Johnson (1992) in its low-spired shell, wide umbilicus and slightly raised, carinate periphery but differs by having the selenizone distinctly situated above the suture, and having reticulate ornament. Whorls embrace slightly above the selenizone in Quadricarina sp. nov. B. The carinate periphery suggests that the poorly known Quadricarina sp. nov. B may belong to Quadricarina (Blodgettina).

RAPHISTOMATIDAE Koken, 1896 OMOSPIRINAE Wenz, 1938

Kirchneriella gen. nov.
TYPE SPECIES. Turbo striatus Hisinger in Goldfuss, 1844.

ETYMOLOGY. For the German paleontologist Heinrich Sylvester Kirchner, who in 1915 published "Mitteldevonische Gastropoden von Soetenich in der Eifel'.

DIAGNOSIS. Turbiniform, relatively low-spired shell with a very indistinct selenizone situated high on the whorls; lateral side of whorls rounded; shell ornament consisting only of spiral cords; spiral cords on the phaneromphalous shell base generally regularly spaced; more closely spaced than those on the upper whorl surface; a spiral cord is also present on the selenizone surface.

REMARKS. Kirchneriella gen. nov. closely resembles the Permian Callistadia Knight, 1945 in general shell shape, position of the indistinct selenizone and shell omament. Carboniferous and Permian species of Callistadia may be distinguished from Kirchneriella gen. nov. by the shape of the lateral whorl profile which is rounded in Kirchneriella, but nearly vertical and straight or gently concave in Callistadia (see

Knight, 1945; Hoare \& Sturgeon, 1978). Kirchneriella also shows some similarities with the type species of Gyroma Ochlert, 1888, Pleurotomaria baconnierensis (Ochlert, 1888), from the Lower Devonian of France, however this species has collabral and spiral ornaments, in contrast to Kirchneriella. Nevertheless, some Devonian species assigned to Gyroma, like the Frasnian Gyoma altaica (Verneuil, 1845) and Gyroma subcapillaria Vostokova, 1966, lack collabral ornament and probably belong to Kirchneriella. Blodgett (1992) noted the lirst occurrence of pre-Carboniferous Callistadia in Middle Devonian rocks (Eifelian of Alaska). Unfortunately, only two, poorly preserved specimens are known, preventing determination of whether they belong to Callistadia or to Kirchneriella. The Middle Devonian 'Turbo' multistriatus Kirchner, 1915 and 'Turbo' aequistriatus Kirchner, 1915 may belong to Kirchneriella, but need to be restudied in detail. Kirchneriella striata (Hisinger in Goldfuss, 1844) is the only known species of this genus.

Family UNCERTAIN

Eiserhardtia gen. nov.

TYPE SPECIES. Eiserhardtia inepta sp. nov. by monotypy.
ETYMOLOGY. For the German palcontologist Klaus Eiserhardt for his kind help with SEM photos.

DIAGNOSIS. Discoidal shell having a very wide and flat selenizone which forms the whorl periphery; shell base phaneromphalous; width of umbilicus about one quarter of the shell width; selenizone of younger whorls is situated in distinct, U-shaped groove close to upper suture; upper suture forms abapical margin of the selenizone; shell ornamentation consisting of spiral and collabral elements forming a reticular pattern.

REMARKS. Eiserhardtia inepta sp. nov. is distinguished by its U-shape groove opening of the selenizone on the preceding whorl (Fig. 2G). In addition, the very wide and flat selenizone forming the whorl periphery is not common among Palaeozoic gastropods. Eiserhardtia resembles some Palaeozoic genera like the Ordovician Latitaenia Koken, 1925, Chepultapecia Ulrich in Weller \& Clair, 1928, and Liospira Ulrich \& Scofield, 1897 and the Devonian Umbotropis Perner, 1903 in general shell shape. However, the unusual subsutural groove easily differentiates it from all these genera.

FIG. 2. A-C, Kirchneriella striata (Hisinger in Goldfuss, 1844); A, apertural view $\times 4.5$; B, basal view showing a spiral ornamentation, same shell as $A, \times 3.6 ; C$, apical view $\times 5$. D, Cerithioides whidbornei sp, nov., lateral view $\times 3.8$. E-G, Eiserhardtia inepta sp. nov., Holotype; E, apical view showing shell ornamentation $\times 11 ; \mathrm{F}$, apertural view $\times 13$; G, oblique view showing a subsutural groove $\times 13$.

Eiserhardtia inepta sp. nov.

(Fig. 2E-G)
ETYMOLOGY, Latin, ineptus, inept, unable.
MATERIAL. Only one complete shell, Unterthal, locality 63, Bergisches Land, Germany (coll. Ebbighausen). Holotype: figured herein as Fig. 2E-G.

TYPE LOCALITY. U. Plattenkalk limestones, Middle Devonian (Givetian), Unterthal, locality 63, Bergisches Land, Germany.
DIAGNOSIS. As for genus.
DESCRIPTION. Medium-sized, dextrally coiled, discoidal shell with a wide and flat selenizone situated at the shell periphery. Mature spire with about four whorls; width more than double its height. Outer lip of aperture forms a shallow sinus culminating at a peripheral selenizone. Selenizone parallel with shell axis and ornamented by irregularly spaced lunulae. Width of flat selenizone about one quarter of the whorl height. Outline of aperture elliptical with longer axis roughly perpendicular to shell axis. Whorl profile above selenizone slightly convex, except close to the upper suture where it forms a U-shaped groove. Selenizone of younger whorls situated in this U-shaped groove (Fig. 2G); upper suture just below selenizone. Width of umbilicus about a quarter of the total shell width. Shell ornament consists of spiral and collabral threads forming a reticulate pattern. About 15 regularly spaced, spiral threads on the shell above the selenizone are crossed by backward curving collabral threads.

MURCHISONIIDAE Koken, 1896

Cerithioides Haughton, 1859
TYPE SPECIES, Cerithioides telescopium Haughton, 1859.
REMARKS. Cerithioides telescopium, was described from the Carboniferous of Ireland. Donald (1892) placed in its synonymy two additional Carboniferous species, Murchisonia maxima and Glyptobasis conica, both earlier described by de Koninck (1883). Batten (1966), who revised the type species of Cerithioides, expressed the opinion that Cerithioides conicus (de Koninck) is an independent species having Cerithioides maximus (de Koninck) as a junior synonym. He also agreed with Donald's placement of Murchisonia (Cerithioides?) oweni Donald, 1895 into Cerithioides and additionally placed Cerithioides? gleanensis Longstaff, 1926 into synonymy with this species. Batten (1966)
placed Murchisonia eversolensis Stauffer, 1909 from the Middle Devonian of Ohio into Cerithioides and considered it to be the earliest representative of the genus. Small shells of Cerithioides incomptum Linsley, 1968 from the Middle Devonian of the North America probably do not belong to Cerithioides. Cerithioides whidbornei sp. nov. has a similar whorl profile to C. eversolensis (Stauffer, 1909) and also lacks the spiral costae on shell base. Both species may belong to a new subgenus within Cerithioides using the latter characters differing them from the Carboniferous Cerithioides species.

Cerithioides whidbornei sp. nov.

(Fig. 2D)
ETYMOLOGY. For the British paleontologist GF. Whidborne who contributed much to our knowledge of the Devonian gastropods.

MATERIAL. 10 specimens from the type locality (coll. Ebbighausen). Holotype: figured herein as Fig. 2D.

TYPE LOCALITY. Middle Devonian (Givetian) limestones, Bergisch Gladbach, locality 65 , Bergisches Land. Germany.

DIAGNOSIS. Species of Cerithioides lacking spiral costae on the shell base; wide selenizone situated in the middle of whorl.

DESCRIPTION. High-spired, dextrally coiled shell with almost straight sides. Whorl profile distinctly convex close to both upper and lower sutures and nearly flat or slightly concave at the mid-whorl. Suture moderately deep. Shell base rounded and anomphalous. Wide selenizone situated at mid-whorl with width about 20% of the distance between the lower and upper sutures. Outer apertural lip bears a wide sinus culminating in a wide slit. Margins of apertural sinus form an angle of about 90°. Inner lip covered by thin inductura. Ornamentation consists only of growth lines. Selenizone limited by a fine, spiral groove on each side and ornamented by irregularly spaced Iunulae.
REMARKS. Cerithioides whidbornei sp. nov. may be distinguished from Cerithioides eversolensis by the position of the selenizone. In C. whidbornei, the wide selenizone is situated mid-whorl, however, in C. eversolensis (Stauffer, 1909) it is distinctly below mid-whorl. Its upper margin runs closely to mid-whorl and the distance between its lower margin and the lower suture is smaller than the width of the selenizone (see Stauffer, 1909, pl. 16, fig. 13). Cerithioides

Whidbornei sp. nov. may be also distinguished from the type species C. telescopium Haughton, 1859, by the absence of spiral costae on its shell base. Cerihhoides oweni Donald, 1895, differs from both Devonian species and the type species by its whorl profile which has a distinct angulation below the selenizone (see Donald, 1895: pl. 10, figs 1, 1a).

NERITIMORPHA Golikov \& Starobogatov, 1975
 NERITOIDEA Rafinesque, 1815
 PLAGIOTHYRIDAE Knight, 1956

Plagiothyra Whidborne, 1892
TYPE SPECIES. Monodonta purpurea Archiac \&
Vemeuil, 1842 . Verneuil, 1842.
REMARKS. Whidborne (1892) established Plagiothyra for species Monodonta purpurea Archiac \& Verneuil, 1842 and his new species Plagiothyra archon Whidbornc, 1892. The latter was described from the Middle Devonian of southwest England. Vostokova (1966) suggested a placement of the species Palacotrochus praecursor Clarke, 1885 into Plagiothyra, but earlier Vostokova (1961) had established Pseudoplagiothyra for that species. Two new undescribed species of Plagiothyra occur in the Devonian of the North America (R.B. Blodgett, pers. comm.); one in the Eifelian age Cheeneetnuk Limestone of the west-central Alaska and a second species in the Emsian age Disappointment Bay Formation, Canadian Arctic Islands. The last species is the first Early Devonian occurrence, and thus the oldest representative of Plagiothyra.

Plagiothyra multispiralis sp. nov.

> (Fig. 3E-H)

ETYMOLOGY, multispiralis, referring to the shell omamentation formed by many spiral threads.

MATERIAL. More than 30 specimens from the Unterthal, locality 63, Bergisches Land, Germany (coll. Ebbighausen). Holotype: figured herein as Fig. 3Gil.
TYPE LOCALITY. U. Platenkalk limestones, Middle Devonian (Givetian), Unterthal, locality 63, Bergisches Land, Germany.
DIAGNOSIS. Species of Plagiothyra ornamented by many spiral threads; plate-like ridge bearing a triangular tooth within aperture smaller than in type species.
DESCRIPTION. Dextrally coiled, turbiniform shell with a rapidly expanding whorls, shell height about 15 mm . Shell base anomphalous,
sutures shallow and adpressed. Whorl profile shows distinctly stronger convexity near upper suture where it forms a small ramp. Whorls join the preceding whorl below its periphery. The margin of the outer apertural lip passes downward from the upper suture with strong backward obliquity, but without any curvature. Columellar lip covered by a thick inductura. Prominent, triangular tooth occurs on a very low platelike ridge in the middle of the parietal wall. Shell ornamentation consists of many spiral threads that may be crossed by fine growth lines. Number of spiral threads between the sutures is about 20 . Threads more distinct on adapical part of outer whorl surface.
REMARKS. Plagiothyra multispiralis sp. nov. differs from the type species, Plagiothyra purpurea Archiac \& Verneuil, 1842, by having a lower-spired shell that is omamented by many spiral threads. Shell ornamentation on Plagiothyra purpurea consists of several distinct rows of tubercles. The number of spiral elements between the sutures is about 20 in Plagiothyra multispiralis sp, nov., but only 8 in Plagiothyra purpurea. Shell omament on P. multispiralis resembles that of the other two genera in the family Plagiothyridae, Dirachis Whidborne, 1891, and Littorinides Knight, 1937. However, shells of the Middle Devonian Dirachis, being ornamented by a lower number of more distinct spiral elements, bear two teeth in the aperture. The Carboniferous Littorinides has one Iow tooth on the columellar lip in contrast Plagiothyra nultispiralis sp . nov. The similar shape of the apertural tooth and its position within the aperture, as well as the similar shell shape of P. purpurea and P. multispiralis, necessitate placement of the new species in the Plagiothyra.

NERITOPSIDAE Gray, 1847

NATICOPSINAE Miller, 1889
Naticopsis M'Coy, 1844
Naticopsis (Paffrathopsis) subgen. nov.
TYPE SPECIES. Natica subcostata Archiac \& Verneuil, 1842.

ETYMOLOGY. For the type area, Paffrath, Germany.
DIAGNOSIS. Naticopsis having moderately low spired shells with strong collabral cords extending across entire whorl surface.
REMARKS. Yochelson (1953) placed Natica subcostatu Archiac \& Verneuil, 1842 into Naticopsis (Jedria) based on the Carboniferous

FIG. 3. A-D, Naticopsis (Paffrathopsis) subcostata (Archiac \& Verneuil, 1842); A, abapertural view of shell with well preserved colour pattern $\times 3.3$.; B, same shell covered with ammonium chloride $\times 3.3$; C , apical view $\times 3$; D, apertural view $\times 3$. E-H, Plagiothyra multispiralis sp. nov.; E, Paratype A, apertural view showing a triangular tooth on low platelike ridge of the parietal wall $\times 7$; F, Paratype B, apertural view $\times 3.5$, G, Holotype, apertural view $\times 5 ; \mathrm{H}$, Holotype, abapertural view $\times 5$.

Naticopsis meeki Knight, 1933. Naticopsis (Jedria) subcostata was the only Devonian species placed into Naticopsis (Jedria). Blodgett (1992) described Naticopsis (Jedria) deckeri from the Eifelian (Middle Devonian) of Alaska which is the oldest representative of this subgenus. Gordon \& Yochelson (1987) noted that the body whorl extended downward rather than outward, and that the swelling on the outer whorl face above the periphery indicates the subgenus Jedria. All these shell characters may be seen in the Carboniferous species of Naticopsis (Jedria) as well as in Naticopsis (Jedria) deckeri, but not in Natica subcostata Archiac \& Verneuil, 1842. N. subcostata has a moderately low spired shell with strong collabral cords extending across the entire whorl surface. These shell characters distinguish this species from all species included in Naticopsis (Jedria) as well as from other subgenera of Naticopsis. Naticopsis (Paffrathopsis) subcostata is the only species currently known.

Naticopsis (Paffrathopsis) subcostata
 (Archiac \& Verneuil, 1842)

(Fig. 3A-D)
non Buccinites subcostatus, Schlotheim 1820: 130; Schlotheim 1822: 63, pl. 12, fig. 3.
Natica subcostata, 1842: 366, pl. 34, figs 5, 5a, 6; Goldfuss 1844: !16, pl. 198, fig. 22.
Turbonitella subcostata (Archiac \& Verneuil) Lotz 1900: 212; Kirchner 1915 (partim): 238; Paeckelmann 1922: 41.

MATERIAL. Five complete shells and several fragments from the Unterthal, locality 63 , and one complete shell from Bergisch Gladbach, locality 76, Bergisches Land, Germany (coll. Ebbighausen).
REMARKS. Goldfuss (1844) synonymised the species Buccinites subcostatus Schlotheim, 1820 and Natica subcostata Archiac \& Verneuil, 1842. However, Schlotheim's figure (see Schlotheim, 1822, pl. 12, fig. 3) of Buccinites subcostatus differs from that of Natica subcostata (compare with Archiac \& Verneuil, 1842, pl. 34, figs 5, 6). Material from Paffrath evidently belongs to the species Natica subcostata Archiac \& Verneuil, 1842, which is the first unquestionable illustration of this species. For this reason, Archiac \& Verneuil's name is considered to be a valid species name.
Colour Pattern. Traces of original colour pattern in Naticopsis (Paffrathopsis) subcostata (Archiac \& Verneuil, 1842) were observed in specimens from Unterthal, Jocality 63, and Bergische Gladbach, locality 76. The geometry of the colour pattern in specimens from the both localities is the same. The colour pattern consists
of three spiral bands of black irregular spots (Fig. 3A). The distance between the spots in each band is about equal to their diameter. The whorl surface close to the upper suture is without any colour. Archiac \& Verneuil (1842: pl. 34, figs 5, 6) and Roemer (1876: pl. 32, fig. 8) figured the same colour pattern as described herein in their figures of Natica subcostata (=Naticopsis (Paffrathopsis) subcostata).

Paffrathia gen. nov.
TYPE SPECIES. Paffrathia lotzi sp. nov.
ETYMOLOGY. For the type area, Paffrath, Gernany,
DIAGNOSIS. Small, low spired turbiniform shell ornamented by strong, sharp collabral ribs extending across the entire whorl surface; shell wall very thick; whorl profile suboval.
REMARKS. Characteristic shell ornament consisting of the distinct collabral ribs (Fig. 4A, B) distinguishes Paffrathia from all Palaeozoic members of the family Neritopsidae. Absence of spiral elements and the presence of distinct collabral elements of the shell ornamentation have complicated the subfamily-level position of Paffrathia gen. nov. as well as Naticopsis (Paffrathopsis) subcostata (Archiac \& Verneuil, 1842) within the Neritopsidae. According to Knight et al. (1960) the Naticopsinae unites shells without ornament (except for subsutural collabral threads or cords in some species). On the other hand, Palaeozoic members of the Neritopsinae are ornamented with pustules. Only the type species Paffrathia lotzi sp. nov. is known.

Paffrathia lotzi sp. nov.
(Fig. 4A,B)
Turbonitella sp.?, Lotz, 1900: 213, pl. 3, fig. 8.
ETYMOLOGY. For H. Lotz who originally figured this species.
MATERIAL, One complete shell from the Unterthal, locality 63, Bergisches Land, Germany (coll. Ebbighausen). Holotype: figured herein as Fig. 4A,B.

TYPE LOCALITY. U. Plattenkalk limestones, Middle Devonian (Givetian), Unterthal, locality 63, Bergisches Land, Germany.
DIAGNOSIS. As for genus.
DESCRIPTION. Small, low spired turbiniform shells with at least four whorls. Whorl profile convexly arched. Height of the adult shell approximately equals width. Whorls embrace near base. Inner whorl profile suboval, sutures
very deep. Whorl profile runs from the upper suture laterally for short distance to rounded spiral angulation, far from this angulation it curves downward forming convex lateral part of the whorl, and then continues across the rounded whorl base into deep umbilicus. Outer apertural lip is prosocline. Shell wall in adult whorl is relatively thick; about 20% of inner apertural diameter. Shell ornament consists of strong, sharp collabral ribs extending across the entire whorl surface. Ribs regularly spaced and their distance roughly equals half of the diameter of the aperture. Fine growth lines may be observed on the surface between collabral ribs.

REMARKS. Paffrathia lotzi is a rarc element of gastropod fauna of the Givetian (Middle Devonian) U. Plattenkalk limestones of Germany, with the illustrated specimen (Fig. 4A,B) the only shell available for study. The specimen figured by Lotz (1900: pl. 3, fig. 8) seems to belong to this species. However, a larger collection of this species is needed for the study of shell variability.

? LOXONEMATOIDEA
 Koken, 1889

Cookiloxa gen. nov.
ETYMOLOGY. For the Australian paleontologist Alex Cook.

TYPE SPECIES, Cookilora pulchra sp, nov.
DIAGNOSIS. Slender, regular, high-spired and multiwhorled shell with straight sides having a gently convex whorl profile; sutures deep, whorls more arched close to both upper and lower sutures; external surface of whorls ornamented by collabral costae which are asymmetrically bent and crossed in the mid-whorl by one spiral costa.
REMARKS. Cookiloxa resembles Australoxa Cook \& Camilleri, 1997 in its shell ornamentation. The latter genus is based on Australoxa tasselli Cook \& Camilleri, 1997 from the Middle Devonian of Australia. The angular whorls of A. tasselli are ornamented by prominent opisthocline ribs and a low, sharp sinus is developed on the angular whorl periphery (see Cook \& Camilleri, 1997: fig. 9E-L). One spiral cord occurs just above the lower suture. Cookiloxa gen. nov. differs from Australoxa in having a rounded whorl profile, a much smaller shell and by the absence of a peripheral sinus and lower spiral cord. Cookiloxa also resembles the Permian genera Loxosonia Batten, 1985 and Cibecuia

Winters, 1963 in shell omament. Batten (1985) interpreted the spiral groove-like element of their shell ornamentation as a selenizone. Cookiloxa differs from Cibecuia by a different whorl profile, being distinctly convex in contrast to the latter genus which has a flat whorl profile. Cookiloxa has a similar whorl profile as both known species of Loxosonia, i.e. Loxosonia horrnotoma Batten, 1985 and Loxosonia zygopleuroides Batten, 1985. Cookiloxa may be distingushed from both species of Loxosonia by the position of its spiral element of shell ornamentation. In Cookiloxa costa-like spiral element is situated in the middle of the whorl, but in Loxosonia the groove-like spiral element (?= selenizone) occurs close to the upper suture. Cookiloxa also resembles the Ordovician genera Spiroecus Longstaff, 1924 and Donaldiella Cossmann, 1903. Spiroecus Longstaff, 1924, differs from Cookiloxa in having a more prominent spiral ornamental element being situated above the mid-whorl and forming a distinct angulation (see holotype in Knight, 1941: pl. 48, fig. 10). In addition S. girvanensis differs from Cookiloxa pulchra by the absence of collabral costae (but see specimen figured by Wenz, 1938: fig. 929b). Cookiloxa may be distinguished from the genus Donaldiella by its differing shape of the whorl profile and outer apertural lip. The Middle Devonian Cookiloxa pulchra sp. nov. from Germany is the only known species.

Cookiloxa pulchra sp. nov.

(Fig. 4C,D)
ETYMOLOGY. Latin, pulcher, beautitul.
MATERIAL. About 30 specimens from the Herrenstrunden, locality 9, Bergisches Land, Germany (coll. Ebbighausen). Holotype: figured herein as Fig. 4D.
TYPE LOCALITY. Bücheler Schichten, Middle Devonian (Givetian), Herrenstrunden, locality 9, Bergisches Land, Germany.
DIAGNOSIS. As for genus.
DESCRIPTION. Small high-spired, dextrally coiled shell, up to 13 whorls present. Sides of shell nearly straight, whorl profile distinctly convex; maximum convexity close to both upper and lower sutures. Whorl profile nearly flat at mid-whorl. Sutures moderately deep. Lateral part of the whorl curves uniformly to base part, forming a smooth curvature without any angulation. Shell base rounded and anomphalous. Shell ornamentation consists of asymmetrically bent collabral costae being crossed in the mid-whorl

FIG. 4. A, B, Paffrathia lotzi sp. nov., Holotype; A, apertural view $\times 4.5$; B, apical view $\times 4.5$. C, D, Cookiloxa pulchra sp. nov.; C, Paratype A, lateral view $\times 14$; D, Holotype, lateral view $\times 9$. E, F, Palaeozygopleura (Rheinozyga) retrostriatum (Kirchner, 1915) comb. nov.; E, lateral view showing the regularly spaced orthocline costae $\times 15$; F, lateral view of larger shell $\times 9$, G-I, Heteroloxonema moniliforme (Goldfuss, 1842) comb. nov.; G, apertural view $\times 3,4 ; \mathrm{H}$, lateral view $\times 3.4 ; \mathrm{I}$, oblique view showing an early whorl $\times 125$.
by one spiral costa. Beginning at the uppersuture, the collabral costae nus in prosocline direction. gradually curve in an orthocline ditcetion, int then in opisthocline direction near the mod-whort forming a wide, asymmetrical arched simus
REMARK'S. Shape of the cullabral costac in Cookifore pulatires sp. nov. sesemble thuse of some species of Pabacozy, opleura 110 my', 1955 (i, e the Diarly Devonian P. ©holopuci Fryda, 1993. f.' devonicans (Perner, 1907) and the Middle Devonian, P. humblinnue (Hall, 1861)). Spiral costa in Cookiloan pulflorer is must probably just elements of the shell omamentation and not a narrow selenizone. Withoul knowledge of the initial part of the shell Cookilowa gen, nove its higher taxonomic position semains questionable.

PALAEOZYGOHLEUIRIDAE Hornsi, 195.5

Palacozygopleura Hormý, 1055 Pabseozygoplcura (Rhenozyan) subgetn. nuv.

TYPE SPECIES. Lownuma metrowriatum Kirchater. 141.5 (herein Fig 4E,F).
EI YMOLOGY: Khenusige referring to Latin Kharmes, for the river Rhine.

DIAGNOSIS. Patueroygenderm with orthocline of slightly opisthocyrt collahral sostac: whorl betweens sutures strungly arched; shell eyrlaeonoid or with straight sides.
REMARKS. Palacozygoplewre (Rhenoryeu) subgen. nov. differs from afl otier subgenera of Palcerozgopletres by the slape of is collahral costae which are arthocline or slightly opisthocyrt. Palaeozygopleures (Rhenesyga) may be distinguished by its 5trongly arched whorls which are also higher than in all other subgenera of Palneozygopterrt. The orthocline or slighty upisthocyrt shape of costate resemble that of Devonozega Horny, 1055. The wharls in Levonozyge Horny. 1455 are distinelly shouldered and in the median region tlattened, in contrast to that in the fublecenergroplearas (Rhenowgal subuen nuw. which has strongly atched whorl sides, Flodgett (1992) deseribed a new gernus Alaskozgoplente based on the Eirelian Alarkuzygopleuter crassicostata Blodget, 1942 which he tentatively placed in the family Pscudozygopleuridac Kinight。1930. P'dectozygupleura (Rheinozga) subgen. now: resembles Alaskozygonledra in its shell omamentation, hut the former taxon may be distinguished from the latter ils much narrower shell and circular
apenture. Blodgett (1992) noted broad variahility of his Alaskozygopleura crassicostata, but all of the ligured shells of his species have ovoid, adapically narrower apertures. considerably wider shells and higher whorls thwo Palaenzygoplemel (Rhenozyga) serrestrianm (Kirchner, 1915).
Unfortunately there are no data about the carly shell in the Givetian species of Pulucozvzopieurs (Rhenozygat subgen, mov. All uther subgencra of Palceongoplewor have protneonchs of the archacogastropod lype (l'ryda \& B Bandel, 1997). The placement of Rhenozgo in the genus Palfetazygoplerrict should be proved by type of its protoconch. Besides the type species. Palwer-
 (915), several other 'Loxomema' species from the Middle Devonian of Germany like Lavemenm spirctylohosum Kirchner, 1915 may belong to the
 plemet mexhemric Cook. 1997 from the Midde bevomian of Australia also is transterred to the new Patacosygopleura (Rhenozy ga). A detailed study uliall Middle Devonian specjes resembling the genus Petuenzymplewa as wel! as comparisun with the Firelian Aloskersgerphestes chassicosvara Blodgell. 199\% is in preparallua.
? HETLEROSTROPHA Jischer. 1885

Hereroloxonema gen, nov.

TYPE SPECIES, Thritella moniliformis Goldfuss. 1824.
EIL:MOLOGY. A combination of the Eeneric nume Loxomemu and the prefix fitene-because of the presumed heterostrophic coiling of jts early shell.
DIAGNOSIS. Slender, high-spired and multiwhorled shell: first whorl planispiritly or slightly sinistrally coiled; shell aper blunt and dome-like: teleaconch sides slightly conven; whorl protile gently convex between shallow, but with distinct sutures: teleconch surface smooh.
REMARKS. The smoolh teleoconch of /hemerformenes gem. now. cesembles that of many loxonematids including Loxomema, but may be distinguished hy its dome-like shell apex formed by planispirally or slighlly sinistrally couled carly whorl. Alt known Devonian loxonematoidean gastropods such is Ḱaropthchia Pemer, 19017. Stylonema Perner, 1901, Palacozygoplemin (Pafarazygopleura) Homý, 1955, Palaen=ygopleura (Palaeozrg(8) IInrný, 1955, and $\dot{p}_{\text {ctilucosygoplemra (Bohemosyga) Fry'ds à }}$ Bandel. 1997 have an acute shell apes which is formed by the arehacogastropod-type protuconch. Heverobarandmagen. now having a planispirally
or slightly sinistrally coiling of its carly whorl may be distinguished by this character from all known loxonematoideans. This character distinguishes Heteroloxonema gen. nov, also from the genus Donaldina Knight, 1933, based on the Carboniferous Aclisina grantonensis Donald, 1898. According to Knight (1941), the latter species has 'earliest two whorls free from the spire, the first whorl planispirally coiled and tilted', in contrast to the blunt and dome-like shell apex of Heteroloxonema. In addition, the shells of the type species are ornamented by numerous spiral lirae (see Knight 1941: pl. 48, fig. 3a-e). Heteroloxonema moniliforme (Goldfuss, 1844) from the Middle Devonian of Germany is the only known species.

Heteroloxonema moniliforme

(Goldfuss, 1844)
(Fig. 4G-I)
Turritella moniliformis, Goldfuss 1844, p. 103, pl. 196, fig. 1. Loxonema moniliforma (Goldfuss), Bandel 1994, pl. 4, ligs. 9-10.
Donaldina moniliforma (Goldfuss), Nützel,1997; 209, pl. 34 S-T.

MATERIAL. 13 complete shells from the Unterthal, locality 63, Paffrath area, Germany (coll. Ebbighausen).
DIAGNOSIS. As for genus.
DESCRIPTION. Medium sized, high-spired, dextrally coiled shells having at least 9 whorls. Shell sides slightly convex; sutural slope approximately 10°. The first whorl planispirally or slightly sinistrally coiled. Shell apex blunt and dome-like. Whorl profile gently convex and slightly flattened in median region; width of whorl almost twice of its height. Sutures are shallow but distinct. Shell base anomphalous, teleoconch surface smooth.
REMARKS. Bandel (1994) figured the early whorl in Heteroloxonema moniliforme (Goldfuss, 1844) which is, according to his observation, sinistrally coiled. For this reason he considered it to be a member of the Heterostropha. If his interpretation is correct, then Heteroloxonema moniliforme represents the oldest known member of this subclass (Bandel, 1994) and also the only heterostrophid gastropod older than the Frasnian/Famennian mass extinction. Nevertheless, no protoconch/teleoconch boundary was hitherto observed in this species,

ACKNOWLEDGEMENTS

I thank Dr Volker Ebbighausen for providing material from his collection. This publication is
based on my studies of the Siluro-Devonian gastropods supervised by Klaus Bandel (Universität Hamburg), partly sponsored by the U.S.-Czechoslovak Science and Technology Joint Fund in cooperation with the Czech Geological Survey and U.S. Geological Survey under Project Number 95057. I gratefully thank Robert B. Blodgett (Oregon State University) and Alex G. Cook (Queensland Museum) for their useful critical remarks to the manuscript and improving its language.

LITERATURE CITED

ARCHIAC, E.J.A.D. \& VERNEUIL, E.P.D. 1842. On the fossils of the older deposits in the Rheinish Province. Transactions of the Geological Society of London 6: 303-410.
BANDEL, K. 1994. Triassic Euthyneura (Gastropoda) from St.Cassian Formation (Italian Alps) with a discussion on the evolution of the Heterostropha. Freiberger Forschungsheft C 452; 79-100.
BANDEL, K. \& FRÝDA, J. 1998 Position of Euomphalidae in the system of the Gastropoda. Senckenbergiana Lethaea 78 (1/2): 103-131.
1999. Notes on the evolution and higher classification of the subclass Neritimorpha (Gastropoda) with the description of some new taxa. Geologica et Palaeontologica 33: 219-235.
BATTEN, R.L. 1966. The lower Carboniferous gastropod fauna from the Hotwells limestone of Compton Martin, Somerset, part I+II. Palaeontographical Society Monographs 119: 1-109.
1972. Permian gastropods and chitons from Perak. Malaysia. Part 1, Chitons, bellerophontids, euomphalids and pleurotomarians. Bulletin of the American Museum of Natural History 147 (1): 5-44.
1985. Permian gastropods from Perak, Malaysia. Part 3, The murchisoniids, cerithiids, loxonematids, and subulitids. American Museum Novitates 2829: 1-62.
BLODGETT, R.B. 1992. Taxonomy and paleobiogeographic affinitites of an early Middle Devonian (Eifelian) gastropod faunule from the Livengood Quadrangle, east-central Alaska. Palaeontographica, Abteilung A: 221: 125-168.
1993. Dutrochus, a new microdomatid (Gastropoda) genus from the Middle Devonian (Eifelian) of west-central Alaska. Journal of Paleontology 62(2): 194-197.
BLODGETT, R.B. \& JOHNSON, J.G. 1992. Early Middle Devonian (Eifelian) gastropods of central Nevada. Palaeontographica, Abteilung A:222: 83-139.
1995. Merriamites, a new name for the bellerophontid gastropod genus Merriamella Blodgett and Johnson, Journal of Paleontology 69(3): 608.
BLODGETT, R.B. \& ROHR, D.M. 1989. Two new Devonian spine-bearing pleurotomariacean
gastropod genera from Alaskis, Journal ol Paleontology 63(1): 47-5?.
BLODGETT, R.B., ROHIR, D.M. \& BOUCOT, A.J. 1988. Lower Devonias gastropod biogecgraphy of the Western Hemisphere. In Embry, Macmillarn de Glass Devonian of the world; proceedings of the Sceone international symposium on the Devonian System: Volume III, Paleontology, palcoccology and biostratigraphy. Memoir Cisnadian Seciely of fetroleum Geologists 14: 2\$1-297.
1990. Early and Middle Devonian gastropod biogeagraphy: Memuir Cienlogital Suciety uf London 12: 277-284.
CHAPMAN, F. 1916. New or little-known Victorian forsils in the National Muscun. I'ard XIX. The Veringian gaxtropod fauma. Broceeding of the Royal Socicty of Victoria. 29 (1);75-103.
COOK. A.G. Fletchervterfa sepruta: a new high-spired, septate gastropod trum the Devomian of North Queensland, Journal of Paleontology 67(5): 816-821.
1997. Gastropods from the BurdekIn Fiommution, Middle Devoniant North Queenshand, Memoirs of the Queensland Museum +2 (1): 37-44.
COOK, A.G. © CAMILLERI, N. 1997. Middle Devonian gastropods from the Broken River Province, North Queensland. Memoirs of the Qucensland Museum 42(1): 55-79.
[DONAI.D. J, 1892. Notes on some now and littleknown species of Carboniterous Mumbixomier. Surterly Joumat of the Geological Society of London: 562-575.
1895. Notes on the genus Mfurchisonicand its allies: with a Jevision of the Brilish Carhoniferous species, and descriptions of some new forms. Quarterly Journal of the Geological Society of London 51: 210-234.
ERS'DA. J. 1992. Mode of life of a new onychochilid molluse from the J.onwer Devonian of Behenotia. Joumal of Palcontology $66(2): 200-205$.
1993. Oldest icpresentative of the family Palacosygupleuridace (Ciastropods) with notes on its higher tavonomy; Journal of Paleonlology 67(5): K22-827.
1998a. Classilication and Phylogeny of 13evonian Gastropods. Unpubl. thesis, Universitait Hamburg, Hambure.
19986. Did the ancestors of higher gastropods (Neritimorpha, Caenogasmopoda, and Heterostropha) have an uncoiled shell? Abstracts. 13th International Malacologicat Congress. Washington $D C$: 107.
1998 c . Some new and better secognized Devonian gastropods from the Prayue Basin (Bohemia). Bulletin of the Czech Geological Survey 73(1): 4149.

1998d. Some new and bettor recognized Devonian gastropods from the Prugue 13asin (Bohemia): part Il. Bulletin of the Ceech Geological Survey 73(4): 355-363.

1949 , Three new gastropod genera from his Early Uevonian of Bohemia. Bulletin of the Csect (ientogical Survey 74(1): 31-38.
1999t. Jligher classificalinn of Paleozoic gastropods inferred fron their carly shell ambogeny. Inumal of the Czech Geological Socicty, Barrande volume. 44(1-2): 137-153.
[RYDA, J, \& BANDEL, K, 1997. New Early Devonian gastropuds finm the I'lectonotus (Boncotomestes)Palaonergniloura Community in the Prigu: Hasin Bohomia). Mitteilungen aus J_{cm} Gienhgisch-P'alaterntulogischen Institut der Universitat Hamburs 80: 1-58.
FRY'OA, J. ic MANISA, S. 1997. A gastropod famule from the Alonograptus unformis graptolite Biowonce Early Lecthovian, Early Devonath in Bohemias. Minteilungen ous dem Ceologisch. Palaconologischen Institut der Universitat 1tamburg fu: S4.122.
GOIDFLISS. A. 1844. Petrefacta Germaniae, 3. (1)
(GURUON, M. 占 f(UCHILSON, EL. JY87. Late Mississippian Castropods of the Chainman Shale. wentocentral Wtah. Luited States Ciwologital Survey Prolessional Paper 1368: 1-112.
GUBANOV, A.F.BLODGETH;R.B.\& LITOCHKIN, V.M. $14 y 5$. Early Devonian (Pragian) gastropods from Kyrgyzstan (Central Asia). Journal of Palcontology, 69: 431-440.
HONRI:, R,D. \& STURGEON, M.J. 1978. 'The Pennsylvamian gastropod genera Ciclozyge and flelminthozega and the classification of the Psendozygopleuridac. Joumal of balsomology 52 (4): $85(1.858$.

HORNY'. R. 1955. Palacozygoplcuridac nov, fanm, (idstronodai) ze stredoceskehu devonu. Shornik Ustrednfio ustavu genlogicktho ntdil palcontologicky 21: 17-150.
1992. New Lower Devonian Gastropoda and Pergomya (Mollusea) of Bohemia. Casopis Narodnito Nligrea v Praze, 1-4:99-110.
194.4. Shell morpholugy and ontogeny of the Lowet Devanian Murchisoniacean gastrupod Bran=avia maurchituhra (Mturchisoniacca). Casopis Narodnilso Muzea v Praze. 1-4: 81.89.
BJORNY, R. \& IORDAN, M. 1993 silutian ind Devonian Cistropoda of Romania. Casopis Narndniho Miureas v Prate, 1-4:71-8:5.
KASE. 'I. \& NISHIDA. T. 1986. A Midalle Devonian gastronod famule from lie Nakazato Furntation of Kitakami, Northeast Japan. Bulletin of the National Science Museum C'12: 73-84.
1988. Two new Middle Devoniam gastropods fom the Nakiszato Eormation of Kitakami, Northeast Jopan. Saito Ho On Kini Nuseum Special 1'ublication 2: 257-263.
KIRCIINER. H.S. 1915. Mitteldevomische Giastroproden von Soctenich in der Eifel. Verhandlungen des Naturhisturischen Verears der preussischats Rheinlande und Westfalenc 15: 189.261.

KNIGHT, J.B. 1934. The gastropods of the St. Louis, Mo., Pennsylvanian outlier. The Euomphalidae and Platyceratidae. Journal of Palcontology 8(2): 139-166.
1941. Paleozoic gastropod genotypes. Geological Society, Special Papers 32: 1-510.
1945. Some new genera of Paleozoic Gastropoda. Journal of Paleontology 19(6): 573-587.
1956. New families of Gastropoda. Journal of the Washington Academy of Sciences 46(2): 41-42.
KNIGHT, J.B., COX, L.R., MYRA, A., BATTEN, R.L., YOCHELSON, E.L. \& ROBERTSON, R. 1960. Systematic descriptions Archaeogastropoda. Pp. 169-324. Treatise on Invertebrate Paleontology. (Geological Society of America, Inc. and University of Kansas Press: Lawrence, Kansas).
KOKEN, E, 1889. Über die Entwicklung der Gastropoden vom Cambrium bis zur Trias. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 6: 305-484.
1897. Die Leitfossilien, ein Handbuch für den Unterricht und das Bestimmen von Versteinerungen. 1-848. Leipzig.
KONINCK, L.G. d. 1881. Faune du Calcaire Carbonifere de la Belgique, Gasteropodes. Annales du Musee Royal d'Histoire Naturelle de Belgique, VI: 1-170.
1883. Faune du calcaire carbonifére de la Belgique 4 partie, Gastéropodes suite et fin). Musée Royal d'Histoire Naturelle de Belgique Annales, Série Paléontologique 8: 1-240.
LINSLEY, R.M. 1968. Gastropods of the Middle Devonian Anderdon limestone. Bulletins of American Paleontology, 54(244): 333-465.
LOTZ, H. 1900. Die Fauna des Massenkalks der Lindener Mark bei Giessen. 205-216. (Marburg).
NÜTZEL, A. 1997: Über die Stammesgeschichte der Ptenoglossa (Gastropoda). Geowissenschaften. Abhandlungen E 26: 1-229.
OEHLERT, D. \& OEHLERT, P. 1888. Descriptions de quelques especes dévoniennes du département de la Mayenne. Bulletin de la Société d'Etudes Scientifiques d'Angers 1887: 65-120.
PAECKELMANN, W. 1922. Der mitteldevonische Massenkalk des Bergischen Landes.

Abhandlungen der Preussischen Geologischen Landesanstalt 91: 1-112.
PERNER, J. 1903, 1907, 1911. Gastéropodes. In J. Barrande, Systeme silurien du centre de la Boheme. IV: 1-390. (Prague)
ROEMER, F. 1876. Lethaea palaeozoica. Atlas. (Hannover).
ROLLINS, H.B., ELDREDGE, N. \& SPILLER, J. 1971. Gastropoda and Monoplacophora of the Solsville member Middle Devonian, Marcellus Formation) in the Chenango valley, New York State. Bulletin of the American Museum of Natural History 144(2): 133-170.
SCHLOTHEIM, E.F. 1820. Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Samlung versteinerter und fossier Uberreste des Thier- und Pflanzenreichs der Vorwelt erlautert. 1-436. (Gotha).
1822. Nachtrage zur Petrefactekunde. 1-100. (Gotha).
STAUFFER, C.R. 1909. The Middle Devonian of Ohio. Bulletin of Geological Survey of Ohio, Fourth series 10: 160-194.
VOSTOKOVA, V.A. 1961. Paleozoiskie gastropody Novoj Zemli i ostrova Vajgac. Sbornik statei po paleontologii i biostratigrafii. Leningrad. 5-25.
1966. Devonian and Carboniferous gastropods from the Rudnyj Altaj Moutains. - Voprosy Palcontologii Tom V: 38-52.
WENZ, W. 1939-1943. Gastropoda, Handbuch der Palaeozoologie, 1-6: 1-1639. (O.H. Schindewolf).
WHIDBORNE, G.F. 1891. A monograph of the Devonian fauna of the south of England. Part JII. The fauna of the limestones of Lummaton, Wolborough, Chircombe Bridge, and Chudleigh. Palacontographical Society: 155-250.
1892. A monograph of the Devonian fauna of the south of England. Part IV. The fauna of the limestones of Lummaton, Wolborough, Chircombe Bridge, and Chudleigh. Palaeontographical Society: 251-344.
YOCHELSON, E.L. 1953. Jedria, a new subgenus of Naticopsis. Journal of the Washington Academy of Sciences 43: 3-65.

RELATIONSHIP BETWEEN MASS AND LENGTH IN AUSTRALIAN ELAPID SNAKES

A.E. GREER AND R. SHINE

Greer, A.E. \& Shine, R. 200006 30: Relationship between mass and length in Australian elapid snakes. Memoirs of the Queensland Museum 45(2): 375-380. Brisbane. ISSN 0079-8835.

Abstract

Least squares regression analysis of log mass on both log snout-vent and log total length for individuals of each sex of 14 populations of ten species of Australian elapid snakes indicates that in the 37 most robust data sets isometry occurs in 21 cases, negative allometry in ten cases and positive allometry in six. Isometry seems to be the most common kind of allometry in 'colubroid'shaped snakes. There are no cases of different kinds of allometry between the sexes in any one species. However, in Austrelaps ramsayi both measures of length indicate that mass is relatively greater in males than in females over the middle and large end of the size range. The population of regression lines for \log mass on \log length for large diurnal, surface-active elapids are bounded by Austrelaps ramsayi on the heavy side and by Pseudonaja textilis on the light side. These extreme morphological differences may be related to the species' extreme ecological differences. 'The former species is a frog eating, live-bearing inhabitant of a cool environment with a short growing season, whereas the latter is a lizard, bird and mammal eating, egg-laying inhabitant of a warm environment with a longer growing season. \square Allometry: elapids, mass, sexual dimorphism.

A.E. Greer, Australian Museum, 6 College Street, Sydney 2010; R. Shine, Biological Sciences A08, University of Sydney 2006, Australia; 26 November 1999.

Mass is probably the single most important co-variate of an organism's other biological variables (McMahon \& Bonner, 1983; Schmidt-Nielsen, 1984; Calder, 1996). Although there is a vast amount of raw data on mass for Australian vertebrates in the literature, unpublished theses and researchers' notes, little of this information has been collated and summarised. In this paper we analyse published and unpublished data on mass and length in ten species of Australian elapid snakes in order to determine the nature of the allometric relationships and whether sexual dimorphism exists.

MATERIALS AND METHODS

Data on mass (gm) and snout-vent and total length (mm) were gathered from the literature and our own notes (for origin of R. Shine's data and up-dated identifications, see Shine 1977 and 1989, respectively). All data were transformed to base 10 logs prior to analysis.

The relationship between mass and length was analysed initially for each sex using least squares regression. The comparison between mass and each measure of length between the sexes was examined using analysis of covariance with length as the covariant and sex as the factor. Homogeneity of residual mean squares of the regressions was verified prior to the ANCOVA. All analysis was done using SYSTAT 9.0 software. The $0.05,0.01$, and 0.001 levels of
significance are indicated by ${ }^{*}, * *$ and ${ }^{* * *}$, respectively.

Mass data were rejected if the specimen was known to be gravid, and total length data were rejected if the specimen had part of the tail missing.

RESULTS

We found unanalysed data suitable for regression analyses of log mass on \log length for 14 populations of ten species of Australian elapid snakes. Data sufficient for a comparison of the regressions between the sexes of the same species were available for nine species (all except Suta suta which was only represented sufficiently by males). The results of these analyses are given in Table 1. We also include for the sake of completeness, but do not discuss, some basic regression statistics for Acanthophis antarcticus which are the only previously published results with possible relevance for allometry in Australian elapids.

The data are of variable quality for the purposes of our analysis. For example, we discount data for any sex based on fewer than ten specimens. We also discount the data for the female Notechis ater as they almost certainly include gravid individuals. The specimens were collected in period of 19 October to 15 February, and although no note was made of whether females
appeared gravid or not (Mirtschin \& Bailey, 1990), the collection period coincides with the reproductive season (Shine, 1987b). We also discount the data for Austrelaps superbus from King Island due to the apparent rounding off of both lengths and weights, the latter in some cases apparently to the nearest 50 g (Fearn, 1994). We also suspect that the relatively low r^{2} values for female Notechis scutatus from Melbourne may be indicative of an atypical variable (Watharow, 1997, 1999). Finally, we note that the lack of small females in Hemiaspis signata, may distort both the allometry and the comparison with males (data R. Shine). In the following discussion we put to one side these qualified data (indicated by italics in Table 1) and focus on the remainder.

DISCUSSION

Methodologically, mass correlates with both snout-vent length and total length about equally well. In those cases where the r^{2} values differ, snout-vent length has a higher value in three cases, and total length has a higher value in five cases. However, in no case does the difference exceed 0.01 . Furthermore, both length measures gave the same indication of allometry in all cases except for Pseudechis porphyriacus from New England. For each sex in this species, the data for the total length indicated a relatively larger increase in mass with length than did snout-vent length. This could be due to a relativcly larger increase in mass of the tail with length in this species.

The relationship between mass and length in Australian elapids can be in positive allometry, isometry, or negative allometry, depending on species. However, isometry is the most common form of allometry, occurring in 21 of 37 cases ('total samples' and 'combined' sexes excluded); negative allometry occurs in ten cases, and positive allometry occurs in six cases. In terms of the kind of allometry, there is no difference between the sexes of any species. Therefore we assume that for species represented adequately by only one sex, the allometry of that sex is indicative for the species.

In terms of the kind of allometry shown, the only comparable data set we are aware of is that for 12 species of North American colubrids, a group which is similar in shape and ecology to Australian elapids. The data for these species were based on combined sexes, but they indicated that the mass on length relationship was in isometry in 11 species and in negative allometry in only one, Heterodon platyrhinos (Kautman \&

Gibbons, 1975). Hence it may be that isometry is widespread in 'colubroid'-shaped snakes.
Assuming that isometry is the null condition, the cases of negative and positive allometry in Australian snakes are of interest. Negative allometry occurs in Hemiaspis signata, Notechis scutatus from the New England area, and Parasuta dwyeri. Positive allometry occurs in Notechis scutatus from Melbourne, Pseudechis porphyriacus from Macquarie Marshes and, in terms of total length only, in P. porphyriacus from New England. We have no explanation for these differences, but take note of the practical as well as the biological implications of the difference between two populations of the onc species, Notechis scutatus.
Differences between the sexes in the elevations in the slopes occur in three species: with both measures of length in Austrelaps ramsayi and in Notechis scutatus from the New England area, and in total length in Hentiaspis daemeli. However, in the latter two species, the difference in elevations is so slight that we are reluctant to interpret it. In the case of Austrelups ramsayi, it is clear on both measures of length that mass is relatively greater in males than in females over the middle and large end of the size range (Fig. 1). This may be due to more, or denser, muscle mass as has recently been demonstrated in two colubrids and one viperid in Europe (Bonnet et al., 1998).
The only species in which the residual mean squares of the regressions for each sex were significantly different was Pseudechis porphyriacus from the New England area; the unexplained variance in mass was significantly higher in males than in females in both length measures (Table 1). Again we are unable to offer a biological explanation, but we note the statistical implications for other studies of sexual dimorphism in mass on length relationships.
The mass on length regressions examined here form a distribution of roughly similar regression lines. Looking more closely at males only from the largest data sets (basically the Shine data) and restricting the analysis to snout-vent length for simplicity's sake, the boundaries of this distribution of regression lines are set by Austrelaps ramsayi on the relatively heavy side and Pseudonaja textilis (total sample) on the relatively light side (Fig. 2). The regression lines of the males of Hemiaspis daemeli, H. signata, Notechis scutatus, Parasuta cwyyeri and Pseudechis porphyriacus (not figured to avoid crowding) fall

FIG. 1. Plot of log mass on log total length for both seves of Austrelaps ronsayi from the New Enyland area of New South Wales, $0=$ males. $x=$ females.
between the regression lines for Austrelaps ramsayi and Pseutonuju textilis. In many ways these latter two tasa represent the near extreme ends of the range of disersity of active-searching. surface dwelling Australian elapids. For example, the former occurs at relatively high altitudes with shorter, cooler growing seasons, feeds largely on frogs and is live bearing (Shine, 1987a) whereas the latter occurs at lower altitudes with a longer, warmer growing season. feeds largely on reptiles, birds and mammals and is egg laying (Shine, 1989). We do not know What tissue differences may be contributing to the overall differences in mass in these two species. However, it it is fat, the heavier body in the species accupying the cooler climate with the shorter growing season makes adaptive sense. If it is muscle, the heavier body in the species hunting the generally less active prey and carrying the reproductive load for longer periods is also expected (the mass on length difierences in the females of the two species are almost, but not quite, as well separated as in the males). We suspect that Demunsia psammophis and perhaps Oxveramus scutellatus would be even lighter for their length than is Psetrdonaja rextilis, but we lack the data to test this.

This review of mass and Jength data for Australian elapids suggests to us several ways to improve the quality of these kinds of data. First, the two measures of length used, snout-vent length and total length, are about equally robust

FIG. 2. Plot of log mass on \log snout-vent length for males of Austrolaps rumsayi (0) and Pscudonaja terrilis (x).
in their relationship with mass. Hence although both measures are usually taken, either will do by itself. Second, data on mass and length are most useful if specimens with potential confounding features are noted. Specilically, specimens with missing tails, in obvious poor health, recently fed, or gravid should have their condition indicated. Sexes should also be determined. Furthermore, the larger the sample size, the smaller the sampling area, and the more constrained the collecting period, the tighter the mass on length relationship is likely to be. Finally, it would be very useful to have additional data for the smaller species of elapids, as the current data set is primarily for large species.

ACKNOWLEDGEMENTS

We thank J. Scanlon and G. Shea for critically reading early versions of the manuscript.

LITERATURE CITED

BONNET, X., SHINE, R., NAULLEAU, G. \& VACHER-VALLAS, M. 1998. Sexual dimorphism in snakes: different reproductive roles favour different body plans. Proccedings of the Royal Socicty of London 265: 179-183.
CALDER, IV.A. 1996. Size, Function, and Life Histor: (Dover Publications, Mineola, New York).
FEARN. S. 1994. Some observations on the ecology of the copperhead Ausmelops superbus (Serpentes: Elapidae) in Tasmania. Herpetofauna 24: 1-10,
FEARN, S. \& MUNDAY, B. 1995. The copperhead or superb snake in captivity. Monitor (Journal of the Victorian Herpetological Society) 7:9-11.

JOHNSTON, G.R. 1987. Reproduction and growth in captive death adders Acanthophis antarcticus (Squamata: Elapidae). Transactions of the Royal Society of South Australia 111: 123-125.
KAUFMAN, G.A. \& GIBBONS, J.W. 1975. Weightlength relationships in thirteen species of snakes in the southeastern United States. Herpetologica 31: 31-37.
McMAHON, T.A. \& BONNER, J.T. 1983. On size and life. (Scientific American Books: New York).
MIRTSCHIN, P.J. \& BAILEY, N. 1990. A study of the Kreffi's black tiger snake Notechis ater ater (Reptilia: Elapidae). South Australian Naturalist 64: 52-61.
SCHMIDT-NIELSEN, K. 1984. Scaling. Why is animal size so important? (Cambridge University Press: Cambridge).
SHINE, R. 1977. Reproduction in Australian elapid snakes. II. Female reproductive cycles Aust. J. Zool. 25: 655-666.
1987a. Ecological ramifications of prey size: food habits and reproductive biology of Australian
copperhead snakes (Austrelaps, Elapidae). Journal of Herpetology 21(1): 21-28.
1987b. Ecological comparisons of island and mainland populations of Australian tigersnakes (Notechis: Elapidae). Herpetologica 43:233-240.
1988. Food habits and reproductive biology of small Australian snakes of the genera Unechis and Suta (Elapidae). Journal of Herpetology 22: 307-315.
1989. Constraints, allometry, and adaptation: food habits and reproductive biology of Australian brown snakes (Pseudonaja: Elapidae). Herpetologica 45: 195-207.
WATHAROW, S. 1997. Ecology of Eastern Tiger Snake (Notechis scutatus) and Lowland Copperhead (Austrelaps superbus) within metropolitan Melbourne. Monitor (Journal of the Victorian Herpetological Society) 8: 145-151.
1999. Oophagy in the lowland copperhead Austrelaps superbus (Elapidae) in the Melbourne metropolitan area. Herpetofauna 29: 19-20.

TABLE 1. Parameters for least squares regression analysis of $\log _{10}$ weight (g) on $\log _{10}$ length (mm) for ten species of Australian elapid snakes. $\mathrm{ci}=95$ percent confidence interval of the slope. A slope of 3.00 indicates isometry. All regressions are significant at the 0.001 level.

Species	Regression Parameter						Comparison of Regressions (F values)			
	inter	slope	ci	r^{2}	n	allometry	homogen	slopes	elevations	Reference
Snout-vent Length										
Austrelaps ramsayi New England										
males	-5.92	2.92	± 0.21	0.93	57	0	$1.32^{\text {ns }}$	$0.96{ }^{\text {ns }}$	5.01*	R. Shine data
females	-5.48	2.74	± 0.28	0.97	13	0				
A. superbus Melbourne										
males	-3.16	1.94	0.66	0.90	6	-	$2.22^{\text {ns }}$	4.95*	-	Watharow, 1997, 1999
females	-5.80	2.86	0.54	0.93	10	0				
A. superbus King Island										
males	-2.98	1.95	0.40	0.85	20	-	$2.96{ }^{\text {ns }}$	13.34**	-	$\begin{gathered} \text { Fearn, 1994: } \\ \text { Feam \& } \\ \text { Munday, } 1995 \end{gathered}$
females	-8.60	3.82	1.24	0.84	9	0				
Hemiaspis daemeli Macquarie Marshes										
males	-6.20	2.95	± 0.25	0.96	26	0	$2.38{ }^{\text {ns }}$	$0.02^{\text {ns }}$	$0.81^{\text {n3 }}$	R. Shine data
females	-6.10	2.92	± 0.40	0.94	15	0				
combined	-6.15	2.93	± 0.22	0.95	41	0				
H. signata New England area										
males	-4.79	2.39	± 0.26	0.94	24.	-	$1.08^{\text {ns }}$	$0.12^{\text {ns }}$	1.32^{18}	R. Shine data
females	-5.02	2.49	± 0.57	0.85	17	0				
Notechis ater Elinders Ranges										
males	-10.81	2.43	± 0.57	0.94	9	0	$1.07^{\text {ns }}$	$3.38{ }^{\text {n5 }}$	6.89***	Data in Mirtschin \& Bailey, 1990
females	-13.89	2.92	± 0.44	0.95	39	0				Data in Mirtschin \& Bailey, 1990

TABLE 1. (cont.)

Species	Regression Parameter						Comparison of Regressions (F values)			
	inter	slope	ci	r^{2}	n	allometry	homogen	slopes	elevations	Reference
Notechis scutatus Melboume area										
males	-7.39	3.38	± 0.36	0.94	26	+	$1.34{ }^{n} s$	4.52*	-	Data in Watharow, 1997
females	-5.29	2.63	± 0.67	0.79	20	0				
N. scutatus New England area										
males	-5.35	2.66	± 0.15	0.95	73	-	$1.13^{\text {ns }}$	$1.45^{\text {ns }}$	4.42*	R. Shine data
females	-5.66	2.79	± 0.15	0.97	51	-				
Parasuta dwyeri New England area										
males	-5.31	2.63	± 0.23	0.93	39	-	$1.37^{\text {ns }}$	$0.057^{\text {ns }}$	$1.28{ }^{\text {ns }}$	R.Shine data
females	-5.17	2.58	± 0.31	0.91	31	-				
combined	-5.17	2.58	± 0.18	0.93	70	-				
Pseudechis porphyriacus Macquarie Marshes										
males	-7.04	3.25	0.17	0.98	37	+	$1.47^{n s}$	$12.08^{* *}$	-	R. Shine data
females	-3.35	2.02	0.58	0.91	7	-				
P. porphyriacus New England area										
males	-6.68	3.12	0.20	0.89	128	0	3.37***	-	-	R. Shine data
females	-6.67	3.11	0.19	0.96	49	0				
Pseudonaja textilis Macquarie Marshes										
males	-6.15	2.89	± 0.52	0.83	27	0	$1.05{ }^{\text {ns }}$	$1.20^{\text {rs }}$	$0.004^{\text {ns }}$	R. Shine data
females	-7.78	3.42	± 0.80	0.91	9	0				
combined	-6.17	2.90	± 0.18	0.97	37	0				
P. textilis New England area										
males	-6.54	3.02	± 0.14	0.99	18	0	$1.36{ }^{\text {ns }}$	$0.05^{\text {ns }}$	$0.83{ }^{\text {ns }}$	R. Shine data
females	-6.49	3.00	± 0.18	0.99	11	0				
combined	-6.56	3.03	± 0.10	0.99	29	0				
P. textilis Total Sample										
males	-6.46	2.99	± 0.14	0.98	45	0	$1.09^{\text {n5 }}$	$0.05^{\text {ns }}$	$0.32^{\text {¹5 }}$	R. Shine data
females	-6.54	3.01	± 0.15	0.99	20	0				
combined	-6.52	3.01	± 0.10	0.99	65	0				
Sura suta New South Wales										
males	-5.90	2.83	± 0.24	0.98	14	0	-	-	-	A. Greer data and Shine, 1988
Total Length										
Acanthophis antarcticus Eyre Peninsula										
combined	-6.76	3.09	?	0.97	206	$?$?	?	?	Johnston, 1987
Austrelaps ramsayi New England area										
males	-6.42	3.02	± 0.19	0.95	54	0	$1.01^{\text {ns }}$	$2.23{ }^{\text {158 }}$	5.09*	R. Shine data
females	-5.76	2.76	± 0.29	0.97	13	0				
Austrelaps superbus Melbourne area										
males	-3.24	1.93	0.68	0.89	6	-	$1.31{ }^{\text {ns }}$	$2.59^{n s}$	$1.00^{\text {ns }}$	Watharow, 1997, 1999
females	-5.80	2.86	0.54	0.93	10	0				
A. superbus King Island										
males	-3.72	2.14	0.44	0.84	20	-	$3.08^{n s}$	11.22**	-	$\begin{aligned} & \text { Fearn, 1994; } \\ & \text { Fearn \& } \\ & \text { Munday, } 1995 \end{aligned}$
females	-9.44	3.99	1.34	0.83	9	0				
Hemiaspis daemeli Macquarie Marshes										
males	-6.54	2.99	± 0.25	0.96	26	0	$2.00^{\text {ns }}$	$0.01{ }^{\text {ns }}$	6.25*	R. Shine data
females	-6.41	2.97	± 0.36	0.95	15	0				

TABLE 1. (cont.)

Species	Regression Parameter						Comparison of Regressions (F values)			
	inter	slope	ci	r^{2}	n	allometry	homogen	slopes	elevations	Reference
Hemiaspis signata New England area										
males	-5.20	2.46	± 0.25	0.95	23	-	$1.12^{\text {ns }}$	$0.09^{\text {ns }}$	4.26*	R. Shine data
females	-5.39	2.55	± 0.54	0.86	17	0				
Notechis ater Flinders Ranges										
males	-11.62	2.49	± 0.59	0.93	9	0	1.10^{13}	$2.54{ }^{\text {ns }}$	7.26*	Data in Mirtschin \& Bailey, 1990
females	-14.49	2.95	± 0.24	0.94	38	0				
Notechis scutatus Melbourne area										
males	-7.80	3.43	± 0.29	0.93	46	+	$1.97^{\text {ns }}$	6.47*	-	Data in Watharow, 1997
females	-5.58	2.67	± 0.72	0.76	19	0				
Notechis scutatus New England Area										
males	-5.77	2.74	± 0.14	0.96	70	-	$1.25^{\text {n5 }}$	$0.06^{\text {ns }}$	5.71*	R. Shine data
females	-5.80	2.76	± 0.15	0.97	48	-				
Parasuta dwyeri New England area										
males	-5.51	2.65	± 0.23	0.93	39	-	2.07*			R. Shine data
females	-5.30	2.58	± 0.31	0.91	31	-				
combined	-5.25	2.56	± 0.18	0.93	70	-				
Pseudechis porphyriacus Macquarie Marshes										
males	-7.52	3.33	± 0.17	0.98	36	+	$1.33^{\text {ns }}$	11.66**	-	R. Shine data
females	-3.75	2.10	± 0.62	0.92	6	-				
P. porphyriacus New England										
males	-7.20	3.23	± 0.20	0.89	117	$+$	3.51***	-	-	R. Shine data
females	-7.20	3.22	± 0.20	0.96	44	+				
Pseudonaja textilis Macquarie Marshes										
males	-7.05	3.10	± 0.65	0.80	25	0	$1.15^{\text {ns }}$	$0.43^{\text {ns }}$	$0.06{ }^{\text {ns }}$	R. Shine data
females	-8.21	3.47	± 0.86	0.90	9	0				
combined	-6.49	2.92	± 0.20	0.96	35	0				
P. textilis New England _										
males	-6.66	2.98	± 0.10	0.99	16	0	$3.11^{\text {ns }}$	$0.019^{\text {ns }}$	$0.52^{\text {ns }}$	R. Shine data
females	-6.72	3.00	± 0.21	0.99	10	0				
combined	-6.71	3.00	± 0.10	0.99	26	0				
P. textilis Total sample										
males	-6.64	2.97	± 0.13	0.98	41	0	$1.37^{\text {ns }}$	$0.05^{\text {ns }}$	$0.59^{\text {ns }}$	R. Shine data
females	-6.72	2.99	± 0.16	0.99	19	0				
combined	-6.70	2.99	± 0.10	0.98	60	0				
Suta suta New South Wales										
males	-5.98	2.79	± 0.24	0.98	14	0	-	-	-	A. Greer data

FRESHWATER DALYELLIID FLATWORM, GIEYSZTORIA SLPERB.A SP. NOI (DALYELLIIDAE: RHABDOCOELA) FROM SOUTHEAST QUEENSLAND, AUSTRALIA

V. HARTENSTEIN AND K.A. DWINE

Hartenstein, V. \& Dwine, K.A. 200006 30: Freshwater dalyelliid flatworm, Gieysztoria superba sp. nov. (Dalyelliidae: Rhabdocoela) from southeast Queensland, Australia. Memoirs of the Queensland Museum 45(2): 381-383. Brisbane. ISSN 0079-8835.

Abstract

Anew dalyelliid flatworm, Gieysztoria superba sp. nov. is described from a freshwater creek in southeast Queensland, Australia. With characters of the genus, it appears to be closely related to the cosmopolitan species G rubra, but differs significantly in the number of spines (approx. 40) in the sclerotic armature of the male copulatory organ. \square Freshwater, Dalyelliidae, taxonomy, Australia. V. Hartenstein, Department of Molecular, Cell and Developmental Biology, UC Los Angeles, PO Box 951 606, Los Angeles CA 90095-1606, USA; K.A. Dwine, Queensland Museum. PO Box 3300, South Brisbane 4101, Australia; 26 November 1999.

The Dalyelliidae contains many, mostly free-living, freshwater species of flatworms that are known from around the world (Luther, 1955), and in Australia ultrastructural studies have been conducted on an unidentified species of the cosmopolitan genus Gieysztoria by Rohde, Cannon \& Watson (1988) and Watson \& Rohde (1995). No taxonomic study of the family or its members, however, has been conducted here.

METHODS

Freshwater plants and sediments were collected from Gold Creek, Brookfield ($27^{\circ} 27^{\circ} 58^{\prime \prime}$ S; $152^{\circ} 53^{\prime} 03^{\prime \prime} \mathrm{E}$), returned to the laboratory, and the worms extracted by careful examination using a stereo microscope. Worms were examined alive with bright field and Nomarski interference contrast microscopy. Whole mounts in Canada balsam were made after specimens were fixed in 5% buffered formalin and dehydrated through a graded alcohol series. Specimens were not stained. Sclerotic armature preparations were made by squash preparation and mounting in Epon or by immersing live worms in de Faure's fluid (Evans et al., 1961). Sections ($2 \mu \mathrm{~m}$) were obtained serially from worms fixed in 4% glutaraldehyde in phosphate buffered saline and embedded in Epon. Sections were stained with toluidine blue.

Drawings of the anatomy were made using a camera lucida and digitised using Adobe Illustrator ${ }^{(B)}$. Measurements are in micrometres ($\mu \mathrm{m}$) unless otherwise stated.

This material is lodged at the Queensland Museum (QM) as a wholemount (WM), serial sections (TS) and squash preparations (S).

DALYELLIIDAE Graff, 1908
Gieysztoria superba sp. nov. (Figs 1-2)

MATERIAL. HOLOTYPE: Gold Ck, Brookfield SEQ ($27^{\circ} 27^{\prime} 58^{\prime \prime} \mathrm{S}, 152^{\circ} 53^{\prime} 03^{\prime \prime} \mathrm{E}$). Feb. to Apr. 1998, V. Hartenstein, WM, QMG217989. PARATYPES: same data, TS (Epon: toluidine blue), QMG217990. OTHER MATERIAL: same data, Sclerotic armature preparation (squash preparation, Epon) QMG217991.

ETYMOLOGY. Named superba for the large number of spines in the male copulatory ammature.
DESCRIPTION. HOLOTYPE: 550 long $\times 200$ wide (Fig. 1), clear, filled with brown algal? bodies and posteriorly red pigment bands. Swims swiftly over substrate; frequently rotates around length axis while swimming. Anatomically (from live material and sections) consistent with the genus and having finger-like vitellaria. Arising from the distal portion of the muscular bulb surrounding the ejaculatory duct and prostate secretions there is a fenestrated girdle (20 wide) with irregular holes (Fig. 2). Suspended distally from the girdle are about 40 fine spines of about equal length, evenly arranged around the whole duct. Each spine is fluted with a fine tip and approx. 43 long.
DIAGNOSIS. With characters of the genus and a male copulatory organ with a moderately narrow, fenestrated girdle and about 40 spines of equal length.

HABITAT AND DISTRIBUTION, Found in the sediments and plants of freshwater creek at

FIG. 1. Gieysztoria superba sp. nov. Habitus. Scale $=$ $200 \mu \mathrm{~m}$.

Brookfield, SE Queensland. Numbers appear to decline in the colder months (May-September).

REMARKS. Luther (1955) divided the 46 species of Gieysztoria then described into two groups: 'aequales' with a sclerotic armature displaying a wreath of homogeneous spines (about 25 species) and 'inaequales' for the rest. G. superba belongs to the first group: it has a sclerotic armature with a girdle and possesses papillose vitellaria. In the numerous spines G. superba resembles G. knipovici Beklemischev

FIG. 2. Gieysztoria superba sp. nov.; two focal planes of the sclerotic armature in a squash preparation (QM G217991). Scale $=50 \mu \mathrm{~m}$.

1953 which has at least 30 spines in its armature, but G. superba differs in having vitellaria with long, digitate extensions (not short papillae). G. superba has similar vitellaria to G bellis Marcus 1946 and G. rubra Fuhrmann 1894. G. superba can be distinguished because its spines lack the cone-shaped tip found in G. bellis, and although the armature of G. superba looks very similar to that of G. rubra, it has a wider girdle and shorter spines. Most characteristic of G. superba is the number of spines in its armature. While G. bellis and G. rubra have approx. 19 spines, G. superba has approx. 40.
DISCUSSION. The inter-specific variation in spine number between G. superba and G. rubra is
far greater than the intra-specific variation within G. rubra that is associated with geographic location. (Marcus, 1946; Luther, 1955; Young. 1977). We, therefore, have no hesitation in considering this a new species, the first taxonomic account of any member of the Dalyelliidae from Australia.

^CKNOWLEDGEMENTS

We thank Amelia Hartenstein for her help in the field and laboratory and Lester Cannon for comments on the MS. Without the support of the NIH grant NS 29367 for VH this work would not have been initiated. The study was part of a broader study by KD supported on a grant to Dr L.R.G. Cannon from ABRS.

LITERATURE CITED

EVANS, GO., SHEALS, J.G. \& MACFARLANE, D. 1961. The terrestrial Acari of the British Isles- an introduction to their morphology biology and classification. Vol. 1. Introduction and biology. (Adiard \& Son, Bartholomew Press: Dorking, Great Britain).

LUTHER, A. 1955. Die Dalyelliiden (Turbellaria Neorhabdocoela), eine monographie. Acta Zoologica Fennica 87: 1-337.
MARCUS, E. 1946. Sobre Turbellaria Brasileiros. Zoologia 11: 5-254.
ROHDE, K. CANNON, L.R.G. \& WATSON, N. 1988. Ultrastructure of the flame bulbs and protonephridial capillaries of Gieysztoria sp. (Rhabdocoela Dalyelliida), Rhinolasius sp. (Rhabdocoela Kalyptorhynchia) and Actinodactylella blanchardi (Rhabdocoela Temnocephalida). Joumal of Submicroscopic Cytology and Pathology 20(3): 605-612.
WATSON, N. \& ROHDE, K. 1995. Ultrastructure of spermiogenesis and spermatozoa in the platyhelminths Actinodactylella blanchardi (Temnocephalida, Actinodactylellidae), Didymorchis sp. (Temnocephalida, Didymorchidae) and Gieysztoria sp. (Dalyelliida, Dalyellidae), with implications for the phylogeny of the Rhabdocoela. Invertebrate Reproduction and Development 27(2):145-158.
YOUNG, J.O. 1977. Six new species and records of two established species of Dalyelliidae (Turbellaria; Neorhabdocoela) from freshwater habitats in Kenya, East Africa. Journal of Natural History 11: 1-15.

NEMATODES FROM FISH FROM THE KEPPEL ISLANDS, KEPPEL BAY, QUEENSLAND. Memoirs of the Queensland Museum 45(2): 384. 2000:- Seventy six fishes comprising 24 species collected (by members of the Capricorn Scuba Club) from three sites; the waters off Ross Reef ($23^{\circ} 03^{\prime} \mathrm{S}, 150^{\circ} 22^{\prime} \mathrm{E}$), Barron Island ($23^{\circ} 08^{\prime} \mathrm{S}$, $151^{\circ} 03^{\circ} \mathrm{E}$) and North Keppel Island ($23^{\circ} 04^{\circ} \mathrm{S}, 150^{\circ} 53^{\prime} \mathrm{E}$) in Keppel Bay on the central Queensland coast, were examined for nematodes. Thirteen species of nematode, all new locality records, were found (Table 1). No nematodes were found in Choerodon venustus De Vis or Acanthurus dussumeri Valenciennes and only unidentifiable larvae in Siganus lineatus (Valenciennes). Names of the fish hosts follow Randell, et. al. (1990). Ascaridoid larvae were identified following Cannon (1977) but citing Thynnascaris as a synonym of Hysterothylacium (Deardorff \& Overstreet, 1981). Comparisons between the fish examined in this study and from Heron Island (Lester \& Sewell, 1989) showed differences in the nematode communities. Of five nematode species recorded from Heron Island two, Philometra sp. and Metabronema magna, were not present in Keppel Bay.

Cucullanus sp. and Hysterothylacuim sp. larvae were found in C. venustus at Heron Island but not Keppel Bay, while Terranova sp. larvae was found only in Epinephalus ongus at Heron Island.
Literature Cited
CANNON, L.R.G. 1977. Some larval ascaridoids from south-eastern Queensland. International Journal for Parasitology 7:233-243.
DEARDORFF, T.L. \& OVERSTREET, R.M. 1981. Review of Hysterothylacium and Iheringascaris (both previously = Thynnascaris) (Nematoda: Anisakidae) from the Northern Gulf of Mexico. Proceedings of the Biological Society of Washington 93: 1035-1079.
LESTER, R.J.G. \& Sewell, K.B. 1989. Checklist of parasites from Heron Island, Great Barrier Reef. Australian Journal of Zoology 37: 102-128.
RANDALL, J.E., ALLEN, G.R. \& STEENE, R.C. 1990. The complete divers and fisherman's guide to fishes of the Great Barrier Reef and Coral Sea. (Crawford House Press: Bathurst).
L.R. Smales, School of Biological and Environmental Sciences, Central Queensland University, Rockhampton 4702, Australia; 14 February 2000.

TABLE 1. Nematode parasites found in 24 species of fish collected in Keppel Bay, September 1989 to July 1990. b=body wall, in = intestine, li = liver, me = mesentery, st = stomach.

A NEW SPECIES OF STREPTOCEPHALUS (PARASTREPTOCEPHALUS) (CRUSTACEA: ANOSTRACA: STREPTOCEPHALIDAE) FROM NORTH QUEENSLAND, AUSTRALIA

B. HERBERT AND B.V. TIMMS

Abstract

Herbert, B. \& Timms, B.V. 200006 30: A new species of Streptocephalus (Parastreptocephalus) (Crustacea: Anostraca: Streptocephalidae) from North Queensland, Australia. Memoirs of the Queensland Museum 45(2):385-390. Brisbane. ISSN 0079-8835.

Abstract

Streptocephalus (Parastreptocephalus) queenslandicus sp. nov. is described from temporary ponds near Atherton, north Queensland. It is related to four species of the recently erected subgenus Parastreptocephalus from Africa mainly because of male antennal morphology and the production of tetrahedral eggs, a unique feature within the family Streptocephalidae. This confirms the presence of Streptocephalus in Australia in a continent whose fairy shrimp fauna is dominated by Branchinella and Parartemia. \square Parastreptocephalus, new species, Streptocephalus archeri, control in fish ponds, biogeography, fairy-shrimp. B. Herbert, Department of Primary Industries, Kennedy Highway, Walkamin. 4872; B.V. Timms, Department of Geography and Environmental Science, University of Newcastle, Callaghan, 2308, Australia; 24 May 1999.

Despite the early description by Sars (1896) of Streptocephalus archeri from the Rockhampton area of central Queensland, and a further collection of six females from the same area (Linder, 1941), no other specimens of the Streptocephalidae have been found in Australia. Adding to the enigma, the description was based entirely on females, so that it is difficult to determine the relationships of S. archeri within the genus. It is not surprising then that subsequent studies on Streptocephalus have reported little on S. archeri (see Brendonck et al., 1992; Belk \& Brtek, 1995) and reviews of aquatic invertebrates in Australia have discounted the presence of Streptocephalus in Australia (Geddes, 1981, 1983; Williams, 1980, 1981).

Over the last few years fairy shrimps have been encountered by one of us (BH) each time aquaculture ponds were filled at the Freshwater Fisheries and Aquaculture Centre, Walkamin, on the Atherton Tablelands in north Queensland. Specimens collected in February 1997 were identified by BVT as a species of Streptocephalus. Further collections in October 1997 conlirmed their presence and provided data on development times. The males are different to any known species of Streptocephalus and the females appear different from those of S. archeri, so they are described here as a new species.

CRUSTACEA ANOSTRACA STREPTOCEPHALIDAE Daday, 1910 Streptocephalus Baird, 1852 Parastreptocephalus Brendonck, Hamer \& Thiery, 1992
 Steptocephalus (Parastreptocephalus) queenslandicus sp. nov.

 (Figs 1-3)ETYMOLOGY. From Queensland, where the specimens were found. This complements names based on localities in Africa for many other species of the Parastreptocephalus (Brendonck et al, 1992).

MATERIAL. HOLOTYPE: ©́, QMW24520. PARATYPES: 9 ofs, QMW24521; 10 ¢'s, QMW24522. Queensland Museum. Lengths: के holotype and paratypes $12.1 \pm 1.2 \mathrm{~mm}$; \circ paratypes $12.1 \pm 0.9 \mathrm{~mm}$. OTHER MATERIAL: 46 adults collected from rearing ponds at the. Walkamin Research Station, Walkamin, via Atherton, N Qld, Feb. 1997, B. Herbert, QMW24579 Queensland Museum. $100+$ immature specimens from a subsequent filling of the same ponds collected by B. Herbert on 160 ct . 1997, QMW24580, Queensland Museum.
TYPE LOCALITY. Fish rearing ponds, Walkamin Research Station, Walkamin, via Atherton, N Qld, $17^{\circ} 8^{\prime} \mathrm{S}, 145^{\circ} 26^{\prime} \mathrm{E}$, altitude 590 m a.s. 1 . Collector B. Herbert, Feb. 1997 2-3 weeks after flooding of ponds.
DESCRIPTION. Male. Antennules simple and long, almost reaching end of antennal base, tapering slowly towards a blunt tip which bears three setae (Fig. 1E). Lateral processes of antennae smooth, slightly curved backward and

FIG. 1. Streptocephalus (Parastreptocephalus) queenslandicu sp. nov., ò; A, dorsal view of finger of antenna; B, inner or medial view of right hand of antenna; C, lateral view of right hand of antenna; D , dorsal view of frontal organ; E, tip of antennule; F, base of antenna.
inserted at posteriobackward margin of distal end of basal segment (Fig. 1C,F). Median process of antenna continuing at same thickness of basal segment consisting of a short, slightly bent middle part and a terminal hand (Fig 1B,C). Basal part of hand about twice as wide as middle and whole hand about twice the length of the middle part. Much of the outside of the hand with a warty surface, as opposed to a smooth surface on the middle part and inner surface of the thumb and finger. Basal part of thumb grooved, with chitinised wavy edges (Fig 1B,C). The outer base carrying a curved pointed spur having one margin continuous with the chitinised wavy edge of the
basal groove of the thumb (Fig. 1B,C). Distal half (anterior) of thumb attached at an obtuse angle (140-160 $)$ and with a basal protuberance marking the end of the groove (Fig. 1B,C). Distal end of the thumb tapering to a slightly recurved point reaching well beyond the tip of the finger. Finger with two teeth, one on the inner margin and the other on the upper surface, so that the spur of the thumb extends near both (Fig. 1A-C). The upper marginal tooth recurved and with a blunt point, while the tooth on the inner surface is rounded (Fig. 1A). Distal to the rounded tooth is a smooth groove flanked on the inner margin with a warty protuberance near the tooth and a warty surface elsewhere (Fig. 1A). Apical part of tooth curved backward. Frontal appendage small with a double blunt point (Fig. 1D).

Thoracopods with five endites, decreasing markedly in size distally. Many long posterior setae, but with a restricted number of anterior setae, as itemised in Table 1 and shown in Fig. 2A-F. Endopodite broadly truncated with an apical shallow notch medially. External margin of endopodite with hook-like setae, but medially, especially towards the medial-distal corner setae longer, straighter and plumose (Fig. 2G,H). Base of endopodite setae with 2-8, usually 3-4, very small spines. Exopodite ladle-shaped and with numerous long plumose setae, but with a few small stout tooth-like setae at the base of the external margin (Fig. 2A,I,J). The long setae also attended at their base with very small spines, 2-6 in number but usually 3-4. Epipodite rather similar in shape to the exopodite, but smaller and without marginal setae. Preepipodite lamelliform and with irregular small hooks on the external margin (Fig. 2A,K).

First ten pairs of thoracopods similar except for two extra anterior setae on endite 5 of limb 1.

Occasionally there may be reductions in the number of long anterior setae of endites 3-5 of limbs 2-10. Eleventh pair of thoracopods reduced, mostly at the inner proximal corner, so that endites 1 and 2 much reduced, but other components only a little smaller and less setose than for thoracopods 1-10. Anterior setac on the endites of limb 11 much reduced and the number of posterior setae reduced, but still >10, on endites 1 and 2.

Basal and nonretractable parts of penes each bearing near its base a posteriorly curved median sausage-like outgrowth with 3-4 teeth on the proximal surface (Fig. 3A,B).
Cercopods (Fig. 3C) lanceolate and separately attached to posteriorlateral margin of a short telson. Each bears plumose setae on its inner and outer margins and the tip.
Female. Antennules filamentous, slightly longer than antennae or of equal length. Tip with threc setae as in male. Antennae foliaceous and oval with broadly rounded margins and no apex (Fig. 3E). Slight notch sometimes on the mid-distal margin. Margins edged with small weak setae, with very few near the basal portion. Brood pouch cylindrical, elongate, extending to the end of the sixth abdominal segment in mature specimens, i.e. pouch is four segments long (Fig. 3D).

Immature eggs spherical, but mature shelled eggs tetrahedral (Fig. 3F). Corners somewhat rounded and hyaline, edges also hyaline and slightly thickened. Planar surfaces slightly convex and with a small raised area in the middle. Within the hyaline thickening on the edges and corners the embryo is round.

Thoracic appendages and cercopods as in male.
DIAGNOSIS. The present specimens easily lic within Streptocephalus because the antennae in the male have a medial outgrowth from the basal joint which terminates in a cheliform structure (Brendonck, 1990). Because of the tetrahedral eggs of the female and the well developed spur of the thumb and the lack of teeth between this spur and the anterior (main) part of the thumb, they lie within the subgenus Parastreptocephalus as presently defined (Brendonck et al., 1992).

Though the general structure of the antennae, thoracopods, cercopods and the nonretractable part of the penes of the male are very similar to those of the four species of Streptocephalus so far asssigned to Parastreptocephalus (Brendonck et al., 1992), none have the same antennae structure

TABLE 1. Idealised arrangement of setae on the 5 endites of male thoracopods of S. queenslandicus. First figure indicates number of anterior setae, second the number of posterior setac. $\mathrm{m}=$ many ($>$ 10).

Thoracopod	Endite				
	1	2	3	4	5
1 st pair	$3+m$	$\underline{2}+\mathrm{m}$	$2+3$	$2+2$	$3+2$
$1 \mathrm{st}-10 \mathrm{th}$ pair	$3+\mathrm{m}$	$2+m$	$2+3$	$2+2$	$1+2$
11 th pair	$1+m$	$1+3$	$2+2$	$2+1$	$1+\mathrm{I}$

or setation of the endites of the thoracopods as in $S .(P)$. queenslandicus. The teeth of the antennal finger are more rounded, spaced further apart and in different planes than in the other three species of Parastreptocephalus with teeth on the finger. The endite setae are very similar to those of S. (P.) sudanicus and S.(P.) zuluensis, the two species of Parastreptocephalus that have been studied in detail (Brendonck et al., 1992). The only consistent difference is the presence of three instead of four anterior setae on the first endite in $S_{\text {. }}\left(P_{.}\right)$ queenslandicus.

Although S. archeri was incompletely described by Sars, there are a number of differences between it and S. queenslandicus. The medial distal part of the antenna has no short pointed projection in S. queenslandicus as it has in S. archeri. The brood pouch is four segments long in S. queenslandicus whereas it is only two in S. archeri. Part of this difference may be explained by the greater overall length of S. queenslandicus (12 mm as against 9 mm for S. archeri). The tetrahedral eggs of S. archeri 'exhibit plane or very slightly concave faces connected by obtuse, prominent ribs' (Sars, 1896), though the diagrams show them with markedly concave planar surfaces. By contrast the eggs of S. queenslandicus have slightly convex surfaces and the ribs (i.e. the edges of each tetrahedral surface) are not obtuse or particularly prominent. S. archeri eggs, while tetrahedral, are more like those of S. sudanicus, while those of S. queenslandicus are more like those of S. zuluensis particularly in the rib structure, though the planar surfaces are slightly convex in S. queenslandicus and slightly concave in S. zuluensis (see Brendonck et al., 1992). These apparent differences in cgg structure may be artefacts of preparation and so of limited diagnostic value (L. Brendonck, pers. comm.).

The type localities are quite different for the two species. S. archeri apparently inhabits waterholes near sea level that become saline at very

FIC. 2. Streptocephalus itarastreptocephalus) qucenslundicus sp. now. ; A. 3rd right thoracic appendage: B1. detail of 1st anterior setae of tirst endite; B2. details of 2 nd and 3 ad anterior setae of 1 st endite; C, details of anterior setae of 2nd endite: D, detail of anterior setae of 3 rd endite: \mathcal{E}, details of the anterior setac or thendite: F, details of anterior setae of 5 th endite; (i, detail of hook-like setae on median margin of endopedite; H. detail of small plumose setae on distal margin of endopodite; I, detail of setae of exopodite; J, detail of hook-like setae on external margin of exopodite; K. detail of edge of preepidopodite. Abbreviations: end. endite: endop. endopodite; exop. = exopodite; pre-epip. = preepipodite.
high tides (though there is no suggestion that it lives in saline waters), while S. queenslandicus lives in lish hatchery ponds at 590 m a.s. 1 . on the Atherton Tableland 860 km NW of Rockhampton.

While the differences between the females of S. archeri and S. queenslandicus are small and of unknown reliability, the balance of probabilites
suggest they are separate species. Only the rediscovery of S. archeri at or near its type locality and the recovery of males will provide the basis for a more convincing differential diagnosis.

ECOLOGY. Like most anostracans, S. queenslandicus has been observed to hatch soon (24
hours) after the filling of a pond and take 2-3 weeks to reach maturity. Hatching can occur in any season, with growth hardly affected by temperature which varies annually from $17-28^{\circ} \mathrm{C}$. They generally persist in the ponds for about a month, with males dying much earlier than females. Only after the ponds are drained, dried and refilled do they reappear. It is possible that dispersal is only by resting eggs in mud, as so far newly constructed ponds using water from ponds infested with S. queenslandicus have not developed populations.

Shrimps feed on algae and do best when phytoplankton is abundant soon after hatching. They seem incapable of using either Volvox or Anabaena which often predominate in the hatchery ponds. Sometimes they die out before reaching maturity - this happened in the October 1997 hatching and seems to have been due to a large reduction in the algae in the pond caused either by their own feeding or by a large population of the cladoceran Moina micrura. In hatchery ponds S. queenslandicus is a serious competitor for the more desirable M. micrura and copepods. It is controlled by the use of hydrated lime at 40-50ppm applied 3-6 days after filling of the ponds.

BIOGEOGRAPHY

The confirmed presence of Streptocephalus in Australia raises interesting biogeographical questions. This genus is represented in tropical and warm temperate areas of the Neoarctic, Palaeartic and especially the African biogeographic realms by about 50 species (Banarescu, 1990; Belk \& Brtek, 1995), and now the Australian region has at least two species. Significantly both species occur in the tropics. However, while

FIG. 3. Streptocephalus (Parastreptocephalus) queenslandicus sp. nov.; A, ventral view of δ genital region; B, detail of median process on basal part of penis; C, male telson; D, lateral view of $\%$ abdomen with brood pouch; E , ㅇ antenna; F, \circ, tetrahedral egg.

Streptocephalus is the dominant anostracan in Africa and Branchinella uncommon (Banarescu, 1990), in Australia the position is reversed. Geddes $(1981,1983)$ in his studies of Australian anostracans had numerous collections of Branchinella but none of Streptocephalus. There is no apparent reason for this difference, but perhaps Streptocephalus arrived later in Australia than Branchinella and is unable to successfully compete with a relatively large endemic fauna. In this context Banarescu (1990) believes that

Branchinella spread from a Gondwana base before Streptocephalus. Adding further evidence for the later arrival of the Streptocephalidae in Australia is the fact that all forms so far found belong to the subgenus Parastreptocephalus which seems to be a derived form of Streptocephalus. Or could it be that the tetrahedral eggs of this subgenus give it some advantage in competition against other species (Brendonck et al., 1992), so that only these forms, rather than Streptocephalus sensu strictus, have some chance in the competition against incumbent dominant Branchinella?

ACKNOWLEDGEMENTS

We thank Dr Luc Brendonck for his comments on the manuscript and Dr M Geddes for access to literature.

LITERATURE CITED

BANARESCU, P. 1990. Zoogeography of fresh waters, Vol. 1. (Aula-Verlag: Wiesbaden).
BELK, D. \& BRTEK, J. 1995. Checklist of the Anostraca. Hydrobiologia 298: 315-353.
BRENDONCK, L. 1990. Redescription of the fairy shrimp Streptocephalus proboscideus (Frauenfeld, 1873) (Crustacea: Anostraca).

Bulletin van het Koninklijk belgisch Institut voor Natuurwetenschappen Biologie 59: 49-57.
BRENDONCK, L., HAMER, M. \& THIERY, A. 1992. Occurrence of tetrahedral eggs in the Streptocephalidae Daday (Branchiopoda: Anostraca) with descriptions of a new subgenus, Parastreptocephalus, and a new species, Streptocephalus (Parastreptocephalus) -zuluensis Brendonck and Hamer. Journal of Crustacean Biology 12(2): 282-297.
GEDDES, M.C. 1981. Revision of Australian species of Branchinella (Crustacea: Anostraca. Australian Journal of Marine and Freshwater Research 32: 253-295.
1983. Biogeography and ecology of Australian Anostraca (Crustacea: Branchiopoda). Australian Museum Memoirs 18: 155-163.
LINDER, F. 1941. Contributions to the morphology and the taxonomy of the Branchiopoda Anostraca. Zoologiska Bidrag fran Uppsala 20: 101-302.
SARS, GO. 1896. Description of two new Phyllopoda from North Australia. Archiv for Mathematik og Naturvidenskab. Kristiania 18(8): 1-34.
WILLIAMS, W.D. 1980. Australian Freshwater Life. The Invertebrates of Australian Inland Waters. (MacMillan: Melbourne).
1981. The Crustacea of Australian inland waters. Pp 1101-1138. In, Keast, A. (ed.) Ecological Biogeography of Australia. (Junk: The Hague).
 DELMA TORQUFITA (KLUGE, 1474)

BARNEY M. HINES, DAVID HANNAH. MELANIE VENZ AND TERESA EYRE

Abstract

Hines, B.M., Itannah, D.. Vernz, M. \& Eyse. T: 200006 30: New distribution and habitat data for the vulnerable pygropmdid, Belme forguma (Kluges, 1474). Acsmers of the Quecnsland Afuseum 45(2): 391-393, Brisbanc, 1SSN (007)-8S35,

The vulnarable pygopodid, Defma rorquata (K luge, 1974), has heen regurded as contined to seattered lewalities in southeastern Queensland. Here we report on the lirst wom instances for this species wectrring in the southern section of Qutenstand's Bratow Belt Bioregion. In addition, the habitat at two new localities, Bunya Mountains ind Western Cresk are dilferent from others is which D. torguata has been recurded. ID Delmor torywata. prgopodid. elisuribution, Imblfut. Brtgalow Belt Bioregion

 Teresas Eive RERRA, Dept of Natural Resumeces, 80 Adelers Rd. Indoomophills 4075. Ardarcalia: 14 Sepramber 1909

Delna Inrquate has buen regarded as contined to scattered localities in southeastern (Vucensland (c.e. K'luge, 1974: Davidson, 1993: McFarland, 1499; Queensland Museunn tecords), in the area between Ulam ($23^{\circ} 35^{\circ} \mathrm{S}, 150^{\circ} 36^{\circ} \mathrm{E}$) neat Rockhampton, the Bunya Mountains ($26^{\circ} 52^{\circ} \mathrm{S}$, $151^{\prime \prime} 14^{\circ} \mathrm{E}$) and Brisbane's western suburbs (27031'S, $152^{\circ} 58^{\prime}$ E). Recent systematic vertebrate launa surveys on public lands in southern Queensland (e-g. Eyre et al., 1999) have extended the known range of this species northwest to Blackdown Tableland and inland to Western C'reek. These are the first two records for this species in the southern section of Queensland's Brigalow Belt Bioregion (BBB), an area seriously assailed by land-clearing (Young et al., 1999).

Blackdown Tableland National Park $\left(23^{\circ} 48^{\circ} 58^{\circ *} S, 149^{\circ} 10^{\circ} 56^{\circ} E\right.$) is an isulated sandstone plateau sonse 200 km west of Ciladstone $\left(23^{\circ} 51^{\circ} \mathrm{S}, 151^{\circ} 14^{\circ} \mathrm{E}\right)$. Here, a specimen of D. torguara was captured in a pitfall trap by T. Eyre, M. Schulz, G. Ford and M. Mathiesun on 29 November, 1997. It was photographed and released (CM slide HNW4 38 QM). At Western Cruek State Forest ($28^{\circ} 044^{\circ} 37^{\circ} \mathrm{S}, 150^{\circ} 53^{\circ} 57^{\prime \prime} \mathrm{E}$) an area of rolling sandstone hills neas Miltmerran, arn adult D. orymoles was hand captured by M . Venz on 3 (October 1998. This specimen was ludged with the Qucensland Museum (Jo6S08).

Five additional specimens of D, (orquata were found during these surveys. On the 19 Junc. 1997, two D. torquata were hand-captured hy B. Himes and A. Fletcher at Grongah state forest ($25^{\circ} 58^{\circ} 02^{\prime \prime} \mathrm{s}, 152^{\circ} 05^{\prime} 17^{\prime \prime} \mathrm{F}$), via Kilkivan. Onc was Indged with the Queensland Museum
(163361), the other released aller tissues were taken for genetic studies (University of Queens. land, Mulecular Zoology Laboratory, vial number QRFA043). On 19 September 1997. a single specimen of D. forquatu was similarly captured by D. Hannah in Yarraman Stale Forest (26052'51"s, $151^{\circ} 50^{\prime} 12^{\prime \prime} \mathrm{E}$). The identification of this species was contimed by Queenstand Museum staff. It was phorographed (QM transparency NV 739-761) and released at the capture site. A fourth D. torymara specimen, hame captured by B. Ilines and 1. Gyinther at Bunya Mountains State forest $\left(26^{\circ} 49^{\circ} 35^{\prime \prime} \mathrm{S}\right.$, $151^{\circ} 35^{\circ} 46^{\prime \prime} \mathrm{E}$) un 30 April 1998, was released following tissue sampling (University of Queensland, vial mumler QRFA256). Lastly, a specimen of D. torguata was collected by Queensland National Parks and Wildife stall during at fauna survey of Bullyard Conservation Park (24057'59"S, $15^{\circ} 2^{\circ}\left(13^{\circ} 06^{\circ} \mathrm{E}\right.$), near Gin Girn。 on 26 February 1997. This specimen was also lodged with the Quecnstand Museum (J67859).

The identification of animals at four of the six localities was conlirmed with voucher specimens registered at the Queensland Museum. Idemification at the other two localities: (Blackdown Tableland and Bunya Mountains), was contirmed by mulliple observers at each site, with thu observers in each case having prior, firsthand experience in identifying this species (i.e. MM and MS: BHI and IG). In each example, the patem and scalation of the individuals were consistent with that described in Cogger (1996).

The Westera Creek and Blackdown localitics are signiticant as they are outside the Southeard

Queensland Bioregion (SEQB), in the southern section of the BBB. The only other record for this species from outside the SEQB is of a hatchling, collected in 1943 at Ulam (Kluge, 1974), in the northern section of the BBB.

HABITAT

Habitat features of the localities described in this paper vary to that documented elsewhere. For example, Wilson \& Knowles (1988) report D. torquata as an inhabitant of eucalypt/acacia woodland usually associated with rocky outcrops on ridges. This description is comparable to the Blackdown Tableland, Grongah and Yarraman localities, which support narrow-leafed ironbark (Eucalyptus crebra) open forest with grassy understoreys on ridges. It is also similar to the site where Porter (1998) conducted the only detailed investigations into the ecology of D. torquata. In contrast, the Bunya Mountains and Western Creek sites are different from others in which D. torquata occurs. The former supports forest red gum (E. tereticornis) woodland, while the latter is an area of brigalow (Acacia harpophylla) and belah (Casuarina cristata) forest with a wilga (Geijera parviflora) dominated midstorey. Both sites are in low lying areas.
Differences were also noted in soil type. At Porter's (1998) D. forquata study site soils are shallow, stony lithosols on ridges and texture contrast soils on slopes. In contrast, those at Western Creek are tine-grained, grey, cracking clay sediments, while those at the remaining sites are dark-brown to black cracking clays of various depths. In addition, most of the specimens captured by Porter (1998) were sheltering under stones. However, his results indicated that rock may not be a necessary component of D. torquata habitat, as some individuals were captured in pitfall traps set away from rock cover. Ncither the Western Creek nor the Yarraman sites contained significant rock components.

CONSERVATION STATUS

A review of known localities for D. torquata indicates that its current status is justified. D. torquata is listed as vulnerable in both The Action Plan for Australian Reptiles (Cogger et al., 1993) and under the Queensland Nature Conservation (Wildlife) Regulation 1994. The discovery of this species at additional sites indicates that it is more widespread than has been surmised. However, many of the localities in the western suburbs of Brisbane are threatened by urban development (Czechura \& Covacevich,

1985; McDonald et al., 1991). In addition, of the six new localities discussed here, three are in communities considered cither 'vulnerable'or 'endangered' (Table 1) (Young, 1999; Young et al., 1999). These findings highlight the need for further research into the biology and conservation requirements of this species.

ACKNOWLEDGEMENTS

We thank the field and office staff involved in the fauna component of the Comprehensive Regional Assessment program in southern Queensland; Jeanette Covacevich and Patrick Couper of the Queensland Museum for assistance with the preparation of this paper; the Queensland Dept of Environment and Heritage, the Queensland Dept of ${ }^{1}$ Natural Resources and Environment Australia which funded the surveys on which these specimens were recorded. In addition, we thank Queensland National Parks and Wildlife Service staft Paul Horton, Adrian Kampf and Steve Clark for the Bullyard CP specimen and John Hodgon for information regarding this record.

LITERATURE CITED

COGGER, H.G 1996. Reptiles and Amphibians of Australia. 5th Edition. (Reed Books: Sydney).
COGGER, H., CAMERON, E., SADLIER, R. \& EGGLER, P. 1993. The Action Plan for Australian Reptiles. (Australian Nature Conservation Agency: Canberra).
CZECHURA, G.V. \& COVACEVICH, J. 1985. Poorly known reptiles in Queensland. Pp. 471-476. In Grigg, G., SHINE, R, \& EHMANN, H, (eds) Biology of Australasian frogs and reptiles. (Surrey Beatty \& Sons: Chipping Norton).
DAVIDSON, C. 1993. Recovery Plan for the Collared Legless Lizard (D. torquata). ANCA Endangered Species Programme. Unpubl. report to Queensland Department of Environment and Heritage.
EYRE, T., KRIEGER, G., VENZ, M., HASELER, M., HINES, B. \& HANNAH, D. 1999. Systematic Vertebrate Fauna Survey Project. Stage I Vertebrate Fauna Survey in the South East Queensland Bioregion. Unpubl. report to the Queensland CRA/RFA Steering Committee by the Department of Environment and Heritage, Brisbane.
KLUGE, A.G. 1974. Taxonomic revision of the lizard family P'ygopodidae. Miscellaneous Publication of the Museum of Zoology, University of Michigan No. 147.
McDONALD, K.R., COVACEVICH, J.A., INGRAM, G.J. \& COUPER, P.J. 1991. The status of frogs and reptiles. Pp. 338-345. In Ingram, G.J. \& Raven, R.J. (eds) An atlas of Queensland's frogs.

TABLE 1. Conservation status and description of Regional Ecosystems at D. rorquata locations. Regional Ecosystem numbers and edited descriptions are derived from Young (1999) and Young et al. (1999).

Site	Regional Ecosystem	Extent reserved	Extent remaining	Conservation status
Blackdown Tableland NP	not described			
Bullyard Conservation Park	Consmbia citriodora \pm Eucalyptus acmenoides \pm C intermedia E fibrosa subsp, fibrosa, C. trachyphoim, E. moluccana (lower slopes), E. crebra, E. exserta tall woodland on complex of remnant Tertiary surfaces and Tertiary sedimentary rocks	Low	71\%	
Grongah SF	Eucalyphus crebra grassy woodland on Mesozoic to Proterozoic igneous rocks (12.12.7).	Low	26\%	Vulnerable
Bunya Mts SF	Eucalyptus tereticomis open forest to woodland on Cainozoic alluvial plains including older floodplain complexes. (12.3.3)	Lovy	10\%	Vutnerable
Varraman SF	not described			
Western Creek SF	Acacia harpophylla A Castarina cristata shrubby open forest on Cainozoic to Proterozojc consolidated, fine grained sediment. Lowlands. Deep lexture contrast soils and cracking clays, often gilgaied. (11.9.5).	Low	$\sim 11 \%$	Endangered

reptiles, birds and mammals. (Queensland Museum: Brisbane).
MeFARLAND, D. 1999. Forest Vertcbrate Fauna Study for a Comprehensive Regional Assessment in South-east Queensland. Stage IIA: Analysis and Reserve Option Example. Altachment:- Species Summaries. Report to the Queensland CRA/RFA Steering Committee by the Department of Environment, Brisbane.
NATURE CONSERVATION (WILDLIFE) REGULATION 1994. Queensland Subordinate Legislation 1991 No. 474, Nature Conservation Act 1992.
PORTER, R. 1998. Observations on a large population of the vulnerable Pygopodid, D. Forquata. Memoirs of the Queensland Museum. 42(2): 565-572.

WILSON, S.K. \& KNOWLES, D.G. 1988. Australia's Reptiles: A Photographic Reference to the Terrestrial Reptiles of Australia. (Collins: Sydney).
YOUNG, P.A.R. 1999. Chapter 12, Southeast Queensland. In Sattler, P.S. \& Williams, R.D. (eds) The conservation status of Queensland's bioregional ecosystems. Conservation Technical Report. (Queensland Department of Environment and Heritage: Brisbane).
YOUNG P.A.R, WILSON, B.A. McCOSKER, J.C., FENSHAM, R.J. MORGAN, G \& TAYLOR, P.M. 1999. Chapter 11. Brigalow Belt. In Sattler, P.S. \& Williams, R.D. (eds) The conservation status of Queensland's bioregional ecosystems. Conservation Technical Report. (Queensland Department of Environment and Heritage: Brisbane).

ADDITION TO THE HERPETOFAUNA OF QUEENSLAND'S BRIGALOW BIOGEOGRAPHIC REGION, Afemoirs of the Oucensland Wusenn 45(2): 39.1. 2000:- The herpetofauna of the Brigalow Biogeographic Region has been assessed and documented in some detail (Covacevich et al. 1996). Their work comprised a review and synthesis of material held in several museums, collation of sight records from numerous authorities within the region and reports of extensive lieldwork. One hundred and forty five species of reptiles were recorded as occurring within the Brigalow Biogeographic Region (Covacevich et al. 1996).

In December 1997, 1 located a previously unrecorded species, Fituranus storti, in the northern portion of the region. A single specimen was found on the Nebo to Collinstille road c. 10 km north of the Neivtands turnofi and 50 km S of the junction with the Mt Coolon - Collinsville road at $21^{\circ} 09^{\prime} \mathrm{S}$. $148^{\circ} 13^{\prime}$ E. The road passes through Homevale and Emu Plains. The specimen was located beneath a large rock on the road verge (Fig. 1). A transparency of the specimen has been lodged with the Queensland Museum images collection (Reg. no. ()G37).

The low rolling hill area where the specimen was found is a mixed eucalypt open woodland of Mountain Coolibah (Eucalypsus argadophila) and Poplar Box (E poppulnea) interspersed with open grassland patches of Bluegrass
(Bothriochlona decipions, Dichanthium scriceum) and Kangaroo Grass (Themeda oustrulis). Soils in this area are clay loams derived from shales. Some outcropping of these strales occurs on the peaks of the low hills. At the point where the specimen was located surface rocks were well embedded.
l'aramus storri is found usually where rocks provide cover for their shallow burrows (pers. obs.). Abundant surface outcropping occurs within 10 km to the north of the site where the specimen was located, though this area was not searched. It seems likely that rocks on roadside verges may provide corridors of suitable habitat. V^{2}, storri is common in similar habitat approximately 150 km west of this site, in the Desert Uplands IBiogeographic Region (pers. obs.).

Acknowledgements

Juliana McCosker of the Department of Enviromment. Emerald, identified botanical samples from the site.

Literature Cited

COVACEVICH, J.A., COUPER, P.J. \& AMDONALD. R.R. 1996 Reptiles of Quecmsland's Brigalow Biogeographic Region: Distribution, Status, Conservation. Unpubl. report to Autralian National Comeil .

Steve Merlpin, 14 Mills Street, Alice Springs 0870, Australia, 17 Itay 2000.

FIC. 1. Varantes storri on the Nebo to Collinsville road.

 AUSTRALIARIG:IIARDD. HOARE AND ALEX G COOK

Hoare, R.D, \& Cook, A. Ci 2000010 30: Devonian and Early Carboniferous Polyplacophora from Westem Australia. Memainc of she Qucensland Mruscum 45(2): 395-403. Brisbane. ISSN 0079-8835.

Three new taxa of polyplacophorans are described from the Carboniferous (Toumsisian) Septimus Limestone and Visean Uting Calcarenite of the Bonaparte Gulf Basin, Western Australia. New taxa ate Gryphochiton crollectus sp. nov., Compsochiton formosus aen. et sp. nov. and Harpidochiton auths gen. et sp. nov. A single plate representing Alcoachion Hoare \& Sturgeon, 1976 is described from the Devonian Frasnian Sadler Limestone, Canning Basin, Western Australia. I Polyphacophora, Devonian, Carhanifionus, Bonaparte Gulf Basin, Camme Busin. H'estemn Austrulia.

Richard D. Hoarc; Deparment of Genlog:, Bonling Grem Siato Lintversity; Bowing
 410f, Anstralia; 21 March 2010

Plates of Palaeozoic polyplacophorans have nut been commonly reported from Australia. The first recorded occurrence was Chelodes calcentoides by Etheridge (1897), from the Upper Silurian of New South Wales (NSW). Iredale \& Hull (1926) described a Penmian taxon from NSW, Permochiton custratiantis and Farrell (1992) described Chelodes intermedius Bergenhayn, 1960 and Helminthochiton sp. nov. from the Early Devonian of NSW. The Devonian and Carboniferous specimens described herein Irom Western Australia (WA) add substantially tn our knowledge of Palaeozoic Polyplacophora in the continent.

GEOLOGY AND AGF:

The onshore Bonaparte Gulf Basin, WA. includes a number of Lower Carboniferous units which have yielded a rich and diverse fossil Fauna. Those faunas studied include brachiopods. (Roberts, 1971; Thomas, 1971), conodonts (Druce. 1969) and ostracodes (Jones, 1989). Sudies of molluscan elements of the Carboniferous faunas are now underway. The present work is concemed with polyplacophoran plates recovered from silicified faunas in the Unting Calcarenite on the northwestern shelf, and the Scptimus Limestone on the eastern shelf of the unshore Bonaparte Gulf Basin. For arecent summary of the stratigraphy and regional geology see Mory \& Beere (1990). A detailcd biostratigraphic summary was provided by Roberts (1985).

The Septimus Limestone crops-out in the SE of the Bonaparte Basin and has been assigned a Fournaisian (latest Tn_{2} to Tn_{3}) age, Schellweinella
australis Zone to lower Spinifer spiritis Zonc, primurily based on brachiopod faunas (Roberts. 1971). Chitons described from the Septimus Limestone are from the upper part of the unit and are hence regarded as Tn_{3} in age. The Utithe Calcarenite is a laterally restricted unit which crops out in the NW of the onshore basin and has been assigned a Visean ($\mathrm{V}_{\text {ab-c }}$) age. Punctospirifer panciplicatus Zone.
In addition to the Carboniferous taxa, anew Late Devonian oecurrence is described. The single plate was recovered from the Late Devomian (Frasnian) Pillaral Limestone, in the Hull Range, Canning Basin, WA. All material is held in the Queensland Museum Palaeontology collections (QMF).
List of Loculities. QML 1095 Utaing Calcarenite. Utting Gap. Ningbing Station, Bonaparte Gult Basin, WA, $14^{\circ} 58.17^{\prime} \mathrm{S}, 128^{\circ} 35.82^{\circ} \mathrm{E}$. Coll. A_{1} Cook, P. Jell, May 1996; A. Cook, T. Smith, July 1998. QML1096 Septimus Limestone, low sput on NW side of Mt Septimus, Ivanhoe Station, Bonaparte Gulf Basin. WA, $15^{\circ} 42.5^{\prime} \mathrm{S}$, 128059.22`E. Coll. A. Cook, P. Jell, May 1996; ^. Cook, I': Smith, July 1998. QML1160. Sadler Limestone, SW side of Paddy's Valley, S'SL Wade Knoll, Canning Basin, WA, $18^{\circ} 40^{\circ} 07^{\prime \prime} \mathrm{S}$. $125^{\circ} 59^{\circ} 3 l^{\prime \prime}$. Coll. \bar{A}. Cuok. T. Smith. Thiss is near Stop 2/Day 1 of Playford (1981).

RECONSTRUCTIONS

The reconstructions (Fig. 1) illustrate plate relationships in the three Carboniferous taxa described herein. Head plates are unknown for Grophochiton collectus sp. nov. and Harpidochitum

FIG. 1. Reconstructions. A, B, Gryphochiton collectus sp. nov., dorsal and right lateral views, approx. $\times 1.0 . \mathrm{C}$, D, Compsochiton formosus gen. et sp. nov., dorsal and right lateral views, approx. $\times 1.0$. E, F, Harpidochiton auctus, gen. et sp. nov., dorsal and right lateral views, approx. $\times 1.0$.
auctus gen. et sp. nov., but the number of other plates present for each taxon allows some basis in forming arrangements as presented. No information as to size of girdle or presence of girdle spines or plates is present.

SYSTEMATIC PALAEONTOLOGY

POLYPLACOPHORA de Blainville, 1816
LEPIDOPLEURIDAE Thiele, 1910
GRYPHOCHITONIDAE Pilsbry, 1900 Gryphochiton Gray, 1847

Gryphochiton collectus sp . nov.
(Figs 1A,B, 2)
ETYMOLOGY. Latin, collectus, narrowed, contracted.

MATERIAL. HOLOTYPE: QMF51013, from QML1096, Septimus Limestone, Tournaisian, Bonaparte Gulf Basin. PARATYPES: QMF51014-51022 from QML1096.

DIAGNOSIS. Tail plate narrowly elongate; intermediate plate elongate, wider posteriorly than anteriorly, strongly arched.

DESCRIPTION. Plates of moderate size (Table 1). Tail plate elongate, narrow, strongly arched. Jugal area prominently set off from lateropleural areas, mucro small, just anterior to posterior margin. Posterior margin slightly arched; anterior margin straight. Sutural laminae relatively wide, long. Surface smooth with prominent comarginal growth ridges posteriorly and laterally. Angle of jugal area 20°.

FIG. 2. Gryphochiton collectus sp. nov. A-C, Holotype QMF51013, tail plate, dorsal, ventral and right lateral views; D, Paratype QMF51020, tail plate, dorsal view; E,F, Paratype QMF51015, intermediate plate, dorsal and ventral views; G, Paratype QMF51018, intermediate plate, dorsal view; H-J, Paratype QMF51014, intermediate plate, dorsal, right lateral and posterior views; K, L, Paratype, QMF51016, intermediate plate, dorsal and ventral views; M, Paratype QMF51018, intermediate plate, dorsal and right lateral views; P,Q, Paratype QMF51019, intermediate plate, dorsal and anterior views. All $\times 2.5$

TABLE 1. Measurements for Gryphochiton collectus sp. nov.

Specimen	Length (mm)	Width (mm)	Height (mm)	Plate
QMF51013*	13.5	7.8	2.4	I
QMF51017	16.0	12.5	5.9	1
QMF51015	12.9	9.2	3.9	I
QMF51016	14.9	11.6	5.4	I
QMF51017	18.5	11.8	5.5	I
QMF51018	13.7	10.2	4.7	I
QMF51019	10.6	9.2	4.3	I

Intermediate plates longer than wide, tapering anteriorly, strongly arched. Lateral margins gently convex, anterior margin straight to slightly convex, posterior margin slightly mucronate. Jugal area distinct from lateropleural areas. Apical area large, extending as broad band along posterior margin. Surface smooth with prominent comarginal growth ridges on lateropleural areas. Apical angle 94° to 112°, angle of jugal area 18° to 23°. Headplate unknown.

REMARKS. Gryphochiton collectus sp. nov., although smaller, is most similar to G. nervicanus (de Ryckholt, 1845), the type species of Gryphochiton Gray, 1847b. Comparisons were made with three tail plates and one intermediate plate of G. nervicanus in the collections of the Museum of Comparative Zoology, Harvard University. The major difference lies in the much larger sutural laminae, larger apical areas, and less strongly arched posterior margin of the tail plate in G. collectus.

Compsochiton gen. nov.
TYPE SPECIES. Compsochiton formosus sp . nov.
ETYMOLOGY, Greek, kompsos, elegant, pretty; chiton, tunic.

DIAGNOSIS. Tail plate with broadly angular jugum, posterior margin tlatly convex and curved dorsally; intermediate plate mucronate; sutural laminae large.

DISTRIBUTION. Carboniferous (Tournaisian), Septimus Limestone, Bonaparte GulfBasin, WA.

REMARKS. Compsochiton differs from Gryphochiton Gray, 1847 a by having differentiation of jugal and lateropleural areas on the head plate, a small falsebeak on the tail plate, and lack of the subquadrangular to subrectangular shaped intermediate plates of the latter genus. Euleptochiton Hoare and Mapes, 1985, has a much wider than long tail plate with a narrower jugal area, and mucro located anterior to midlength.

Compsochiton formosus sp. nov.
(Figs 1C, D, 3)
ETYMOLOGY. Latin, formosus, beautifully formed.
MATERIAL. HOLOTYPE: QMF50123, from QML1096, Septimus Limestone, Tournaisian, Bonaparte Gulf Basin. PARATYPES: QMF50124-50136, from QML1096.

DIAGNOSIS. As for the genus.

DESCRIPTION. Plates of moderate size (Table 2). Tail plate strongly arched with broadly angular jugal area, mucro low and posterior to midlength. Posterior margin flatly convex, lateral margins diverging anteriorly, anterior margin with small false beak. Jugal area slightly set off from lateropleural areas, the latter marked by distinct comarginal growth ridges. Sutural laminae wide, long, extending to anterolateral corners. Surface ornamented with fine, closely spaced pustules. Angle of jugal area 70°.

Intermediate plates wider than long, strongly arched, with broadly angular jugal area, slightly to distinctly set off from lateropleural areas. Posterior margin mucronate, lateral margins convex, anterior margin ranging from slightly convex to slightly concave. Apical area large medially, extending as narrowing band to posterolateral corners. Surface with fine, closely spaced pustules and distinct comarginal growth ridges on lateropleural areas. Apical angle 93° to 106°, angle of jugal area 48° to 60°.

Head plate strongly arched with broadly angular jugal area distinct from lateropleural areas.

TABLE 2. Measurements for Compsochiton formosus gen. et sp. nov.

Specimen	Length (mm)	Width (mm)	Height (mm)	Plate
	QMF50123*	9.3	9.7	5.2
QMF50124	9.4	9.4	3.8	T
QMF50125	8.7	9.0	4.2	T
QMF50126	8.4	8.7	4.7	T
QMF50127	9.8	12.6	5.5	I
QMF50128	10.3	14.0	6.7	I
QMF50129	9.5	11.1	5.1	I
QMF50130	9.4	11.4	5.6	I
QMF50131	10.0	9.9	5.2	I
QMF50132	9.5	12.0	5.8	I
QMF50133	8.8	11.2	5.3	I
QMF50134	6.3	9.2	5.1	H

Anterior and lateral margins broadly curved, posterior margin nearly straight. Apical area large, extending along posterior margin to posterolateral comers. Surface with fine pustules and distinct comarginal growth ridges in lateropleural areas. Apical angle 106°, angle of jugal area 60°.

REMARKS. At first appearance C. formosus looks similar to Gryphochiton parvus (Stevens, 1858), although the plates are three times the size of the latter species. Other than size, the distinct, broadly angular, jugal area, large sutural laminae, false beak on the tail plate, and the finely pustulose ornamentation on C. formosus clearly differentiate the two taxa.

INJURY. The holotype of Compsochiton formosus gen. et sp. nov., a tail plate, has an injury in the posterolateral margin (Fig. 3B, C, E). A notch, approximately 0.75 mm wide and 1.5 mm high, extends through the shell material. It is evident that the chiton was alive at the time of the injury by the presence of new shell material deposited on the ventral surface to block off the opening, No indication is present as to the cause of the injury although the bulging inward shape of the repair made by the individual would indicate that either the mantle at the site had been injured or that the predator was present within the notch in
the original shell layers. This is the first example of plate injury and repair of a fossil polyplacophoran that we are aware of.

LEPIDOPLEURIDAE? Pilsbry, 1892
Harpidochiton gen. nov.
TYPE SPECIES. Harpidochiton auctus sp. nov.
ETYMOLOGY. Greek, harpidos, shoe or sandal; chiton, tunic.
DIAGNOSIS. Tail plate subtriangular, longitudinally concave, mucro terminal; intermediate plates subquadrangular, strongly arched, apical area large.

DISTRIBUTION. Carboniferous (Tournaisian), Septimus Limestone, Bonaparte Gulf Basin, Western Australia; (Viséan) Utting Calcarenite, Bonaparte Gulf Station, WA.

REMARKS. Harpidochiton differs from genera of the family Acutichitonidae Hoare, Mapes \& Atwater, 1983, also with subtriangularly shaped tail plates, by lacking a hypotyche on the ventral surface. Systenochiton Hoare (in press), from the Mississippian (Osagean) of lowa lacks the longitudinal concavity in the subtriangular tail plates, has a subcentral mucro, and has much smaller sutural laminae than is present in Harpidochiton.

The characters of Harpidochiton do not conform well with those of the other lepidopleurids, nor with other described families. It is assigned here temporarily pending additional material on which to base a new family.

Harpidochiton auctus sp. nov.

(Figs 1E, F, 4)
MATERIAL. HOLOTYPE: QMF50137, from QML1096, Septimus Limestone, Toumaisian, Bonaparte Gulf Basin. PARATYPES: QMF50138-50144, from QML1096, QMF40826-40829, from QML1095, Utting Calcarenite, Viséan, Bonaparte Gulf Basin.
DIAGNOSIS. As for the genus.
DESCRIPTION. Plates of moderate size (Table 3). Tail plate subtriangular. Lateral margins convex, anterior margin straight to weakly convex.

FIG. 4. Harpidochiton anctus gen. et sp. nov. A-C. Holotype QMP51037, tail plate, dorsal, ventral and left lateral views; D-F, Paratype QMF51038, tail plate, dorsal, anterior and ventral views; G, Paratype QMF51039, tail plate, dorsal view; H-J, Paratype QMF51040, intermediate plate, dorsal, right lateral and posterior views; K-M, Paratype QMF51041, intermediate plate, dorsal, ventral and anterior views; N, Paratype QMF51043, intermediate plate, dorsal view; O,P, Paratype QMF51042, intermediate plate, dorsal and left lateral views; Q-T, Paratype QMF40826, intermediate plate, dorsal, ventral, right lateral and posterior views; U, V, Paratype QMF48027, intermediate plate, right lateral and dorsal views. All $\times 2.5$.

TABLE 3. Measurements for Harpidochiton auctus gen. et sp. nov.

Specimen	Length (mm)	Width (mm)	Height (mm)	Plate
QMF50137*	10.9	11.0	5.9	T
QMF50138	13.8	13.2	7.9	T
QMF50139	10.8	12.1	7.0	T
QMF50140	13.7	13.1	7.0	I
QMF50141	11.6	11.2	6.0	I
QMF50142	10.7	12.3	5.6	I
QMF50143	11.1	12.9	6.5	I

Jugal area set off from lateropleural areas by pronounced grooves; mucro terminal. Lateral profile longitudinally concave. Sutural laminae large. Surface smooth with strongly developed comarginal growth ridges on lateropleural areas. Angle of jugal area 33°.

Intermediate plates subquadrangular, strongly arched, sharply curved transversely in jugal area. Lateral margins gently convex, anterior margin with wide, shallow jugal sinus, posterior margin straight to slightly mucronate. Jugal area prominent, set off by grooves. Sutural laminae large, extending to anterolateral corners. Apical area large, extending to posterolateral corners, often marked by comarginal growth ridges. Surface smooth with prominent growth ridges on lateropleural areas. Apical angle 93° to 103°, angle of jugal area 35° to 39°. Head plate unknown.

REMARKS. The concavity of the tail plate, the smooth surface, and the coarse, comarginal growth ridges restricted to the lateropleural areas are diagnostic of H. auchus.

> ACUTICHITONIDAE Hoare, Mapes
> \& Atwater, 1983
> Arcochiton Hoare \& Sturgeon, 1976

Arcochiton sp.

(Fig. 5)
MATERIAL. One tailplate QMF39839 from QML1160.
DESCRIPTION. Small (3.2 mm long, 3.3 mm wide, 2.4 mm high) tail plate, subtriangular in dorsal and lateral views. Jugal area narrow, slightly set off from steep lateral slopes, mucro terminal posteriorly. Anterior margin with deep jugal sinus, large, well-developed hypotyche on ventral surface. Surface granulose, augmented by silica replacement, especially near lateral margins. Evidence of narrow sutural laminae on ventral surface paralleling margins of jugum, their projections not preserved.

FIG. 5. Arcochiton sp. A-D, Hypotype QMF39839, tail plate, dorsal, ventral, left lateral and anterior views. All $\times 10$.

REMARKS. The presence of this Australian specimen extends the known range of the family Acutichitonidae from the Pennsylvanian to the Upper Devonian and specimens from Oregon further extend that range into the Permian (Hanger et al., 2000). The coarse preservation partially masks the characters of the plate. The shapes and curvature of the plate and hypotyche are distinctive of Arcochiton. More and better preserved material would allow the establishment of a new species.

LITERATURE CITED

BLAINVILLE, H.M.D. De 1816. Prodrome d'une nouvelle distribution systématique du règne animal. Bulletin Sciences Société Philomathique de Paris Pp. 105-124.
BERGENHAGEN, J.R.M, 1960. Cambrian and Ordovician loricates from North America. Journal of Paleontology 34:168-178.
DRUCE, E.C. 1969. Devonian and Carboniferous conodonts from the Bonaparte Gulf Basin, northern Australia. Bureau of Mineral Resources. Geology and Geophysics Bulletin 98: 1-243.
ETHERIDGE, R. Jr 1897. On the occurrence of the genus Chelodes Davidson and King, in the Upper Silurian of New South Wales. Records of the Geological Survey of New South Wales 5(2): 67-70.
FARRELLL, J.R. 1992. The Garra Formation (Early Devonian: late Lochkovian) between Cumnock and Larras Lee, New South Wales, Australia: stratigraphic and structural setting, faunas and community sequence, Palacontographica Abt A 222: 1-32.
GRAY, J.E, 1847a. On the genera of the Chitonidae. Proceedings of the Zoological Society of London 179: 63-70.
1847b. A list of the recent Mollusca, their synonyms and types. Proceedings of the Zoological Society of London 179: 168-169.
HANGER, R.A., HOARE, R.D. \& STRONG, E.E. 2000. Permian Polyplacophora, Rostroconchia, and Problematica from Oregon. Journal of Paleontology 74(2): 192-198.
HOARE, R.D. (in press). Early Mississippian Polyplacophora (Mollusca) from Iowa. Journal of Paleontology.
HOARE, R.D. \& MAPES, R.H. 1985. New Mississippian and Pennsylvanian Polyplacophora (Mollusca) from North America. Journal of Paleontology 59(4): 875-881.
HOARE, R.D., MAPES, R.H. \& ATWATER, D.E. 1983. Pennsylvanian Polyplacophora (Mollusca) from Oklahoma and Texas. Journal of Paleontology 57(5): 992-1000.
HOARE, R.D. \& STURGEON, M.T. 1976. Arcochiton raymondi n. gen., n. sp. of polyplacophoran from the Pennsylvanian of Ohio. Journal of Paleontology 50(5): 841-845.
IREDALE, T. \& BASSET HULL, A.F. 1926. A monograph of the Australian Loricates (Phylum

Mollusca-Order Loricata). Australian Zoology 4(5): 324-328.
JONES, P.J. 1989. Lower Carboniferous Ostracoda (Beyrichicopida and Kirkbyocopa) from the Bonaparte Basin, northwestern Australia. Bureau of Mineral Resources, Geology and Geophysics Bulletin 228: 1-97.
1993. Early Carboniferous Cladocopina (Ostracoda) from the Bonaparte Basin, NW Australia. Memoirs of the Association of Australian Palaeontologists 18: 143-152.
MOREY, A.J. \& BEERE, G.M. 1990. Geology of the onshore Bonaparte and Ord Basins in Western Australia. Geological Survey of Western Australia Bulletin 134: 1-184.
PILSBRY, H.A. 1892. Monograph of the Polyplacophora. Manual of Conchology, Academy of Natural Sciences, Philadelphia 14.
PILSBRY, H.A. 1900. Amphineura. Pp. 433-436. In Zittel, K.A. (ed.) Textbook of paleontology, Eastman translation. (Macmillan \& Co: New York).
PLAYFORD, P.E. 1981. Devonian reef complexes of the Canning Basin Western Australia. Field Excursion Guidebook, Fifth Australian Geological Convention (Geological Society of Australia: Perth).
ROBERTS, J.R. 1971. Devonian and Carboniferous brachiopods from the Bonaparte Gulf Basin, northwestern Australia. Bureau of Mineral Resources, Geology and Geophysics Bulletin 122: 1-319 (2 vols).
1985 (ed. Australia), Pp. 9-145. In Diaz, C.M. (ed.) The Carboniferous of the World 2: Australia, Indian subcontinent, South Africa, South America and North Africa. IUGS Publication 20. (Instituto Geologico y Minero de Espana: Madrid).
RYCKHOLT, P. DE. 1845. Résumé géologique sur le genre Chiton Lin. Bulletin de l'A cadémie Royale des Sciences et des Belle-Lettres de Bruxelles 12: 36-42.
STEVENS, R.P. 1858. Descriptions of new Carboniferous fossils from the Appalachian, Illinois, and Michigan coalfields. American Journal of Science and Arts, Series 2, 25: 258-265.
THIELE, J. 1909-1910. Revision des Systems der Chitonen. Zoologica 22(56): 1-132.
THOMAS, GA. 1971. Carboniferous and Early Permian brachiopods from western and northern Australia. Bureau of Mineral Resouces, Geology and Geophysics Bulletin 56: 1-277.

MESOZOIC FRESHWATER ANL ESTUARINL BIVALVES FROM AUSTRALIA

SCOFT A HOCKNUL.

Ifocknull, S A. 200006 30: Mesozoic freshwater and estuatine bivalves From Australia. Memofrs of he gucensland Musetum 45(2): 405-426. Brisharse. ISSN (10179.88.35.

Abstract

Australian freshwater and estuatine bivalves are destribed from the Hyridate, Cilauconomidas and Sphateriidare. The following taxa are now known from the Mesozoic of Australia: frone the Triassic, Hyriidac, comprising Prohyriu carensis, Mceralonifgus gen. nov. Mcgulavirgus ctellundi, Megahvirgus jaenschi and Aesohyridella ipsvicensis. Glanconomidae. Unfonella whanamemensis, Protuvipgus chanstani and Protovirgus. Skepticsi sp, nov., 7Sphacridac, Prorosphuteritum Ialbragarensis gen. ©t sp, nov. and Protesphederiunt siunce sp. nuv.i and, From the Cretaceous, Hyriidac, Alesalovirghes wintonensis, Mrridella macmichaeli, Thridella (Protohomedelfa) goundthimeliensis. gens. etsp. nov. It is apparent ihat over hecorarse of fresthvater hivalve evolution in Ausualia There has heen a distinet fatnal dichotomy between large and small taxa. I he large forms are exclusivgly hytids and diminate dacusifine, riverine and lagomial enviroments and the strall lirms, either glauconomids, sphacrids and/or corbiculids doninare brackish and estuarine environments. This dichotomy is also present in the mosdern estuarine and Ireshwater laxia. The presence of glauconomids during the Triassic is the first and earliest record, providing good evidence for cstuarine depositional environment of the Wianamatla Shales, Sydney Basin. Lhis is also the carliest record of sphaeriids in Australia. Litte is known of the evolutionary relationships within these groups due to their conservative nov. Protovirgus brookvalensis sp. nov: Hyphatae, Sphmerildae, Blanconnmidite.

Australian fossil freshwater and estuarine mulluses are poorly known, with few publications on the higher taxonomy of present day and extinet taxa. A review is offered here for the Mesozoic freshwater bivalves comprising the families Hyridae, Glauconomidae and Sphacriidae, with redescription of previnusly described species and description of new forms. Detailed illustrations and measurements are provided so that futher collection does not conluse issues of variation and taxonomic position.

Etheridge Jr (1888, 1892) described several furms from Australia assigning most to Unio, apart from the smaller forms to which he assigned Simionella. Nuwton (1915) described new Cretaceous unionoids from Lightning Ridge and White Clifls, also allocating these to Unio. At this point the Unionoida comprised the Unionidae, Margretifidae and Mutelidae.

Later, McMichael (1956) revised Etheridge Il's and Newton's material, presenting detailed descriptions of fossil nonmarine taxa from Australasia in an effort to alleviate some of the biaxomomic confusion within these morphologically
conservative groups. McMichacl proposed that these fossil unionoids were from a Mutelidae lineage, and ineluded the modem fauna within this family in a regional revision (McMichacl \& Hiscock, 1958). Most of McMichael's lussil descriptions were paraphrased from Etheridge Ir's and Newtun's catlier work and little new material was incorporated into his study.

McMichatel (1956) did. however, erect three mostly Mesozoic genera of mutelids: Prohyrion, Mesohyridella and Protovirgus, neally accomodating latge and medium-sized bivalve taxat Ludbrook (1961) described new taxa from the Triassic Leigh Creek Formation, South Ausitralia, proposing that the gemus Unio was valid for some Australian unionoids and that this confirmed the presence of Unionidae in Australia. I provide evidence to the contrary. Ludhrook also assigned one species to McMichat's I'rulovirgus. which is now placed within Alahyyter.

Parodiz \& Bonnetto (1963) provided evidence for a separate endemic Gondwaman lineage on the presence and morphology of the glochidial larval stage. They proposed that the Austratian
radiation was distinct enough to allow familial uniquity and several taxa in South America were also assignable to this new group, Hyriidae, instead of the dominant Mutelidae. These conclusions suggest that the unionoids from Australia are mostly Gondwanan in origin with recent, presumably Pleistocene - Holocene, invasions from southeast Asia. This view is supported by the present study.
Since McMichaels' review, more material has come to light that has shed new and interesting information on the taxonomic validity and position of the fossil taxa. Shell characteristics that McMichael \& Hiscock (1958) put forward for the subfamilies within the Hyriidae have also assisted herein in allocating the fossil taxa to these subfamilies.

Smaller Triassic bivalves (Unionella) described by Etheridge Jr (1888) and reviewed by McMichael (1956) from the Sydney Basin and Bowral posed problems for McMichael with his only suggestion that they were Triassic holdovers of the Permo-Carboniferous family Anthracosiidae. This family has a conspicuous presence in North America (Rogers, 1965), United Kingdom (Weir, 1960) and the former Soviet Union (Haas, 1969) during the Carboniferous and Permian. I place these small bivalves with the modern family Glauconomidae, but do not rule out distant phylogenetic links to the anthracosiids. There is a strong possibility that convergence has been acting on both these groups, indeed all freshwater and estuarine bivalves reported here. However, enough characteristics have been found that ally these small Triassic bivalves to the Glauconomidae.

Most recently, Hocknull (1994) described a new taxon from the Late Triassic of southeast Queensland allocating it to Protovirgus, here revised to Megalovirgus gen. nov. Hocknull (1997) described new taxa from the Cretaceous of Queensland placing all taxa within previously recognised genera. The understanding that there is considerable confusion over the taxonomy of the unionoids and the presence of unrecorded families of small freshwater faunas prompted the present review.
New material from the Talbragar Fossil Fish Beds, New South Wales, indicate the possible presence of Sphaeriidae in Australia. Hampered by the lack of well-preserved specimens the allocation of the small bivalves to Sphaeriidae is tentative.

As there is an apparent dichotomy between bivalve faunas, depositional environment, their sizes and phylogenetic history, it remains to be seen whether the assignment of different sized faunas should lie at the family level. Such possibilities are discussed later. Fossils are given the prelix SAMF (South Australian Museum), QMF (Queensland Museum), UQF (University of Queensland) and AMF (Ausiralian Museum) and are deposited in their respective institutions.

AGE AND STRATIGRAPHY

Ten major sites, containing nonmarine bivalves, are recognised from Queensland (Qld), New South Wales (NSW) and South Australia (SA) (Fig. 1). The hyriids are restricted in the Triassic to the Ipswich Coal Measures, Qld and the Leigh Creek and Springfield Basins, SA. During the Jurassic they occur sporadically in the Waloon Coal Measures, Wanwick, SE Qld and the Koonwarra Fossil Bed, South Gippsland, Victoria. In the Cretaceous the family is abundant throughout the entire Eromanga Basin, especially the Coreena, Griman Creek and Winton Fomations of northern NSW and Qld.
Small freshwater and estuarine bivalve fossil faunas (glauconomids and sphaeriids) are restricted in the Triassic to the Wianamatta Shales, Sydney Basin, and in the Jurassic to the outlying Talbragar Fossil Fish Bed derived from the Purlawaugh Formation. No small nonmarine bivalves are as yet known from the Λ ustralian Cretaceous.
There are three major stratigraphic units, in which Triassic freshwater bivalves are preserved. In SE Qld, the units containing hyriids are the Blackstone and Tingalpa Formations, both considered Late Triassic (Camian) in age by de Jersey (1975) and de Jersey \& Hamilton (1965). respectively. Both formations consist of fine grained to coarse-grained sandstones and siltstones/shales, with most of the bivalves being derived from the finer carbonaceous siltstones and shales. Preservation is good, with most individuals having both valves intact and fine ornamentation preserved. The valves are generally external moulds with little internal morphology preserved. The cavities have been replaced with ferrous sediment. The preservation of both valves suggests an in situ taphonomy.
Playford \& Dettman (1965) ascribe the Leigh Creek Formation, SA, a Late Triassic age on the basis of similar palynological floras to those in Ipswich. Whilst other authors ascribe ages between Late Triassic (Rhaetic) to Early Jurassic

FlG. 1. Map illustrating Australian localities for Mesozoic freshwater and estuarine bivalve fossils.
(Liassic) on the basis of fish faunas (Wade, 1953), plant floras (Chapman \& Cookson, 1926) and unionoids such as Prohyria eyrensis (Ludbrook, 1961). The Springfield Coal Basin, SA, is also attributable to the Late Triassic from diagnosis of equivalent sediments to the Leigh Creek Formation (Johnson, 1960) and, again, the presence of the distinctive Dicroidium and Thinnfeldia floras with the presence of the hyriid; Prohyria eyrensis (= Unio springfieldensis Ludbrook, 1961).

Like the Blackstone Formation, the bivalves are preserved as moulds with both valves intact. The deposit is interpreted as in situ.

The Brookvale Quarry and Bowral Quarry expose sections through the Wianamatta Shales, Sydney Basin, NSW. Small valved glauconomids occur at all sites and are attributable to the Late Triassic, being derived from the Hawkesbury Sandstone and Wianamatta Group (Lovering \& Elroy, 1969). The shells are prescrved as whole specimens or as singular valves. Mass accumulations suggest fast burial and aggregation of these taxa in the bottom sediment. Little is known of the aggregation behaviour/ taphonomy of modern glauconomids, therefore,
no interpretation of the depositional environment is given here.

There is one occurrence of small freshwater bivalves in the Jurassic of eastern Australia from the Talbragar Fossil Fish Beds, derived from the Purlawaugh Formation. The beds are an outlier group so an exact age is uncertain (Dulhunty \& Eadie, 1969). They consist of "chert containing Jurassic plant and fish fossils ... in soil derived by weathering from Jurassic Purlawaugh sediments ...' (Dulhunty \& Eadie, 1969). The small bivalve fauna shows a mixture of depositional environments, preserving both isolated, singular valves and whole animals in aggregations. Modern sphaeriids and corbiculinids exhibit such mass aggregations after flooding (pers. obs.).

Fossil hyriids identified herein occurring in the Jurassic have an unknown position within the Waloon Coal Measures due to inaccuracies in locality data. They are badly preserved and are isolated throughout the measures. Both valves are usually found intact.

Three major units containing unionoids are derived from the Eromanga Basin; Winton, Griman Creek and Coreena Formations. The Griman Creek and Coreena Formation, derived from the Rolling Downs Group is considered Early Cretaceous (early-middle Albian) in age by Exon \& Senior (1976) and Burger $(1986,1995)$ and consists of a brackish water unit with outcrops within the Surat Basin (Exon \& Senior, 1976). This unit is comprised generally of lithic glauconitic sandstones, siltstones and mudstones. The younger Winton Formation, in central and southwestern Eromanga Basin, is of latest Albian to Cenomanian age (Senior et al., 1978), consisting for the most part of lacustrine and fluviatile siliciclastic sediments that produced labile sandstones, siltstones and mudstones.

All three units contain mass aggregations of bivalves with whole animals preserved in situ. Mass aggregations of hyriids occurring today tend to be observed after flooding, hence the Griman Creek, Winton and Coreena Formations may be considered to be more fluviatile than brackish-marine. The presence of marine molluses in two of the formations (Griman Creek \& Coreena) may then be attributed to marine incursions onto the fluviatile systems. As there is very poor, if any, recorded stratigraphy the occurrence of the taxa in sympatry cannot be analysised. The relative abundance, however, may give clues to the placement of former drainage systems and in what direction they
flowed. For example, the Winton Formation has no record of marine taxa, whereas the Griman Creek and Coreena formations have. The Griman Creek formation specimens seem to be dominated by hyriids and the Coreena formation dominated by marine taxa. Examination of all the available species and their analogous environments need to be assessed in greater detail before such conclusions can be evaluated.

PALAEOECOLOGY

The families of freshwater bivalves present in the Mesozoic (Hyriidae, Glauconomidae and ?Sphaeriidae) illustrate analogous faunal assemblages to those occurring in modern Australia freshwater and estuarine systems. Regardless of climate dynamics, one large and several small bivalve groups have continually dominated the freshwater and estuarine bivalve faunas since the Triassic. The large bivalve fauna is comprised entirely of the hyriids, and the small bivalve faunas of either; glauconomids, sphaeriids or corbiculids. During the Mesozoic, there is an apparent faunal change occurring at the end of the Triassic, early Jurassic, and within the Jurassic toward the Cretaccous.

At the end of the Triassic there were two major faunal groups, the large Prohyria and Megalovirgus hyriids and the small Unionella and Protovirgus glauconomids. Both these faunas have been preserved separately in the fossil record and reveal no sign of overlap into either faunal system. It is, therefore, probable that the small glauconomids inhabited environments not suited for the larger unionoids and visa versa. Indeed, today glauconomids are only known from estuarine environments, and are therefore, quite distinct from the freshwater hyriids. This provides good evidence that the Wianamatta Shales were derived from such a system of deposition.

An analogous system is found today in the brackish to estuarine dwelling sphaeriids and corbiculids with the modern intercontinental riverine hyriid radiation. One can then speculate at the life habits of the Mesozoic taxa. The heavy shelled, large hyriids were presumably living in more lacustrine, tluviatile regions of Australia's Mesozoic, whereas the smaller valved glauconomids and ?sphaeriids would have been respectively confined to the brackish, estuarine and riverine regions of coastal Mesozoic Australia.

SYSTEMATIC PALAEONTOLOGY

HYRIIDAE Ortmann, 1911
VELESUNIONAE Irdale, 1934

Prohyria McMichael 1956
TYPE SPECIES Prohyria johnstoni (Etheridge Jr, 1892); from the Oligocene, West Tamar River.
DIAGNOSIS. (After McMichael, 1956) 'Medium sized to large freshwater mussels of the subfamily Velesunionae, the anterior end moderately to markedly swollen, the posterior end drawn out into a bluntly rounded rostration, which is of maximum length at a position in the middle of the height of the shell; hinge well developed, with large cardinal teeth.' Rostration of the posterior end is distinct in all growth forms. Escutcheon broad, extending almost the entire length of the valves. Anterior adductor muscle scars deep, elongate, orientated antero-ventrally and relatively small. Umbones consistently croded. Prominent hinge with one elongate lateral tooth and large cardinals.
REMARKS. The genus is placed within Velesunionae due to the absence of beak sculpturing. McMichael (1956) erected this genus for the placement of two species, P. johnstoni, from the Oligocene of Launceston Basin and P. eryensis, from the Late Triassic of Leigh Creek, SA and Ipswich Coal Measures, SE Qld, within the velesunionines. Ludbrook (1961) assigned another large unioid from the Late Triassic, Unio springfieldensis, considered as Prohyria springfieldensis here, from the Springfield Basin, SA, Recently, an additional form, P. macmichaeli, was described by Hocknull (1997) from the Cretaceous of Qld, however, new specimens attributable to this taxon from Lightning Ridge, NSW, suggests alliance with the hyridellines. All three taxa are distinct from any other velesunionine genus by their large size, thick ornamented shell, rostrate posterior profile and distinctly inflated umbones.

Prohyria cyrensis (Etheridge Jr, 1892)
(Fig. 2K)
Unio eyrensis Ethridge Jr 1892; 389, pl. 28(1); 1941: 11, pl. 3(1-3).
Prohyria eyrensis (Etheridge Jr) McMichael 1957: 228, pl. 13(8, 11) (non 9, 10).
Unio springfieldensis Ludbrook, 1961: 145, pl. 2(1,2).
MATERIAL. AMF51624, 51651, 51642, 51647, 51644, $51648,51649,51625,51626,51638,51640$. SAM15473, 15474.

AGE AND DISTRIBUTION. Late Triassic from the Black Stone, Tingalpa, Bundamba formations, SE Qld. Leigh Creek Formation and Springfield Coal Basin, SA.

DIAGNOSIS. Large, elongate-oval, equivalved unioid with distinct rostration in the posterior end. Anterior end inflated and rounded. Hinge distinct with strong escutcheon produced along most of the dorsal margin. Lunule large and excavated. Beaks high and unsculptured, usually eroded. Commarginal ornamentation with coarse growth lines. Shell thick. From Ludbrook (1961); 'hinge with two triangular pseudo-cardinal and one long posterior lateral in the right valve, one triangular pseudo-cardinal and two long posterior laterals in left valve'. Anterior adductor muscles deep, elongate-oval and orientated antero-ventrally.

DESCRIPTION. Shell equivalved, inequilateral, umbones inflated and anteriorly placed $1 / 3$ from anterior end. Beaks unsculptured but usually eroded. Shell thick with coarse growth lines producing ridged ornamentation. From Etheridge Jr (1892); "Hinge line straight, ventral margin rounded, passing rather sharply upwards into the anterior and posterior margins. Anterior end small, somewhat acutely curved, posterior end narrow, obtusely pointed'. Anterior adductor muscle scars deeply set, behind beaks, elongate-ovoid and postero-ventrally orientated. Large cardinal teeth, with long bifurcating lateral tooth. Morphometrics given in Table 1.

REMARKS. P. eyrensis is one of the most common taxa found in the Ipswich and Leigh Creek deposits. It is a cosmopolitan taxon and is the largest in the Mesozoic. Attaining sizes over 12 cm long it is comparable to modern species of Velesunio and Alathyria. These modern genera have been restricted to coastal river systems and lakes and may provide good analogues to the depositional environment of the Triassic coal deposits of SE Qld and SA.
P. eyrensis was reviewed by McMichacl (1956) and placed within Prohyria when he erected the genus to fit one other taxon, P. johnstoni. Its placement within Prohyria is due to the large size, wedge-shaped profile, inflated beaks
positioned anteriorly and the prominent hinge. Prohyria eyrensis differs from Prohyria johnstoni in its size, size proportions and amount of tapering. Prohyria johnstoni tapers more sharply to the posterior than Prohyria eyrensis. Prohyria springfieldensis is markedly similar to Prohyria eyrensis and is synonymised here; however, it differs having: finer comarginal ornamentation; more rostrate appearance in occlusal view; straighter, more prominent hinge line. P. eyrensis differs from Hyridella macmichaeli formally placed within Prohyria by Hocknull (1997) by being much larger, with a more rostrate posterior profile. The beak sulcus is relatively less produced in P. eyrensis. Juvenile forms of P. eyrensis do not possess the characteristic V-shaped beak sculpture, as seen in Hyridella macmichacli.

On inspection of the holotype and comparison to a series of specimens referrable to P. eyrensis, including the holotype, from the Leigh Creek Basin and Ipswich Coal Measures, there is little evidence for the separation of these specimens from what is obviously a cosmopolitan taxon, P. eyrensis.

Prohyria skepticsi sp. nov.
(Fig. 3)
TYPE SPECIES. Prohyria johnstoni (Etheridge, 1892).
ETYMOLOGY. For the Australian Skeptics.
MATERIAL. HOLOTYPE: UQF52158. PARATYPES: UQF52160, UQF29708A/B.

AGE AND DISTRIBUTION. Jurassic, Waloon Coal Measures, Warwick District, SE Old.
DIAGNOSIS. Medium-sized, equivalved velesunionine hyriid. Elongate-ovoid, thick shell with rugose comarginal ornamentation. Shell tapering to the posterior to produce a triangulate wedge-shaped posterior margin. Umbones placed anteriorly and orientated antero-laterally to the shells' anterior-posterior axis. Anterior adductor muscle scar small, rounded and placed high, underneath the beaks. Beaks not sculptured. Lateral teeth simple, comprising a single tooth and socket in at least the left valve. Hinge line long and robust.

TABLE 1. Morphometrics (in mm) for Prohyria eyrensis (Etheridge Jr).

Mean	Length	Height	Width	Beak Length	Beak Height	Beak Width	Ligament Length
s.d.	85.75	46.57	34.09	15.85	41.04	16.65	46.78
Number	18.11	12	10.41	7.53	4.02	9.28	3.69

FIG. 2. A-C, Megalovirgus clellandi Holotype QMF29473; A, right valve $\times 0.5$; B , dorsal view $\times 0.44$; C , anterior view $\times 0.5$. D-F, Megalovirgus wintonensis Holotype QMF34635; D, right valve $\times 0.7$; E, dorsal view $\times 0.7$; F, anterior view $\times 0.8$. G-J, Megalovirgus jaenschi Holotype SAMF1547a; G, dorsal view $\times 0.46$; H, right valve $\times 0.46$; I, anterior view $\times 0.44$; J, right valve $\times 0.56$. K, Prohyria eyrensis Holotype SAMF15473, right valve $\times 0.7$. L, Alathyria coatsi Holotype SAMF15477, right valve $\times 0.8$. M, Alathyria jaqueti, QMF103903 right valve $\times 1.0$.

FIG. 3. Prohyria skepticsisp. nov.; A, UQF52158 right valve $\times 1.2 ; \mathrm{B}$, UQF52 158 dorsal view $\times 1.0 ; \mathrm{C}$, UQF29708 left valve $\times 1.5$.

DESCRIPTION. Medium-sized, elongate-ovoid hyriid with rugose comarginal ornamentation. Shell thick with long thick ligament. Hinge broad near umbones and tapers gradually to posterior margin. Umbones placed anterior at about $1 / 5$ of total length. Posterior margin rounded. Anterior margin rounded and begins slightly below beak. Beaks not sculptured but possess fine lines conspicuous around margin. Escuicheon inconspicuous. Anterior adductor muscles placed antero-ventrally to anterior edge of beak. Muscle scar small and ovoid. Dentition simple comprising single lateral tooth in the left valve and possibly two cardinal teeth. Rugose ornamentation interspersed by fine growth lines. Umbones orientated anteriorly to lateral axis of valves. The shell immediately posterior to umbones is inflated and produces a slight ridge that runs the length of the shell to the posterior margin. The ventral is straight and rounded to both ends.

REMARKS. The absence of sculpture and the elongate-ovoid shape places this hyriid within the velesunonines. It's placement within Prohyria is warranted due to the rugose and thick shell interspersed with fine growth lines, triangulate-ovoid outline of the posterior margin, small ovoid highset anterior adductor scar and anteriorly placed umbones with laterally orientated beaks. Prohyria skepticsi differs from Prohyria eyrensis and Prohyria johnstoni, by it's smaller size, more elongate outline, relatively smaller adductor muscle, and relatively broader hinge line. Morphometrics given in Table 2.

Alathyria Iredale, 1934
Alathyria jaqueti (Newton, 1916)
(Fig. 2M)
Unio jaquet Newton, 1916: 230, pl. 6(2-6).
Velesumio jaqueti (Newton) McMichael, 1957.
MATERIAL. QMF 10887, 15812, 103859, 103862, 103868, 103879, 103880, 103892, 103894, 103898, $103899,103903$.

AGE AND DISTRIBUTION. Uppermost Albian Cenomanian Formations, Winton, Griman Creek and Coreena. Localities: QML229, QML379, QML570, Lightning Ridge and White Cliffs.

DIAGNOSIS. Large velesunionine hyriid, elongate-ovoid with distinct winged dorsal posterior rim. Ventral margin of valves in lateral aspect show distinct concave form. Beaks posterior, relatively inflated. Anterior margin tapers sharply from umbonal region. Umbonal region always eroded in large individuals. Long indistinet lateral tooth with small indistinct cardinals of unknown number.

DESCRIPTION. Shell large, elongate, medium sized, equivalved. Shell width narrow in young individuals, inflating as the shell becomes larger. Anterior margin tapers away sharply from beak, to a rounded profile. Dorsal edge subparallel with ventral margin with a truncated posterior producing a 'winged' profile. Beaks relatively anterior placed $1 / 3$ from the anterior end. Pronounced inflation just postero-ventral of umbones carrying down to the postero-ventral edge. Umbones characteristically eroded with some being broken off post-deposition. Beaks unsculptured. Anterior adductor muscle scars inconspicuous, being small and just anterior to the cardinal teeth. Hinge relatively strong and short. Ventral margin concave toward the mid region. The concavity is more pronounced in larger individuals. Posterior adductor muscle

TABLE 2. Morphometrics (in mm) for Prohyria skepticsi sp. nov.

UQF No.	Length	Height	Width	Beak Length	Beak Height	Beak Width	Hinge Length
UQF52158	52.41	30.14	23.84	13.35	28.67	10.35	32.32
UQF52160	43.65	25.67	$?$	6.04	18.23	$?$	$?$
UQF29708A	48.59	29.75	15.90	11.13	26.72	10.09	27.64

scars indistinct. Cardinal teeth typically unionid. Lateral teeth obscured. Escutcheon narrow and encompasses most of the hinge area. Ligament is prominent within this area. Morphometrics given in Table 3. Shell allometry is illustrated in Figure 8. Note that the specimens allied to this taxon are distinct from Megalovirgus wintonensis on the basis of height to length ratios.
REMARKS. Newton (1915) placed this taxon within Unio, as with most other unionoids at that time. McMichael's reinterpretation of the material lead him to place the taxon within Velesunionae, as Velesunio jaqueti. The present review agrees with McMichael's placement within the velesunionines, based on the absence of any distinct umbonal sculpturing in small individuals. The shells are also less quadrate than those seen most prevalently in the hyridellines. The large size, winged posterior and tapering anterior margin show close similarities to Alathyria. The current study has examined many more specimens and the overall size shows that the taxon shares more similarities to Alathyria than Velesunio. A. jaqueti differs from it's sympatric taxa by possessing a unique height to length ratio (only similar to H . macmichaeli). It differs from H. macmichaeli because it is winged posteriorly and does not possess juvenile beak sculpture.

Alathyria coatsi (Ludbrook, 1961)
(Fig. 2L)
Protovirgus coatsi Ludbrook 1961: 146, pl. 2(6).
MATERIAL. SAM15477.
AGE AND DISTRIBUTION. Early Cretaceous (Neocomian), Blythesdale Group. Localities: as in Ludbrook (1961).

DIAGNOSIS. Medium-sized, equivalved, inequilateral hyrid with fine comarginal ornamentation. Umbones relatively deflated. Dorsal margin convex, with ventral margin highly concave in lateral profile.
DESCRIPTION. From Ludbrook (1961); ‘Shell of medium size, compressed, elongate ... dorsal and ventral margins slopes approximately
parallel; dorsal margin gently convex and elevated posterior to beaks then curving more sharply downwards to the posterior margin ... Posterior ridge fairly well marked and gently arcuate. Beaks flattened, apparently unsculptured, not prominent; ligament moderately prominent, no lunule visible'.
REMARKS. Ludbrook placed this taxon within Protovirgus with no direct characteristic defining it's position within the genus. Inspection of the holotype allowed the present study to place P. coatsi within the extant genus Alaythria. This placement is on the basis of the following characters present in P. coatsi and Alaytharia: convex dorsal and concave ventral margins; flattened beaks in most members of the group; and marked postero-dorsal wing. The specimen differs from other species of Alaytharia by it's smaller size, more pronounced convexo-concavo lateral profile and less prominent winged postero-dorsal face.

HYRIDELLINAE Iredale, 1934
Megalovirgus gen. nov.
TYPE SPECIES. Megalovirgus jaenschi (Ludbrook), from the Upper Triassic, Leigh Creek Formation, SA.

ETYMOLOGY. Megalos, Greek, pertaining to the taxons large size; --virgus for the genus Virgus which it resembles closely.
DIAGNOSIS. Shells medium to large, elongate, knife-like, with umbones inflated and positioned extremely anterior. Anterior adductor muscle scar set on platform, oblong, ventro-laterally orientated. Shell thin with little or no ornamentation. V-shaped scuplturing in the umbones with sculpture proceeding down a postero-dorsal ridge in smaller individuals. Omamentation lost in most adult valves. Posterior musculature unknown. Escutcheon long and broad with distinct ligament.
DESCRIPTION. Shells that are distinctly hyridelline in juvenile morphology, losing this in the larger individuals. Medium to large shells, equivalved, inequilateral, elongate with beaks placed extremely anterior. Posterior margin tapering moderately to sharply, all knife-like.

TABLE 3. Morphometrics (in mm) for Alathyria jaqueti (Newton).

	Length	Height	Width	Beak Length	Beak Height	Beak Width	Ligament Length
Mean	61.82	34.2	23.57	17.09	34.28	11.12	27.44
s.d.	12.49	7.73	5.67	4.96	7.73	3.40	6.72
Number	12	12	12	9	12	7	3

Anterior margin truncated and rounded, with indistinct lunule, producing weak beak sulcus. Fine comarginal growth lines, with smooth ornamentation. Anterior adductor muscle elongate and placed high in the shell, in front of beaks; orientated postero-ventrally or just ventrally. Raised on small platform. Dorsal and ventral margins run subparallel producing elongate tear-shaped outline to valves. Escutcheon broad, housing distinct hinge with prominent ligament. Teeth comprise of one large lateral tooth, weakly preserved and two weak cardinal teeth. Typical unionid teeth. Valves produced laterally to provide distinct height.
REMARKS. This genus is erected to house species that have been confused with another family (the glauconomids) of freshwater bivalves inhabiting other areas at similar times. The Glauconomidae, presented later, has an unusual presence within Australia and has evolved to fill an ecology not used by unionoids. The species formally placed within Protovirgus by McMichael (1956) are now placed within Megalovirgus except for the type species, P. dunstani. This is because all of the other taxa are believed to be hyriids, whereas, P. dunstani, is thought to be a glauconomid. The reasons for this will be presented under P. dunstani.

Megalovirgus differs from all other hyriid genera on the basis of the following differences: elongate profile with indistinct beak sculpture (cf. Cucumerunionae); indistinct lunule and weak sulcus; fine growth lines with no omamentation; and distinct anterior adductor muscle, raised on platform, just in front of beaks. The new genus is now used for M. jaenschi, M. femingi, M. clellandi and M. wintonensis. Protovirgus coatsi Ludbrook, 1961, is redescribed above as, Alathyria coatsi.

Megalovirgus jaenschi (Ludbrook, 1961)
(Fig. 2G-J)
Protovirgus jaenschi Ludbrook, 1961; 145 pl. 2(3-4).
MATERIAL. HOLOTYPE: SAM1547a and PARATYPE 1547b. AMF51627,51639, 51645, 51650, 51635,51664.
AGE AND DISTRIBUTION Late Triassic, formations: Leigh Creek, Springfield Coal Basin. Localities: Leigh

Creek Coal Fields, Leigh Creek Golf Course, Springfield Coal Fields, SA.

DIAGNOSIS. Large elongate, inflated hyridelline with fine comarginal omamentation. Shell thin and valves deep. Posterior edge tapering to a relatively pointed end. Anterior rim rounded and short. Beaks placed at $1 / 10$ the length from the anterior end.
DESCRIPTION. See Ludbrook (1961), Morphometrics given in Table 4.
REMARKS. M. jaenschi is distinct from the other species within this genus due to the placement of the beaks, narrow form, overall size and orientation of the anterior adductor muscle scars. M. jaenschi is longer than M. wintonensis with beaks placed more anteriorly. The anterior adductor muscle scar is set more ventrally in M. jaenschi than in M. wintonensis. The valves are relatively narrower than in M. wintonensis. When compared to M. clellandi, M. jaenschi is shorter, wider with less height. The anterior adductor muscles are placed higher in M. clellandi. M. feming i is smaller, narrower with thicker ornamentation. Beaks are placed more posteriorly than in M. jaenschi.

Megalovirgus clellandi (Hocknull, 1994)
(Fig. 2A-C)
Protovirgus clellandi Hocknull, 1994: 146 (fig. 1A-D).
MATERIAL. HOLOTYPE: QMF29473; 29475.
AGE AND DISTRIBUTION. Late Trassic, formations: Black Stone, Tingalpa, SE Qld. Localities: Ebbw Vale and Tingalpa, SE Qld.
DIAGNOSIS. Large, equivalved, elongate hyriid with inflated umbonal area and fine comarginal ornamentation. Hinge straight and long with escutcheon broad and distinct. Tapering posterior to a very pointed posterior margin. Anterior adductor muscle scars raised on platform just anterior to beaks and lunule.
DESCRIPTION. See Hocknull (1994).
REMARKS. M. clellandi differs from M. jaenchi in it's larger size, higher placed adductor scars, more tapering posterior and more anterior

FIG.4.A-F, Itriddlla (Protohrvidella) goondwindicnsis: A-C, AMF 103849 , A, left valve $\times 1.3, \mathrm{~B}$, dorsal view $\times 1,4$, C, right valve $\times 1.3 ;$ D-F. Holotype QMF5684, D, lefi valve $\times 1.4$, E, anterior view $\times 2,0, F$, dorsal view $\times 1.4$. G-b, Hyridella (Ilyridella) macmichaell Paratype QMF34637, G , right valve $\times 1.3, \mathrm{H}$, dorsal view $\times 0.9,1$, anterior view $\times 1.5$, Holotype QMF34636, J , dorsal view $\times 1.5, \mathrm{~K}$, lef valve $\times 1.5,1$, anterior view $\times 1.75$

TABLE 4. Morphometrics (in mm) for Megalovirgus jaenschi (Ludbrook).

	Length	Height	Width	Beak Height	Beak Length	Beak Width	Ligament Length
Mean	85.93	30.51	34.89	27.21	9.53	13.9	44.49
s.d.	9.51	7.91	1.75	5.78	2.61	2.04	8.03
Number	10	10	10	10	10	10	10

umbonal-beak region. P. jaenschi also has a greater height to length ratio. M. clellandi is longer, narrower, tapers more sharply, has a more anteriorly placed beak and has a larger height to length ratio than M. wintonensis. M. flemingi is much smaller and the umbones are placed more posteriorly than in M. clellandi.

Megalovirgus wintonensis (Hocknull, 1997)
(Fig. 2D-F)
Protovirgus wintonensis Hocknull, 1997: 223 (fig. 1A-E).
MATERIAL, HOLOTYPE: QMF34635. PARATYPES: QMF5681-5682, 34645, 34646, 34634, 34644, 34647, 34648.AMF15815,47175, 68358, 103838, 103841, 103843, 103844, 103847, 104848, 103850, 103852, 103857, 103867, 103873, 103893, 103897, 103901, 103911.

AGE AND DISTRIBUTION, Latest Albian - Cenomanian, formations: Winton, Griman Creek, Coreena Formation. Localities: QML229, L379, L570, Lightning Ridge, White Cliffs, NSW.
DIAGNOSIS. Medium-sized hyriid, equivalved, inequilateral, slightly inflated umbones and fine comarginal ornamentation. Hinge straight; anterior adductor muscle raised on platform. Tapering strongly to the posterior with short well rounded anterior end. Umbones $1 / 15$ length of shell from anterior end.

DESCRIPTION. Medium to large hyriid with produced posterior end. Elongate with umbones inflated. Umbones $1 / 15$ length from the anterior end. Anterior margin rounded. Hinge straight, ligament long and thick. Dorsal margin long and straight tapering to a knife-like posterior profile. Ventral margin gracile, tapering sharply to meet posterior edge of dorsal margin. Fine growth lines producing fine comarginal ornamentation. Hinge teeth long and thin, cardinals short and indistinct, distinctly unionid. Beaks usually eroded or small, closely set. Escutcheon long and
narrow. Lunule short and broad. Anterior muscle scars elongate and orientated antero-ventrally. Posterior muscle scar unknown, presumably small and indistinct. Juveniles possess V-shaped rugae on their beaks, being eroded later in life. Rugae also occur along the margins of the escutcheon. Shell relatively thin. Juveniles start out being triangular in profile and becoming more elongate produced shell. Morphometrics given in Table 5. Allometry given in Figure 8.
REMARKS. M. wintonensis differs from M. clellandi in having a smaller profile, wider and thicker shell, less anterior umbones, narrower escutcheon and less tapering at the posterior end. M. jaenschi is larger, has a less developed anterior adductor muscle scar which is placed lower in the valve than in M. wintonensis. M. feming i is smaller, with the umbones less anterior than in M. wintonensis.

Hyridella (Hyridella) Swainson, 1840

> Hyridella (Hyridella) macmichaeli
> (Hocknull, 1997)
(Fig. 4G-L)
Prohyria macmichaeli Hocknull, 1997: 224 (fig. 2A-C), (non fig. $1 \mathrm{~F}-\mathrm{H}$).

MATERIAL. HOLOTYPE: QMF34636. PARATYPES: 5677, 34637, 34638. Additional Material. AMF68346, $103864,103866,103869,103870,103871,103874$, $103878,103882,103884,103886,103889,103890$, 103910
AGE AND DISTRIBUTION. Cenomanian, formations: Winton Formation (type) and Griman Creek. Localities: QML379, QML570, QML229 and Lightning Ridge.
DIAGNOSIS, 'Medium-sized, equivalved unioid, ovate, rugose ornamentation, umbones anterior and inflated, beak slightly sculptured, shell thick' Hocknull (1997). Juveniles with V-shaped ornamentation. Anterior muscle scar

TABLE 5. Morphometrics (in mm) for Megalovirgus wintonensis (Hocknull).

	Length	Height	Width	Beak Length	Beak Height	Beak Width	Ligament Length
Mean	51.83	22.7	16.42	11.63	20.76	7.10	20.34
s.d.	20.98	9.71	9.19	5.7	9.10	3.72	8.5
Number	20	20	20	18	19	17	14

set below beak and raised slightly on platform. Simple unionid teeth, with two peg-like cardinals and one long lateral tooth.

DESCRIPTION. Medium-sized, elongate-ovoid unionid. Equivalved with slightly inflated umbones. Hinge line distinct and convex, tapering to the posterior to produce a pointed posterior profile. Beaks $1 / 5$ from the anterior end, usually eroded. Fine growth lines produce ridged commarginal ornamentation. Thick shell. Escutcheon broad and ligament short and distinct. Juveniles have V-shaped rugae on the beaks, absent in the adults as the beak is eroded. Anterior adductor muscle scars small and set below the beaks, raised on platforms. Unionid teeth with a long lateral tooth and small indistinct cardinals. Morphometrics given in Table 6. Allometry shown in Figure 8.
REMARKS. The presence of V-shaped rugae as beak sculpturing in smaller individuals places this taxon within the hyridellines and more specitically Hyridella. The anteriorly placed, inflated and thick shelled umbones coupled with tapering elongate-ovoid profile ally P. macmichaeli to Prohyria. The taxon is smaller than the other members of this small but cosmopolitan genus. The type species, P, johnstoni (Etheridge Jr, 1892) of McMichael (1956) is longer, wider and the dorsal margin produces a sharper, tapering edge. P. eyrensis is also longer, wider with the umbones placed further anterior. Unio springfieldensis has similar attributes as P. eryensis, being longer, wider with anteriorly placed umbones. This taxon also tapers more, as in P. johstoni. It seems that Hyridella shares many similarities with Prohyria; however, this is apparently due to convergence and not homology.
Hyridella (Protohyridella) Cotton \& Gabriel, 1932

Hyridella (Protohyridella) goondiwindiensis (Hocknull, 1997) (Fig. 4A-F)
Velesunio goondiwindiensis Hocknull, 1997: 225 (fig. 2D-J)
MATERIAL. HOLOTYPE: QMF5684, 5683. PARATYPES: 5685, 5686, 34639-36341 AMF68342, 103849,
$103853,103858,103865,103881,103883,103895$, $103896,103900,103902,103904,103906,103907$.

AGE AND DISTRIBUTION. Latest Albian - Cenomanian, formations: Griman Creek Formation (type) and Coreena Formation. Localities: Goondiwindi (type), Lightning Ridge and White Cliffs.

DIAGNOSIS. Small, unioid with fine comarginal ornamentation. Quadrate-angulate with strong posterior ridge. Umbones relatively inflated and positioned anteriorly. Beaks sculpturing, V-shaped in juveniles, eroded in adult forms. Teeth simple and unionoid. Anterior adductor muscle small placed just in front of beaks. Shell expanded posteriorly, forming a slight winged appearance in adult forms.

DESCRIPTION. Small, equivalved quadrateangulate hyriid. Fine growth lines form ridges producing distinct commarginal ornamentation. Beaks distinct and usually eroded laterally. Umbones anterior, situated $1 / 3$ from the anterior margin. Ligament short and distinct producing a strong hinge. Hinge line tapers smoothly to a rounded posterior margin. Antero-ventral margin distinctly convex. Shell relatively thick. Juveniles with distinct V-shaped rugae on the beak, lost in the adult. Juveniles are more ovoid without the pronounced posterior ventral margin of adults. Lunule small and indistinct. Escutcheon broad with the borders smooth and tapering to the posterior. Anterior adductor muscle scars small, oval and just beneath the beak. Teeth simple unionid. Morphometrics given in Table 7. Valve growth pattern is illustrated in Figure 8.

REMARKS. Initially, Hocknull (1997) placed H. goodiwindiensis within Velesunio due to it's overall similarities in morphology. However, Hyridella (Protohyridella) goodiwindiensis is distinctly hyridelline because of the presence of distinct V-shaped beak sculpture in the juvenile forms (McMichael \& Hiscock, 1958), now known from additional specimens. Placement in Hyridella is somewhat tentative, due to the marked difference in maximum sizes and relative sizes, when compared to modern taxa of the same genus. However, the overall variation within

TABLE 6. Morphometrics (in mm) for Hyridella (Hyridella) macmichaeli (Hocknull).

	Length	Height	Width	Beak Length	Beak Height	Beak Width	Ligament Length
Mean	43.15	26.04	19.52	11.79	23.64	8.21	14.80
s.d.	15.74	9.80	7.28	4.94	8.75	3.34	6.74
Number	14	14	13	14	14	12	11

TABLE 7. Morphometrics (in mm) for Hyridella (Protohyridella) goondiwindiensis (Hocknull).

| | Length | Height | Width | Beak Length | Beak Height | Beak Width | Ligament Length |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 28.6 | 18.68 | 14.36 | 8.55 | 18.61 | 6.55 | 10.39 |
| Mean | 4.48 | 3.87 | 2.23 | 1.79 | 3.82 | 1.46 | 3.31 |
| s.d. | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
| Number | | | | 14 | | | |

Hyridella supports a conservative approach to higher taxonomy in this group (McMichael \& Hiscock, 1958) and therefore placement within Hyridella is warranted. When compared to modern Hyridella species it is evident that this taxon is much smaller with finer growth and thinner shell and is, therefore, distinct from them. It does, however, bear striking similarities to the type species of the monotypic subgenus Protohyridella. The small size, quadrate-angulate form with posterior ridge prominent is characteristic of Hyridella (Protohyridella) glenelgensis (Dennant). Extinct Hyridella species are also a lot larger than this taxon, with the exception of Palaeohyridella godthelpi gen. et sp. nov., suggesting that this 2 species is a dwarf representative of the hyridellines leading towards Protohyridella. Whether this provides evidence for separation of Protohyridello as a distinct genus is controversial when dealing with unioid species concepts (McMichael \& Hiscock, 1958). When comparing the allometry seen in H. (P.) goondiwindiensis with that of Palacohyridella godthelpi gen. et sp. nov. it can be shown that, even though they develop similarily sized adults, the growth pattern to this end is quite different, being positive allometry in H. (P.) goondiwindiensis and negative allometry in Palaeohyridella godthelpi gen, et sp. nov.

Hyridella whitecliffsensis (Newton, 1916)

Unio whitecliffsensis Newton, 1916: 231 pl. 6 (7-8).
Hyridella whitecliffsensis (Newton), McMichael, 1957: 240.
AGE AND DISTRIBUTION. Early Cretaceous, formations: Coreena. Localities: White Cliffs NSW.

DIAGNOSIS. Shell small, equivalve, ovoid hyriid of hyridelline affinity. Moderately inflated valves with V-shaped beak sculpturing. 'Periodic growth divisions, and numerous, close-set, microscopical concentric striations ... posterior ridge become angulate' (Newton, 1916).
DESCRIPTION. See Newton (1916).
REMARKS. The holotype of this taxon was unavailable for study during this review, however, it is possible to diagnose this taxon from other members of Hyridella. The most apparent
distinguishing features being the angulate posterior margin and concentric growth striae. It differs from H. (Protohyridella) goondiwindiensis by it's smaller size and more angulated posterior profile. It differs from Palaeohyridella godthelpi gen. et sp. nov. by it's smaller size, less pronounced posterior ridge, closer growth ornamentation, more ovoid profile and narrower shell.

Hyridella (Protohyridella) sp.

(Fig. 5A-C, D-E)
MATERIAL. UQF52157, UQF52159, UQF52161, UQF44278, UQF44276, UQF44277.

AGE AND DISTRIBUTION. Jurassic, Waloon Coal Measures, Warwick District and Rathdowney area, SE Qld.
DESCRIPTION. Medium-sized, equivalved, ovoid hyriid with the comarginal ornamentation. Beaks eroded. Posterior margin tapers abruptly at the posterior $2 / 5$ of valve, producing a tri-angulate-ovoid posterior margin. Small anterior adductor muscle scar placed antero-laterally to umbone. The escutcheon is shallow. The anterior margin begins $2 / 3$ of the beak height and produces a small rounded margin about 8.19 mm to the anterior. The dorsal margin is inflated distal to the anterior and is inflated past the umbones, tapering to the posterior. This produces a wedgeshaped hinge jutting out of the general line of the shell. The umbones are placed anteriorly to the general line of the valves. The ventral margin is rounded to both ends. Ligament short. UQF52157 \& 52161 are both medium-sized inequivalved, ovoid inflated hyriids. The inflation and inequilateral morphology is interpreted as an abnormal growth form for the shells. The general morphology follows that described above. Morphometrics given in Table 8.
REMARKS. The material is placed within Hyridella (Protohyridella) based on the following characteristics: 1 , beak sculptured and eroded; 2 , inflation posterior to beak and producing a flanged ventral margin; 3 , shell thin with fine comarginal ornamentation. Due to the paucity of specimens and closeness in morphology to

FIC: 5. A-C, Hividella (Imohyridella) sp, UOF52159. A, right valve $\times 0.8$; B , dorsal view $\times 1.0 ; \mathrm{C}$ anterior view $\times 0.7$. D-E, deformed individual of Ifiridella (Protohrridella) sp. UQF52161; D, left valve $\times 0.8 ;$ E.
 $\times 2.0 ; \mathrm{C}$ right valve $\times 2.0 ; \mathrm{H}$, left valve $\times 1.4 ; \mathrm{I}$, dorsal view $\times 1.4 ; \mathrm{J}$, left valve $\times 1.4 ; \mathrm{L}$, anterior view $\times 1.6$. $\mathcal{K}-1 ., N$, Paratype AMF103913; K, lelt valve $\times 1.4 ; \mathrm{L}$, dorsal view $\times 1.4 ; \mathbb{N}$, anterior view $\times 1.6$.
 specilic assignment is not wamanted until more specimens are available.

Mesohyridella McMichael, 1956
1 1PE SPECIES. 1/ prikitersi) (Etheridge Jr. 1892) from the Upper Triassic, Ipswich Coal Measures.

DAABNOSlS. Small hyradelline uniond with clongate-oval, equivalved, inequilateral valves. Beaks anteriorly placed with small anterior adductor muscle scar, ovoid and set anteriorly to beaks. Both postertor and anterior margins produced, widely concave. Moderately inflated.

TABLE 8. Morphometrics (in mm) for Hyridella (Protohyridella) sp .

UQF No	Length	Height	Width	Beak Length	Beak Height	Beak Width	Hinge Length
UQF52157	37.76	28.95	$?$	$?$	27.54	$?$	$?$
UQF52159	45.46	31.24	23.65	8.17	28.79	10.83	27.36
UQF52161	50.73	35.26	$?$	$?$	31.90	15.03	28.34

REMARKS. McMichael (1956) erected this genus to place one species of small ?hyridelline, M. ipsviciensis, It's affinities with modern subfamilies is thought to be hyridelline, however, this is superficial. Unfortunately, no more material has shed any light on its relations within the hyriids.

Mesohyridella ipsviciensis (Etheridge Jr , 1892)

Unio ipsviciensis Etheridge Jr, 1892: 388 pl. 42(2-3).
Mesohyridella ipsviciensis (Etheridge Jr) McMichac!, 1957: $238 \mathrm{pl} .8(5)$.

AGE AND DISTRIBUTION. Late Triassic, formations: Black Stone, Tingalpa, Bundamba, SE Qld; Springfield Coal Basin. Localities: Ebbw Vale, Bundamba, Tingalpa, Bundamba, SE Qld, Springfield Coal Fields.
DIAGNOSIS. Shell small, elongate-oval with little winged posterior. Shell thick with strong ornamentation.

DESCRIPTION. From McMichael (1956); "Small freshwater mussels of uncertain affinity, but possibly belonging to the subfamily Hyridellinae. Shells elongate-oval, not winged, moderately swollen. Dorsal margin behind the beaks more or less straight, then curving rather sharply downwards, and descending obliquely to form a rather blunt posterior end with the ventral margin. Beaks not elevated or swollen, heavy corroded, sculptural characters unknown. Shell surface marked with fairly strong growth lines. Hinge characters and muscle scars unknown'.
REMARKS. Etheridge Jr (1892) described M. ipsvicensis within Unio. McMichael (1956) proposed a genus for the species, in the absence of the holotype, and called it Mesohyridella. The present study has not located the holotype either, however, on inspection of many more unionoids recovered from the Ipswich Coal Measures (the type locality is within this formation) other specimens are allocated for this species. The hyriids that resemble the descriptions of Etheridge Jr and McMichael have strong ornamentation, relatively uninflated umbones and beaks placed more central than P. eyrensis, the other large ovoid hyriid present in the fauna. This morphologically
distinct group of bivalves are present in the Blackstone formation, Tingalpa formation of the Ipswich Coal Measures, SE Qld and the Springfield Basin, SA.

Palaeohyridella gen. nov.

TYPE SPECIES. Palacohyridella godthelpi gen. et sp. nov. from uppermost Albian - Cenomanian Griman Creek Formation, Lightning Ridge.

ETYMOLOGY. Palaeos, Greek, representing the ancient aspects of the taxon and-lyridella for the affinity to the freshwater bivalve genus Hyridella.
DIAGNOSIS. Small hyriid unioid of the hyridelline subfamily. Umbones inflated and placed extremely anterior, 1/13 of total length from anterior end. Posterior margin quadrateangulate with prominent umbones to posterior ridge. Ridge preserving prominent ridging, developing into V -shaped sculpturing toward the beaks. Escutcheon broad, relative to length. Ornamentation coarse with fine comarginal growth lines. Anterior profile truncated and rounded, producing weak beak characteristics.
DESCRIPTION. Small, equivalved, inequilateral, hyriid with inflated umbones. Umbones greatly anterior being less than $1 / 13$ the length from the anterior. Anterior profile truncated and rounded. Posterior end produced, producing a tear drop valve shape. Shell thick, growth lines fine, producing ridged comarginal omamentation. Ventral margin gracile and convex. Hinge line straight with short thick ligament. Escutcheon broad and distinct with ornamentation producing a postero-dorsal ridge extending down both valves to the posterior end. V-shaped rugae on beaks and along postero-dorsal ridge on juveniles and adults. The rugae being present on the ridges in adults only. Beaks distinct and close-set. Lunule very short but relatively broad. Muscle scars unknown.
REMARKS. This genus is erected due to the presence of a taxon unlike any hyriid described previously. The V -shaped beak sculpturing in the juvenile and adult allies the new genus to the hyridelline lineage (McMichael \& Hiscock 1958). When compared to Hyridella (Hyridella)
spp. and Hyridella (Protohyridella) spp. there are marked differences; these are 1 , umbones more anteriorly situated; 2 , broad, distinct escutcheon; 3 , posteriorly rostrate profile; and 4, truncated, convex anterior margin.

Palacohyridella godthelpi gen. et sp. nov. (Fig. 5F-N)
ETYMOLOGY. For Henk Godthelp, a good friend who brought some of the specimens to my attention.

MATERIAL. HOLOTYPE: AMF103912; 26 Paratypes.
AGE AND DISTRIBUTION. Uppermost Albian - Cenomanian, formations: Griman Creek Formation. Locality: Lightning Ridge.
DIAGNOSIS. As for genus.
DESCRIPTION. As for genus. Morphometrics given in Table 9. Allometry given in Figure 8.

GLAUCONOMIDAE Gray, 1853

Glauconomids are a group of estuarine to brackish water bivalves from the east coast of Australia, inhabiting mangrove systems, mudflats and sands. There are four extant species recognised from Lamprell \& Healy (1998); Glauconome plankta, G. virens, G. rugosa and G. сегеа.

Unionella Etheridge, 1879
TYPE SPECIES. Unionella wianamattensis Etheridge Jr , 1888 from Late Triassic, Gibraltar Tunnel.

DIAGNOSIS. Small, elongate-oval glauconomid. Beaks anterior and close-set. Umbonal region slightly inflated devoid of sculpturing. Posterior margin slightly winged in larger individuals. A series of characteristically elongate beak muscle scars is present just below the beak commissure. Hinge short and indistinct. Anterior adductor muscle scars deep, elongate and usually placed anteriorly to umbones. Muscle scar triangular in lateral profile. Two to three cardinal teeth present, median and posterior most distinct.
REMARKS. The small size, ovoid shape, deep adductor muscle scar and winged posterior along with the "clumping' nature of the taxa suggest that this genus has evolutionary affinities to the
modern Glauconomidae, and certain morphological features similar in Anthracosiidae. Anthracosiids have a well known presence in the Carboniferous and Permian of Eurasia. McMichael (1956) in his review of these forms suggested such an affinity of Unionella with the anthracosiids. When comparing these shells to the modern Glauconome spp. there are marked similarities: valves are closely set with the beak not well produced; a series of small beak muscle scars occur under the lip of each beak; shell is produced anteriorly, directly in front of the beaks, compared to on the midline as seen in the anthracosiids; two to three small cardinal teeth. increasing in size from the anterior end. The median and posterior cardinals are largest and are close-set.
This genus was described for three apparently distinct forms, Unionella bowralensis, U. wianamattensis and U. carnei. Comparing the overall morphological diversity in species from anthracosiids and glauconomids it is apparent that Etheridge Jr (1882) did not take into account the possible phenotypic plasticity. I have clumped the three forms into one species, as I believe there is not enough consistent variation to propose different species. The taxon available for this is U. wianamattensis.

Unionella wianamattensis Etheridge Jr 1888
(Fig. 6K)
Unionella bowralensis Etheridge Jr, 1888: 13, pl. 1 \& 2, ligs 8-14; McMichael, 1956: 236, pl. 13, fig 6.
Unionella carnei Etheridge 1888: 14, pl. 2, figs 5-7: McMichael, 1956: 237, pl. 13, lig. 7.

MATERIAL. LECTOTYPE: AMF35775, 20183, 21085, $35769,35771,3987,20184,35766,35764,35778,35773 A$. 3577B,

AGE AND DISTRIBUTION. Late Triassic, Formations: 'transition beds between the Hawesbury Sandstone and the Wianamatta Group' (McMichael, 1956). Localities: Gibraltar Tunnel, Bowral, Smith's Brick Quarry at Crown Street, Waterloo and Surrey Hills, NSW.
DIAGNOSIS. Shell small, equivalved, elongateovate, with fine comarginal ornamentation. Valves inflated mid-laterally, however, umbones relatively flattened. Shell slightly winged posteriorly. Anterior adductor muscle scar deep,

TABLE 9. Morphometrics (in mm) for Palaeohyridella godthelpi gen. et sp. nov.

	Length	Height	Width	Beak Length	Beak Height	Beak Width	Ligament Length
Mean	21.88	15.5	12.47	3.65	14.39	4.12	9.21
s.d.	2.59	1.99	2.56	0.62	2.5	0.79	1.42
Number	15	15	15	15	15	15	15

FIC: 6. A-F, Protowirgus brookvalensis sp. nov.; A-[3, Paratype AMF41440, right valve $\times 3.0, \mathrm{C}-\mathrm{D}$, Paratype AMF41442, left valve $\times 3.0$, E-F, llolotype AMF19773, left valve $\times 3.0$. G-J, Protovirgus dunstani; G AMF35693, right valve $\times 2.0, H$, AMF35776, left valve showing beak sculpture (bs) and cardinal teeth (ct) $\times 1.6,1$, AMF35693, right valve showing beak sculpture $\times 2.25$, I. AMF35776, dorsal view showing cardinal teeth $\times 1.7$. K , Unionella wianamartensis AMF35775, right valve $\times 3.0$.
elongate and postero-ventrally orientated. A series of beak muscle scars extend just posterodorsally of the anterior adductor scar.

DESCRIPTION. From Etheridge (1888): 'Shell ovate-obliquely oblong, laterally compressed, thin. Dorsal margin or hinge line straight posteriorly, angulated at the anterior end, but in its entire length not as long as the shell; ligament small, and projecting but little above the dorsal margin. Ventral margin nearly straight, with a slight sinus at the middle. Anterior end small, very much compressed, and with the margin rounded; posterior end compressed, the diagonal ridge well marked. Although not strong; the flanks of the valves decrease rapidly in convexity from this ridge to the ventral margin, but an almost imperceptible sinus traverses them upwards from the ventral marginal inflections'. Forms initially described as Unionella bowralensis and Unionella carnei the shell shows more inflation in the valves. When height to length was measured for the specimens described by Etheridge Jr (1888) a consistent allometry is illustrated.
Morphometrics are presented for Unionella bowralensis, Unionella carnei and Unionella wianamattensis in Table 10.
REMARKS. The three species initially decribed within Unionella are here synonymised as one species on the basis of the following similar but variable characteristics: elongate-ovoid shells that have similar growth allometries; slight winged postero-dorsal margin; and sympatric occurrence in the same horizon. As alluded to in McMichael (1956)'s review of Unionella, the overall shell variation in anthracosid taxonomy is well documented and provides evidence that these three taxa are one. Glauconomids are also highly variable.

Protovirgus McMichael, 1956

TYPE SPECIES. Protovirgus dunstani (Etheridge Jr) from the Upper Triassic Wianammatta Shale, Sydney Basin.

DIAGNOSIS. Small, elongate, equivalved, inequilateral glauconomid with long tapering posterior profile. Umbones flattened and placed extremely anterior. Deep, long, posteroventrally orientated anterior adductor muscle scars. À series of beak muscle scars placed just below the beak commissure. Three cardinal teeth, median and posterior cardinal largest and closely spaced. Reduced or no lateral tooth.

TABLE 10. Morphometrics (in mm) for Unionella wianamattensis (=Unionella bowralensis) (Etheridge Jr), Unionella wianamattensis (=Unionella carnei) (Etheridge Jr), Unionella wianamattensis (Etheridge Jr).

AMF No.	Length	Height	Width	Beak Length
Unionella wianamattensis (=Unionella bowralensis)				
20183	21.7	8.75	5.15	6.8
20185	12.4	7.7	5.6	3.05
35769	12.15	6.7	5.4	3.15
35771	9.2	5.7	4.15	2.15
Mean	13.86	7.212	5.075	3.78
Unionella wianamattensis ($=$ Unionella carnei)				
3987	12.45	6.7	4.05	3.75
20184	12.55	7.7	5.9	3.1
35764	18.35	9.6	7.5	5.9
35766	18	8.6	7.7	5.1
35778	16.7	8.55	6.05	4.7
Mean	15.01	8.23	6.24	4.51
Unionella wianamattensis				
35773a	15.4	8.7	5.65	4.9
35773b	12.15	8.75	5.4	3.55
35775	14.8	8.8	4.5	3.85
Mean	14.11	8.75	5.183	4.1

REMARKS. This genus is related to Unionella in the possession of beak muscle pits, deep, elongate anterior adductor muscle pits and slightly wider postero-dorsal margin and three small cardinal teeth. The genus was described by McMichael (1956) to accommodate two species, P. dunstani and P. flemingi, from the Late Triassic of Sydney and Cretaceous of New Zealand, respectively. Unfortunately, P. fleming i was not examined during this study and will not be considered here.

Protovirgus dunstani (Etheridge Jr, 1888)
(Fig. 6G-J)
Unionella dunstani Etheridge Jr 1888: 11 pl. 1(11-19).
Protovirgus dunstani (Etheridge Jr) McMichael, 1957: 232 pl. 14(8).

MATERIAL. LECTOTYPE: AMF35693; 35776, 35777, 35870.

AGE AND DISTRIBUTION. Late Triassic, formations; 'transition beds between the Hawesbury Sandstone and the Wianamatta Group' (McMichael, 1956), Localities: Gibraltar Tunnel, Bowral, Smith's Brick Quarry at Crown St, Waterloo, and Surrey Hills, NSW.

FIG. 7. A-B, Protosphaerium gianae sp, nov.; A, AMF38165 Holotype, right valve $\times 4.0, \mathrm{~B}, \mathrm{AMF} 103934 \mathrm{~b}$ Paratype, left valve $\times 5.0$. C-D, Protosphaerium talbragarensis gen. et sp. nov.; C, AMF 103934 a Holotype, right valve $\times 4.0, \mathrm{D}, \mathrm{AMF} 103929$ Paratype right valve $\times 5.4$.

DIAGNOSIS. Small, equivalved, glauconomid. Elongate shell, tapering to posterior end. Beaks anterior, with flattened umbonal region. Beaks insignificant and closely set. Postero-dorsal margin slightly winged. Three cardinal teeth; large median and posterior cardinal and small anterior cardinal, no lateral tooth.
DESCRIPTION. From Etheridge (1879), 'Shell narrow, very transversely elongate, thin and compressed throughout its length ... cardinal margin very long and slightly arched ... anterior end very much compressed, the margin rounded, posterior end thin, attenuate ... umbones placed close to the anterior end, small, and laterally flattened ... anterior adductor impression fanshaped, situated very high up under the anterior cardinal margin; umbonal scars very strongly marked, two immediately behind adductor scars in a line ...'。

Morphometrics given in Table 11.
REMARKS. P. dunstani is unique within it's fauna, differing from other members of Unionella by the extremely clongate nature of the valves. The presence of beak scars illustrates genetic relation to Unionella, however, it differs
so markedly from them that separation at the generic level is relevant. P. dunstani differs from P. flemingi by it's smaller size and less tapering profile. The only other species of this genus is Protovirgus brookvalensis sp, nov. which differs in being smaller and more rounded posteriorly. The anterior adductor muscle in P. brookvalensis sp . nov. is much longer and situated higher than P. dunstani. The umbones are more flatened in P. dunstani than in P. brookvalensis sp. nov.

Protovirgus brookvalensis sp. nov.

(Fig. 6A-F)
ETYMOLOGY. For the type locality, Brookvale quarry.
AGE AND DISTRIBUTION, Late Triassic, formations: Wianamatta Shale. Localities: Brookvale Quarry, NSW.

MATERIAL. HOLOTYPE: AMF19773. PARATYPES: $19805,43401,41438,41442,41440,41439,49805$.

DIAGNOSIS. Small, equivalved glauconomid with umbones anteriorly placed. Elongate valve shape with tapering posterior edge. Winged dorsal margin produced by ridge emanating from the umbonal area and terminating toward the

TABLE 11. Morphometrics (in mm) for Protovirgus dunstani (Etheridge Jr).

ANE No.	Lensth	Henht	Hidth	Beak Length
35693	34.7	11.9	$?$	8.85
35776	37.2	12.2	6.05	8.65
35777	25.8	11.8	4.8	5
35870	40	16.6	8.75	9.05
Mean	34.42	13.12	6.53	7.88

posterior end. Umbonal region anterior with beaks closely set.

DESCRIPTION. Holotype F19773, is a small equivalved, inequilateral, elongate-ovoid anthracosiid. Umbones anteriorly placed at $1 / 5$ from the anterior end. Beaks weak with no sculpturing. Hinge line straight and long producing a straight dorsal profile. Rounded posteriorly. Anterior end rounded. Muscle scar unknown. Teeth unknown. Subumbonal ridge runs posteroventrally away from the umbo. Fine comarginal growth lines with weak ornamentation.
Morphometrics presented in Table 12.
REMARKS. The elongate nature of the valves, anteriorly placed umbones and tapered posterior end place this taxon firmly within Protovirgus. Morphological features that differentiate P. brookvalensis from P. dimstani, the only other member of this genus, are it's smaller size, weakly defined umbones, more rounded posterior end, weaker anterior muscle scars.

?SPHAERIIDAE Jefferys, 1862

Protosphaerium gen. nov.
TYPE SPECIES. Protosphaerium talbragarersis gen. et sp. nov. Jurassic, Talbragar Fossil Fish Beds.
ETYMOLOGY. Proto, pertaining to this being the first of it's kind. -sphacrium, for the genus Sphacrium.
DIAGNOSIS. Small, equivalved, ovoid bivalve with beaks subcentral. Fine comarginal growth lines with rugose comarginal ornamentation. Hinge short and convex in lateral profile. Ventral margin rounded to form distinct 'pea shell' like shape.
DESCRIPTION. Small, equivalved, equilateral with fine growth lines. Little or no ornamentation. Shell very thin with umbones just slightly inflated. Ovoid with beak $1 / 3$ length from anterior end. Posterior profile rounded continuous with convex hinge outline. Anterior profile also rounded with a small insignificant lunule. Escutcheon narrow and also insignificant. Hinge short with hinge ligament relatively thick.

TABLE 12. Morphometrics (in mm) for Protovirgus brookvalensis sp. nov.

| MNIF No. | Lenuth | Height | Width | Beak Length |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 43401 | 22.5 | 9.85 | $?$ | 9.85 |
| 41438 | 23.15 | 9.95 | $?$ | 10.7 |
| 19773 | 25 | 10.5 | $?$ | 12.1 |
| 41442 | 23.8 | 8.75 | $?$ | 11.6 |
| 41440 | 22.4 | 8.7 | $?$ | 4.45 |
| 41439 | 21.5 | 9.2 | $?$ | 10.55 |
| 19805 | 20.7 | 9.1 | $?$ | 8.6 |
| Mean | 22.72 | 9.43 | | 9.69 |

Muscle scars unknown, presumed weak. Teeth unknown or insignificant.

REMARKS. The pea-shell shaped valves, subcentral beaks, small size and clumping deposition post death, are all characteristics of members of the Sphaeriidae (Kuiper, 1983) and Corbiculidae. As this genus is smaller than those normally found within the corbiculids it is concievable that this taxon belong within the sphaeriid lineage. As the tooth morphology of the type species is unknown it is with some degree of uncertainty that this placement within the Sphaeriidae is given.

Protosphaerium talbragarensis gen. et sp. nov. (Fig. 7C-D)

ETYMOLOGY. For the type locality of Talbragar.
MATERIAL. HOLOTYPE: AMF103934A. PARATYPES: AMF103929, 103935(b), 59823.

AGE AND DISTRIBUTION, Jurassic, formations: Talbragar Fossil Fish Beds. Localities: Talbragar.

DIAGNOSIS. As for genus.
DESCRIPTION. As for genus. Morphometrics given in Table 13.
REMARKS. This taxon bears marked affinities to the small freshwater bivalves from the family Sphaeriidae. Uncertainty surrounds the decision to place Protosphaerium talbragarensis within the Sphaeriidae, however, it seems plausible that this group has a Jurassic presence in Australia and has remained here since then. Since it fits in no other family and the erection of a new family seerns unwarranted, it is here placed within the sphaeriids.

Protosphaerium gianae sp. nov.
(Fig. 7A-B)
ETYMOLOGY. For Gian Holmes.

TABLE 13. Morphometrics (in mm) for Protosphaerium talbragarensis gen. et sp. nov.

AMF No.	Length	Height	Width	Beak Length
103929	6.9	4.3	$?$	2.9
103934	11.5	6.8	$?$	4.25
$103935 b$	10.75	6.25	$?$	4.2
59823	10.45	6.15	$?$	4.15
Mean	9.9	5.87	0	4.93

MATERIAL. HOLOTYPE: AMF38165. PARATYPES: AMF103931, 103932, 103934B.

AGE AND DISTRIBUTION. Jurassic, formations: Talbragar Fossil Fish Beds. Localities: Talbragar.

DIAGNOSIS. Small, equivalved, inequilateral freshwater bivalve of possible corbiculid affinity. Fine conmarginal growth lines and weak ornamentation placed periodically along the valves. Characteristically winged toward the posterior, producing a quadrate lateral profile to the valves. Beaks closely set and anteriorly placed. Hinge long with one thin, indistinct lateral tooth. Cardinals and anterior laterals unknown.

DESCRIPTION. Small, equivalved, inequilateral with fine growth lines. Subtriangular. Some periodic ornamentation produced by thickenings in the shell. Winged posterior produced from ridge originating from the umbonal region. Posterior end produced and somewhat rostrate. Anterior profile rounded. Beaks weak, closely set and placed anteriorly. Hinge weak with one thin

TABLE 14. Morphometrics (in mm) for Protosphaerium gianae sp. nov.

AMF No.	Length	Height	Width	Beak Length
38165	9	6.25	$?$	3.7
103931	5.7	4.1	$?$	2.5
$103934 B$	6.55	4	$?$	3.1
103932	7.65	4.5	$?$	3.1
Mean	7.22	4.71	0	3.1

indistinct lateral tooth. Cardinals and anterior laterals unknown. Muscle scars unknown, presumed weak. Morphometrics given in Table 14.

REMARKS. Placed tentatively within Protosphaerium, this species shares some characters with Protosphaerium talbragarensis. Until more material presents itself, this genus provides an adequate position. In some respects, Protosphaerium talbragarensis sp. nov. is similar to Batissa (Batissa) violacea (Lamark) within the corbiculids. While similar in morphology this is not considered as having close genetic affinity. Proto. gianae is much smaller and with reduced hinge length.

ACKNOWLEDGEMENTS

I thank the Malacological Society of Australia for their financial assistance in the form of a grant. The Australian Skeptics are thanked for their ongoing support. Henk Godthelp and the University of New South Wales is thanked for the provision of new material. Alex Cook, Natalie

FIG. 8. Bivarate plot of relative height/length, plotted against length for hyriids from the Cretaceous. $-=$ Palaeohyridella godthelpi gen. et sp. nov., $\diamond=$ Hyridella (Hyridella) macmichaeli, $*=$ Hyridella (Protohyridella) goondiwindiensis, $0=$ Protovirgus wintonensis, $\Delta=$ Alaytharia jaqueti.

Camilleri and Paul Tierney are thanked for their assistance and provision of workspace. Kevin Lamprell, Daryl Potter and John Stanisic are thanked for their assistance and provision of comparative modern specimens. Robert Jones and Neville Pledge are thanked for the provision of fossil specimens from the Australian and South Australian Museums respectively, Mary Wade and Ralph E. Molnar are thanked for the collection of most of the Cretaceous specimens.

CITED LITERATURE

BURGER, D. 1986 Palynology, cyclic sedimentation and palaeoenvironments in the Late Mesozoic of the Eromanga Basin. Geological Society of Australia: Special Publication 12: 53-70.
BURGER, D. 1995. Timescales. 9. Cretaceous. AGSO Record 1995/38:1-35.
CHAPMAN, F. \& COOKSON, I.C. 1926 A revision of the 'Sweet' Collection of Triassic plant remains from Leigh's Creek, South Australia. Transactions of the Royal Society of South Australia. 50: 163-178.
DE JERSEY, N.J. 1975. Microspore zones in the Lower Mesozoic of southeast Queensland. Pp. 159-163. In Campbell, K.S.W. (eds) Papers from the Third Gonwana Symposium. (ANU Press: Canberra).
DE JERSEY, N. J. \& HAMILTON, M. 1965. Triassic mircofloras of the Mooroka and Tingalpa Formations. Queensland Government Mining Journal 66: 315-318.
DULHUNTY \& EADIE, 1969. Geology of the Talbragar Fossil Fish Bed Area. Journal and Proceedings, Royal Society of New South Wales, 102: 1-4.
ETHERIDGE Jr, R. 1888. Small unio fauna from the Wianamatta Shales. Memoirs of the Geological Survey NewSouth Wales, Palacontology 112-16.
1892. The organic remains of the Ipswich Formation. In Jack, R.L. \& Ethridge, R. (eds) The geology and palaeontology of Queensland and New Guinea. Geological Survey of Queensland Publication 92.
EXON, N. \& SENIOR B.J., 1976 The Cretaceous geology of the Eromanga and Surat Basins. BMR Journal 1,33-50.
HAAS, F. 1969. Superfamily Unionacea. Pp N411-468. In Moore R.C. (ed.) Treatise on invertebrate palaeontology Part N. Vol. 2, Mollusca 6, Bivalvia. (Geological Society of America and University of Kansas: Lawrence, Kansas).
HILL, D., PLAYFORD, G. \& WOODS, J.T. 1965. Triassic fossils of Queensland. (Queensland Palaeontographical Society: Brisbane).
HOCKNULL, S.A. 1994. A new Triassic frehwater bivalve from southeast Queensland. Memoirs of the Queensland Museum 37(1): 146.

1997 Cretaceous Freshwater Bivalves from Qucenland. Memoirs of the Queensland Museum 42(1): 223-226.
JOHNSON, W. 1960. Exploration for coal, Springtield Basin, in the hundred of Cudlamudla, GordonCradock District. Rep. Invest. Geological Survey of South Australia 16:62.
KUIPER, J.G.J, 1983. The Sphacriidae of Australia. Basteria 47: 3-52.
LAMPRELL, K.L. \& HEALY, J.M. 1998. Bivalves of Australia Vol. 2. (Backhuys Publishers: Leiden, The Neatherlands).
LOVERING, J.F. \& ELROY, C.T. 1969. Wianamatta Group. Pp. 417-423. In Packham, G.H. (ed.) The geology of New South Wales. Vol. 16 Part 1. (Geological Society of Australia).
LUDBROOK, N.H. 1961. Mesozoic non-marine Mollusca (Pelecypoda: Unionidae) from the north of South Australia. Transactions of the Royal Society of South Australia. 84: 139-148.
McMICHAEL, D.F. 1956 A review of the fossil freshwater mussels (Mollusca, Peleycopoda) of Australasia. Proceedings of the Linnean Society of New South Wales 81: 232-233.
McMICHAEL, D.F. \& HISCOCK I.D. 1958. A monograph of the freshwater mussels (Mollusca: Peleycopoda) of the Australian region. Australian Journal of Marine and Freshwater Research 9: 372-507.
NEWTON R.B. 1915. On some molluscan remains from the opal deposits (Upper Cretaceous) of New South Wales. Proceeding of the Malacological Society $10: 217-235$.
PARODIZ, J.J. \& BONNETTO, A.A. 1963. Taxonomy and zoogeographic relationships of the South American Naiades (Pelycopoda: Unionacea and Multelacea).
PLAYFORD, G \& DETTMAN, M.E. 1965. RhaetoLiassic Plant Microfossils from the Leigh Creek Coal Measure, South Australia. Senck. Leth. 46 (2/3): 127-181.
ROGERS, M.J. 1965. A revision of the species of nonmarine bivalvia from the Upper Carboniferous of eastern North America. Journal of Paleontology 39: 663-686.
SENIOR, B.R., MOND, A. \& HARRISON, P.L. 1978. Geology of the Eromanga Basin. Bureau of Mineral Resources, Australia, Bulletin 167.
WADE, R.T. 1953. Note on a Triassic fish fossil from Leigh Creek, South Australia. Transactions of the Royal Society of South Australia 76: 80-81.
WEIR, J. 1960. A Monograph of British Carboniferous non-marine Lamellibranchia. Palaeontolographical Society: 273-320.

 WESTERN INDIAN (ICEAN
J(OHN N.A. HOCIPERR. MICHELLE KELLY ANDIOHN A. KENNEDY

Abstract

Hooper, J.N.A., Kelly, M. \& Kennedy; J.A. 200006 30: A new Clathria (Porifera: Demospongiac: Microcionidate) from the Western Indian (Sexan. Afermorson the Qucenskand Aruserm 42(2): 427-444. Brishance. ISSN (0n79-8s35

A new species of microcionid marinc spange (lahtria (Micurbioma) richmundi sp. nov. is described from Zanzibar, Tanzania, and is highly umusual in lhaving extremely large accolada ksad. that form dragmata and skelctal tracts within the chorbensonal arrel cetosomat skeletons, rudimentary spination on echinating acanthostyles, a live blue colouration and a prominent sub-surface aquilerous system with radiate arrangement around uscules. The new species is compared with the other 64 species of Clathria described from the Western Indion Ocean, Southeast Africa and Arabian Ciull-Red Sea provinces, and other species knows to have toxodragmata, \square Porficen, Demnspongitae, Poeciloselerider, Nicmeionidae, near species, fuxonoms: Zanzibar. Hestern Imdium Occun

 Bag 709-695. Newmarket, slucklond. Aicm Zeralund; fo December 1999.

The extensive literature on sponges of the Western Indian ()ecan is evidence of a rich and diverse fauna (Table 1), Liven though this inventory already contains 'sceveral hundred' species (Kelly, 1997), it is undoubtedly far from complete. For example, Van Soest (1994b) collected 240 species from the Seychelles and Amirante islands whereas only 167 species wero known previously from the region.

Within the Western Indian Ocean (i.e extending along the continental shelf from Natal to Somalia and includine the islands from Madagascar to the Seychelles; Richmond, 1997), Southeast African tegions (Nittal to the Capse) and Arabian Gulf-Red Sca provinces 74 species of Microcionidae have beens reported (Houper 1996a), of which 64 belong to Clathria 10 still unnamed (Table 2). Of these, 44 (or 64\%) have not yet been found outside the region. This number of "apparent endemies" may decrease over time as the region's bindiversity becomes better known, but it still represents an extraordinarily high fevel of endemism compared to other sponge genera and other phyla. For example, Vis Soest (1994b) found about 24% of all sponges collected from the Seychelles and Amirante islands were endemic to the W Indian Occan fauna, and Richmond (1997) suggested that only about 15\% of all the regional marine biota may be endemic to the W Indian Ocean region.
Biogeographic atfinitics of the sponge fauna ase thought to be essentially Tethym (Van Suest,

1994a), with southern incursions of species of Gondwanan origin (Houper de Lévi. 1994: Hooper 1996a). This fauna is thouglt to be most similar to the central Indian Ocean and InderMalaya regions (Van Suest \& Hajuu, 1997), and in this regard follows the general pattern seen in other marine invertehrate phyla (c.g. seleractinarian corals: Veron, 1986: Veron, 1993). Richmond (1997) suggested that about 35% al the West Indian Ocean marine biota was widely distributed, extending into the Rod Sca and perhaps as far as the Indo-Malay region, 35\% ranged across the whole Indo-Pacilic region, and 15% extended into the warm temperate regions of the Atlantic Occan. To date only one meme cionid. Chathria (Thatisias) vilpina (Lamasck). appears to be truly Indo-Pacific 'cosmopolitan'. with a confirmed distrihution extending from Tonga to the Red sea (i.c. with conspecilicaty confimed through morphological comparisons between recent collechions of living populations; Hooper, 19963). However, cven this finding has yet to be conlirmed through genetic analysis tu determine whether slight inomblogical differences between regional populations represent intraspecilic variability or indicate the existence of a series of possible allopatric sibling specics.

Van Sinest (1094b) also noted a high level of regional heterogencity between sponge faunas of the Scychelles ard Amirante Island groups, with unly 17% oll species connmon to boll reginnal faumas. This supports a similar finding from

TABLE 1. Literature on the sponges of the Western Indian Ocean, Southeast Africa and Arabian Gulf-Red Sea provinces.

Province	Locality	Sponge literature
Coastal East Africa	Zanzibar	Lendenfeld, 1897; Baer, 1905; Jenkin, 1908; Burton, 1959; Thomas, 1976a, 1979b; Pulit-zer-Finali, 1993; Kelly, 1997; Magnino \& Gaino, 1998
	Tanzania	Jenkin, 1908; Thomas, 1976a; Pulitzer-Finali, 1993; Magnino \& Gaino, 1998
	Mozambique	Léví, 1964; Thomas, 1979a, 1979c, 1980a, 1980b; Laghi et al., 1984; Schmidt et al., 1997
	Kenya	Marsden, 1975; Bruce, 1976; Thomas, 1981a; Vacelet et al., 1991; Pulitzer-Finali, 1993
	Somalia	McCabe et al., 1982; Finamore et al., 1983; Hooper, 1996a
	South Africa	Ehlers, 1870; Carter, 1871; Gray, 1873; Vosmaer, 1880; Kirkpatrick, 1900, 1901, 1902a, 1902b, 1903, 1904, 1908, 1913 ; Sollas, 1908; Stephens, 1915; Burton, 1926, 1929, 1931, 1933a, 1933b, 1936, 1958; Lévi, 1963, 1967; Borojevic, 1967; Day, 1981; Schleyer, 1991; Pettit et al., 1993b; Rudi et al., 1993, 1994a, 1994b, 1995; Barkai et al., 1996; Hooper et al., 1996; Samaai, 1997; Beukes et al., 1998; Koren Goldshlager et al., 1998; McPhail et al., 1998
Ofitshore East Africa	Madagasear	Bosraug, 1913; Decary, 1946; Lévi, 1956; Vacelet \& Vasseur, 1965, 1966, 1971, 1977; Vacelet. 1967a, 1967b, 1977; Vacelet et al., 1976; Ivanova et al., 1993; Houper, 1996 b
	Aldabra	Lévi, 1961
	Comoros	Sarà et al., 1993b; Pettit et al, 1993a, 1994a, 1994b
	Réumion	Lévi, 1986; Aknin et al., 1996
	Mauritius	Thomson, 1868; Duncan, 1880; Topsent, 1890; Dendy, 1922; Van Soest, 1993
	Saya de Malha	Dendy, 1922; Kolbasov, 1992
	Seychelles	Wright, 1881; Ridley \& Dendy, 1887; Topsent, 1893a; Dendy, 1922; Lévi, 1961; Thomas, 1973, 19790. 1981b: Hooper \& Krasochin, 1989; Ngoc Ho, 1990; James et al., 1991; Venkateswarlu et al., 1991; Van Soest, 1994b; Van Soest et al., 1994; Trimurtulu \& Faulkner, 1994; Hooper, 1996a; Pettit et al., 1997
	Amirante	Carter, 1880; Ridley, 1884; Ridley \& Dendy, 1887; Dendy, 1922; Van Soest et al., 1994; Braekman et al., 1998
Northwest Indian Ocean	Red Sea	Keller, 1889, 1891; Topsent, 1892; Row, 1911; Lévi, 1958, 1965; Burton, 1959; Delseth et al., 1979; Sarà et al., 1979; Kashman et al., 1982, 1989; Mergner, 1982; Sokoloff et al. 1982; Mebs, 1985; Carmely \& Kashman, 1986; Vine, 1986; Gebreyesus et al., 1988; Ilan \& Loya, 1988, 1990; Carmely et al., 1990; Kolbasov, 1990; Isaacs \& Kashman, 1992; Rinkevich et al., 1993; Rudi \& Kashman, 1993; Kelly-Borges \& Vacelet, 1995; Guo et al., 1996, 1997a, 1997b; Ramadan, J997; Beer \& Ilan, 1998; Wörheide, 1998
	Ethiopia	Isaacs et al., 199]
	Eritrea	Hooper, 1996a
	Arabian Sea	Carter, 1869; Topsent, 1893b; Dendy, 1913, 1915, 1916a, 1916b, 1916c, 1922; Kumar, 1924a, 1924b, 1924c, 1925; Burton \& Rao, 1932; Burton, 1959; Thomas, 1975, 1976b, 1979b, 1988, 1989; Rahim, 1979; Kamat et al., 1981; Patel et al., 1985; Kondracki \& Guyot, 1987; James et al., 1989 ; Parameswaran et al., 1989, 1992a, 1992b, 1994, 1997; Kobayashi et al., 1992a, 1992b;' Pettibone, 1993; Sarà \& Bavestrello, 1995; Bavestrello et al., 1996; Thomas et al., 1997
	Oman	Sarà \& Bavestrello, 1995; Bavestrello et al., 1996

sponge surveys of NW and NE Australian reefs (Hooper, 1994; Hooper et al., 1999), with the implication that taxonomic inventories of regional sponge faunas are largely incomplete, with possibly many new taxa remaining to be discovered within these highly heterogeneous and 'apparent endemic' regional populations. The present study describes one such species discovered during routine surveys of Zanzibar undertaken by MK as part of a project to produce an inventory of the marine fauna and flora and popular field guide to the region (Richmond, 1997).
Methods for preparation and examination of material are described by Hooper (1996a). Spicule measurements refer to (minimum-(mean)maximum) dimensions of lengths and widths taken from 25 random samples of each spicule category
and are given in micrometres unless otherwise stated, Abbreviations: BMNH, The Natural History Museum, London; QM, Queensland Museum, Brisbane. MK is grateful to Dr Matthew Richmond for facilitating her participation in the East Africa marine surveys.

SYSTEMATICS

PORIFERA Grant DEMOSPONGIAE Sollas POECILOSCLERIDA Topsent

MICROCIONINA Hajdu, Van Soest \& Hooper

 MICROCIONIDAE Carter
Clathria Schmidt, 1862

Clathria (Microciona) Bowerbank, 1862
Refer to synonymy in Hooper (1996a)

Clathria (Microciona) richmondi sp . nov: (Figs 1-4)

Ël YMCDL()CjY. For DI Mathew D. Riclmond, Institute of Marine Sciences, Zanzibar, in Tecognition ol his substantial contribution towards documenting the marine llowa and fauna of the I: Arican coastine (Richmond 1907).

MATERIAL. HOLOTYPE. OMCi306785 (fragment BMNH 1995.629.96), E side of Pange Sandbank Rext, Zanzibar Town, Unguja I. Tanzania, $6^{\circ} 10,0^{\circ} \mathrm{S}, 39^{\circ} 9,3^{\prime} \mathrm{E}^{\prime}$. 10m depth, 7.viii. 1995 . coll. M. Kelly, SC"IIB3.

DISTRIFBUTION. Known only from the fringing rects ofl' Zanzibar Town, Unguja Island, encrusting dead coral substrate on as shallow fringing rect.
DESCRIPTION. Shapt: Very thinly encrusting ($0,2-0.7 \mathrm{~mm}$ thick) in small patches ($10-20 \mathrm{~cm}$ diameter) or completely enveluping coral rubble. Colon: Royal blue with a violet tinge alive, brownish-orange in cthanul.
Dicules. large (up to 5 mm diameter), raised on mumhrineous lip (approximately 4 mm high), scattered over entire surface and with prominent, vein-like, radial subsurface drainage canals radiating towards each oscule; oscules ond drainage canals collapsed upon preservation.
fexture and Surface Chamateristics. Slimy, very smorth, ficslyy surface.
Ecrosome. No speciul categery of ectosomal spicules present, although choanosomal principal styles arising from the underlyinge skeleton, standing perpendicular to the substrate, maly protrude a long way threugh the surface. Bundles of toxodragmata oceasionally lic on the surface. although most of these appeat to be confined below the peripheral skeleton.
Subectosome, Jelow the surfoce are plumose bundles of auxiliary subtylostyles, mostly running perpendicular and paratingential to, or occasionally protruding through, the surface. These subectosomal skeletal hundles form stellate brushes associated with (or parallef (u) the larger protruding choanosomal principal styles. Toxodragmenta form thick bundles below the peripheral skefeton, resembling megasclere spicule tracts, lying tangential to the surface and seattered between the erect choanosumal principal styles.
Choanosome. Microcionid skeletal siruchure, With thin hymedesmisid basal layer of spongin fibre, approximately 50 thick, highly collagenous, granular. dark hrown piencented. with
calcitic detritus embedded beneath: basal spongin with sparsely dispersed echinating acanhostyles combedded and standing perpendicular 10 substrate, and bulbous spongin lihre nodex up k iso thick found only in thicker sections of the encrustation: each bulhous fithe node diserete, erect, without any anastomeses between adjacent nodes, and each with $1 \cdot 5$ choanosomal principal styles embedded and perpendicular to sitstrate, with spicales diverging slightly, becoming plumose lowards surface and protruding up to 350 through cetosome: smaller echinating acanthostyles confined mostly to hymedesmioid basal spongin tibre, rarely seen on bulbous fihre nodes: conversely, principal styles only seen on bultous tibre nodes and nul on hymedesmivid bosal fihtes. Dense horizontal bands of accolada toxodrammata (up to 70 thick) oceur athout midway through the choanosomal skeletn cross-scetion, and also in the ectosomal region. lying un or belon the surface; few single toxas observed in the mesohyl mostly comprising wing-shaped fiems, whercas most toxas forming dragmata. Palmate isuchelate moderately ahundant within mesolyy: collagen within mesohyl dense, relatively smonh, moderately heavily pigmented orange-brown; choanocyle chambers clongate-nval, up to 40×12.
Megeascheres. Chuanusomal paincipal styles and subtylostyles very long, stender, slightly curned near basal end. long luperimg fusiform poink, hase bither slightly constricted or nometylute. smooth or very oecasionally with anisoxeote teminations. Lengily 178-(403.7)-622, widh 6-(10.2)-12.

Subectosomal auxitiary subtylostyles very Jong, very slender, straight, fusiform points, with well developed, cntirely smonth subtylote bases. Length 198-(351.5)-428, widili 2-(3.8)-5.

Echinating acanthostyles relatively uncumonow. short, slender, straikht of wery slightly curved at centre, fusiform-pointed, with moderately welldeveluped hasal constriction: shaft and base with vestigial granular spires conlined mainly to hasal half of spicule. Length 58-(89.6)-134, width 3-1 + + :
Aherescleres. Palmate isochelac moderately common, well-silicilied, with thick, welldeveloped alac comprising over 70\% of spicule length. Length 14-(15.2)-17.

Toxas in two forms: Accolada toxas extremely abundant, exceptionally long mad very slember. with slight central curvature and straight

FIG. 1. Megascleres from Clathria (Microciona) richmondi sp. nov. (holotype QMG306785). A-B, Choanosomal principal style and subtylote base. C-E, Larger echinating acanthostyle, base and shaft, illustrating mostly smooth, tuberculate omamentation. F-H, Smaller echinating acanthostyle, base and shaft with rudimentary small spines. I-J, Subectosomal auxiliary subtylostyle and smooth base.
(non-reflexed) arms, invariably forming toxodragmata. Length 262-(501.3)-975, width 1.5-(1.9)-2.0. Shorter toxas present but uncommon, intermediate between wing-shaped and accolada in morphology, with slight to moderate central curvature, slightly reflexed arms; found in toxodragmata together with accolada toxas and also occasionally singly within the mesohyl. Length 84-(114.8)-154, width 0.8-(1.04)-1.5.

REMARKS. Clathria (Microciona) richmondi sp. nov. is unusual in having 1) huge accolada toxas in dragmata, forming dense bands both within the mesohyl and lying tangential to the surface; 2) a second, less common and much smaller form of toxas, intermediate between wing-shaped and accolada morphology, scattered singly within the mesohyl; 3) a skeleton composed of hymedesmioid basal spongin fibres in thinner sections and microcionid bulbous spongin fibre nodes in thicker parts of the
skeleton, each node with one or few choanosomal principal styles perpendicular to the surface; 4) relatively uncommon echinating acanthostyles, with rudimentary spination, apparently confined to the hymedesmioid basal skeleton; and 5) distinctive field characteristics including a royal blue colour, large oscules with a prominent raised 'lip' and prominent subsurface drainage canals radiating towards each oscule. Although individually these distinctive characters are not unique amongst known species of Clathria, in combination they clearly differentiate the Zanzibar species from others.

1) Microsclere morphology, including toxas, appears to be a relatively consistent and useful character to differentiate between similar species (Hooper, 1996a). Six species of Clathria have been recorded with accolada toxas forming toxodragmata (C. (Thalysias) cactiformis (Lamarck), C. (Microciona) densa (Burton),

FIG. 2. Microscleres from Clathria (Microciona) richmondi sp. nov. (holotype QMG306785). A, Longer accolada toxas. B, Smaller toxas, intermediate between wing-shaped and accolada forms. C, Palmate isochelae.
C. (T.) lendenfeldi Ridley \& Dendy, C. (T.) oxitoxa Lévi, C. (Axociella) thetidis (Hallmann) and C. (T.) vulpina (Lamarck) (Hooper, 1996a)); refer to Table 2 for known distributions. In C. richmondi the accolada toxas are exceptionally large compared to most species of Clathria (262-975 long), and also form very prominent bands within the skeleton. By comparison, those of C. (T.) cactiformis are 8-355 long, C. (M.) densa (205-305), C. (T.) lendenfeldi (7-361) and C. (T.) vulpina (8-200), and are scattered throughout the skeleton in loose bundles not forming skeletal tracts. In contrast, accolada toxas of C. (A.) thetidis and C. (T.) oxitoxa are much larger than those of C. (M.) richmondi (175-1280 and 170-3000 long, respectively), and moreover those of C. (T.) oxitoxa also form skeletal tracts
within the skeleton (Lévi, 1963). In this regard C. oxitoxa is most similar to C. richmondi, although all three taxa differ in virtually every other respect (see redescription of C. oxitoxa below and C. thetidis in Hooper (1996a)).
2) Many species of Clathria have two toxa morphologies, and this feature is probably of little diagnostic importance above the species level. Of the species mentioned above only C. densa and C. vulpina lack both morphologies of toxas.
3) Hymedesmioid - microcionid skeletal structure has been used in the past as a primary diagnostic character for several nominal microcionid genera (e.g. Axocielita de Laubenfels, Hymantho Burton, Leptoclathria Topsent), although this view is no longer widely held (Van

Soest, 1984; Hooper, 1996a). Within Clathria these species are now placed in either the subgenera Microciona or Thalysias, depending on whether ectosomal specialisation is absent or present, respectively. Worldwide there are hundreds of encrusting microcionid species with hymedesmioid and/or microcionid spongin fibre skeletons and a mineral skeleton composed of perpendicular and/or plumose spicule tracts, of which 22 occur in this region (Table 2; species annotated (2)).
4) The presence or absence of echinating spicules, the degree to which they are smooth or spined, and the morphology of spines have been used as generic characters within Microcionidae at one time or another (e.g. Anaata de Laubenfels. Axociella Hallmann, Folitispa de Laubenfels, Isociella Hallmann, Ophlitaspongia Bowerbank, Paratenaciella Vacelet \& Vasseur, Tenaciella Hallmann). The absence of echinating megascleres remains a valid diagnostic character (at the subgeneric level) for some taxa (e.g. Isociella, Axociella, Ophlitaspongia), by virtue of the consistent combination of this feature and the possession of unusual skeletal structures characterising each of the taxa (Hooper, 1996a; Howson \& Chambers, 1999). Within Clathria s.s. there are also

FIG. 3. Skeletal structure of Clathria (Microciona) richmondi sp . nov. (holotype QMG306785). A, Hymedesmioid-microcionid basal skeleton with tracts of auxiliary subtylostyles lying in multispicular bands within the choanosome. B, Erect echinating acanthostyles (mostly smooth) perpendicular to the hymedesmioid basal skeleton.
several species that have lost echinating spicules (e.g. C. (C.) paucispicula (Burton), C. (T.) craspedia Hooper). By comparison, the absence (loss), rudimentary development and shape of spines on echinating spicules vary widely amongst the many hundreds of species of Clathria, although these features appear to be consistent at the species level (e.g. C. (M.) aceratoobtusa (Carter) with virtually
smooth spicules, C. (C.) kylista Hooper \& Lévi with rudimentary spination, C. (T.) dubia (Kirkpatrick) with large, heavy spines). Within this continuum C. richmondi is most similar to the C. kylista condition.
5) As far as can be ascertained from the literature and from personal experience with the Microcionidae of the Indo-Pacific no other species
has a deep royal blue colour in life, but the importance of this character is limited by the lack of good knowledge of their living characters, most taxa known only from preserved specimens. Prominent raised oscules and a subsurface water canal system (radiating towards the oscules and producing a stellate surface pattern) are features common to many encrusting sponges (in which the aquiferous system is marginalised onto the external surface by virtue of the reduced choanosomal thickness), whereas in many microcionids this drainage system often has a different pigmentation from the adjacent ectosome.
Of the 64 species of Clathria recorded from the Western Indian Ocean, Southeast Africa and Arabian Gulf-Red Sea provinces 19 have accolada toxas (Table 2; species annotated (1)). Most of these species differ substantially from C. richmondi in major features such as growth form, skeletal structure, spicule geometries, spicule sizes, possession of specialised ectosomal skeleton (i.e. Thalysias condition) etc., whereas in 5 species these differences are more subtle.
Clathria (T.) oxitoxa Lévi (1963) is erect, bushy, flattened lamellate branches, yellow alive; skeleton plumo-reticulate with fibres irregularly cored by very large principal styles and bundles (dragmata) of large oxeote toxas scattered throughout the sponge skeleton; ectosomal skeleton with plumose brushes of both ectosomal and subectosomal styles; principal styles regularly curved, with smooth non-tylote bases ($450-800 \times 35-40$); subectosomal auxiliary subtylostyles with microspined bases ($350-500 \times 9$); ectosomal auxiliary subtylostyles similar (100-150 $\times 4$); echinating acanthostyles entirely spined with large spines ($75-90 \times 10$); palmate isochelae in 2 size classes (6 and 13-14); accolada toxas nearly oxeote, ranging from hair-like and faintly curved arms (170-250×0.5-1), thickly oxeote with straight arms ($750-1300 \times 4-7$) and extremely long oxeotes with straight arms and only slight central curvature ($2400-3000 \times$ $10-11$); smaller wing-shaped toxas with large central curvature ($35-40 \times 0.5$). This species is most similar to C. (M.) richmondi in having exceptionally large accolada toxas in dragmata forming skeletal bands, but differs significantly in its live colouration, growth form, skeletal structure and the geometry and size of all spicules (in particular the huge upper size range of accolada toxas).
Clathria (M.) densa (Burton, 1959) is massive, dense choanosomal skeleton with semi-plumose
ascending spongin fibres cored by principal styles, interconnected by few transverse fibres and spicule tracts; dense ectosomal skeleton of auxiliary subtylostyles; principal styles with subtylote spined bases (175-298×18-35); subectosomal auxiliary subtylostyles with thick spined bases ($130-275 \times 4-8$), echinating acanthostyles thick, slightly curved, heavily spined with aspinose neck ($118-156 \times 9-16$); palmate isochelae ($9-13$); hair-like accolada toxas, distinctly sinuous and raphidiform forming dragmata (205-305 \times $0.5-1.5$). This species is a borderline case between the subgenera Microciona and Clathria given that its choanosomal skeleton is a well-developed microcionid architecture that is verging on reticulate given the existence of vestigial inteconnecting fibres and spicule tracts. It also differs from C. (M.) richmondi in spicule geometry, spicule sizes, and absence of smaller wing-shaped toxas: in fact the two species are only similar in possessing accolada toxas forming dragmata.
Clathria (C.) inhacensis Thomas (1979b) is thinly encrusting, surface conulose; ectosome reduced; choanosomal skeleton reticulate, with well developed ascending primary fibres cored by plumose tracts of principal styles, interconnected by thinner transverse fibres in which few spicules are found and fully embedded within fibres, and both echinated by acanthostyles; subtylostyles interstitial and in brushes arising from tips of main fibres; principal styles with smooth bases (121-172 $\times 4-5$); subectosomal subtylostyles with smooth bases (124-181× 2-4); echinating acanthostyles with variably spined shaft and spined bases (41-58 $\times 3-5$); palmate isochelae (8-10); accolada toxas hairlike (110-145 $\times 0.5-1.5$). This species clearly sits within subgenus Clathria given its possession of a reticulate skeletal architecture. It also differs significantly from C. (M.) richmondi in spicule geometry, spicule size and absence of toxodragmata.

Clathria (T.) longitoxa (Hentschel, 1912) ranges from thinly encrusting to massive growth form; hymedesmioid to closely reticulate skeleton of stout fibres, with larger and smaller principal styles coring fibres in plumose arrangement, echinated by acanthostyles; subectosomal auxiliary subtylostyles scattered; principal styles curved with smooth non-tylote bases (592-840 \times 22-26); smaller principal styles with subtylote granular bases (120-408×8-20); subectosomal auxiliary subtylostyles with faintly microspined bases (430-584×4-9); ectosomal auxiliary subtylostyles similar (190-320×3-5); echinating
acanthostyles evenly spined with spined points ($64-80 \times$ 6-7); palmate isochelae (12-20); accolada toxas with central U-bend and straight arms ($400-820 \times 1-2$). This species differs from C. (M.) richmondi in most respects, showing similarities only in growth form, skeletal structure and possession of accolada toxas.

Clathria (C.) oculata Burton (1933a) has an erect branching anastomosing growth form, drab colouration with tinges of occasional purple; skeletal architecture composed of a subisodictyal reticulation of spongin fibres fully cored by principal styles and evenly echinated by acanthostyles; principal styles with smooth non-tylote bases (140-7); subectosomal auxiljary subtylostyles with smooth bases (160×3); echinating acanthostyles evenly spined with small spines (65×4); accolada toxas slightly curved (160 long); palmate isochelae very small (6 long). This species is only similar to C. (M.) richmondi in possessing accolada toxas, differing in most other features.

In addition to these species there are three unnamed species described from Madagascar by Vacelet \& Vasseur (1971) showing similarities to C. richmondi in the morphology of their accolada toxas, skeletal structure and growth form, although differing in most all other characters.

Clathria (T.) sp. 4 (Vacelet \& Vasseur, 1971; see Table 2) is thinly encrusting, yellow alive; choanosomal skeleton microcionid with columns of fibres cored by principal styles and acanthostyles; ectosomal specialisation with some surface brushes but these are not thick; principal styles very slightly subtylote, smooth bases

FIG. 4. Ectosomal skeleton of Clathria (Microciona) richmondi sp. nov. (holotype QMG306785). A, Bundles of subectosomal auxiliary subtylostyles paratangential to and protruding through the surface, loosely associated with erect principal styles. B, Toxodragmata (bundles of accolada toxa) lying on or close to the surface.

TABLE 2. List of Clathria species recorded from the Western Indian Ocean, Southeast Africa and Arabian Gulf-Red Sea provinces. Refer to Hooper (Hooper, 1996a) for full synonymy and taxonomic references. Annotation: 1 = species with accolada toxas; $2=$ encrusting species with hymedesmioid-microcionid skeletal structure; $3=$ identification has yet to be confirmed from examination of voucher specimen; $4=$ identification unconfirmed, specimen voucher material missing; $5=$ new combination; $6=$ currently unrecognisable.

Current taxonomic assignment	Published name	Author	Western Indian Ocean records	Other known distribution
C. (Thalysias) abietina (Lamarck)	C. aculeata Ridley	$\begin{gathered} \text { Burton }(1959), \\ \text { Vacelet et al. }(1976,1977) \end{gathered}$	Red Sea, S Arabian coast, Madagascar	Tropical Australia, central NW Pacific, Philippines
C. (Microciona) affinis (Carter)	M. affinis Carter	Burton (1959)	S Arabian coast, Zanzibar	Gulf of Manaar
C. (Thalysias) amirantiensis Hooper ${ }^{1}$	Colloclathria ramosa Dendy (preoce.)	Dendy (1922), Hooper (1996)	Amirante, Coëtivy, Seychelles	-
C. (Thalysias) anomala (Burton)	R. anomala Burton	Burton (1933)	S South Africa	-
C. (Thalusias) anonyma (Burton) ${ }^{2,5}$	M. anomyma Burton	Burton (1959)	Zanzibar	-
C. (Clathria) arbuscula (Row)	Ophlitaspongia arbuscuta Row, O. horrida Row	Row (1911)	Red Sea	-
C. (Microciona) atrasanguinea (Bowerbank) ${ }^{2}$	M. atrasanguinea Bowerbank	```Carter (1880), Dendy (1922), Burton & Rao (1932), Lévi (1965), Van Soest (1993)```	Seychelles, Red Sea, Arabian Sea, Mauritius	Caribbean, NE Atlantic, Mediterranean, coast of India, Gulf of Manaar, Bay of Bengal, Andaman Sea
C. (Clathria) axociona Lévi	C. axociona Lévi	Lévi (1963)	S South Africa	Namibia
C. (Thalysias) cactiformis (Lamarck) ${ }^{1}$	Rhaphidophlus typicus (Carter), C. (T.) cactiformis (Lamarck), Rhaphidophlus sp. 2; Vacelet \& Vasseur	Vacelet et al. (1971, 1976, 1977), Hooper (1996)	Madagascar, Somalia, E Africa, Seychelles, Red Sea	S, W \& E coasts of Australia
? C. (Clathria) caespes (Ehlers) ${ }^{6}$	Scopalina caespes (Ehlers)	Hooper (1996)	S South Africa	-
C. (Wilsonella) cercidochela Vacelet \& Vasseur	Clathriopsamma cercidochela Vacelet \& Vasseur	Vacelet et al. (1971, 1977)	Madagascar	-
C. (Clathria) conica Lévi	C. conica Lévi	Lévi (1963)	S South Africa	-
C. (Thalysias) cullingworthi Burton	C. cullingworthi Burton	Burton (1931)	Natal	${ }^{-}$
C. (Clathria) dayi Lévi	C. dayi Lévi	Lévi (1963)	S South Africa	(? Korea ${ }^{3}$)
C. (Thalysias) delaubenfelsi (Lévi)	Rhaphidophlus delaubenfelsi Lévi	Lévi (1963)	S South Africa	-
C. (Microciona) densa (Burton)	M. densa Burton	Burton (1959)	S Arabian coast	-
C. (Clathria) elastica Lévi	C. clastica Lévi	Lévi (1963)	S South Africa	-
C. (Axociella) fauroti (Topsent)	Axosuberites fauroti Topsent	Topsent (1893)	Gulf of Aden	-
C. (Thalysias) flabellata (Burton)	Rhaphidophlus flabellata Burton	Burton (1936)	S South Africa	-
C. (Clathria) foliascens Vacelet \&Vasseur	C. foliascens Vacelet \&Vasseur	Vacelet et al. (1971, 1976, 1977)	Madagascar	-
C. (Thalysias) fusterna Hooper	C. fusterna Hooper	Hooper (1996)	Eritrea	N \& NE Australia
C. (Clathria) hexagonopora Lévi ${ }^{1}$	C. hexagonopora Lévi	Lévi (1963)	S South Africa	-
C. (Clathria) indica Dendy	C. indica Dendy	$\begin{aligned} & \text { Burton (1931), Thomas } \\ & (1979) \end{aligned}$	Natal, Mozambique	SE India, Gulf of Manaar
C. (Clathria) inhacensis Thomas	C. inhacensis Thomas	Thomas (1979)	Mozambique	-
C. (Clathria) irregularis (Burton)	Marleyia irregularis Burton	Burton (1931)	Natal	-

TABLE 2. (cont.)

Current taxonomic assignment	Published name	Author	Western Indian Ocean records	Other known distribution
C. (Clathria) juncea Burton	C. juncea Burton	Burton (1931)	Natal	-
C. (Microciona) laevissima (Dendy) ${ }^{2}$	H. Iaevissima Dendy	Dendy (1922)	Mauritius	-
C. (Thalysias) Iambda (Lévi)	Leptoclathria lambda Lévi	Léví (1958)	Red Sea	-
C. (Thalysias) lendenfeldi Ridley \& Dendy	C spicata Hallmann, C. whiteleggii Dendy	Dendy (1922), Burton (1931, 1959), Hooper (1996)	Red Sea, Gulf of Aden, S Arabian coast, Cargados Carajos, Saya de Malha, Somalia, Natal	SE, NE, N. \& NW Australia, E Indonesia, Andaman Sea, Gulf of Manaar
C. (Thalysias) lissoclada (Burton)	Rhaphidophlus lissocladus Burton	Lévi (1963)	S South Africa	Falkland 1s
C. (Clathria) lobata Vosmaer	C. lobata Vosmaer	Vosmaer (1880), Ridley \& Dendy (1887), Stephens (1915), Lévi (1963)	S South Africa	-
C. (Thalysias) longistyla (Burton)	M. longistyla Burton	Burton (1959)	S Arabian coast	$\left(2 \mathrm{Korea}{ }^{3}\right.$)
C. (Thalysias) longitoxa (Hentschel)	M. langitoxa (Hentschel)	Burton (1959)	Gulf of Aden	E Indonesia, Madras
C. (Microciona) microxea (Vacelet \& Vasseur) 2	Paratenaciella microxea Vacelet \& Vasseur	Vacelet \& Vasseur (1971)	Madagascar	-
C. (Wilsonella) mixta Hentschel	C. mixta Hentschel	Burton (1959)	S Arabian coast	E Indonesia ${ }^{3}$
C. (Thalysias) nervosa (Lévi)	Axociella nervasa Lévi	Lévi (1963)	S South Africa	-
C. (Clathria) oculata Burton ${ }^{1}$	C. aculata Burton	Burton (1933, 1959)	Natal	-
C. (Thalysias) oxitoxa Lévi	C. oxitoxa Lévi	Lévi (1963)	S South Africa	-
C. (Clathria) pachystyla Lévi	C. pachystyla Lévi	Lévi (1963)	S South Africa	-
C. (Axociella) parva Lévi	C. parva Lévi	Lévi (1963)	S South Africa	Namibia
C. (Thalysias) procera (Ridley)	Rhaphidophlus procera Ridley, Echinonema gracilis Ridley	Ridley (1884), Ridley \& Dendy (1887), Dendy (1922), Burton \& Rao (1932), Burton (1931, 1959), Lévi (1963), Thomas (1973)	Cargados Carajos, Seychelles, Amirante, Red Sea, Arabian coast, Natal	NE, N \& NW Australia, E Indonesia, Gulf of Manaar, (? Hawaii ${ }^{3}$)
C. (Clathria) rhaphidotoxa Stephens	C. rhaphidotoxa Stephens	Stephens (1915), Lévi (1963)	S South Africa	$\stackrel{-}{\square}$
C. (Microciona) rhopalophora (Hentschel) ${ }^{2}$	M. rhopalophora (Hentschel)	Burton (1959)	Maldives	E. Indonesia, Cocos-Keeling, Gulf of Manaar
C. (Thalysias) robusta (Dendy)	M. robusta Dendy	Dendy (1922)	Amirante	Singapore
C. (Microciona) seriata (Grant)	Ophlitaspongia seriata (Grant)	Lévi (1963)	S South Africa	NE. Atlantic, Mediterranean, New Zealand
C. (Clathria) spongodes Dendy	C. spongodes Dendy, C. spongiosa Burton, C. madrepora Dendy	$\begin{aligned} & \text { Dendy (1922), } \\ & \text { Burton (1959), } \\ & \text { Vacelet et al. (1976) } \end{aligned}$	Red Sea, Gulf of Aden, Amirante, Madagascar, Seychelles	(? Korea ${ }^{3}$)
C. (Microciona) stephensae Hooper	M. similis Stephens (preocc.)	Stephens (1915)	S South Africa	-
C. (Microciona) tenuis (Stephens) 2	M. tenuis Stephens	Stephens (1915)	S South Africa	-
C. (Clathria) transiens Hallmann ${ }^{4}$, C. transiens Hallmann	Burton (1959)	Red Sea	S Australian provinces

TABLE 2. (cont.)

Current taxonomic assignment	Published name	Author	Western Indian Ocean records	Other known distribution
C. (Clathria) typica Kirkpatrick (virtually unrecognisable)	C. typica Kirkpatrick	Kirkpatrick (1904)	Natal	-
C. (Micraciona) vacelettia Hooper ${ }^{2}$	M. curvichela Vacelet \& Vasseur (preocc.)	$\begin{aligned} & \text { Vacelet \& Vasseur } \\ & \text { (1965), Hooper (1996) } \end{aligned}$	Madagascar	-
C. (Thalysias) vulpina (Lamarck)	C. frondifera (Bowerbask), C. dichela (Hentschel)	Ridley (1884), Ridley \& Dendy (1887). Topsent (1892), Row (1911), Burton (1959), Lévi (1961), Thomas (1973, 1979), Vacelet et al. (1971. 1976, 1977). Pulitzer-Finali (1993), Hooper (1996), Kelly (1997)	Madagascar, Amirante, Seychelles, Red Sea, Mozambique, Aldabra, Zanzibar	Tropical Australia. W \& E coasts of India, Gulf of Manaar, Mergui Archipelago, Andaman Sea, Malaysia, E \& W Indonesia, N Papua New Guinea, Vietnam, Philippines, Micronesia, S Japan, New Caledonia
C. (Clathria) zoanthifera Lévi	C. zoanthifera Lévi	Lévi (1963)	S South Africa	-
Clathria (Thalysias) sp.; Vacelet \& Vasseur	Rhaphidophlus sp. 1. Vacelet \& Vasseur	Vacelet \& Vasseur (1971)	Madagascar	-
Clathria (Thalysias) sp.; Vacelet \& Vasseur	Rhaphidophlus sp. 3; Vacelet \& Vasseur	Vacelet \& Vasseur (1971)	Madagascar	-
Clathria (Thalysias) sp.: Vacelet \& Vasseur	Rhaphidophlus sp. 4; Vacelet \& Vasseur	Vacelet \& Vasseur (1971)	Madagascar	-
Clathria (Thalysias) sp.: Vacelet \& Vasseur	Rhaphidophlus sp. 5; Vacelet \& Vasseur	Vacelet \& Vasseur (1971)	Madagascar	-
Clathria (Thalysias) pp .; Vacelet \& Vasseur	Rhaphidophlus sp. 6; Vacelet \& Vasscur	Vacelet \& Vasseur (1971)	Madagascar	-
Clathria (Thalysias) sp.; Vacelet \& Vasseur	Rhaphidophlus sp. 7; Vacelet \& Vasseur	Vacelet et al. $(1971,1977)$	Madagascar	-
Clathria (Microciona) sp.; Vacelet \& Vasseur ${ }^{2}$	Microciona sp. 1; Vacelet \& Vasseur	Vacelet \& Vasseur (1971)	Madagascar	-
Clathria (Microciona) sp.; Vacelet \& Vasseur	Microciona sp. 2; Vacelet \& Vasseur	Vacelet \& Vasseur (1971)	Madagascar	-
Clathria (Microciona) sp.; Vacelet \& Vasseur ${ }^{2}$	Microciona sp. 3; Vacelet \& Vasseur	Vacelet et al. (1971, 1976)	Madagascar	-
Clathria (Microciona) sp; Vacelet, Vasseur \& Lévi ${ }^{1,2}$	Microciona sp. 4; Vacelet, Vasseur \& Lévi	Vacelet et al. (1976)	Madagascar	-

oxeote, with slight to virtually no central curvature ($85-820 \times 0.5-2.5$); U-shaped to wing-shaped toxas very small (5-7.5).

Clathria (T.) sp. 5 (Vacelet \& Vasseur, 1971) is encrusting, orange alive; hymedesmioid skeleton of principal subtylostyles and acanthostyles erect on basal spongin fibres; subectosomal and ectosomal auxiliary subtylostyles differ only in size and both contribute to both subectosomal and ectosomal surface brushes; principal subtylostyles slender, moderately subtylote microspined bases ($140-280 \times 5-8$); subectosomal auxiliary subtylostyles slightly subtylote, smooth bases (up to 360×3); ectosomal auxiliary subtylostyles similar (from 90×2); echinating acanthostyles slender, evenly spined ($50-60 \times$ $2-3$); palmate isochelae in two size classes (4-5 and 12-12.5 long); accolada toxas nearly oxeote,
with straight or only very slightly curved arms and slight angular central flexion (35-250 long).

Clathria (M.) sp. 2 (Vacelet \& Vasseur, 1971) is encrusting, pinkish to red alive, with white subectosomal drainage canals clearly visible on the otherwise smooth surface; skeleton microcionid; principal subtylostyles with smooth or microspined bases ($330-550 \times 13-15$); subectosomal auxiliary subtylostyles with smooth bases ($120-550 \times 2.5-5$); echinating acanthostyles slender, entirely spined ($100-120 \times 5-7.5$); palmate isochelae (7.5-20); accolada toxas with only slight curvature of arms and central flexion (130-320); small oxhorn toxas (7.5-20),

LITERATURE CITED

AKNIN, M., GAYDOU, E.M., BOURYESNAULT, N., COSTANTINO, V., FATTORUSSO, E. \& MANGONI, A. 1996. Nor sterols in Axinella
proliferons, sponge from the Indian Ocean. Comparative Biochemisary and Physiology B Biochemistry ${ }^{2}$ Molecular Biology 113b(4): $845-848$.
R3.AER. L. 1905 . Silicisponcien von Smsibar, Kapstadt und l'aptetc. Arebiy bür \$ystematioche Zookogie 72:1-32.
BARKAI. A., DAVIS, C.L, \& TTuFWFII, S, 1496. Proy selecuinn by twe South Alitan Cape rock lobster dasuns halandif: econoscical arld physiological approaches. Bulletin of ibarine Science $58(1): 1-S$.
BAVESTRELI.O, (i., ("Al"ANI: VIII'JI, R. CERRINO. C. \& SARA, AI. 199G. Spicule dissolution in living Fidhum omanconsis (l'aritera: Demospongiae) from a tropical cave, Bulletin of Marine Science 58(2): 598-601.
BEER. S. 品ILAN, M. 1998. In situ measurements al' photosynthetic irradiance reponses of tho R wa Sea sponges growing under dim light conditions. Marine Biology 131(t): 613-617.
BFETRES, D.R., DAVIES COLIEMAN, M.T., KELLY BORGES, M. \|ARPIER, M.K., WAJIKNEK, D.J. 19 YS. Dilommaiones A C. unusual indole alkathids Irom a mised collection ar South Alicearn sponges. Journal of Natural l'buducts 61(5): 699-701.
BOROJEVIC, R. 1967. Spongiaires d'Afrique du Sud (ב) C'alcarca. Transactions of the Royal Society of South Africa 37: 183-226
FBOSRAUC, E. 1913. Die Termatinelliden, Reis6 Ustaltika A. Voelvkow 3:231-251.
BOWERBANK, J.S. 188^{2}. On the anatomy and physiwhey wit the Spongiadae. Part Ill: On the generic choracters, the specitic characters and the method of examimation. Philosophical Transactions of the Roval Sociery of London 152: 1\{187-1135.
BRAENMAN, J.C., DALOZE, D., DE GROOIE, S., filliNANDES, J.B. \& SOEST, R.W.M. VAN 1928 New polyketides from the sponge Plakorih.s :p Joumal of Natural Products 61 (S): $103 \mathrm{~S}-1042$.
BKRUC'L. A.J. 1976. Discias muifac sp. nov. a new sponge associate from Renya (Decapoda. Natantia, Disciadidac). Crustaceanat 31(2): $184-130$
BURTON. M. 1926. 12emeriptions of South Alrican sponges colfected in the South African marine survey. Part 1. Myxuxpungida and Astrotetrasomida. Inion of South Africa. Fisheries and darine Biological Susey Report 4: 1-2y.
1929. Descripaion of Sumh African sponges collecled in lle Soush dirican marine survey Part II Tise Lithistidac, with a critical stervey of the dexmaz-fortimes. Somges. Inim of Sonth Africa. Fisheries and Marine Biological Surney Report (7): $1-12$.
1931. On a collection of marine sponges mosily from the Natal coast. Angals of the Natal Muscum 6(3): 337-358.
1133a. Four new marine sponges from Natal Annals of the Natal Musemm 7(2): 249-254.
19336. Repart on a small collection afsponges lirum Still Bay, South A frica. Amals and Magazine of Natural listory (10) 11:235-244.
1936. Notes on sponges from South Atrica, with descriptions of new species. Amnals and Magazine of Natural bistory 17:141-147.
1958. Chapter 1. Porifera. South Aftican Animal Life. Vol s (Almquist \&e Wikselt: Siweden).
1959. Sponges. In Scientific Reports of the John Nurray Expedition 1933-34. Vol. 10 (British Museum (Natural History): London).
BURTON. M. \& RAO, JI.S. 1932. Report on tur shallow-water marime sponges in the collection of the Indian Museum. Records of the Indian Museum 34(3): 299-356.
CARMELY. S., GEBREYESUS, T, KASHMMN, Y.
 1990. Dysidamide, a novel metabolite from a Rud Sca sponeg Dysidea herbuceas. Austratian Jounal t1 6:hemistry 43(11): 18 s 1.18 ss.
 new triterpene from the Red Seas sponge Sipionnochulhat siphonella. Journal ot Otganic Chemistry $51(6): 784-788$.
CARTER. H.J. Is69. A descriptive atconunt of lour subspherous sponges. Arabian and British, with general ohservations. Annals and Magazine of Natural History (4) 4: 1-28.
1871. Descriptions and illustrations of 'u new specees of Tethat, with observations on the nomenclante of the Telhyadals. Amnals and Magazine of Natural History (4)8: 099-105.
lisko. Sponges (itreluding list of sponges dredged by the Birmingham Natural History and Mieroscopical Socity, Falmouth Excursinn, 1879. Depeh 15-2 (1 Fathoms). Midland Naturalist (1850): 55-60, 190-195.

LAS, 1.11. 1981. The esturime fauna. Pp. 147.178. Im Estuarine ecology with particular reference to southern Africa. (Balkema: Rotterdam).
LDEC'ARY, R. 1046. Animaux de Madayascar. Annales du Mitseé Colonial de Marseille 6(4): 197-228.
DELSETII, C., KんASIIMMN, Y, \& DJERASSI, C. 1979. Ergusta-5,7.9(11) 22-veraen-3B-ol and its 24E-Ethyl Homolog, Two new marine sterol, from the Red Seasponge Brendmafortis. Helvetica Chimica Acta 62(6): 2037-2045.
DENDY. \AA. 1913. Report on the calcarcous sponges collected by Il:MS Sealark" in the Indian Dccan. In Reports of the Pery Sladen Irust Lxpedition to the Indiun Dcean in 1905 , Vhume 5 . Transactions of the Linnear Society of Lunden, \%oulagy 16 : 1-24.
1915. Report on the calcoreous sponges collected by Mr dames Horncll at Ohhamsendal in Kintianar in 1905-1406. In Repost to the (iswernment of Baroda on the Marine Zoology of (Ohhamandal. Volume 2. 17: 75-91.
1916 . Report on the hexactinallid sponges (triaxonida) collected by HMS Sealark in the Indian Decan. In Reports of the lerey Sladen

Trust Expedition to the Indian Ocean in 1905, Volume 6. Transactions of the Limnean Society of London, Zoology 17: 211-224.
1916b. Report on the Homosclerophora and Astrotetraxonida collected by HMS Sealark in the Indian Ocean. In Reports of the Percy Sladen Trust Expedition to the Indian Ocean in 1905, Volume 6. Transactions of the Linnean Society of London, Zoology 17: 225-271.
1916c. Report on the non-calcareous sponges collected by Mr James Hornell at Okhamandal in Kattiawar in 1905-1906. In Report to the Government of Baroda on the Marine Zoology of Okhamandal. Volume 2, 17:96-146.
1922. Report on the Sigmatotetraxonida collected by HMS Sealark in the Indian Ocean. In Reports of the Percy Sladen Trust Expedition to the Indian Ocean in 1905, Volume 7. Transactions of the Linnean Society of London, Zoology 18: 1-164.
DUNCAN, P.M. 1880. On a parasitic sponge of the order Calcarea. Journal of the Royal Microscopic Society 3:377-383.
EHLERS, F. 1870. Die Esper'schen Spongien. (Zoologischen Sammlung der K. Universität Erlangen. Programm zum Eintritt in der Senat der Königlichen Friedrich-Alexanders-Universität in Erlangen: Erlangen).
FINAMORE, E., MINALE, L. \& ALI MOHAMMED. M. 1983. The sterols of the Somalian sponge Pleraphysialla (Pleraplysilla) papyracea. Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche (Serie IV) 50:81-86.
GEBREYESUS, T., YOSIEF, T., CARMELY, S. \& KASHMAN, Y, 1988. Dysidamide, a novel hexachloro metabolite from a Red Sea sponge Dysidea sp. Tetrahedron Letters 29(31): 3863-3864.
GRAY, J.E. 1873. Natal sponges. Annals and Magazine of Natural History (4) 12: 264.
GUO, Y., GAVAGNIN, M., MOLLO, E., TRIVELLONE, E., CIMINO, G., HAMDY, N.A., FAKHR, I. \& PANSINI, M. 1996. A new norsesterterpene peroxide from a Red Sea sponge. Natural Product Letters 9(2): 105-1 12.
GUO, Y., GAVAGNIN, M., MOLLO, E. \& CIMINO, G, 1997a. Hurghamides A D, new N acyl 2 methylene (beta) alanine methyl esters from Red Sea Hippospongia sp. Natural Product Letters 10(2): 143-150.
GUO, Y., GAVAGNIN, M., MOLLO, E., CIMINO, G., HAMDY, N.A., FAKHR, 1. \& PANSINI, M. 1997b. Hurghamides A D, new N acyl 2 methylene (beta) alanine methyl esters from Red Sea Hippospongia sp. Natural Product Letters 9(4): 281-288.
HENTSCHEL, E. 1912. Kiesel- und Homschwämme der Aru und Kei-Inseln. Abhandlungen Senckenbergiana naturforschende Gessellschaft (1912): 295-448.

HOOPER, G.J., DAVIES-COLEMAN, M.T., KELLY-BORGES, M. \& COETZEE, P.S. 1996. New alkaloids from a South African Latrunculid sponge. Tetrahedron Letters 37: 7135-7138.
HOOPER, J.N.A. 1994. Coral reef sponges of the Sahul Shelf - a case for habitat preservation. Memoirs of the Queensland Museum 36(1): 93-106.
1996a. Revision of Microcionidae (Porifera: Poecilosclerida: Demospongiae), with description of Australian species. Memoirs of the Queensland Museum 40: 1-626.
1996b. A toxic Biemna from Madagascar (Demospongiae: Poecilosclerida). In Willenz, P. (ed.) Recent Advances in Sponge Biodiversity Inventory and Documentation, Bulletin de 1'Institut Royal des Sciences Naturelles de Belgique (Supplement) 66: 123-134.
HOOPER, J.N.A., KENNEDY, J.A., LISTARMITAGE, S.E., COOK, S.D. \& QUINN, R. 1999. Biodiversity, species composition and distribution of marine sponges in northeast Australia. Pp. 263-274. In Hooper, J.N.A. (ed.) Proceedings of the 5th International Sponge Symposium. Brisbane, June-July 1998. Memoirs of the Queensland Muscum 44: 263-274.
HOOPER, J.N.A. \& KRASOCHIN, V.B. 1989. Redescription of the burrowing sponge Zyzzya massalis (Dendy) from the Seychelles and Houtman-Abrolhos Islands. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 6(1): 133-140.
HOOPER, J.N.A. \& LÉVI, C. 1994. Biogeography of Indo-west Pacific sponges: Microcionidae, Raspailidae, Axinellidae. Pp. 191-212. In Soest, R.W.M. van., Kempen, T.M.G. van \& Braekman, J.-C. (ed.) Sponges in Time and Space (Balkema: Rotterdam),
HOWSON, C.M. \& CHAMBERS, S.J. 1999. Ophlitaspongia and Ophlitaspongia papilla reinstated, and a new species of Ophlitaspongia described (Porifera: Demospongiae: Microcionidae). Journal of the Marine Biological Association of the United Kingdom 79: 609-620.
ILAN, M. \& LOYA, Y. 1988. Reproduction and settlement of the coral reef sponge Niphates sp. (Red Sea). Pp. 745-749. In Choat, J.H., Barnes, D. \& Borowitzka, M.A. (eds) Proceedings of the Sixth International Coral Reef Symposium. Townsville, 8-12 August 1988. 1CRS, 6th International Coral Reef Symposium Executive Committee 2: 745-749.
1990. Sexual reproduction and settlement of the coral reef sponge Chalimula sp from the Red Sea. Marine Biology 105: 25-31.
ISAACS, S., BERMAN, R., KASHMAN, Y., GEBREYESUS, T. \& YOSIEF, T. 1991. New polyhydroxy sterols, dysidamide, and a dideoxyhexose from the sponge Dysidea herbacea. Journal of Natural Products, Lloydia 54: 83-91.
ISAACS, S. \& KASHMAN, Y. 1992. Shaagrockol B and C ; two hexaprenylhydroquinone disulfates
from the Red Sea sponge Toxiclona toxius. Tetrahedron Letters 33(16): 2227-2230.
IVANOVA, E.P., MIKHAILOV, V.V., KOUZNETSOVA, T.A., AFIYATULLOV, A.A., KALINOVSKAYA, N.I., ELYAKOV, G.B., KIPRIANOVA, E.A. \& GARAGULYA, A.D. 1993. Heterotrophic bacteria associated with the sponge Dendrilla sp. and their physiological activity, Biologiya Morya, Vladivostok (1993): 3-10.
JAMES, D.M., KUNZE, H.B. \& FAULKNER, D.J. 1991. Two new brominated tyrosine derivatives from the sponge Druinella (=Psammaplysilla) purpurea. Journal of Natural Products, Lloydia 54: 1137-1140.
JAMES, P.S.B.R., GOPINADHA PILLAI, C.S., THOMAS, P.A., JAMES, D.B. \& KOYA. S. 1989. 19. Environmental damage and consequences. Central Marine Fisheries Institute (1989): 212-227.

JENKIN, C.F. 1908. The calcareous sponges in the marine fauna of Zanzibar and British East Africa, from collections made by Cyril Crossland, M.A., in the years 1901 and 1902. Proceedings of the Zoological Society of London (1908): 434-456.
KAMAT, S.Y., SOLIMABI, NAQVI, S.W.A., FERNANDES, L., REDDY, C.V.G., BHAKUNI, D.S. \& DHAWAN, B.N. 1981. Bioactivity of the extracts from some marine animals of the Indian coast. Mahasagar 14(2): 117-122.
KASHMAN, Y., GROWEISS, A., CARMELY, S., KINAMONI, Z., CZARKIE, D. \& ROTEM, M. 1982. Recent research in marine natural products from the Red Sea. Pure and Applied Chemistry 54(10): 1995-2010.
KASHMAN, Y., CARMELY, S., BLASBERGER, D., HIRSCH, S. \& GREEN, D. 1989. Marine natural products: new results from Red Sea invertebrates. Pure and Applied Chemistry 61(3): 517-520.
KELLER, C. 1889. Die Spongienfauna des rothen Mcercs. I Hälfte. Zeitschrift fur Wissenschaftliche Zoologie 48: 311-406.
1891. Die Spongienfauna des rothen Meeres. Il Hälfte. Zeitschrift fur Wissenschaftliche Zoologie 52: 294-368.
KELLY, M. 1997. Porifera. Sponges. Pp. 106-117. In Richmond, M. D. (ed.) A guide to the seashores of Eastern Africa and the Western Indian Ocean islands (Sida, Department for Research Cooperation, SAREC. Ord \& Vetande AB: Sweden).
KELLY-BORGES, M. \& VACELET, J. 1995. A revision of Diacarnus Burton and Negombata de Laubenfels (Demospongiac: Latrunculiidae) with descriptions of new species from the west central Pacific and the Red Sea. Memoirs of the Queensland Museum 38(2): 477-503.
KIRKPATRICK, R. 1900. Note on the occurrence of the euplectellid sponge Regadrella phoenix O . Schmidt, off the South African coast. Annals of the South African Museum 13: 63-64.
1901. Description of a new hexactinellid sponge from South Africa. Annals and Magazine of Natural History (7) 7: 457-459.
1902a. Descriptions of South African sponges. Cape of Good Hope, Department of Agriculture Bulletin. Marine Investigations in South Africa 2(14): 219-232.
1902b. Descriptions of South African sponges. Part 11. Cape of Good Hope, Department of Agriculture Bulletin. Marine Investigations in South Africa 2(14): 171-180.
1903. Descriptions of South African sponges. Part III. Cape of Good Hope, Department of Agriculture Bulletin. Marine Investigations in South Africa 2(16): 233-264.
1904. Sponges. In Zoological Record (for 1902). Abstract by R. von Lendenfeld. Zoologische Zentralblatt 10: 147-148.
1908. Description of a new dictyonine sponge from the Indian Ocean. Records of the Indian Museum 2: 21-26.
1913. Note on the occurrence of the euplectellid sponge Regadrella phoenix, O. Schmidt, off the South African coast. Annals of the South Africa Museum 13: 64-66.
KOBAYASHI, M., CHAVAKULA, R., MURATA, O. \& SARMA, N.S. 1992a. Marine terpenes and terpenoids. XIV. Absolute configuration and acid catalyzed transformation of $(-)$-12, 13-didehydro-furospongin- 1 isolated from an Arabian sea sponge, Fasciospongia cavernosa Schmidt. Chemical Pharmaceutical Bulletin (Tokyo) 40: 599-601.
KOBAYASHI, M., KRISHNA, M.M., ISHIDA, K. \& ANJANEYULU, V. 1992b. Marine sterols. 22. Occurrence of 3 oxo $4,6,8(14)$ triunsaturated steroids in the sponge Dysidea herbacea. Chemical Pharmaceutical Bulletin (Tokyo) 40: 72-74.
KOLBASOV, G.A. 1990. Acasta pertusa sp. n. (Cirripedia, Thoracica) from the Red Sea. Zoologicheskii Zhurnal 69(9): 142-145.
1992. Two new species of the genus Acasta (Cirripedia, Thoracica) from the south western part of the Indian Ocean, Zoologicheskii Zhurnal 71(1): 140-145.
KONDRACKI, M.L. \& GUYOT, M. 1987. Smenospongine: a cytotoxic and antimicrobial aminoquinone isolated from Smenospongia sp . Tetrahedron Letters 28(47): 5815-5818.
KOREN GOLDSHLAGER, G, KASHMAN, Y. \& SCHLEYER, M. 1998. Haliclorensin, a novel diamino alkaloid from the marine sponge Haliclona tulcarensis. Journal of Natural Products 61 (2): 282-284.
KUMAR, A. 1924a. A new variety of Leucosolenia gardineri (Dendy), Leucosolenia gardineri var. vergensis. Proceedings of the Lahore Philosophical Society $3: 21-22$.

1924b. On a probable new genus of marine sponge from Karachi. Proceedings of the Indian Science Congress 10: 1-167.
1924c. Porifera from Karachi. Proceedings of the Lahore Philosophical Society 3:67-68.
1925. Report on some tetraxonid sponges in the collection of the Indian Museum. Records of the Indian Museum 27: 211-227.
LAGHI, G.F., MARTINELLI, G. \& RUSSO, F. 1984. Localization of minor elements by EDS microanalysis in aragonitic sponges from the St Cassian Beds, Italian Dolomites, Lethaia 17(2): 133-138.
LENDENFELD, R.VON 1897. Spongien von Sansibar. Abhandlungen

Senckenbergiana Naturforschende Gessellshcaft 21:93-133.
LÉVI, C. 1956. Spongiaires des côtes de Madagascar. Mémoires de l'Institut Scientifique de Madagascar (A) 10: 1-23.
1958. Résultats scientifiques des campagnes de la Calypso', Fascicule III. V. Campagne 1951-1952 en Mer Rouge. 5. Spongiaires de Mer Rouge recueillis par la Calypso' (1951-1952). Annales del'Institut Océanographique, Monaco 34:3-46.
1961. Résultats scientifique des campagnes de la Calypso', Fascicule V. XIV. Campagne 1954 dans l'Océan Indien. 2. Les spongiaires de l'ile Aldabra Campaigne Océanographique de la Calypso' (May-Juin 1954), Annales de l'Institut Océanographique, Monaco 39: 1-31.
1963. Spongiaires d'Afrique du Sud (1) Poecilosclerides. Transactions of the Royal Society of South Africa 37(1): 1-72.
1964. Spongiaires du canal de Mozambique. Bulletin du Muséum National d'Histoire Naturelle 36(3): 384-395.
1965. Spongiaires recoltes par l'Expedition Israelienne dans le sud de la Mer Rouge en 1962. Bulletin of the Sea Fisheries Research Station, Israel. Istael South Red Sea Expedition, 1962, Report 13): 3-27.
1967. Spongiaires d'Afrique du Sud (3) Tétractinellides. Transactions of the Royal Society of South Africa 37(3): 227-256.
1986. Laocaetis perion nov. sp., spongiaire hexactinellide Craticulariidae de l'ocean Indien. Bulletin du Muséum National d'Histoire Naturelle, Paris (4) 8(A, 3): 437-442.
MAGNINO, G. \& GAINO, E. 1998. Haplosyllis spongicola (Grube) (Polychaeta, Syllidae) associated with two species of sponges from East Africa (Tanzania, Indian Ocean). Marine Ecology 19(2): 77-87.
MARSDEN, J.R. 1975. Classes of lipids in marine sponges from Kenya. Journal of Experimental Marine Biology and Ecology 19: 9-18.
McCABE, T., CLARDY, J,, MINALE, L., PIZZA, C., ZOLLO, F. \& RICCIO, R. 1982, A triterpenoid pigment with the isomalabaricane skeleton from the marine sponge Stelletta sp. Tetrahedron Letters 23(33): 3307-3310.

McPHAIL, K., DAVIES COLEMAN, M.T. \& COETZEE, P. 1998. A new furanosesterterpene from the South African nudibranch Hypselodoris capensis and a Dictyoceratida sponge. Journal of Natural Products 61(7): 961-964.
MEBS, D. 1985. Chemical defense of a dorid nudibranch, Glossodoris quadricolor from the Red Sea. Journal of Chemical Ecology 11(6): 713-716.
MERGNER, H. 1982. Man made influences on and natural changes in the settlement of the Aqaba reefs (Red Sea). Proceedings of the International Coral Reef Symposium (4): 193-207.
NGOC HO, N. 1990. Nine Indo Pacific species of Upogebia Leach (Crustacea: Thalassinidea: Upogebiidae). Journal of Natural History 24(4): 965-985.
PARAMESWARAN, P.S., DAS, B. \& KAMAT, S.Y. 1994. Lipid contents of the sponge Haliclona sp. Indian Journal of Chemistry (B) Organic Chemistry, Medicinal Chemistry 33B(1): 99-101.
PARAMESWARAN, P.S., KAMAT, S.Y., CHANDRAMOHAN. D., NAIR, S. \& DAS, B. 1992a. Anti-bacterial compounds from the sponge Haliclona sp. Pp. 417-420. In Desai, B. N. (ed.) Oceanography of the Indian Ocean (Oxford \& IBH Publishing Co.: New Delhi, Bombay).
PARAMESWARAN, P.S.. NAIK., C.G., DAS, B. \& KAMAT, S,Y. 1989. Sterols from the Lakshadweep sponge, Ircinia ramosa (Keller). Indian Journal of Chemistry Section (B) Organic Chemistry, Medicinal Chemistry 28(12): 10911092.

1992b. Minor sterols from the sponge Ircinia ramosa (Keller). Pp. 413-416. In Desai, B. N. (ed.) Oceanography of the Indian Ocean (Oxford \& IBH Publishing Co.: New Delhi, Bombay).
Parameswaran, p.S., Naik, C. G \& Hegde, V.R. 1997. Secondary metabolites from the sponge Tedania anhelans: isolation and characterization of two novel pyrazole acids and other metabolites. Joumal of Natural Products. Lloydia $60(8): 802-803$.
PATEL, B., PATEL, S. \& BALANI, M.C. 1985. Can a sponge fractionate isotopes? Proceedings of the Royal Society of London (B) Biological Sciences 224(1234): 23-41.
PETTIBONE, M.H. 1993. Scaled polychaetes (Polynoidae) associated with ophiuroids and other invertebrates and review of species referred to Malmgrenia McIntosh and replaced by Malmgreniella Hartman, with descriptions of new taxa. Smithsonian Contributions to Zoology (538): 1-92.

PETTIT, G.R., CICHACZ, Z.A., RUI, T., HOARD, M.S., MELODY, N. \& PETTIT, R.K. 1998a. Antineoplastic agents. 386. Isolation of sesterstatins 13 from the marine sponge Hyrtios erecta. Journal of Natural Products 61(1): 13-16.
PETTIT, GK., GAO, F., DOUBEK, D.L., BOYD, M.R., HAMEL, E., BAI, R.L., SCHMIDT, J.M.,

TACKETT, L.P. \& RÜTZLER, K. 1993a. Antineoplastic agents. 252. Isolation and structure of Halistatin- 2 from the Comoros Marine Sponge Axinella carteri. Gazzeti Chimica Italiana 123: 371-377.
PETTIT, G.R., HERALD, C.L., CICHACZ, Z.A., GAO, F., SCHMIDT, J.M., BOYD, M.R., CHRISTIE, N.D. \& BOETTNER, F.E. 1993 b. Isolation \& structure of the powerful human cancer cell growth inhibitors spongistatins 4 \& 5 from an African Spirastrella spinispirulifera (Porifera). Journal of the Chemical Society, Chemical Communications 1993: 1805-1807.
PETTIT, GR., GAO, F., SCHMIDT, J.M., CHAPUIS, J.-C. \& CERNY, R.L. 1994a. Isolation and structure of Axinastatin 5 from a Republic of Comoros marine sponge. Bioorganic and Medicinal Chemistry Letters 4(24): 2935-2940.
PETTIT, G.R., RUI, T., HERALD, D.L., CERNY, R.L. \& WILLIAMS, M.D. 1994b. Antineoplastic agents. 277. Isolation and structure of phakellistatin 3 and isophakellistatin 3 from a Republic of Comoros marine sponge. Journal of Organic Chemistry 59(7): 1593-1595.
PETTIT, G.R., McNULTY, J., HERALD, D.L., DOUBEK, D.L., CHAPUIS, J.C., SCHMIDT, J.M., TACKETT, L.P. \& BOYD, M.R. 1997. Antineoplastic agents. 362. Isolation and X ray crystal structure of dibromophakellstatin from the Indian Ocean sponge Phakellia mauritiana. Journal of Natural Products, Lloydia 60(2): 180-183.
PETTIT, GR., TAN, R., MELODY, N., CICHACZ, Z.A., HERALD, D.L., HOARD, M.S., PETTIT, R.K. \& CHAPUIS, J.C. 1998b. Antineoplastic agents. 397. I solation and structure of sesterstatins 4 and 5 from Hyrtios erecta (The Republic of Maldives), Bioorganic Medical and Chemical Letters 8: 2093-2098.
PULITZER-FINALI, G 1993. A collection of marine sponges from East Africa. Annali del Musco Civico di Storia Naturale G. Doria' 89: 247-350.
RAHIM, M.A. 1979. Porifera. Publications Saudi Biological Society 3: 46.
RAMADAN, S.A. 1997. Two new species of mesostigmatid mites (Acari) associated with sponges from the Red Sea, Egypt. Assiut Veterinary Medical Journal 38(75): 191-204.
RICHMOND, M.D. 1997. A guide to the seashores of Eastern Africa and the Western Indian Ocean islands. (Sida, Department for Research Cooperation, SAREC. Ord \& Vetande AB: Sweden).
RIDLEY, S.O. 1884. Spongiida. Pp. 366-482, 582-635. In Report on the Zoological Collections made in the Indo-Pacific Ocean during the Voyage of H.M.S. Alert 1881-2 (British Museum (Natural History): London).
RIDLEY, S.O. \& DENDY, A. 1887. Report on the Monaxonida collected by HMS Challenger' during the Years 1873-76. Pp. 1-275. In Report on the Scientific Results of the Voyage of H.M.S.

Challenger during the Years 1873-76. 20 (Her Majesty's Stationery Office: London, Edinburgh, Dublin).
RINKEVICH, B., SHASHAR, N. \& LIBERMAN, T. 1993. Nontransitive xenogeneic interactions between four common Red Sea sessile invertebrates. Pp. 833-839. In Richmond, R.H. Proceedings of the Seventh International Coral Reef Symposium. Mangilao, Guam, 22-26 Junc 1992. University of Guam Press $2: 833-839$.

ROW, R.W.H. 1911. Reports on the marine biology of the Sudanese Red Sea, from collections made by Cyril Crossland, MA, BSc, FZS. XIX. Report on the sponges collected by Mr Cyril Crossland in 1904-5. Part 11. Non-Calcarea. Journal of the Linnean Society, Zoology 31 (208): 287-400
RUDI, A. \& KASHMAN, Y. 1993. Aaptosine a new cytotoxic 5,8 diazabenz(cd)azulene alkaloid from the Red Sea sponge Aaptos aaptos. Tetrahedron Letters 34(29): 4683-4684.
RUJD, A., TALPIR, R., KASHMAN, Y., BENAYAHU, Y. \& SCHLEYER, M. 1993. Four new C16 1,2 dioxene polyketides from the sponge Plakortis aff. simplex. Journal of Natural Products, Lloydia 56(12): 2178-2182.
RUDI, A., KASHMAN, Y., BENAYAHU, Y. \& SCHLEYER, M. 1994a. Sodwanones A F, new triterpenoids from the marine sponge Axinella weltneri. Journal of Natural Products, Lloydia 57(10): 1416-1423.
RUDI, A., STEIN, Z., GREEN, S., GOLDBERG, I., KASHMAN, Y., BENAYAHU, Y. \& SCHLEYER, M. 1994b. Phorbazoles A D, novel chlorinated phenylpyrrolyloxazoles from the marine sponge Phorbas aff. clathrata. Tetrahedron Letters 35(16): 2448, 2589-2592.
RUDI, A., KASHMAN, Y., BENAYAHU, Y. \& SCHLEYER, M. 1995. Durbinal A, B and C: three new cytotoxic sponge metabolites. Tetrahedron Letters 36(27): 4853-4856.
SAMAAI, T. 1997. Systematics, phylogeny and biogeography of a selection of poecilosclerid sponges from Ouderkraal, on the west coast of South Africa. Unpubl. MSc thesis, Department of Biology, Imperial College, London.
SARA, M. \& BAVESTRELLO, G. 1995. Tethya omanensis, a remarkable new species from an Oman cave (Porifera, Demospongiae). Bollettino di Zoologia 62(1): 23-27.
SARÅ, M. \& CORRIERO, G. 1994. A new species of Tethya, T. temuisclera (Porifera Demospongiae) from the Maldives. Bollettino dei Musei e degli Istituli Biologici della Universita di Genova 58-59: 69-75.
SARÅ, M., CORRIERO, G \& BAVESTRELLO, G 1993a. Tethya (Porifera, Demospongiae) species coexisting in a Maldivian coral reef lagoon: taxonomical, genetic and ecological data. Marine Ecology 14(4): 341-355.
1993b. Tethya peracuta (Topsent) and T comorensis n sp (Porifera, Demospongiae) from the coral
reef of Mayotte (Comores). Bollettino di Zoologia 60:219-224.
SARÀ, M., PANSINI, M. \& PRONZATO, R. 1979. Zonation of photophilous sponges related to water movement in reef biotypes of Obhor Creek (Red Sea). In Lévi, C. \& Boury-Esnault, N. (eds) Biologie des Spongiaires. Sponge Biology. Colloques Internationaux du Centre National de la Recherche Scientifique (291): 282-288.
SCHLEYER, M.H. 1991. Shell borers in the oyster, Striostrea margaritacea: pests or symbionts? Symbiosis 10(1-3): 135-144.
SCHMIDT, E.O. 1862. Die Spongien des Adriatischen Meeres (Wilhelm Engelmann: Leipzig).
SCHMIDT, E.W., HARPER, M.K. \& FAULKNER, D.J. 1997. Mozamides A and B, cyclic peptides from a theonellid sponge from Mozambique. Journal of Natural Products, Lloydia 60(8): 779-782.
SOEST, R.W.M. van 1984. Marine sponges from Curaçao and other Caribbean localities. Part III, Poecilosclerida. Studies on the Fauna of Curaçao and other Caribbean Islands (199): 1-167.
1993. Distribution of sponges on the Mauritanian continental shelf. In Wolff, W.J. o, van der Land, J. Nienhuis, P.H. \& de Wilde, P.A.W.J. (eds) Ecological studies in the coastal waters of Mauritania، Hydrobiologia: 258: 95-106.
1994a. Demosponge distribution patterns. Pp. 213-224, In Soest, R,W.M, van, Kempen, T.M.G. van \& Braekman, J.-C. (eds) Sponges in time and space. (Balkemat Rotterdam).
1994b. Sponges of the Seychelles, Pp. 65-74, In van der Land, J. (ed.) Oceanic reefs of the Seychelles: report on a cruise of RV Tyro to the Seychelles in 1992 and 1993 (National Museum of Natural History: Leiden).
SOEST, R.W.M. VAN \& HAJDU, E. 1997. Marine area relationships from twenty sponge phylogenies. A comparison of methods and coding strategies. Cladistics 13: 1-20.
SOEST, R.W.M. VAN, ZEA, S. \& KIELMAN, M. 1994. New species of Zyzzya, Cornulella and Damiria (Porifera: Poecilosclerida), with a review of fistular genera of Iophonidae. Bijdragen tot de Dierkunde 64(3): 163-192.
SOKOLOFF, S., HALEVY, S., USIELI, V., COLORNI, A. \& SAREL, S. 1982. Prianicin A and B , nor sesterterpenoid peroxide antibiotics from Red Sea sponges. Experientia, Basel 38: 337-338.
SOLLAS, I.B.J. 1908. The inclusion of foreign bodies by sponges, with a description of a new genus and species of Monaxonida. Annals and Magazine of Natural History (8) 1:395-401.
STEPHENS, J. 1915. Atlantic sponges collected by the Scottish National Antarctic Expedition. Transactions of the Royal Society of Edinburgh 50: 423-467.
THOMAS, P.A, 1973. Marine Demospongiae of Mahe Island in the Seychelles Bank (Indian Ocean).

Annales du Musée Royal de l'Afrique Central-Tervulen, Belgique (8 , Sciences Zoologiques) (203): 1-91.
1975. Boring sponges of Zuari and Mandovj Estuaries. Bulletin of the Department of Marine Science University of Cochin 7(1): 117-126.
1976a. Marine Demospongiae of Zanzibar Island. Journal of the Marine Biology Association of India 18(3): 448-460.
1976b. The history of spongology of the Indian Ocean. Journal of the Marine Biological Association of India 18(3): 610-625
1979a. Demospongiae of Minicoy Island (Indian Ocean) Part 1 - orders Keratosida and Haplosclerida. Joumal of the Marine Biological Association of India 21(1-2): 10-16.
1979b. Endectyon lamellosa n. sp., (Demospongiae: Poecilosclerida, Raspailiidae) from the Indian seas and a revised key to the Indian species of Endectyon Topsent. Journal of the Marine Biological Association of India 18(1): 169-172.
1979 c . Studies of sponges of Mozambique Channel 1. Sponges of Inhaca Island. 2. Sponges of Mambone and Paradise Islands. Annales du Musée Royal de l'Afrique Centrale, Tervuren, Belgique (8 , Sciences Zoologiques). Koninklijk Museum Voor Midden-Afrika Tervuren Belgie Annalen Zoologische Wetenschappen (227): 1-73.
1980a. Demospongiae of Minicoy Island (Indian Ocean) Part 2 = order Poecilosclerida. Journal of the Marine Biological Association of India 22(1-2): 1-7.
1980b. Demospongiae of Minicoy Island (Indian Ocean) Part 3 - orders Halichondrida, Hadromerida, Epipolasida and Choristida. Journal of the Marine Biological Association of India 22(1-2): 8-20.
1981a. Marine Demospongiae of Ras Iwatine (Kenya). Journal of the Marine Biological Association of India 18(3): 642-649.
1981b. A second collection of marine Demospongiae from Mahe Island in the Seychelles Bank (Indian Ocean). Koninklijk Museum Voor Midden-Afrika Tervuren Belgie Annalen Zoologische Wetenschappen (233): 1-54.
1988. Sponge generated bioerosion in Lakshadweep. Indian Council of Agricultural Research Marine Fisheries Information Service Technical and Extension Series (86): 20-26.
1989. 13. Sponge fauna of Lakshadweep. Central Marine Fisheries Research Institute (1989): 150-161.
THOMAS, P.A., GOPINADHA PILLAI, C.S. \& RAJAGOPALAN, M.S. 1997. Demospongiae of the Gulf of Kutch. Journal of the Marine Biological Association of India 38(1-2): 124-132.
THOMSON, W. 1868. On the vitreous' sponges. Annals and Magazine of Natural History (4) 1: 114-132.

TOPSENT, E. 1890. Etudes de Spongiaires, II. Description d'une Lithistide molle de la Rémion (Ǩuliapsis permolis nov. sp.). Revue de Biologie du Nord France 2(8): 294-296.
1892, Éponges de la Mer Rouge. Mémoires de la Société Zoologique de France 5:21-29.
1893a. Mission Scientilique de M. Ch. Alluaud aux lles Sechelles (Mars-Mai 1892), Spongiaires. Bulletin de la Suciété Zoologique de France 18:172-175.
1893b. Note sur quelques Éponges du Golfe de Tadjoura recueillies par Mi le Dr L. Faurot. Bulletin de Société zoologique de France 18: 177-182.
TRIMURTULU, Ci \& FAULKNER, D.J. 1994. Six new diterpene isonitriles from the sponge Acamhella cavernosa. Journal of Natural Products, 1.loydia 57(4): 501-506.
VACELET, 1. 1967a, Descripions d"éponges Pharetronides actuelles des tumnels obscurs sous-récifaux de Tuléar (Madagascar). Recueil des Travaux de la Station Marine d'EndoumeMarscille (6): 37-62.
1967b. Quelques éponges Pharétronides et Silico-Calcaires de grottes sous-marimes obscures. Recueil des Travaux de la Station Marine dEndoume 58: 121-132.
1977. Éponges Pharétronides actuclles et sclérosponges de Polynésie française, de Madagascar et de La Réunion. Bulletin du Muséum National d'Histoire Naturelle (3, 7,oologic) 307(444): 345-368.
VACELE'I, Jo, TIERCELIN, J..I. \& GASSE, F. 1991. The sponge Dosilica hrouni (Spongillidae) in Lake Baringo, Gregory' Rift, Kenya. Hydrobiologia $211(1): 11-18$.
VACELE1, I, \& VASSEUR, P, 1965. Spongiaires des grottes et surplombs des récifs de Tuléar (Madagascar). Recueil des Travaux de la Station Marine d'Endoume-Marseille, Supplement (4): 71-123.
1966. Les tunnels obsurs sous-técifaux de Tulćar (Madagascar) et leur faune de spongiaires. Pp.
378. In Abstracts of the Second International Occanographic Congress. (Moscow).
1971. Eponges des récifs coralliens de Tuléar (Madayascar). Tethys, Supplément 1: 51-126.
1977. Sponge distribution in coral reefs and related areas in the vicinity of Tulear (Madagascar). Pp. 113-117. In Proceedings of the 3rd International Coral Reef Symposium. Miami, Florida. (Rosenstiel School of Marine and Atmuspheric Science: University of Miami).
VACELET, s., VASSCUR, P. \& LEVI, C. 1976. Spongiaires de la pente exterme des récifs coralliens de Tuléar (sud-Ouest de Madagascar). Mémoires du Muséum National d'Histoire Naturelte, Paris (A, Zoologie) 49: 1-116.
VENKATESWARLU, Y., FAULKNER, D.J., RIOS STEINER, J.L., CORCORAN, E. \& CLARDY, I. 1991. Smenochromenes, unusual macracyelic sesquiterpene hydroquinone derivatives from a Seychelles sponge of the genus Smenospongia. Journal of Organic Chemistry 56(22): 6271-6274.
VERON, J.E.N. 1986. Corals of Australia and the IndoPacific. (Angus \& Robertson: Sydney; London).
1993. A biogeographic database of hermatypic corals. Species of the Central Indo-Pacific Genera of the world. Australian Institute of Marine Science Monograph Scries 10:1-433.
VINE, P. 1986, Red Sca invertebrates. (IMMEL Prublishing: London).
VOSMAER, GC.J. 1880. The sponges of the Leyden Museum. I. The family of the Desmacidinae. Notes from the Leyden Muscum 2: 99-164.
WÖRHEIDE. G. 1998. The reef cave dwelling ultraconseryative coralline demosponge Astrusclera willeyana Lister 1900 from the Indo-Pacific. Facies 38: 1-88.
WRIGHTT, E.P. 1881. On a new genus and specics of sponge (Alemo seychellensis) with supposed heteromurphic zooids. Transactions of the Irish Academy 28: 13-20.

DEMOSPONGIAE: POECILOSCLERIDA:TEDANIIDAE)

JOHN A. K'tNNEDY ANDJ JOHN N.A. HOOPER

Abstract

Kicnnedy, J.A. \& Hooper, J.N.A. 2000 U6 30: New specics of toxic Teclania from Northern Vantutu (Porifera: Demospongiae: Posecilosclerida: Tedaniidae). Afemoirs of the Queensfand Aluscam 45(2): 445-451. Brisbanc. ISSN 0079-8835.

Tielunio (Tedania) stronglown/osp, nov, is described, compared with T. ignis, another toxic species from the Caribbean, and other 'edunia species from tropical and subtropical Pacific waters. \square Porifera, Demmspmagiae, Pnecilaselerida, Tedanidace. Tedanich, ne"l specios. Tinnuru. Hest Paclice. toxomomav. dermathis, teric sponge.

Johm A. Semmedy ef Johm N.A. Moopor, Marbe Bialogy Laborulary, Qucemsland Muxtum, Souh Brishume - 11/1, Aussralia; 13 Augast. 1990.

Toxic reactions from thanding marine sponges are well documented for species nf Nerpibuluria. Biemna, Lissodenduryx, Tedemia, and also recorded from some species of Micruchoma and Haliclona (see Wilkinson, 1978; Ilooper, Capon \& Hodder. 1991: Hooper, 1996: Rifkin, 19)6), Of these toxic species, the most notorious is Tecdania ignis (Duchassaing \& Michelotti, 1864) from the Caribbean, earning it the name of "tire sponges" (de Laubenfels, 1949). De Laubenfels (1949; 1954) reported that T. ignis was abundant in shallow-waters throughout the West Indies and compared its dermatitis effects to thnse of poison-ivy (Rhus toxicudendron), producing a 'somewhat painfuk, itching, buming feeling listing for several days" (1949; 17).

Tedania ignis was described subsequently from Hawaii and Palau by de Latubenfels (1950, 1954), with some hesitation. Their identification of these Pacific specimens was influenced by its similarity of dermatitis feaction to that of 7\% ignis. Identification was provisional, and after considering their geographic isolation, de Lauhenfels suggested that they should be recognised as T. igruis subspecies pucijficu.

With the possible exception of a casual observation by Bergquist (reparted in Southcott \& Coulter, 1971), such dematitis reactions have not been reported from any other species of Tedania. Bergquist informed Southcott \& Couller (1971) that she had received skin irritations from handling Tedania in New Zealand waters. but her observation was not accompanied by identification or description of the offerding species.

Recenf collection of a red sponge from Vanuatu produced a skin irritation similar to that described for T. ignis. Subsequent taxnomic nentification conlirmed it was a Teidenla.
differing from its congeners in spiculation and skelual structure. This paper describes the muterial as a new species, detailing differences between in and similar species from tropical ant sublropical waters.

MATERIALS AND METHODS

Specimens were collected from the intertidal zone, preserved initially in 95% ethanol for four days, then transferred to 70% ethanol for permanent storage. Histological techniques for light and scanming electron microscopy (SEM) follow Hooper (1996). Spicule morphometric analysis wats conducted using a light microscope and cannera-lucida, wiht reference tu a lemplate drawn from a stage micrometer. Spicule measurements are hased on 25 spicules of each spicule category for each individual, and pertain to mavinum dimension, denoted as range (and mean) of length and width. Spicule measurements are in micrometres.

Abbreviations: O)RSTOM, Institut Fraņ̧ais de Recherche Scijentilique pour le Développerment en Coopération, Centre de Noumea; QM, Queensland Muscum, Brisbanc; ZMA, Zoölogische Museunn, Universiteit van Amsterdam, Amstendam.

SYSTEMATICS

PORIFERA Grant DEMOSPONGIAF Sollas POECLLOSCLERIDA Tupsent, 1928
TEDANIIDAE Ridley \& Dendy, 1886
DEFINITION. Encrusting, massive or digitale sponges; choanosomal skeleton predominamtly plumoreticulate or even plumose, composed of tracts of smooth or spined styles, or smooth ancas, enclosed within light or moderate spongin fibres. of with to visilile fibres and spicules

FIG. 1. Tedanica (Tedanid) strongylosnla sp. nov. (holotype QM G315594). A, Holotype, B, section through peripheral sheleton. C, strongylote style and D, terminations. E, tylote and F microspined base, G larger onychaete and 13 , asymmetrical terminations. I , smaller onychacte and J , asymmetrical terminations.
merely cemented together with collagen at their nodes; ectosomal spicules are tylotes or tornotes, usually with basal spination, lying tangentially, paratangentially or erect on the surface, although usually not in bundles; microscleres are onychaetes; chelae absent (from Hooper \& Wiedenmayer, 1994).

REMARKS. Discussions surrounding the family are well summarised in Hooper \& Wiedenmayer (1994).

Tedania Gray, 1967
Tedania Gray, 1867: 520.
Trachytedania Ridley, 1881: 122 (type species Trachytedania spinata Ridley, 1881, by original designation).
Tedaniopsis Dendy, 1924: 366 (type species Tedaniopsis turbinata Dendy, 1924, by original designation).
Paratedania Burton, 1929: 441 (type species Oceanapia tantula Kirkpatrick, 1907, by original designation).
Oxytedania Sarà, 1978: 61 (type species Oxyteclania bifaria Sarà, 1978, by original designation).

TYPE SPECIES, Reniera digitata Schmidt, 1862, by subsequent designation (see Koltun, 1959: 154).

DEFINITION. Massive; ectosomal skeleton composed of tylotes or tornotes with microspined bases forming tangential or paratangential surface tracts; choanosomal skeleton composed of styles with smooth or microspined bases, producing reticulate, plumo-reticulate, plumose or even dendritic architecture; microscleres are onychaetes (from Hooper, 1998).

REMARKS. The synonymy of Tedania follows Burton (1932), with the addition of Oxytedania Sarà, 1978 proposed by Desqueyroux- Faủndez \& van Soest (1996) on the basis that the genus was unrecognisable, conditionally qualifying it as a junior synonym. Desqueyroux-Faủndez \& van Soest (1996) further propose retaining Tedania, Tedaniopsis and Trachytedania as subgenera.

Subgenus Tedania Gray, 1867

DEFINITION. Tedania possessing smooth, relatively small, occasionally strongylote styles as structural megascleres, and microspined tylotes as ectosomal megascleres (from Desqueyroux-Faùndez \& van Soest, 1996).

REMARKS. Tedania differs primarily from Tedaniopsis and Trachytedania in having tylote (rather than tornote) ectosomal megascleres.

Tedania (Tedania) strongylostyla sp. nov. (Fig. 1, Table 1)

ETYMOLOGY. Strongylostyla, for the strongylote-like ends of the styles which differentiate this species from its congeners.

MATERIAL. HOLOTYPE: QM G315594: inlet leading to Ycu Métenia Bay (Picot Bay), Hiu (North Island), Torres Islands, Vanuatu, $13^{\circ} 05.340^{\prime} \mathrm{S}, 166^{\circ} 33.061^{\prime} \mathrm{E}$, inlet with rocky coralline substrate and moderately turbid water (about 20 cm visibility), 0.3 m depth, 22 .vii. 1999 , coll. J.A. Kennedy.

COMPARATIVE MATERIAL. PARALECTOTYPE: ZMA POR. 2373 Thalysias ignis Duchassaing \& Michelotti, 1864 from St Thomas, Caribbean..

HABITAT DISTRIBUTION. Marine, less than 1 m depth, on rocky coralline substrate and partially buried in surrounding sand, occurring in moderately turbid water; Torres Islands, Vanuatu.

DESCRIPTION. Shape. Thickly encrusting, amorphous mats, up to 16 cm in greatest horizontal width and 2 cm thick; loosely adhering to rocky coralline substrate and partially buried in sand, with surface barely protruding through substrate.
Colour. Bright orange-red externally (Munsell 10R 6/12), drab greenish-grey in the peripheral Choanosome ($2.5 \mathrm{GY} 6 / 2$), becoming lighter brownish-grey in deeper regions ($2.5 \mathrm{Y} 7 / 2$) when alive; ethanol preserved material has drab milky-orange exterior, grading toward beige deeper in the choanosome.
Oscules. Small, approximately 1 mm diameter when alive, scattered indiscriminately over the surface, commonly apical on short conulose projections up to 4 mm high and 8 mm diameter, but also flush with surface; less obvious in preserved state.
Texture. Soft, spongy, compressible, easily torn.
Surface characteristics. Opaque, with approximately two-thirds of surface covered by sandy silt and fine algal tilaments which extend into choanosome; lightly rugose, covered with small irregular ribs, lightly membranous over irregularly scattered, minute, subdermal depressions commonly about 1 mm but up to 2 mm wide.
Ectosome. Difficult to detach from choanosome; about $60-100 \mu \mathrm{~m}$ thick; consisting of a tangential to paratangential layer of loose paucispicular multispicular tracts of tylotes in whispy, dendritic-plumose arrangement, with abundant single tylotes and scattered onychaetes between

FIG. 2. Tedania (Tedania) ignis (Duchassaing \& Michelotti, 1864). (paralectotype ZMA POR.2373). A. Paralectotype. B. section through peripheral sheleton. C, strongy lote style and D, terminations. F. Iy lote and F. microspined base. G , larger onychate and H , asymmetrical terminations. I, smaller onychacte and J, asymmetrical terminations.
aracts; ectosomal membrane appears very granalar and contains tine detritus fragments.
Chornosome. Skeleton consists primarily of a vaguely ascending plumn-reticulate arrangement of paucispicular tracts composed mainly of strongylote styles and fewer tomotes, with abundant megaseleres and microseleres seattered individually hetween tracts; mesohyl is granular. cuntaining both fine and larger detritus framents seattered throughout; fibres ahsent: hright orange-red larvace, about $500 \mu \mathrm{~m}$ diameter, comthon in deeper chomosonte.
Megascleres. Strongylote styles, thin, smooth, straight or very fiently curved, not tapering atung entire length; with strongylnte terminations that are lightly lelescuped (210-(235)-304 $\times 2.5-$ (3.5)-5), Tylotes. smooth, straight, with oval, microspined apices (213-(228)-240 $\times 2-(3.5)-5)$.
Aricroncletes. Onychaetes, in two size classes, with abudanl spination. Both larger (118-(185)-2211※1-(1.2)-1.5) and smaller onychaetes $(\$ 3-(55)-103 \times 0.5-(0.7)-1)$ are asymmetrical! styloid duc to microspination located one end.

RLMARKS Tedania smongylosmla sp. nov is superticially similar to the Cariblean T. gentis (1)uchassaing \& Michelotti, 1864) in growth form, spicule dimensions (Table 1) and in producing a fennatitis deaction upon contact with skin. This similarity in their spicule dimensions is not surprising. since Lehnert \& van Soest (1996: 69) state, 'Tedanka (Tedania) from tropical docalities all over the world display similir spiculation so that may not be at good species criterion". Iresplective of these similarities, T. sirongylustyla sp , nov. difiers from T. ignis in having distinctly different style terminations and skelctal architechure.
Teduniur Ignis was redescribed comprehensively by van Soest (1984). It has an irregular renieroid choanesomal skeletal reticulation, whereas Tedanid strongwostula sp. nov, has a loose. vaguely ascending plumo-reticulate choanosomal skeletal arrangement. Similarly, T. strongrfostyles卬p. hov. has distinctly strongylote styles compared with the unnodified styles of T. ignis (SEM examination of the paralectotype's spiculation is presented in Fig. 2 (or comparison). Apart from the single record of strongylate modsfications of styles observed in a single , Tanaican deep-water specimen tentatively assigned to T. 1T.) cLi ignis by Lelunert do van Soest (1996). differences in skeletal arranement, spicule morphology and disjunct biogengraphical
distributions support the jecogration of $\%$.

()ther species of Jexarnia from tive unpical Pacilic with tho sterechisses olomechates inchude T. divhaphis Hentschel. 1912, T. gathapagensis Desqueyroux-Faúmice \& san Snest, 1996 and 7 : strongyta Jinhe. 1986. The Iirst two species difter significantly fiom T. strongalowsla sp, woy, in having styles ol lypical morphology and meshtype choanosumal skeletal structure. Tedanhe strongyde Jinhe. 1986, described from Chinese waters (Jinhe, 1986) is similar to T. strongyloseyde sp . nov. in its skeletal arrangement and ir possessing choanosumal strongyles, but as observed for $\%$ ignis these spicules clearly represent malformed styles and do not constitute the principal chounesomal spicule type. Tedrabiea brasilicnsis Mothes et al., 2000 trom Brazil also has Isw sise classes if unychates hut difiers from T. spong ilostake sp. nov. in having: suhisodicyal chomasumal skeletal arrangement similar las that of T. ignis.
It is perssihle that other species of Tedmia mas also bave two size classes of onychactes, even though they were originally recorded as having only one. For example. a second category of onychacte was discovered by van Socst (1984) in T. 'ignis, and in several Tedaniu (Trachyleduntion) spp, by Desqucyroux-Faúridez. \& van Soct (199fi).
The dermatitis reaction experienced by the primary author through contuct with 2, strons:hestever sp. 701: commenced as a mild itchire sensation lasting for about five minutes, intensifying to severe itching, mild swelling anu redelening of the skin lasting for three days, with subsequent skin loss experienced atter one werk. The exfent of the reaction varied between collectors, ranging from only mild itchines to mote severe reactiuns as described above. Experimental application ofan alcohol preserved specimen failed to produce any irritation.

ACKNOWLLEDGEMENTS

The aulturs thand OKSTOM tor the opporturt. iry to paricipate ja the nortleern Varnatu biudiversity survey progratm conducted during July. 1999; the captain, crew and scientists of 'NO Alio' 'or theirassistance in the field, Dr Rub van Soest, Zoölogische Museum, Universiteit van Amsterdam, for loan of type material: and I D_{1} Fduardo Hajdu, Universidade Federal dn Rin de Janciro and Universidade de Sän Panlo: كon bringing to our attension new literature.

TABLE 1. Comparison between spicule dimensions of Tedania (T.) strongylostyla, T. (T.) strongyla, T. (T.) ignis, T. (T.) brasiliensis, T. dirhaphis and T. (T.) galapagensis. Measurements given in $\mu \mathrm{m}$, denoted as range (and mean). $\mathrm{L}=$ length; $\mathrm{W}=$ width.

Species	Locality	Styles	Tylotes	Large onychaetes	Small onychaetes
T. strongulostyita sp. поү.	Northern Vanuatu, W. Pacific Ocean	Strongylote styles L. 210-(235)-304; W. 2.5-(3.5)-5	$\begin{aligned} & \text { L. } \frac{213-(228)-240}{\text { W. } 2-(3.5)-5} \end{aligned}$	$\begin{aligned} & \text { L. } 118-(185)-220 \text {; } \\ & \text { W. } 1-(1.2)-1.5 \end{aligned}$	$\begin{aligned} & \text { L. } 43-(55)-103 ; \\ & \text { W. } 0.5-(0.7)-1 \end{aligned}$
T. stronevia Jinhe, 1986	Gulf of Tonkin, South China Sea	Typical styles L. 190-310; W. 6-8. Strongyfote styles L. 212-224: W. 6-8.	L. 201-218; W. 3-4	L. 126-182; W. 2-3	L. $50-62$; W. I
T. ignis (Duch. \& Mich., 1864) (Paralectotype; van Soest, 1984)	Jamaica, Caribbean Sea	L. 220-240; W. 4-8	L. 210-225; W. 3	L. 180	L. 50
T. ignis (Duch. \& Mich., 1864) (van Soest, 1984)	Caribbean Sea	$\begin{aligned} & \text { L. } 202-(248.8)-281 ; \\ & \text { W. } 4-(6.31)-9 \end{aligned}$	$\begin{aligned} & \text { L. } 180-(2: 17.1)-248 ; \\ & \text { W, } 2.5-(3.38)-4.5 \end{aligned}$	$\begin{aligned} & \text { L. } 154-(211.1)-247 \\ & \text { W. } 0.5-(1.61)-2.5 \end{aligned}$	$\begin{gathered} \text { L. } 30-(64.0)-95 \\ \text { W. } 0.5 \end{gathered}$
T. cf. ignis (Duch. \& Mich., 1864) (Lehnert \& van Soest, 1996)	Jamaica, Caribbean Sea	L. 250-300; W. 9-11	L. 215-240; W. 3-4	L. 215-240; W. 3-5	L. 35-70; W. 1
T. ignis pacifica (Duch. \& Mich., 1864) (de Laubenfels, 1954)	Hawaii, Central Pacific Ocean	L. 160-210; W. 6-8	L. 180-210; W. 3-4	L. up to at le	200; W. 1-2
I. ignis pucifica (Duch. \& Mich., 1864) (de Laubenfels, 1954)	Palau, W. Pacific Ocean	L. 225; W. 3.5	L. 245-260; W. 5-6	L. <215	W. <1
T. brasiliensis Mothes et al., 2000	Chilean Coast, E. Pacific Ocean	Strongyles L. 151-228	L. 151-257	L. 95-200	L. 40-78
T. dirhaphis Hentschel. 1912	Arafura Sea	L. 218-312	L. 224-248	L. 200-312	L. 40-112
T. galapagensis Desqueyroux-Faúndez \& van Soest, 1996	Galapagos, E. Pacific Ocean	L. 192-246; W. 6-7	L. 179-234; W. 3-4	L. 173-205; W. 2	L. 61-93; W. 0.5-1

LITERATURE CITED

BURTON, M. 1929. Porifera. Part 2. Antarctic sponges. British Antarctic ('Terra Nova') Expedition, 1910. Natural History Report, Zoology. 6(4): 393-458. 1932. Sponges. Discovery Reports 6: 237-392.

DENDY, A. 1924. Porifera. Part 1. Non-Antarctic sponges. British Antarctic ('Terra Nova') Expedition, 1910. Natural History Report 6(3): 269-392.

DUCHASSAING DE FONBRESSIN, P. \& MICHELOTTI, G. 1864. Spongiaires de la mer Caraïbe. Hollandische Maatschappij Der Wetenschappen, Haarlem. Natuurkundige Verhandelingen (2) 21 (3): 1-115.
DESQUEYROUX-FAÚNDEZ, R. \& SOEST, R.W.M. van 1996. A review of Iophonidae, Myxillidae and Tedaniidae occurring in the South-East Pacific (Porifera: Poecilosclerida). Revue Suisse de Zoologie 103(1): 3-79.
GRAY, J.E. 1867. Notes on the arrangement of sponges, with the description of some new genera. Proceedings of the Zoological Society of London 1867: 492-558.
HENTSCHEL. E. 1912. Kiesel- und Hornschwämme der Aru und Kei-Inseln. Abhandlungen Senckenbergiana naturforschende Gesellschaft 1912: 295-448.
HOOPER, J.N.A. 1996. Revision of the Microcionidae (Porifera: Poecilosclerida: Demospongiae), with
description of Australian species. Memoirs of the Queensland Museum 40: 1-626.
1998. Sponguide: Guide to sponge collection and identification. (Queensland Museum: Brisbane) (http://www.qm.qld.gov.au/nature/explorenature spong.pdf).
HOOPER, J.N.A., CAPON, R.J, \& HODDER, R.A. 1991. A new species of toxic marine sponge (Porifera: Demospongiae: Poecilosclerida) from Northwest Australia. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 8(1): 27-36
HOOPER, J.N.A. \& WIEDENMAYER, F. 1994. Porifera. Pp. 1-624. In Wells, A. (ed.) Zoological Catalogue of Australia. Vol. 12. (CSIRO Australia: Melbourne).
JINHE, L. 1986. Sponges as marine fouling organisms in China waters I. Studia Marina Sinica 26(2): 76-116.
KIRKPATRICK, R. 1907. Preliminary report on the Monaxonida of the National Antarctic Expedition. Annals and Magazine of Natural History (7) 20: 271-291.
KOLTUN, V.M. 1959. The Cornacuspongida of the northern and far eastern seas of the U.S.S.R. Pp. 1-236. In Keys to the Fauna of the U.S.S.R. Published by the Zoological Institute Akademia Nauk SSSR Vol. 67 Moscow: Izdatel'stvo 'Nauka' (in Russian).

LAUBENFELS, M.W. de 1949. Sponges of the Western Bahamas. American Museum Novitates 1431: 1-25.
1950. The sponges of Kaneohe Bay, Oahu. Pacific Science 4(1): 3-36.
1954. The sponges of the west central Pacific. Oregon State Monographs, Zoology 7: 1-306.
LEHNERT, H. \& SOEST, R.W.M. van 1996. North Jamaican Deep Fore-Reef Sponges. Beaufortia 46(4): 53-81.
MOTHES, B., HAJDU, E. \& SOEST, R.W.M. van 2000. Tedania brasiliensis new species (Demospongiae, Poecilosclerida, Tedaniidae) from Brazil, with some remarks about the genus Tedania in the tropical southwestern Atlantic. Bulletin of Marine Science 66(1): 1-11.
MUNSELL, 1977. Munsell Color Charts for Plant Tissues. 2nd Edition (Munsell Colour: University of Wisconsin).
RIDLEY, S.O. 1881. XI. Spongida. Horny and siliceous sponges of Magellan Straits, S.W. Chili, and Atlantic off S.W. Brazil. Proceedings of the Zoological Society of London 1881: 107-137, 140-141.
RIDLEY, S.O. \& DENDY, A. 1886. Preliminary report on the Monaxonida collected by the H.M.S. 'Challenger'. Annals and Magazine of Natural History (5) 18: 325-351, 470-493.
RIFKIN, J.F. 1996. Phylum Porifera (sponges). Pp. 340-344. In Williamson, J.A., Fenner, P.J., Burnett, J.W. \& Rifkin, J.F. (eds) Venomous and

Poisonous Marine Animals: Medical and Biological Handbook. (University of New South Wales Press: Sydney).
SARÀ, M. 1978. Demospongie diacque superficiali della Terra del Fuoco (Spedizioni AMF Mares-GRSTS e SAI). Bolletin dei Musei e degli Instituti Biologici dell 'Universita' di Genova 46: 7-117.
SCHMIDT, E.O. 1862. Die Spongien des Adriatischen Meeres. P. 1-88 (Leipzig: Engelmann).
SOEST, R.W.M. van 1984. Marine Sponges from Curaçao and other Caribbean Localities. Part III. Poecilosclerida. Studies on the Fauna of Curaçao and other Caribbean Islands (199): 1-167.
SOUTHCOTT, R.V. \& COULTER, J.R. 1971. The effects of the southern Australian marine stinging sponges, Neofibularia mordens and Lissodendoryx sp. The Medical Journal of Australia 2: 895-901.
THIELE, J. 1905. Die Kiesel und Hornschwämme der Sammlung Plate. Fauna chilensis. Zoologische Jahrbücher, Jena Supplement 6: 407-496.
TOPSENT, E. 1928. Spongiaires de l'Atlantique et de la Méditerranée provenant des croisières du Prince Albert Ier de Monaco. Résultats des Campagnes Scientifiques Accomplies sur son Yacht par Albert Ier Prince Souverain de Monaco 74: 1-376.
WILKINSON, C.R. 1978. Description of two Demospongiae, one being toxic from the Great Barrier Reef. Tethys 8(3): 267-270.

RESOLVING THE ‘JAASPIS STELLIFERA’ COMPLEX

JOHN A. KENNEDY

Kennedy, J.A. 200006 30: Resolving the 'Jaspis stellifera' complex. Memoirs of the Queensland Museum 45(2): 453-476. Brisbane. ISSN 0079-8835.

Abstract

Five species included in synonymy with Jaspis stellifera (Carter, 1879) (Coppatiidae) by authors were re-evaluated from type material for the first time since originally described. Original descriptions were found to be mostly incomplete, with subsequent synonymies excessive. Only two (Stellettinopsis coriacea Carter, 1886 and Stellettinopsis purpurea Carter, 1886) are retained in synonymy with./. stellifera. Stellettinopsis carteri Ridley, 1884 is synonymised with Rhabdastrella globostellata (Carter, 1883) (Ancorinidae). Stellettinopsis lutea Carter, 1886 is retained in Jaspis and S. tuberculata Carter, 1886 is referred to Stelletta, both reinstated as valid species. Two new species (Asteropus radiocrusta, Jaspis cristacorrugatus) were described from one misidentified syntype of S. tuberculata Carter, 1886 and other new material superficially resembling " J . stellifera" of authors. Tropical and subtropical specimens of ' J. stellifera', comprising much of the material described in the marine natural products literature, were found to have been misidentified specimens of R. globostellata, apparently lacking triaenes. With the exception of R. globostellata, which has a distribution throughout much of tropical and subtropical Indo-Pacific, species were found to have restricted distributions in Victorian and Tasmanian waters. \square Porifera, Demospongiac, Coppatiidac, Ancorinidae, Jaspis stellifera, taxonomy, new species, revision, Australia.

John A. Kennedy, Queensland Museum, South Brisbane 4101, Australia (e-mail: JohnK@qm.qld.gov.au); 20 October, 1999.

The name 'Jaspis stellifera' (Carter, 1879) is widely cited in the marine natural products chemistry and other biological literature (e.g. Ravi et al., 1981; Ravi \& Wells, 1982; McCaffrey \& Endean., 1985; Fuerst et al., 1999; Wilkinson et al., 1999). This species has an alleged distribution throughout the tropical West Pacific region, also reportedly occurring along Australia's NE and S coasts, extending into Victoria and Tasmania (Hooper \& Wiedenmayer, 1994). Chemical investigations of various populations of 'Jaspis stellifera' discovered two molecule types: cyclic peptides and malabaricane-type triterpenes (van Soest \& Braekman, 1999). However, van Soest \& Braekman (1999) concur with Fusetani \& Matsunaga (1993) that cyclic peptides are most probably products of various microsymbionts, since similar compounds have been isolated from many orders of Demospongiae, cyanobacteria and ascidians. Conversely, mala-baricane-type triterpenes have been reported from specimens of ${ }^{*} J$. stellifera' from Fiji and the Great Barrier Reef (Ravi et al., 1981; Ravi \& Wells, 1982), and are suggested as good markers for Stelletta s.I. (including closely related Rhabdastrella) (van Soest \& Braekman, 1999). Consequently, van Soest \& Braekman (1999) proposed that specimens of ' J. stellifera'
containing malabaricane triterpenes belong to Stelletta, lacking triaenes, and not to Jaspis.
Jaspis stellifera was erected by Carter (1879), as Amorphina stellifera, for material from Tasmania. Within the following decade, several morphologically similar species were described from Australia, including Stellettinopsis lutea Carter, 1886b, S. tuberculata Carter, 1886a, S. coriacea Carter, 1886 and S. purpurea Carter, 1886b, from Victoria, and S. carteri Ridley, 1884, from Torres Strait, N Queensland. Shaw (1927), under the direct supervision of Maurice Burton of the BMNH, synonymised all these species into Jaspis stellifera. Subsequently, 'J. stellifera' was described from the Low Isles (Burton, 1934) and Heron Island (Bergquist, 1969) on the Great Barrier Reef, apparently filling the gap in distribution between Victoria in the south and Torres Strait in the north. In Bergquist's (1969) remarks, however, she disputed Shaw's (1927) inclusion of S. coriacea and S. purpurea in the synonymy of Jaspis stellifera, based on two inconsistencies in the published data, both of which are demonstrated here to be invalid or unsupported (see remarks for J. stellifera, below). Nevertheless, Bergquist's (1969) revised synonymy for J. stellifera was subsequently adopted by Wiedenmayer (1989), who examined whole type specimens only superficially, and this

FIG. 1. Known distributions of species described in this paper. $1=$ Jaspis stellifera; $2=$ Jaspis lutea; $3=$ Jaspis cristacorrugatus; $4=$ Asteropus radiocrusta; $5=$ Stelletta tuberculata; $6=$ Rhabdastrella globostellata.
decision was perpetuated in the Porifera volume of the Zoological Catalogue of Australia (Hooper \& Wiedenmayer, 1994).

In light of the probable widespread misidentifications of tropical West Pacific specimens of ' J. stellifera', it is appropriate to re-evaluate this species complex, to produce a better informed synonymy and a revised distribution of species within this complex. Thus it was necessary to redescribe comprehensively all type material, given that most original descriptions of nominal species were incomplete, illustrated poorly and, as discovered here, often incorrect. This paper reevaluates all Jaspis species described previously from Australia, since they are all contained in the 'J. stellifera' complex, re-examining key voucher material and relevant type specimens, and providing a revision of species and their corresponding distributions.

MATERIALS AND METHODS

Histological techniques for light microscopy and scanning electron microscopy (SEM) follow Hooper (1996).

Morphometric analysis of spicules was conducted using a light microscope and cameralucida, with reference to a template drawn from a stage micrometer. At least 25 spicules of each spicule category were measured in all specimens (except where noted). Measurements refer to length and width of monactinal spicules, rhabd length and clad length of tetractinal spicules, and diameter of astrose microscleres. Measurements refer to maximum dimensions of each spicule,
denoted as size-range (and mean in parentheses) for each spicule type. All measurements are given in micrometres unless stated otherwise. Centrum percentages for each aster type were also noted.
Conventional morphological terms follow Boury-Esnault \& Rützler (1997).
Abbreviations. AIMS, Australian Institute of Marine Science, Townsville; BMNH, The Natural History Museum, London; LMJG, Abteilung für Zoologie am Landes-museum Joanneum (Landes Museum Jubileum Graz), Graz; NTM, Northern Territory Museum of Arts and Sciences, Darwin; GBR, Great Barrier Reef, Queensland; NCI OCDN-, United Sates National Cancer Institute, Coral Reef Research Foundation shallow water collection contract, Chuuk State \& Republic of Palau, (1992-present); NCI Q66C-, United States National Cancer Institute, Australian Institute of Science shallow water collection contract (1984-91); ORSTOM, Institut Français de Recherche Scientifique pour le Développement en Çoopération, Centre de Noumea; QM, Queensland Museum, Brisbane.

RESULTS

Changes to the synonymy of Jaspis stellifera, extending from the work of Shaw (1927) to Bergquist (1969) and the present study, are presented in Table 1. These data propose major changes to species groupings within the " J. stellifera' complex. Figure 1 summarises the revised known distributions for species included in this complex.

 Sielleminupsis tuberculata (Carter); ${ }^{3}$ - identified by Bergquist (1969) as Jaxpix whlljera from Heron Island. Great Batrier Reef; ${ }^{-}=$included to avoid possible confusion with Jaspris /rutad.
 purpuren Carter. 1 Bohb: Stehertinopsis Intea Carter, 1886b; Stelletinopsis carteri Ridley, 1884: Stellettinopsis ruherewhata Canter, 1886a
 (16therw withat
 Juspis purpurea

 cesslacorrugaltas sn, nov.

SYSTEMATICS
 PORIFERA GTant DEMOSPONGIAE Sollas TETRACTINOMORPHA LÉvj ASTROPHORIDA Levi, 1973

COPPATIIDAE Topsent. 1898

DEFFINITION. Encrusting to massive growth forms; megascleres only oxeas forming a confused, vaguely radial choanosomal skeleton: megascleres also form a tangential layer in ectosome, triaenes absent: microscleres euasters (never sterrasters), sometimes sanidasters (modified from Hooper \& Wiedennayer, 1994).
REMARKS. A summary of synnnymios and discussion of the family are provided by Hooper \& Wiedenmayer (1994). Hajdu \& van Soest (1992) suggested that the absence of triaenes is it swopect diagnostic character for the family and proposed that the concept of Coppatidae be retained provisionally, pending nore detailed re-evaluation of its probable polyphyletic nature.

Jaspis Gray 1×67

Cupputius Sollas, $1888: 206$ (1)pe species: Siellerthorgarts coriater Carter, 1886, by original designation),
 Asrogerpus pukture Sollas 1 Axs. by monots py'
TYPE SPECIES, fina iolmatrazi Schmidh, 18E2: 78, bn Hunclym.
DEFINITION. Coppatiidac with euasters as mieroseleres.
REMARKS. Lendenfeld (1896) demonstrated that Astropeplus pudcher Sollas, I888 (type - pecice: (A) Ampopephes) was syonymons with Fona johnstonii Schmidt, 1862° (type species of Jispis), but mistakemly placed it in Xemaspongia Gray, 1858 (tamily Tethyidere). In recounising Uhis, 'Topsent (1808) telcgated V. johnnsionit to

Coppulies Sollis, 1888 , rejected Gray's generic name Jaspis on the hasis that it was of no seientific value, and then futer reinstating Jaspis as a valid genus (Topsent, 1904). In ratifying this later decision, Dendy (1916) again synonymised Coppatias with daspis, the senior name.

Hajdu \& van Snest (1992) anestioned whether or not Juspis constituted a monophyletic assemblage, since two species groups were recognisable based on the presencc or absence of "microxeas", However, this is mot atcepted here as these "microxeas" are considered to be a small. er category of oxeote megascleres. The existence of graded oxeote size-distriburions with intermediate size categories ofter presents difliculties in differentiating between smaller ('microxeas') and larger oxeotes. Hence, the present concept of Jaspis retains both assemblages. although it is acknowledged that further wotk is required to reconcile the taxonomic significance of smatler Mc: Mc:

Jaspis stellifera (Carter. 1879)
(Figs I, 2, Tahle 2)
Amprghinta alediferas Cartar, 187y: 344
Sfellcttinopais stell//erte Ridley, $1884: 477$.
Compuriaw verlifeniry Sollas, 1888: 208.
Jespuis Selliferct: Shaw, 1927: 422
not Jaspirs stelliferde: Burton, 1934:521
Stellertimipns is crorkbea Cater: 18 Sina: 120.
Coppatias coriaceus; Sullas, 1888: ? 177
, /aspus cornaceve I koper \& Wicderuma Lor. 1994: 143.
Stellethimpsis purpurat Curter, $1880 \mathrm{~h}: 459$.
Copparticas purpremers: Sollas, 1888:207.
./axpts morpuras: 1 looper \& Wicdovndyir. 1904: 143
MAIERIAL. HOLOITPE: BANHF1869.1.22.25 (dry): Tismaniar (also marked wits Carter no 315.E./D. 19). Holotspe of Seflernmonsis contatia Carter, 1886a B.MNH1886. 12.15.441 (dry): I'on Phillip Heads, Victaris Holotype of Stelletrinopsis purpurea Carter, 18866 BMN111886.12.15.51 (wet): Westemport Bay, Victcria OTHER MATFRIAL: BMNII unregistered (secthl afucinto it same coutainct as holotype and also mavked

FIG 2. Jaspis stellitera (Carter, 1879) (hototype BMNII!869.1.22.25). A, holutspe; B, holothpe of'S coriakea BMNH1S86.12.15.44:C. holutype of S. purpurca BMNH1886.12.15.51 (arrow indicates position of oscule); D , section through peripheral skeleton; $E_{\text {, oxeas; }} F_{\text {, oxyaster. }}$

TABLE 2. Comparison between present and published descriptions of Jaspis stellifera. Measurements in $\mu \mathrm{m}$, denoted as range (and mean) $(\mathrm{N}=25) . \mathrm{L}=$ length; $\mathrm{W}=$ width; $\mathrm{D}=$ diameter.

	Oxeas	Oxyasters
Holotype BMNH1869.1.22.25	$\begin{gathered} \text { L } 113-(388)-726 \\ \text { W 3-(12)-16 } \end{gathered}$	D 11-(15)-22
Holotype (Original description Catter, 1879)	L 725; W 17	D 17
BMNH unregistered Bowerbank collection Carter no. $315, \mathrm{E}$,h, 19	$\begin{gathered} \text { L } 120-(354)-730 \\ \text { W 3-(10)-16 } \end{gathered}$	D 7-(12)-16
BMNH1886.12.15.441 holotype of J. coriacea	$\begin{gathered} \text { L } 62-(265)-898 \\ \text { W } 2-(8)-21 \end{gathered}$	D 7-(11)-13
BMNH1886.12.15.51 holotype of J. purpurea	$\begin{gathered} \text { L } 53-(347)-781 \\ \text { W 3-(10)-18 } \end{gathered}$	D 7-(10)-12
NMV F5193 (Wiedenmayer, 1989)	$\begin{gathered} \text { L. 89-(364.8)-682.8 } \\ \text { W } 2-(9)-18 \\ \hline \end{gathered}$	D 8-(12)-15

with Carter no. 315.E.h.19) (dry): South Australia, 1859, J.S. Bowerbank collection. COMPARATIVE MATERIAL: Holotype of Vioa johnstonii Schmidt, 1862 LMJG 15648/0 Sebenico, Adriatic Sea, Syntype of V. johnstonii var. Schmidt, 1868 LMJG 15256\%: Sebenico, Adriatic Sea.

HABITAT DISTRIBUTION. Subtidal to 37 m depth, amidst dense algal growth; Westernport Bay and Port Phillip Heads, Victoria; Erith Island, Bass Strait; Tasmania.

DIAGNOSIS. Irregularly lobate-massive; dull pinkish purple-brown alive; surface optically smooth, even, unomamented; ectosomal skeleton consisting of a densely packed tangential arrangement of oxeas largely obscuring microscleres; choanosomal skeleton of singular and loose bundles of oxeas in confused arrangement, with scattered oxyasters; oxeas in wide sizerange (length 53-(339)-898, width 2-(11)-21), microspined oxyasters (diameter 7-(12)-22).

DESCRIPTION. Shape. Holotype massive, amorphous, irregularly lobate, may envelop other materials such as algae, shells or detritus. Height 4.7 cm , width $2.6 \times 2.5 \mathrm{~cm}$. Other specimens up to $5.5 \times 4.5 \times 3.5 \mathrm{~cm}$.
Colour. Fresh specimens described as dull-purple to brownish-drab (5RP 5/6-8) (Wiedenmayer, 1989); dry holotype creamy-white (Munsell 2.5Y 8/3) with dark-pink (2.5R 5/4) diffuse patches scattered over surface, with greyish-beige (7.5YR 8/2) choanosome; ethanol preserved specimen dark greyish-purple (5RP 3/2) throughout.
Oscules. Not visible in dry holotype but Carter (1879) describes 'vents in pit-like depressions'; one incomplete specimen (BMNH1886.12.15.51) has a single apical depression approximately 4 mm
deep and 11 mm in greatest width, containing several oscules up to 3 mm diameter.
Texture. Firm, compressible, leathery.
Surface characteristics. Opaque, optically smooth, even, unornamented.
Ectosome. Thin, approximately 400-700 thick; skeleton composed of oxeas in confused arrangement, with oxyasters scattered throughout but largely obscured, and with clumped pinkishpurple pigment cells scattered over surface.
Choanosome. Permeated by canals approximately $0.15-1.10 \mathrm{~mm}$ diameter, with smallest canals near periphery; skeleton comprised of loose, multispicular bundles of oxeas in confused arrangement, with abundant scattered oxeas and oxyasters; mesohyl contains clumps of scattered, dark-pinkish pigment bodies approximately 2-8 diameter, and spherical translucent and transparent bodies.
Megascleres. (Refer to Table 2 for spicule dimensions) Oxeas in one wide size-range, typically curved over their entire length; variations rare but include straight, lightly flexuous, singly and doubly bent, and styloid forms.
Microscleres. (Refer to Table 2 for spicule dimensions) Oxyasters with approximately 10-20 fine, lightly tapering rays with recurved microspines on distal two-thirds of rays, centrum approximately 13% of spicule diameter; variations rare, but include vestigial spination over full ray length, to exaggerated clumping of microspines on distal portion of ray, thus vaguely resembling tylote terminations.

REMARKS, The BMNH specimen box containing the holotype includes two specimens. Only one specimen is pierced by a tag bearing the registration number BMNH69.1.22.25, along with the locality 'Van Diemen's Land' (Tasmania). The other specimen is from the J.S. Bowerbank collection and comes from 'Southern Australia'. Carter gave both specimens his number ${ }^{6} 315, \mathrm{E}, h, 19$ '. While both specimens are confirmed here to belong to J. stellifera, only the specimen bearing the BMNH tag is taken here to be the holotype.

Little information is added here to the original description except for some detail regarding spiculation. As previously noted by Wiedenmayer (1989), the oxeas have a wide size-range, with little concordance between length and width. While smaller oxeas are relatively abundant, the presence of many intermediate sizes precludes recognising more than one variable size-class of

FIG. 3. Jaspis lutea (Carter, 1886) (lectotype BMNH1886.12.15.356). A, lectotype; B, paralectotype BMNH1886.12.15.93 (arrows indicate position of specimen on substrate); C, section through peripheral skeleton; D, large oxea; E, small oxea; F, oxyaster.
oxeas. SEM examination revealed that microspination of the oxyaster rays is commonly recurved toward the centrum. Spicule measurements undertaken here confirmed Wiedenmayer's (1989) suspicion that Carter provided only the measurements for the largest spicules, ignoring the range of spicule sizes actually present.

Stellettinopsis curiacea Carter, 1886 and S. purpurea Carter, 1886 bare retained here in
synonymy with J. stellifera (Carter, 1879), based on re-examination of all type specimens, revealing that they are morphologically identical in virtually all respects. This partially ratities Shaw's (1927) synonymy for J. stellifera, and contrasts to Bergquist's (1969) revised synonymy. While Shaw's synonymy was excessive, Bergquist's difficulty in accepting the inclusion of S. coriacea and S. purpurea was based on two
supposed ineonsistencies in the published data. hothofwhichareinvalid. Firstly, Burgquis(noted that Shaw's specimen reportedly did not have asters: secondly, she stated that "Jaspis coriacera and J. puphrees have ives distinct catcgories of asters. a feature never noted in of. stellifera'. In this debate, it is unimportant whether or not Shaw's specimen had aslers because it was not the type. Carter's (1879) original description of the holotype clearly described only one category of aster, confirmed here from re-examination of sypermaterial. Bergquist's (1969) sceund point of dispuation is also unsupported since original descriptions of S: coriucen and S. purpurea also include only one catcgory of aster, rather than two, also conlimied from te-examination of type material.
Original descriptions of S. corracea and S. purguen repart the presence of "microxeas". whereas re-cxamination of type material revealed that, as described above, these microxeas represent only smaller examples of a wide sizerunge of oxcas, with many intermediate sizes.
Comparisum between.J. slellifers and the type species ol' olaspis (bioa johnstonii Schmidt, 1862), including both type material and pubLished descriptions (Dendy 1916: Burtun \& Rao. 1932) confirms that . I. stellifera is a true Jesaps. Bolls d. johnstania and d. sellifera have a tangential ectusome enmposed of oxcote spicules and a choanosome containing oxeotes in comfused and vagucly tadial arrangement. Euasters are oxyasters, some with rays that are minutely microspined (a feature not described previously for the lype species), Juspis johnstonio differs in having a bimodal size distribution of nxeas (with the larger size-class primarily restricted to the choanosome), whereas J. stellifere has a wide. unimodal size-distribution. Itrespective, both clearly belong to the present concept of saspis, witt the issue of unimodal versus himodal oxeote size distributions remaining unresolved.
Examination of a slide of Burton's (1934) specimen (BMNH1930.8.13.86) identified as "Saspis stellifera" from the Low Isles, GBR. revealed that it too had been misidentified (Huoper et al. 1999; present ssudy). Burton's specimen clearly differs from J. stellifera in facking a distincl ectusome and in having two categurses of asters, one being slightly bipolar ind resembling diplasters or short spirasters. Gross morphological dilferences cannot be commented on bere since only a slide was available for cx amimation, and Burfon did nol publish any
descriptive detail regarding the specimen, It may Hedl aepresent athew spectes, since it dues not correspond in any, Jewpla species described presinusly trum Australion waters.
Wiedemayer's (1989) deseription of a specimen of i, wellifera from soubhem Ansitral ios included only superticial comparison ul his matcrial with various type specimens (smerpiphtote) shelfiferto stellertinopsis subercthata and S. hatea). Because of circumstances preventing hin: from examining slides of these types, he was unable to reveal the distinctive nature of each at these species, This is diseussed further betan:

Juspis latea (Carter, 1886)

(Figs 1, 3, Table 3)

Coppathas lomeves: Solllas, 1888: 2017.
MAALERLAL. ILEC"TOTYPE: BMNIIS88.12.15.356 (Ivel): Westempart Bay, Victoriza, coll. J.B. Wilson, PARALEC FOI YI'E: BMNH18囚 2.12 .15 .93 (dry): Westcrmprom Bay, Victoria, coll. JB, Wilson, OTHER MATERIAL: BMN!11954.2.12.256 (slide of type prepared by 1. Dendvi.

ITARITAT DISTRIBUTHON, Sublidal to 13 m: depitr: Westemport Bay, Victoria.
DIAGNOSIS. Lubale-massive, agghmerating suisstrate Prayments: sus lice lobate, Iuberculake: ectosome distinct. comprising a fine layes of simall oxeas overlaying tangentially-artanged larger oxeas; chonnosomal skeleton primarily a confused arrangement of oxcas; oxcas in twosize classes (larger oxeas length $1800-(516)-712$, width 6 -(12)-19; smaller oxeas length $52-(81)-110$. widh 1-(3)-5), microspined onyasters (diametes 8 -(13)-18).
DESCRIPTION. Shape, Irreqularly lobate, agglomeraling calcarcous substrites, sand and shell fragments. Types incomplete, with largest porlion 8 cm high. $12 \times 8 \mathrm{~cm}$ wids
Cohenr: Live colouration unkzown: wa lectory pe has tan-brown surface (Munsell $2.5 \mathrm{Y} 5-7 / 6$) with goldco-brown chatusome ($-.5 \mathrm{Y} 7 / 8$); dy' paralectotype has dull-creany yellow surtace (2.5Y 6.7/4) with dull goldell-yellow choanosume ($2.5 \mathrm{Y} 7 / \mathrm{S}$).
Owchles. Numernus, approximately 0.5-8.2าม dianneter, flush with, and regularly distributed over surface.
Texure. Firm, slightly friable, leathery.
Situface characteristics, Upaque, membramus. optically sinooth, uneven, with clusters of lobate tuhereles irtegularly diaributed iner sutrace.
 dispis lurea. Alcasurements in $\mu \mathrm{m}$, denoted as range (and mean) $(\mathrm{N}=25)$. 1 . $=$ leneth; $\mathrm{W}=$ ibldh; D = diameter; * Spicule dimensions not included in Carrers (1886 h) origiual description, but included by Sullisi (1888).

less prominent ectosome). There are also differences in colour and extcrnal morphology, with.$/$. butes being golden ycllow-brown and having a lobate-tuberculate growth form (cf. dull pinkish-purplebrown with an unornamented, ircenularly lohate-maseive shape)

Important intomatom prowided hete, addine to Canter ss (1886b) anisinal description, includes the description of a second size-class of oxea (perhaps previously dis-

Ecrosome. Distinct Irum chuanusome. approximately 400-600 thick; skelcton highly spiculose: densely packed, comprised ul' wo layers; outer layer largely indistinct, very fine, approximately 50) thick, with smill useas in cenfused armagement: inuer layer comprised of a tangential arrangement of both large and small oxeas: ayuilerous canals. approximately 200 diameter. regularly Haverse ectosume: oxy'asters present fut largely obscured by megascleres.
Chucumserms. Permeated by latece tamals up to 11 num dianmeter; skicion composed of a conlused arrangement of single small and large oxeas, as well as large nxeas in loose paucispicular to multispicular bundles: oxyasters scattered throughout the choanosomal skeleton but slightly more abundant in canal linines.
Megascleres. (Refer 10 Table I for spicule dimensions) Oxeas, in distinctly bimodal sizedistribution. Larger uxess stightly curved aver entire length, with very faintly telescoped poinls and uccasionally with u few teminal nucrospines: variations rare but inelude styloid modifications.

Smaller oxeas, angulitr, with -2 bends and hastate temminations.
Micosscleres. (Refor to Tisble 3 for spicule dimensions) Oxyasters, with 6-12 lightly tapering rays that haveconical foreurved micruspines on distal two-lhrds: centrum approximately 15% of spicule diamerto.

REMARKS. Jaxpis lurea is reinstated as a valid species of Jisspis, distinct front d, seellifera in several important respects. There are importiant differences in spiculation, with J. lutea having tho size classes of oxcas in a distinetly bimodal size-distribution (cf. J. sleflifere having a unimodal, wide size-range of oxcote spicules). Skeletal differences include J. /utea having a more locatised distribution of smallet nxeas, promatrily in a distimblectosume (cf. no such levalisation oloxeote spicule types, and with a far
missed as merely smaller examples of a presumed unimudal size-distribution of uxeute spicules), the provision of spicule dinaensions. and details of mitospination on onyaster rays.

Jaspis cristacorrugatus sp, nos
(Figs 1, 4, 8A, B, Table 4)
EIYMULUCY. Lath crista, sidgc; Latin corrugutws, wrinkled; for the corrugated oscular ridge.

MATERPAL, HOLOTYPE: QMG312071 INCI ($6665144-N$): W sude of chamnel, in middle of Breaksea Island. Port Davey, Tasmania, Australia, 43'19.70'S $145^{\circ} 57.60^{\circ} \mathrm{E}$, exposed rock slope, houlders, walls, gullies, kelp. 10 m depth, 17.ij.1991, coll. AIMS/NCI. PARATYPE: QMG312073 (NCl Q66C-5151-P): S end ol Breaksea Island, Port Davey, Tasmania, Australia, $43^{\circ} 20.2 u^{\prime} \mathrm{S}, 147^{\circ} 57.80^{\circ} \mathrm{E}$, rocky slope to llat rocky buttom with many crevices and caves, 15 m depth, 17.ii. 1991 , coll. AIMS/NCl.

If.4BITAT DISTRIBUTION. 10-15m depth, on rocky substrate with walls, gullics and outcrops: Port Davey, Tasmania.

DIAGNOSIS. Massive, subspherical to slightly lobate; leathery, firm; slate-grey alive; darkbrown to golden out of water; tan-brown in ethanol; slightly rugose surtace; many small oscules in furrows between corrugations on wide oscular ridge: distinct ectosome, primarily ol densely packed smaller oxeas; chomosome ridelled with canals, and skeleton of single and paucispicular bundles of large oxeas in confused to loosely plumose reticulation vaguely ascending toward surface, with scattered smaller oxcas and oxyasters between tracts; oxeas in two size classes (larger oxeas length 290-(453)-629, width 2-(9)-15); smaller oxeas length $30-(133)-267$. width 3-(5)-12); microspined oxyasters (diamcter 6-(13)-21).

DESCRIPTION, Shape. Preserved specimen ancomplete but when living was massiven subspherical, slightly lohate, with a thick.

FIG. 4. Jaspis cristacorrugatus sp. nov. (holotype QMG312071). A, oscular ridge surface; B, perpendicular section; C, section through peripheral skeleton; D. large oxea; E, small oxea; F, oxyaster.
corrugated, oscular ridge along the apex (from photographic record, Fig. 8A-B). Height 15 cm , width $20 \times 20 \mathrm{~cm}$ when alive and complete.

Colom: Slate-grey ectosome (Munsell 2.5 Y 6/1) with lemon-yellow (2.5 Y 8/5) in membrane surrounding oscules when alive, golden-yellow (7.5Y 7/8) to dark-brown (5YR 2.5/2) ectosome, with golden-yellow choanosome (7.5YR 7/8) when fresh; chocolate-brown (7.5 Y R 4/2)
ectosome with tan-brown (7.5YR 5/6) membrane surrounding oscules, with tan-brown (7.5YR 5/6) choanosome in ethanol.

Oscules. Many, small oscules, approximately 0.5 mm diameter, clustered in linear arrangement, 1-2 oscules wide in furrows between corrugations of oscular ridge.

Texture. Very firm, rubbery, with leathery surface.

Surface characteristics. Opaque, optically smooth, uneven, with regularly distributed low rounded surface swellings tending toward slightly rugose.
Ectosome. Distinct from choanosome, 400-1400 thick, regularly traversed by aquiferous canals approximately 200 diameter; skeleton highly spiculose, with a densely packed layer of smaller oxeas in confused arrangement that largely obscures a scattering of oxyasters.
Choanosome. Riddled with aquiferous system canals up to 11 mm diameter; skeleton of single oxeas and loose paucispicular bundles of oxeas in confused to vaguely plumo-reticulate arrangement; oxyasters present and slightly more abundant in aquiferous system linings.
Megascleres. (Refer to Table 4 for spicule dimensions) Oxeas, in distinctly bimodal sizedistribution. Larger oxeas lightly curved over entire length, occasionally fusiform, with acerate to slightly telescoped points.

Smaller oxeas centrally curved, with hastate to slightly telescoped points.
Microscleres. (Refer to Table 4 for spicule dimensions) Oxyasters, with $9-15$ lightly tapering rays that have recurved microspines primarily on distal two-thirds; centrum approximately $10-15 \%$ of spicule diameter. Variations rare but include vestigial spination, to clumping of spines near terminations, thus resembling tylotes when viewed under light microscopy.
REMARKS. Even though this material is described as a new species, and has not been previously synonymised with J. stellifera, it is included here because it may be easily confused with the newly reinstated J. lutea (if the subtle differences described here were not elucidated). Although J. cristacorrugatus is similar to J. lutea in spiculation and choanosomal skeletal structure, the two are clearly differentiated by several important characteristics. The external morphology is the most obvious difference between the two, with J. cristacorrugatus being massive in growth form (cf. J. lutea being irregular-lobate), and does not agglomerate foreign materials. Further, oscules are grouped into furrows across a thick oscular ridge (cf. regularly distributed over the surface). Significant differences in texture also differentiate the two species, with J. cristacorrugatus being very firm and rubbery (cf.c crumbly and friable). The main differences in skeletal structure is that J. cristacorrugatus has an ectosome composed of smaller oxeas, lacking the underlying tangential layer of oxeas found in J. lutea.

ANCORINIDAE Schmidt, 1870

DEFINITION. Growth forms encrusting or massive, or more specialised with spherical body and long inhalant and exhalant tubes at opposite ends (the latter with a stellate, spicular, funnelshaped end); megascleres long-shafted triaenes (with shaft directed inwards and clads on the surface) and oxeas; microscleres euasters and microrhabds; without sterrasters or amphiasters; triaenes may be absent or reduced (modified from Hooper \& Wiedenmayer, 1994).
REMARKS. Ancorinidae Schmidt, 1870 is best known under its junior synonym Stellettidae Carter, 1875 (Hooper \& Wiedenmayer, 1994). Hajdu \& van Soest (1992) provide an informative discussion on the relationship between Ancorinidae and Coppatiidae.

Asteropus Sollas, 1888

TYPE SPECIES. Stellettinopsis simplex Carter, 1879: 349, by original designation.
DEFINITION. Ancorinidae with oxeas, oxyasters and sanidasters to which trichodragmata may be added.
REMARKS. Bergquist $(1965,1968)$ and Hajdu \& van Soest (1992) proposed that two species groups exist within Asteropus based on microsclere type. They argued that species with true sanidasters may be placed in the 'simplex'-like complex, whereas those with spiny microrhabds should be placed in the 'sarasinorum'-like group, the latter ascribing the name Melophlus Thiele, 1899 and possibly valid at the subgeneric level.

Asteropus radiocrusta sp. nov.

(Figs 1, 5, Table 5)
Stellettinopsis tuberculata (in part) Carter, 1886a: 126.
ETYMOLOGY, Radius, Latin, ray; crusta, Latin, hard outer surface of a body; for the radial arrangement of megascleres in the cortical ectosome.

MATERIAL. HOLOTYPE: BMNH1886.12.15.146: Pon Phillip Heads, Victoria, coll. J.B. Wilson (originally one of three syntypes of Stellettinopsis tuberculata Carter, 1886a).
HABITAT DISTRIBUTION, 3-6m depth; on granite boulders with algae; Port Phillip Heads, Victoria.
DIAGNOSIS. Massive, subspherical; ectosome forming a highly distinct cortex 2.4-3.1 mm thick, of densely packed oxeas in radial arrangement, with sanidasters and few oxyasters scattered throughout; choanosome with oxeas in confused
arrangement, with oxyasters and few sanidasters scattered throughout; oxeas (length 530-(1063)1730, width 5-(24)-44), microspined oxyasters (diameter 18-(25)-33), microspined sanidasters (length 9-(13)-18).

DESCRIPTION. Shape. Massive, subspherical, with slightly irregular surface. (Attached to the holotype is a second species of sponge that is subspherical and has a highly conulose, membranous surface).
Colour: Live colouration unknown; beige-grey (Munsell 7.5YR 6/2) cortical ectosome with light beige choanosome ($7.5 \mathrm{YR} 7 / 4$) in ethanol.
Oscules. None visible.
Texture. Harsh, firm, barely compressible.
Surface characteristics. Opaque, optically smooth, even, microscopically hispid and densely spiculose.
Ectosome. Approximately $2.4-3.1 \mathrm{~mm}$ thick, forming a cortex that is highly distinct from choanosome; skeleton comprised primarily of oxeas arranged radially in loose multispicular bundles forming an almost continuous palisade, with oxea terminations commonly penetrating the surface; sanidasters are scattered throughout the ectosomal skeleton but are slightly more common at the surface, while oxyasters are rare; containing abundant subspherical pigment bodies approximately 25 diameter.
Choanosome. Skeleton consists of a confused arrangement of both single and very loose paucispicular bundles of oxeas, with an abundance of interstitial oxyasters, but few sanidasters.
Megascleres. (Refer to Table 5 for spicule dimensions) Oxeas in a single, wide size-range, typically curved over entire length, with lightly felescoped terminations; variations rare but include styloid forms.
Microscleres. (Refer to Table 5 for spicule dimensions) Oxyasters, with 7-14 tapering rays that have abundant, recurved microspines occurring along the entire ray length; centrum approximately 12% of spicule diameter.

Sanidasters, with conical microspines and approximately $10-16$ rays in $2-4$ whirls.
REMARKS. The holotype of this species was originally part of the syntype series of Stellettinopsis tuberculata Carter, 1886a. However, it is clearly different from the other syntype (now lectotype, BMNH1886.12.15.434) of S. tuberculata), with the most significant differences involving spiculation, skeletal structure and

TABLE 5. Spicule dimensions of Asteropus radiocrusta. Measurements in $\mu \mathrm{m}$, denoted as range (and mean) $(\mathrm{N}=25)$. $\mathrm{L}=$ length; $\mathrm{W}=$ width; $\mathrm{D}=$ diameter.

	Oxeas	Oxyasters	Sanidasters
Holotype BMNH1886. 12.15.146	530-(1063)-1730 W 5-(24)-44	D 18-(25)-33	L 9-(13)-18

external morphology. Asteropus radiocrusta has a single size category of oxeas, as well as oxyaster and sanidaster microscleres (cf. S. tuberculata which has two sizes of slightly flexuous oxeas and triaenes as megascleres and only oxyasters as microscleres. These substantial differences in spiculation are alone sufficient to clearly separate these two taxa at the generic level. However, they also differ significantly in the skeletal structure of the ectosome, with A. radiocrusta having a highly distinct, thick cortical ectosome of oxeas in erect to plumose bundles, forming an almost completely radial palisade (cf. an arenaceous cortical ectosome with sand-grains largely obscuring scattered oxyasters). In addition, their respective growth forms are greatly different, with A. radiocrusta being small, subspherical and lacking surface ornamentation (cf.' massive-lobate and covered with prominent, irregular tubercles and ridges).
The presence of sanidasters places the present species within the 'simplex'-like group, as described above (see Remarks for the genus). Asteropus simplex (Carter, 1879) is the only other species of Asteropus described so far from Australia. Asteropus radiocrusta sp. nov. is similar to A. simplex, based on its original description, apparently falling within the published geographical distribution of A. simplex (Hooper \& Wiedenmayer, 1994), which includes most of S Australia as well as New Zealand and the IndoMalay region of the Indian Ocean. However, this purportedly extensive distribution of A, simplex is dubious since re-examination of a type slide of A. simplex from Carter's collection by Hajdu \& van Soest (1992) revealed that the original description was incomplete, failing to recognise a second size category of oxyaster as well as the presence of trichodragmata. Consequently, A. simplex may also prove to contain a sibling species-complex, with its junior synonym, A. haekeli Dendy, 1905 (taxonomic decision by Dendy, 1924), certainly warranting its re-evaluation. Nonetheless, A. radiocrusta is clearly distinct from A. simplex by the absence of both the second size class of oxyaster and trichodragmata.

FIG. 5. Asteropus radiocrusta sp. nov. (holotype BMNH1886.12.15.146). A. holotype; B, section through peripheral skeleton; C, oxea; D, oxy aster; E, oxyaster ray; F, sanidaster with two whirls of rays; G, sanidaster with four whirls of rays.

In a revision of Asteropus from the Atlantic, Hajdu \& van Soest (1992) described three species (A. brasiliensis, A. vasiformis and A. niger). Asteropus radiocrusta differs from each of these in spiculation, at least by the absence of trichodragmata or the second size-class of oxyaster. This, in conjunction with other morphological and wide biogeographic differences, indicates significant variation at the species level.

Stelletta Schmidt, 1862

Myriastra Sollas, 1886: 187 (Type species: Myriastra subtilis Sollas, 1886, by subsequent designation, see Sollas, 1888).
Pilochrota Sollas, 1886: 189 (Type species: Pilochrota haekeli Sollas, 1886, by subsequent designation, see de Laubenfels, 1936).
Anthastra Sollas, 1886; 191 (Type species: Anthastra pulchra Sollas, 1886, by subsequent designation, see Sollas, 1888).
Dorypleres Sollas, 1888: 426 (Type species: Dorypleres dendyi Sollas, 1888, by monotypy.).
Incertae sedis: Astroplakina Dendy \& Burton, 1926: 230 (Type species: Astroplakina stelligera Dendy \& Burton, 1926, by monotypy).
Incertae sedis: Zaplathea de Laubenfels, 1950 (Type species: Zaplathea digonoxea de Laubenfels, 1950, by original designation).

TYPE SPECIES. Stelletta grubii Schmidt, 1862, by subsequent designation (see Burton \& Rao, 1932: 310).
DEFINITION. Ancorinidae with fine-centrum euasters (oxyasters, strongylasters or tylasters) only as microscleres.

REMARKS. Lendenfeld (1903) synonymised Myriastra, Pilochrota and Anthastra with Stelletta, disregarding the presence of a second category of aster in the latter. However, Dendy (1916) found it convenient to retain Myriastra, but agreed with merging Pilochrota into it, since both had only one category of aster. Similarly, de Laubenfels (1936) maintained Myriastra as separate from Stelletta, but Bergquist (1968) again ratified the synonymy of Myriastra with Stelletta after assessing that three specimens in her collection were S. crater Dendy, 1924 which possessed two mutually exclusive categories of asters.

Dorypleres has classically been considered to be closely related to Jaspis, and hence has been commonly placed in the Coppatiidae (or one of its junior synonyms), as either a distinct genus or a junior synonym of Jaspis. The genus was crected originally by Sollas (1888), without a generic diagnosis, but with a designated type species (Dorypleres dendyi Sollas, 1888), described as having two categories of aster. It was referred to Jaspis by Topsent (1904), although

Burton \& Rao (1932) noted that it did not conform to the typical structure of Jaspis "having large oxeas only irregularly arranged, and asters of two kinds'. Indeed, Burton \& Rao (1932) remarked how similar J. dendyi was to certain species of Stelletta, and were it not for the absence of triaenes, they claimed that they would have had little reservation in assigning the species to Stelletta. De Laubenfels (1954: 228) reversed Topsent's (1904) decision, restoring Dorypleres to generic status, defining the genus to include "those species which have two or more distinct categories of asters, where Jaspis has just one category of aster'. This decision was subsequently reversed by Bergquist (1968: 33), noting that "two categories of asters are not recognisable in sponges assigned to Jaspis dendyi', a point corroborated by the present author after examining a slide of type material (holotype BMNH1889. 1.1.100). Consequently, in agreement with Bergquist's (1968) remarks, Dorypleres cannot be reinstated, as de Laubenfels (1954: 228) suggested, for 'those species (of Coppatiidae) which have two or more distinct categories of aster', and in which he placed Dorypleres splendens de Laubenfels, 1954.

Hajdu \& van Soest (1992) briefly discuss Dorypleres, highlighting the differences between it and Jaspis and remarking on its Stelletta-like nature (despite its lack of triaenes). They proposed that if the lack of triaenes was found to be a synapomorphic character, then Dorypleres may be reinstated as a Jaspis-like Stellettid lacking triaenes.

Recent morphological and chemical studies on jasplakinolide-containing sponges by Sanders et al. (1999) concluded in ratifying the synonymy between Dorypleres and Jaspis. They undertook morphological studies at the supraspecific level on several nominal Jaspis species (including Dorypleres splendens de Laubenfels, 1954), concluding that only one genus (Jaspis) was valid. This conclusion was based largely on similarities in skeletal composition and arrangement, the authors claiming that 'all species possess oxeas, a confused choanosomal arrangement and paratangential arrangement of small spicules at the surface' (Sanders et al., 1999: 526). Although strictly correct, they did not distinguish between the nature of the 'small spicules' comprising the ectosome of each species. Dorypleres splendens has an ectosome containing a thin crust of oxyasters, whereas Jaspis, including the type species, J. johnstonii (Schmidt, 1862), has a
langetifial ecrosome comphosed of bincote spicules. In contrast lu their supraspecific conclusions based on mumhological comparisons, Heir conclusions based on chemical analyses pertam moly in the specios level of classiticatom. and hence are unable to provide any reliable Eencric characteristic. Sanders et al. (1999) concluded that "atl withe jisplakinolide-containing sponges studied were found to be conspecitic atrd that 'Juspis splentedusw (de Laubentels, 1954) is the semor-most available marne for these specimens?. A consequence of this logic is that the presen chemical mane "jisplakinolide" is misleading. simec it pertains only to a single species ('Dorypleres splendens'), and not to a genus diagnostic marker, and perhaps should be runamed using sume depivation of the species name "splendens" (perhaps "splendenolide") (allough nomenclaturally this is probably mot it fassible proposition).

Since Drarpherees dous not have at tangential ectosome af oxeote spictales, it lalls outside the slagnusis of Compatiodte. and is cunsidered here to be a Stedlether lacking triacmes.

Sander el at. (1999) also symutymised the monotypic genus \&ap/tv/hec de Laubentels. 1950 with Juspis. basce on cobosomal skeletal arrangentent of the lype species (ℓ. dogonaxera de Laubenfels, 1550), again without clucidating the compunent spicule types. Their illustration of a eross section at the type specimen ectosome does not show the diagnostic langential Jayer of oxcotes that is typical of' Coppatiidae, and the original description (de Laubenfels, 1950) states that there is "mo sharply defined cortical region". The iwice-bent "micruxeas", described by de Laubenfels as being diagnostic for the genus, were interpreted by Sanders et ill. (1999) as being at diagnostic lieature at the specics lovel onfy: It is speculated that Zaplathea is also a Stelleves lacking trianes, Jike Dorgpleres above, although further research is needed to conlimm this.

Astroplakina Dendy \& Burton, 192G, is amonntypic genus containing only A. stelligera Dendy \& Burton. 1926. The type species is described as having a range of spicule types, ranging from diacts 10 onetacts. It is apparent from the original figures that the diacts are oxcotes and the "triacts to octacts' are nxyasters. Indeed. Dendy \& Gurtun (1926) nuled the similarities of these spicules to the oxy- or sthongylasiers of the Slelletlidac (- Ancorinidac), particularly where the rays are suicrospined. Unlurtunately, the skeletal structure was not described hecanse the
specimen was dry and unable to be sactioned adequately. As for Zoplathect and Dorypieres, Astroplakitm is speculated to be a Stelletia lacking triatenes, ilthough further confimation is necessary, particularly relating to the ectosomal skeletal arrangment.

Stetletta titherculata (Carter. 1886) (Figs 1, 6, Table 6)

Sicilethat urchitecta Wiedemmaver. 1989: 20.
MATFRIA. I.FSTOTYPF: IBMNIHSNG.12,15,47. (dry): Pent Phillip Heads. Victoria, OTHER MATERLAL:
 A. Dendy).

HABITAT DISTRIBUTION, 3 -(am depth; on gramite boullers with algac; Victuria, Bass S'rait.
DIAGiVOSiS. Massive, with irregular tubereles, ridges and lohes; dull-purple to red-brown alive; numerous minute oscules in depressions hetween tubercles; distinctly irenaceous surface: cortical cctosome of sand-grains largely obscuring minute oxyasters; choanusomal skeleton primarily composed of oxcas in confused arrangement largely obscuring scattered oxyasters; megascleres thexuous; oxeas in two size classes differentiated mainly by their thickness (thicker oxeas length $630-(788)-863$, width $11-(16)-19$; thinner oxeas length 313-(521)-684, width 2-(5)-8), rare ortho/ plagiotriaenes in two size classes (thicker triatnes fhatxd length 670-(771)-821, clad length $10-(16)-20$; thinner triaenes zhabd length 535-(61) -(368, clad length 7-(7,5)-8). microspined uxyitsters (6 . (10)-12 (min).

DFSCRIPTION. Shupe, Massive, covered with twisted, irregular rodulose ridges, lobes and tubercles on the top and sides, with furrows and depressions between; lubercles $3-12 \mathrm{~mm}$ thick and $5-18$ mm deep. Height 7.2 cm , width $5.5 \times$ 12cmi.
Colou: Dull purple-brown (Cartor, IM8(ia) to reddish-brown (Wiedenmayer, 1989) when Fresh: dry lectotype with greyish beige-brown cortical cctosome (Munscll 2.5 Y $7 / 4-5 / 2$) and light beige chomosume ($2.5 \mathrm{Y} \mathrm{s} / 3$).
Dscules. Numerous, almost indistmet uscules. approximately 0.5 mm diameter. appear as slightly darker spots in the furrows and sulci betwean tuberculate lobes.
Texsure. Dry lectotype is hard, stony, coarse; hel material is reported as firm, barely compressible. casily torn (Wiedenmayer, 1989).

 peripheral sheleton (BANHF1954.2.12.253); C. thich oxea; D, thin oxed: E, thick ortho plagiotriaene: K, (is cladomes of thick orthoplagiotriaenes: I. thin ortho plagrotrisene: I. thin ortho plagiotriaenc bladome: J. oxyaster.

Surface characteristios. Highly tuberculate and conspicuously arenaceous.
Ectosome. Approximately $1-2 \mathrm{~mm}$ thick, Lorminy a cortex that is distinct from chomosome due to the presence of abundant large sand-grains:
minute ox yasters are scattered throughout but are largely obscured by the sand.

Choumosome. Skeleton comprised of a confusion of single and very loose pancispicular bundles ar oxcas that larecly obseure the abundant oxyasters

TABLE 6. Comparison between present and published descriptions of Stelleth tuberculata. Neasurements in $\mu \mathrm{m}$, denoted as range (and mean) ($\mathrm{N}=25$ in present study except where noted). $\mathrm{L}=$ length; $\mathrm{W}=$ width; $\mathrm{RL}=$ thabd length; $\mathrm{CL}=$ clad length; $\mathrm{D}=$ diameter.

	Oxeas (Thick)	Oxeas (Thin)	Triaenes (Thick)	Triaenes (Thin)	Oxyasters
Lectotype BMNHI886.12.15.434 Present study	$\begin{gathered} \text { L 630-(788)-863 } \\ \text { W } 11-(16)-19 \end{gathered}$	$\begin{gathered} \text { L. } 313-(52!)-684 \\ W 2-(5)-8 \end{gathered}$	$\begin{gathered} \text { RL 670-(771)-821 } \\ \text { CL. 10-(16)-20;(N-7) } \end{gathered}$	$\begin{aligned} & \text { RL 335-(611)-668 } \\ & \text { CL - (7.5)-8:(N 4) } \end{aligned}$	D) 6-(10)-12
Syntype, original description (Carter, 1886a)	$\begin{aligned} & \text { L. } 762 \\ & \text { W } 13 \end{aligned}$	Not described	Not described	Not described	D 8.5

in the dense matrix; ortho/plagiotriaenes present, with clads just below the cortical ectosome and thabds directed vaguely inward.
Megascleres. (Refer to Table 6 for spicule dimensions) Oxeas in two size categories differentiated primarily by their thickness and extent of flexion; thicker oxeas lightly flexuous, infrequently fusiform, with acerate to finely telescoped ends.

Thinner oxeas similar in geometry but much more flexuous.

Ortho/plagiotriaenes in two size classes also differentiated by their thickness; rhabd terminations slightly telescoped; clads stumpy.
Microscleres. (Refer to Table 6 for spicule dimensions) Oxyasters with 10-17 lightly tapering rays that have $10-20$ recurved spines on distal half, thus giving a slightly tylote appearance particularly when examined using light microscopy; centrum approximately 25% of spicule diameter.

REMARKS. The original description by Carter (1886a) was obviously based on specimen BMNH1886.12.15.434, nominated here as the lectotype, since the other two syntypes are clearly different species. One syntype (BMNH1886. 12.15.113) is a Crella of uncertain specific identity, and at first was thought to have been a mislabelled holotype of Carter's (1885) Echinonema (Crella) incrustans (BMNH1886. 12.15.123) (i.e. considering the similar registration numbers). However, this is not the case because this latter specimen was also examined by the author and is different again. The remaining syntype (BMNH 1886.12.15.146) is clearly yet another species (described above as A. radiocrusta sp. nov.).

Stelletta tuberculata is reinstated here as a valid species, distinct from J. stellifera in several important respects. Stelletta tuberculata has both oxeas and triaenes as megascleres (cf. J. stellifera which only has oxeas). Further, S. tuberculata has a highly arenaceous cortical ectosome of sandgrains, largely obscuring scattered minute oxyasters (cf. a tangential layer of oxeas in confused
arrangement). The vestigial nature of the triaene clads makes it ditficult to properly resolve their form as orthotriaene or plagiotriaene.

As Wiedenmayer (1989) remarked, there are very few Stelletta species that contain foreign detritus and relatively rare, reduced triaenes. He addressed the differences between these species in his remarks for S. arenitecta, which is synonymised here with S. tuberculata.

Rhabdastrella Thiele, 1903

Aurora Sollas, 1888: cxxxix, 187 (preoccupied, junior homonym of Aurora Ragonot, 1887 (Lepidoptera)) (Type species: Stelletta globostellata Carter, 1883, by original designation).
Rhabdastrella Thiele, 1903: 934; Bergquist, 1968: 54.
Diastra Row, 1911: 300; Bergquist, 1968: 54 (Type species: Diastra sterrastraea Row, 1911, by monotypy).
Aurorella De Laubenfels, 1957: 245 (nomen novum for Aurora Sollas, 1888); Wiedenmayer, 1989: 21.

TYPE SPECIES. Coppatias distinctus Thiele, 1900, by original designation.

DEFINITION. Ancorinidae with thick centred euasters (oxyspherasters or spherasters) in a cortical ectosome.

REMARKS. Aurora was originally proposed for Carter's Stelletta globostellata and S. reticulata because they possessed large oxyspherasters. Lendenfeld (1903) merged the genus with Stelletta, followed by Hentschel (1909). Dendy (1916) argued that it was desirable to retain Sollas's genus, since the large (oxy)spherasters form such a characteristic and well-defined feature, and are known from many species. He also proposed the addition of Diastra sterrastrea Row, 1911, A. cribroporosa Dendy, 1916 and Coppatias (Rhabdastrella) distinctus Thiele, 1900. Thus, he proposed the synonymy of Rhabdastrella and Aurora. He also suggested that the type species of Aurora, A. globostellata, did not have trichodragmata, as Sollas 1888 suggested (corroborated in the present study). Dendy also asserted that the loss of triaene megascleres has taken place several times within Aurora,
giving several examples of similar species differing in the presence of traienes.

De Laubenfels (1957) proposed the name Aurorella to replace the preoccupied Aurora, but still maintained it as distinct from Rhabdastrella (which he merged into Dorypleres). He restored Diastra to full and valid generic status based on the possession of sterrasters.

Bergquist (1968) synonymised Aurora and Diastra into Rhabdastrella on the basis of Dendy's (1916) argument. She used Rhabdastrella to receive all Aurora species because the latter name was pre-occupied, also drawing attention to Dendy's observation that three pairs of species within Rhabdastrella (s.s), Diastra and Aurora were only distinguishable by the presence or absence of triaenes. It appears that these observations have led to the modification of the definition of Rhabdastrella (e.g. Wiedenmayer, 1989:21) to include the character 'with reduced triaenes or without triaenes ...').
Hechtel (1983) used Aurorella as a subgenus of Rhabdastrella on the basis that it lacked triaenes. As has been suggested (Hajdu \& van Soest, 1992) for the Ancorinidae (and Coppatiidae), the lack of triaenes is a suspect diagnostic character. Evidence is given here to support this, whereby R. globostellata is shown to have a gradation of triaene development, ranging from welldeveloped, through to vestigial or absent.

Rhabdastrella globostellata (Carter, 1883)
(Figs 1, 7, 8C-F, Table 7)
Stelletra globostellata Carter, 1883: 353-354.
Aurora globostellata Sollas, 1888: 187-188.
Stellettinopsis carteri Ridley, 1884: 476.
Coppatias carteri Sollas, 1888: 208-209.
Jaspis stellifera Bergquist, 1969: 69.
MATERIAL. HOLOTYPE: BMNH1883.5.3.1 (dry): Galle, Sri Lanka (Ceylon), coll. Dr. Ondaatii. HOLOTYPE of Stellettinopsis carteri Ridley, 1884 BMNH 1882. 2.23 .276 (wet): Prince of Wales Channel, Torres Strait, coll. R.W. Coppinger. OTHER MATERIAL: Australia Western Australia, NTMZ3352, QMG301116. QMG301142; Northern Territory, NTMZ96, Z582, 2588, Z599, Z1325, Z2182, Z3248, QMG303634, G313548; Queensland, NTMZ4011, QMG300041, G301179, G303170, G303487, G303509, G304341, G304450, G304606, G304481, G304884, G305457, G305779, G306240, G313432, G313472, G313508, G313589, G314452, G314563, G314624, G315114, G315227, G315249, G315503. New South Wales, QMG301398. Fiji QMG312735 (NCIOCDN-4165-M), QMG312803. Malaysia - QMG301224, G301227, G301228, G304613. Palau - QMG305951. Philippines - QMG312576. 'Tonga QMG313264. Vanuatu - QMG306826, G306893 (ORSTOM R1624).

HABITAT DISTRIBUTION. Intertidal- 53 m depth; on coral reef, rocky outcrops, broken reefs, reef flats, drop-off's and overhangs; tropical and subtropical Indian and Pacific Oceans; Sri Lanka, Singapore, Zanzibar, Indonesia, Malaysia, Palau, Philippines, Vanuatu, Fiji, Tonga, Australia; N Western Australia, Northern Territory, Queensland, Great Barrier Reef, N New South Wales coast.

DIAGNOSIS. Massive, globular, subspherical; brown to yellowish-tan cortex, with yellow choanosome alive; apical depressions with numerous small oscules in clumps; ectosome of oxyspherasters; peripheral choanosomal skeleton variable, with plumose brushes of oxeas and orthotriaenes (sometimes absent) that have rhabds directed inward; deeper choanosome contains oxeas in confused arrangement, with oxyasters in variable abundance between specimens; oxeas (length 220-(814)-1521, width 0.5-(13)-38), orthotriaenes (rhabd length 70-(600)-1309, clad length 7-(104)-239), oxyspherasters (diameter 5-(36)-91), oxyasters (diameter 3-(28)-96).

DESCRIPTION. Shape. Dry holotype is incomplete, amorphous, and has an irregularly folded surface which Carter (1883: 353) described as 'corrugated'. Living and wet-preserved specimens are typically globular, subspherical, sometimes raised on a short, thick base that is attached at several points, commonly with one to several shallow, concave depressions (up to 5 mm depth) on apical surface. Incomplete holotype 5.5 cm long, $3.5 \times 2.5 \mathrm{~cm}$ wide; larger specimens up to 30 cm high, $45 \times 45 \mathrm{~cm}$ wide.
Colour. Dry holotype has dull greyish beigebrown (Munsell 7.5YR 7/2-6/4) ectosome, with beige-tan choanosome (7.5YR 6/4). Living specimens have variable ectosomal colouration between specimens, ranging from from yellowish-tan (2.5Y 7/4) to deep chocolate brown (7.5YR 4/4), and occasionally dusty purple (10R7/2), however the choanosome is always vivid yellow ($2.5 \mathrm{Y} 8 / 10$).

Oscules. Not visible in incomplete, dry holotype, but Carter (1883:353) originally describes 'vents congregated in one part of the surface'. Recently collected material typically has numerous (about 20-40) small oscules ($1-4 \mathrm{~mm}$ diameter) clustered in one to three, large concave depressions (up to 5 cm deep) on apical surface, with larger oscules in more central regions of clusters.

 holotype of Stelletmopsis carteri Ridley, 1884 (BMNH1882.2.23.276 wet: Torres Strait, Australia): C. holoty ne (BM1NH1 88.55 .5 dry: Sri Lankit): I). E. sections through peripheral skeletons shom ing differences in
 lleron band, GBR, Iustralia) material; $\Gamma, \Gamma^{`}-1,1^{\prime}$, examples of spiculation differences between specimens
 Vanuatu) ($\mathbb{F}_{\uparrow} \mathrm{F}^{7}$, oxeas; GG^{3}, orthintriaenes; $\mathrm{H}_{3} \mathrm{H}^{\mathbf{}}$, oxyasters; $1, \mathrm{l}^{\circ}$, oxyspheraters).

TABLE 7．Comparison between holotype and other material of Rhabdustrella globostellata by region． Measurements in $\mu \mathrm{m}$ ，denoted as range（and mean）． $\mathrm{L}=$ length； $\mathrm{W}=$ width； $\mathrm{RL}=$ rhabd length； $\mathrm{CL}=$ clad length； $\mathrm{D}=$ diameter．

Region／material	Oxeas	Orthotriaenes	Oxyspheraster euasters	Oxyaster euasters
Hown pe，Sri Lanka． 	$\begin{aligned} & 1628-18311-1030 \\ & 115-11+1-23 \end{aligned}$	$\begin{aligned} & \text { R1 } 223-(1)=(0)-x) 7 \\ & \text { C1 } 65-112(0) \cdot 17= \end{aligned}$		1） $11-(25)-?$
 13けン1188゙こ．2．23．276	$\begin{gathered} 1-3,1, x=4,1020 \\ \text { II } 13-181.25 \end{gathered}$		1）$(1-1-3.1-2+$	
Sabah State，Malaysia． 4 specimens	$\begin{gathered} \text { L } 611-(1072)-1521 \\ \text { W } 4-(21)-33 \end{gathered}$	$\begin{gathered} \text { RL 254-(835)-1309 } \\ \text { CL } 21-(127)-239 \end{gathered}$	D 15－（43）－61	D 8－（26）－56
Philippines，！specimen	$\begin{aligned} & \text { L. } 790-(970)-1150 \\ & \text { W } 6-(18)-26 \end{aligned}$	$\begin{aligned} & \text { RL } 326-(657)-946 \\ & \text { CL } 37-(102)-138 \end{aligned}$	D 20－（46）－63	D 33－（48）－63
Palau， 1 specimen	$\begin{aligned} & \text { L } 566-(756)-963 \\ & W^{2}-(7)-15 \end{aligned}$	$\begin{aligned} & \text { RL } 320-(559)-753 \\ & \text { CL } 50-(104)-166 \end{aligned}$	D 8－（34）－50	D 6－（15）－21
Vanuatu． 2 specimens	$\begin{gathered} \text { L } 310-(641)-875 \\ \text { W } 2-(5)-9 \end{gathered}$	$\begin{aligned} & \text { RL } 270-(431)-638 \\ & \text { (1. } 7-(38)-85 \text { (rare) } \end{aligned}$	D 9－（27）－43	D 7－（22）－39
Fiji，I specimen	$\begin{gathered} \text { L } 570-(736)-940 \\ \text { W 3-(10)-16 } \end{gathered}$	$\begin{gathered} \text { RL 330-(356)-382 } \\ \text { CL 43-(52)-65. (rare) } \end{gathered}$	D 15－（36）－54	D 15－（18）－23
Tonga， 1 specimen	$\begin{gathered} \text { 1. } 599-(976)-1165 \\ \text { W } 10-120)-37 \end{gathered}$	$\begin{aligned} & \text { RL } 654-(726)-848 \\ & \text { CL } 94-(148)-185 \end{aligned}$	D 11－（40）－66	D 9－（15）－23
N Western Australia． 3 specimens	$\begin{gathered} \text { L } 472-(863)-1425 \\ W 4-(12)-19 \end{gathered}$	$\begin{aligned} & \text { RL 219-(806)-1107 } \\ & \text { CL 53-(128)-215 } \end{aligned}$	D 11－（37）－72	D 10－（43）－7］
Northern Territory；Australia，	$\begin{gathered} \text { L. } 687-(998)-1456 \\ \text { W } 4-(19)-38 \end{gathered}$	$\begin{aligned} & \text { RL } 367-(818)-1240 \\ & \text { CL } 53-(122)-215 \end{aligned}$	D 6－（42）－91	D 11－\｛47）－96
（heemand，ALEvahon． 1＊pecmans．	$\begin{gathered} 122-1+12+1,-8210 \\ 166.5-(6,15 \end{gathered}$	（ Con rate：2 ヶpecimens）		1）こここいが
N New South Wales，Australia， 1 specimen	$\begin{gathered} \text { L } 265-(527)-718 \\ \text { W } 2-(7)-13 \end{gathered}$	None	D 15－（36）－53	D 14－（24）－31

Texture．Dry holotype is hard；fresh and wet－ preserved material is firm，compressible，and leathery．
Surface characteristics．Opaque，optically smooth， uneven，with low，rounded tubercles，corrugat－ ions，bumps and ridges forming a tuberculate surface becoming smoother toward the base； extent of tuberculation varies between spec－ imens，ranging from prominently tuberculate to nearly completely smooth．
Ectosome．About 150－500 thick；skeleton com－ posed exclusively of oxyspherasters．Variable degrees of packing of oxyspherasters occurs， ranging from very densely packed in tropical material，to relatively sparsely packed in subtropical specimens．Canals，approximately 70 diameter，regularly traverse the ectosome．Sub－ ectosomal region is relatively clear of microscleres．
Choanosome．Deeper choanosomal skeleton consists of a confusion of loosely scattered single oxeas and paucispicular bundles of oxeas．These bundles become more ordered in the peripheral choanosome，where they may also include ortho－ triaenes，forming variably distinct paucispicular plumose brushes，with the rhabds of the triaenes directed inward and clads supporting the ectosome． There is substantial variability in absolute
abundance of microscleres and relative abundance of microsclere categories between specimens，without any obvious correlation between geographic regions or latitudinal gradients．
Megascleres．（Refer to Table 7 for spicule dimensions）Oxeas，slightly bent，with tinely telescoped ends；variations very rare but include styloid forms and oxeas with terminations that are split or sharply bent（similar to promonaenes）．
Orthotriaenes，with variable clad development， with rhabds tapering toward fusiform，hastate or faintly blunt terminations；each cladome contains three identical clads with shapes ranging from typical geometries，to lightly telescoped，sharply angled near tips，or stunted forms．Orthotriaenes more commonly observed and robust in tropical rather than subtropical specimens where they may be highly vestigial or apparently absent．
Microscleres．（Refer to Table 7 for spicule dimensions）Oxyspheraster euasters，with 9－18 conical rays；centrum approximately 29% of spicule diameter；rays may be entirely smooth or have up to 15 microspines on distal end．
Oxyaster euasters，with about 9－17 lightly tapering to isodiametric rays，with approximately 11－25 recurved microspines on the distal half．
thus giving a slightly tylote appearance under light microscopy; centrum approximately 10% of spicule diameter; variations very rare, with only one spicule displaying forward projecting microspination over entire ray length.

REMARKS. This is undoubtedly the same species referred to by Bergquist (1969) as " J. stellifera' from Heron Island, GBR, with the qualification that her specimens are representative of subtropical material found typically to have reduced spiculation. In agreement with her published remarks, and corroborated by more recent surveys of this region, it is one of the most common and more prominent species of sponges on the reef flat, easily recognisable for its massive, subspherical shape, brown exterior and distinctive (mango-like) bright-yellow interior. Spicule diversity and size are similar between Bergquist's (1969) and recent collections, with the qualification that the tylasters described by Bergquist are actually oxyasters with micropines clumped near the terminations and only seen properly under SEM. This species, however, is clearly different from J. stellifera in many significant respects.

While both species are essentially subspherical, they differ greatly in size and colouration, but most significantly in ectosomal skeletal structure and spicule compliment. Jaspis stellifera is about 4.7 cm in largest dimension and pinkish-white to purple, whereas R. globostellata is at least up to 45 cm in diameter and has a brown exterior and bright yellow interior. Both species have choanosomal skeletons that are essentially confused arrangements of oxeas, with oxyasters scattered in the interstices. However, the ectosome of R. globostellata has a distinct layer of oxyspherasters, in contrast to that of of J. stellifera, which is comprised of a tangential layer of oxeas. Further, J. stellifcra has only oxeas and oxyasters as spicules, whereas R, globostellata also has orthotriaenes and oxyspherasters.

The synonymy of Stellettinopsis carteri Ridley, 1884 with R. globostellata is based on the presence of orthotriaenes and oxyspherasters in the holotype of S. carteri in addition to the oxeas and oxyasters as originally described. Further, spicule sizes (refer Table 7) lie within the range described for R. globostellata. Unfortunately, the type specimen is no longer complete, as originally described by Ridley (1884), now consisting only of a small fragment (height 8 mm , width $21 \times 25 \mathrm{~mm}$), with only a small portion of surface intact. However, the original description of the
gross-morphology ol'S. carteri is consistent with characteristics of R. globostellata (e.g. having a 'short cylindrical stalk passing gradually into a massive, somewhat flattened upper portion'; colouration being tan with a yellow interior; and with an undulate, dimpled, corrugated surface). Unfortunately, the ectosome is barcly intact in the holotype of S. carteri, and consequently it is difficult to ascertain its true nature. It is vaguely distinct from the choanosome (although not explicit in Ridley's (1884) original description), being smooth and probably composed of oxyspherasters. This synonymy is further supported by the type locality of S. carteri being well within the distribution of R. globostellata.

In R. globostellata, orthotriaenes were more abundant in specimens from more northerly tropical localities, where spiculation was generally more highly silicified. By comparison, specimens from more southern regions (central GBR to N NSW), typically lacked triaenes and spicules were more poorly silicified and less robust. This is similar to the latitudinal trend observed by Hooper \& Bergquist (1992) for Cymbastella (Axinellidae), and Hooper (1996) for Clathria (Thalysias) vulpina. Failure to recognise the absence of triaenes in specimens may perpetuate misidentifications of this species in the future, and so the distinctive shape and colouration of this species will undoubtedly remain an important, albeit superficial, distinguishing features.

The reassignment of tropical sponges, previously misidentitied as ' J. stellifera', to Rhabdastrella globostellata is based primarily on morphological evidence and is supported by chemical evidence in the possession of malabaricane-type triterpenes (e.g. Ravi et al., 1981; Ravi \& Wells, 1982), determined by van Soest \& Braekman (1999) to be a good chemotaxonomic marker for Stellettids. It is possible that ' J. stellifera' from Japanese waters are also misidentified specimens of S. globostellata since they too have been reported to contain malabaricane-type triterpenes (Tsuda et al., 1991; Kobayashi et al., 1996).

DISCUSSION

Examination of all type material previously assigned to, or associated with, 'Jaspis stellifera' revealed that many important details were omitted from original descriptions. Failure to recognise these details has certainly contributed to an oversimplified synonymy for this species. For example, re-examination of type material showed clearly that the syntype series of

FIG. 8. A.B, Jaspis cristachrrugatus sp. nov. (OMC312071, lort Daves, Tasmania, 10m, photo NCI): A. specimen in situ; [3, clase-up view of oscular ridge surface. C-F, Rhahdastrella ghohostllata (Carter, 1883): C, NTMZ2182. Darwin, NT, inlertidal, photo I, I looper\& D, QMG306893, Emae, Vanuatu, 20 m , photo ORSTOM: E, QMG313432. Heron Island, Qld, intertidal, nhoto author: F. QMG304884, Mudjimba Island, Qld, 12 m , photod. Hooper.
f Sicllettinopsis tuberculata was composite, containing specimens from diflerent orders. This example is perplexing because the original synonymy was proposed by Shaw (1927), under the direct supervision of Maurice Burton at the BMNH, who had complete access to the vast type collections housed there. It is probable, therefore, that this synonymy was based on superficial comparison of type material rather than reexamination of histological preparations.

In recognising the oversimplification of Shaw's (1927) synonymy, Bergquist (1969) reinstated J. coriacea and J. purpurea as valid species, based on two supposed inconsistencies in the published literature, both of which were demonstrated here to be invalid. In contrast, the proposed synonymy of J. stellifera, based on redescribed type material, incorporates only J. coriacea and J. purpurea. Consequently, J, stellifera is not as widely distributed as reported by Hooper \& Wiedenmayer (1994). Its corroborated distribution appears to be restricted to waters between Victoria and Tasmania. Most of the remaining species previously placed in the ' J. stellifera' complex also appear to have very limited distributions, with the exception of R. globostellata which has an apparent widespread tropical/subtropical Indo-Pacific distribution.

The clue to misidentified tropical and subtropical populations of R. globostellata as " J. stellifera' is largely based on the presence of triaenes within specimens, even though these range from present to vestigial or sometimes absent in individual specimens. It was only through thorough examination of many specimens that this anomoly concerning presence/absence of triaenes was recognised. Triaenes were more common in tropical specimens, where spicules were generally more robust than in southern populations. The apparent lack of triaenes in some material, or failure to recognise their vestigial occurrence in other specimens, may lead easily to the misidentification of this species as Jaspis (which by definition lacks triaenes). The graded development of triaenes across tropical to subtropical waters has implications regarding the debate surrounding the relationship between Coppatiidac and Ancorinidac. According to present diagnoses, the presence of triaenes contirms that this species belongs to Ancorinidae, whereas specimens lacking triaenes could be justifiably included in Coppatiidae. The rare, vestigial, or complete loss of triaenes in R. globostellata provides evidence supporting the proposition of Hajdu \& van Soest (1992) that the
absence of triaenes is a dubious synapomorphic character used to separate Coppatiidae and Ancorinidae.

ACKNOWLEDGEMENTS

I thank the following for their assistance with this study: Clare Valentine (BMNH, London), Ruth Desqueyroux-Faúndez (MNHN, Geneva), NTM, Darwin, for loan of specimens and type material; Pat and Lori Colin, CRRF Palau for material; John Hooper for collections from throughout tropical Australia, Fiji, Malaysia, Philippines, Tonga and Vanuatu; the Queensland Museum for facilities, lield support, and materials; two anonymous reviewers for their valuable comments on the manuscript; and John Hooper for his mentoring, taxonomic guidance and valuable comments regarding this paper.

LITERATURE CITED

BERGQUIST, P.R. 1965. The sponges of Micronesia, part 1. The Palau Archipelago. Pacific Science 19: 123-204.
1968. The marine fauna of New Zealand: Porifera, Demospongiae, Part 1 (Tetractinomorpha and Lithistida). New Zealand Department of Scientific and Industrial Research Bulletin 188: 1-105.
1969. Shallow water sponges from IIcron Island. University of Queensland Papers, Great Barrier Reef Committee, Heron Island Research Station 1(4): 63-72.
BOURY-ESNAULT, N. \& RÜTZLER, K. (eds). 1997. Thesaurus of sponge morphology. Smithsonian Contributions to Zoology 596.
BURTON, M. 1934. Sponges. Scientific Reports of the Great Barrier Reef Expedition 1928-29. 4(14) 513-621 (British Museum (Natural History): London).
BURTON, M. \& RAO, H.S. 1932. Report on the shallow-water marine sponges in the collection of the Indian Museum. Records of the Indian Museum 34(3): 299-356.
CARTER, H.J. 1875. Note introductory to the study and classification of the Spongida. Annals and Magazine of Natural History (4)16: 1-40, 126-145, 177-200.
1879. Contributions to our knowledge of the Spongida. Annals and Magazine of Natural History (5)3: 284-304, 343-360.
1883. Contibutions to our Knowledge of the Spongida - Pachytragida. Annals and Magazine of Natural History (5) 11: 344-369.
1885. Description of sponges from the neighbourhood of Port Phillip Heads, South Australia. Annals and Magazine of Natural History (5)16: 347-368.
1886a. Description of sponges from the neighbourhood of Port Phillip Heads, South Australia.

Annals and Magazine of Natural History (5)18: 126-149.
1886b. Supplement to the descriptions of Mr. J. Bracebridge Wilson's Australian sponges. Annals and Magazine of Natural History (5)18: 445-466.
DENDY, A. 1905, Report on the sponges collected by Professor Herdman, at Ceylon, in 1902. Pp. 57-246. In Herdman, W.A. Report to the Government of Ceylon on the peral oyster Fisheries of the Gulf of Manaar. 3(18): 57-246 (Royal Society: London).
1916. Report on the Homosclerophora and Astrotetraxonida collected by H.M.S. 'Sealark' in the Indian Ocean. In Reports of the Percy Sladen Trust Expedition to the Indian Ocean in 1905, Volume 6. Transactions of the Linnean Society of London, Zoology 17: 225-271.
1924. Porifera. Part 1. Non-Antarctic sponges. British Antarctic ('Terra Nava') Expedition, 1910. Natural history report. 6(3): 269-392. (British Museum (Natural History), Zoology: London).
DENDY, A. \& BURTON, M. 1926. Records on some deep-sea sponges from the Indian Museum collected by the R.I.M.S. 'Investigator'. Part 1. Hexactinellida and Tetraxonida (pars.). Records of the Indian Museum 28: 225-248.
FUERST, J.A., WEBB, R.I., GARSON, M.J., HARDY, L. \& REISWIG, H.M. 1999. Membrane-bound nuclear bodies in a divers range of microbial symbionts of Great Barrier Reef sponges. Memoirs of the Queensland Museum 44: 193-203.
FUSETANI, N. \& MATSUNAGA, S. 1993. Bioactive sponge peptides. Chemical Review 93: 1793-1806.
GRAY, J.E. 1858. Description of a new genus of sponge (Xenospongia) from Torres Strait. Journal of Zoology 26: 229-230.
1867. Notes on the arrangement of sponges, with the description of some new genera. Proceedings of the Zoological Society of London 1867:492-558.
HADJU, E. \& SOEST, R.W.M. van 1992. A revision of Atlantic Asteropus Sollas, 1888 (Demospongiae), including a description of three new species, and a review of the family Coppatiidae Topsent, 1898. Bijdragen tot der Dierkunde 62(1): 3-19.
HECHTEL, G. 1983. New species of marine Demosponges from Brazil. Iheringia. Serie Zoologica, Porto Alegre 63: 59-89.
HENTSCHEL, E. 1909. Tetraxonida. 1. Teil. 2(21): 347-402. In Michaelsen, W. \& Hartmeyer, R. (eds) Die Faunna Südwest-Australiens. (G. Fischer: Jena).
HOOPER, J.N.A. 1996. Revision of the Microcionidae (Porifera: Poecilosclerida: Demospongiae), with description of Australian species. Memoirs of the Queensland Museum 40: 1-626.
HOOPER, J.N.A. \& BERGQUIST, P.R. 1992. Cymbastella, a new genus of lamellate coral reef sponges. Memoirs of the Queensland Museum 32(1):99-137.
HOOPER, J.N.A., LIST-ARMITAGE, S.E.. KENNEDY, J.A., COOK, S.D. \& VALENTINE,
C.A. 1999. Sponges of the Low Isles, Great Barrier Reef: an important scientific site, or a case for mistaken identity? Memoirs of the Queensland Museum 44: 249-262.
HOOPER, J.N.A. \& WIEDENMAYER, F. 1994. Porifera. Pp. 1-624. In Wells, A. (ed.) Zoological Catalogue of Australia. Vol. 12. (CSIRO Australia: Melbourne).
KOBAYASH1, J., YUASA, K., KOBAYASH1, T., SASAKI, T. \& TSUDA, M. 1996. Jaspiferals A approx G new cytotoxic isomalabaricane-type nortriterpenoids from Okinawan marine sponge Jaspis stellifera. Tetrahedron 52(16): 5745-5750.
LAUBENFELS, M.W. de 1936. A discussion on the sponge fauna of the Dry Tortugas in particular, and the West Indies in general, with material for a revision of the families and orders of Porifera. (Tortugas Laboratory Paper No, 467) Carnegie Institute of Washington 30: 1-225.
1950. The sponges of Kaneohe Bay, Oahu. Pacific Science 4(1): 3-36.
1954. The sponges of the West-Central Pacific. Oregon State Monographs, Zoology 7: 1-306.
1957. New species and records of Hawaiian sponges. Pacific Science 11(2): 236-251.
LENDENFELD, R. VON. 1896. Die Clavulina der Adria. Acta Academiæ Cæsareæ LeopoldinoCarolinæ Germanicæ Naturæ Curiosorum 69: 1-251.
1903. Tetraxonia. Pp. 1-168. In Schulze, F.E. (ed.) Das Tierreich. Vol. 19. (Friedländer: Berlin).
LÉVI, C. 1973. Systématique de la classe de Demospongiaria (Démosponges). Pp. 577-631. In Brien, P',. Lévi, C., Sàra, M., Tuzet, O. \& Vacelet, J. (eds) Traité de Zoologie, Anatomie, Systématique, Biologie. (Sér. ed. Grassé, P-P.) (Masson et Cie: Paris).
McCAFFREY, E.J. \& ENDEAN, R. 1985. Antimicrobial activity of tropical and subtropical sponges. Marine Biology (Berlin) 89: 1-8.
RAGONOT, E.L. 1887. Diagnoses of North American Phycitidae and Galleridae. (Paris).
RAVI, B.N., WELLS, R.J. \& CROFT, K.D. 1981. Malabaricane triterpenes from a Fijian collection of the sponge Jaspis stellifera. Journal of Organic Chemistry 46: 1998-2001.
RAVI, B.N. \& WELLS, R.J. 1982. Malabaricane triterpenes from a Great Barrier Reef collection of the sponge Jaspis stellifera. Australian Journal of Chemistry 35: 39-50.
RIDLEY, S.O. 1884 . Spongiida. Pp. 366-482, 582-635. In Report on the zoological collections made in the Indo-Pacific Ocean during the voyage of H.M.S. 'Alert' 1881-2. (British Muscum (Natural History): London).
ROW, R.W.H. 1911. Reports on the marine biology of the Sudanese Red Sea, from collections made by Cyril Crossland, M.A., B.Sc., F.Z.S. XIX. Report on the sponges collected by Cyril Crossland in 1904-5. Part II. Non-Calcarea. Journal of the Linnean Society, Zoology 31: 287-400.

SANDERS, M., DIAZ, M.C. \& CREWS, P. 1999. Taxonomic evaluation of jasplakinolidecontaining sponges of the family Coppatidae. Memoirs of the Queensland Museum 44: 525-532.
SCHMIDT, E.O. 1862. Die Spongien des Adriatischen Meeres. Pp. 1-48. (Wilhelm Engelmann: Leipzig).
1868. Die Spongien der Küst von Algier. Mit Nachträgen zu den Spongien des Adriatischen Mecres. (Drittes Supplement). Pp. 1-44. (Wilhelm Engelmann: Leipzig).
1870. Grundzäge einer Spongien-Fauna des Atlantischen Gebietes. (Wilhelm Engelmann: Leipzig).
SHAW, M.E. 1927. On a collection of sponges from Maria Island, Tasmania. Proceedings of the Zoological Society of London 1927: 419-439.
SOEST, R.W.M. van \& BRAEKMAN, J.C. 1999. Chemosystematics of Porifera: a review. Memoirs of the Queensland Museum 44: 569-589.
SOLLAS, W.J. 1886. Preliminary account of the tetractinellid sponges dredged by H.M.S. 'Challenger', 1872-1876. Part 1. The Choristida. Scientific Proceedings, Royal Dublin Society 5: 177-199.
1888. Report on the Tetractinellida collected by H.M.S. "Challenger', during the years 1873 1876. Pp. 1-458. In Report on the Scientific Results of the Voyage of H.M.S. 'Challenger'. Zoology Vol. 25(63).

THIELE, J. 1899. Studien über Pazifischen Spongien. Zoologica, Stuttgart 24(2): I-33.
1900. Kieselschwämme von Ternate, 1. Abhhandlungen der Senckenbergischen Naturforschenden Gesellschaft 25: 19-80.
1903. Kieselschwämme von Ternate. II. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 25: 933-968.
TOPSENT, E. 1898. Introduction à l'étude monographique des Monaxonides de France. Classification des Hadromerina. Archives de Zoologie Expérimentale et Gënérale (3)6:91-113.
1904. Spongiaires des Açores. Résultats des Campagnes Scientifiques sur son Yacht par Albert Ier Prince Souverain de Monaco 25: 1-280.
TSUDA, M., ISIIBBASHI, M., AGEMI, K., SASAKI. T. \& KOBAYASHI, J. 1991. Stelliferins A-F, new antineoplastic isomalabaricane triterpenes from the Okinawan marine sponge Jaspis stellifera. Tetrahedron 47(12-13): 2181-2194.
WIEDENMAYER, F. 1989. Demospongiae (Porifera) from northem Bass Strait, southern Australia. Memoirs of the Museum of Victoria 50 (1): 1-242.
WILKINSON, C.R., SUMMONS, R.E. \& EVANS, E. 1999. Nitrogen fixation in symbiotic marine sponges: ecological significance and difficulties in detection. Memoirs of the Queensland Museum 44: 667-673.

PERCA LINEATA AND P. VITTATA ESTABLISHED AS VALID SPECIES OF PLECTORHINCHUS (PERCIFORMES: HAEMULIDAE)

JOHN E. RANDALL AND JEFFREY W. JOHNSON

Abstract

Randall, J.E. \& Johnson, J.W. 200006 30: Perca lineata and P. vittata cstablished as valid species of Plectorhinchus (Perciformes: Haemulidae), Memoirs of the Queensland Museum 45(2): 477-482. Brisbane. ISSN 0079-8835.

The Linnaean fishes Perca lineata and P. vittata are established as valid species of the haemulid genus Plectorhinchus. Plectorhinchus goldmanni (Bleeker) is ajunior synonym of P. lineatus, and P. orientalis (Bloch) is a junior synonym of P. vittatus. Meristic data are tabulated to provide an additional basis for separating four other striped species of Plectorhinchus that at some stage resemble either P. lineatus or P. vittatus. \square Linnaeus, fishes, haemulidae, Plectorhinchus, goldmanni, lineatus, orientalis, vittatus. J.E. Randall, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USA; J.W. Johnson, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 21 April 2000.

Many fishes of the haemulid genus Plectorhinchus undergo remarkable changes in colouration with growth. There has been considerable confusion, particularly in the identification of some striped species. In the literature, juveniles have often been mismatched with adults, and various life stages have been incorrectly described as valid species, often with the adult or juvenile form unknown. In the latest review of the family, Smith (1962) failed to correctly associate many of the species with their synonyms, and he described G. gaterinoides (a junior synonym of P. lineatus). He also presented a figure depicting seven colour phases of P. orientalis from 135 to 550 mm in length. The second to fourth specimens in the figure (fig. 15 B, C and D) range from 175 to 233 mm and clearly illustrate blotched individuals, however our studies indicate that specimens of this size are often, if not usually, striped as in larger specimens. The purpose of this paper is to validate two Linnaean species, both of which have a juvenile phase with horizontal stripes, and to compare meristic values of other similarly striped species of Plectorhinchus.

Perca lineata and P. vittata are among the 29 species classified in Perca by Linnacus (1758). Both were described with reference to volumes of Museum Adophi Friderici as having five longitudinal white bands, but no locality details were provided. Cuvier in Cuvier and Valenciennes (1830: 309) was the first to correctly relate lineata with haemulid fishes when he placed it in the genus Diagramma. He gave the dorsal-ray count for the species as XII, 20, thus resolving the count of XVII, 16 dorsal rays of Linnaeus by noting the small size and poor
condition of the specimen and implying a miscount. Smith (1962: 495) suggested that the difference in dorsal-ray count might be a misprint.

Fernholm \& Wheeler (1983: 245) reported on the type specimen, NRM LP $8,41 \mathrm{~mm}$ SL, in the Swedish Museum of Natural History, Stockholm. They stated that the labels with the fish represent a continuous record of its history and confirm it as having been part of King Adolf Fredrik's collection. They agreed with Cuvier that Linnaeus probably miscounted the dorsal rays on the small specimen; their corrected count is XIII, 19. They wrote that Linnaeus failed to make reference to the illustration of this fish on plate 31 of volume 1 of Museum Adolphi Friderici, adding, 'Had he done so, much of the uncertainty surrounding the application of the name in later years might have been avoided'.

Fernholm \& Wheeler (1983: 246) also found the holotype of Perca vittata, NRM LP 11, 162 mm SL, and were the first to report it as a species of Pomadasyidae (= Haemulidae), identifying it as Plectorhinchus sp. Linnaeus gave the dorsal-ray count as XII, 18 and the anal-ray count as I, 6 ; these counts were corrected by Fernholm \& Wheeler to XII, 20 and III, 7, respectively. They noted that "Habitat in America' was added to the species account in Linnaeus' 12th edition of Systema Naturae, an error which could well explain the long delay in correctly placing this fish to genus. The genus Plectorhinchus is confined to the Indo-Pacific region.

Most of the species of Plectorhinchus show dramatic changes in colour pattern with growth, and apparently depending on the environmental

FIG. 1. Pera lineata Linnaeus, 1758 . Holotype, NRM LP 8 (SL, 41 mm , TL 46 mm).
conditions, the changes can take place at different lengths by fish of the same species from different localities.
We are aware of six species of Plectorhinchus that can be striped at the lengths of the two holotypes. To provide unambiguous evidence of the association between the two Linnaean names and these species, we requested photographs of the type specimens, as well as meristic data and observations on colour pattern from the Swedish Natural History Museum. Sven O. Kullander kindly provided the photographs (reproduced here as Figs 1 and 2). He also obtained a radiograph of the type of Perca vittata, which enabled us to correct the number of dorsal rays to XII, 18. He counted the outer first-arch gill rakers of P. lineata as $9+21$, and thosc of P. vittata as 10 +21 . He determined that the stripes on the head of P vittata pass struight across the forehead and snout and do not incline downward or break into spots.
We have obtained counts of the dorsal spines and rays, pectoral rays, and gill rakers of available specimens of six striped species of Plectorhinchus in the Australian Museum, Sydney (AMS), Bernice P. Bishop Museum, Honolulu (BPBM). California Academy of Sciences, San Francisco (CAS), CSIRO Marine Laboratories, Hobart (CSIRO). Hokkaido University, Hakodate (HUMZ), Miyazaki University, Miyazaki (MUFS), Natural History

Museum, London (BMNH), Northern Territory Museum, Darwin (NTM), Queensland Museum, Brisbane (QM) and Western Australian Muscum, Perth (WAM). From these data (Table 1) and examination ol type descriptions and figures and documentation of colour pattern change (Fig. 3), we can confirm the synonomy of Senou \& Shimada (1991) that Plectorhinchus lineatus is the senior synonym of Diagramma goldmanni Bleeker (the large adult with oblique stripes on the back), D. radjes Bleeker (a large juvenile), D. haematochir Blceker (subadult), and Gaterin gatcrinoides Smith (large juvenile). Senou \& Shimada (figs 7-12) illustrated individuals from 22.5 to about 200 mm SL in colour, but not the large adult 'goldmanni' furm.

We catn confirm that Plectorhincolns vittatus is the senior synonym of P. orientalis (Bloch), the name used by most recent authors for this species, and as recognised by R.J. McKay as early as 1992 (pers. comm.). We recommend acceptance of vittatus over orientolis as conditions relating to the current International Code of Zoological Nomenclature (1999). pertaining to the validity of names and principal of priority (Article 23.9: Reversal of precedence) are not met in this instance. R.J. McKay had previously recognised that P. lineatus and P. viltatus were senior subjective synonyms of Plectorhinchus goldmanni (Bleeker) and P. orientalis respectively, following an

FIG. 2. Perca vittata Linnaeus, 1758. Holotype, NRM LP 11 (SL 162 mm , TL 195 mm).
investigation of the type specimens (R.J. McKay, pers. comm., 1992). Indeed, following his recommendation, the name P. vittatus has been used by authors after 1899 (e.g. Randall \& Anderson, 1993; Winterbottom \& Anderson, 1997; Randall et al., 1997).

Although the number of dorsal-spines and pectoral-rays of the holotype of P. vittatus are not modal for counts of museum specimens presented in Table 1, they are within the range for the species, and the soft dorsal count is modal. More convincing is the total outer first-arch gill-raker count of 31 for the holotype of P. vittatus (see Table 1); not only is it modal, but it is also outside the range of the other five striped species. In addition, the pattern of the stripes as shown in Figure 2 and augmented by Kullander provide further confirmation. Note on the horizontally striped phases of the two species in Figures 3 and 4 that a dark stripe passes through the centre of the eye in P. lineatus but not P. vittatus. The remarkable changes in colour pattern of this species with growth have been illustrated by Smith (1962: fig. 15) and Senou (1991: figs 13-18), as P. orientalis. Other synonyms include Bodian cuvier Bennett (Bodian is an incorrect spelling of Bodianus), and Diagramma sebae Bleeker.

Plectorhinchus lineatus occurs in the western Pacific from the Ryukyu Islands south to the Great Barrier Reef and east to the Caroline

Islands and New Caledonia. The more wideranging P. vittatus is known from Samoa to the east coast of Africa (but not the Great Barrier Reef or inshore waters of western and northern Australia or the seas of the Arabian Peninsula).

MATERIAL. (lengths in mm are standard lengths)
Plectorhinclus albovittatus. AMSIA9433, 93.5 mm , Fiji; AMSII9346-006, 87 mm , Philippines; BPBM5166, 125 mm , Viti Levu, Fiji; BPBM26766, 87 mm , Jeneponto, Sulawesi, Indonesia; BPBM29349, 125 mm , Bali, Indonesia; CAS-SU20264, 3: 52-57mm, Aparri, northern Luzon, Philippines; CAS uncat., 78 mm , Koror, Palau; CAS uncat., 3: $59-95 \mathrm{~mm}$, Babelthuap, Palau; CAS-SU27372, 88 mm , Palau; QMI7746, 431 mm , Magnetic 1., Qld; QMI11319, 583 mm , off Caims, Qld; QM $120290,97 \mathrm{~mm}$, fish market, S of Denpasar, Bali.

Plectorhinchus gaterinus. BPBM17589, 4: 41-144mm, Mafia I., Tanzania; BPBM18150, 228mm, Dahab, Gulf of Aqaba, Egypt; BPBM18178, 49 mm , Gulf of Aqaba; BPBM28035, 2: 79-81mm, Lamu, Kenya; BPBM29464, 6: $94-227 \mathrm{~mm}$, Bahrain (Persian Gulf); BPBM33259, 64 mm , 'Tanura, Saudi Arabia (Persian Gulf).

Plectorhinchus lessonii. AMSI17491-030, 139mm, Savo I., Solomon Islands; AMSIB150, 105.5 mm , Bali; AMSI1324, 175 mm , Iran Jaya; AMSI23694-001, 265 mm , Queensland, Australia; AMSI $17142-018,234 \mathrm{~mm}$, Santo, New Hebrides (Vanuatu); AMSI20774-141, 273mm, off Cape Melville, Qld, Australia; BPBM8886, 87 mm , Philippines (aquarium trade); BPBM9473, 3: 205-239mm, Malakal Harbour, Palau: BPBM18666,174mm, Hou-Pi-Hoo, southern Taiwan: BPBM19175, 285mm, Okinawa, Ryukyu Islands; BPBM20889, 64mm and

TABLE 1. Meristic data for striped Plectorhinchus species. Symbols signify counts for holotypes, * $=P$. lineatus, ${ }^{* *}=P$. vittatus.

Dorsal Spines				Dorsal Rays						Pectoral Rays		
	XII	XIII	XIV	17	18	19	20	21	22	16	17	18
P. albovitatus	1	15	-	-	14	2	-	-	-	-	14	2
P. gaterinus	-	14	1	-	7	6	2	-	-	14	1	-
P. lessonii	28	8	-	-	1	12	18	5	-	-	30	4
P. lineatus	1	37*	-	-	4	24*	10	-	-	5	25*	1
P. polytaenia	16	8	-	-	-	-	3	10	11	2	20	1
P. vittatus	2**	19	1	3	11**	8	-	-	-	-	4**	18

Upper Gill Rakers								Lower Gill Rakers										
	5	6	7	8	9	10	11	14	15	16	17	18	19	20	21	22	23	24
P. alhovittatus	-	-	-	5	11	-	-	-	-	-	-	-	1	5	10	-	-	-
P, gaterinus	-	-	-	10	5	-	-	-	-	-	-	7	7	1	-	-	-	-
P. lessonit	3	27	5	-	-	-	-	8	23	3	1	-	-	-	-	-	-	-
P. lineatus	-	-	2	22	14*	-	-	-	-	-	-	1	9	23	5*	-	-	-
P. polytaenia	-	-	4	9	10	1	-	-	-	-	-	2	10	10	2	-	-	-
P. vintatus	-	-	-	-	9	9**	4	-	-	-	-	-	4	3	$6^{* *}$	6	1	2

Total Gill Rakers																	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
P. albovittatus	-	-	-	-	-	-	-	-	-	4	4	8	-	-	-	-	-
P. gaterinus	-	-	-	-	-	-	-	5	7	2	1	-	-	-	-	-	-
P. lessonil	2	7	18	6	2	-	-	-	-	-	-	-	-	-	-	-	-
P P lineatus	-	-	-	-	-	-	1	-	8	14	13	2*	-	-	-	-	-
P polytaenia	-	-	-	-	-	-	-	3	8	5	6	2	-	-	-	-	-
P. vittatus	-	-	-	-	\sim	-	-	-	-	1	5	3	7**	2	2	1	1

BPBM29350, 132 mm , Bali, Indonesia; BPBM26672, 48 mm , Manado, Sulawesi, Indonesia; BPBM29999, 140 mm and BPBM30098, 69 mm , Lombok, Indonesia; BPBM38708, 141 mm , Ishigaki, Ryukyu Islands; CAS49579, 199mm, Siluag I., Sulu Archipelago, Philippines; CAS51980, 4: 24-64.5mm, Dumaguete, Negros, Philippines; CAS88540, 86 mm , Bolinao, Luzon; CAS-SU39054, 130 mm , Manila Bay, Luzon; NTMS10663-001, 105 mm , Barang-Lompo, Ujung Pandang, Sulawesi, Indonesia; QM uncat., 2: 160-228mm, Qld; QMI11322, 325 mm , off Bundaberg, Qld; QMI12006, 294 mm , off Cairns, Qld; QMI $13205,307 \mathrm{~mm}$, Big Broadhurst Reef, off Cape Bowling Green, Qld; QMI15377, 236mm and QML15378, 251 mm , Flinders Reef, off Cape Moreton, Qld; QMI19093, 300 mm , off Cairns, Qld; QMI19147, 346 mm , Swain Reefs, Qld; QMI20053, 327 mm SL, Keeper Reef, Qld; QMI29832, 323 mm , Boult Reef, Bunker Group, Qld.

Plectorhinchus lineatus. AMSIB149, 130mm, Bali; AMSI8309, 90 mm , Malaysia; AMSI9138, 96 mm , Hood Bay, Papua New Guinea; AMSI9201, 73mm, same data; AMSII 3412, 294mm, same data; AMSI $10512,90.5 \mathrm{~mm}$, Mindanao, Zamboanga, Philippines; AMSI13411, 177 mm , Port Moresby, Papua New Guinea; AMSII072, 218 mm , same data; AMSI $13840,186 \mathrm{~mm}$, Admiralty

Islands; AMSI15360-078, 333mm, Bita-Ama Reef, N. side, Solomon Islands; BPBM7264, 170 mm , Ishigaki, Ryukyu Islands; BPBM22203, 2: 40-64mm, Negros, Philippines; BPBM26653, 108 mm , Bunaken, Sulawesi, Indonesia; BPBM30099, 2: $65-77 \mathrm{~mm}$ and BPBM38709, 43 mm , Lombok, Indonesia; CAS7070, 73 mm , Mindanao, Philippines; CAS51930, 39 mm and CAS53446, 170 mm , Siluag I., Sulu Archipelago, Philippines; CAS-SU26961, 179 mm , Culion, Philippines; CAS-SU26962, 5: $32-80 \mathrm{~mm}$, Dumaguete, Negros, Philippines; CAS-SU62720, 142 mm , Zamboanga, Mindanao, Philippines; QMI6749, 495mm, Cape Cleveland, Qld; QMI12909, $177 \mathrm{~mm}, \mathrm{QMI} 19094,441 \mathrm{~mm}, \mathrm{QMI19095}$, $458 \mathrm{~mm}, \mathrm{QMI} 19096,417 \mathrm{~mm}$ and QM119097, 334mm, off Cairns, Qld.

Plectorhinchus polytaenia. BMNH1859.4.21.226, 120 mm and $\mathrm{BMNH} 1859.4 .21 .222,167 \mathrm{~mm}$, Amboina; BMNH1870.8.31.41, 161 mm , Mosil I.; BMNH1880.4.21.47-48, 2: 129-138, no data; BPBM17436, 2: 304-315mm, Kendrew I., Western Australia; BPBM22176, 215 mm , Sumilon I., Philippines; BPBM32370, 124 mm , Komodo, Indonesia; CAS-SU26968, 2: 137-155mm, Jolo, Philippines; NTMS $10590-004,285 \mathrm{~mm}$, New Year I., Arafura Sea; NTMS11289-002, 321 mm , White I., Cape Amhem, NT;

lilG. 3. Plectorbinchus lineatus; A, Sanur, Bali, TL 90 mm (photo, Takamasa Tonozuka); B, Palau, T1. 110 mm ; $\mathrm{C}_{\text {, }}$ Tulamben, Bali, TL 180 mm (photo Rudie Ḱuiter): D. Yonge Reef, Australia. TL 450 nm . Total length (TL) given for tishes phorographed underwater is an estimate.

NTMS104s1-011. 270mm, wh Table Heas, rort Essington, NT;, QMI $10210,345 \mathrm{~mm}$, Exmouth Gulf. WA.

Plectorthinchus vitratus. AMS $11536(1-1) 77$. 161 mm . Malaita, Solomon Islands: \wedge MS $1220,106 \mathrm{~mm}$, Admiralty Islands. Papun New Guinea; AMS 19748, 241nm, Hood Bay, Papha New (iunes, BPBM 4()20, 335 mm , Guam, Mariand Islands: 13P13M V015, 2: S3-92mm, BPBM 18790, 214 mm , and B[JM 27171 , 65 mm , Sri l.ankat BPBM 11650, 294mm, Fiji; BPBM 13636, 85 mm, Madang Papun New Gumea: BPBM 16061, 153 mm . Cuadalcunial. Solomon Istands; BPBM 16191. 129 mm . Nite Rect; Solomon Islands; BPBM 17624, 166 mmm , Matia I.. Tanzania: B[PBM 21577, 44mm and BPBM.M 3551(0, 25 mm , La Digue, Seychelles; BPBM 29336. $17{ }^{\circ} \mathrm{mm}$ m, Boli, Indonesia; CAS 7462, 97 mm . Viui Leva.
 Cilinea; CAS $120475,1081 m$ nn, Calayan I.. Cagayan Prov. Philippines: NTM S13162-004, 220mm, follams linh lunding Negombu, Sri l.anka; NTM S13435-022, 83 m , Ilibermia Reef, Timno Sea; WAM P20925-001, 356 mm uspecified otishore atells. Wal.

OTHER MATERIAL. (examined by collearues)
Plectorminchus lessonim. HUMZH1407, 157mm1, Lshigahi, Ryukyu; HUMZ48226, 207mm, Marshall Islands.
 Okinaws, Ryukyu Islands; MUFS6353, 228mm, M(IIS $63359,193 \mathrm{~mm}$. MUFS6360, 240 m 1 m 1. MUFS6373.
 Okinawa, Ryukyu lstands,

Flectortunchus prolltathia. CSIROCA450. 288mmo. Nof Eighty Mile Beach, WA: CSIROH4017-111.250mm, N of Cape I'reston, WA: CSIROCA1648, 2671 mm, NW of Bathurst I., N1; WAMU $7377-(40)$, 380 mmm , Black Ledsee, Onsluw, WA, WAMIP20213-001, 295 mm , Dampier Archipelago: WAMP20243-001, 300 mon, Dolamber I. WA: WAMP22859-(0)1, 240mm, Kendrew I., olfMuseum [3:ay; WAMPD2455t-00)1, $33(\mathrm{~m}$ m, Western Austrolia: WAMP25354-107. 230 mm , Monte Bello I.. WA.

ACKNOWLEDGEMLNTS

We thank foremost Sien O. Kullander of the Swedish Natural History Muscum lor the photographs, radiograph and data he provided of the types of Perca linecta and P. willoter. Thatrks are also duc to Jon Fong at the Californiz Academy of Sciences and Mark A. McGroulter and Tom Trnski at the Australian Museunn for assistance at their institutions; Helen K. Larson
of the Northern Territory Museum and Anthong C. Gill of the Natural History Muscum tor providing loans of specimtens under their cure and Sue Morrison of the Western Australian Museum, Alastair Graham of CSIRO Marine Laboratories, Hiroyuki Motomura of the Miyazaki Univetsity and Kouichi lloshino of Hokknido University for sending meristic and collcction data of specimens in their collections. Rudie H. Kuiter kindly allowed us to reproduce photographs of juvenile P. lineatus.

LJTLRATURE CITED

CLLVITR, (i e VALLENCIENNES, 1.1830 . Histoir Naturelle des Poissons, vol, s: xxviif. (F.G. L.evrault: Paris).

FERNHOLM, B. \& WIHEELER, A. 1483. Linnatian lish specimens in the Sivedish Aluseum of Natural History, Stockholm. Zoological Journal of the Linnear Society 78(3): 149-286.
LINNAEUS, C. 1758. Systema naturae per regna tria maturac, secundum classes, ordines, genera, species, eum characteribus, differentils. synonymis, locis. Ed. 10, vol. 1 (Laurenlii Salvif: Holmiae).
KANDALL, J.E. \& ANDERSON, R.C. 1993. Antotated checklist of the epipelagic and shore fisles of the Maldive lslands. Jehthyolorical Bulletin of the JLB Smith Institute of'Ichithyology' 59) 1-47.

RANDALL. J.E. IDA, H. KATO. K., PYLE, R. 是 EARLE, J.L. 1997. Annotated checklish of the inshore fishes of the Ogasawara Islands. National Science Museum Monouraphs 11: 1-74.
SENOU, H. \& SHIMADA. K. 1991. A review al the changes of color pattem of three species of the striped sweetlips, Pleciorhinchus limeatus. B. lessunit and t: urientalis (Pisces: Hamulidae) with their tasunomy: 1.O.P. Diving News 2(12): 2-6 (in Tapanese)
SAll'th, J.L.B. 1962. Hishes of the family Gaterinidae of the Western Indian Ocean and the Red Sea with a tesume of all known Indo-Pacific species, fehthyological Bulletin of the Department ot Ichthyology, Rhodes Lniversity, Grahamsiown 25:467-502
WIN'EERBOTTOM, R. \& ANDERSON, R.C. 1997. A revised checklist of the epipelagic and shore fishes of the Chasos Archipelago, central Indian Ocean. Ichthyological Bulletin of the J. 13 Simith Institute of lehthyolngy 66: 1-2s.

REYISION OF AN EARLY CRETACEOUS MACROELORA FROM TH: AUSTRALIA

STEPERE MCROLIGHLIN, ANNE-MARIE P. TOSOLINI AND ANDREW N, TRINNAN

Abstract

McLoughlin, S. Tosolini, A.P. Se Drinnan, A.N. 200106 30: Revision of an Early C'retaceous macroflora from the Maryborough Formation. Maryborough Basin, Queensland, Australia. Alemurs of the Outenskund Afuseun 45(2): 483-503. Brishane. 15SN 0079-88.35.

An Early Cretaccous (Aptinn or earliest Albian) impression flora is described front the upper part of the Maryborough Formation in the Maryborough Basin, southern Queensland. The thora is preserved in marine sediments hosting an abundant invertebrate fauna dominated by bivalve mulluses. The Ifora ineornorates, single specees altributable to the Pellypodiophyta, Pentoxylales and Bennettitales. Two cuneate leaves have affinities either with the Ginkgoales or seed-ferns. Four species of conifer foliage are represented together with araucariacean ovulate cones. liossils considered by previrus workers to be planf raols are reinterpected as invertebrate burrows, and forms attributed to cquisctalcan nodal diaphraens may alternatively represen gastropud upereulas. An Aplian ur uarliest Albian agese based un past studies of the forsil fauma is supported by the presence of the stratigraphic intex fossil Rentraydales, Bennctitales, Cretacenus palacocavinmments.

Stephen AleLorghlin, Amme-A far ie P. Tosolmi, and Aneltew N. Driman. Schanl uf Rorams;

In 1918, A.B. Walkom deseribed as small assemblage of plann fussils frum the Maryburuugh Furmation, Maryborough Basin, SLE Queensland. Most of the plant fossils had been collected by Mr Daniel Jemanell and his son during quarrying operations at the Corporation Quarry, Maryborough (Dunstan, in Walkom, 1918). The plant remains were illustrated with a series of simple line-drawings, which in some cases did nol express the full suite of morphological characters available in the fossils. Since that date, improved understanding of the systematics, phylngenetic allinities, and stratigraphic ranges of some plant groups has necessitated revision of some of Valkom's identifications. Several plant fossils from the Maryborough Formation, including counterparts of some of Walkom's studied specimens. Were subsequently sent to the Natural History Museum, London, by B. Dunstan, then Queensland Chief Goyermment Genlugist. This paper presents revised systematic descriplions of the Maryborough Formation macrotlora. The study is part of a broader project to describe and revise it series of fossil floras from castern Australia in urder to better resolve the stratigraphic and palaeobiogeographic ranges of Mesozoic plant taxa.

GEOLOGICAL SETTING

The Maryborough Basin (Fig. 1) covers an area of around $24.600 \mathrm{~km}^{2}$ and incorporates at lerrestrial, paralic and marine succession af least

4000 m thick. Subsidence in the Maryborough Busin initiated during latest lifiassic times whs roughly contemporaneous will developmers of the contiguous Nambour. Clarence-Moretors. Surat. Eromanga Carpentaria and Laura basins elsewhere in (yuensland. Initial deposits in the basin are represented by the uppermost Triassic to Lower Jurassic, Myrte Creek Sandstone (8ig. 2) deposited predominuntly in high-energy fluvial settings (Cranfield, 1993). Subscquently, the Tiaro Coal Mcasures (Lower to '"Middle Jurassic) were deposited in a range of tluyal settings dominated by high-sinuosity rivers and incorporating extensive thoodhasin mire deposits. The Tiaro Coal Measures also incorporate a distinctive 30 m thick interval cuntaining prominent beds of pisolitic and oolitic ironstone that are useful marker horizons firs cortelation with seguences in neighbouring basins (Cranlield, 1493). The Grahams Creel. Fornation (?Upper Jurassic to ?Neocomian) uncontormably overlies the Tiaro Caal Measures, but the hiatus in sedimentation is not well resolved due to poor palynological age constraints on the upper Tiaro Coal Measures and entire Grahams Creek Formation (Cranfield, 1993). The Grahams Creek Formation is domimated by intercalated intermediate to felsic volcanies and volcanigenic sedumens. The unit was deposited in continental settines and some sediments have

 yielding plant fossils.

FIG. 2. Stratigraphic chart showing correlation of the Maryborough Basin succession with sequences in the Surat, Eromanga, and southern Victorian basins. Leaf symbol indicates plant-bearing unit.
been interpreted as the deposits of alluvial fans (Cranfield, 1993).
The disconformably overlying Maryborough Formation (?Neocomian to ?lowermost Albian) was deposited in a range of sedimentary environments. The formation ranges in thickness from 600 to 2500 m (Day et al., 1983). The basal conglomeratic beds were probably deposited in continental settings (Draper, 1971) but a subsequent (late Neocomian) marine transgression saw the remainder of the formation deposited in a mosaic of paralic to shallow marine settings. Sandstones within the unit have been identified as potential hydrocarbon reservoir targets (Siller, 1961; Ellis, 1966). The assemblage of plant remains studied here is derived from the upper part of the formation where invertebrate macrofossils are also abundant. The conformably overlying Burrum Coal Measures (?lower to middle Albian) were deposited within fluvial settings hosting extensive peat-forming mires in floodbasin environments. Sedimentation ceased after deposition of the Burrum Coal Measures (Fig. 2) and the basin was subjected to faulting and moderate folding before deposition of fluvio-lacustrine Elliot and Takura formations in the mid-Cenozoic.

Gentle post-Albian deformation was probably associated with the breakup of Australia and Tasmantis (comprising New Zealand, the Lord Howe Rise, and associated submarine plateaux) and asymmetrical opening of the Tasman Sea (Coleman, 1980; Bryan et al., 1997). As a result of this deformation, the Maryborough Formation is now exposed along the flanks of a series of NW-SE trending anticlines/synclines (Fig. 1).

MATERIAL AND METHODS

Material from the Maryborough Formation held in the collections of both the Geological Survey of Queensland, Brisbane (prefixed QSQF), and the Natural History Museum, London (prefixed NHMV) was investigated. All studied specimens are derived from Corporation Quarry, also known as Baddow Quarry (Fleming, 1966b) in the western part of Maryborough city near the junction of the main Aldershot railway with the Brisbane-Maryborough railway (Fig. 1). Specimens cited by Walkom (1918) as being from 'Argyle Creek, three miles northwest of Aldershot' are probably derived from the overlying Burrum Coal Measures. All of the plant fossils are from the upper part of the Maryborough Formation and are preserved as impressions (lacking cuticular details) in pale
grey, commonly silicified, siltstone. All specimens were illustrated under strong unilateral, low-angle light using Kodak Techpan film. Line-drawings were composed from photo-enlargements.

SYSTEMATIC PALAEOBOTANY
 POLYPODIOPHYTA OSMUNDALES OSMUNDACEAE

Phyllopteroides (Medwell)
emend. Cantrill \& Webb 1987
TYPE SPECIES. Phyllopteroides dentata (Medwell) Cantrill \& Webb 1987; upper Eumeralla Formation (Albian); Killara Bluff, Otway Basin, Victoria.
Phyllopteroides serrata Cantrill \& Webb 1987 (Fig. 3A-C)
Sphenopteris sp. Walkom, 1918: p. 6; pl. 1, figs 4,5,
MATERIAL. HOLOTYPE: NMVP167486; Koonwara fish beds, upper Strzelecki Group (Aptian); Koonwarra. Gippsland Basin, Victoria (Cantrill \& Webb, 1987). OTHER MATERIAL: GSQF959a,b, NHMV24605.
DIAGNOSIS. See Cantrill \& Webb (1987, p. 66).
DESCRIPTION. This species is represented by isolated lanceolate to ?oblanceolate pinnules $38-53 \mathrm{~mm}$ long and $10-12 \mathrm{~mm}$ wide. The base of each pinnule is not preserved; apices are acute and finely toothed. Pinnule margins are undulate or weakly crenate with typically four denticles developed on each lobe (Fig. 3B). Denticles are less than 0.5 mm long and broad and each one corresponds to a vein terminus. The midrib is robust (1 mm wide) in the proximal portion of the pinnule but tapers and becomes indistinct in the distal part (Fig. 3A). Lateral veins are alternate, depart acutely from the midrib, arch slightly across the lamina and intersect the margin at $25-40^{\circ}$. Vein density is $4-6$ per 5 mm along the margin. One specimen (GSQF959a, Fig. 3C) is obovate, has more densely spaced venation and the margins are not clearly denticulate.
REMARKS. Specimen GSQF959a is atypical and may represent a separate taxon but it is an incompletely prescrved pinnule. Phyllopteroides lanccolata (Walkom) Medwell, 1954 from the Albian Burrum and Styx coal measures in the Maryborough and Styx basins of Queensland is morphologically closest to P. serrata but is distinguished by its greater vein density ($9-16$ per 5 mm) and more obtuse secondary veins (marginal angles of $50-70^{\circ}$). Phyllopteroides dentata Medwell, 1954, known only from Albian strata

FIG. 3. A-C, Phyllopteroides serrata Cantrill \& Webb 1987. A, Pinnule with undulate and denticulate margins, NHMV $24605 \times 3 ; B$, pinnule with denticulate margins, GSQF959b $\times 3 ;$ C, atypical obovate pinnule, GSQF959a $\times 2$. D, Taeniopteris daintreei McCoy 1874 , apex of leaf, GSQF836 $\times 5$.
of the Otway Basin is a much larger leaf with deeply dentate margins. Phyllopteroides laevis Cantrill \& Webb, 1987 and P. westralensis McLoughlin, 1996 from the Victorian, Queensland and Western Australian NeocomianBarremian strata are distinguished from P. serrata by their finely denticulate or entire margins. In most cases, P. laevis also differs in shape having elliptical pinnules. Phyllopteroides macclymontae from the Cenomanian Winton Formation, Eromanga Basin, generally has more obtuse venation and a more finely denticulate margin than P. serrata.

DISTRIBUTION. Aptian to basal Albian strata of the Gippsland and Otway basins, Victoria (Cantrill \& Webb, 1987); and Maryborough Formation (Aptian or lowermost Albian) of the Maryborough Basin, Queensland.

GYMNOSPERMS

?BENNETTITOPSIDA PENTOXYLALES

Taeniopteris Brongniart 1832

TYPE SPECIES. Taeniopteris vittata Brongniart 1832; Jurassic; Whitby, England.

Taeniopteris daintreei McCoy 1874
(Figs 3D, 4A, C)
Taeniopteris elongata Walkom, 1918: p. 6; pl.1, figs 1-3. Taeniopteris Tenison-Woodsi (Etheridge Jr) Walkom, 1918: p. 8. Taeniopteris sp. Walkom, 1918: p. 8.

LECTOTYPE. NMVP12270; upper Strzelecki Group (Aptian); Cape Paterson, Gippsland Basin, Victoria, Australia (selected by Drinnan \& Chambers, 1985).

MATERIAL. GSQF836, GSQF843, GSQF845, GSQF846, GSQF958, GSQF961, GSQF962; NHMV24613.

DIAGNOSIS. See McCoy (1875: 15), Seward (1904: 168) and Drinnan \& Chambers (1985:90) for diagnostic characters.

DESCRIPTION. No complete leaves have been preserved. Leaves are elongate spathulate, with entire to slightly undulate margins tapering gently to form a narrow, cuneate, acute base (Fig. $4 \mathrm{~A})$. Leaves reach $>120 \mathrm{~mm}$ long and $13-21 \mathrm{~mm}$ wide. One leaftip bears a pointed acute apex (Fig. 3D). The prominent midrib is stout, usually $1.5-2 \mathrm{~mm}$ wide, and narrows towards the apex. Secondary veins are subparallel at $70^{\circ}-90^{\circ}$ to the midrib becoming more acute ($50^{\circ}-60^{\circ}$) towards the apex (Figs 3D, 4C). They dichotomize at or very near the midrib producing a tuning fork shape; few divide further away. Vein density is approximately 18 per 5 mm at the margin.

REMARKS. Walkom assigned the Taeniopteris specimens from the Maryborough Formation (Walkom, 1918) and Burrum Coal Measures (Walkom, 1919) to several species, however, there is insufficient morphological evidence to establish that these leaves represent distinct taxa. Australian Jurassic-Cretaceous Taeniopteris leaves show few consistent morphological distinctions between established species. Taxa have been differentiated on the basis of secondary venation angles, margin form and average size (McLoughlin \& Drinnan, 1995). However, Drinnan \& Chambers (1985) showed that Taeniopteris daintreei leaves may incorporate a considerable range of forms at a single locality. Most Jurassic to Cenomanian specimens from all parts of Australia (e.g. forms illustrated by Seward, 1904; Walkom, 1921; White, 1981; Glaessner \& Rao, 1955; Gould, 1980; Douglas, 1969, 1973; Drinnan \& Chambers, 1985, 1986; McLoughlin et al., 1995; McLoughlin, 1996) are now assigned to, or closely compared with, Taeniopteris daintreei in its broader sense (Drinnan \& Chambers, 1985). Taeniopteris howardensis described by Walkom (1919) from the Burrum Coal Measures is a small obovate leaf that probably represents an end member of the morphological spectrum encompassed by T. daintreei. Australian species are also morphologically comparable to the Early Cretaccous T. spatulata from India (Bose \& Banerji, 1981) and T. stipulata from New Zealand (McQueen, 1956). Clear demarcation between these species on gross morphological features is not possible but cuticular differences may be present (Douglas, 1969; Drinnan \& Chambers, 1985). Additionally, Drinnan \& Chambers (1985) noted
that Taeniopteris leaves were associated with different microsporangia (Sahnia) and fruits (Carnoconites) in India, Australia and New Zealand and on this basis we consider it preferable to retain the Australian leaves in T. daintreei.

DISTRIBUTION. Widely distributed in Australian basins in Middle Jurassic (Walkom, 1921) to Aptian (Douglas, 1969) strata. Taeniopteris leaves from Albian and Cenomanian strata of the Maryborough and Eromanga Basins (Walkom, 1919; McLoughlin et al., 1995) are closely comparable to T. daintreet.

BENNETTITALES

Otozamites Braun in Münster, 1843
TYPE SPECIES. Otozamites (Zamites) brevifolius Braun in Münster, 1843, (See Watson \& Sincock, 1989 for discussion of typification).
DISCUSSION. Bennettite foliage genera are typically discriminated on the basis of cuticle data and the shape of pinna bases (Watson \& Sincock, 1992). Ptilophylhum species are defined by having a decurrent, basiscopic, pinnule base whereas Otozamites species have an auricle on the acroscopic side of the base. Bose \& Kasat (1972) and Bose (1974) reassigned many Indian species of Otozamites to Ptilophyllum, leaving only five species within Otozamites. However, Bose \& Kasat (1972) noted that many of the Indian Ptilophyllum species have characteristics that are gradational between the two genera, with regard to the definitions used by Watson \& Sincock (1992). Harris (1969) and Watson \& Sincock (1992) also discussed gradational characteristics between these bennettite genera. Otozamites and Ptilophyllum may be useful as descriptive form genera but their separation may not have phylogenetic signiticance.

Otozamites sp .

(Fig. 4B)
Ptilophyllum (IVilliamsonia) pecten (Phillips) Walkom, 1918: p. 10; pl.1, tig. 7.

MATERIAL. GSQF957.

DESCRIPTION. The single available incomplete frond is pinnate but its gross shape is indeterminate. The frond is 7 mm wide and has a length $>45 \mathrm{~mm}$ (total estimated length about 150 mm). The rachis is 0.5 mm wide. The pinnule bases are not preserved completely so their insertion on the rachis is not clear. The bases appear to expand on the acroscopic side and may form an auricle. On the basiscopic side, the bases appear to contract.

Adjacent pinnules are slightly imbricate, falcate, with pointed, acute and distally inclined apices (Fig. 4B). The pinnules arise at $50^{\circ}-70^{\circ}$ from the rachis and reach 4.5 mm long and 1.75 mm wide (average $=4 \times 1 \mathrm{~mm}$). Veins emerge from the centre of pinnule bases and are divergent, dichotomous and lack anastomoses. Around 3-4 veins are evident across the centre of the pinnules.

REMARKS. Based on the slightly expanded acroscopic bases of some pinnules we assign this frond to Otozamites. However, the incomplete specimen lacks key frond features and cuticle details to enable assignment to an established species. Walkom (1918) assigned this specimen to Ptilophyllum pecten based on comparisons with fronds from the Stanwell Coal Measures, Queensland (Neocomian), and the Yorkshire Jurassic. Both the Stanwell specimens (Walkom, 1917), and the Maryborough Formation frond are transferable to Otozamites. The Maryborough form has similarities to bennettite impressions described previously from India as Otozamites bengalensis (Oldham \& Morris, 1863), Ptilophyllum cutchense (Bose \& Kasat, 1972) and with the smaller, basal pinnae of Ptilophyllum acutifolium fronds (Bose \& Kasat, 1972), Otozamites bengalensis has been reassigned both to Ptilophyllum acutifolium (Bose, 1974) and Ptilophyllum cutchense (Bose \& Kasat, 1972). It is possible that the morphology of fronds from a single plant may have varied sufficiently to account for the differences between these form species but without cuticular evidence this cannot be verified. Within Australia, the Maryborough Formation specimen most closely resembles leaves from: the Neocomian Algebuckina Sandstone in South Australia (Otozamites bengalensis in Glaessner \& Rao, 1955); the NeocomianBarremian Broome Sandstone and Leederville and Bullsbrook Formations, Western Australia (described as Ptilophyllum cutchense by McLoughlin, 1996); the Neocomian Stanwell Coal Measures, Queensland (assigned to P. pecten by Walkom, 1917); and the Albian Burrum Coal Measures (assigned to P. pecten by Walkom, 1919).

DISTRIBUTION. Maryborough Formation, Maryborough Basin, Queensland. Comparable forms are discussed above.

PINALES ARAUCARIACEAE

Araucariacean ovulate cones

(Figs 4E, 5B)
Araucariles polycarpa Tenison-Woods. Walkom, 1918: p. 10. Araucarites sp. Walkom, 1918: pl. 2, fig. 10.

MATERIAL. GSQF842, GSQF853.
DESCRIPTION. Two cones are available; one (GSQF853) is preserved as a slightly off-centred axial impression (Figs 4E, 5B), the other (GSQF842) is an incomplete lateral impression (Fig. 5B). The cones are circular in transverse section and elliptical or oblong in longitudinal section. The cones are $25-28 \mathrm{~mm}$ in diameter and $>55 \mathrm{~mm}$ long (apex and base absent). The cones are composed of tightly packed, helically arranged scales with transversely elongate apical ends. Scale apices are $4-7 \mathrm{~mm}$ wide and $2-3 \mathrm{~mm}$ deep. The apices are truncate to gently rounded, or in some cases may have a short, blunt point, but prominent spines are absent. Although the cone compressed in an apical orientation has undergone slight distortion, an 8:13 phyllotaxy is evident (Fig. 5B).
REMARKS. We refrain from placing these cones in an established taxon or under new nomenclature owing to the dearth of available cone-scale characters. The absence of prominent apical spines on the cone scales favours an affinity with Agathis rather than Araucaria or Wollemia amongst extant Araucariaceae. Walkom (1918) assigned these specimens to two species of Araucarites but there are insufficient morphological differences to warrant specific differentiation. Numerous detached araucariacean cone scales have been described from the Australian Mesozoic (e.g., Walkom, 1921; Drinnan \& Chambers, 1986; McLoughlin et al., 1995). However, the absence of any detached cone scales in the Maryborough assemblage prevents assessment of whether the seeds were shed independently of the scale (as in modern Agathis and Wollemia) or whether the scales retained their seeds (as in Araucaria) after detachment from the cone. Similar cone fragments with tight, spirally arranged scales occur in the Stanwell Coal Measures near Rockhampton (Walkom, 1917), although the scale apices of the Maryborough species are about twice as broad. Substantially smaller and narrower araucariacean cones were recorded from the Victorian upper Strzelecki Group (Drinnan \& Chambers, 1986: fig. 30A, B) but it is

FIC. 4. A.C. Tennoptoris denmeci Mecos 187t: A, elongate teaf showing genty tapering baxe. GSQFS45 $\times 1$: C. broad leaf with undulate margins showing venation details, CSQFigol $\because 2$. B. Oto二amio's sp., fragment of pinnate frond, GSQF95? $\times 5 . \mathrm{D}, \mathrm{V}$, Podozomikes mexmenia Walkom comb. nov; D , anis with rhy thmic grouth increments, GSQF954 $\times 1 ; F$ teminal portion of axis with helically arranged leaves, NHMV24611 $\times 2$. E_{1} near-axial impression of an araucariacean ovulate cone, GSQF853 $\times 2$.

FlG. 5. Line-draw ings of conifer remains from the Nary borough Formation. A. Podozumite mesozotu Wathom comb, nov, GSQF954; B, Araucariacean ovulate cone, GSQF's53; C, Pagiophyllum jemmetli Walkom 1918, GSQF1133; D, Pagiophthum sp.. NHM124614: E, Elatoladus hedwemenses sp. mon.. GSQF853. Suale bar 10 mm .
unclear whether the Victorian specimens represent complete cones. cone axes, or even whether these cones were onvalate or microsporangiate.

DISTRIBUTION. Maryborough Formation (Aptian or carlies Albian), Mary borough Basin; possibly Stanw ell Coal Measures (Neocomian). Yarrol Block, Queensland.

INCERTAE FAMILIAE

Podozamites (Brongniart) Braun 1843
TYPE SPECIES. Podozamites distans (Presl) Braun, in Münster 1843; Lower Liassic, Bayreuth, Bavaria.

Podozamites mesozoica Walkom comb. nov. (Figs 4D,F, 5A, 6A, E)
Arcucarites mesozoica Walkom, 1918: p. 11; pl. 2, figs 1-3.
MATERIAL. LECTOTYPE: GSQF954 (Figs 4D, 5A, 6E); Baddow Quarry, Maryborough Formation (Aptian or earliest Albian), Maryborough, Queensland (here designated), OTHER MATERIAL. NHMV24610. NHMV24611.

DIAGNOSIS. Stout axes with rhombic leaf scars showing rhythmic growth increments or bearing linear leaves with around 4 parallel veins. Leaves slightly tapered but connected to axis by a broad base, apices rounded.
DESCRIPTION. Axes reaching $>66 \mathrm{~mm}$ long and up to 9 mm thick bearing spirally arranged, linear, multiveined leaves (Figs 4D,F, 5A, 6E). Leaf scars on the axis are broadly rhombic, mostly 3 mm wide, and $1.5-3 \mathrm{~mm}$ high. The distal adaxial margin of each leaf scar is typically more deeply impressed into the sediment matrix than the proximal (abaxial) margin. Variable leaf scar spacing along the axis represents rhythmic growth increments (Figs 4D, 5A, 6A). Scar spacing varies from $2-3 \mathrm{~mm}$ (separated by featureless areas of the axis) to closely abutting. The leaves are linear, $20->40 \mathrm{~mm}$ long, $2.5-3 \mathrm{~mm}$ wide. The entire margins gently taper towards the base but the leaves retain a broad basal attachment; leaf apices are blunt to rounded. The leaves are arrayed at $20-70^{\circ}$ from the axis and may be straight, or gently inflexed or reflexed. At least four parallel veins are present in each leaf; dichotomies and anastomoses are not evident.

REMARKS. The lectotype selected here is the only specimen of this species figured by Walkom (1918). The cone-like feature reported by Walkom (1918) at the distal end of this specimen (Fig. 4D, 5 A) is here interpreted to be a region of closely abutting rhomboid leaf scars. The species is transferred to Podozamites (Presl) Braun, a genus used for coniferous remains of uncertain familial affinity having strap-shaped leaves with several longitudinal veins. Araucarites by contrast is typically applied to isolated cone-scales of araucariacean affinity (Taylor \& Taylor, 1993). Some Podozamites species may be allied to the Araucariaceae but a lack of culicle characters or
attached fruits for P. mesozoica prevents definite assignment to an established conifer family. Several Podozamites species were described from the overlying Burrum Coal Measures (Albian) in the Maryborough Basin by Walkom (1919) but these all have substantially smaller leaf length:width ratios than P. mesozoica. Cantrill (1991) described three Podozamites species with preserved cuticle from the Albian part of the Otway Group of Victoria. Of these taxa P. taenioides and P. notabilis can be distinguished by their distinctly decurrent leaf bases. Podozamites pinnatus is similar to P. mesozoica in its more abbreviated, rhombic leaf base and the presence of around four prominent veins/striations in the lamina but the leaves of the former are typically twice as wide. Some forms of the conifer complex assigned to Araucaria sp. cf. A, mesozoica from the Winton Formation (Cenomanian) of Queensland by McLoughlin et al. (1995) are similar to the Maryborough species. However, the Winton Formation forms mostly have broader leaves with more numerous veins. Nevertheless, the Winton forms do show rhythmic leaf development on the axes (Dettmann et al,, 1992) suggesting a similar seasonal growth habit. Podozamites mesozoica is also comparable in terms of gross morphology to the foliage of other fossil genera such as Lindleycladus Harris (1979) but these are generally differentiated on the basis of cuticular features that are unavailable in the Maryborough specimens.

DISTRIBUTION. Maryborough Formation (Aptian or earliest Albian), Queensland.

INCERTAE FAMILIAE

Pagiophyllum Heer 1881 emend. Harris 1979
TYPE SPECIES, Pagiophyllum circinicum (Saporta) Heer 1881; Upper Jurassic, Sierra de San Luiz, Portugal.

Pagiophyllum jemmetti Walkom 1918
(Figs 5C, 6C,D, 7A, C)
Pagiophyllum Jemmetti Walkom, 1918; p. 13; pl. 2, figs 7,8.
MATERIAL. LECTOTYPE: Here selected as GSQF1133 (Figs 5C, 6D); illustrated by Walkom (1918; pl, 2, fig. 7).GSQF851, GSQF952, GSQF953, GSQF956, NHMV24608.
DIAGNOSIS. Straight ultimate shoots bearing densely packed, helically arranged, oblong, ovate, to awl-shaped leaves lacking cuticle, inserted at $45-90^{\circ}$ to the axis. Leaf length:width ratio 2:1-4:1.
DESCRIPTION, Axes reaching $>76 \mathrm{~mm}$ long and 6 mm wide, bearing spirally arranged leaves. The
leaves are oblong, ovate or awl-shaped, closely spaced but spreading, and inserted at $45-90^{\circ}$ to the axis (Figs 5C, 6D, 7A,C). The leaves are thick at the base but otherwise dorsiventrally flattened, straight or slightly inflexed (Fig. 6C,D). The leaves are $5-13 \mathrm{~mm}$ long, $1.5-5.5 \mathrm{~mm}$ wide, with rounded or obtusely pointed apices and broadly attached or slightly decurrent bases. Where the leaves are broken or detached a 2.5 mm wide, 1-2 mm high rhombic scar is retained on the axis. The leaf margins are entire. The leaves generally possess >2 parallel longitudinal striations per leaf but the venation is generally indistinct.
REMARKS. A specific diagnosis is provided here as Walkom (1918) gave only a general description of this taxon. Axes with similar crowded, short, lanceolate leaves from the Broome Sandstone (Neocomian) assigned to Araucaria sp. C by McLoughlin (1996) are distinguished by their acutely pointed leaf apices. A number of Laurasian Pagiophyllum species have grossly similar morphology to P. jemmetti (see for example: Harris, 1979) but these are mostly differentiated on cuticular characters unavailable in the Maryborough specimens. Pagiophyllum jemmetti can, nevertheless, be distinguished from most species by its densely crowded, spreading foliage, relatively low leaf length:width ratio and blunt leaf apices. Pagiophyllum- or Geinitzidtype remains from the Early Cretaceous of southern Australia are generally typified by smaller, narrower, acutely inserted leaves (Cantrill \& Douglas, 1988).
DISTRIBUTION. Maryborough Formation (Aptian or earliest Albian), Maryborough Basin, Queensland.

Pagiophyllum sp . A
(Figs 5D, 8C)

MATERIAL. NHMV24614.

DESCRIPTION. This branched twig bears spirally arranged, awl-shaped leaves (Figs 5D, 8 C). The axes are $>26 \mathrm{~mm}$ long (apex not preserved), $<1 \mathrm{~mm}$ wide and branch at $15-20^{\circ}$. The leaves are 2 mm long, 0.75 mm wide and 0.5 mm thick. They are univeined and most are closely appressed to the axis, slightly overlapping the bases of leaves in the succeeding spiral. In a few cases the leaves are slightly divergent from the axis. Deep imprints in the sediment left by some leaves suggest that they were trifacial (i.e., they possessed a prominent abaxial keel). The leaves are broadly based and
perhaps slightly decurrent. The apices are blunt and incurved, and the margins are entire.

REMARKS. Walkom (1918) either overlooked this species or the specimen was not available in his studied collections. The only available specimen is currently held in the collections of the Natural History Museum, London. The generic boundaries between Pagiophylhum, Brachyphyllum and Geinitzia are arbitrary and differentiation of these form genera has little phylogenetic meaning at present. Brachyphyllum has leaves that are shorter than broad, Geinizia has leaves that are as thick as they are broad, and Pagiophyllum typically has leaves that are longer than broad and broader than thick. The Maryborough specimen is therefore assigned to Pagiophyllum but the poor preservation of the single available specimen prohibits confident assignment to an established species or warrants erection of a new species. It is similar in leaf size, shape and arrangement to some specimens assigned to cf. Austrosequoia wintonensis Peters \& Christophel 1978 from the Winton Formation, Queensland, and to Araucaria sp. A of McLoughlin (1996) described from the Broome Sandstone (Neocomian), Western Australia.
DISTRIBUTION, Maryborough Formation (Aptian or earliest Albian). Several other fossils from northern Australia of NeocomianCenomanian age are closely comparable.

INCERTAE FAMILIAE

Elatocladus Halle emend. Harris 1979
TYPE SPECIES. Elatocladus heterophylla Halle 1913; Jurassic, Hope Bay, Graham Land, Antarctica.

Elatocladus baddowensis sp. nov. (Figs 5E, 7B, D, 8A,B)
?Pterophyllum sp. Walkon, 1918: pl. 1, fig. 6.
TTaxites sp. Walkom, 1918: p. 13; pl, 1, fig. 9.
MATERIAL. HOLOTYPE: GSQF853 (Fig. 5E, 7B), counterpart $=$ NHMV24609 (Fig. 7D); Baddow Quarry (Corporation Quarry), Maryborough Formation (Aptian or earliest Albian), Maryborough, Queensland. OTHER MATERIAL: GSQF838, GSQF7267, NMHV24606, NHMV24609.

DIAGNOSIS. Slender axes with spirally inserted but basally twisted leaves forming a distichous, opposite to sub-opposite arrangement. Leaf bases slightly contracted and decurrent for $1-2 \mathrm{~mm}$ along axis. Leaves oblong to lanceolate

FIG. 6. A, F. Podozamites mernenica Walkom comb, now. A, yout mis with thombic lear wears and linear leavec, NHMV24610 $\times 3$; E, details of venation and Jeaf attachments, GSQF954 $\times 3$. B, lateral impression of an araucariacean ovulate cone, GSOF842 $\times 2$, C, D, Pagioplyillum jemmetri Walkom 1918; C, lateral imprint showing awl-shaped leaves, GSQF952 $\times 3$; D, terminal portion of branch with oblong leaves, GSQF 1133×3.

FIG. 7. A. C, Pagiophyllum jemmetli Walkom 1918; A, stout axis with ovate leaves, NHMV24608 $\times 2$; C axis
 insertion on the axis, GSQF853 $\times 4$; D, twig bearine univeined, distichous leaves, NHMV24609 $\times 3$
with a length:width ratio of $4.5: 1$ to $5.5: 1$. Venation ill-defined and cuticle unknown.

DESCRIPTION. Slender ($1.5-3 \mathrm{~mm}$ wide) axes reaching $>41 \mathrm{~mm}$ long, bearing spirally inserted but basally twisted leaves in a distichous arrangement (Figs 7B,D, 8A,B). The leaves are opposite to sub-opposite, and leaf pairs are typically $1.5-2 \mathrm{~mm}$ apart. Leaves are $6-17 \mathrm{~mm}$ long and $1.5-2.5 \mathrm{~mm}$ wide. They are typically straight or slightly inflexed and arranged at $45-80^{\circ}$ to the axis. Leaves are dorsiventrally flattened and slightly contracted towards the base (Fig. 7B). The leaves are oblong to lanceolate with rounded apices and entire margins. The base may be decurrent for $1-2 \mathrm{~mm}$ along the axis. The venation is generally indistinct. A single median vein is evident on a few leaves and several parallel striations are evident on others.

REMARKS. Elatocladus has been used for conifer remains of widely varying morphology since its erection by Halle (1913). Some, like specimens assigned to Elatocladus planus (Feistmantel) Seward from the Jurassic Talbragar fish beds of New South Wales (Walkom, 1921), have atypical features such as transverse striae on the lamina and probably warrant generic segregation. Some species have a spiral arrangement of leaves whereas others show a distinctly distichous arrangement. Harris (1979) provided the history of generic emendations for Elatocladus. It is employed here in its broadest sense (Harris, 1979) to include 'fossil conifer shoots bearing elongated, dorsiventrally flattened leaves with a single vein. Leaves divergent from the stem'. Basal twisting of the spirally inserted leaves to a distichous arrangement is common amongst Elatocladus species but the majority of forms assigned to this genus have a more contracted, commonly petiolate, leaf base. Most Elatocladus species, and forms assigned to the morphologically similar genera Rissikia Townrow 1967 and Mataia Townrow 1967, have a more prominent midrib in the leaves than E. baddowensis. The leaves of this species may have developed ill-defined longitudinal creases during desiccation giving the false impression of multiple veins in the lamina. Longitudinal creasing and basal twisting of the leaves is similar to that illustrated by Florin (1931) for extant Podocarpus rospigliosii. A podocarpacean alliance is possible for E. baddowensis given the podocarpacean affinities of morphologically similar foliage from the Australian Mesozoic (Townrow, 1967, 1969). However, if the sparse
longitudinal creases represent multiple parallel veins in the lamina then a close comparison can be drawn with the smaller (distichous) foliar twigs assigned to Araucaria sp. cf. A. mesozoica from the Winton Formation of the Eromanga Basin (McLoughlin et al., 1995). Walkom's (1918, pl. 1, fig. 6) ?Pterophyllum sp. appears to be a poorly preserved example of E. baddowensis.
DISTRIBUTION. Maryborough Formation (Aptian or earliest Albian), Maryborough Basin, Queensland.

ORDER UNCERTAIN

Ginkgophyllum Saporta 1875
TYPE SPECIES. Ginkgophyllum grassertii Saporta 1875; Pcrmian. Lodève, France.

Ginkgophyllum sp.

(Fig. 8E)
Ginkgo digitata (Brongniart) Walkom, 1918: p. 9; pl. 2, figs 4,5.

MATERIAL. GSQF850.

DESCRIPTION. This spathulate leaf is $>23 \mathrm{~mm}$ long (base not preserved), 19.5 mm wide; the widest point occurring 9 mm from the apex. Proximal to the widest point the leaf's margins are entire and taper acutely towards the base. The apical margin is deeply dissected into live or six narrowly rectangular to slightly spathulate lobes $2.5-4.5 \mathrm{~mm}$ wide (Fig. 8E). Notches between these lobes are narrowly acute and 2.10 mm deep. The apices of the lamina lobes are poorly defined but range from broadly rounded to gently undulate or slightly toothed. The venation is mostly indistinct. It consists of sub-parallel, sparsely dichotomous veins that gently arch in the distal part of the lamina and terminate along the distal margin of the apical lobes. Vein density is around 28 per 10 mm across the distal part of the lamina.
REMARKS. Although the base is not preserved, the gently tapering margins of the available specimen suggest that the leaf was not strictly petiolate, a feature more reminiscent of the leaf bases of early Mesozoic seed-ferns such as Sphenobaeira and Kannaskoppifolia (Anderson \& Anderson, 1989; in press) rather than the Ginkgoaceae. Apart from Ginkgophytopsis truncata sp. nov. (described below) other fan-shaped leaves with dichotomous venation from the Australian Lower Cretaceous (see Walkom, 1919; Douglas, 1965; Drinnan \& Chambers, 1986; McLoughlin et al., 1995) consistently have
petiolate bases and can be more confidently uttributed to the Ginkgoaceae. Ginkgophytopsis Irmeata difters from Ginkgophyllum sp, by its non-dissected, truncate apex. The former also has sparse cross-comnections between the veins although this feature may not be discernable in Ginkgophyl/um sp. owing to the poor preservation of venation details.
DISTRJBUTION. Known only from the type formation.

Ginkgophytopsis (Hoeg) emend. Retallack 1980

TYTE SPECIES. Ginkgropintopsis flobellata (Lindley \& Ifuton) Hovg 1907: Newcastle Coal Measurs (upper Cuthonifermts), England.

Ginkequbytopsis truncatan sp. nov. (Fig. SD)
Giukponsp, Walknm, 1918:p, 9; pl, Z. lig. h.
ETYMOLOGY. For the truncate apex of the Icaf.
MAIERLAL. HOLOTYPE: GSOF964; Maryburnugh Finmation (Apsian or cartiesh Albian); Baddow Quary (Corporation Quarry). Maryharough, Queensland. Australia.

DIAGNOSIS. Cuncate Icaf with truncate apex. subparallel venation with most dichotomies developed on the marginal vein, rarely amongst veins of the central lamina. Leaf length:width :apio $>2: 1$. Vein anastomoses tate.
IJESCRIPTION. Leaf is cuncate, $>65 \mathrm{~mm}$ long (base not preserved; estimated total length $=$ 82 mm), and reaches a maximum width of 29 mm at the apex. The margins are entire and taper gently towards the base. The apex is sharply' iruncate. Veins are mostly parallel to subparallel. Marginal veins (located 0.5 mm inside the lamina margin) regularly dichotomize to produce inner lamina veins which in most cases run the length of the leaf and terminate at the apical margin without further dichotomies (Fig. 8D). In a few cases these inner lamina veins anderge a further dichotomy or more rarely they recombine with adjacent veins. Vein density ranges from 20 per 10 mm near the leaf base to around 14 per 10 mm at the apex.
REMARKS. This form is one of the largest foliar fragments in the fossil assemblage. It is unclear whether the apex of the illustrated specimen is complete or whether the leaf has been broken transversely below the apex. A sharply truncate abex is consistent with several other Ginkgo-like
leaves recorded from the Gondwanan Eatly Mesozuic (Retallack, 1980: Anderson Anderson, in press). However, if the apex has been detached then this leaf form may be conspecific with Ginkgophy/hum sp . with which it shares a number of additional characters, [3uth leaves are atypical of the Ginkgoaceae sensu stricto in lacking a petiole. The specimen with sparsely reticulate venation is here assigned tu the form-genus Ginkgophytopsis following tite usage of Retallack (1980) without inferring a natural affinty with the Ginkgoaceac. Retallack (1980) recognized six species in this gents. Gink the thiter species by its truncate apex and predominance of vein dichotomics adjacent to the leaf margins. It is possible that these leaves are late-surviving representatives of fan-leated seed-fern groups that included Kócmarskoppifoliou and Sphenohacira, which were more abundant and diverse in the early Mescrevic.
DISTRIBUTION. Known only from the sype formation.

NCERTAE SEDIS
Liquisetalean diaphragms or gastropod opercula
(Fig. YA, B)
A.gmivite sp. ci. E. pumphatenvir (Jdhant \& Morsie Walliom, 1!18: p. 5; pl, 1. fig. \&.
MAIERIAL. GSQF852. N'IMV246U4.
DESCCRHTYON. Circular organs 15 mm im diameter consisting of an inner disc and an outer ribbed rim. The inner disc is either featureless or has a low, indistinct spiral ridge (Fig. 913). The rim is marked by as 1.5 mom wide zone of radially arranged ridges and grooves, each around U.5-1mm wide (Figs 9A, 13).

REMARKS. Walkom (1918) assigned lhese fossils to Equisetites sp. cf. E. rajnuthatersis. Oldham \& Morris. Tenisun-Wouds (1884) illustrated similar equisetalean axis diaphragms. from the Walloon Coal Measures (Iurassic) othe Moreton Basin and Walkom (1915) also ligured comparable impressions from the Stanwell Coal Measures (Neocomian) near Rockhampon. Although no foliage is preserved with either the Maryborough or Stanwell fossils their similarity to equisetalean remains illustrated elsewhefe probably led him to interpret the fossils as nodal diaphragms. The marginal ribs may correspond to eithes the positions of vascular bundes or indentations in the diaphragm adjacent to radiall?

disposed leaves. However, equisetalean nodal diaphragms typically have more prominent radiating grooves/ridges corresponding to vascular bundles that extend from a small, central vascular ring to the diaphragm margin (Gould, 1968). Both the Maryborough and Stanwell fossils are associated with marine fossils and could be alternatively interpreted as gastropod opercula with marginal teeth and sockets. The indistinct spiral ridge in the centre of one specimen (GSQF852: Fig. 9B) supports this interpretation but a lack of preserved carbonaceous matter or shell material precludes confirmation of either interpretation.
DISTRIBUTION. Maryborough Formation (Aptian or earliest Albian), Maryborough Basin; conspecific or closely related forms occur in the Stanwell Coal Measures (Neocomian), Yarrol Block.

INVERTEBRATE BURROWS

Chondrites (Brongniart) Sternberg 1833
TYPE SPECIES. Chondrites targionii (Brongniart) Stemberg 1833; by subsequent designation of Andrews (1955); age uncertain, England.

Chondrites sp.

(Fig. 9C)
? Roots. Walkom, 1918; p. 14; pl. 2, fig. 9.
MATERIAL. GSQF841, GSQF846, NHMV24612.
DESCRIPTION. Burrows, circular in crosssection, $1-1.5 \mathrm{~mm}$ wide, and reaching in excess of 32 mm long. The burrows are variably orientated with respect to bedding and show sparse branching and cross-cutting relationships (Fig. 9 C). The burrows are generally filled with white to grey mud or fine silt, and are typically paler than the siltstone to very fine sandstonc host sediments. The burrows lack obvious linings.

REMARKS. Walkom (1918) tentatively regarded these fossils as the remains of plant roots but he also considered the possibility that they represented 'worm-casts'. His preferred interpretation as roots was based on his observation that the fossils had a whorled arrangement of appendages. Re-examination of Walkom's (1918) illustrated specimen, its counterpart in the

Natural History Museum, London, and associated specimens in the Geological Survey of Queensland collections failed to support a whorled interpretation of the fossils. We argue that their irregular branching and sediment-filled structure favours interpretation as invertebrate burrows and this is supported by a marine depositional environment for the host rocks based on the associated rich invertebrate fossil assemblage (Fleming, 1970). The fossils probably represent feeding structures (Fodinichnia) of infaunal invertebrates (Simpson, 1975).

AGE OF THE ASSEMBLAGE

Plant remains preserved in the Maryborough Formation are co-fossilised with an abundant but relatively low-diversity, marine, invertebrate fauna dominated by bivalves. Invertebrate assemblages from the upper part of the formation in the eastern part of the basin (from the same beds hosting the plant remains) have been regarded as indicative of an Aptian age (Etheridge, 1872; Whitehouse, 1926a,b; Day, 1963; Fleming, 1966a,b,c; 1970; 1976; Barnbaum, 1976). Exposures in the Gundiah area in the southwestern part of the basin have yielded assemblages considered to be of Neocomian-?Barremian age (Fleming, 1966a,b,c, 1970, 1976; Day, 1969). However, palynological studies of bore-core samples from the same area have indicated a wholly Aptian age for the Maryborough Formation (McKellar, 1980). Helby \& Partridge (1977) assigned a late Neocomian to early Aptian age for palynomorph assemblages from the basal Maryborough Formation in the eastern part of the basin. Cranfield (1993) indicated an early Aptian to ?carly Albian age for the unit in the central part of the basin based on preliminary studies of foraminifera and radiolarians. Walkom (1918) assigned a broad, Early Cretaccous age to the plant fossil assemblages from the Maryborough Formation. Most of the plant taxa recognized in the Maryborough Formation (Table 1) have distributions either restricted to the host unit or they are wide-ranging throughout the Early Cretaccous of Australia. However, the presence of Phyllopteroides serrata, a stratigraphic index taxon in southeastern Australian basins (Cantrill \& Webb, 1987) favours an Aptian or earliest Albian age for the upper part of the formation.

FIG. 8. A, B, Elatocladus baddowensis sp. nov.; A, details of leaf insertion on the axis, GSQF838 $\times 4 ;$ B, twig with oblong to lorate leaves, GSQF7267 $\times 2$. C, Pagiophyllum sp , branched axis with tightly appressed, awl-shaped leaves, NHMV24614 $\times 4$. D, Ginkgophytopsis truncata sp. nov., cuneate leaf with sparsely anastomosing veins, GSQF964 $\times 2$. E, Ginkgophyllum sp., apical fragment of leaf showing terminal notches, GSQF850 $\times 4$.

FIG. 9. A, B, circular fossils representing equisetalean nodal diaphragms or molluscan remains with a rim of regular ridges and sockets; A, NHMV24604 $\times 4 ;$ B, GSQF 852×4 (counterpart of Fig. 9A illustrated in reverse orientation). C, Chondrites sp., irregular, mud-filled burrows showing sporadic branching and cross-cutting relationships, NHMV24612 $\times 2.5$.

PALAEOENVIRONMENT

The basal, conglomeratic part of the Maryborough Formation was deposited in fluvial depositional environments (Draper, 1971). The middle part of the formation includes a mixture of black mudstones, green glauconitic sandstones, dark grey shales with invertebrate fossils, and conglomeratic units with scoured bases. These features have been interpreted to reflect deposition within a beach-barrier to shallow marine complex (Cranfield, 1980, 1993). The abundance of invertebrate shells and trace fossils in the upper part of the Maryborough Formation suggests the prevalence of marine conditions.

However, the occurrence of relatively wellpreserved plant foliage and fruiting structures suggests that deposition of some beds occurred close to terrestrial environments in relatively low-energy settings. The complex anastomosing burrow-forms within the predominantly finegrained, lenticular, wavy laminated to symmetrically (wave) rippled sediments are also indicative of quiet-water conditions with only minor reworking by waves. Thin beds containing disarticulated, abraided, and regularly orientated bivalve shells near the top of the formation indicate periodic episodes of higher energy conditions involving wave or current reworking of the sediment (Barnbaum, 1976). Fleming

TABLE 1. Comparison of taxonomic identifications of Maryborough Formation fossil plants by Walkom (1918), and in this study.

Walkom (1918)	This study
Sphenopteris sp.	Phyllopteroides serwata Cantrill \& Webb
Taeniopteris elongata \$p. nov.	Taeniopteris daintreei McCoy
Taeniopteris tenison-woodsi (theridge Jr)	Taeniopleris daintreei McCoy
Taeniopteris Sp.	Taeniopteris daintreei McCoy
Prilophyllum (Williamsonia) pecten (Phillips)	Otozamites sp.
?Pterophyllum	Elatocladus baddowensis sp. nov.
Araucarites polycarpa Tenison-Woods	Araucariacean ovulate cones
Araucarites mesozoica sp, nov.	Podozamites mesozoica (Walkom) comb. nov.
Araucarites sp.	Araucariacean ovulate cones
Pagiophyllum jemmetti sp. nov.	Pagiophyllum jemmetti Walkom
not mentioned	Pagioplhyllum sp. A
?Taxites	Elatocludus buddowensis sp. nov.
Ginkgo digitata (Brongniart)	Ginkgophylhum sp.
Ginkgo sp.	Ginkgophytopsis truncara sp, nov.
Equisetites sp. cf. E. rajmahalensis Oldham \& Morris	Equisetalean nodal diaphragms or gastropod opercula
?Roots	Chondrites sp. (invertebrate burrows)

(1970) suggested that the invertebrate fauna's low-diversity may be indicative of cold-water conditions in the Early Cretaceous, however, the limited faunal diversity may alternatively reflect environments under the influence of restricted water circulation, low oxygen levels, or high salinity. The collective palaeontological and sedimentological characteristics of the upper Maryborough Formation suggest that it was deposited in a range of shallow marine settings where plant-rich units were deposited in low-energy coastal lagoons or marine embayments.

ACKNOWLEDGEMENTS

Dr Susan Parfrey kindly permitted access to fossils held in the palaeontological collections of the Geological Survey of Queensland. Tiffany Foster and Dr Paul Kenrick are thanked for providing access to the collections of the Natural History Museum, London. S.M. and A.M.D. received support from an Australian Research Council Small Grant. A.-M.T is supported by an Australian Postgraduate Award (Industry) sponsored by the Basin Studies section of the Department of Natural Resources and Environment, Victoria, Cultus Petroleum, SANTOS, and Oil Company of Australia.

LITERATURE CITED

ANDERSON, J.M. \& ANDERSON, H.M. 1989. Palacoflora of southern Africa. Molteno Formation (Triassic) Volume 2 Gymnosperms
(excluding Dicroidium). (A.A. Balkema: Rotterdam).
In press. The Gymnosperm heyday: as seen through the Molteno Window. (National Botanical Institute: Pretoria).
ANDREWS, H.N. 1955. Index of generic names of fossil plants, 1820-1950. U.S. Geological Survey Bulletin 1013: 1-262.
ANDREWS, H.N. Jr 1970. Index of generic names of fossil plants, 1820-1865. U.S. Geological Survey Bulletin 1300: 1-354.
BARNBAUM, D. 1976. The geology of the Burrum Syncline, Maryborough Basin, southeast Queensland. Papers of the Department of Geology, University of Queensland 7: 1-45.
BOSE, M.N. 1974. The genus Otozamites Braun from the Mesozoic rocks of India. Palaeontographica 147B: 100-106.
BOSE, M.N. \& BANERJI, J. 1981. Cycadophytic leaves from Jurassic-Lower Cretaceous rocks of India. Palaeobotanist 28-29: 218-300.
BOSE, M.N. \& KASAT, M.L. 1972. The genus Ptilophyllum in India. Palaeobotanist 19; 115-145.
BRYAN, S.E., CONSTANTINE, A.E., STEPHENS, C.J., EWART, A., SCHÖN, R.W. \& PARIANOS, J. 1997. Early Cretaceous volcano-sedimentary successions along the castern Australian continental margin: Implications for the break-up of eastern Gondwana. Earth and Planetary Science Letters 153: 85-102.
CANTRILL, D.J. 1991. Broad leafed coniferous foliage from the Lower Cretaceous Otway Group, southeastern Australia. Alcheringa 15: 177-190.
CANTRILL, D.J. \& DOUGLAS, J.G. 1988. Mycorrhizal conifer roots from the Lower Cretaceous of the Otway Basin, Victoria. Australian Journal of Botany 36: 257-272.

CANTRILL, D.J. \& WEBB, J.A. 1987. A reappraisal of Phyllopteroides Medwell (Osmundaceac) and its stratigraphic significance in the Lower Cretaceous of eastern Australia. Alcheringa 11: 59-85.
COLEMAN, P.J. 1980. Plate tectonic background to biogeographic development in the southwest Pacific over the last 100 million years. Palaeogeography, Palaeoclimatology, Palaeoccology 31: 105-121.
CRANFIELD, L.C. 1980. Stratigraphic drilling report GSQ Maryborough 2. Quecnsland Government Mining Journal 81: 594-598.
1993. Stratigraphic units of the Maryborough Basin, southeastern Queensland. Queensland Geology 5: 18-43.
DAY, R.W. 1963. Aptian fossils from the Mary borough Formation at Yengarie Quarry, Maryborough. Internal report, Geological Survey of Queensland. (unpublished).
1969. The Lower Cretaceous of the Great Artesian Basin. Pp. 140-173. In Campbell, K.S.W. (ed.) Stratigraphy and palaeontology: essays in honour of Dorothy Hill. (Australian National University Press: Canberra).
DAY, R.W., WHITAKER, W.G., MURRAY, C.G., WILSON, I.H. \& GRIMES, K.G. 1983. Queensland Geology, Geological Survey of Queensland Publication 383: 1-194.
DETTMANN, M.E., MOLNAR, R.E., DOUGLAS, J.G., BURGER, D., FIELDING, C., CLIFFORD, H.T., FRANCIS, J., JELL, P., RICH, T., WADE, M., RICH, P.V., PLEDGE, N., KEMP, A. \& ROZEFELDS, A. 1992. Australian Cretaccous terrestrial faunas and floras: biostratigraphic and biogeographic implications. Cretaceous Research 13: 207-262.
DOUGLAS, J.G. 1965. The Mesozoic leaf Ginkgoites australis (McCoy) Florin, and Ginkgoites waarrensis n. sp. Mining and Geological Journal 6: 20-26.
1969. The Mesozoic floras of Victoria, Parts 1 \& 2. Memoirs of the Geological Survey of Victoria 28: 1-310.
1973. The Mesozoic floras of Victoria, Part 3. Memoirs of the Geological Survey of Victoria 3: 1-185.
DRAPER, J. 1971. The geology of the Urangan Syncline and the recent sediments of Great Sandy Strait. Unpubl. BSc Hons Thesis, Department of Earth Sciences, University of Queensland.
DRINNAN, A.N. \& CHAMBERS, T.C. 1985. A reassessment of Taeniopteris daintreei from the Victorian Early Cretaceous: a member of the Pentoxylales and a significant Gondwanaland plant. Australian Journal of Botany 33: 89-100.
1986. Flora of the Lower Cretaceous Koonwarra Fossil Beds (Korumburra Group), south Gippsland, Victoria. Memoirs of the Australasian Association of Palaeontologists 3: 1-77.
ELLIS, P.L. 1966. The Maryborough Basin. The APEA Journal 1966: 30-36.

ETHERIDGE, R. Snr 1872. Description of the Palaeozoic and Mesozoic fossils of Queensland. In Daintree, R. (ed.) Notes on the geology of the Colony of Queensland. Quarterly Journal of the Geological Society of London 28: 275-278.
FLEMING, P.J,G. 1966a. Report on Lower Cretaceous fossils from the Gundiah 1-mile Sheet area. Internal report, Geological Survey of Queensland. (unpublished).
1966b. Cretaceous Palacotaxodontida of the Maryborough Formation, southeast Queensland. Geological Survey of Queensland Publication 333: 5-11.
1966 c . The bivalve Grammatodon (Indogrammatodon) Cox in the Lower Cretaceous of Queensland. Geological Survey of Queensland Publication 333: 13-16.
1970. The fauna of the Maryborough Formation, southeast Queensland. Geological Survey of Queensland Publication 346:1-11.
1976. Records of Mesozoic fossils in the Maryborough 1:250000 Sheet area. Internal report, Geological Survey of Queensland. (unpublished).
FLORIN, R. 1931. Untersuchungen zur stammesgeschichte der Coniferales und Cordaitales. Kungliga Svenska Vetenskapsakadamiens Handlingar, Series 3, 10: 1-588.
GLAESSNER, M.F. \& RAO, V.R. 1955. Lower Cretaceous plant remains from the vicinity of Mount Babbage, South Australia. Transactions of the Royal Society of South Australia 78: 134-140.
GOULD, R.E. 1968. Morphology of Equisetum laterale Phillips, 1829, and E. bryanii sp. nov. from the Mesozoic of south-east Queensland. Australian Journal of Botany 16: 153-176.
1980. The coal-forming flora of the Walloon Coal Measures. Australian Coal Geology 1:83-105.
HALLE, T:G. 1913. The Mesozoic flora of Graham Land. Wissenschaftliche Ergebnisse der Schwedischen Südpolar-cxpedition 1901-1903 3: 1-123.
HARRIS, T.M. 1969. The Yorkshire Jurassic Flora III. Bennettitales. British Museum (Natural History), London.
1979. The Yorkshire Jurassic Flora, IV. Coniferales. (British Museum (Natural History): London).
IIELBY, R.J. \& PARTRIDGE, A.D. 1977. Palynology of samples from the Stanwell area, Styx Basin and the Maryborough Basin. Esso Australia Ltd, Palacontological Report (also Department of Minerals and Energy, Open File Report CR 7007). (unpublished).
McCOY, F. 1875. Prodromus of the Palaeontology of Victoria. (Geological Survey of Victoria: Melboume).
McKELLAR, J.L. 1980. Palynostratigraphy of the Tiaro Coal Measurcs and the Maryborough Formation in GSQ Maryborough 2. Queensland Government Mining Journal 81: 599-604.

McLOUGHLIN, S. 1996. Early Cretaceous macrofloras of Western Australia. Records of the Western Australian Museum 18: 19-65.
McLOUGHLIN, S. \& DRINNAN, A.N. 1995. A Middle Jurassic flora from the Walloon Coal Measures, Mutdapilly, Queensland, Australia. Memoirs of the Queensland Museum 38: 257-272.
McLOUGHLIN, S., DRINNAN, A.N., \& ROZEFELDS, A.C. 1995. The Cenomanian flora of the Winton Formation, Eromanga Basin, Queensland, Australia. Memoirs of the Queensland Museum 38: 273-313.
McQUEEN, D.R. 1956. Leaves of middle and Upper Cretaceous pteridophytes and cycads from New Zealand. Transactions of the Royal Society of New Zealand 83: 673-685.
MEDWELL, L.M. 1954. Fossil plants from Killara, near Casterton. Proceedings of the Royal Society of Victoria 66: 17-23.
OLDHAM, T. \& MORRIS, J. 1863. Fossil flora of the Rajmahal Series in the Rajmahal hills. Memoirs of the Geological Survey of India, Palaeontologia Indica, Series 11, 1(1): 1-52.
PETERS, M.D. \& CHRISTOPHEL, D.C. 1978. Austrosequoia wintonensis, a new taxodiaceous cone from Queensland, Australia. Canadian Journal of Botany 56: 3119-3128.
RETALLACK, G.J. 1980. Middle Triassic megafossil plants and trace fossils from Tank Gully, Canterbury, New Zealand. Journal of the Royal Society of New Zealand 10: 31-63.
SEWARD, A.C. 1904. On a collection of Jurassic plants from Victoria. Records of the Geological Survey of Victoria 1: 155-211.
SILLER, C.W. 1961. The geology and petroleum prospects of the Maryborough Basin, Queensland. APEA Conference Papers 1961:30-35.
SIMPSON, S. 1975. Classification of trace fossil. Pp. 39-54. In Frey, R.W. (ed.), The Study of Trace Fossils. (Springer-Verlag: Berlin).
TAYLOR, T.N. \& TAYLOR, E.L. 1993. The Biology and Evolution of Fossil Plants. (Prentice Hall: Englewood Cliffs).

TENISON-WOODS, J.E. 1884. On the fossil flora of the coal deposits of Australia. Proceedings of the Linnean Society of New South Wales 8: 37-167.
TOWNROW, J.A. 1967. On Rissikia and Mataia podocarpaceous conifers from the lower Mesozoic of southern lands. Papers and Proceedings of the Royal Society of Tasmania 101: 103-136.
1969. Some Mesozoic Podocarpaceae and Araucariaceae. Pp. 159-182. In Amos, A.J. (ed.) Gondwana stratigraphy. First I.U.G.S. Symposium, 1967, Buenos Aires (UNESCO: Paris).
WALKOM, A.B. 1915. Mesozoic floras of Queensland. Part 1. The flora of the Ipswich and Walloon Series. (a) Introduction. (b) Equisetales. Geological Survey of Queensland Publication 252: 1-51.
1917. Mesozoic floras of Queensland. Part 1, continued. The flora of the Ipswich and Walloon Series. (c) Filicales, etc. Publications of the Geological Survey of Queensland 257: 1-65.
1918. Mesozoic floras of Queensland. Part 2. The flora of the Maryborough (marine) series. Geological Survey of Queensland Publication 262: 1-21.
1919. Mesozoic floras of Queensland. Parts 3 and 4. The floras of the Burrum and Styx River Series. Geological Survey of Queensland Publication 263: 1-77.
1921. Mesozoic floras of New South Wales. Part 1Fossil plants from Cockabutta Mountain and Talbragar. Memoirs of the Geological Survey of New South Wales, Palaeontology 12: 1-21.
WATSON, J. \& SINCOCK, C.A. 1992. Bennettitales of the English Wealden. Monograph of the Palaeontographical Society, London. Pp. 1-228.
WHITE, M,E. 1981. Revision of the Talbragar fish bed flora (Jurassic) of New South Wales. Records of the Australian Museum 33: 695-721.
WHITEHOUSE, F.W. 1926a. The Cretaceous ammonoidea of eastern Australia. Memoirs of the Queensland Museum 8: 195-234.
1926b. The correlation of the marine Cretaceous deposits of Australia. Australasian Association for the Advancement of Science 18: 275-280.

SIMOGNATHINAE (ACARINA: IIALACARIDAE) FROM THE GREAT BARRIER REEF AND CORAL SEA. DESCRIPTION OF THIRTEEN NEW SPECIES

JÜRGEN C. OTTO

Abstract

Otto, J.C. 2000006 30): Simognathinae (Acarina: Halacaridae) from the Great Barrier Reef and Coral Sea, description of thirteen new species. Memoirs of the Oueensland Museum 45(2): 505-534. Brisbane. ISSN 0079-8835.

The simognathine fauna of the Great Barrier Reef and reefs of the Coral Sea has been investigated and one new species of Acaromantis and twelve new species of Simognathus were found: Acaromantis diazpulidoi, Simognathus abnormalus, S. actius S. S. aspidiotus, S. clypeatus, S. comeatus, S. exoticus, S. platyaspis, S. pygmaeus, S. specialis, S. trachys, S. versicolor and S. xandanis. A key to Australian species of Simognathinae is provided, Acaromantis is redefined, and the definition of Simognathus is commented on. \square Simognathus, Acarmantis, Simognathinae, Grat Barvier Reef, Coral Sea, Australia, Halacaridae, marine miles, Acari.

JürgenC. Otto, (email:j.ottoaaims.gov.au), AustralianInstitute of Marme Science, PMB 3. Tonnsville 4810, Australia: 10 September 1999.

Mites of the family Halacaridae are benthic inhabitants of marine and freshwater habitats and are assumed to lave diverged from semiaquatic prostigmatid ancestors more than 200 million years ago (Bartsch, 1996), Of the 14 subfamilies of Halacaridae which are currently recognised (Abé, 1998: Otto, 1999c), the Simognathinae is among the most conspicuous. Species of this entirely marine subfamily are spindle-shaped and heavily anmoured by large dorsal plates whichare covered with broad shallow pits (foveac). Their gnathosoma is relatively short and the palps which are inserted close to each other dorsally on the gnathosomal base have no more than threc segments. The most remarkable feature is their front legs which possess a large ventral or medial spine on the tibia and a hook-like unpaired claw at the end of the tarsus. The unpaired claw and the tarsus itself are movable and oppose the spine on the tibia, an arrangement which appears suited to catching and holding prey, although, feeding has not been observed.

Simognathine mites are common in intertidal habitats and shallow waters around the globe but are yet to be recorded from the deep sea. The 34 described species are subdivided into two genera. Acaromantis Trouessart \& Neumann, 1893 and Simognathus Trouessart. 1889. So far 25 species of Simognathus have been described, seven of these from Australia (Bartsch, 1993b, 1994). Acaromantis appears less diverse. Only nine species have been described and none from Australia.

During the present study, which forms part of a broader survey of the halacarid fauna of the Great Barrier Reef and Coral Sea (Otto, 1999a.b,c:

Otto, 2000a.b.c: Otto \& Batsch. 2000; Bartsch. 2000), one species of Acaromantis and 12 species of Simognathus were found. These represent the first records of Simognathinac from the eastern half of Australia.

METHODS

Sand. coral rubble and picces of dead coral were collected either intertidally or subtidally using SCUBA equipment. Mites were extracted by washing the substrates in a bowl of water and decanting the supernatant through a $100 \mu \mathrm{~m}$ sieve. All material was collected by the author except where stated otherwise. Mites were cleared in lactic acid and mounted in PVA (Boudreaux \& Dosse, 1963). Drawings were made with the aid of a camera lucida.

In the accounts of each species only one sex is described in detail, while for the opposite sex only characters that differ are described. Measurements are in micrometres.

Terminology follows Bartsch (1993a, 1994). To make a clear distinction between parambulacral setae (pas) and ventral setae, only those ventral, ventromedial or ventrolateral setae which are inserted distal to the most distal of the dorsal setae (= fossary setae) are here referred to as pas. In some cases the number of parambulacaral setae and ventral setae may therefore differ from those Bartsch (1994) described for similar species. In Acaromantis and at least one species of Simognathus the tibia and tarsus of leg I is twisted by 90° compared with other halacarid genera. The tarsal claw is therefore pointing inwards instead of downwards in uncompressed

FIG. 1. Acaromantis diazpulidoisp, nov. δ : A, idiosoma, dorsal view (AD, anterior dorsal plate; fo, foveae; gp, gland pore; OC , ocular plate; PD , posterior dorsal plate); B , idiosoma, ventral view (ads, adanal seta; AE , anterior epimeral plate: et. epimeral wosicle: GA. gemitoamal plate: (io) genital openings os, ouly ing setae: PE, postorior epimeral plate: pas, perigenital setac: sgs subgenital sctac); C, gnathosuma dorsal view (gh, $\mathrm{C}, \mathrm{D}=50 \mu \mathrm{~m}$. $\overline{\mathrm{C}}, \mathrm{D}=50 \mu \mathrm{~m}$ 。
specimens. To be consistent with descriptions of other genera the terms medial, lateral, dorsal and ventral for tibia and tarsus I are applied as if these segments were oriented in the usual way with the tarsal claw pointing downwards. Accounts of chaetotaxy are from trochanter to tibia only.
Abbreviations: Descriptive - AD, anterior dorsal plate; AE, anterior epimeral plate; GA, genitoanal plate; GO, genital opening; OC, ocular plate; PD, posterior dorsal plate; PE, posterior epimeral plate; P-2, P-3, second and third palp segments, respectively, counted from base of palp; 1-IV, leg I to leg 1V; pas, parambulacral seta(e); pgs, perigenital seta(e); sgs, subgenital seta(e). Additional abbreviations in the illustrations are explained in the captions. GBR, Great Barrier Reef Marine Park; I, Island; Rf, Reef. Other abbreviations: ANIC, Australian National Insect Collection, Canberra (Australia), MTQ, Queensland Museum branch of the Museum of Tropical Queensland, Townsville (Australia); ZMH, Zoologisches Museum Hamburg (Germany). All specimens with the accession number prefix QMS are deposited in the MTQ.

SYSTEMATICS

Acaromantis Trouessart \& Neumann

Acaromantis Trouessart \& Neumann 1893: 207; André, 1946: 138; Viets, 1956: 696; Morselli, 1970: 109; Bartsch. 1974; 280; 1976; 664; 1977: 92(530); 1980; 401; 1983: 194; Bartsch \& Schmidt, 1978: 22 (644).

TYPE SPECIES. Acaromantis squilla Trouessart \& Neumann, 1893, by monotypy and original designation.
DIAGNOSIS. Body spindle-shaped. Dorsal plates covered by foveae. Palps separated by less than their width, inserted dorsally on gnathosoma and two-segmented. Tibia of front leg at least as long as three times its height, apically narrowing and equipped with a heavy spine. Tarsus of same leg shorter than $1 / 3$ the length of tibia, with a heavy apical claw but no paired claws. Genu of $\operatorname{leg} I$ with a spinose seta. Telofemur I with a single seta.

Acaromantis diazpulidoi sp. nov. (Figs 1, 2)

ETYMOLOGY. For Guillermo Diaz-Pulido who collected the holotype.

MATERIAL. HOLOTYPE: QMS105316, ठ̃, Coral Sea (Queensland Plateau), Chilcott $1 ., 16^{\circ} 56.51$ 'S $150^{\circ} 0.4^{\prime} \mathrm{E}, 14$ Sep. 1998, G. A. Diaz-Pulido coll., coarse sand at $10-15 \mathrm{~m}$.

DESCRIPTION. Male. Idiosoma 354 long. AD longer than wide; foveate throughout (Fig. 1A); two pairs of setae and pair of barely visible gland pores as illustrated; scattered canaliculi around pores. OC reduced to more or less oval subcuticular platelet carrying few canaliculi. Anterior to OC with seta on a small subcuticular platelet. PD clearly longer than wide; anterior margin rounded; with two pairs of setae. GA foveate except for an anterior transverse smooth area (Fig. 1B); two pairs of branched outlying setae anterior to GO and one pair of unbranched setae level with anterior margin of GO; 14 branched pgs surrounding GO; three pairs of short sgs. Adanal setae ventrally on anal cone.

Tectum with an upper split part and a lower pointed part (Fig. 1C). Ventral gnathosomal base with foveae posterolaterally and posteriorly, medially smooth (Fig. 1D). Palp two-segmented (Fig. 2A); P-2 with heavy ventral seta, one slender dorsal seta and two apical setac.

Outline of legs as shown in Fig. 2B-E. Chaetotaxy: I 1-2-1-4-5 (Fig. 2B), II 1-2-2-4-5 (Fig. 2C), III 1-1-2-3-5 (Fig. 2D), IV 1-1-2-3-5 (Fig. 2E). Genu I with a strongly spinose ventral seta. One small branched seta dorsally on tibiac III and IV, two such setae on genua III and IV, one on telofemur III and two on telofemur IV (oil immersion). Tibial spine and tarsal claw of leg I prior to compression of slide medially directed. Tibiac II-IV with pair of ventral coarsely bipectinate setae. Paired fossary setae of tarsi II-IV slightly serrated. Tarsi 11-IV without median claw. Tarsus III with ventral seta and pair of pas. Tarsus IV with two ventral setae and pair of pas. Paired claws of tarsi II-IV with accessory process and pecten.

Female. Unknown.

REMARKS. Acaromantis diazpulidoi sp. nov. is the first species of Acaromantis known from Australia. With its two palp segments, single seta on telofemur I, presence of a spinose seta on genu I, short tarsus I, slender and in the proximal half conspicuously widened tibia I and lack of paired claws on tarsus I, A. diazpulidoi is a typical representative of Acaromantis. It differs from all its congeners by the shape of its tectum, which is characteristically split in contrast to being entire and scale-like. Males can also be identified by the presence of three pairs of outlying setae, of which the two anteriormost pairs are branched. Such an arrangement of setae is unknown for any other species of Acaromantis.

FIG. 2. Acaromantis diazpulidoisp. nov., ©̃: A, palp, medial view ($\mathrm{P}-1, \mathrm{P}-2$, palp segments); B , leg I, medial view (ba, basifemur; ge, genu; mcl, median claw; pas, parambulacral setae; sp, spine; ta, tarsus; te, telofemur; ti, thia): (. Lew II, medial sich (fs, lossary setae; pas, paramhulacral setae; pel, paired elaw: Is, wentral seta): D) leg 111, medial view); E, leg IV, medial view. Scale bars: $A=10 \mu \mathrm{~m} ; \mathrm{B}-E=50 \mu \mathrm{~m}$.

Simognathus Trouessart

Simognathus Trouessar, 1889: 1180; Viets, 1927: 151: 1936: 421; 1940; 94; 1956: 694. André, 1946: 135; Fountain, 1953:357; Monniot, 1961:585; 1962: 288; Bartsch, 1974: 275; 1977: 87 (525); 1978: 19; 1983: 193; 1985: 554; 1993b: 95; 1994: 135; Newell, 1947: 23; 1971:36; 1984: 264.

Ischyrognathus Trouessart, 1901; Newell, 1947: 23, 37; Viets, 1956: 694; Synonymy by Bartsch, 1974.

TYPE SPECIES. Pachygnathus sculptus Brady, 1875 (= Pachygnathus minutus Hodge, 1863; synonymy by Fountain (1953)); by original designation.

DIAGNOSIS. Body spindle-shaped. Dorsal plates covered by foveae. Palps separated by less than their width, inserted dorsally on gnathosoma and three-segmented. Tibia of front legs usually shorter than three times its height (exception: S.

FIG. 3. Simognuthus abnormahus sp. nov., adult: A, idiosoma, dorsal view: B, ס' idiosoma, ventral view; C, © genital opening: D , gnathosoma, dorsal view; E , gnathosoma, ventral view; F , posterior half of \& idiosoma, ventral view. Scale bars: $\mathrm{A}, \mathrm{B}=100 \mu \mathrm{~m} ; \mathrm{C}=25 \mu \mathrm{~m} ; \mathrm{D}, \mathrm{E}=50 \mu \mathrm{~m} ; \mathrm{F}=100 \mu \mathrm{~m}$.
abnormalus, S. scutatus), equipped with a heavy spine and tarsus of same legs with a heavy apical claw and slender scta-like paired claws. Tarsus I
usually longer than $1 / 3$ the length of tibia (exception: S. abnormalus, S. scutatus), with heary median claw and slender, sumetimes seta-

FIG. 4. Simognathus abnormalus sp. nov., adult: A, leg I, dorsal view (mcl, median claw; pcl, paired claws; pas, parambulacral setae); B, leg II, ventral view (fs, fossary seta); C, leg III, ventral view; D, leg IV, lateral view. Scale bars: $\mathrm{A}-\mathrm{D}=50 \mu \mathrm{~m}$.
like paired claws. All setae of genu of leg I glabrous. Telofemur I usually with two setae (exception: S. pygmaeus sp. nov).

Simognathus abnormalus sp. nov.
(Figs 3, 4)

ETYMOLOGY. Referring to the front legs' short tarsus and slender tibia, and the peculiar orientation of these leg segments.

NATERIAL。HOLOIYLPR：OMS10S317，子．（BBR，
 sund \＆rubble at 2 m ．PARATYPES：OM1S10531S，of ctata ：4 for holotype；QMS105319，T，ANIC．T．（il3R， $18{ }^{\circ} 16.69^{\circ} \mathrm{S} 147^{\circ} 23.21^{\prime} \mathrm{E}$ ，Mymidon Rf．It Apr．1998． course sand at $12 \mathrm{~m} ; \mathrm{ZMH} \mathrm{A} 32149$ ， 9 ，GBBR， $19^{\circ} 20.12^{\circ} \mathrm{S}$ $149^{\circ} 0285^{\circ}$ F，Elizalheth Rt： 25 Dec．1997，coarse sand \＆ rable at $3 \mathrm{~m}:$ QNIS 105320, O．OMSi05321，उ，GBR， Rosser Rti，ca． $15^{\circ} 37^{\circ} \mathrm{S} 145^{\circ} 33^{\prime} \mathrm{E}, 8 \mathrm{Ocr}$ 3998，sand at 2m： UMSI05322，己．QMS105323，号，Coral Sea（Ouemsland Ploteant．Chilcott L．， $16^{\circ} 5651^{\prime} \mathrm{S} 150^{\circ} 0.4^{\circ} \mathrm{E} .14 \mathrm{Sep} .1998$. C．A．Diar－Pulido，coarse sand at 10.15 m ：QMS105324／ 105325,2 ty Comal Sea（Queensland Plateru）．South
 Diar－Pulide，coral rubble（fine）at $10-10 \mathrm{~m}$ ．
DESCIRUPTION，Wale．Idiosomia $412-424$ lung （holotype 424）．AD al subequal length and width；With a non－foveate area anterolaterally （F゙ig．3A）．OC＇reduced to oblong subcuticular platelet which carries a seta anteriorly．PD sliglstly lunger than wide：anterior margin inmeated：with three pairs of setae（including adanal setac），AL broadly fiused to（GA（Fig．3B）． in some specimens ΛE and $G A$ also fused to PE fas shown for \subsetneq in Fig．3F）．AE and PE foveate throughout（Fig．3B）．GA foveate except for area along median axis（Fig，3B）；two pairs of nutlying setae anterior $80 \mathrm{GO} ; 28-30$ pgs surrounding GO in a circle（Fig， $3 \mathrm{~B}, \mathrm{C}^{\circ}$ ）； CiO with three pairs of short sgs（Fing．3C）．
（inathosomal base wider than long（fig．2D．Li）： fectum wide，narrowing anteriorly（Fig．3D）； fentratly doveate cexeept for arelatively wide area afong the median axis（Fig．3E）．Palp threc－ segmented；$t^{2}-2$ with heavy ventral seta；$p^{\prime}-3$ with three short sctac and one longer scta．

Outline of legs as in Fig．4．Chatotaxy： 1 1－2－2－4－5（Fig，4A），II I－2－3－4－5（Fio．48），111 1－1－2－3－5（Fig．4C），IV 1－1－2－3－5（Fig．4D）．Jibia I long and slender，narrowing apically．All setac of genu I slender and glabrous．In uneompressed specimens tibial spins and tarsal claw of les I medially directed．Tarsus［l with the medial lossary seta apically widened and sermed．＇litsi 111 and IV with single ventral seta and one mapaired pas．Disual pair of fossary sctac of tarsi III and IV apscally serrated．Iarsi II－IV withsmill median claw；paired claws lecaring pecten along must ur the shath，most conspicuous on tarsus IV．
Femake．Idiosoma 417－420 long．GiA with four pairs of pge and no sgs（Fig．3F）．OC in some specimens shoneter and more rounded than illustraled for male．

species possess lised ventral plates，ublong $U C$ and a relatively slender tibia and short tarsus on ley 1 ，a combinktion ulcharatelers dsath is unknomm for other species in the genus．Smmennarfuss abnormalus can be distinguished from S ． sewtatus by having wider dorsal phates，a larges budy．and a wate minn－loveate areal mediadly on the ventral gnathosontal base．

Simuennathus actius sp．nov．
（Fins $\overline{2}$ ，6）
ETYMOLOGY，Latin，ack＝coast，rutering io this species＇wecurnence on beaches．

MAIERIAL．HOLOTYPE：QMSIUS326．$\widehat{\gamma}$ ．（GBR． $19^{\circ} 16.029^{\prime}$ S $147^{\circ} 03.05^{\circ} \mathrm{E}$ ，Cape Ferguson， 8 Nov。 1297， intertidal sand on beach，sedinient depih toent． PARATYPES：OMS105327，U，ANIC． $5, ~ Z M H$ A33／49， f．QMIS 05328, d．data as for lolotyne：QMS 10532% ，ci， GBR，Wunga Beach， $15^{\circ} 21^{\prime} \mathrm{S} 145^{\circ} 26^{\circ} \mathrm{E}$ 。 31 July 1998. sand helow high tide mark，sediment depth 40 enn： QMS105330－105334， 5 S5，GBR，Lizand L．，Mermaid Cove， 14 Oct． 1945, coarse sand at high tide level，sediment depth 11）－こUcin．
Fremule Idiosoma 244－272 long（bulntype 267）． All dorsil setac short（lijg 5 palc．cither of similar width in anterior and posteriur half or posterior hall＇slightly wider： posterion margin rounded；Iaterally with seattered pits．OC＇reduced to minnte plate with a setac．［D］ pear－slaped；with threc pairs of setac including adanall setae Ali will foveie unly taterally and along posterior margin（Fig．5B）；remainder os plate punctite：epimeral vesicle large．OA with fovcac in posterior $2 / 3$ and along anterior margin： remainder ulplate punctate； 3 －4 pairs of pes．

Dorsal gnathosomal base with large irreghlarly shaped fovede（Figs．SD）．Tectum pointed．Ventral gnathosomal base foveate except medially（ （oig． 5E＇）．I＇-2 with al verstral seta ind is poesty developed ventral protuherance proximal to setá．

Ontlin：of legs as in Fig．6．Telofemora with few laveac，on leg I more rumerous and muse conspicuous than on other legs（Fig．6．A）． （＇heronny：1 1－2－2－4－5（Fig，6A），II 1－2－2－4．5 （l－ig．6B1．1H11－1－2－3－5（Fig，6（\％），IV 1－1－1－3－5 （Fig．6D）．lleavy ventral spine of tibia I withome proximal swellingi sela adjacent to spine branched（Firg．6A，armowed）．Tarsus II with pair of pas but wilhuut ventril seta，tarsi III and IV with single ventral scta but without pas．Paired claws of tarsi JJ－IV with apical cluster nif peeten．
．Wate Idiasomm 2＋1－250 long，GA with $10-17$

FIG. 5. Simognathus actius sp. nov, adult: A, idiosoma, dorsal view (OC, ocular plate; ads, adanal seta); B, \& idiosoma, ventral view; C, of genitoanal plate; D, gnathosoma, dorsal view; E, gnathosoma, ventral view. Scale bars: A-E $=50 \mu \mathrm{~m}$.

REMARKS. Simognathus actius sp. nov. differs from its congeners by having a branched seta on tibia I adjacent to the ventral spine and a narrow band of foveac along the posterior margin of the AE.
Although all examined specimens are identical in the characters described above they difter
slightly in the striation of the membranous cuticle. In the specimens from Cape Ferguson the striation is conspicuously finer (Fig. 5Λ) than in all remaining specimens. This character is here not regarded as sufficient evidence for separating these specimens into different species although it

FIG. 6. Simognathus actius sp. nov., adult: A, leg I, lateral view; B, leg II, ventromedial view; C, leg III, ventromedial view; D, leg IV, ventromedial view. Scale bars: A-D $=50 \mu \mathrm{~m}$.
may indicate a certain amount of genetic isolation between them.

Simognathus aspidiotus sp. nov.
(Figs 7, 8)
ETYMOLOGY. Greek, aspidiotes $=$ shield bearer, referring to the species' fused ventral plates.

MATERIAL. HOLOTYPE: QMS105335, 9, GBR, Myrmidon Rf, $18^{\circ} 16.69^{\prime} \mathrm{S} 147^{\circ} 23.21^{\prime} \mathrm{E}$, 14 Apr. 1998, coarse sand \& rubble at 15 m . PARATYPES: QMS105336, ㅇ, ANIC, $ㅇ, Z M H ~ A 34 / 993$, $\circ, \mathrm{GBR}, 19^{\circ} 20.12^{\prime} \mathrm{S}$ $149^{\circ} 02.85^{\circ}$ E, Elizabeth Rf, 25 Dec. 1997 , coarse sand \& rubble at 3 m ; QMS 1053371 , 우, $\mathrm{GBR}, 18^{\circ} 42.03^{\circ} \mathrm{S}$ $147^{\circ} 06.54^{3} \mathrm{E}$, Loadstone Rf, 12 Apr. 1998, coarse sand \& rubble at $12-15 \mathrm{~m}$; QMS105338/105339, 2 is, GBR, 18³8.25'S $147^{\circ} 04.42^{\prime}$ E, John Brewer Rf, 11 Apr, 1998, coarse sand at 15 m ; QMS $105340 / \mathrm{S} 105341,2$ i S, GBR,

Rosser Rf, ca. $15^{\circ} 37^{\prime} \mathrm{S} 145^{\circ} 33^{\circ} \mathrm{E}, 8$ Oct. 1998 , sand at 2 m ; QMS105342, ©̂, GBR, Boulder Rf, ca. 15.24'S 145.27'E, 8 Oct. 1998, coarse intertidal sand; QMS1053431, , GBR, Boulder Rf, ca. $15^{\circ} 24^{\circ} \mathrm{S} 145^{\circ} 27^{\prime} \mathrm{E}, 8$ Oct. 1998, A. Thompson, coarse sand at 2m; QMS105344, ㅇ, Coral Sea (Queensland Plateau), Lihou Rf, ca. $17^{\circ} 25^{\circ} \mathrm{S} 151^{\circ} 40^{\prime} \mathrm{E}, 22$ July 1998, D. Fenner, sand at 7m; QMS105345, of, Coral Sea (Queensland Plateau), Flinders Rf, ca. $17^{\circ} 35^{\circ} \mathrm{S}$ $148^{\circ} 27^{\prime}$ E, July 1998, D. Fenner, sand; QMS 105346/S 105347, 2 ठิs, QMS105348, 우, Coral Sea (Queensland Plateau), Herald Cays, $16^{\circ} 57.171^{\prime} \mathrm{S}$ $149^{\circ} 12.036^{\circ}$ E, 16 Sep. 1998, G.A. Diaz-Pulido, coarse sand at 5-15m; QMS105349, 오, Coral Sea (Queensland Plateau), South Willis I., ca. $16^{\circ} 18^{\prime} \mathrm{S} 149^{\circ} 58^{\prime} \mathrm{E}, 15$ Sep. 1998, GA. Diaz-Pulido, coral rubble (fine) at 0-10m; QMS105350, \&, Coral Sea (Queensland Plateau), Chilcott I., $16^{\circ} 56.51^{\prime} \mathrm{S} 150^{\circ} 0.4 \mathrm{E}^{\prime}, 14$ Sep. 1998, GA. Diaz-Pulido, coarse sand at $10-15 \mathrm{~m}$.

FIG. 7. Simognathus aspidiotus sp. nov., adult: A, idiosoma, dorsal view; B, if idiosoma, ventral view; C, posterior part of of genitoanal plate; D , gnathosoma, dorsal view; E , gnathosoma, ventral view. Scale bars: $A, B, D, E=100 \mu \mathrm{~m} ; \mathrm{C}=25 \mu \mathrm{~m}$.

FIG. 8. Simognathus aspidiotus sp. nov., adult: A, leg I, medial view, trochanter excluded; B, leg II, lateral view; C, leg III, medial view; D, leg IV, medial view. Scale bars: $A-D=100 \mu \mathrm{~m}$.

DESCRIPTION. Female. Idiosoma 376-476 long (holotype 404). AD uniformly pale; anteriorly widened, posterior margin truncated (Fig. 7A). OC reduced to small oblong subcuticular platelet which carries a seta anteriorly. PD with three pairs of setae (including adanal setae). AE broadly fused to GA (Fig. 7B). AE foveate throughout; epimeral vesicles inconspicuous; four pairs of pgs, in some specimens with four setae on one side and three on the other (Fig. 7B).

Tectum narrow (Fig. 7D). Ventral gnathosomal base foveate throughout. Palps inserted on posterior half of dorsally visible part of gnathosomal base (Fig. 7D). Segment P-2 with one
ventral seta inserted between two protuberances (Fig. 7E); P-3 shorter than 1/4 of P-2.

Outline of legs as in Fig. 8. All segments without foveae. Telofemora slender. Chaetotaxy: I 1-2-2-4-5 (Fig. 8A), II 1-2-3-4-5 (Fig. 8B), III 1-1-2-3-5 (Fig. 8C), IV 1-1-2-3-5 (Fig. 8D). Ventral spine of tibia I without proximal swelling. Tarsi II-IV with ventral slightly serrated seta and pair of pas. Paired claws of tarsi II-IV with coarse pecten along most of shaft.
Male. Idiosoma 368-420 long. GA with pair of outlying setae anterior to GO and $38-41 \mathrm{pgs}$ surrounding GO (Fig. 7C); three pairs of sgs, anteriormost pair thickened, other two pairs slender.

FIG. 9. Simognathus clypeatus sp. nov., adult: A, gnathosoma and anterior part of jdiosoma, dorsal view; B, § idiosoma, ventral view; C, gnathosoma, ventral view; D, tarsus IV, medial view (s-pas, single pas; d-pas, doubled pas. Scale bars: $\mathrm{A}-\mathrm{C}=100 \mu \mathrm{~m} ; \mathrm{D}=50 \mu \mathrm{~m}$.

REMARKS. The only other species ol Simognathus in which the ventral plates are fused, the ()C are reduced to oblong subcuticular platelets and the seta on P-2 is inserted between two cuticular projections is S. uniscutatus Bartsch, 1994. Simognathus aspidiotus sp. nov. differs from it in having two pas (instead of one) on each of tarsi III
and IV and two instead of three setac on basifemur I. The overall similarity between both species suggests a close relationship.

Simognathus clypeatus sp. nov.

(Fig. 9)
ETYMOLOGY. Latin, clypeatus = provided with a shield, referring to this species' fused ventral plates.

MATERIAL. HOLOTYPE: QMS105351, ठ, Coral Sea (Queensland Plateau), Herald Cays, $16^{\circ} 57.171^{\prime} \mathrm{S}$ $149^{\circ} 12.036^{\prime}$ E, 16 Sep. 1998, GA. Diaz-Pulido, coarse sand at $5-15 \mathrm{~m}$. PARATYPES: QMS105352, 9 , data as for holotype.
DESCRIPTION. Male. Idiosoma 408 long. AD, OC, and PD as described for Simognathus aspidiotus sp. nov. except anterior AD without foveae and instead with canaliculi arranged in lines that form a loosely reticulated pattern (Fig. 9A). AE and GA fuscd, both without foveae, except for an area posterior to insertions of leg I and, less conspicuously, lateral on GA (Fig. 9B); non-foveate remainder of plate finely punctate. GA with 32 pgs around GO and one pair of outlying setae. Sgs not seen. PE finely punctate, posterior to insertions of leg III foveate.

Tectum narrow and pointed (Fig. 9A). Dorsal gnathosomal base in deeper cuticular layers with series of canaliculi arranged as shown in Fig. 9A: similar arrangement of canaliculi also on ventral gnathosoma (Fig. 9C). Palps inserted well anterior on gnathosomal base; P-2 with poorly developed protrusion proximal to ventral seta (Fig. 9C).

Morphology and setation of legs as described for S. aspidiotus except tarsus IV with a doubled medial pas, of which the ventral branch is much thinner than the dorsal one (Fig. 9D).
Female. ldiosoma 432 long. GA with foveac lateral and anterolateral to GO and with four pairs of pgs (as illustrated for S. aspidiotus, Fig. 7B).

REMARKS. Simognathus clypeatus has the AE and GA fused and the OC reduced to subcuticular oblong platelets, a combination of characters otherwise only known for S. abnormalus sp. nov., S. aspidiotus sp. nov., S. scutatus Bartsch, 1993b and S. uniscutatus Bartsch, 1994. Simognathus clypeatus differs from these species in having most of the AE finely punctate instead of foveate.

Simognathus corneatus sp. nov.

(Figs 10,11)
ETYMOLOGY. Referring to the large comea of this species.

MATERIAL. HOLOTYPE: QMS105353, ठ̋, GBR, Elizabeth Rf, $19^{\circ} 20.12^{\circ} \mathrm{S} 149^{\circ} 02.85^{\circ} \mathrm{E}, 25$ Dec. 1997, coarse sand \& rubble at 3 m . PARATYPES: QMSI05354,

우, ANIC, ㅇ, GBR, John Brewer Rf, $8^{\circ} 38.25^{\prime} \mathrm{S}$ $147^{\circ} 04.42^{\prime} \mathrm{E}, 11$ Apr. 1998, coarse sand at 15 m .

DESCRIPTION. Male. Idiosoma 388 long. AD uniformly pale; anteriorly narrowing, with rounded dome-like protuberance; truncated posteriorly (Fig. 10A). OC well developed, not longer than twice its width; with seta anteriorly. Cornea covering most of OC, with $2-3$ depressions posteriorly. PD ca. 1.15 times as long as AD , with two pairs of setac and fewer than 200 foveae; truncate anteriorly. AE distinctly foveate only posterolateral to insertions of leg I but with further one or two inconspicuous depressions posterior to insertions of legs II. AE superficially smooth but in deeper layers finely punctate in median area (Fig. 10B). GA foveate lateral and posterior to GO. GO flanked by a pair of outlying setae and surrounded by 37 pgs ; three pairs of short sgs. Adanal setae ventrally on anal cone.

Tectum wide and rounded (Fig. 10E). Ventral gnathosomal base foveate except for a wide area along median axis (Fig. 10F). Segment P-2 with ventral blunt protuberance and a seta inserted distal to protuberance.

Outline of legs as in Fig. 11. Telofemora ventrally smooth or with few shallow foveae. Chactotaxy: I 1-2-2-4-5 (Fig. 11A), II 1-2-3-4-5 (Fig. 11B), III 1-1-2-3-5 (Fig. 11C), [V 1-1-2-3-5 (Fig. 11D). Claw-like seta of tibial with proximal swelling. Paired claws of tarsi II-IV with accessory process but without pecten. Tarsus II with one ventral seta and pair of pas, tarsus III with one ventral seta and one pas, tarsus IV with two ventral setae but no pas.

Female. Idiosoma 380-390 long. AE in one female with few foveae posterior to insertions of leg II (Fig. 10C), in the other female without foveae at that position. GA with four pairs of pgs (Fig. 10D) or with four setae on one side and three setae on the other.

REMARKS. The only other species of Simognathus in which the cornea covers most of the OC is S. exoticus $s p$. nov. In S. corneatus $s p$. nov. the cornea is relatively shorter than in S. exoticus and the dome-like swelling of the AD is more developed. Also, the PD in S. corneatus is only about 1.15 times the length of the AD and carries less than 200 foveae whereas in S. exoticus it is 1.3 times the length of the AD and bears more than 250 foveac. Both species are otherwise similar and are undoubtedly closely related.

FIG. 10. Simognathus corneatus sp. nov., adult: A, idiosoma, dorsal view (co, comea); B, ठठ idiosoma, ventral bew; (, anterior epimeral plate of one $=: D$, genitoanal plate; L, gnathosoma, dorsal view; F, gnathosoma, ventral view. Scale bars: $\mathrm{A}-\mathrm{C}=100 \mu \mathrm{~m} ; \mathrm{D}-\mathrm{F}=50 \mu \mathrm{~m}$.

Simognathus exoticus sp. nov.
(Figs 12, 13)
Etymology: Greek, exotikos = alien, referring to this species' occurrence on the remote reefs of the Queensland Plateau.

MATERIAL, HOLOTYTE: QMS105355, J. Coral Sea (Queensland Plateau), Lihou Rf, ca. $17^{\circ} 25^{\circ} \mathrm{S}$ $151^{\circ} 40^{\circ} \mathrm{E}$, 22 July 1998. D. Fenner, sand at 7m. PARATYPES:

QMS105356 ${ }^{\circ}$, data as for holotype; ANIC, ${ }^{\text {\& }, ~ Z M H ~}$ A35/99, , data as for holotype except for: 20 July 1998. sand at 5 m ; QMS105357, 早, Coral Sea (Queensland Plateau), Flinders Rf, ca, $17^{\circ} 35^{\prime}$ S $148^{\circ} 27^{\circ}$ E, July 1998, D. Fenner, sand.
DESCRIPTION. Male. Idiosoma 356 long. AD uniformly pale; anteriorly with slight swelling (Fig. 12A). OC at least twice as long as wide;

FIG. 11. Simognathus corneatus sp. nov., adult: A, leg I, medial view; B, leg II, ventral view; C, leg III, ventromedial view; D, leg IV, ventromedial view. Scale bars: $A-D=50 \mu \mathrm{~m}$.
anteriorly with seta on an extension of plate; cornea covering most of plate, posteriorly with few pore-like depressions. PD ca, 1.3 times longer than AD , with two pairs of setae and at least 250 foveae. AE with groups of foveae posterior to insertions of legs I and II (Fig. 12B). GA foveate laterally; with one pair of outlying setae, ca. 47 pgs and three pairs of short sgs. Pair of adanal setae positioned ventrally on anal cone.

Tectum wide and rounded (Fig. 9C). Ventral gnathosomal base laterally foveate, medially smooth (Fig. 9E). Segment P-2 with blunt ventral protuberance and seta.

Outline of legs as in Fig. 13. All segments without foveae. Chaetotaxy: I 1-2-2-4-5 (Fig. 13A), II 1-2-3-4-5 (Fig. 13B), III 1-1-2-3-5 (Fig. 13C), IV 1-1-2-3-5 (Fig. 13D). Claw-like ventral seta of tibia I with proximal swelling (Fig. 13A). Paired claws of tarsi II-IV with accessory process but without pecten. Tarsus II with ventral seta and
pair of pas, tarsus III with two ventral setae but no pas.
Female. Idiosoma 380-400 long. GA with 3-4 pgs (Fig. 12D); foveate area on either side of GO surpassing GO anteriorly.
REMARKS. The only other species of Simognathus in which the cornea covers most of the OC is S. corneatus sp.nov. For differences between these two species see the 'Remarks' io the latter.

Simognathus platyaspis sp. nov.
(Figs 14, 15)
ETYMOLOGY. Greek, platys $=$ wide, aspis, Greek $=$ shield, referring to the species' wide anterior dorsal plate.

MATERIAL. HOLOTYPE: QMS105358, ㅇ, GBR, Bramble Rf, $28^{\circ} 26.36^{\prime}$ S $146^{\circ} 42.24 E^{\prime}, 9$ Apr. 1998, coarse sand \& rubble at 6 m . PARATYPES: ANIC, ㅇ, GBR, $18^{\circ} 25.25^{\prime} \mathrm{S} 146^{\circ} 40.65^{\prime} \mathrm{E}$, Bramble Rf, 10 Apr. 1998, chunks of coral rubble at $3-6 \mathrm{~m}$; QMS105359, 9 , GBR, $18^{\circ} 40.60^{\prime} \mathrm{S} 146^{\circ} 34.29^{\prime} \mathrm{E}$, Great Palm I., channel, 8 Apr. 1998, sand \& rubble at 6 m ; QMS105360, ㅇ, GBR,

FIG. 12. Simognathus exoticus 5p, nov., adult: A , idiosoma, dorsal view; B , δ idiosoma, ventral view; C . ghathosoma, dorsal tew; D. = genitoanal plate: E. gnathosoma, ventral vew, Scale bars: A-C, $\mathrm{E}-10 \mathrm{H} \mu \mathrm{m}$; D $50 \mu \mathrm{~m}$.
$18^{\circ} 58.49^{\prime} \mathrm{S} 146^{\circ} 36.94^{\circ} \mathrm{E}$, Phillips Rf, 16 Apr. 1998, chunks of rubble at $3-6 \mathrm{~m}$; QMS 105361 , \circ. GBR, $18^{\circ} 48.92^{\circ} \mathrm{S} 146^{\circ} 25.76^{\circ} \mathrm{E}$, Pandora Rf, 22 Jan. 1998 , coarse sand at 1 m ; QMS105362, $9, \mathrm{GBR}$, Boulder Rf, ca. $15^{\circ} 24^{\prime} \mathrm{S} 145^{\circ} 27^{\circ} \mathrm{E}, 8$ Oct. 1998, A. Thompson, coarse sand at $2 \mathrm{~m} ; \mathrm{ZAH}, 7, \mathrm{GBR}$, Rosser Rf, ca. $15^{\circ} 37^{\prime} \mathrm{S} 145^{\circ} 33^{\circ} \mathrm{E}, 8$ Oct. 1998, sand at 2 m .

DESCRIPTION. Female. Idiosoma 306-364 long (holotype 329). AD slightly longer than PD; length/width ratio of AD 1.48-1.53 (Fig. 14A); anteriorly with swelling; posterior $2 / 3$ of plate with conspicuous brown pigmentation. OC well developed; with several depressions in inner half;

FIG. 13. Simognathus exoticus sp. nov., adult: A, leg I, lateral view; B3, leg II, dorsal view; C. leg III, lateral view; $D, \operatorname{leg} I V$, lateral view. Scale bass: $A-D=100 \mu \mathrm{~m}$.

Seta either situated on OC or slightly separated from OC on a minute platelet. PD with two pairs of setae. AE foveate throughout except for an area between epimeres 1 and II. PE foveate. Underneath membranous cuticle posterior to AE with four conspicuous apodemes (Fig. 14B). Adanal setae positioned ventrally on anal cone.

Tectum shaped as in Fig. 14C. Ventral gnathosomal base foveate throughout. Segment P-2 with blunt protuberance proximal to ventral seta (Fig. 14D).

Outline of legs as in Fig. 15. Chaetotaxy: I 1-2-2-4-5 (Fig. 15A), II 1-2-3-4-5 (Fig. 15B), III 1-1-2-3-5 (Fig. 15C), IV 1-1-2-3-5 (Fig. 15D). Claw-like seta of tibia I with proximal swelling. Tarsi II-IV with paired claws bearing accessory process but no pecten. Tarsus $I I$ with ventral seta and pair of pas, tarsus 111 with ventral seta and single pas, and tarsus IV with two ventral setae but no pas.

Male. Unknown.
REMARKS. Simognathus planyaspis sp . nov. possesses brown pigmentation on the AD and foveae on the median part of the AE but lacks setae in the membranous dorsal cuticle. This combination of characters is otherwise known only for S. fuscus Viets, 1936, from the Caribbean and Bermuda. Simognathus platyaspis differs from S. fuscus by the length/width ratio of the anterior dorsal shield being less than 1.55 in contrast to 1.72 in S. fuscus.

Simognathus pygmaeus sp. nov.
Figs 16, 17
ETYMOLOGY. Greek, pysmaios $=$ dwarf, referring to the small size of this species.

MATERIAL. HOLOTYPE: QMS105364, 9, GBR. Wonga Beach, $16^{\circ} 21^{\prime} \mathrm{S} 145^{\circ} 26^{\circ} \mathrm{E}$, 31 July 1998 , sand

FIG. 14. Simognuthus plathaspix sp. nov., adult: 1 , idiosoma, dorsal view (dotted line indicates anterior margin of brown part of plate); B, Y idiosoma, , entral view; C, gnathosoma, dorsal view; D, gnathosoma, ventral view. Scale bars: $\mathrm{A}, \mathrm{B}=100 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{D}=50 \mu \mathrm{~m}$.

FIG. 15. Simognathus platyaspis sp. nov., adult: A, leg I, lateral view; B, leg II, medial view; C\& leg III, 1ateral view; D, leg IV, medial view. Scale bars: $A-D=50 \mu \mathrm{~m}$.
below high tide mark, ca. 40 cm below surface. PARATYPE: QMS 105365 , 7 , data as for holotype.

DESCRIPTION. Femule. Idiosoma 240-250 long (holotype 250). AD slender (Fig. 16A);
posterior margin rounded. OC reduced to narrow subcuticular platelets with pair of setac at anterior margin. Membranous cuticle anterior to PD with pair of setac. PD with two pairs of setae including

FIG. 16. Simognathus pygmaeus sp. nov., adult: A, idiosoma, dorsal view; B, of idiosoma, ventral view; C, palp, medial view; D, gnathosomal base, dorsal view; E, gnathosoma, ventral view. Scale bars: $\mathrm{A}, \mathrm{B}=100 \mu \mathrm{~m} ; \mathrm{C}-\mathrm{E}=$ $25 \mu \mathrm{~m}$.
pair of adanal setae. AE with foveae throughout (Fig. 16B), marginal foveae more conspicuous than medial foveae; three pairs of setae as illustrated; epimeral vesicles large. GA foveate throughout.

Dorsal gnathosomal base with large irregular shaped foveae; tectum minute, pointed (Fig. 16D). Ventral gnathosomal base with relatively few large foveae (Fig. 16E). Segment P-2 with an apical swelling associated with a ventral seta (Fig. 16C); P-3 at least as long as half of P-2.

Outline of legs as in Fig. 17. Telofemur and tibia I with cuticular bars forming a reticulated pattern, inside each polygon with shallow pits (Fig. 17A). Chaetotaxy: I 1-2-1-4-5 (Fig. 17A), II

1-2-2-4-5 (Fig. 17B), III 1-1-2-3-5 (Fig. 17C), IV 1-1-1-3-4 (Fig. 17D). Ventral claw-like seta of tibia I relatively small compared with median claw of tarsus and without proximal swelling. Tibia II and III each with two ventral slightly denticulate spines; tibia IV with only one ventral spine (Fig. 17D). Tarsi II-IV with pair of pas and single ventral seta. Paired claws of tarsi II-IV with cluster of tines apically.

Male. Unknown.
REMARKS. With its posteriorly rounded AD, the minute $O C$, the relatively long palp tarsus in comparison to the palp tibia, the small body size, the irregular shaped foveae on the dorsal

FIG. 17. Simognathus pygmacus sp. nov., adult: A, leg I, medial view: B, leg II, medial view; C, leg III, medial view; $\mathrm{D}, \operatorname{leg} \mathrm{IV}$, lateral view. Scale bars: $\mathrm{A}-\mathrm{D}=50 \mu \mathrm{~m}$.
gnathosomal base, and the apical cluster of pecten on the paired claws of legs III-IV, Simognathus pygmaeus sp. nov. appears most similar to S. actius sp. nov. and is likely to be the latter species' closest known relative. Simognathus pygmaeus differs from S. actius most conspicuously by the reticulated pattern on telofemur I. Other distinguishing characters are the presence of a pair of setae in the dorsal
membranous cuticle, loveae medially on the AE and having only one spine on tibia IV.

Simognathus specialis sp. nov.
(Figs 18, 19)
ETYMOLOGY, Latin, specialis, $=$ individual, particular, referring to the unusual shape of the foveae.
MATERIAL. HOLOTYPE: QMS105366, \&, GBR, Myrmidon Rf, $8^{\circ} 16.46^{\circ} \mathrm{S} 147^{\circ} 22.8^{\circ} \mathrm{E}, 13$ Apr. 1998 ,

FIG. 18. Simognathus specialis sp. nov., adult: A, idiosoma, dorsal view (dotted line indicates anterior margin of brown part of plate); B, if idiosoma, ventral view (ap, apodeme); C, gnathosomal base, dorsal view; D , gnathosoma and palp, ventral view. Scale bars: $\mathrm{A}, \mathrm{B}=100 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{D}=50 \mu \mathrm{~m}$.
coral rubble at 15 m . PARATYPES: QMS105367, + , ANIC, $\%$, ZMH A36/99, $\frac{9}{}$, GBR, Myrmidon Rf, $18^{\circ} 16.46^{\prime} \mathrm{S}$ 147${ }^{\circ} 22.88^{\circ} \mathrm{E}$, 13 Apr. 1998 , dead coral overgrown with algae, at $3-15 \mathrm{~m}$; QMS 105368 , ㅇ, GBR, Myrmidon Rf, $18^{\circ} 16.69^{\prime} \mathrm{S} 147^{\circ} 23.21^{\prime} \mathrm{E}, 14$ Apr. 1998, coarse sand \& rubble at 15 m ; QMS105369, ㅇ, Q , GBR, Yonge Rf, ca. $14^{\circ} 36 \mathrm{~S} 145^{\circ} 38 \mathrm{E}, 10$ Oct. 1998 , coarse sand \& rubble at 9 m ; QMS 105370 , of, Coral Sea (Queensland Plateau), Chilcott I., $16^{\circ} 56.61^{\prime} \mathrm{S} 150^{\circ} 0.177^{\prime} \mathrm{E}, 14 \mathrm{Sep}$. 1998, GA. Diaz-Pulido, coarse sand at 0.5 m .

DESCRIPTION, Female. Idiosoma 276-320 long (holotype 320). AD slightly longer than PD, anteriorly narrowing and with dome-like swelling (Fig. 18A); posterior $2 / 3$ of plate with brown pigmentation; setae long; foveae consisting of an inner depression and an outer less depressed rim. OC well developed; with several depressions in inner half, a seta anteriorly and a pore posteriorly. PD with foveate

FIG. 19. Simognathus specialis sp. nov., adult: A, leg I, medial view; B, leg II, medial view; C, leg III, medial view; D, leg IV, medial view. Scale bars: A-D $=50 \mu \mathrm{~m}$.
ornamentation similar to that on AD ; with two pairs of long setae. AE with foveae posterior to insertions of legs I and II; remainder of plate punctate with punctations forming groups (Fig. 18B). Underneath membranous cuticle between AE and GA with four conspicuous apodemes. GA foveate except for anterior third of plate. Adanal setae positioned ventrally on anal cone.

Shape of tectum as in Fig. 18C. Ventral gnathosomal base foveate throughout. P-2 with a pointed protuberance proximal to ventral seta.
Outline of legs as in Fig. 19. Telofemora with distinct foveae ventrally. Claw-like ventral seta of tibia I with proximal swelling (Fig. 19A). Chaetotaxy: I 1-2-2-4-5 (Fig. 19A), II 1-2-3-4-5 (Fig. 19B), III 1-1-2-3-5 (Fig. 19C), IV 1-1-2-3-5 (Fig. 19D). Paired claws of tarsi IL-IV with

FIG. 20. Simognathus trachys sp. nov., adult. A, idiosoma, dorsal view; B, ${ }^{\text {a }}$ idiosoma, ventral view; C, gnathosoma, dorsal view; D, tibia and tarsus of leg 1, medial view. Scale bars: $A, B=100 \mu m ; C, D=25 \mu m$.
accessory process but without pecten. Tarsus II with one ventral seta and pair of pas, tarsus III with one pas and one ventral seta, tarsus IV with two ventral setae but no pas.

Male. Unknown.
REMARES. In Simognathus sprecialis sp. now. the dorsal idiosomal foveae consist of a deep
inner pit and a flat rim. Such foveae are otherwise known only for S. trachys sp. nov. from which S. specialis differs in a number of aspects: punctations on the AE arranged in groups, shape of the tectum and morphology of the claw of tibia I.

Simognathus trachys sp. nov.
(Fig. 20)
ETYMOLOGY. Greek, trachys = rough, referting to the rough appearance of the tectum.

MATERIAL. HOLOTYPE: QMS105371, ठ̂, GBR, Elizabeth Rf, $19^{\circ} 20.12^{\prime} \mathrm{S} 149^{\circ} 02.85^{\circ} \mathrm{E}, 24-25$ Dec. 1997, coral rubble at 10 m . PARATYPES: QMS 105372, ㅇ, ANIC, ㅇ, ZMH A37/99, 우; QMS105373, ${ }^{\text {º }}$, data as for holotype; QMS105374/ 105375, 2 is, data as for holotype, except from medium coarse sand at 10 m .

DESCRIPTION. Male. Idiosoma 284-299 long (holotype 299). AD slightly longer than PD, uniformly pale, posteriorly truncated; covered with foveae which consist of deep depression and a shallower rim (Fig. 20A); anteriorly narrowing and with a swelling; two pairs of setae inserted as illustrated; with pair of slightly elevated ridges that converge anteriorly; no canaliculi seen in deeper cuticular layers on either AD or PD. OC well developed; covered with foveae except for posterolateral smooth area (comea); anteriorly with a seta. PD truncated anteriorly; anteriorly and posteriorly of similar width; with two pairs of setae as illustrated; pair of slightly elevated ridges, converging posteriorly. AE covered by foveae except for a smooth gable-like area (Fig. 20B). GA separated from AE; with foveae except for a transverse area anteriorly. GO surrounded by a circle of ca. 25 pgs ; one or two pairs of outlying setae anterolateral to GO. Adanal setae inserted ventrally on anal cone.

Gnathosmal base dorsally and ventrally foveate. Tectum of variable shape but always with several protuberances (Fig. 20C). Palps inserted well anteriorly, segment P-2 with a ventral seta but no protuberance.

Leg chaetotaxy: I 1-2-2-4-5, II 1-2-3-4-5, III 1-1-2-3-5, IV 1-1-2-3-5. Tibia I with a blunt ventral spine and adjacent to it with a thickened seta (Fig. 20D). Paired claws of tarsi II-IV with accessory process but without pecten. Tarsus II with one ventral seta and pair of pas, tarsus III with one pas and one ventral seta, tarsus IV with two ventral setae but no pas.

Female. Idiosoma 309-329 long. GA with distribution of foveae as in male but with 3-4 pairs of pgs on either side of GO.
REMARKS. With its short and blunt ventral spine and thickened seta on tibia I Simognathus trachys sp. nov. closely resembles S. gibberosus Bartsch, 1994, from Rottnest I. Both species are also similar in most other respects, for example the distribution of the foveae on the AE and the shape of the tectum, which indicates their close relationship. However, the AD in S. gibberosus carries canaliculi in deeper cuticular layers which are absent in S. trachys. Further, the PD in S. gibberosus narrows posteriorly, whereas in S. trachys it is of similar width anteriorly and posteriorly, and the foveae in S. trachys possess a wide rim which is unknown for S. gibberosus. Finally, in the males of S. gibberosus the AE and GA are fused according to Bartsch (1994), while such fusion has not been observed in S. trachys. However, I examined a male paratype of S. gibberosus (WAM 93/440) in which the AE was not fused to the GA, and thus it appears this character may not be reliable.

Simognathus versicolor sp. nov.
(Fig. 21)
ETYMOLOGY. Latin, versicolor $=$ variegated, of various colours, referring to the pigmented AD.

MATERIAL. HOLOTYPE: QMS105376, ㅇ, GBR, Elizabeth Rf, $19^{\circ} 20.12^{\prime} \mathrm{S} 149^{\circ} 02.85^{\circ} \mathrm{E}, 24$ Dec. 1997 , large chunks of coral rubble at 10 m .
DESCRIPTION. Female. Idiosoma 311 long. AD and PD subequal in length (Fig. 21A); posterior $2 / 3$ rd of plate with brown pigmentation. OC well developed; on inner half with several depressions; anteriorly with a seta. AE foveate posterior to insertions of legs 1 and II, remainder of plate uniformly punctate (Fig. 21B). Underneath membranous cuticle between AE and GA with four conspicuous apodemes. Morphology of GA as described and illustrated for S. specialis. Adanal setae inserted ventrally on anal cone.

Tectum shaped as in Fig. 21C. Ventral gnathosomal base foveate except for a narrow strip along median axis. Segment P-2 with a blunt ventral protuberance.

Legs as described and illustrated for S. specialis.
REMARKS. Simognathus versicolor sp. nov. lacks foveae on the median part of the AE and has brown pigmentation on the posterior part of the AD . This combination of characters is otherwise

FIG. 21. Simognathus versicolor sp. nov., $f:$: A, idiosoma, dorsal view (dotted line indicates anterior margin of brown part of plate); B, anterior half of idiosoma, ventral view; C , gnathosoma, dorsal view. Scale bars: $\mathrm{A}, \mathrm{B}=$ $100 \mu \mathrm{~m} ; \mathrm{C}=50 \mu \mathrm{~m}$.
known only for S. maculatus Bartsch, 1994, from Rottnest I., and S. specialis sp. nov. from the Great Barrier Reef. Simognathus versicolor differs from S. specialis by lacking a rim around the dorsal foveae and from S. maculatus by its smaller size, relatively larger foveae on the dorsal plates, and by the posteriorly widened PD.

Simognathus xandarus sp. nov.
(Fig. 22)
ETYMOLOGY. Greek, xandaros, $=$ a fabulous seamonster.

MATERIAL. HOLOTYPE: QMS105377, \&, GBR, Turner Cay, NE, ca. $21^{\circ} 43^{\prime} \mathrm{S} 152^{\circ} 33^{\circ} \mathrm{E}$, reef flat, 8 Dec . 1998, G. Coleman, medium coarse sand at 3 m . PARATYPE. QMS105378, of, GBR, John Brewer Rf, $18^{\circ} 38.25^{\prime} \mathrm{S} 147^{\circ} 04.42^{\prime} \mathrm{E}, 11$ Apr. 1998, coarse sand at 15 m .

DESCRIPTION. Female. Idiosoma 333-339 long (holotype 333). AD as long as PD (Fig. 22 A), ca. 1.3 times longer than wide; posterior $2 / 3$ of plate with brown pigmentation, in deeper cuticular layers with numerous fine canaliculi. OC well developed; anteriorly with several depressions and a seta. AE laterally foveate, remainder of plate uniformly punctate (as for S. versicolor in Fig. 21B). Underneath membranous cuticle between AE and GA with four conspicuous apodemes. Morphology of GA as described and illustrated for S. specialis. Adanal setae inserted ventrally on anal cone.

Tectum pointed (Fig. 22B). Ventral gnathosomal base foveate throughout. Segment P-2 with a blunt ventral protuberance proximal to seta. Rostrum not extending to level of ventral protuberance.

FIG. 22. Simognathus xandarus sp. nov., q: A, idiosoma, dorsal view; B, gnathosoma, dorsal view. Scale bars: $\mathrm{A}, \mathrm{B}=50 \mu \mathrm{~m}$.

Legs as described and illustrated for S. specialis.

REMARKS. The only other species with dark brown pigmentation in the posterior $2 / 3$ of the AD and foveae on the AE restricted to the margins of the plate are S. maculatus Bartsch, 1996, S. specialis sp. nov. and S. versicolor sp . nov. Simognathus xandarus sp. nov. differs from all these species by a relatively wider AD. In addition, S. xandarus may be distinguished from S. maculatus by the rostrum not reaching the level of the ventral protuberance on P-2, from S. specialis by lacking a distinct rim around the foveae on the AD and not having the punctations on the AE arranged in groups, and from S. versicolor by having a larger number of foveae on the AD and a distinctly pointed tectum.

KEY TO AUSTRALIAN SPECIES OF SIMOGNATHINAE

1. Palp two-segmented (Fig. 2a); genu I with a spinose seta (Fig. 2B) Acaromantis diazpulidoi sp. nov. Palp three-segmented (Fig. 5d), genu I without a spinose seta(Fig. 4A). 2, Simognathus
2. Posterior $2 / 3$ of AD with dark brown pigmentation (Fig. 14A)
AD uniformly pale 7
3. AE with foveae throughout (Fig. 14B)
. S. platyaspis sp. nov.
AE with foveae only marginally (Figs 18B, 21B)
4. Foveae of AD consisting of an inner deep depression and a flat rim (Fig. 18A); AE with punctations that form distinct groups (Fig. 18B) S. specialis sp. nov.
Foveae of AD consisting of only a simple depression without a rim (Fig. 21A); AE in non-foveate areas evenly punctate (Fig. 21B). . 5
5. PD pear-shaped, distinctly wider posteriorly than anteriorly, anterior margin rounded (Fig. 21A)
S. versicolor sp. nov.

PD posteriorly not distinctly widened, anterior margin truncate (Fig. 22A)
6. Length of AD ca. 1.3 times its width (Fig. 22A); rostrum not reaching level of ventral protuberance on P-2 (Fig. 22B) S. xandarus sp. nov.
Length of AD ca. 1.5 times its width; rostrum reaching beyond level of ventral protuberance on P-2 S. maculatus Bartsch, 1994
7. OC well developed, not obscured by membranous cuticle (Fig. 10A)
OC plates strongly reduced or absent, if present then hidden underneath membranous cuticle

8. Cornea (= non-foveate part of plate) covering most of OC (Figs 10A, 12A), AE foveate only marginally (Figs 10B, 12B)
Cornea smaller (Figs 14A, 18A, 20A); AE foveate marginally and medially (Fig. 14 B)

10
9. Cornea as in Fig. 12A; PD ca. 1.15 times the length of $A D$ (Fig. 12A) S. exoticus sp. nov. Cornea as in Fig. 10A; PD ca. 1.3 times the length of AD (Fig. 10A) S corneatus sp. nov.
10. PD narrowing posteriorly; foveae of AD and PD without a rim; AD and PD with canaliculi in deeper cuticular layers; idiosoma of $\circ 357-408 \mu \mathrm{~m}$ long, of है $325-376 \mu \mathrm{~m}$
S. gibberosus Bartsch, 1994

PD anteriorly and posteriorly of similar width (1 ig .20 A); foveae of AD and PD with a rim (Fig. 20A); AD and PD without canaliculi in deeper cuticular lay ers; idiosoma of © $309-329 \mu \mathrm{~m}$ long, of \& $281-299 \mu \mathrm{~m}$
S. trachys sp. nov.
11. AE and GA fuscd (Figs 3B, 7B, 9B) 12

AE and GA separated (Fig. 5B) 16
12. AE foveate (Figs 3B, 7B) 13

AE fincly punctate (Fig. 9B) . . . S. clypeafus sp. nov.
13. Tarsi of leg I (cxcluding claws and setae) about $1 / 4$ of tibia length, length of tibia I ca. 3 times its height (Fig. 4A)
Tarsi of leg I (excluding claws and setae) longer than $1 / 3$ of tibia, length of tibia I ca. twice its height (Fig. 8A)

15
14. AD of subequal length and width (Fig. 3A); ventral gnathosomal base with a wide non-foveate area medially (Fig. 3E)
S. abnormalus sp. nov.

AD clearly longer than wide; ventral gnathosomal base lacking a wide non-foveate area
S. scutatus Bartsch, 1993b
15. TarsillI and IV with two pas (Fig. 8C,D)
S. aspidiotus sp, nov.

Tarsi III and IV with one pas
S. uniscutatus Bartsch, 1994
16. AE foveate throughout (Fig. 16B)

AE foveate only posterior to insertion of leg 1
S. delicatulus Bartsch, 1994

AE foveate posterior to insertion of leg I and II, and along posterior margin (Fig. 5B) S. actius sp. nov.
17. Telofemur I with one seta (Fig. 17A), tibia IV with one spine (Fig. 17D) S. pygmaeus sp. nov. Telofemur I with two setae (Fig. 8A), tibia IV with two spines (Fig. 8D). 18
18. Tarsus IV with two pas and two ventral setae
S. variolosus Bartsch, 1994

Tarsus IV with one pas and one ventral seta
S. gracilis Bartsch, 1994

DISCUSSION

Simognathus and Acaromantis are very similar in many characters which makes their separation difficult. According to Bartsch (1983, 1993b) Acaromantis possesses two palp segments while Simognathus has three segments, $P-2$ in Simognathus has a cuticular protuberance which is lacking in Acaromantis, the tarsus of leg I is shorter in Acaromantis than in Simognathus and paired claws are absent in Acaromantis while present in Simognathus. However, several species do not fit this diagnosis: Simognathus gibberosus Bartsch, 1994, and S. gracilis Bartsch, 1994, seem to lack a ventral protuberance on P-2 and S. scutatus Bartsch, 1993b, has a front leg tarsus which is as short as that of Acaromantis species. Acaromantis is therefore here redefined as all those simognathine species that have two palp segments, a spinose seta on genu 1 and no paired claws on tarsus I, and Simognathus as those that have three palp segments, slender seta-like paired claws on tarsus I and lack a spinose seta on genu I.

While Acaromantis delined as above is most likely a monophylum this is uncertain for Simognathus. Paired claws on tarsus I and lack of a coarsely spinose seta on genu I are a common character of halacarids and are therefore plesiomorphic in Simognathus. The possession of three palp segments may be synapomorphic for Simognathus but is more likely an intermediate step between the four segments typical for most other halacarid genera and the two segments of Acaromantis in which case it would not constitute a synapomorphy.

Support for the hypothesis that Simognathus may be paraphyletic comes from the observation that the closely related species S. scutatus and S. abnormalus both have a slender tibia and very short tarsus of leg I, which is typical of Acaromantis but not present in other Simognathus species. Further, in S abnormalus these segments are oriented so that the spine of the tibia and the median claw of the tarsus are medially directed, and in all alcohol-preserved material leg I is held distinctly raised above the body, characters which are both typical of Acaromantis (Bartsch, 1977; pers. comm.). The peculiar orientation of tibia and tarsus of leg I can also vaguely be seen in the holotype and a paratype of
S. scutatus which I examined, although due to the compression of the specimens and the fact that some of the legs are detached it is difficult to detect. Thus both species, S. abnormalus and S. scutatus, may in fact be more closely related to species of Acaromantis than to their congeners. A further character which may indicate a possible paraphyly of Simognathus is the reduced OC, common to all species of Acaromantis and several species of Simognathus. While it is possible that the reduction of OC has occurred several times, there is no evidence for it and it is therefore more parsimonious to assume that reduction has occurred once and therefore that species of Simognathus with reduced plates are more closely related to Acaromantis than to their congeners with well developed plates. However, at present the current classification is here retained.

Simognathus now contains 37 species. Together with the seven species described from Rottnest I., 19 species are known from Australia, which has the highest recorded number of Simognathus species of any continent. Two species are currently known from North America and the Caribbean, nine from South America (including the Galapagos), one from Africa, four from Europe, two from Asia and four from New Zealand and subantarctic islands. Since the halacarid fauna of the northern hemisphere has been studied much more thoroughly than that of the southern hemisphere it appears almost certain that this genus is more diverse in the southern hemipshere.

Acaromantis now contains ten species: A. arenarius Bartsch, 1980, from the east coast of North America, A. armalus, A. grandiculus, A. fastigatus, A. punctulatus and A. subasper from the Galapagos I. (Bartsch 1977), A. minutus Bartsch, 1976, and A. squilla Trouessart and Neumann, 1893, from the French Atlantic coast, A. monnioti Morselli, 1970, from the Mediterranean, and A. diazpulidoi sp. nov. from the Coral Sea.

ACKNOWLEDGEMENTS

I thank the Australian Biological Resources Study (ABRS) for funding this project, the Australian Institute of Marine Science, in particular John Benzie, for providing all necessary facilities and laboratory space and the Great Barrier Reef Marine Park Authority for giving permission to collect halacarid mites. I am also greatful to Mark Harvey (Western Australian Museum) and Ilse Bartsch (Forschungsinstitut und Naturmuseum Senckenberg) for the loan of specimens and Ilse

Bartsch for comments on the manuscript and supply of much of the needed literature. The comments of two anonymous referees are much appreciated. Furthermore I wish to thank Katharina Fabricius and Paula Tomkins for giving me the opportunity to participate in their field trips, and Peter Doherty, Doug Fenner and Guillermo Diaz-Pulido for providing me with specimens from the Coral Sea reefs. This publication is contribution no. 940 of the Australian Institute of Marine Science.

LITERATURE CITED

ABÉ, H. 1998. Rhombognathine Mites, Taxonomy, Phylogney, and Biogeography. (Hokkaido University Press: Sapporo).
ANDRÉ, M. 1946. Faune de France 46. Halacariens marins. (Paul Lechevalier: Paris).
BARTSCH, I. 1974. Simognathus minutus (Hodge) (Halacaridae, Acari), Eine Wiederbeschreibung nebst Bemerkungen zur Unterfamilie der Simognathinae. Cahiers de Biologie Marine 15: 275-284.
1976. Beitrag zur Halacariden-Fauna (Halacaridae, Acari) der Bretagneküste. Beschreibung von fünf Arten aus dem Sandlückensystem. Acarologia 17: 652-667.
1977. Interstitielle Fauna von Galapagos. Mikrofauna des Meeresbodens 65: 1-108.
1980. Halacaridae (Acari) im marinen Mesopsammal der Ostküste Nordamerikas. Entomologische Mitteilungen aus dem zoologischen Museum Hamburg 6: 393-407.
1983. Vorschlag zur Neugliederung des Systems der Halacaridae (Acari), Zoologische Jahrbücher Abteilung für Systematik, Okologie und Geographie der Tiere 110: 179-200.
1985. New species of Halacaridae (Acari) from New Zealand. New Zealand Journal of Zoology 12: 547-560.
1993a. A synopsis of the Antarctic Halacaroidea (Acari), (Koeltz Scientific Books: Koenigstein).
1993b. Arenicolous Halacaridae (Acari) from south-western Australia. Pp. 73-103. In Wells, F.E. Walker, D.I., Kirkman, H. \& Lethbridge, R. (eds) The marine flora and fauna of Rottnest Island, Western Australia. (Western Australian Museum: Perth).
1994. The genus Simognathus (Acari: Halacaridae), description of six new species from southern Australia and a tabular key to all specics. Acarologia 35: 135-152.
1996. Halacarids (Halacaroidea, Acari) in freshwater. Multiple invasions from the Palcozoic onwards? Journal of Natural History 30: 67-99.
2000. Rhombognathinae (Acari: Halacaroidea) from the Great Barrier Reef, Australia. Memoirs of the Queensland Museum (this issue).

BARTSCH, 1. \& SClIMIDT, P. 1978. Interstitielle Fauna von Galapagos. XII. Zur Őkologie und Verbreitung der Halacaridac ((Acari), Alikrofana des Meeresbodens 69: 625-660.
BOUDREAUX, II.B. \& DOSSE, (i. I963. The usefulness of new taxonomic characters in females of the genus Tetrambimes Dufur (Acari: Tetranychidac). Acarologia 5: 13-33.
BRADY, G.S. 1875. A review of the British marine mites with deseriplions of some new species. Proceedings of the Zoological Society of London 20: 301-311
FOUNTAIN, II.C. 1953. An examination of the original slides of marine Acari of lfodge 1863. Journal of the Marine Biological Association of the United Kingdom 32: 357-364.
HODGE, G 1863. Contributions to the marine zoology of Seahany Harbour. On some undescrityed matine Acari, Transactions of the Tyneside Naturalists' Field Club 5: 248-303.
MONNIOT, F. 1961. Simognathus amdrei, nouvelle espèce d’talacarien récoltée en Méditertanćc. Acarologia 3: 585-59().
1962. Recherches sur les graviers a Amphiarus de la region de Banyuls-sur-mer. Vie et Milieu 13: 231-322.
MORSELLI. 1. 1970. Ricerche sugli Alacaridi delle coste livornesi. II.-Acaromantis momioni, una nuova specie raccolta sui fondi sabbiosi delle Secche della Meloria (Livorno). Pubblicazioni della Stazione Zoologica di Napoli 38: 10 ()-119.
NEIVELL, I.M. 1947. A systematic and ccological study of the Halacaridae of castern North America. Bulletin of the Bingham Oceanographic Collection 10: 1-232.
1971. Halacaridae (Acari) collected during chuise 17 of the R/V Anton Bruun, in the southeastern Pacitic Ocean. Anton Brulun Report 8: 3-58.
1084. Antarctic Halacaroidea. Antarctic Research Series 40: 1-284.
O17O. d.C. 1999in. The halacarid tauna ol the Great Barrier Reef and Coral Sea; the genera digumopsis and Halacaropsis (Acarina: Italacaridac). Memvirs of the Queensland Museum 43: 797-817.
1999b. Four new species of Agoue (Acatina: Halacaridac) from the Great Barrier Reep Marine Park, Cahiers de Biologie Marine 40: 273-281.

1990c. Corallihalacarus chilcottensis, a new genus and species of marine mite from the Coral Sca (Acarina: Ialacaridac). Zoological Science 16: 839-843.
2000a. Lohmannellinae (Acarina; Halacaridae) from the Great Barrier Reef and Coral Sea, description of nine new species Memoirs of the Queensland Museum (this issue).
2000b. Acamchelopoctia and stacarus species (Acari: Halacaridae) from Australia, with remarks on A. pacifteres and A. orthotcctus. Species Diversity (in press).
2000c. Austrolucarus (Acari: Halacaridac) from northern Australia, with the deseription of three new species. Records of the Western Australian Museum 20: 103-114 (in press).
OTTO, J.C. \& BARTSCH, 1. 2000. Tropihabatarus shio, a new genus and species of llalacaridae (Acarina: Prostigmata) from the Great Barrier Reef. Acarologia 40: 171-178.
TROUESSART, E.L. 1889. Surles Acariens marins des cótes de France. Comptes Rendus de l'Academie des Sciences 108: 1178-1181.
1901. Description d'espèces nouvelles d'Halacaridae (2e note). Bulletin de la Société Zoologique de France 26: 145-150.
TROUESSART, E.L. \& NEUMANN, M.Ge 1893. Description d'un nouveat genre el d'unc nouvelle espéce de la famille des Halacaridae ou acariens marins. Le Naturaliste 15: 207-208.
VIETS. K. 1927. Die Halacaridae der Nordsee. Zeischrift für wissenschafiliche Zoolngic 130: S.3.17.
1936. Zoologische Eirgehnisse einer Reise mach Bonaire, Curaçao und Aruba im Jahre 1930. No. 18. Halacariden aus Westindien. Zoologische Jahrbücher Abteilung für Systematik, Ökologie und Gengraphie der Tiere 67:389-424.
1440. Die Meeresmilhen atis der Adria (Halacaridae und Hydrachnellae, Acari). Archiv fir Naturgeschichte (N.F.)9:1-135.
1956. Katalog der Halacaridae. Meeresmilben. Pp. 641-870. In Viets, K. (ed.) Die Milben des Suibwassers und des Meares. (Gustav Fischer Verlag: Jena).

HALACARIDAE FROM THE GREAT BARRIER REEF AND CORAL SEA: THE GENERA LOHMANNELLA, SCAPTOGNATHIDES AND SCAPTOGNATHUS (ACARINA: HALACARIDAE: LOHMANNELLINAE)

JÜRGEN C. OTTO

Abstract

Otto, J.C. 200006 30: Halacaridae from the Great Barrier Reef and Coral Sea: the genera Lohmannella, Scaptognathides and Scaptognathus (Acarina: Halacaridae: Lohmannellinae). Memoirs of the Queensland Museum 45(2): 535-555. Brisbane. ISSN 0079-8835.

Abstract

Nine new species of the lohmannelline genera Scaptognathus and Scaptognathides were found among sand and coral rubble, collected intertidally or from shallow water in the Great Barrier Reef Marine Park and on reefs of the Coral Sea: Scaptognathides heraldensis sp . nov., S. tomkinsae sp. nov., S. undulatus sp. nov., Scaptognathus gracilipalpus sp. nov., S. exquisitus sp. nov., S. insularis sp. nov, S. kolymbus sp. nov., S. monstrosus sp. nov., and S. oceanus sp. nov. Lohmannella dictyota Bartsch, Scaptognathus ornatus Bartsch and Scaptognathus kunzi Bartsch are newly recorded from Australia and a key to Australian species of Lohmannella, Scaptognathides and Scaptognathus is presented. Halacaridae, Lohmannellinae, Lohmannella, Scaptognathides, Scaptognathus, Great Barrier Reef, Coral Sea.

Jürgen C. Otto (email j.otto@aims.gov.au.), Australian Institute of Marine Science, PMB 3. Townsville 4810, Australia; 16 August 1999.

This paper is one of a series of publications reporting on halacarid mites found during a survey of the Great Barrier Reef, adjacent coast and reefs of the Coral Sea. The subject of previous publications in this series were the genera Agauopsis and Halacaropsis (Otto, 1999a), Australacarus (Otto, 2000a), Rhombognathus and Isobactrus (Bartsch, 2000), Simognathus and Acaromantis (Otto, 2000b), Agaue (Otto, 1999b), Tropihalacarus (Otto \& Bartsch, 2000) and Corallihalacarus (Otto, 1999c), while the present paper deals with the lohmannelline genera Lohmannella, Scaptognathides and Scaptognathus.

Bartsch (1993a) was the first to record Lohmannellinae from Australia, describing Lohmannella arenaria, Scaptognathides australis, Scaptognathus australis, and S. peregrimus from Rottnest Island, Western Australia. Abé \& Green (1994) added Scaptognathus bassiamus from Tasmania, and Otto (1994) described Lohmannella pinggi from southeastern Australia. Two further species from Rottnest I., one of Scaptognathus and one of Lohmannella, have been reported by Bartsch (1993a) but are as yet undescribed. Thus, no Lohmannellinae have previously been reported from the northern half of Australia.

METHODS

Sand and coral rubble were collected by hand. Mites were extracted by washing the substrates in
a bowl of water and decanting the supernatant through a $100 \mu \mathrm{~m}$ sieve. All material was collected by the author except where stated otherwise. Mites were cleared in lactic acid and mounted in PVA or glycerine jelly. Drawings were made with the aid of a camera lucida.

In the accounts of each species only one sex is described in detail, while for the opposite sex only characters that differ are stated. Measurements are in micrometres $(\mu \mathrm{m})$. Terminology follows Bartsch's (1993b) glossary. 'Areola' is an area on a plate or a leg segment where the cuticular structure differs from that on the remainder of the plate or segment. In the accounts of leg chaetotaxy, numbers of setae present on both sides of a specimen but variable within a species are separated by a slash. Abbreviations: AD , anterior dorsal plate; AE , anterior epimeral plate; OC, ocular plate; GA, genitoanal plate; GO, genital opening; PD, posterior dorsal plate; PE, posterior epimeral plate; P-2, second palp segment counted from base of palp; I-IV, leg 1 to leg IV; pas, parambulacral seta(e); pgs, perigenital seta(e); sgs, subgenital seta(e). Further abbreviations used in the illustrations are explained in the captions. Great Barrier Reef Marine Park is abbreviated ' $G B R$ '.

All material with the registration number prefix QMS is deposited in the Queensland Museum's branch, Museum of Tropical Queensland in Townsville. Abbreviations for other depositories are: ANIC, Australian National Insect Collection,

Canberra; SMF, Zoologisches Institut und Naturmuseum Senckenberg, Frankfurt; ZMH, Zoologisches Institut und Zoologisches Museum, Universität Hamburg.

SYSTEMATICS

Lohmannella Trouessart, 1901

Leptugnaihus Hodge, 1863: 302. Trouessart, 1894: 175. Lohmann, 1893: 87; 1907: 354. Fountain, 1953: 363. Nec Swainson, 1839 (Pisces).
Trowessartella Lohmann, 1901. Nec Cossmann. 1899 (Mammalia).
Lohmannella Trouessart, 1901: 250. Viets, 1927: 148; 1940: 91: 1956: 691. André, 1946: 125. Newell, 1947: 23; 1967: 92; 1971: 34; 1984: 248. Imamura, 1968: 472. Bartsch, 1977b: 141; 1983: 194; 1986: 231; 1992: 457; 1993a: 91; 1993b: 145. Otto, 1994: 32.

TYPE SPECIES. Leptognathus falcatus Hodge, 1863, by monotypy.
DIAGNOSIS. Idiosoma wide, flattened. Dorsal plates AD, OC and PD well developed, with four pairs of gland pores, one on AD , one on OC and two on PD. AE usually with four, rarely three, pairs of setae. Both pairs of maxillary setae on rostrum. Palps inserted dorsally on gnathosomal base, separated from each other by an interval less than the width of their most proximal segment, usually longer than gnathosomal base, four-segmented; P-2 much longer than other segments, with two setae; $P-3$ with cuticular spine; P-4 with one slender basal seta and one spiniform seta. Tibia I with 4-8 bipectinate setae. Tarsus I in addition to parambulacral setae with at least two other ventral setae.

Lohmannella dictyota Bartsch, 1992
Lohmannella dictyota Bartsch, 1992: 458.
MATERIAL, QMS105379-105382, 49, GBR, Elizabeth Reef, $19^{\circ} 20.12^{\prime} \mathrm{S} 149^{\circ} 02.85^{\prime} \mathrm{E}, 25 \mathrm{Dec} .1997$, coarse sand \& rubble at 3 m ; QMS $105383-105385,3$ 오, GBR. Myrmidon Reef, $18^{\circ} 16.69^{\prime} \mathrm{S} 147^{\circ} 23.21^{\prime} \mathrm{E}, 14$ Apr. 1998, coarse sand \& rubble at $12-17 \mathrm{~m}$; QMS105386-105388, 3° ㅇ, GBR, Loadstone Reef, $18^{\circ} 42.03^{\prime} \mathrm{S} 147^{\circ} 06.54^{\circ} \mathrm{E}, 12$ Apr. 1998, coarse sand \& rubble at 12-15m; A63/99 (ZMH), 9 , GBR, Loadstone Reef, $18^{\circ} 41.91^{\prime} \mathrm{S} 147^{\circ} 06.49^{\circ} \mathrm{E}$, 12 Apr. 1998, sand \& rubble at 2 m ; ANIC $\%$, GBR, Club 21 Reef, $19^{\circ} 22.36^{\prime}$ S $149^{\circ} 01.05^{\prime}$ E, 26 Dec. 1997, coarse sand \& rubble at 15 m ; QMS 105389 , ㅇ, GBR, Great Palm 1., Cannon Bay, $18^{\circ} 40.98^{\prime}$ S $146^{\circ} 35.19^{\prime}$ E, 8 Apr. 1998, sand \& gravel at 3m; QMSI05390, 7 , GBR, Boulder Reef, ca $15^{\circ} 24^{\prime}$ S $145^{\circ} 27^{\prime} \mathrm{E}, 8$ Oct. 1998, A. Thompson, coarse sand at 2 m ; QMS105391, $\%, \mathrm{GBR}$, No Name Reef, ca. $14^{\circ} 39^{\prime} \mathrm{S}$ $145^{\circ} 40^{\prime} \mathrm{E}, 9$ Oct. 1998 , medium coarse sand at 6 m ; QMS105392, ㅇ, Coral Sea (Queensland Plateau), Lihou Reef, ca. $17^{\circ} 25^{\circ}$ 'S $151^{\circ} 04^{\prime}$ E, 20 July 1998, D. Fenner, sand at 5 m .

REMARKS. I have compared the above material from Australia with the holotype from Bora Bora (SMF) and did not find significant differences. The specimens listed above are the first records of this species from Australia. The species was previously known only from its type locality. Other species of Lohmannella known from Australia are L. arenaria Bartsch, 1993a, and L. pinggi Otto, 1994. All Australian Lohmannella species can be distinguished from each other by the number of protuberances on the palp (two in L. arenaria, one in L. dictyota and none in L. pinggi).

Scaptognathides Monniot, 1972

Scaptognathides Monniot, 1972: 361. Bartsch, 1977a: 85; 1983: 196; 1988: 221; 1993a: 93; 1996: 146. Bartsch \& Schmidt, 1978: 18.

DIAGNOSIS. Dorsal plates AD, OC, and PD well developed. GA of female and male undivided. Rostrum slender, apically not widened. One pair of maxillary setae on rostrum, the other on gnathosomal base. Palps two-segmented; apical segment with one seta basally, and three fine setae and four spines distally. Leg 1 larger than succeeding legs. Telofemur I ca. twice as long as tibia I; paired claws of tarsus I with an umbrella-like arrangement of pecten. Tibia I with no more than two thickened or bipectinate setae. Tibiae II-IV and genu I without thickened or bipectinate setae.

Scaptognathides heraldensis sp. nov,

(Fig. 1)
ETYMOLOGY. Referring to the species' type locality.
MATERIAL. HOLOTYPE: QMS105393, ㅇ, Coral Sea (Queensland Plateau), Herald Cays, $16^{\circ} 57.171^{\prime}$ S $149^{\circ} 12.036^{\prime}$ E, 16 Sep. 1998, GA. Diaz-Pulido, coarse sand at $5-15 \mathrm{~m}$. PARATYPES: QMS 105394, oै, A55/99 (ZMH), $\%$, ANIC d, data as for holotype.
DESCRIPTION. Female. Idiosoma 188-190 long (holotype 188). All dorsal setae inserted on plates, none in membranous integument (Fig. 1A). All plates ornamented with numerous minute depressions. AD with three pairs of setae as illustrated. OC ca. twice as long as wide; single gland pore in anterolateral corner. PD with two pairs of setae on anterior $1 / 2$ of plate; two pairs of gland pores, the anterior level with posterior pair of setac, the other at posterior margin of plate and associated with cuticular projections; directly posterior to anterior pair of gland pore lateral margin of plate distinctly convex (Fig. 1A). AE finely punctate (Fig. 1B). GA much longer than

FIC. I Suptognothides horahkonsix sp, nov, adult. A. idiosoma, dorsum (AD anterior dorsal plate: gp - gland pore; $\mathrm{OC}=$ ocularplate; $\mathrm{PD}=$ posterior dorsal plate $) ; \mathrm{B}$, 요 idiosoma, venter $(\mathrm{AE}=$ anterior epimeral plate; $\mathrm{GA}=$
 venter ($\mathrm{gb}=$ gnathosomal base; $\mathrm{P}-1, \mathrm{P}-2=$ palp segments; ro $=$ rostrum $) ; \mathrm{D}$, genitoanal plate of δ (os outling setae); E, leg I, dorsal view; F, leg II, ventromedial view; G , leg III, ventromedial view; H , Icg IV, ventromedial view. Scales: $A, B, E, F, G, H=50 \mu \mathrm{~m} ; \mathrm{C}=25 \mu \mathrm{~m}$.
wide; anterior margin truncate; laterally slightly papillate, remainder of plate nearly smooth, lacking punctations; two pairs of pgs as illustrated (Fig. 1B). GO with one pair of sgs.

Gnathosoma (Fig. 1C) 0.43-0.45 times the length of idiosoma.

Telofemora of legs ventrally papillate (Fig. IF,G). Chaetotaxy (trochanter - tibia): I

1-2-4-4-5 (Fig. 1E), II 1-2-4-4-5 (Fig. 1F), III 1-2-2-3-5 (Fig. 1G), IV 1-2-2-3-5 (Fig. 1H). Tarsus III with three dorsal setae, lacking conspicuously thickened and blunt seta.
Male. Idiosoma 182-198 long. GA with ca. 17 pgs flanking GO laterally and posterolaterally (Fig. 1D); two pairs of outlying setae, one pair anteriorly, the other pair at level of GO.

FIG. 2. Scaptognathides tomkinsae sp, nov., adult. A, idiosoma, dorsum; B, idiosoma of , venter. Scale: A, B = $50 \mu \mathrm{~m}$.

REMARKS. The only other species of Scaptognathides with one gland pore on the OC are S. hawaiiensis Bartsch, 1988, S. australis Bartsch, 1993a, and S. tomkinsae sp. nov. All other congeners have two gland pores on the OC. Scaptognathus heraldensis differs from S. australis most markedly by the OC being about twice as long as wide instead of four times as long as wide, and from S. hawaiiensis by having two pairs instead of one pair of gland pores on the PD. For differences between S. heraldensis and S. tomkinsae see below.

Scaptognathides tomkinsae sp. nov.
(Fig. 2)
ETYMOLOGY. For Paula Tomkins who collected the sample from which the specimens were extracted.

MATERIAL. HOLOTYPE: QMS105395, 9, GBR, Sand Bank No. 1, $14^{\circ} 18^{\prime}$ S $145^{\circ} 12^{\prime}$ E, 21 Oct. 1998, P. Tomkins, coarse sand at 3-4m. PARATYPES: QMS105396, む, A56/99 (ZMH), ㅇ, data as for holotype.

DESCRIPTION. Female. Idiosoma 206-222 long (holotype 206). Dorsal plates foveate and finely punctate, less conspicuously on OC. All
dorsal setae inserted on plates (Fig. 2A). AD with three pairs of setae inserted as illustrated. OC ca. twice as long as wide; single gland pore in anterolateral comer; posteriorly with a minute seta. PD with two pairs of setae in anterior $1 / 2$; two pairs of gland pores, the anterior level with posterior pair of setae, the other at posterior margin of plate; lateral margin posterior to anterior pair of gland pore almost straight, not distinctly convex. Adanal setae inserted dorsally on anal cone. AE and GA finely punctate; anterior margin of GA truncate (Fig. 2B); two pairs pgs; one pair sgs. PE anterolaterally with few foveae.
Gnathosoma 0.45 times the length of idiosoma; outline and setation as illustrated for S. heraldensis (Fig. 1C).

Outline of leg segments and chaetotaxy as illustrated for S. heraldensis. Chaetotaxy (trochanter - tibia): I 1-2-4-4-5, II 1-2-4-4-5, III 1-2-2-3-5, IV 1-2-2-3-5. Tarsus III with three dorsal setae, lacking conspicuously thickened and blunt seta. Telofemur IV without thickened seta.

Male. Idiosoma 206 long, GA with 17 pes hanking GO laterally and posterolaterally; two pairs of outlying setae, one pair anteriorly, the other pair at level of GO (as for S. herudlensid in Fig. 1D).

REMARKS. Foveate dorsal plates are also known for S. ausmalis Bartsch, 1993a, and S. bicornis Bartsch. 1977a (see Bartsch, 1996). Scaptognathides tomkinsae may bo distinguished from S. bicurntis by having all dorsal setae inserted on the plates instead of three pairs in the membranous cuticte, and from S. chnsroh is by the OC being about twice as long as wide instead of four limes longer than wide.

Scaptognathides undulatus sp. nov. (Fig. 3)

1:TYMOLOGY; Latin, whelulubs = wavy; reforing to the maduated ventral ridge of the telofemora.

MATERIAL، HCLOTYPB: (QMS105397, \&, Coral Sea Queensland I Iateau), Herald Cays. 16057.171'S 149⒓036 E, 16 Sep. 1998, CiA. Diaz-Pulido, coarse sind at $5-15 \mathrm{~mm}$.
DESCRIPTION. Femula, Ldiosema 182 long. All dorsal setac inserted on dursal plates, which are ormamented with shallow pits within polygons (Fig. 3N). AD with three pairs of setale as illustrated ($\mathrm{Fig}, 3 \mathrm{~A}$). OC en. twice as long as wide; two gland pores, one anteriorly, the other posteriorly. PD with wo pairs uf setaco on anterior $1 / 2$ (only insertion sockets visible in the only available specimen, setae most likely broken off); two pairs of gland pores. ALE and GA urnamented by scattered pits (Fig, 3B); two pairs of pgs and one pair ses.

Outline and setation of gnathosoma as illustrated for S. heraldensis: 0. 45 times the length of idiusoma.

Telofemora ventrally with undulated sharp ridec ($\mathrm{Fig} \mathrm{g}, 3 \mathrm{C}-\mathrm{F}$). Chatotaxy (trochanter-tibia): 11-2-4-4-5 (Fig, 3C), I1 1-2-5-4-5 (Fig, 3D), III 1-2-2-3-5(Fig. 3E), 1V 1-2-2-3-5 (Fig. 3F). Telofemur I, larsus III and telofemur IV with a thickened blunt seta. Tarsus 111 with four dorsal selac.

Male. Unknown.

REMARKS. Other species of Scuppugratheles with a polygonal pattern on the dorsal plates are S. tronulus Bartsch, 1984, S. plantes Monniot. 1972, and S. reticulatus Bartsch, 1996. Šcaprognablides undulanes differs from them hy the presence of an undulated ventral ridece on the elofemera. In addition it may be distinguished
from S. reticulatus by the OC being sharter thats three times its width, from s. ornatus hy having a thickened seta proximatly on tarsts 111 and from S. plones by having a pair ol sctas inserted on the AD close in its posterior margin.

Scaptoquathus Troucssert, 1889

 95. Abe, 1988: 17, 14941: 349, |490b: 25|, |99|: 430.

TYPESUECIES: Scuptusphathas midens lioucssant LS\&り. by monotypy.
DIAGNOSIS. Dursal plates AD and PD well but OC poorly developed. GA of female usually bipartite or tripartile (unly in S. monstrosies sp. nov. undivided). All maxillary setae un rostrum, none on enathosomal base: paired claws smoseth or with a minute process, never with umirellalike arrangement ol pecten; rostrum either slender posteriorly and conspiemusly broadened amteriorly or broad throughout. J'alp twesegmented. Palp segment P- 2 with one scta proximally, another setia 1/2 way along segment or on distal $1 / 2$, and several stender setae plus two, sarely three (latter only in S. menvionsmis), large claws apically. Tolofemur ! shorter than twice the length of thina 1 . Genu I with at Icast one bipectinate seta, tibia I with at least three ands libiae II-IV wench with ill least wo such setat.

Scaptognathus exquisitus sp . nov.
(Fig. 4)
FTYMOLOGY: I , ition, ©xipuismus = encellent fine

 finc-mindiuns charse sand at 5 m . DAKATYPES: QMS105403-705405 39, 2 ANIC 9, A57/49 ($/ \mathrm{M} 111$],
 1998. Ci. Diaz-Pulidn, modium corarse sand at 7 mb : OMS105406-10S407, 29 , GBR, Elizabeth Rect. 10\%20.12'S 1490 (12.85'E, 24 [nec, 1997, medium comere xund at 10In: UMS'054U8, i, GBR, Elizalocth Reet: $19^{9} 20.12^{\circ} \mathrm{S} 149^{\circ}\left(12.85^{\prime} 1525\right.$ Dec. 1947, corswe wand an 3m: QMSIO54109. $2, G B R, 18^{\circ} 16,40^{\circ} \mathrm{S} 147^{\circ} 22.88^{\circ} \%^{\circ}$, Myrmidon Rect, 13 Apr. 1 (M)s, coarse sand \& nbbleat 7 m : OMS105411-105413,33, GBR, Carter Reet. Lid. 14"32³ 145"35'E. 11 Oct. 1998 . coarse sondot 0.5m; QMSin5414, F. CiBR, Lizard l., Coconut Beach, 13 Ont. 1998, medium coarse sand at 0,5m; QMSilos415, F, GBR, Mymmidun Rect. Back $17^{\prime \prime}+6.03^{\prime} \mathrm{S}$ 146026.38'E, 6 Mat 1998 , In levanticr, medium covarsc sand at 7 m : QMS105416-105\$17.2O, A57/09 (ZM11). G. C13R, No

 Cural Sea (Quecostand Plateaul. Diamond Islet, ca,

FIG. 3. Scaptognathides undulatus sp. nov, adult. A, idiosoma, dorsum; B, idiosoma of q, venter, C, leg I, ventromedial view; D, leg II, dorsolateral view; E, leg III, dorsolateral view; F, leg IV, medial view. Scales: A, $B, D, E, F=50 \mu \mathrm{~m} ; \mathrm{C}=25 \mu \mathrm{~m}$.

FIG. 4. Scaptognathus exquisitus sp. nov, adult. Λ, jdiosoma, dorsum; B, \% idiosoma, venter; C, gnathosomal
 view; G , leg II, ventromedial view; H , leg III, ventromedial view; I, leg IV, lateral view. Scales: $\mathrm{A}, \mathrm{B} 100 \mu \mathrm{~m}$; C , D, F, G, H, I=50 m; E, $25 \mu \mathrm{~m}$.
$17^{\circ} 26^{\prime} \mathrm{S} 151^{\circ} 04^{\circ} \mathrm{E}, 20$ July 1998 , D. Fenner, subtidal sand; QMS105418-105426, 9 \%, GBR. Sand Bank No.I, ca. $14^{\circ} 18^{\prime} \mathrm{S} 145^{\circ} 12^{\prime} \mathrm{E}, 21$ Oct. 1998, P. Tomkins, coarse sand at $3-4 \mathrm{~m}$.

DESCRIPTION. Female. Idiosoma 232-307 long (holotype 273). Four pairs of setae in membranous cuticle (Fig. 4A). AD wider than long, with numerous shallow irregularly shaped pits arranged inconspicuously within polygons; numerous delicate canaliculi in deeper cuticular
layers; pair of setae which are much longer than other idiosomal setae inserted at level of gland pores in smooth area of plate. OC wider than long; with large central pore and few minute pits. PD furnished with numerous pits as on AD, but polygonal pattern less conspicuous than on AD or absent; two pairs of setae. AE (Fig. 4B) with ornamentation similar to that on AD ; two pairs of large epimeral pores; several relatively wide but shallow panels near centre of plate and along

FIG. 5. Scaptognathus gracilipalpus sp. nov., ․ A, idiosoma, dorsum; B, idiosoma, venter; C, gnathosoma, ventral view; D, gnathosomal base, dorsal view; E, right leg I, dorsal view; F, leg II, ventromedial view; G, leg III, ventrolateral view ($\omega=$ solenidion); H, trochanter to genu of leg IV, ventrolateral view. Scales: $A, B, C=$ $100 \mu \mathrm{~m} ; \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}=50 \mu \mathrm{~m}$.
posterior margin. GA bipartite; anterior margin of pars sclerosum distinctly convex; two pairs pgs; one pair sgs anteriorly.
Ventral and dorsal gnathosomal base with numerous minute pits (Fig. 4C,D), similar to those on idiosomal plates; in deeper cuticular
layers with larger scars (dotted in Fig. 4C,D), those in posterior $1 / 2$ of ventral gnathosomal base surrounded by series of smaller surface pits (Fig. 4D). Rostrum with setae arranged as in Fig. 4D. Palp as in Fig. 4E.

Trochanters and telofemora of all legs with numerous pits laterally (illustrated for leg IV in Fig. 41). Chaetotaxy (trochanter - tibia): 1 1-1-6-5-9 (Fig. 4F), II 1-1-5-4-5 (Fig. 4G) (1-1-5-5-5 in single specimen), III 1-1-2-3-6 (Fig. 4H), IV 1-1-2-3-6 (Fig. 4I). Bipectinate setae (I-II-III-IV): telofemur 2-0-0-0; genu 2-1-0-0 (2-2-0-0 in single specimen), tibia 5-2-3-3, tarsus 1-1-0-0. Tarsus I with two ventral setae and pair of doubled pas, ventral member of medial doubled pas barely visible. Tarsus II with pair of doubled pas, one member in each duplet minute. Tarsi III and IV with pair of pas singlets.
Male. Unknown.
REMARKS. The only other species of Scaptognathus with 5-2-3-3 bipectinate setae on the tibiae (l-II-III-IV respectively) are S. punctatus Bartsch, 1981, S. ornatus Bartsch, 1984, and S. gracilipalpus sp. nov. Scaptognathus exquisitus differs from them by lacking bipectinate setae on iclofemur II.

Scaptognathus gracilipalpus sp. nov. (Fig. 5)

ETYMOLOGY. Latin, gracilis = slender, referring to the species' slender palps.

MATERIAL. HOLOTYPE, QMS105436, $\%$, GBR. Bylund Cay, ca. $21^{\circ} 47^{\prime} \mathrm{S} 152^{\circ} 24^{\prime} \mathrm{E}, 17$ Apr. 1999 , coarse sand just above low tide mark, sediment depth $10-20 \mathrm{~cm}$. PARATYPES: QMS105437, ㅇ, A58/99 (ZMH), 2 우. ANIC 9 , data as for holotype.

DESCRIPTION. Female. Idiosoma 212-220 long. Four pairs of setae in membranous cuticle (Fig. 5A); Dorsal and ventral plates ornamented with pitted polygons, best developed on AD, PD and AE, less conspicuous on PE and GA: reticulation disappearing towards anterior margin of $\triangle D$. $A D$ in addition with few smooth panels; along anterior margin polygonal pattern replaced by roughened cuticle; posterior margin convex. OC wider than long, with few pits and large central pore. Membranous cuticle posterior to AD with pair of small platelets. PD with two pairs of setac. AE among pitted polygons with four pairs of round to ovoid smooth panels; epimeral pores conspicuous; two pairs of setae. PE with three pairs of ventral setae but no dorsal seta seen. GA tripartite; anterior pars sclerosum poorly developed; anterior margin of posterior pars sclerosum distinctly concave; three pairs of pgs, the two anterior pairs not closely associated; one pair sgs seen.

Gnathosoma 0.92-0.94 times the length of idiosoma. Surface of ventral gnathosomal base almost smooth, only few scattered pits overlying ovoid scars (Fig. 5C). Dorsal gnathosomal base on anterior $1 / 2$ with small pits arranged in a polygonal pattern; series of scars in deeper cuticular layers (Fig. 5D). Palps conspicuously slender.

Cuticle of all leg segments slightly roughened but without pits. Chaetotaxy (trochanter-tibia): 1 1-1-6-5-8 (Fig. 5E), II, 1-1-4-4-5 (Fig. 5F), III 1-1-2-3-6 (Fig. 5G), IV 1-1-2-3-6 (Fig. 5H). Bipectinate setae (I-II-III-IV): telofemur 3-1-0-0, genu 2-1-0-0, tibia 5-2-3-3, tarsus 1-0-0-0. Tarsi 1 and II with pair of doubled pas, one seta of each duplet much smaller than the other; tarsus III medially with doubled pas (one seta of each duplet much smaller than the other), laterally with pas singlet; all tarsi with solenidion. Leg IV similar to leg III except for both setae on telofemur of subequal length, one seta on genu longer than the other, and the tarsus possessing a pair of pas singlets.
Male. Unknown.
REMARKS. The only other Scaptognathus species with the combination of five and two bipectinate setae on tibiae 1 and II respectively, and three bipectinate setae on telofemur I, are S. ornatus Bartsch, 1984 (see below), S. punctatus Bartsch, 1981, and S. insularis sp. nov. S. gracilipalpus differs from them by having two instead of three pairs of setae on the AE, three instead of four setae on the PE, much more slender palps, and the anterior margin of the posterior pars sclerosum in the female distinctly concave. A further peculiarity by which S : gracilipalpus may also differ from all other congeners is in the presence of solenidia on tarsi III and IV. These have not been reported for any other species of Scaptognathus but due to their small size could have been overlooked.

Scaptognathus insularis sp. nov.

(Fig. 6)
ETYMOLOGY. Latin, insularis = of islands, referring to the species having been collected on a coral cay.
MATERIAL. HOLOTYPE: QMS105438, ㅇ, GBR, Bylund Cay, ca. $21^{\circ} 47^{\prime} \mathrm{S} 152^{\circ} 24^{\prime} \mathrm{E}, 17 \mathrm{Apr}$. 1998, coarsc sand just above low tide mark, sediment depth $10-20 \mathrm{~cm}$. PARATYPES: QMS105439, ㅇ, A59/99 (ZMH), ㅇ, ANIC 9 , data as for holotype.
DESCRIPTION, Female. Idiosoma 375-415 long (holotype 415). Four pairs of setae in membranous cuticle (Fig. 6 A). AD wider than long,

FIG. 6. Scaptognathus insular is sp. now.. \& . A, idisoma, dorsum; B, idiosoma, venter; C, genitoanal plate; D. gnathosomal base, dorsum: E gnathosoma, venter; F, left leg I, dorsal view; G, left leg II, dorsal view, Scale: A, $B, D, E=100 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{F}, \mathrm{G}=50 \mu \mathrm{~m}$.
pusterior margin distinctly convex: numerous irtegularly shaped pits within polygens; no canaliculi in deeper cuticular layers; pair of setac much longer than other idinsomal setae and inserted at level of gland pores in smooth area of plate. OC wider than longe with large contral pore. PD fumished with numerous pits as on AD; usually two pairs of setae on P^{P} l]. ol' which the anterior pair is situated at the extreme antenor margin of plate; in two specimens one stta of the anterion pair inserts in membranuas caticle anterior to plate. AE with omamentation similar to that on AD ; two pairs of large epimeral pores: several relatively wide but shallow pancls near eentre of plate and along posterior margins (Fig. 6B). GA bipartite, anterior margin ol'purs memhromasum and pars sclerosum (Fig. 6C) convex: three pairs of pges of which the two anteriot pairs are closely alssociated; two pairs of sys.

Dursal znathosomal base evenly pitted throughnut antetior $2 / 3$ (Fig. 6D). Ventral enathosomal base with lewer pits, these forming iransverse bands: anterolaterally with an areola consisting of relatively deep pits. Dorsal and ventral gnathosomal base in deeper layers with wunded scars (dutted in Fis. 6D, E). The smaller of the two palp claws with protuberance (Fig. 6E. :itrowed).

Trochanters and iclofemora of all legs with numerous pits laterally. Chactotaxy (trochanter (ibia):] 1-1-6-5-9 (Fig, 6f), II 1-1-5-4-5 (Fig. (GG). III 1-1-2-3-5/6, IV 1-1-2-3-5/6. Bipectinate setae ($1-11-$ III-TV): telofemur $3-2-0-0$; genas 2-1-0)-(0, tibia 5-2-2/3-2/3, tarsus 1-1-0-0. Tarsus I with twe ventral setae and pair of doubled pas. Tarsus If with pair of doubled pas, one seta in tach duplet minute. Tarsi 111 and IV with pair of pas singlets.

REMARKS. The only other species ol' Scaptugnathus with 3-2-0-0 bipectinate sctac on the telolemora (I-IV respectively) are S, puncrouns Bartsch, 1981 , and S. ommatus Bartsch. 19S'A. S. insularis can be distinguished from S: ornatus by lacking ornamentation on the palps and lacking well defined areolae on the legs, and from S punctatus by the female idiosoma being 375 $\$ 15 \mu \mathrm{~m}$ instead of $229-257 \mu \mathrm{ml}$ long. A further dilference between both species is in the number of pes in the female, S. insularis possesses three pxirs, while S purchanus has two pairs (Barnsch. 1982).

Scaptognathus kolymhus ip, nov:

(lig. 7)
ETYMOLOKY: S'́reck, fohhmber: - diser, swimmer
DIATERIAL. HOLOTYPF: QMSIOS427. F. Coral SL゙ (Queznsland Plateau), Lihou Reef, ca, $17^{\circ} 25^{\circ} 5151^{\circ} 40^{\prime}$ E. 20 July 1498, D. Femter, sand at Sm. PARATYPES:

 Yonge Reet, cia, $14^{\prime \prime} 36^{\prime} \mathrm{S} 145^{\circ} 38^{\circ} \mathrm{E}, 20 \mathrm{Sep}$. 1998, mediun coarse sand at Tin

DESCRIPTION. Female. Idiosoma 248-277 long (holotype 248). Four pairs of setae inserted in membranous cuticle (Fig. 7A). AD of subequal length and width; pais of setae longer than stitet dersal setae; covered with numerous minute pits, except for a small area surrounding each scta; numerous canaliculi and faint reticulation paltern visible when focusing deeper. OC of subequal length and width; with large central pore. PD almost tectangular; onnamentation similar to that of AD; two pairs of setae as illustrated (Fig. 7A). AE posteriorly drawn out into a broad mose; pilted except for anterior parts of epimeral fields: and II (Fig. 7B); GA bipartite; pitted purs solerusum with three pairs of pgs, the wo anterion ones closely associated; two pairs ses.

Gnathosomal base dorsally with small pits oves the entire anterior 2/3 (Fig. 7()) ventrally with pits only laterally (Fig. 7D); in deeper cuticulat layers dorsally as well as ventrally wath targer scars (dotted in Fig. 7C,D). Widened anterior pan of rostrum witls three pairs of setac, narrow posterior part with one pair.

Cuticle or all leg segments relatively smouth. not covered by pits as deep as those on dorsal plates. Chretotaxy (trochanter - tibia): I $1-2-5-4-9$ (Fig. 7E), 11 1-2-4-5-6 (Fig. 7E), III 1-1-2-3-\% (Fig. 7G), IV 1-1-2-3-7 (Fig. 7H), Bi。 pectinate setae (1-11-111-IV): telofemur 2-(0)-(1)-0. genu 2-1-0-0, libias 6-3-4-4, tarsus 1-7-0-0.
Male. Unknown.
REMARKS. S. Kdymbus is most similar wo S panciparus Batsch, 1977a, from the Galapates. but can be distinguished from it by the postetion margin of the AE being strongly cunvex and medially drawn out into a broad nose. Asecnend distinguishing claracter is the number of setar un telofemur ll, three in S. pusuropors and four ins. 5 . kolvmbis. The number of setate on telolemur I (four illustrated lor S paurtpuras, tive in S kolymbus) does not roliably distinguish between bethspecies, as some specimens ot So paucipoters

FIG. 7. Scaptognathus kolymbus sp. nov., adult. A, idiosoma, dorsum; B, idiosoma of q, ventral view; C, gnathosoma, dorsal view; D , gnathosomal base, ventral view; E , leg I, dorsal view; F , leg II, dorsal view; G , leg III, dorsolateral view; $H, \operatorname{leg} I V$, dorsolateral view. Scales: $A, B=100 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}=50 \mu \mathrm{~m}$.
have also live sctac on lhat segment (Bartsch, pers. comm.).

Scaptognathus kunzi Bartsch, 1988

(Fig. 8A-C, E-K)
Scuplognathus kwzi Bartsch, 1988: 219. Abé, 1990a: 361.
MIT1:RIAL. Q\1S105430, \therefore GBR. Elizabeth Reef. $19^{\circ} 20,12^{\prime} \mathrm{S} 149^{\circ} 02.85^{\circ} \mathrm{E}, 25$ Dec. 1997 , coral rubble at

$146^{\circ 2}-2.16^{\circ} \mathrm{E}, 22 \mathrm{Jan} .1998$, sand \& rubble at $0.2 \mathrm{~m}: \mathrm{ANIC}$ \%, GBR, Great Palm I., channel, $18^{\circ} 40.60^{\prime} \mathrm{S} 146^{\circ} 34.29^{\circ} \mathrm{E}$, 8 Apr. 1998, sand \& rubble at 6 m ; A61/99 (ZMH), ㅇ. GBR, Great Palm 1., Cannon Bay, $18^{\circ} 40.98^{\circ} \mathrm{S}$ $146^{\circ} 35.19^{\circ} \mathrm{E}, 8 \mathrm{Apr}$. 1998 , sand - gravel at 3 m ; QMS $105432, ~$ O. GBR, Yonge Reef, ca. $14^{\circ} 36^{\prime} \mathrm{S}$ $145^{\circ} 38^{\prime} \mathrm{E} .10$ Oct. 1998, coarse sand \& rubble at 9 m .

DI:SCRIPTION. Female. Idiosoma in uncompressed specimen 202 long. in compressed

FIG. 8. A-C, E-K, Scaptognathus kunzi Bartsch, adult; A, idiosoma, dorsum; B, idiosoma of q, venter; C, detail of ornamentation of anterior dorsal shield (AD) near left seta and pore; E , gnathosomal base, dorsal view; F , gnathosomal base and rostrum, ventral view; G, palp, dorsal view; H, leg I, ventral view; I, leg II, ventromedial view; J, leg III, ventromedial view; K, leg IV, ventral view. D, Scaptognathus oceanus sp. nov., q; detail of ornamentation of anterior dorsal shield (AD) near left seta and pore. Scales: $\mathrm{A}, \mathrm{B}=100 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{D}=50 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{K}=$ $50 \mu \mathrm{~m} ; \mathrm{E}, \mathrm{F}, \mathrm{G}=50 \mu \mathrm{~m}$.
specimens 252-275 long; four pairs of setae in membranous cuticle (Fig. 8A) on minute subcuticular platelets. AD rounded posteriorly; ornamented with pits, which on average are wider than the cuticular bars between them (Fig. 8C); delicate canaliculi in deeper cuticular layers; pair of setae inserted anteromedial to pair of pores. OC with large central pore, PD almost rectangular; ornamentation similar to that of AD ; posteriorly with pair of gland pores; two pairs of setae as illustrated (Fig. 8A). AE ornamented with shallow pits (Fig. 8B) which are spaced further apart and are more rounded than those on AD and PD; posteriorly with few wider pits. PE anterior to insertions of leg III ornamented as on AD , on remainder of plate as on AE . GA tripartite; anterior pars sclerosum with shallow pits, posterior pars sclerosum with slightly deeper pits, three pairs of pgs and two pairs sgs.

Gnathosomal base dorsally in anterior $2 / 3$ with irregularly shaped angular panels (Fig. 8E) and in posterior $1 / 3$ with larger but less conspicuous panels; ventrally with several small panels and few larger panels along anterolateral margin; in deeper cuticular layers with several large round or oval scars (dotted in Fig. 8F). Rostrum apically widened, with one of the dorsal setae distinctly heavier than the other. Palp as in Fig. 8G.

Chaetotaxy (trochanter - tibia): I 1-2-5-4-9 (Fig. 8H), II 1-2-4-5-6 (Fig. 8I), III 1-2-2-3-7 (Fig. 8J), IV 1-1-2-3-7 (Fig. 8K). Bipectinate setae (I-1I-III-IV): telofemur 2-0-0-0, genu 2-1-(0)-0, tibia 6-3-4-4, tarsus 1-1-0-0. Tarsus I with pair of doubled pas. Tarsi 11-IV with pair of pas singlets.
Male. Unknown.
REMARKS. Scaptognathus kunzi was previously only known from the Hawaiian holotype. Comparison between it and the Australian material revealed slight differences in the position of the setae on the PD. In the Australian material the distance between the setae of the anterior pair is 1.33-1.92 times greater than that between the setae of the posterior pair in contrast to 1.1 times in the holotype. Further, in most Australian specimens the anterior pair of setae on the PD is inserted somewhat closer to the anterior margin of the plate and the pore on the AD is positioned slightly more posterior in relation to the seta on the AD. It may be that these differences indicate a separation between the Hawaiian and Australian populations. However, this remains uncertain until the variability of these characters in Hawaii can be assessed.

Meanwhile Australian and Hawaiian specimens are regarded as conspecific.

Scaptognathus monstrosus sp. nov.

(Fig. 9)
ETYMOLOGY, Latin, monstrum = an abnomnal wonder.
MATERIAL. HOLOTYPE: QMS105429, \&, GBR, Elizabeth Reef, $19^{\circ} 20.12^{\prime} \mathrm{S} 149^{\circ} 02.85^{\circ} \mathrm{E}, 25^{\circ}$ Dec. 1997, coarse sand \& rubble at 3m. PARATYPE: QMS 105440, Q, GBR, Reef $21-149,21^{\circ} 06^{\circ} \mathrm{S} 151^{\circ} 43^{\prime} \mathrm{E}_{\text {, reef flat, }} 22$ Apr. 1999 , coarse sand at 0.5 m .
DESCRIPTION. Female, Idiosoma 394-396 (396 in holotype) long. Four pairs of setae in membranous cuticle (Fig. 9A). AD and PD with conspicuous reticulation formed by densely packed rows of papillae; floor of each polygon with numerous scattered papillae and in deeper cuticular layers delicate canaliculi. PD reticulated only on anterior $1 / 2$; posterior $1 / 2$ papillate. Anterior margin of AD with protruding edges of gnatho-idiosomal articulation and slightly posterior a pair of pore-like marks; pair of setae inserted distinctly posterior to pair of gland pores. OC wider than long (Fig. 9B); large pore near inner margin. PD with two pairs of setae, gland pores not seen. AE with a deeply excavated anterior part which is distinctly reticulated throughout but lacks the minute papillae and delicate canaliculi present on remainder of plate (Fig. 9B); epimeral processes large and pair of epimeral pores conspicuous; posterior margin of plate convex. PE with ornamentation similar to that of AE. GA undivided, with ornamentation similar to that of AE but reticulation less developed and posteriorly breaking up into isolated cuticular papillae; three pairs of pgs and three pairs of sgs.

Gnathosomal base joined to idiosoma by a sclerite which attaches on the dorsal flank of the gnathosomal base (Fig. 9C, arrowed). Rostrum broad throughout (Fig. 9D). Ventral gnathosomal base with reticulate ornamentation, in deeper integumental layers with rounded scars (dotted in Fig. 9D), anteriorly finely punctate. Dorsal gnathosomal base with scale-like pattern posterolatcrally (Fig. 9C), in deeper integumental layers with row of $5-6$ scars on either side. Palps obscured by broad rostrum (Fig. 9D); three large claws apically.

Tibia of leg I slender, almost twice as long as tarsus (excluding claws) (Fig, 9E). Chaetotaxy (trochanter - tibia): I 1-1-4-4-9 (Fig. 9E), II 1-1-4-4-5 (Fig. 9F), III 1-1-3-3-5 (Fig. 9G), IV 1-1-3-3-5 (Fig, 9H). Bipectinate setae (I-II-III-IV):

 dorsal view; D, gnathosoma, ventral view; E, leg I, ventromedial view; F, leg II, ventral view; G, leg III, ventromedial view; $H, \operatorname{leg} \mathbb{I V}$, ventral view. Scales: $A, B, C, D=100 \mu m ; E, F, G, H=50 \mu \mathrm{~m}$.
telofemur 1-1-0-0, genu 1-()-0-0, tibia 6-2-2-2, tarsus 1-1-0-0. Tarsus I with pair of doubled pas. Tarsus II with pair of pas singlets. Tarsus $I I I$ with pas singlet and doubled pas. Tarsus IV with pair of ventral pas singlets. Claws of tarsi I and II more delicate than those of III and IV. Tibiae and telofemora I and Il posteriorly with a very wide mesh olddelicate cuticular bars (as shown for tibia 1 in Fig. 9E).

REMARKS. Scaptognathus monstrosus is most similar to S. peregrinus Bartsch, 1993a, from Rottnest Island. Both species share the wide rostrum and the peculiar sclerite which connects gnathosoma and idiosoma, both of which are unknown for other species of Scaptognathus. However, S. monstrosus is significantly larger than S. peregrinus (idiosoma length of S. peregrinus $297 \mu \mathrm{~m}$) and possesses a bipectinate seta

FlG. 10. Scaptognathus oceams sp. nov., ㄱ. A, idiosoma, dorsum; B, idiosoma, venter; C, gnathosoma, venter. Scales: A, B, C $=50 \mu \mathrm{~m}$.
on genu I, which is absent in S. peregrinus. S. monstrosus also differs from S. peregrinus by having two instead of one bipectinate setae on tibia II, five instead of six setae on tibia III and three instead of two claws on the apical palp segment. Based on the similarities between both species it may be argued that S. monstrosus is simply the undescribed female of S. peregrinus. However, this is unlikely as the number of palp claws and the number of leg setae are unknown to differ between sexes in Scaptognathus.
S. monstrosus is the only species of Scaptognathus for which the female is known to have an undivided GA. However, the female of S. peregrinus is unknown as yet and may share this character with S. monstrosus.

Scaptognathus oceanus sp. nov.
(Figs 8D, 10)
ETYMOLOGY. Latin, oceamus = the sea.
MATERIAL. HOLOTYPE: QMS105433, \%, Coral Sea (Queensland Plateau), Herald Cays, $16^{\circ} 57.171^{\prime}$ S $149^{\circ} 12.036^{\prime} \mathrm{E}, 16$ Sep. 1998, GA. Diaz-Pulido, coarse sand at $5-15 \mathrm{~m}$. PARATYPES: QMS105434, ㅇ, A62/99 (ZMH), 9, ANIC 9 , data as for holotype.

DESCRIPTION. Female. Idiosoma 190-202 long (holotype 202). AD slightly widened in posterior $1 / 2$; omamented with pits, which on average are not wider than the space between them (Figs 8D, 10A); pair of setae inserted anteromedial to pair of pores. OC with large central pore. PD almost rectangular; ornamentation similar to that of AD ; posteriorly with pair of gland pores; two pairs of setae as illustrated (Fig. 10A). AE ornamented with shallow pits which are spaced further apart than those on AD and PD (Fig. 10B). Dorsal part of PE anteriorly and posteriorly pitted, remainder of dorsal PE smooth. GA tripartite; anterior pars sclerosum with shallower pits than posterior pars sclerosum; three pairs of pgs, the two anterior pairs at same level; two pairs sgs.

Gnathosoma (Fig. 10C) distinctly shorter than idiosoma. Dorsal gnathosomal base with irregularly shaped pits throughout anterior 2/3 (as for S. kunzi, Fig. 8E); ventral gnathosomal base with pits laterally; in deeper cuticular layers with several large round or oval scars (dotted in Fig. 10C). Rostrum apically widened.

Morphology and setation of legs as illustrated for S. kunzi. Chaetotaxy (trochanter - tibia): I 1-2-5-4-9, II 1-2-4-5-6, III 1-2-2-3-7, IV

1-1-2-3-7. Bipectinate setac (I-II-III-IV): telofemur 2-0-0-0, genu 2-1-0-0, tibia 6-3-4-4, tarsus 1-1-0-0. Tarsus I with pair of doubled pas. Tarsi II-IV with pas singlets.
Male. Unknown.
REMARKS. Scaptognathus oceamus closely resembles S. kunzi Bartsch, 1988, S. sabularius André, 1961, and S. tereninus Bartsch, 1986, in the number of bipectinate setae of the legs and the tripartite GA. It differs from S. kunzi in the pits on AD and PD being on average not wider than the spaces between them and from S. sabularius and S. terenimus by having only one pair of setae inserted on the AD instead of two pairs.

Among the material I examined from the type locality is a female (QMS 105435) whose GA is bipartite but agrees with the above description. It is unknown whether this specimen represents an unusual specimen of S. oceamus or belongs to a different species. If it belongs to S. oceanus then the partition of the GA may not always be a reliable character to separate between species.

Scaptognathus ornatus Bartsch, 1984
(Fig. 11)
Scaptognathus ornatus Bartsch, 1984; 192. Abé, 1990a; 361.
MATERIAL. QMS105398/105399, 2 ㅇ, A63/99 (ZMH), ㅇ, ANIC of, Coral Sea (Queensland Plateau), Herald Cays, $16^{\circ} 57.171^{\prime} \mathrm{S} 149^{\circ} 12.036^{\prime} \mathrm{E}, 16$ Sep. 1998, GA. Diaz-Pulido, coarse sand at $5-15 \mathrm{~m}$; QMS105400-105401, 2 多, GBR, Carter Reef, ca. $14^{\circ} 32^{\prime} \mathrm{S} 145^{\circ} 35^{\circ} \mathrm{E}, 11$ Nov. 1998, coarse sand at 0.5 m .
DESCRIPTION. Female, Idiosoma in Australian specimens 291-343 long. Four pairs of setae in membranous cuticle (Fig. 11A). AD wider than long; ornamented with a network of pitted polygons; area just posterior to level of setae with pits shallower and less densely packed than on remainder; area surrounding pair of pores and pair of setae smooth; setac much longer than setae in membranous cuticle. OC slightly wider than long, with several small pits and a large central pore. Membranous cuticle posterior to AD with three pairs of small platelets. Dorsal part of PE pitted anteriorly and posteriorly, ventral part over most of its surface. PD with ornamentation similar to that of AD , but reticulation less conspicuous or absent on median part of plate; two pairs of setae as illustrated (Fig. 11A). AE much shorter than wide; pitted and with reticulate ornamentation similar to dorsum, but pits shallower. GA bipartite (Fig. 11B), pars sclerosum with three pairs of pgs of which the two anterior
pairs are closely associated. GO with two pairs sgs.

Dorsal gnathosomal base with polygonal pattern over most of its surface (Fig. 11C), most polygons with numerous minute pits, but those closer to posterior margin with pits only along the inside of each polygon. Ventral gnathosomal base with deeply pitted polygons anterolaterally (Fig. 11D), remainder furnished with pits forming a loose network under which in deeper cuticular layers lay larger ovoid scars (Fig. 11D). Proximal $1 / 2$ of $\mathrm{P}-2$ with dorsal ornamentation as illustrated (Fig. 11C).
All leg segments except genu I with pitted areolae (Fig. $11 \mathrm{E}-\mathrm{H}$). Chaetotaxy (trochanter tibia): I 1-1-6-5-9 (Fig. 11E), II, 1-1-5-4-5 (Fig. 11F), III 1-1-2-3-6 (Fig. 11G), IV 1-1-2-3-6 (Fig. 11 H). Bipectinate setae (I-II-UI-IV): telofemur 3-1-0-0, genu 2-1-0-0, tibia 5-2-3-3, tarsus 1-1-0-0. Tarsi I and II with pair of doubled pas; tarsus III medially with doubled pas, laterally with pas singlet; tarsus IV with pair of pas singlets. Paired claws of all legs with minute accessory process but no pecten.
Male. Unknown.
REMARKS. The above material constitutes the first specimens of this species recorded from Australia. Other records are from Venezuela and Puerto Rico (Bartsch, 1984).
The posteriormost seta on telofemur II in the Australian specimens appears to be slightly more delicate than in the type material, and the bipectination of this seta, described by Bartsch (1984), could not be seen under oil immersion. However these differences are not regarded here as sufficient to separate Australian and South American/Puerto Rican specimens.
S. ornatus is most similar to S. punctatus Bartsch, 1981 (see also Bartsch, 1982), from the Moçambique channel. Both species can be distinguished by the extent of the pitted areolae on the legs. In S. ornatus such areolae are present on almost all leg segments, while in S. punctatus only the telofemora possess them (Bartsch, 1984).

KEYS TO DESCRIBED AUSTRALIAN LOHMANNELLINAE
 LOHMANNELLA

Second most proximal palp segment ($\mathrm{P}-2$) with two cuticular protuberances L. urenaria (sce Bartsch, 1993a)
P-2 with one cuticular protuberance L. dictyota (see Bartsch, 1992; present paper)
P-2 without a protuberance L. pinggi (see Otto, 1994)

FIG. 11. Scaptognathus ornatus Bartsch, adult. A, idiosoma, dorsum; B, genitoanal shield of $\ddagger ; C$, gnathosoma, dorsal view; D, gnathosoma, ventral view; E, leg I, dorsal view; F, leg II, dorsal view; G, leg III, dorsolateral view; H, leg IV, dorsolateral view. Scales: A, C, D $=100 \mu \mathrm{~m} ; \mathrm{B}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}=50 \mu \mathrm{~m}$.

SCAPTOGNATHIDES

1. Ocular plates $(\mathrm{OC}) \mathrm{ca}$. four times longer than wide S. australis (see Bartsch, 1993a) OC ca. twice as long as wide (Fig. 1A). 2
2. Anterior dorsal plate (AD) and posterior dorsal plate (PD) with polygonal pattern (Fig, 3A); telofemora with undulated ventral ridge (Fig. 3C-F); tarsus III with thickened proximal seta(Fig. 3E) .
. S. undulatus sp nov.

AD and $P D$ finely punctate and finely or coarsely pitted but no polygonal pattern (Fig. 1A, 2A); telofemora without an undulated ridge (Fig. 1E-H); tarsus III without thickened proximal seta (Fig. 1G) 3
3. Dorsal plates with wide pits (foveae) (Fig. 2A); OC posteriorly with a minute seta (Fig. 2A)
. S. tomkinsae sp. nov.
Dorsal plates with smaller pits (Fig. 1A); OC without minute posterior seta S. heraldensis sp. nov.

SCAPTOGNATHUS

1. Rustram thouditroughous (lig. 91)

Rostrum fosteriorly slender and apically utidened (Fig. 4D)
2. (Enu I with one bipectinate setal (Fin. 9E): nitia II muth wo

Genu I withuut bipectinate ecta, tibia If with one bipece
 (see Barsch. 1493as
5. Jibiad T-IV uith 6-3-4-4 burternaty sutas (Tig. 7F-FI)
Tibia I-IV winlo 5-2-2/3-2/3 bpecturate setare (Fig-4F-1) 6

Tibia !-IV with co-4-4-4 bipectinate setace, S. barstones (sce Abs de Cretr, 19yt)

1. Pemale Gis hipartite: basifermur til with une scta.
S. kolumhnss. now:

Iemale CiAltiputite: basifemurlll with tworthe. . . s
5 Pits (an Al) and $\left.\right|^{12}$) on average disinatly wider than the spacesthetwern them (fig. 8Х. (')

Pits on AD and B'D on averate not widat than the spaces

b Telafemurl with morbipectinate setac.7

Eelofemur l with three hipectinate stiass

- farsi 1 and 11 with pilled areolac: zhreve pairs of semae in diorsal memtranusus cuticle: Iemale widt three pairs pes: telofemurll with one bipactimateseta. . . S. austeolis Bartsoh (sece Bartscli, 1993al
 of setae in dorsal membranus cuticle (Fig. - A) ; femato
 bipectnate scto (f is. 4G). . . Serquistus sp. nov.

5. Bost leg legments with well detined deaply pitted areolac (F1y. IVE.FH) palp with dorsil omumentation as shown infig. 11 C . . S arnarts Banschs see Bartsch, 198+1 All les segments without such wetl detined deaply pitted arcolace palp withoud dorsad omamentation.

6. sutilitralpursp. मuv.

Teloremur lf nith two bripectinatic sctac(fige bG) .

COMMENTS

Including the species described here, 28 species of Lohmanmella, 10 of Scopprognathides and 27 of Scaptognathus are now described world-wide. The presence of eight Scappogntothus and ihree Scaptognuthithes specjes in the Coral Sca comes as no surprise as both gencra are well represented in warm water regions (Abé \& Green. 1994: Bartsch, 1996). The poor representation of Rohmamella was also to be expected as this genus appears to have reached its highest diversity in colder areas, for example Antarctica (Rattsch, 1993b; Newell, 1984).

Perhaps the most interesting aspect of the Lohmannellinae described in the present paper is
the finding of Scaptognathus monstrosus sp. nov. This is the only species of its genus were the female is known to have an undivided genitoanal plate and three palp claws. Present in all other halacarid genera, the undivided genitoanal plate is probably a plesiomorphic character and il sis may indicate that S. memstrosus is perhaps an tarly derivative species in Scaptagnathos, Alternatively, the undivided GA could be due to reversal, but this appuars less parsimonious.

Diffierent opinions exist in regard to the taxnnomic rank of Lolmannellinae (subfamily versus family rank) and the number of generait contains. Abe (1998) Lollowing the traditional view of Newell (1947), Viets (1956) and Bartsch (1983, 1996) lists four lohmannelline genera, Scaptognathus. Scaprognathides. Lolmamnella and Porolohmamella. By contrast. Newell (1984) decided to elevate Lohmannellinac to limily and to include in it all those gencta which have the palps inserted dorsally on the gruthosoma. Lohmannellas. Scuptugnarlous, Smophnathers: Porohohmannella. Saldanellonex, Parasoldomellonyx, and furliser gencra by implication. While the position of the palp dorsally on the gnathosoma may indeed be a synapomorphy for Lohnannellidae at is unsatisfactory in my view to alter the classitication on the basis of this single character. Since the palps are also inserted dorsally it the Pezidae llarvey, 1990. which Harvey (1990) considers to be the sister group ni the remaining halacaroids, dorsal palp insertions may be a plesiomorphy for Lohmannellidae. I am therefore inclined to concur with Abe (1998) to maintain Lohmannellinae as a subfamily of four genera, although in my view the monophyly of This sublemily is also lime supported.

ACKNOWLEDGEMENTS

I thanh the Australian Biological Resoutces Study (ABRS) for finding the present project and the Australian Institute of Marine Science, in particular John Benzie, for providing me will facilities and labotatory space. Thanks also to Hieronymus Dastych (Zoologisches Institut und Zoologisches Museum, Universität Hamburg), Mark Harvey (Westem Australian Muserm. Perth), Manfred (Grasshalf and LIIrike Schreiber (Forschungsinstitut and Naturnuseum Senckenberg. Frankfirt), Ben Brugare (Zoülogisch Museum Amsterdam) and Gordon Nishida (Bishop Museum, Horndultu) for the 1oan of specimens, and Hiroshi Abes, Ilse Bartsch, Robert Raven and ant anmmons fetere for comments on the manuseript. Cuillermo Diaz-1'ulido. Peter

Doherty, Katharina Fabricius, Doug Fenner, Paula Tomkins, and Sven Uthicke contributed to the project by either collecting samples or allowing me to participate on their field trips. The Great Barrier Reef Marine Park Authority (GBRMPA) gave kindly permission to collect mites in the marine park. This publication is contribution 985 of the Australian Institute of Marine Science.

LITERATURE CITED

ABÉ, H. 1988. Notes on a New Homonymy in the genus Scaptognathus (Acari: Halacaridae). Acta arachnologica 37 : 47.
1990a. Two new species of the genus Scaptognathus (Acari, Halacaridae) from the Sea of Japan. Cahiers de Biologie Marine 31:349-363.
1990b. A new species of the genus Scaptognathus (Acari, Halacaridae) from Japan. Journal of Natural History 24: 251-260.
1998. Rhombognathine Mites. Taxonomy, phylogeny, and biogeography. (Hokkaido University Press: Sapporo).
ABE, H. \& GREEN, J. 1994. Anew species of the genus Scaptognathus (Acari: Halacaridae) from Tasmania. Acta arachnologica 43: 169-178.
ABÉ, H. \& O'Connor, J. P. 1991. A redescription of Scaptognathus trouessarti Halbert, 1915 (Acari, Halacaridae) with notes on some taxonomic characters. Irish Naturalist's Journal 23:436-441.
ANDRE, M. 1946. Faune de France 46. Halacariens marins, (Paul Lechevalier: Paris).
1961. Description d'un nouvelle espèce du genre Scaptognathus, recueillie en méditerrané (Scaptognathus sabularius sp. nov.). Acarologia 3: 297-302.
BARTSCH, I. 1977a. Interstitielle Fauna von Galapagos. Mikrofauna des Meeresbodens 65: 441-546.
1977b. New species of Lohmannella (Halacaridae, Acari) from the Roscoff area, Brittany (1). Cahiers de Biologic Marine 18: 141-153.
1981. Halacaridae (Acari) aus dem Kanal von Moçambique. Cahiers de Biologie Marine 22: 35-63.
1982. Weitere Halacaridae (Acari) aus dem Kanal von Moçambique. Cahiers de Biologie Marine 23: 435-457.
1983. Proposal for a new classification of the Halacaridae. Zoologische Jahrbücher für Systematik 110: 179-200.
1984. Halacaridae (Acari) von den Westindischen Inseln. Bijdragen tot de Dierkunde 54: 185-196.
1986. Lohmannellinae (Halacaroidea, Acari) aus dem Mittelmeer. Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 8: 231-244.
1988. Arenicolous Halacaridae (Acari) in Hawaiian waters. Proceedings of the Hawaiian Entomological Society 28:213-228.
1992. Lohmannella dictyota n. sp., und L. africana sp, nov, von der Sudhalbkugel (Arachnida: Acari: Halacaridae). Senckenbergiana biologica 72: 457-464.
1993a. Arenicolous Halacaridae (Acari) from South-Western Australia. Pp. 73-103. In Wells, F.E. Walker,D.I., Kirkman, H, \& Lethbridge R. (eds) The Marine Flora and Fauna of Rottnest I., Western Australia. (Western Australian Museum: Perth).
1993b. A synopsis of the Antarctic Halacaroidea (Acari), Koeltz Scientific Books; Koenigstein.
1996. Two new species of Scaptognathides from the Caribbean Sea (Arachnida: Acari: Halacaridae). Senckenbergiana biologica 76: 145-151.
2000. Rhombognathinae (Acari: Halacaroidea) from the Great Barrier Reef, Australia. Memoirs of the Queensland Museum (this issue).
BARTSCH, I. \& SCHMIDT, P. 1978. Interstitielle Fauna von Galapagos. XII. Zur Ökologie und Verbreitung der Halacaridae (Acari). Mikrofauna des Meeresbodens 69: 625-660.
FOUNTAIN, H.C. 1953. An examination of the original slides of marine Acari of Hodge 1863. Journal of the Marine Biological Association of the United Kingdom 32: 357-364.
HARVEY, M.S. 1990. Pezidae, a new freshwater mite family from Australia (Acarina : Halacaroidea). Invertebrate Taxonomy 3: 771-781.
HODGE, G. 1863. Contributions to the marine zoology of Seaham Harbour. On some undescribed marine Acari. 'Transactions of the Tyneside Naturalists' Field Club 5: 298-303.
IMAMURA, T. 1968. A new species of halacarid mites from the Antarctic ocean. Acarologia 10: 472-476.
LOHMANN, H. 1893. Die Halacarinen der PlanktonExpedition. Ergebnisse der Planktonexpedition der Humboldt-Stiftung 2 (G, a. 8): 13-95.
LOHMANN. H. 1901. Halacaridae. Das Tierreich 13: 273-315.
1907. Die Meeresmilben der Deutschen Südpolarexpedition 1901-1903. Deutsche Südpolar Expedition 9 (Zoologie I): 361-413.
MONNIOT, F. 1964. Sur deux espèces du genre Scaptognathus présentes a Roscoff. A carologia 6: 491-498.
1972. Scaptognathides, un nouveau genre d'acariens marins (Halacaridae), dans l'Atlantiques ouest. Acarologia 13: 361-366.
NEWELL, I. M. 1947. A systematic and ecological study of the Halacaridae of eastern North America. Bulletin of the Bingham Oceanographic Collection 10: 1-232.
1967. Prostigmata: Halacaridae (Marine Mites). Antarctic Research Series 10: 81-95.
1971. Halacaridae (Acari) collected during cruise 17 of the R/V Anton Bruun, in the southeastern Pacific Ocean. Anton Bruun Report 8: 3-58.
1984. Antarctic Halacaroidea. Antarctic Research Series 40: 1-284.

OTTO, J.C. 1994. New species of Halacaridae from Australia (Acarina : Prostigmata). Acarologia 35: 31-48.
1999a. The halacarid fauna of the Great Barrier Reef and Coral Sea; the genera Agauopsis and Halacaropsis (Acarina: Halacaridae), Memoirs of the Queensland Museum 43: 797-817.
1999b. Four new species of Agaue (Acarina: Halacaridae) from the Great Barrier Reef Marine Park. Cahiers de Biologie Marine 40: 273-281.
1999c. Corallihalacarus chilcottensis, a new genus and species of marine mite from the Coral Sea (Acarina: Halacaridae). Zoological Science 16: 839-843.
2000a. Australacarus (Acarina: Halacaridae) from northern Australia, with a description of three new species. Records of the Western Australian Muscum 20: 103-114.
2000b. Simognathinae (Acarina: Halacaridae) from the Great Barrier Reef, description of thirteen new species. Memoirs of the Queensland Museum (this issue).
OTTO, J. C. \& BARTSCH I. 2000. Tropihalacarus spio, a new genus and species of Halacaridae
(Acarina: Prostigmata) from the Great Barrier Reef. Acarologia 40: 171-178.
TROUESSART, E.L. 1889. Revue synoptique de la famille des Halacaridae. Bulletin Scientifique de la France et de la Belgique 20: 225-251.
1894. Note sur les Acariens marins (Halacaridae) dragués par M. P. Hallez dans le Pas-de-Calais. Revue biologique du Nord de la France 6: 154-184.
1901. Note sur les Acariens marins (Halacaridae) récolté par M. Henri Gadeau de Kerville dans la région d'Omonville-la-Rogue (Manche) et dans la fosse de la Hague (Juin-Juillet 1899). Bulletin de la Société des Amis des Sciences Naturelles de Rouen 4: 247-264.
VIETS, K. 1927. Die Halacaridae der Nordsee. Zeitschrift für wissenschaftliche Zoologie 130: 83-173.
1940. Die Meeresmilben aus der Adria (Halacaridae und Hydrachnellae, Acari). Archiv für Naturgeschichte (N. F.) 9: 1-135.
1956. Die Milben des Süßwassers und des Meeres. Hydrachnellae et Halacaridae (Acari). Katalog und Nomenklatur. Gustav Fischer Verlag: Jena.

A SOUTHERN RIGHT WHALE EUBALAENA AUSTRALIS (DESMOULINS, 1822) IN SOUTHERN QUEENSLAND WATERS. Memoirs of the Oueensland Museum 45(2): 556. 2000):- The southern right whale is distributed around the Southern Hemisphere generally between latitudes 30° and 60° S. Like many species of baleen whales, it undertakes an annual migration from high latitude summer feeding grounds to lower latitude winter breeding areas (Best et al., 1993; Bannister et al., 1997).

In Australia right whales are found along the southern coastline between May and October. During this time calving females display strong site fidelity to certain areas (Burnell \& Bryden, 1997) with approximately 90% of calvings occurring between Cape Leeuwin, WA, and Ceduna, SA (S. Bumell, unpubl. data). Whales without calves display less site fidelity and may move some distance along the coast (Burnell \& Bryden, 1997). They frequently occur off the S coast of New South Wales, with reports from as far north as Coffis Harbour ($30^{\circ} 20^{\prime} \mathrm{S}$) and Cape Byron ($28^{\circ} 38^{\prime} \mathrm{S}$) (P. Hodda, pers. comm.).

This report is the first published sighting of a southern right whale in Queensland waters. At 7:45am, July 24 1998, the author observed a whale "spy hopping' approximately: 100 m off Point Lookout, North Stradbroke Island $\left(27^{\circ} 26^{\circ} \mathrm{S}\right.$, $153^{\circ} 32^{\prime} \mathrm{E}$). The whale swam slowly past the point in the company of several bottlenose dolphins (Tursiops spp.). It lifted its head partially out of the water on several occasions display ing large white "callosities' and a highly arched mouth (Fig. 1). The back was broad and lacked a dorsal fin. Short square pectoral fins were also evident when the whale rolled onto its back and when it breached (Fig. 2). All these features are characteristic of a right whale (Cummings, 1985). It appeared to be smaller than a mature humpback whale (many of which are observed in the area in July) suggesting it was immature (Cummings. 1985; Tormosov et al., 1998)

At approximately $8: 15 \mathrm{am}$ the whale furned north and disappeared from view. Despite posting experienced observers on the headlands for the remainder of the day, it was not seen again.

The author is aware of only one previous sighting of a southern right whale in Queensland waters. In the mid-1950s the crew of "Kos I', a Tangalooma whale chaser, saw a right whale near Flinders Reel at the north end of Moreton Island ($26^{\circ} 58^{\prime} \mathrm{S}, 153^{\circ} 2^{\prime} \mathrm{E}$) (L. Nash, pers. commı.). It was approached, identified, and left unmolested due 10 its protected status.
The southern right whale population is currently recovering from heary over-exploitation from the late 18 th century until as recently as the early 1970 s (Tormosov et al.,

FIG. 1. Dorsum of the southern right whale seen at Point Lookout on 24 July. Callosities are visible on the rostrum. There is no dorsal fin.
1998). As the population recovers, visits to Qucensland waters by this species may occur with increasing frequency.

After this sighting, more were reported from the area. On 8 August a whale with a rounded back, no dorsal fin, 'crusts' on its head and 'stubbie flippers' was seen again off Point Lookout by an experienced humpback whale observer. It remained in the area for at least six hours. The next day the same observer again saw a similar whale that remained for at least one-and-a-half hours. On 10 August a right whale and calf were engaged by a commercial whale-watching vessel near Flinders Reef. This encounter lasted some time and was videotaped. Species identification was unambiguous. The calf was lively and dark in colour.

Acknowledgements

Fiona Macknight, Tim Page and Paula den Hartog provided sighting information and helped mount the watch for the relum of the whale. Robert Paterson encouraged the production of this note and passed on additional sighting information from Jenny Truman and Kerrie McTaggart. Les Nash told the story of the whalers' right whale. Stephen Burnell and Michael Bryden provided useful information and comments regarding the manuscript. The Australian Marine Mammal Research Centre kindly provided the funding that enabled us to be in the right place at the right time.

Literature Cited

BANNISTER, J., BURNELL, S., BURTON, C. \& KATO, H. 1997. Right whales oft Southern Australia: direct evidence for a link hetween onshore breeding grounds and offshore probable feeding grounds. Report of the International Whaling Commission 47: 441-44.
BEST, P.B., PAYNE, R., ROWNTREE, V., PALAZZO, J.T. \& BOTH, M.D.C. 1993. Long-range movements of South Atlantic right whales Eubalacmu australis. Marine Mammal Science 9(3): 227-234.
BURNELL. S.R. \& BRYDEN, M.M. 1997. Coastal residence periods and reproductive timing in southern right whales, E'ubalaena australis. Journal of Zoology, London 241(4): 613-621.
CUMMINGS, W.C. 1985. Right whates - Euhalaena glactalis (Müller, 1776) and Eubalaena australis (Desmoulins, 1822). Pp. 275-304. In Ridgeway, S.H. \& Harrison, R. (eds) Handbook of marine mammals. Vol. 3. The sirenians and baleen Whates. (Academic Press: London \& Orlando).
TORMOSOV, D.D., MKHALIEV, Y.A., BEST, P.B., ZEMSKY, V.A., SEKIGUCHI, K. \& BROWNELL, R.L. 1998 . Soviet catches of southern right whales Eubalaena uustralis, 1951-1971: Biological data and conservation implications. Biological Conservation 86(2): 185-197.
M.J. Noad. Department of Veterinary Anatomy and Pathology, Liniversity of Sydney 2006, Australia: 2 March 1009.

F1G. 2. A breach demonstrating a shom broad pectoral in characteristic of the southern right whale.

AN ADULT DWARF MINKE WHALE BALAENOPTERA ACUTOROSTRATA LACÉPÉDE, 1804 FROM FRASER ISLAND, QUEENSLAND

R.A. PATERSON, D.H. CATO, H.A. JANETZKI AND S.C. WILLIAMS

Paterson, R.A., Cato, D.H., Janetzki, H.A. \& Williams, S.C. 200006 30: An adult dwarf minke whale Balaenoptera acutorostrata Lacépède, 1804 from Fraser Island, Queensland. Memoirs of the Queensland Museum 45(2): 557-568. Brisbane. ISSN 0079-8835.

Abstract

A 7.0 m long male dwarf minke whale Balaenoptera acutorostrata Lacépède, 1804, stranded at Fraser Island, is the second recorded stranding of an adult from Queensland. The complete skeleton, baleen and larynx were collected and are described. In addition to the previously noted osteological features of the dwarf form of this species another characteristic differentiating it from the dark shoulder form is described, viz, a ratio >1.50 of breadth to height in the centrum of the fifth cervical vertebra. \square Dwarf minke whale, Balaenoptera acutorostrata, stranding, osteolog: Queensland.

R.A. Paterson, H.A. Janetzki \& S.C. Williams, Queensland Museum, PO Box 3300, South Brisbane 4101; D.H. Cato, Defence Science and Technology Organisation, PO Box 44, Pyrmont 2009, Australia; 8 July 1999.

Based on the external and baleen appearances of captured and stranded minke whales in South Africa, Best (1985) described a diminutive or Type 3 form. In addition, he described Type 1 and 2 forms which he also referred to as 'bonaer-ensis'- type because of their baleen similarity to an Argentinian specimen described as Balaenoptera bonaërensis (Burmeister, 1867). Rice (1998) has recently assigned Type 1 and 2 forms as Balaenoptera bonaerensis. Arnold et al. (1987) described the osteology of the Type 3 form, which they termed the dwarf minke whale, primarily from a 7.1 m long sexually mature female which died after 'entrapment' in Hook Reef lagoon ($19^{\circ} 52^{\prime} \mathrm{S}, 149^{\circ} 13^{\prime} \mathrm{E}$) in the Great Barrier Reef.

Immature minke whales of all forms predominate in museum collections derived from strandings rather than captures (Horwood, 1990; Paterson, 1994; Paterson et al., 1997; Watson \& Fordyce, 1993; Zerbini et al., 1996). The following description of another adult dwarf minke whale from Queensland complements the initial osteological study of Arnold et al. (1987). A 7.0 m long male was found dead at Dundubara $\left(25^{\circ} 10^{\prime} \mathrm{S}, 153^{\circ} 17^{\prime} \mathrm{E}\right)$ on the eastern (oceanic) shore of Fraser Island on 1 July 1997. The border between the area of white pigmentation and darker colouration in the shoulder region (at least on the right) was 'serrated' (Fig. 1) and differed from other records in the Queensland Museum (Paterson, 1994). The skull and mandible as well as the baleen and larynx were collected the following day and the post-cranial skeleton six
weeks later. The specimen is registered as QM JM11761.

DESCRIPTION

BALEEN. The baleen is illustrated from the buccal aspect in Fig. 2. A count of the small anterior hairs was not attempted. There are 252 plates on the right and 243 on the left. Most plates are all-white (more precisely creamy-white) but those with a predominant dark outer border number 19 (7.5%) on the right and 21 (8.6%) on the left and most are posterior. The largest plates do not exceed 20 cm in length. These features are typical of the dwarf form (Best, 1985; Arnold et al., 1987).

LARYNX. In the past fifteen years baleen and toothed whale larynges have been collected whenever possible by Queensland Museum staff for comparative study (Paterson, 1994; Paterson et al., 1993; Quayle, 1991). The present specimen is illustrated and annotated (Fig. 3) in conformity with the dissection by Quayle (1991) of a humpback whale Megaptera novaeangliae calf. It measures 41 cm from the antero-inferior aspect of the epiglottic cartilage to the distal aspect of the ventral diverticulum. The latter structure is unique to baleen whales (Hosokawa, 1950; Slijper, 1962). Apart from size differences, the larynx of QM JM11761 is similar to the above-mentioned calf with the exception of thicker muscle between the dorsal aspect of the diverticulum and the ventral aspect of the trachea.

FIG. 1. Right shoulder colour pattern of QM JM11761.

SKULL, MANDIBLE AND HYOID. These are illustrated in Figs 4-8 and measurements based on Omura (1975), Arnold et al. (1987) and Paterson et al. (1997) are contained in Table 1. Paterson et al. (1997), when describing the osteology of 'bonaerensis' specimens from southern Queensland (which they termed 'dark shoulder' following Arnold et al., 1987), discussed problems arising from immaturity and the paucity of specimens. Immaturity is not at issue in the present specimen but as it is only the second adult stranding record from Queensland some of the cranial differences relative to the Hook Reef specimen may merely reflect individual and/or gender variation.

Parietal incorporation into the vertex with an angulato-ovate interparietal (Fig. 5, left), elongation of the hamular processes of the pterygoids and posterior palatine angularity (Fig. 5 , right) considered to be characteristic of the dwarf form (Arnold et al., 1987), are confirmed. However, the anterior aspects of the nasals are almost straight or minimally concave (Figs 4 \& 5)

FIG. 2. Baleen of QM JM11761 from buccal aspect. Right baleen row is on the left of the figure. (Scale in $\mathrm{cm})$.
compared with the Hook Reef specimen. Zerbini et al. (1996) noted that the anterior border of the nasals was less convex in mature specimens. The posterior extent of the premaxillae is "limited" by lateral prominences of the junction of the middle and posterior thirds of the nasals (Fig. 5, left). These appearances and positions are different from the posterior premaxillary extent and smooth lateral nasal surfaces in the Hook Reef specimen (fig. 5c in Arnold et al., 1987). The malars and hyoid components (Figs 6,7) are of finer proportion than the Hook Reef specimen but this may result from individual or gender

FIG. 3. Longitudinal section of the larynx of QMJM 11761 in medial aspect with thyroid cartilage removed. A, epiglottic cartilage; B, fibrous attachment to thyroid cartilage; C, arytenoid cartilage-corpus; D, arytenoid cartilage-rostral end; E, cricoid cartilage; F, tracheal lumen; G, fundus of ventral diverticulum; H, neck of ventral diverticulum; I, thyroarytenoid muscle; J, interarytenoid fibro elastic connection; K, oesophageal lumen. (Scale in cm).
variation. The mandibular appearances (Fig. 8) are unremarkable.

VERTEBRAE AND CHEVRONS. Mcasurements, including mean vertebral length (Omura, 1971; Paterson et al., 1997), are contained in Table 2. The vertebral formula $(\mathrm{C} 7, \mathrm{~T} 10, \mathrm{L13}, \mathrm{Ca18}=48)$ differs slightly from that (C7, T11, L12, Ca18 = 48) in a dark shoulder form (QM JM10961) described by Paterson et al. (1997). The formula of the Hook Reef specimen was not stated by Arnold et al. (1987) but they noted that the epiphyses (in that 7.1 m long female) were fused to the centra only in the first two cervicals and the distal caudals. In contrast the central epiphyses were fused in all vertebrae (Fig. 9) in QM JM11761 (a 7.0 m long male), indicating physical maturity.
A tuberculate parapophysis on C7 (Fig. 10) is present. This is characteristic of the dwarf form (Arnold et al., 1987) in contrast to its lack or almost complete absence in QM JM10961 and other dark shoulder forms described by Omura
(1975). When comparing that feature in QM JM11761 and QM JM10961 apparent differences in the shape of the centra from C5 to at least T1 were noted. Those of the dwarf form were more ovoid than the dark shoulder form (Fig. 10). The limitation in ascribing significance to osteological differences from a small series is appreciated. Accordingly, the ratios of central breadth to height in the $\mathrm{C} 5-\mathrm{Tl}$ vertebra from other specimens of known form were calculated. The provenance of the specimens and the measurements (including ratios) are contained in Table 3. In both dwarf and dark shoulder forms the ratio of breadth to height shows little variation between individuals for a particular vertebra, even though there is wide variation in maturity and in the dimensions of breadth and height. The ratio is generally larger in the dwarf form. For C5 and the mean of $\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7$ and T 1 , all values for all individuals of the dwarf form are larger than all those of the dark shoulder form. The mean

Fl(i. 4. Skull of Q 11 JM11761 from dersal aspect (lett) and wentral anpect (right). (Scale in cm).

FIG. 6. Malars of QM JM11761. (Scale in cm).

FIG. 7. Basihyoid (below) and stylohyals (above) of QM JM11761. (Scale in cm).
values are $1.32,1.23,1.24,1.26,1.37$ and 1.33 (dark shoulder) and $1.53,1.58$ and 1.44 (dwarf).

Because the sample size is small a nonparametric test, the randomisation test for two independent samples (Siegel, 1956), is used to determine the significance of the difference in ratios. This test is independent of the probability distribution of the variables sampled. Under the null hypothesis, the number of ways that six values (representing the dark shoulder samples) can be drawn from the nine (both samples pooled) for a particular vertebra, without regard for the order in which they are drawn, is 84 . Since the result for C 5 is the extreme case where all values for a particular vertebra of one form are less than all of the other form, the probability of this result is $1 / 84=0.012$. The same result is obtained if the means of the values of the four vertebrae are used. For C6, C7 and T1, the smallest ratio for the dwarf samples equals the largest of the dark shoulder samples, so that there are 2 ways out of 84 of obtaining the above result, a probability of 0.024 . Thus the differences in the value of this ratio between the dwarf and dark shoulder forms are significant statistically at the levels shown.

Figure 11 shows the breadth and height of C5, together with the ratios (of breadth to height), as functions of total length for all individuals (Table 3). For each form the breadths and heights show an almost linear dependence on length. On the

FIG. 8. Mandible from dorsal aspect of QM JM11761. (Scale in cm).

FIG. 9. Vertebral column from lateral aspect of QM JM11761. Top, cervical and thoracic vertebrae; centre, lumbar vertebrae (L1 was inadvertently included with the thoracics); bottom, caudal vertebrae. (Scale in cm).

other hand, the ratios are almost independent of length over a three to one variation in length from new born to mature individuals. The dependence of breadth on length is very similar for the two forms, while the dependence of height on length is different, causing the ratio to be different. Since the difference in the ratios between dwarf and dark shoulder forms is statistically significant and also shows very little variation with whale length from new born to maturity, this ratio (>1.50 for C5 in dwarf forms) appears to be an effective discriminator between dwarf and dark shoulder forms of minke whale.

The lateral vertebral (C5-T1) elements (diapophyses and parapophyses) exhibit

FIG. 10. Cephalo-caudal projections of C5-T1 (from top to bottom of figure) of QM JM11761 (left) and QM JM10961 (right). (Scale in cm).

FIG. 11. Comparison of C5 dimensions for 6 dark shoulder and 3 dwarf minke whales (Table 3). Solid curves and filled data points show the values for the dark shoulder minke whale samples while the dotted curves and open data points show the values for the dwarf minke whale samples. The triangular data points show breadths, the round data points show heights and the crosses show the ratios of breadth to height.
considerable difference in the dwarf and dark shoulder specimens shown in Fig. 10. However. the dark shoulder specimen (QM JM10961) is less mature than the dwarf specimen. Adult dark shoulder specimens (Table 3) described by Omura (1975) have similar lateral elements in the relevant vertebrae compared with QM JM11761. Individual variation in these elements was noted in New Zealand minke whates of unspecilied form (Watson \& Fordyce, 1993). The lelt C 4 diapophysis was completely absent in one of the two described specimens.

There are nine chevrons (Fig. 12) and the lirst has unfused laminae. Paterson et al. (1997) described twelve in a dark shoulder form and Watson \& Fordyce (1993) noted ten and thirteen in their specimens.

RIBS AND STERNUM. There are ten pairs of ribs and they are illustrated with the stemum in Fig. 13. Their measurements are contained in Table 4.

SCAPULAE AND FORELIME BONES. The scapulae, humeri, radii and ulnae are illustrated in Fig. 14 and their measurements are contained in Table 5 . The phalangeal formula (including the metacarpals) derived from X -rays is $\mathrm{L}_{\mathbf{5}}\left[\mathrm{II}_{7},\left[1 \mathrm{I}_{0 \rightarrow 7}\right.\right.$ IV_{3-4}.

DISCUSSION

Watson \& Fordyce (1993) discussed the importance of anatomical studies as well as biochemical techniques, in discriminating between cetacean populations and species. Those authors suggested a comprehensive review of skull stmetures for New Zealand minke whales and emphasised the importance of the post-cranial skeleton with regard to functional studies. Paterson et al. (1997) when describing cranial and post-cranial osteology of a dark shoulder form also recommended detailed examination of available minke whale material (particularly adult specimens) in Australasian muscum collections.
The present osteological description, of the second adult dwari form recovered in Queensland, complentents the initial study of Arnold et al. (1987) and adds a further distinction (the ration of breadth to height in the body ol C5) between dwarf and dark shoulder forms. A more comprehensive study using material collected from all available southem hemisphere sites is awaited to confirm or exclude this additional osteological character of the dwarf minke whale as well as further establishing the characters previously determined by Amold et al. (1987).

FIG. 12. Chevrons of QM JMil1761. (Scale in cm).

ACKNOWLEDGMENTS

John Ford of the Queensland Parks and Widdlife Service secured the specimen following its stranding. Stephen Van Dyck assisted with flensing and retrieval and Jeff Wright took the laryngeal and skeletal photographs. Peter Arnold kindly provided the vertebral measurements of QM JM3s61.

IITERATURE CITED

ARNOLD, P., MARSH, H. \& HEINSOHN, G. 1987. The occurrence of twn forms of minke whales in east Australian waters with a description of external characters and skeleton of the diminutive or dward form. Scientific Reports of the Whales Research Institute, Tokyo 38: 1-46.
BESJ: P.B. 13. 1985. External characters of southern minke whales and the existence of a diminutive form. Scientific Reports of the Whales Research Institute, Tokyo 36: 1-33.
BURMEISTER. H. 1867. Preliminary description of a new species of finner whale (Buluchoptera bonaërensis). Proceedings Zoological Society of London 707-713.
HORWOOD, J. 1490. Biolory and exploitation of the minke whale. (CRC Press: Boca Raton).
IIOSOKAWA, H. 1950. On she cetacean larynx, with special remarks on the largnyeal sack of the sei whale and the aryteno-epiglotideal tube of the
sperm whale. Reports of the Whales Ressarch Instilute, Tokyo 3: 23-62.
OMLRA. IL. 1971. Acomparison of the size of vertebrae among sume species of the baleen whales with special reference to whale movements. Scientific Reports of the Whales Research Institute, Tokyo 23: 61-69.
1975. Osteolomical study of the minke whale from the Antarctic. Scientific Reports of the Whales Research Institute, 'Tokyo 27: 1-36.
PATERSON, R.A. 1986. A list of specimens of the order cetacea in the Queensliand Nuseum. Memoirs of the Qucensland Museum 22(2): 309-311.
1994. An annotated list of recent additions to the cetacean collection in the Oueensland Museum. Memoirs of the Queensland iluseum 35(1):217-223.
PAIERSON, R.A., QUAYLE, C.J. Ł VAN DYCK. S.M. 1993. A humpback whale call and two subadult dense-beaked whales recently stranded in southern Queensland. Memoirs of the Queensland Museum 33(1): 291-297
PAIERSON, R.A.. JANETZKI, H.A. \& WILLIAMS, S.C. 1997. Osteology of immature dark shoulder minke whates Bataenoptera ateutorostrata from southern Queensland. Memoirs of the Queensland Museum 42(1): 315-325.
QUAYLE. C..., 19y1. A dissection of the larynx of a humpback whale calf with a review of its functional morphology. Memoirs of the Queensland Museum 30(2): 351-354.

TABLE 1. Skull, mandibular and hyoid measurements (in mm) of QM JM11761.

Condslo-premaxillary lengh	1535
Length of premaxillary, right (sl. broken at tip)	1136
Length of premaxillary, left (sl. broken at tip)	1128
Length of maxillary, superior, right	1099
Length of maxillary, superior, left	1091
Tip of premaxillary to vertex	1179
Tip of premaxillary to nasals	1032
Length of nasals, median	178
Breadth of nasals, anterior (between premaxiliaries at ant. end of nasals)	92
Length of rostrum	1038
Breadth of rostrum at middle	349
Breadth of rostrum at base	520
Breadth across maxillaries at vertex	157
Breadth of frontal across nasals	241
Breadth between maxillaries at nares	235
Breadth of skull, squamosal	864
Breadth of skull, frontal	830
Breadth of skull, maxillaries	751
Length of orbit, frontal, right	168
Length of orbit, frontal, left	171
Breadth of occipital bone	592
Breadth across occipital condyles (to base of spongy bone)	165
Height of occipital condyle, right	88
Height of occipital condyle, left	82
Breadth of foramen magnum aperture	67
Height of foramen magnum aperture	52
Length from foramen magnum to vertex (measure\|ment at post. parietals)	360
Lachrymal breadth, right	65
Lachrymal breadth, left	missing

TABLE 2. Vertebral and chevron measurements (in mm) of QM JM11761.

Vertebral No.	Greatest Breadth	Greatest Height	Centrum Breadth (a)	Centrum Height (b)	Centrum Length (c)	Mean Vertebral Length $(a \times b \times c)^{1 / 3}$
C 1	290	164	167	90	42	86
2	436	164	164	95	34	81
3	364	132	137	75	21	60
4	321	140	130	74	25	62
5	331	145	126	78	27	64
6	334	158	125	80	32	68
7	366	169	128	82	35	72
T 1	401	173	131	83	45	79
2	385	214	130	83	62	87
3	387	253	131	84	75	94
4	441	287	128	86	83	97
5	510	323	127	88	85	98
6	565	349	127	86	93	101
7	593	364	125	85	96	102
8	620	356	125	85	100	102.
9	635	355	128	86	102	104
10	580*	376	130	88	108	108
L1	602	403	131	90	110	109
2	607	412	131	90	118	112
3	615	414	134	101	121	118
4	612	414	133	101	124	119
5	622	421	133	108	133	124
6	600	433	134	108	132	124
7	574	437	132	111	137	126
8	534	447	138	113	139	129
9	485	457	141	115	140	131
10	448	450	146	116	150	136
11	440	445	145	121	157	140
12	394	427	147	122	157	141
13	358	385	147	127	154	142
Ca 1	338	354	150	128	150	142
2	301	310	152	135	140	142
3	250	281	158	140	135	144
4	202	242	153	139	124	138
5	175	218	153	136	124	137
6	140	194	140	134	121	131
7	125	176	125	135	110	123
8	119	155	119	128	93	112
9	112	120	94	92	58	85
10	94	90	64	62	45	57
11	78	88	63	58	42	56
12	75	80	62	60	44	55
13	66	70	51	51	40	47
14	54	61	44	42	35	40
15	39	50	33	32	28	31
16	29	39	27	24	25	25
17	20	27	16	16	21	18
18	16	19	14	13	17	15

TABLE 2. continued. * = damaged.

| Chevron | Length | Height |
| :---: | :---: | :---: | :---: |
| 1 | (a) 84 (b) 69 | (a) 59 (b) 60 |
| 2 | 86 | 177 |
| 3 | 107 | 179 |
| 4 | 113 | 155 |
| 5 | 103 | 131 |
| 6 | 91^{*} | 106 |
| 7 | 73 | 82 |
| 8 | 76^{*} | 59 |
| 9 | 43 | 37 |

TABLE 3. Comparison of vertebral body (C5-T1) breadth/height ratios between dwarf and dark shoulder minke whales. (Measurements other than specimen length are in millimetres)

Specimen (Registration, Length, Sex, Reference)	Vertebra	Breadth	Height	Ratio
Dark Shoulder Forms				
$71 \mathrm{~J} 2883,9.8 \mathrm{~m}$, 오, Omura (1975)	C5	172	124	1.39
	C6	170	132	1.29
	C7	171	132	1.30
	T1	174	132	1.32
$71 \mathrm{~J} 2793,8.5 \mathrm{~m}$, ठ̊, Omura (1975)	C5	143	115	1.24
	C6	141	118	1.19
	C7	142	118	1.20
	T1	149	118	1.26
QM JM10961, 6.02m, ?, Paterson et al. (1997)	C5	119	95	1.25
	C6	119	97	1.23
	C7	121	99	1.22
	T1	123	98	1.26
QM JM8513, 4.1m, $¢$, , Paterson (1994)	C5	102	78	1.31
	C6	100	80	1.25
	C7	106	88	1.20
	T1	108	85	1.27
QM JM5434, 3.8m, ¢ ¢, Paterson (1994)	C5	102	75	1.36
	C6	103	76	1.36
	C7	106	78	1.36
	T1	110	78	1.41
QM J21708, 3.8m, ?, Paterson (1986)	C5	105	70	1.50
	C6	95	75	1.27
	C7	95	72	1.32
	T1	94	76	1.24
Dwarf Forms				
QM JM3861, 7.1 m, f. Arnold et al. (1987)	C5	131	85	1.54
	C6	130	86	1.51
	C7	131	88	1.49
	Ti	134	86	1.56
QM JM11761, 7.0m, ठै, Present Study	C5	126	78	1.62
	C6	125	80	1.56
	C7	128	82	1.56
	T1	131	83	1.58
QM JM7301, 2.9m, i, Paterson (1994)	C5	77	48	1.60
	C6	75	55	1.36
	C7	75	55	1.36
	T1	79	56	1.41

RICE, D. 1998. Marine mammals of the world. Systematics and distribution. (The Society of Marine Mammalogy: Lawrence).
SIEGEL, S. 1956. Nonparametric statistics for the behavioural sciences. (McGraw-Hill: New York).
SLIJPER, E.J. 1962. Whales. (Hutchinson: London).
WATSON, A.G. \& FORDYCE, R.E. 1993. Skeleton of two minke whales, Balaenoptera acutorostrata,
stranded on the south-east coast of New Zealand. New Zealand Natural Sciences 20: 1-14.
ZERBINI, A.N., SECCHI, E.R.. SICILIANO, S. \& SIMOES-LOPES, P.C. 1996. The dwarf form of the minke whale, Balaenoptera acutorostrata Lacépède, 1804, in Brazil. Reports of the International Whaling Commission 46: 333-340.

TABLE 4. Rib and sternal measurements (in mm) of QM JM11761. * = broken.

Rib	Straight Length	
	Right	Left
1	575	584
2	846	850
3	945	962
4	992	995
5	969	963
6	913	924
7	860	874
8	824	829
9	775	784*
10	815*	815*
Sternum	Breadth 238	Length 293

TABLE 5. Scapular and forelimb measurements (in mm) of QM JM11761. * = possibly missing.

	Scapula		Humerus, Radius, Ulna				
	Right	Left					
Greatest breadth	570	572		Right	Left	Right	Left
Greatest height	349	349	Humerus	126	130	251	254
Ratio of breadth to height	1.6	1.6	Radius	76	75	385	390
Length of acromion-inferior	124	119	Ulna	49	49	347	352
Breadth of acromion, distal end	46	40					
Length of coracoid, inferior	77	73					
Breadth of coracoid, distal end	28	30					
Length of glenoid fossa	135	132					
Breadth of glenoid fossa	90	90					
			of Phalang				
Phalanx							
I	11	111	IV	1	11	III	IV
1 . 57	71	57	46	57	71	57	46
2 - 59	72	61	43	59	74	61	43
$3 \quad 49$	54	50	35	48	55	50	35
4	36	36	6	29	37	36	
5	25	24			24	23	
6	15	14			15	15	
7	7	*			7	5	
1. 8	*				*		

TAXONOMICA ARANEAE I: BARYCHELIDAE. TIIERAPHOSIDAE, NEMESIIDAE AND DIPLURIDAE (ARANEAE)

ROBERT J. RAVEN

Raven, R.J. 200006 30: Taxonomica Araneae I: Barychelidae, Theraphosidae, Nemesiidae and Dipluridac (Araneae). Memoirs of the Queensland Museum 45(2): 569-575. Brisbane. ISSN 0079-8835.

In the Barychelidae, Idioctis sierramadrensis Barrion \& Litsinger, 1995 is placed in the synonymy of Rhianodes atratus (Thorell, 1890) and Aganippe bancrofti Rainbow \& Pulleine, 1918 is transferred to the barychelid genus Trittame. In the Theraphosidae, Phlogiellus Pocock, 1897 is the senior synonym of Baccallbrapo Barrion \& Litsinger, 1995; Chilocosmia Schmidt \& von Wirth, 1992 and Selenopelma Schmidt \& Krausc, 1995 are newly placed in the synonymy of Selenocosmia along with Phlogius Simon, 1887 which is replaced into synonymy. In the Nemesiidae, Chenistonia is removed from the synonymy of Aname and includes only species of the Aname maculata group of Raven, 1984. The contentious question of the identity of Aname diversicolor Hogg, 1902 is revisited. The invalidly designated neotype is used as the type of Aname mainae, sp. nov. In the Dipluridae, the Dominican amber fossil genus, Microsteria Wunderlich, 1988, is placed in the synonymy of Masteria L. Koch, 1873.■ Taxonomy, Mygalomorphae, spiders, Australia, amber, fossil.

Robert J. Raven. Queensland Museum, PO Box 3300. South Brisbane 4101, Australia; 20 April 2000.

A number of new taxa and nomenclatural changes have occurred in mygalomorph spiders in southeast Asia, Australia and fossils from the Dominican amber since Main (1985) and Raven (1985b). Some have been a result of taxonomic revisions. Some have been isolated descriptions. Some have been forced as a result of wider changes. Most changes do not require full revisions but only a brief note. That is the purpose of this series.
Institutional and morphological abbreviations follow those of Raven (1985a).

BARYCHELIDAE

Rhianodes atratus (Thorell, 1890)
Rhiamus atratus Thorell, 1890: 277; Roewer, 1942: 224. Rhianodes atratus; Raven, 1994: 697; Platnick, 1998: 143. Idioctis sierramadrensis Barrion \& Litsinger, 1995: 25; Platnick, 1998: 137. (New synonymy)

MATERIAL. HOLOTYPE: ©̂, Philippines, Quezon Prov., Real, Llavac Vill., R. Apostol, 16 Jan 1985; in International Rice Research Institute, Philippines.

REMARKS. Barrion \& Litsinger (1995) described a new Idioctis based on a male and juvenile female from slash and burn upland rice fields in the Philippines on Luzon Island. However, Idioctis is an intertidal spider (Raven, 1988, Churchill \& Raven, 1992, Raven, 1994) known rarely far from the littoral zone. The diagnosis of Idioctis given by Barrion \& Litsinger (1995) is a slightly changed version of that given by Raven
(1988: 2) and its descriptive statement is also essentially that of Raven (1988). The figures of Idioctis sierramadrensis are of sufficient detail to clarify its true identity. The species is clearly not referable to Idioctis. The eye group is too deep, the sternum is 'as long as wide' not about 1.5 times wider than long, the shape of the carapace is ovoid, not elongate, and the abdomen is dark with patterning. All of these are the characters of the monotypic Rhianodes into which genus the species is here transferred.

The long spines overhanging the chelicerae are mentioned by Raven (1994) in R. atratus, and the palp and diagnostic first leg of the male of Idioctis sierramadrensis do not show differences from that of R. atratus. Hence, I am transferring the species into the synonymy of R. atratus.
DISTRIBUTION. Singapore, Malaysia, Philippines. Raven (1994) incorrectly listed Maxwell's Hill in Singapore; it is in Malaysia. This is the first report of the species from the Philippines.

Trittame bancrofti (Rainbow \& Pulleine, 1918), comb. nov.
(Fig. 1)
Aganipne bancrofii Rainbow \& Pulleine, 1918; 95; Main, 1985: 14.

MATERIAL. LECTOTYPE: (designated Main, 1985: 14), AMKS 6151, Eidsvold, SE Qld; 우, paralectotype, same data; KS6152, © paralectotype, Aname distincta (Rainbow, 1914 , det. RJR).

DIAGNOSIS. Females share with those of T. gracilis the presence of thom spines ($3-1$ strong) on patellae III and wel! developed posterior median spinnerets but differ in that the chelicerac lack a rastellums, the ALE are clearly more than their diameter apart and the PME are large.
REMARKS. This transler also removes the secondary homonymy with dganippe buncrofit identified by Main. 1985. Raver (1990. 1994) failed to deal with this species listed by Main (1485) as incertae sedis in the Barychelidau. The lectotype has dense claw tults, numerous maxillary cuspules, no labial cuspules and short PLS and is clearly Triltame. Rainbow \& Pulleine's type series also includes a lemale Anome distincta Which, by default, also is a paralectotype.

This increases the already high beta diversity of Triftame in southeast Queensland. Although some in the area are known only from one sex, there is no doubt that the species is distinct from others in the region. The thom spines on the patella were found by Raven (1990) to be present in both males and females of T. gracilis. Hence. T. bancroffi females are not conspecific from the geographically close but allopatric T. mecolli Raven, 1995 or T. stomieri Raven 1995.

TIERAPHOSIDAE

Phlogiellus Pocock, 1597.
F'flogielhs Pocick, 1897:545; Ravell, 1985t: 118.
Baceallh bapn Bumion \& Litwinter. 1995:21: Halnick, 1998: 153. Type species. Buccallhyurn hunuiakulho Barrion \& Litinger. 1995.

MATERIAL. HOLOTYPE: Baccollbrapo bundokalho, \$, Philippines, Laguna Prov, Siniloan. Marsaysay Vill., 16 Jan 198S, A. Bartion, M. Perce PARA'JYPES: Subadult R's, Philippines, Quezon Prov.. Real, Llavac Vill., R. Apostol, 16 Jan 1985. All in International Rice Rescarch Institute, Philippincs. (New synonymy)
habITAT DISTRIBUTION. Rainforests in Southeast Asia, islands of the northwest Pacilic. and in northem Australia.
REMARKS. None of the characters (marginal differences on scopula density on tarsi) used by Barrion \& Litsinger (1995) to distinguish

FICi 1. Tritame bancrofii (Rainbuw \& Pulleine, 1918), Jectotype lemale, AMKSG152. A. carapace: B, spermathecae: C, eyes. Scale bars $=1 \mathrm{~mm}$.

Beaccallbrapo alone are adequate to support the recognition of a new genus and the variability falls adequately within the known generic variation. The types have a third claw and cracked tarsus IV, both characters of Phlogiellus (sce Raven, 1985b), P. bundokalbo is unusual in having tarsi III and IV cracked.
Many references to Selenocosmia in the rainforests of morth Queensland should mostly likely be referred to Phlogiellus. Queensland Museum records (determined by RJR) include many Phlogiellus from that region.

Sclenocosmia Ausserer, 1871
Selonocosmiar Ausserer, 1871: 204. Type species by monotypy: diggade juvenensis Walckenaer, 1837. Type presumed lost.
Phrictus Kuch, 1874: 488. ispe species by monotypy. Phricus erassipes Kuch. 1874. Type in 7MIH, examined.
Phowius Simon. 18k7: exev, replacement name for Phrictus Koch, 1574 preaccupied by $3 /$ micictus Spinolo, 1834 in the tlemiptera: Schnidt. 1995: 10. Keplaced into synonymy.
fsoptopareas Thorell, 1897; 175, type species by subsequent designation of Bunnet (1958: 3825), Phrictms validus Thatell. 18S1. First symonymised by Simon, 1903: 095.
Chilereamia Schmidt x von Wirh, 14y2- Y. Type species by original designation Chilocosmia dichromuta Schmid \& ton Wirth, 1992. (Nev synorsy my)
Sulepopelma Schmidt it Krause, 1945: 22. 1ype species Selenopelma korariki Schmidt \& Krause, 1995. (New synunyray

REMARKS. Schmidt (1995) removed the Australian Selenocosmia crassipes (Koch, 1873) and Selenocosmia stirlingi Hoge, 1901 and translerred them to the restored genus name Phlogius Simon, 1887. The removal from

Selenocosmia was based upon differences from a putative paratype of Selenocosmia javanensis (Walckenaer, 1837), the type species of Selenocosmia Ausserer, 1871. Indeed, the type species needs to be studied, the species variability documented, the types found, and other species may then be understood and their relationship with the type species and differences from it understood. None of that has been done in the above three papers written or coauthored by Schmidt.

The type material of Selenocosmia javanensis (Walckenaer, 1837) has not been examined or even located. Schmidt claims to have examined a 'paratype' of Selenocosmia javanensis in the Museum of Wiesbaden but Jäger (1998) found no such material. Type material of other species of Walckenaer has been found in the Musée National d'Histoire Naturelle, Paris but Heurtault (1980) lists only BMNH with Walckenaer types. In any case, since Walckenaer did not designate a holotype, paratypes do not exist either. Hence, Schmidt was in error and did not see a paratype of Selenocosmia javanensis (Walckenaer, 1837).

I have examined the specimen considered the paratype of Selenocosmia javanens (Walckenaer, 1837). It has two labels: one is a Museum Weisbaden label with faded ink inscription, the other is a more legible pencil label. The information on both is the same:

Museum no. 637
'Selenocosmia javanensis Walck.
Java Krakau
G: Prof. Kulczy nski 1900°
Type material of Walckenaer should be labelled with the original name, 'Mygale javanensis'. The name Selenocosmia was first used by Ausserer (1871). Hence, the label reflects nothing but the locality and a subsequent identification. Walckenaer (1837) gave no further data than 'Java'. Hence, the specimen was not labelled by Walckenaer, cannot be considered a type of any kind and has no nomenclatural status.

Other material studied included an exuvium from a zoo specimen, a specimen (former pet?) identified by Weichmann (outside of a published revision).

The type specimen of Phlogius crassipes Koch, 1874 was examined as were other material (former illegally exported pets) identified by Charpentier (also informally and outside of a revision).

No type material of Selenocosmia stirlingi Hogg, 1901 was examined by Schmidt but material so labelled in the South Australian Museum was, as well as some other Selenocosmia species.

Schmidt (1995) lists a number of differences in the material mentioned. No variational study supports the species significance of those differences. More importantly, Schmidt does not explain how other species of Sclenocosmia belong to a different monophyletic group from those he places in Phlogius.

Differences in characters previously used, e.g. relative leg length and diameter, are not thoroughly examined. Indeed, in that character alone, Selenocosmia crassipes is more similar to Selenocosmia javanensis than with Selenocosmia stirlingi.
Also, Schmidt (1995) lists the distribution of Selenocosmia crassipes as Australia and New Guinea and so perpetuates an error from Roewer (1945), repeated without critical review by Smith (1992; Smith, in litt.). The type locality is Rockhampton, central coastal Queensland and the species is centred on that area (Queensland Museum Records, Raven, unpublished data).

No support is given in Schmidt (1995) for the restoration of Phlogius or in Schmidt \& von Wirth (1992) and Schmidt \& Krause (1995) for the new genera Chilocosmia and Selenopelma, respectively.

Because the somatic and sexual morphology of mygalomorphs are so conservative it is very difficult to establish sound specilic and sometimes even generic boundaries. Theraphosid systematic studies in the past 20 years, in reflecting this difficulty, have mostly been characterised by the descriptions of new species and genera, outside of revisions. The result has been that many new species and some genera have been described in isolation without sound reference to other species in the genus. Raven (1985b) synonymised genera in which no differences of generic significance existed among the type species. However, the elevation of new genera, or resurrection of synonymised genera, has occurred for a similar but reciprocal reason: that a species differs (extent and status unspecified) from the type species. Schmidt (1995) and other works of Schmidt (Schmidt \& von Wirth, 1992; Schmidt \& Krause, 1995) fail on such grounds.

NEMESIIDAF:

Chenistonia Hogg. 1901
Chenistoria Hoge 1901: 202. Type species by arigital designation. Chenistoma nawewiak lloge, 1901,

DIAGNOSIS. Chenistonia differs from Anume by males having a medial spur and meyaspine on tibia l, a long slender palpal tarsus, a pear-shaped palpal bulb w ith the embolus very short or absent. and by both sexes having small marginal sternal sigilla. Chenistonia shares with Namera and Tew the elongate palpal tarus in males but differs from Nomea in lacking the reflexed embolus and further lrom Ancme in that in males the basal process un metatarsus I opposite the tibial spur is either very small or absent. C. trevallynia breaches that concept in having the plesin. morphically short male palpal tarsus.
REMARKS. Raven (1985b) maintained Chenistonia in the symonymy of Aname. following Raven (1981), I Invever, Main (1986. without explanation) has maintained their respective validicy, Phylogenctically. Chenistonia is have continad only to the Aname maculata group of Kaven (1984).
Main (1982a. 1986) continued to place Anambe lopperi in Chenisfonm. Howerer, it has a long cmbolus. Hence the inclusion of A. tepperi in Chenistonia makes the group concept polythetic. The only illustration of the mate of - A repper is in Main (1964) and since then there has been no phylogenetic analysis of the species nominatly included by Main (1985) in Chenistonia save for Raven (1984, 1985a, b).
The following species are explicitly included in Chenistomia and Aname, respectively.
Species included in Chenistomia:

Ancme hicknam Raven, 1984, NsiW
Chermistrnia machulatu Hogg 1901, VIC
Anumbe nomituma Raven. 1984, NSW
Chewistonha theradlanier Hickntam, 1126. 1is
Species included in Anume:
A. armigera Rainhow \& Pulline, 14l 8 , WA
d. ama (Stand, 1913), SA, NT
f amm Rainbow \& Pulleine, 1918, NSW
A. harnoma Raven. 1485, (Md, NSW
A. buchedermingis Raven, 1985, Qha
4. coemasa Rainbow \& Pulleine, 1918. SA
A. cannara Raven, 1485, (1)d
4. curthat Raven 1485, Old

1 collinsormm Raven, 1985, Qld
4. ctavidata (Main, 1954),WA
A. cisstinctut (Rainbow, 1918), Qld
A. wiversiculor (Hogerg 19(2), Old, S \wedge
A. fusconcincta Rainthus \& P' lulleine. 1918, WA

1. grumdia Rainbrin et Pulleine. 1918. SA
A. humptideo Raver 1985, NT
A. inimice Raven, 1985, NSW, (2hl
d. नitrtma Raver 1984 f ydd
A. Jungithoca Raven, 1985, ()h
A. mactuluta (Raintow \& Pulleine. 1918). WA
A. pullikita Koch, 1873, Qld
2. mhersormm Raven, 1985, (ldd
3. mbustu Raintow \& Pullein: $1918 . \mathrm{SA}$

A1 Bismrmisa Hoge 1902, Tas
A. topper (Hoge, 1902), WA. S.A
A. tuerriku Raven, 1985, Old
A. momica Raver, 1484, Old

1. turtigera Alain, 1994, SA. WA
2. villera (Rainhow \& Pulleine. 1918), WA
A. Herriduka Raven. 1985. NSW, (1ld

Aname diversicolor (Hogg, 19012)
\{lor tull sytuny my see Raten, 1485a\}
DISTRIBUTION. Deka Station, near Blackanl. western Queensland.
RI:MARKS. Raven (1985a) gave ample reasons Hsat the neotype designation ol Dekana diversionlor Hogg, 19112 by Main (1982b) was invalid. Apart from anything else, in Main (1982b) making such a designation outside of and before a revision, it was not possible to assert that the identity of species could not be established from Hogy's (1902) figures. Indeed. in his revision, Raven (1985: found Hoge's figures were perfectly adequate to recognise the species. Also, comparisun of the morphology of other species described by Hogg with his own figures indicates that his figures were accurate. Main (1982b) also placed Aname atra (Strand. 1913) into the synonymy of A. civersicollor bus Raven (1985a) found that the two species were readily distinguishatle. To accept Main's (1982b) neotype designation requires that Hogg's ligures showed significant differences in relative sizes and shapes from the original. Mait (1482b;29) stated that the [neotype designation] Was' in the interests of nomenelatural stability for a common and widespread species which frequently attracts human attention and 10 which references have already been made in medical literature.' However, Southcott (1976, 1978) uriting from South Australia did not mention it and at that time I can find only Main (1976) making comments about bites of Dekuna diversicolor:
Subsequently, Harvey \& Main (1996) found that indeed Deka Station. Queensland was the correct interpretation of the type locality of Dekeme diversicolor. The neotype designated by

Main (1982b) is hence here considered the holotype of a new species, Aname mainae.

Aname mainae sp. nov.

Aname diversicolor. Main, 1982b: 29.
MATERIAL. HOLOTYPE (= 'neotype'): SAM N1980196, 厄", 26km NW of Elliston, SA, 20 Dec 1952, B.Y. Main; SAM N1980195, ㅇ, same data, examined.

DIAGNOSIS. Males differ from those of Aname diversicolor (Hogg, 1902) in having a centrally placed, not clearly distal, tibial spur and the embolic shaft being straight not bent (see Raven, 1985a: 396, 397).

DISTRIBUTION. South Australia.

DIPLURIDAE

Masteria L. Koch, 1873

Masteria L. Koch, 1873: 458. Type species by monotypy, Masteria hirsuta L. Koch, 1873.
Accola Simon, 1889: 191. Type species by subsequent designation of Simon (1892), Accola lucifuga Simon, 1889. First synonymised by Raven, 1979.

Antrochares Rainbow, 1898: 332. Type species by monotypy, Antrochares macgregori Rainbow, 1898. First synonymised by Raven, 1979.
Microsteria Wunderlich, 1988: 46. Type species by monotypy, Microsteria sexoculata Wunderlich, 1988. (New synonymy)
Masteria sexoculata (Wunderlich), comb. nov.
Microsteria sexoculata Wunderlich, 1988: 47; holotype male examined.

REMARKS. Wunderlich (1988) raised Microsteria on the grounds that the teeth on the third claw are sessile and not tuberculate or not on a common process as in other other masteriine genera (Masteria Koch, 1873, Striamea Raven, 1981). Raven (1981) showed that in existing masteriine, the teeth basally fuse before reaching the claw. I examined the holotype of Microsteria sexoculata (sent to me for identification prior to Wunderlich's paper). Two teeth are present on the third claw. The anterior tooth is shorter and the division between the two teeth deep. It was not possible to determine the very subtle difference between a low anterior tooth on the claw and a common tubercle. I concluded it was Masteria and still do, so the genus is placed in synonymy.

ACKNOWLEDGEMENTS

1 am grateful to Drs Norman I Platnick, American Museum of Natural History, New York, and Mark Harvey, Western Australian Museum, Perth, for comments on the manuscript. Dr Mike Gray and Graham Milledge, Australian

Museum, Sydney, kindly loaned me the type material of Arbanitis bancrofti. Dr Barbara Baehr kindly carried the putative paratype of Selenocosmia javanensis from Hessisches Landesmuscum Weisbaden, gratefully loaned by Herm Fritz Geller-Grimm.

LITERATURE CITED

AUSSERER, A. 1871. Beiträge zur Kenntniss der Arachniden-Familie der Territelariae Thorell (Mygalidae Autor). Verhandlungen der Zooogische-Botanischen Gesellschaft in Wien 21: 177-224.
BARRION, A.T. \& LITSINGER, J.A. 1995. Riceland spiders of South and Southeast Asia. (CAB International, University Press: Cambridge).
BENOIT, P.L.G. 1965. Les Barychelidae-Diplothelinae africains et malgaches (Araneae-Orthognatha). Revue Zoologique et Botanique, Africaines 72: 26-40.
BONNET, P. 1958. Bibliographie Araneorum. Toulouse 2(4): 3027-4230.
CHURCHILL, T.B. \& RAVEN, R.J. 1992. Systematics of the intertidal trapdoor spider genus Idioctis (Mygalomorphae: Barychelidae) in the Western Pacific with a new genus from the northeast. Memoirs of the Queensland Museum 32:9-30.
HARVEY, M.R. \& MAIN, B.Y. 1996. A note on the type locality of Dekana diversicolor Hogg. Australasian Arachnology 51: 5-6.
HEURTAULT, J. 1980. Liste des collections arachnologiques mondiales. (Centre Internationale de Documentation Arachnologique: Paris).
HOGG. H.R. 1901. On Australian and New Zealand spiders of the suborder Mygalomorphae. Proceedings of the Zoological Society of London 1901(2): 218-279.
1902. On some additions to the Australian spiders of the suborder Mygalomorphae. Proceedings of the Zoological Society of London 1902(2): 121-142.
JAEGER, P. 1998. Das Typenmaterial der Spinnentiere (Arachnida: Acari, Amblypygi, Araneae, Opiliones, Pseudoscorpiones, Scorpiones, Uropygi) aus dem Museum Wiesbaden. Jahbucher des Nassauischen vercins fur Naturkunde 119: 81-91.
KOCH, L. 1873. Die Arachniden Australiens, nach der natur beschrieben und abgebildet. Vol. 1: 369-472. (Bauer und Raspe: Nürnberg).
1874. Die Arachniden Australiens, nach der natur beschrieben und abgebildet. Vol. 1: 473-576. (Bauer und Raspe: Nürnberg).
MAIN, B.Y. 1964. Spiders of Australia. (Jacaranda Press: Brisbane).
1976. Spiders. (Collins' Australian Naturalist Library series: Sydney).
1982a. Further studies on the systematics of Australian Diplurinae (Araneae: Mygalomorphae, Dipluridae): the taxonomic status of

Proshermacha Simon and Chenistonia tepperi Hogg. Australian Entomological Magazine 8: 83-88.
1982b. Notes on the revised position of the Black Wishbone spider Dekana diversicolor Hogg (Mygalomorphae: Dipluridae). Journal of the Proceedings of the Royal Society of Western Australia 65: 25-29.
1985. Mygalomorphae. In Walton, D.W. (ed.) Zoological catalogue of Australia, 3. Arachnida: Mygalomorphae, Araneomorphae in part, Pseudoscorpionida, Amblypygi, and Palpigradi. (Australian Government Publishing Service: Canberra).
1986. Further studies on the systematics of Australian Diplurinae (Araneae: Mygalomorphae: Dipluridae): a new genus from south-western Australia. Records of the Western Australian Museum 12: 395-402.
1997. Tropical rainforest mygalomorph spiders in the Australian desert: the irony of an adaptive legacy. Memoirs of the Museum of Victoria 56(2): 339-347.
PICKARD-CAMBRIDGE, O, 1890, On some new species and two new genera of Arancida. Proceedings of the Zoological Society of London, 1890: 620-629.
PLATNICK, N.I. 1989. Advances in Spider Taxonomy 1981-1987: A supplement to Brignoli's 'A catalogue of the Araneae described between 1940 and 1981'. (Manchester University Press: Manchester).
PLATNICK, N,I. 1993. Advances in spider taxonomy 1988-1991. With synonymyies and transters 1940-1980. (New York Entomological Society \& American Museum of Natural History: New York).
1998. Advances in spider taxonomy 1992-1995: with redescriptions 1940-1980. (New York Entomological Society \& American Museum of Natural History: New York).
POCOCK, R.I. 1897. Spinnen (Araneae). In Kükenthal, Willy, Ergebnisse einer zoologische Forschungsreise in dem Molukken und Borneo. Abhandlungen Senkenbergischen Naturforschung Gesellschaft 23: 591-629.
1903a. Descriptions of four new Arachnida of the order Pedipalpi, Solifugae and Araneae. Annals and Magazine of Natural History 7(11): 220-226.
RAINBOW, W.J. 1898. Contribution to a knowledge of the arachnidan fauna of British New Guinea. Proceedings of the Linnean Society of New South Wales 23: 328-356.
RAINBOW, W.J., \& Pulleine, R.H. 1918, Australian trap-door spiders. Records of the Australian Museum 12: 81-169.
RAVEN, R.J. 1979. Systematics of the mygalomorph genus Masteria (Masteriinae: Dipluridae: Arachnida). Australian Journal of Zoology 27: 623-636.
1981. Three new mygalomorph spiders (Dipluridae, Masteriinae) from Colombia. Bulletin of the American Museum of Natural History 170: 57-63.
1984. A revision of the Aname maculata species group (Dipluridae, Araneae) with notes on biogeography. Journal of Arachnology 12: 177-193.
1985a. A revision of the Aname pallida speciesgroup in northern Australia (Anaminae: Nemesiidae: Araneae). Australian Journal of Zoology 33: 377-409.
1985b. The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bulletin of the American Museum of Natural History 182: 1-180.
1988. A revision of the mygalomorph spider genus Idioctis (Araneae, Barychelidae). American Museum Novitates 2929; 1-14.
1990. A revision of the Australian spider genus Trittame Koch (Mygalomorphae: Barychelidae) and a new related genus. Invertebrate Taxonomy 4:21-51.
1994. Mygalomorph spiders of the Barychelidae in Australia and the western Pacific. Memoirs of the Queensland Museum 35(2): 291-706.
ROEWER, C.F. 1942. Katalog der Araneae von 1758 bis 1940. (Paul Budy Bd.: Bremen) 1: i-viii + 1-1040.
SCHMIDT, G 1995. Gehoren ‘Selenocosmia’ crassipes (L. Koch, 1873) und 'Selenocosmia' stirlingi Hogg, 1901 (Araneida: Theraphosidae: Selenocosmiinae) wirklich zu Selenocosmia Ausserer, 1871? Arachnologsiche Magazin 3(11): 1-12.
SCHMIDT, G.E.W. \& KRAUSE, R.H. 1995. Eine neue Art der Theraphosidae aus Vietnam Selenopelma kovariki gen. et sp.n. (Araneida: Theraphosidae: Selenocosmiinae). Arthropoda 3(2): 21-24.
SCHMIDT, G.E.W. \& VON WIRTH, V. 1992. Beschriebung des Weibchens von Chilocosmia dichromata gen.n. sp.n. und des Männchens von Chilocosmia arndsti (Schmidt \& von Wirth, 1991) (Araneida: Theraphosidae: Selenocosmiinae). Arachnologsiche Anzeiger 3(11): 9-16.
SIMON, E. 1887, [Observations sur divers arachnides: synonymies et descriptions.] Annales de la Société Entomologique de France, 6: 195.
1889. Voyage de M.E. Simon au Venezuela (décembre 1887-avril 1888), 4e mémoire. Arachnides. Annales de la Societe Entomologique de France, ser. 6, vol. 9: 169-220.
1892. Histoire naturelle des araignées. Tome 1 (1): 1-256. (Roret: Paris).
1903. Histoire naturelle des araignées. Tome 2(4) Supplément Gẻnéral: 875-1080. (Roret: Paris).
1902. Descriptions d'arachnides nouveaux de la famille des Aviculariides faisant partie des collections du muséum. Bulletin du Museum Histoire Naturelle, Paris 8: 595-599.

SOUTHCOTT, R.V. 1976. Arachnidism and allied syndromes in the Australian region. Records of the Adelaide Children's Hospital 1(1): 97-186.
1978. Australian harmful arachnids and their allies. Published by the author.
STRAND, E. 1907. Vorläufige diagnoses afrikanischer und südamerikanischer Spinnen. Zoologische Anzeiger 31: 525-558.
1913. Uber einige australische Spinnen des Senckenbergischen Museum. Zoologischer Jahrbucher 35: 599-624.
THORELL, T. 1881. Studi sui Ragni Malesi e Papuani III. Annali del Museo Civico di Storia Naturale Giacomo Doria, Genova 17: vii-xxvii, 1-720.
1890. Aracnidi di Pinang raccolti nel 1889 dai signori L. Loria e L. Fea. Annali del Museo

Civico di Storia Naturale Giacomo Doria, Genova 30: 269-383.
1897. Viaggio del Leonardo Fea in Birmania e regioni vicine. LXXIII. Secondo saggio sui Ragni birmani. I. Parallelodontes Tubitelariae. Annali del Museo Civico di Storia Naturale Giacomo Doria, Genova 37: 161-267.
WALCKENAER, C.A. 1837. Histoire naturelle des Insectes. Aptères. Vol. I. Paris, 1837, pp. 1-682.
WUNDERLICH, J. 1988. Die Fossilen Spinnen im Dominikanischen Bernstein. Beiträge zur Araneologie, 2. (The author: Straubenhardt, West Germany).

SOUTHERN RIGIIT WHALES EUBALAENA AUSTRALIS (DESMOULINS, 1822) IN MORETON BAY, QUEENSLAND. Memoirs of the Queensland Museum 45(2): 576. 2000:- Southern right whales, Eubalaena australis, occur primarily between latitudes $30^{\circ} \mathrm{S}$ and $60^{\circ} \mathrm{S}$, with annual winter migrations from higher latitude summer feeding grounds to lower latitude breeding areas (Best et al. 1993). In Australian waters, the Great Australian Bight is a major calving area (Burnell \& Bryden 1997). However, sightings occur further north along the east and west coasts (Bannister 1986). The most northerly was at Flinders Reef ($26^{\circ} 59^{\circ} \mathrm{S}, 153^{\circ} 29^{\circ} \mathrm{E}$) in August 1998 . This and other sightings in 1998 were the first published record of E, australis in Queensland waters (Noad 2000).

This note records 1999 sightings of E. australis in Moreton Bay. At 15:10 on 2 August 1999, two E. australis were seen at $27^{\circ} 17^{\circ} \mathrm{S}, 153^{\circ} 18^{\circ} \mathrm{E}$, between Mud Island and Shark Spit on Moreton Island (Fig. 1A). Observations were made from a vessel conducting dolphin research. The pair was observed for 45 minutes, while travelling slowly south. The larger and darker whale breached 5-6 times (Fig. 1B,C). The other was smaller and distinctly brown with dark mottles (Fig. 1D). It did not breach.

Other sightings of E. australis in Moreton Bay preceded this record. On 22 July two were observed breaching and travelling north out of Moreton Bay from Tangalooma jetty and on 30 July two were sighted travelling south into the Bay ($27^{\circ} 10^{\prime} \mathrm{S}, 153^{\circ} 20^{\prime} \mathrm{E}$) (S.J. Allen pers. comm.). On 27 July a whale-watch vessel encountered a single E. cuustralis near Bribie I. ($27^{\circ} 03^{\prime} \mathrm{S}, 153^{\circ} 14^{\prime} \mathrm{E}$; K. McTaggart pers. comm.).
E. australis populations are currently increasing after near extirpation over the past 200 years (Bannister 1986, Tormosov et al. 1998). The full extent of their pre-whaling range is unknown. Best (1993) suggested that when mysticete populations are reduced, their ranges contract and conversely, as they recover, their ranges may expand. Peripheral areas such as southern Queensland waters, which may have been frequented previously, appear to be reinhabited scasonally. Noad
(2000) suggested that visits to Queensland waters may become more common as recovery occurs. These records and the 1998 sightings, demonstrating the occurrence of E. custralis in SE Queensland waters in consecutive years, supports Noad's prediction.

Acknowledgments

Thanks to Grant Sherwin, the skipper of the research vessel 'Resolute' for sighting information, and Robert Paterson for encouraging production of this note. Thanks also to Micheal Noad, Simon Allen and Kerry McTaggart for additional information and Peter Corkeron for useful comments on the manuscript. Funding from the Earthwatch Institute led to this opportunity.

Literature Cited

BANNISTER, J.L. 1986. Southem Right Whales: status off Australia from twentieth-century 'incidental' sightings and aerial survey. Report of the International Whaling Commission (Special Issue 10): 153-158.
BEST, P.B. 1993. Increase rates in severely depleted stocks of baleen whales. ICES Journal of Marine Science 50: 169-186
BEST, P.B., PAYNE, R., ROWNTREE, V., PALAZZO, J.T. \& BOTH, M.D. 1993. Long-range movements of South Atlantic right whales Eubalaena australis. Marine Mammal Science 9(3):227-34.
BURNELL, S.R. \& BRYDEN, M.M. 1997. Coastal residence periods and reproductive timing in southern right whales, Eubalaena australis. Journal of Zoology, London 241: 613-621.
NOAD, M.J. 2000. A southern right whale Eubalaena australis (Desmoulins, 1822) in southern Queensland waters. Memoirs of the Queensland Museum (this issue).
TORMOSOV, D.D., MIKHALIEV, Y.A., BEST, P.B., ZEMSKY, V.A., SEKIGUCHI, K. \& BROWNELL, R.L. 1998. Soviet catches of southern right whales Eubalaena australis, 1951-1971. Biological data and conservation implications. Biological Conservation 86(2): 185-197.
B.L. Chilvers, School of Tropical Environmental Studies and Geography, James Cook University, Townsville 4811, Australia: 24 October 1999.

 fins and rostral callosities: 1). dorsum of lighter, brown animal with mottled pattern.

REVISED STATUS OF THE GENUS HETAERICA RAINBOW (ARANEAE: ZODARIIDAE)

ROBERT J. RAVEN AND BARBARA C. BAEHR

Abstract

Raven, R.J. \& Baehr, B.C. 200006 30: Revised status of the genus Hetaerica Rainbow (Araneae: Zodariidae). Memoirs of the Queensland Museum 45(2): 577-583. Brisbane. ISSN 0079-8835.

Adult male and female material of Hetaerica aresca Rainbow, 1916 from the type locality, Pentlands, NE Queensland, is described and found to be conspecific with the type species of Australorena Jocqué, 1995, previously described as Habronestes scenicus Koch, 1872. The new combination, Hetaerica scenica (Koch, 1872), is established and the male palp and female epigyne are redescribed. A new species H. hanveyi is described from Western Australia. ITaxonomy, Zodariidae, Hetaerica, envenomation, Australia.

Robert John Raven \& Barbara C. Buehr, Queensland Museum, PO Box 3300, South Brisbane A101, Australia; 21 July 1999.

Rainbow (1916) described a new zodariid genus, Hetaerica, from Pentlands, north Queensland. The type material of the type species, Hetaerica aresca Rainbow, 1916, was juvenile, hence Jocqué $(1991,1995)$ was unable to resolve its affinities. No further collections had since been made from the type locality. However, Jocqué (1995) did note, in his description of the new genus Australorena, that 'The type species of this new genus has several somatic features in common with Hetaerica aresca, the only species of Hetaerica, known only from a juvenile specimen'. On three occasions, one author (RJR) attempted to collect adult material from Pentlands and was only successful on the final attempt. That material is here described and is unequivocally conspecific with that of Australorena scenica (Koch, 1872), revised by Jocqué (1995).

SYSTEMATICS

Hetacrica Rainbow, 1916

Hetacrica Rainbow, 1916: 48. Type species by monotypy, Hetarica arescens Rainhow, 1916.
Australorena Jocqué, 1995: 126. Type species by original designation Habronestes scenicus Koch, 1872. (New synonymy)

DIAGNOSIS. As for Australorena Jocqué, 1995 plus the apical conductor is a folded, sclerotised cone.

DESCRIPTION (supplementary to Jocqué, 1995). 10-11 teeth on paired claws; teeth long and set on inner edge distally (Fig. 5C). Unpaired claw long, straight. Tarsal organ set centrodorsally on distal edge of tarsus cuticle. Tarsal cuticle smooth save for light irregularly placed fine grooves. Tarsus predistally intact. Bothrial
cup collariform; trichae long and smooth for basal half becoming finely fimbriate distally; trichobothria present on mesal setose process of tibial apophysis. Tibial apophysis tripartite with distal bifurcate lobe, mesal hirsute extension of tibia and asetose basal prong. Female epigyne with unsclerotised zones laterally.

SPECIES INCLUDED. Hetaerica scenica (Koch, 1872); Hetaerica harveyi sp. nov.
REMARKS. We note that the palp of Hetaerica and an undescribed species of Chilumena are similar in the male, but that the latter has a distinct sclerotised, hooked tegular apophysis (?median apophysis) and lacks the prolateral cymbial groove and associated flange. Hetaerica has a rough carapace cuticle but in Chilumena the surface is deeply rugose or corrugated and this remains the most distinct feature of the genus (Jocqué, 1995). Because of these similarities we regard the two as sister genera and await the description of further species of both to determine whether the cuticular difference is sound.
The tibial apophysis of Hetaerica presents an unusual character not before noted. The mesal lobe has at least two trichobothria apically on it (Fig. 2B) and is strictly speaking only an extension of the tibia; tibial apophyses do not usually have trichobothria in spiders. This raises a question about homologising the lobes of the retrolateral tibial apophysis (RTA).

Hetaerica scenica (Koch, 1872), comb. nov.

(Figs 1-4)

Habronestes scenicus Koch, 1872: 301, 316.
Storena scenica Simon, 1893: 427; Rainbow, 1911: 151; Davies. 1985: 121.
Hetaerica aresca Rainbow, 1916: 48, figs 21-23; Jocqué. 1991: 59, figs. 113-116. (New synonymy)

MATERIAL. Hetaerica aresca: Holotype: AMKS6744, juv., Pentlands, NE Qld, A Girault; QMS42917, ô, ㅇ, Pentlands, $20^{\circ} 26^{\circ} \mathrm{S} 145^{\circ} 32^{\circ} \mathrm{E}$, NE Qld, 9 Mar 1999, B. Baehr, R. Raven; QMS4354, ©, 9, Bluff Downs, 60 m NW Charters Towers, $19^{\circ} 40^{\prime} \mathrm{S} 145^{\circ} 32^{\prime} \mathrm{E}$, NE Qld, 19 Apr 1974, M. Archer, A. Elliot; QMS22751, ǒ, 2 오, Cape Cleveland Rd, $19^{\circ} 20^{\prime} \mathrm{S} 147^{\circ} 00^{\circ}$ E, ME Qld, pitfall, 25 Oct 1991-27 Jul 1992, R. Raven, P. Lawless, M. Shaw; QMS22752, ©, same data; QMS22915, ô, 3 juv., Eight Mile Ck, $18^{\circ} 40^{\prime} \mathrm{S} 144^{\circ} 42^{\prime} \mathrm{E}$, NE Qld, dry eucalypt forest, pitfall, 1 Dec 1992-14 Apr 1993, R., J. \& S. Raven, P. \& E. Lawless; QMS4487, 7 § $^{\circ}, 3$ ㅇ, 5 juv., Forty Mile Scrub, $18^{\circ} 04^{\prime} \mathrm{S} 144^{\circ} 50^{\prime} \mathrm{E}$, NE Qld, vine thicket, $10-14 \mathrm{Apr} 1978$, V. Davies, R. Raven; QMS25711, $30^{*}, 4$ juv., same locality, 1 Dec 1992-15 Apr 1993, P. Lawless, M. Shaw, R., J. \& S . Raven; QMS41772, \$, 1 juv., Fraser I, Orchid Beach (F04), $24^{\circ} 57^{\prime} \mathrm{S} 153^{\circ} 18^{\prime} \mathrm{E}, \mathrm{SE}$ Qld, heathland, pitfall, 20 Aug 1997-17 Dec 1997, R. Raven, P. Lawless; QMS3681, $30^{\circ}, 1$ juv., Homevale, $21^{\circ} 23^{\prime} \mathrm{S} 148^{\circ} 33^{\prime} \mathrm{E}$, ME Qld, sclerophyll by creek, 6 Apr 1975, R. Kohout; QMS19703, §, Karalee, $27^{\circ} 34^{\prime} \mathrm{S} 152^{\circ} 49^{\prime} \mathrm{E}$, SE Qld, spider bite, 10 Mar 1993, A.J. Tuskes; QMS37730, ㅇ, Keysland, $26^{\circ} 12^{\prime}$ S $151^{\circ} 44^{\prime} \mathrm{E}$, SE Qld, open forest, pitfall, 29 Sep 1994-15 Dec 1994, G. Monteith; QMS27987, d, Kinuna NP, 21 Apr 1992, M. Shaw; QMS15727, 7 , Lake Broadwater, Site 3, $27^{\circ} 20^{\prime} \mathrm{S} 151^{\circ} 05^{\circ} \mathrm{E}$, SE QId, pitfall, 3 Jan- 25 Feb 1986 , Qld Museum party \& M. Bennie; QMS15735, 50, 5ㅇ. Lake Broadwater, Site $8,27^{\circ} 20^{\prime} \mathrm{S} 151^{\circ} 05^{\circ} \mathrm{E}$, SE Qld, pitfall, 25 Feb-22 Apr 1986, Qld Museum party \& M. Bennie; QMS26162, 0°, Magnetic I, $19^{\circ} 07^{\prime} \mathrm{S} 146^{\circ} 50^{\prime} \mathrm{E}$, NE Qld, spider bite, 9 Mar 1995, per Sr. Deborah Larter; QMS30720: ó, Mulgowie, Laidley Valley, $27^{\circ} 44^{\prime} \mathrm{S}$ $152^{\circ} 22^{\prime} \mathrm{E}$, SE Qld, eucalypt woodland, pitfall, 21 Jan-] Feb 1981, M. Grant; QMS30722, of, Rochedale SF, $27^{\circ} 37^{\prime} \mathrm{S} 153^{\circ} 08^{\prime} \mathrm{E}, \mathrm{SE}$ Qld, pitfall, 20 Dec 1979-17 Jan 1980, V. Davies, R. Raven; QMS30721, 20°, same locality, 24 Apr- 12 Jun 1980, V. Davies, R. Raven; QMS21911, oे, S. Rille Range Rd, N. Ellis Beach (N Qld 14), $16^{\circ} 40^{\prime} \mathrm{S}$ 145³4'E, NE Qld, pitfall, 1 Nov 1991-22 Jul 1992, P. Lawless, R. Raven, M. Shaw; QMS41920, ǒ, poz. Saunders Beach, $19^{\circ} 10^{\prime} \mathrm{S} 146^{\circ} 36^{\circ} \mathrm{E}, \mathrm{NE}$ Qld, open forest, pitfall, 04-12 Feb 1998, G. Monteith, D. Cook; QMS27500, 2 ㅇ, South Percy 1, NW Bay, $21^{\circ} 45^{\circ} \mathrm{S}$ $150^{\circ} 17^{\prime} \mathrm{E}$, ME Qld, intercept flight trap, 26 Nov 1992 -mid Apr 93, C. Monteith, G Thompson, D. Cook, H. Janetzki; QMS24503, $\hat{0}$, Tooloombah Ck, (NQ 41), $22^{\circ} 42^{\prime} \mathrm{S}$ $149^{\circ} 33^{\prime} \mathrm{E}$, ME Qld, eucalypt woodland, pitfall, 29 Jul 1992-24 Nov 1992, R. Raven, P. \& E. Lawless, M. Shaw; QMS24081, ס̌, same locality, pitfall, 10 Nov 1991-29 Jul 1992, R. Raven, P. Lawless, M. Shaw.

DIAGNOSIS. This species is recognised by the divided chilum, the long fang of the chelicerae, the promargin with one small tooth, the abdominal pattern with elongate dorsal scutum, two elongate pale patches on anterior half and one in front of the spinnerets, the palpal structure. Only one tegular apophysis (DTA) = suprategular apophysis (Jocqué 1991), is the conductor of the embolus, directed in embolus direction. The palp

FIG. 1. Hetaerica scenica (Koch), male, habitus, dorsal view.
of H. scenica differs from that of H. harveyi sp. nov. in the acute tegular process.

DESCRIPTION. Male. NT (QMS42917): Measurements (mm). Total length 6.1. Cephalothorax 3.3 long, 2.26 wide. Abdomen 2.8 long, 1.8 wide. Sternum 1.46 long, 1.13 wide. Legs I 7.8, II 6.93, III 6.8, IV 9.3. Eye sizes and distances between them: AME 0.1, ALE 0.16, PME 0.16, PLE 0.18, AME-AME 0.03, AME-ALE 0.05, PME-PME 0.06, PME-PLE 0.13 , ALE-PLE 0.01 ; median ocular quadrangle 0.38 long, 0.23 wide at front, 0.36 wide at back. Clypeus 0.43 high. Chilum 2×0.41 long. Chelicera fang 0.91 long.

F1G. 2. Hetarrica ventica (Koch), male pedipalp, libia, cymbium and bulb, dorsal jeft, scanning electron
 and tibial apophysis; D, tibial apophysis, retroventral, and E, yentral view:

FIG. 3. Hetaerica secnica (Koch). A, B, male pedipalp, tibia, cymbium and bulb, dorsal right, A, ventral view, B, retrolateral view. C, female, external epigyne, cleared showing spermathecae.

Colour and Structure. Cephalothorax, granulated, dark brown, with rebordered margins. Chelicerae short, dark brown, promargin with single small tooth. Maxillae brown, anteromesally pale, strongly tapering, curved inward, with small anteromesal scopula. Sternum reddish brown, basically triangular, with rounded sides; provided with triangular 8 extensions, each side, corresponding with coxal concavities, pointed behind. Abdomen dark brown with 2 elongate pale spots on anterior half, reddish brown scutum in between, one pale spot in front of the spinnerets. Spinnerets dark brown; venter dark brown with 3 elongate pale spots, booklung covers and epigastric area with weak reddish brown scutum. Legs: all legs dark brown, tarsi slightly paler. Palp: tibia with one elongate ventral rounded dorsal apophysis and two apophyses in front. Cymbium as wide as long, retrolaterally widened, with short flange and shallow concavity. Bulb with one retrolateral directed enrolled distal tegular apophysis, functioning as conductor in same direction as the embolus and one tiny lateral tegular spine.

DESCRIPTION. Female. Carapace brown, legs green brown; abdomen dorsally dark brown with pair of irregular clear zones showing white gut, zones anteriorly narrow reniform narrowing posteriorly and widening to two large spots centrally; a pallid spot above spinnerets, ventrally brown with three short longitudinal bands. Sternum redbrown.
Carapace. With uniformly distributed pallid setal bases bearing short, fine black setae; cuticle lightly coriaceous. Fovea very short, deep.
Eyes. PLE on low mounds.
Chelicerae. Small, coniform with short triangular fang about twice as long as width of base; lobe anterior to fang with ca. 8 long curved black setae.
Maxillae. Roughly coniform, tapering ectally from base to tip which has dense bush of black hair; covered basally and ectally with many short thorn-like and several long bristles; maxillae almost touch in front of labium; shallow crescentic depression entally.
Labium. Longer than wide, almost flat, converging from basal notches to narrow rounded tip.
Sternum. Widely cordate, with slight intercoxal point, distally rounded; margins slope quickly to flat broad central plateau. Uniform cover of fine and thick black bristles, all posteriorly directed. Legs. For measurements see Table 1. Coxal bases with slightly produced extensions on III, IV. Trochanters convex and without notches. Coxae I

TABLE 1. Leg measurements of Hetaerica harveyi, holotype male.

	Leg 1	Leg 2	Leg 3	Leg 4	Palp
Femur	1.38	1.38	1.19	1.69	0.73
Patella	0.69	0.69	0.65	0.81	0.38
Tibia	1.08	0.92	0.73	1.23	0.31
Metatarsus	1.08	0.92	1.12	1.85	
Tarsus	0.85	0.85	1.23	1.23	0.81
Total	5.08	4.76	4.27	6.81	2.23

FIG. 4. Distribution map of Hetaerica scenica (Koch).
with uniform retroface. Leg cuticle smooth, shiny, without hair, only bristles and spines. Distoventral metatarsi III, IV with denser cluster of black bristles and preening combs of 4-6 bristles retrolaterally. Long erect bristles on tibia (2-3) and metatarsi (1), I, II.

Spines. I: fe pld1, pa0, tiv.1.2.2w, me v.2.1.2.2.3, ta pv4 rv6. II: fepld1, pa0, ti v.1.1.1 w, mev2.2.2, ta pv5, rv4. III: fe p2d3r1, pa plr1, ti p2d1r2v2.2.2; me p1.1.2d2r1.1.2v2.2.2, ta pv6rv6. IV: fe p1d2r1, pa p1r1, ti p2d2r2v2.2.2, me pl.1.2d2rl.1.2v1.1.1.1.3, ta pl pv7rv7.Palp: fe d2, pa p1, ti p1v2w, ta p3v9.
Claws. Palpal claw directed diagonally across longitudinal plane, centrally dentate. Tarsus tapers to tip; c. 6-8 long teeth in slightly curved line down claw; paired claws long, curved with ca. 10 teeth in narrowly sinuous row; third claw distinct, edentate.
Trichobothria. Several short and 2-3 long trichae in two basal rows on tibiae; 2-3 long distally in irregular line on metatarsi; 5 on tarsi in straight line and lengthening distally.
Spinnerets. ALS long, cylindrical with domed apical segment; PMS short, wide; PLS more slender than PMS but slightly longer with apical dome.

Abdomen. Spiracle ridge short, roughly triangular hirsute patch = vestigial colulus. Epigyne. Sclerotised zone along each side.
HABITAT \& DISTRIBUTION. H. scenica occurs in open sclerophyll forest, heath and vine thickets in litter for much of eastern Queensland.

TOXICITY. Two bites from this species are reported from material listed: one produced only mild pain; the other happened under a tree (dropped) and a 2 cm white area surrounded by 5 cm red cellulitic area developed.
REMARKS. Jocqué (1995) noted the presence of an undescribed species from Lake Broadwater (no registration number given) which Jocqué (pers. comm.) notes subsequently is not congeneric with Hetaerica and is not conspecific with males and females he listed from that locality in the material of Australorena scenica (QM S15735).

Other material of H. scenica differs from that from Pentlands only in that the anterior lateral white bars on the dorsal abdomen are broken in the posterior third; the palps are indifferentiable.

Also, we report here, in males from Pentlands and elsewhere, the presence of a weak dorsal and epigastric scutum and that the conductor is apically rolled; neither were noted by Jocqué (1995).

Hetaerica harveyi sp. nov.

(Fig. 5)
ETYMOLOGY. In honour of Dr Mark Harvey, friend and colleague.

MATERIAL. HOLOTYPE: ठ, WA; O'Neill Rd State Forest, site NR02, wet pitfalls $1-5 ; 35^{\circ} 02^{\prime} 27^{\prime \prime} \mathrm{S}$ $117^{\circ} 10^{\prime} 17^{\prime \prime} \mathrm{E}, 13$ Oct 1997-14 May 1998, Paul van Heurck, CALM-WAM survey, WAM98/1675. PARATYPE: ̊̀, same data, WAM98/1676.

DIAGNOSIS. Differs from H. scenica in the triangular fold rather than spine-like process on the tegulum.
DESCRIPTION. Holotype male WAM98/1675: Carapace 2.57 long, 1.84 wide. Abdomen 2.23 long, 1.42 wide.
Colour. Carapace, chelicerae, sternum and maxillae as for H. scenica. Abdomen dark brown dorsally with two pairs of large ovoid white spots anteriorly, subcircular smaller pair centrally and semicircle posteriorly over spinnerets, ventrally with two white biconvex len-shaped spots around small white central spot. Dorsal scute narrow,

FIC 5. Hetaerica harveyi sp, nov, holotype male. Pedipalp, tibia, cymbium \& bulb, ventral right $A, D-C$. Scanning electron micrographs. A. wentral view. B. tarsal dorsal vicw show ing trichobothia and other sensory
 apophysis, ventral view.
thin but distinct for half length. Abdominal cuticle with iridescent sheen. Separate genital scute distinct. Legs dark brown with sheen, coxae and metatarsi and tarsi lighter. Spinnerets brown. Eyes. AME:ALE:PME:PLE, 4:7:6:6.
Spines. I, II: fe-ti, 0; me I, v1.2.2.3, some are short blunt thorns but not consistent on left and right leg. II: tibiae with midventral line of 3 long curved spines; me v1.2.3. Tarsi I, II with no more than thick bristles. III: fe p1d3r1; pa plr1; ti pld1rlv1.2.3; me p3d1r3v2.1.3; ta v2.2.2.2.2. IV: fe d2r1; pa p1r1; ti p2d1r2v2.2.0; me p3d2r3v1.1.1.1.2.3; ta v2.2.2.2.2.
Palp. As for H. scenica but with spine-like process adjacent to the embolus tip.
Spinnerets. PLS are short (ca. 0.5 of ALS length) cylinders with noticeable gap to smaller PMS. PLS \& PMS almost in line; colulus only a hirsute area of cuticle. Tracheal spiracle indistinct.
Female unknown.
DISTRIBUTION. Known only from southwestern Western Australia.

ACKNOWLEDGEMENTS

We are grateful to Mrs Helen Stark for Fig. 1. Travel funds from grants from DFG and

Australian Biological Resources Study were gratefully used by BCB and RJR , respectively. We are grateful to Drs R. Jocqué, MT, and Mark Harvey, Western Australian Museum for comments on the manuscript.

LITERATURE CITED

DAVIES, V.T. 1985. Araneomorphae (in part). pp. 49-125. In Walton, D.W. (ed.) Zoological Catalogue of Australia. 3. Arachnida. (Australian Government Printing Service: Canberra).
JOCQUÉ, R. 1991. A generic revision of the spider family Zodariidae (Araneae). Bulletin of the American Museum of Natural History 201:1-160.
1995. Notes on Australian Zodariidae (Araneae), I. New Taxa and key to the genera. Records of the Australian Museum 47: 111-140.
KOCH, L. 1872. Die Arachniden Australiens, nach der natur beschrieben und abgebildet. Nürnberg, 1872: 105-368.
RAINBOW, W.J. 1911. A census of Australian Araneidae. Records of the Australian Museum 9: 107-319.
1916. Arachnida from northern Queensland. Records of the Australian Museum 11: 33-64.
SIMON, E. 1893. Histoire naturelle des araignées. Paris, 1(2): 257-488.

A NEW CORAL-HATING BARNACLE: THE FIRST RECORD FROM THE GREAT BARIRIER REEF, AUSTRALIA

ARNOLD ROSS AND WILLIAM A. NFWMAN

Ross. A. \& Newman. W.A. 200110630 : A new coral-eating banacle; the first recurd lrum the Great Barrice Reef, Australia. Memoirs of the Qucenslond Museum 45(2): 585-591. Brishane. ISSN 0079-8835.

The Hoekiini Ross \& Newman, 7995 includes four genera of coral-edting- pyrgnmatid barnacles. They parasitise only the zooxanthellate, scleractinian coral Hybrophora Fischer, 1807, which occurs throughout most of the Indo-West Pacilic. All of the known species have an imegularly shaped shell found nested cryptically beneath the tissucs between the hydnons of the coral. These barmacles are readily distinguished from the setose-feeding pyrgomatids not only by subsisting on the sotit tissucs of the host that covel the minute orifice, but also in apparently being absoptive parasites. Until now Hhythophora ol the Creat Barrier Reet was not known to be inlected by these parusites. The few samples availathle nut only harboura far greater concentration of individuals than moted previously, but also display a distinctive morphology. These represent a new genus and species for which we propose. Ausurallowetio curdenue. \square Cirmpedia. Pygenmatidac., Hachiniv, parusite, Australhuetiu cardenue gen. nov. sp. nov:, EJudmphora sp.

Arnoht Ross of Whlian A. Newman, Scripps fnstitution of Oceanographn: La Jolla, Culifornia 92093-02112 USA: 313 Jul! 1999.

The term 'coral-cating barnacle' was proposed by Ross \& Newman (1969) for a coral- inhahiting pyrgomatid tirst described by J.E. Gray in 1831 and presently known as Hoekia monticulariue. What contributed to the uniqueness of this and similar species in the Hockini Ross \& Newman, 1995, which occut exclusively on the faviinid Hydnophora Fischer, 1807, is the aberrant or vestigial cirri, highly moditied mouth appendages, and a wall having no fixed outline that is hest described as protean, In addition, the wall has a characteristic hypertrophied lateral margin which comes in broad and intimate contact with the soft tissues of the host coral. It is through the tissue covering this tinely divided (deliquescent) margin that we believe the barnacle mediates its nutritional as well as physical relationship with the host. In some respects these bizare barmacles tend to resemble or mimic the host curals upon which they live and feed (Ross \& Newman. 1995).

We report herein that at least one species of coral found on the Great Barrier Reel (GBR) of Australia is subject to infestation by an unusual new genus of coral-cating barnacle, and also call attention to the likelihood there are other species of this or related genera to be discovered on corals of the GI3R. Related genera and species are known to occur on other coral reefs, such as those of New Caledonia, Japan, Singapore, Indonesia, Mauritius, the Red Sea and elsewhere (Ross \& Newman, 1973, 1945; Ross, in prep.).

What is surprising about the present spectes is not only its relatively large size coupled with an exceptionally mimute orifice, but also in one sample, its high population density on relatively slender, round branches of H. rigida (Dana, 1846). In general, we have rot had the opportunity to cxamine as many dried specimens as those helore us. Because of their unique wall and opercular morphology we propose a new genus and species for them.

SYSTEMATICS

PYRGOMATIDAE Gray, 1825
PYRGOMATINAE Gray. 1825
HOEKIINI Ross \& Newman, 1995

REMARKS. Ross \& Newman (1995) proposed this tribe to include Hoekia Ross \& Newman, 1973 (3 species), Eohockia Ross \& Newman, 1995 (2 species), Parahoekia Ross \& Newman, 1995 (1 species) and Aherehia Ross \& Newman. 1995 (2 species) all of which have a wall that is irregular and protean in outlines. The definitions of these genera and the new genus are based on the presence or absence of internal lacunae and the mode by which the barnacle's circulatory system accesses the circumferential channel and marginal fringe of the wall.

All measurements herein are in millimetres unless othervise stated.

FIG. 1. Australhoekia cardenae gen. nov., sp. nov.; on H. rigida; Bowden Reef, GBR; QM coral G6734. A, view of coral with several barnacles in situ. Note proximity of individuals and orientation relative to one another, suggesting ability to cross-fertilise (paratypes, QM W24862). B, large individual on different branch of same coral. Note the minute size of the orifice relative to the major axis of the wall (paratype, QM W24862). C, dark coloured wall of holotype (QM W24861) in situ at top. The hydnons of the coral form a palisade surrounding the barnacle. D, SEM, apical view of holotype, carinal end at top. Note the uniformly narrow marginal fringe. E, SEM, oblique view of paratype (QM W24863) with large hydnon on outer lamina of wall (from this perspective it appears the hydnon is actually growing on the marginal fringe); carinal end toward upper right. Arrows indicate presence of other individuals on coral.

KEY TO THE GENERA OF HOEKIINI

1. Wall alacunate (lacking lumena connecting to circumferential channel); marginal fringe filigreed, simple . . . 2
Wall lacunate (with lumena connecting to circumlerential channel); marginal fringe not filigreed, complex. . . 3
2. Outer lamina lobate, not reflexed; marginal fringe narrow, not reflexed; carinal and rostral ridges prominent Parahoekia
Outer lamina ovate, retlexed; marginal fringe wide, reflexed; carinal ridge obscure, rostral ridge lacking Eohoekia
3. Distal margin of outer and inner lamina strongly ascendant, higher than orifice Ahoekia Distal margin of outer and inner lamina slightly ascendant, lower than orilice
4. Orifice relatively large ($\mathrm{r}-\mathrm{c}>0.37 \mathrm{~mm}$); carinal ridge obscure, pronounced gap between laminae; width of marginal fringe variable, deliquesence diffuse Hockia Orifice relatively small ($1-\mathrm{c}<0.37 \mathrm{~mm}$); carinal ridge prominent; minute gap between taminac; width of marginal fringe uniform, deliquescence compact

Australhockia gen. nov.
Australhoekia gen. nov.
TYPE SPECIES. Australhoekia cardenae sp. nov.; Recent, Great Barrier Reef, Australia (details below).

ETYMOLOGY, Latin, Austral-, or southem, and -Hoctia, in reference to its occurrence in Australia and its affinities with Hockia and related taxa.

DEFINITION. Wall moderately thin, somewhat delicate in appearance; lacunate; peritreme prominent; carinal ridge slender, long, exceedingly prominent; orifice minute, subapical on rostral slope; distal portion of outer (upper) lamina essentially flat; marginal fringe of inner (lower) lamina relatively uniform in width, slightly ascendent, lower than orifice, compact; lacunae on inner wall separate, irregular in outline, dispersed to concentrated laterally, connecting via lumena directly to circumferential channel.

REMARKS. The presence of lacunae (pits opening to active or abandoned lumena) on the internal surface of the wall indicates a derived grade of organisation previously known only in Hoekia and Ahoekia. Hoekia differs by having a generally larger orifice (>0.37), a more diffuse marginal fringe which is exceedingly variable in width and especially wide at the extremities, a thin wall, a pronounced gap between the margin of the outer and inner laminae and a relatively inconspicuous carinal crest. The two species of Ahoekia have a relatively larger orifice (0.4-0.5) standing below or at nearly the same elevation as the strongly ascendent marginal fringe, but it has a thick and more massive wall, a pronounced gap
between the margin of the outer and inner laminae, a compact or dense marginal fringe varying considerably in width and especially wide at the extremities, and a relatively inconspicuous carinal ridge.

In contrast Australhoekia has a relatively small orifice (<0.37) situated well above the slightly ascendent marginal fringe, a decidedly thick but somewhat delicate wall, a minute gap between the laminae, a relatively narrow and compact marginal fringe that is essentially uniform in width, and an exccedingly prominent carinal ridge. It is noteworthy that in Hockia the inner lamina develops at a greater rate and extends significantly larther than the outer lamina, whereas in Australhoekia both laminae develop at essentially the same rate and therefore extend to much the same degree.

Australhoekia cardenae sp. nov.

(Figs 1-2)
ETYMOLOGY. In honor of Carden C. Wallace, Museum of Tropical Queensland, Townsville, Australia, who collected the corals and for her keen interest in all that relates to them.

MATERIAL. Queensland Museum (QM): all specimens dried; 19 complete specimens on 21 cm branch, 13 complete specimens on 16 cm branch of H. rigida; QM coral G6734; on side of small opening in south end of Bowden Reef, GBR, NE Queensland (Qld), Australia; Carden C. Wallace coll., 25-VII-1972; 0.6-3.1m; coral tissue pale pink-brown; associated with a calcarcous alga, vermetids and 4 specimens of Galkinia sp. cf. G. indica (Annandale, 1924). HOLOTYPE: QM W24861. PARATYPES: (28 walls with bases, 19 bases only) QM W24862, W24863 (Fig. 1E), W24864 (Fig. 2E-F); 1 specimen (wall and opercular plates only), Scripps Institution of Oceanography, Benthic Invert. Coll., C-9980. OTHER MATERIAL. Museum of Tropical Queensland (MTQ). 2 specimens on H. rigida, first barrier reef NE of Murray I., Qld, $09^{\circ} 55^{\prime} \mathrm{S}, 144^{\circ} 05^{\circ} \mathrm{E}, 0-5 \mathrm{~m}, \mathrm{MTQ}$ coral G40321 (AIMS site 87). I specimen on H. cxesa Pallas, 1776, Falcon I., Palm Is, Qld, $18^{\circ} 46^{\circ} \mathrm{S}, 146^{\circ} 32^{\prime} \mathrm{E}, 1.5-10 \mathrm{~m}$, MTQ coral G38995 (AIMS site 9). 2 specimens on H . rigida, Eclipse I., Palm Is, Qld, $18^{\circ} 46^{\prime} \mathrm{S}, 146^{\circ} 33^{\prime} \mathrm{E}, 3-15 \mathrm{~m}$, MTQ coral G38964 (AlMS site 126).

DIAGNOSIS. As for the genus.
DESCRIPTION. Wall white to slightly yellow, opaque (translucent when immersed in water), large (Fig. 1A-C), commonly covered with sclerites (Fig, 1D) and/or hydnons (Fig. 1E); concentric growth ridges slightly beaded; rostro-carinal ($\mathrm{r}-\mathrm{c}$) diameter of adults ranging from 4.8 to 14.8 (holotype 6.8); lateral diameter seldom exceeding r-c diameter; peritreme

protuberant, tall, elongate-oval (major axis significantly greater than minor axis, Fig. 1C); carinal ridge tall, narrow, prominent, generally higher than orifice, extending to periphery (Fig. 2 A); orifice in small specimens with slightly raised rim (Fig. 2B), r-c diameter 0.27-0.37 (holotype 0.27); distal edge of outer lamina flat to slightly ascendent; marginal fringe of inner lamina finely divided (deliquescent), compact, same as or slightly higher than outer lamina, relatively uniform in width (Fig. 1D), elevated on both sides of carinal ridge; outer lamina and marginal fringe of inner lamina separated by an indistinct or slight gap (Fig. 1E); ratio of r-c diameter of wall to orifice ranging from approximately $26: 1$ to $43: 1$; inner surface of wall smooth to chalky, roughened, irregular, secondary layers often flaky, apparently teratologically disorganised in all specimens (Fig. 2F); sheath short, about $1 / 5$ to $1 / 3$ height of peritreme; lacunae of different sizes, discrete to confluent, uniform to irregular in outline, irregularly spaced, arrayed somewhat concentrically to concentrated laterally (Fig. 2E), major carinal lumen leading to carinal sinus; under transmitted light (immersed in water) lumena can be seen to radiate from arca immediately distal to sheath to circumferential channel; ancillary channels commonly extending distally to extremities of marginal fringe.
Opercular plates compound (Fig. 2C-D), thin. translucent, bilaterally symmetrical (Fig. 2F), arcuate lengthwise and in cross-section; limbus occludens (occludent ledge) large, slightly inflated; length of plates essentially equal (Fig. 2 F); height about $1 / 4$ length.
Basis irregular in outline; lower portion thinly calcareous, irregular or hummocky, not smooth; upper portion not preserved; greatest depth 11.4 (holotype 4.9).
Appendages and body unknown.
REMARKS. Several specimens in the type lot are represented solely by the basis cavity, 11 on
the large branch and 8 on the small, all of which have a characteristic amocboid outline. Although we have not seen the soft parts of this species, in spite of the minute orifice we have no reason to believe they will not resemble those of other Hoekiini (see Ross \& Newman, 1995). While there is no disparity in length of the opercular plates, which is readily apparent in other species, the plane in which the distal end of the scutum and tergum lie is not as reflexed as it is in others and the plates are proportionately smaller as are the fenestrae they form (see Ross \& Newman, 1995: 150).
Secondary deposition of calcareous material either in parietal tubes or on the inner surface of the wall is not uncommon in sessile barnacles. What is of interest here is that in one specimen (MTQ 38964), once the wall was removed from the basis, large flakes of calcareous material remained attached to the tissue adhering to the basis, and on several other specimens the inner surface of the wall was lined with loosely attached flakes (Fig. 2F). Normally, secondarily deposited calcite becomes an integral part of the wall, but in these cases the flakes are separate and more or less randomly arranged, and their functional significance is obscure. Indeed, these flakes appear teratological but they are unknown in other Hoekiini and other balanomorphs in gencral.
In the smaller specimens the orifice has a narrow raised rim that apparently developed early in its ontogeny (Fig. 2B). In larger individuals this rim is either worn away and/or obscured by a thin layer of coral skeleton on the outer lamina of the wall. However, there is no obvious difference between size of the orifice in the smallest, compared with largest individuals.

DISCUSSION

HOST SELECTION. The faviinid Hydnophora is unusual because the corallite centres are arranged around protuberent collines or hydnons, which result from circummural budding. The

FIG. 2. Scanning electron micrographs of Australhockia cardenae gen. nov., sp. nov., from H. rigida. A, lateral view of wall showing relationship of orifice to carinal ridge; NE Murray Is (ex MTQ coral G40321). B, lateral view of same showing the pronounced lip surrounding the orifice. C, external view of left opercular plate, scutal portion on right, slightly inflated limbus occludens at top (holotype, QM W24861). D, Internal view of right opercular plate, scutal portion on right, limbus occludens at top (holotype, QM W24861). E, internal view of wall with opercular plates in situ; the lacunae are irregular in outline and occur at different distances from the sheath (paratype, QM W24864).F, enlarged view of same, opercular plates in situ. Note the plates are similar in shape and length, but because the plates are agape and photographed at a different angle from the disassociated plates (above) it appears the fenestrae are absent, whereas there is a small fenestra at the scutal end but virtually none at the tergal end of the plate. Also, note the presence of exfoliating flakes still held in place on wall (paratype, QM W24864).
base of each hydnon is surrounded by short tentacles, with a single tentacle between each pair of sclerites (Veron, 1993: 428). Unlike most corals, wherein each polyp occupies a corallite, Hydnophora lacks distinct corallites. Consequently, while the mouth may occur where there are several contiguous tentacle-encircled hydnons, there may be no mouth in a similar array of hydnons. In preserved specimens the wall of the barnacle, which is encircled by one or two rows of tentacles and covered with a cloak of coral tissue consisting of two layers separated by radial mesenteries, clearly resembles or mimics the associated tissues surrounding and covering the hydnons of the coral (Ross \& Newman, 1995: 157).

Why species of Hydnophora are the only corals infected by coral-eating barnacles is unknown, and then of the some 22 species (Veron, 1993) only four have been identitied as hosts (Ross \& Newman, 1995). The presence of these barnacles solely on Hydnophora can likely be ascribed to their unusual topography, and to the thick, soft coral tissue in the 'valleys' between the hydnons, together providing a large lleshy area through which significant metabolic exchange and chemical mediation can occur. In the present specimens there is a broad gap between the marginal fringe and the coral hydnons and a halo of thick, dark, dried tissue surrounding the barnacle.

Based on earlier studies (Ross \& Newman, 1969, 1995) these parasites also have a veil of soft coral tissue covering the wall, extending from the marginal fringe and covering the orifice where it is fed upon by the barnacle, as evidenced by nematocysts among the stomach contents.

The type specimens from Bowden Reef occur on H. rigida, and only the second species documented from this coral; the first being Ahockia chuangi Ross \& Newman, 1995 from the Bay of Batavia, Java.

Ogawa \& Matsuzaki (1992) and Ogawa et al. (1998) reported the facultative occurrence of the coral barnacle Galkinia indica (Annandale, 1924) on several species of Hydnophora, but surprisingly Ogawa et al. (1998) did not find any Hoekiini on this coral in Mauritius where it is known to occur (Ross \& Newman, 1969, 1995). Thus the distribution of these barnacles appears to be very patchy. The Bowden Reef sample also contains several barnacles perched on the hydnons that are tentatively identified as G. indica, but we place no great significance on this association
other than to note the surface topography in some species of Merulina Ehrenberg, 1834 is similar to that of Hydnophora, and G. indica is known to settle on these corals.

None of the present corals show evidence of recently settled individuals, nor is there any indication there had been juveniles present. Throughout our studies of the Hoekiini we have been perplexed by the apparent lack of recent recruitment, and thus the reproductive success of these parasites. Although apparently producing small eggs, the reproductive effort generally does not appear to be high (Ross \& Newman, 1995: 166). The different sizes of the otherwise mature individuals in the present material may be related to the constraints imposed by settling at sites where wall growth is limited by the hydnons as well as to some recruitment, and therefore all of the individuals may have become established over a relatively short period of time. The proximity to adjoining individuals in most instances is adequate to insure cross fertilisation, but in others it appears to be an impossibility. The reproductive period(s) in coral barnacles in general, as well as the majority of Hoekiini, remains unknown.

MODE OF GROWTH. Balanoid barnacles in general develop a conical wall with a flat-lying basis, where vertical and lateral growth proceed essentially simultaneously. Generalised 4 -plated pyrgomatids follow the same basic pattern, whereas in derived forms the wall and basis exhibit rapid lateral growth to maximum diameter, developing a discoidal wall, followed thereafter by deepening of the basis in concert with growth of the host (Ross \& Newman, 1973; Anderson, 1992).

Wall development in the coral-eating barnacles represents a significant departure from the general pyrgomatine theme. The initial form of the wall is somewhat conical which is expressed by the shape of the peritreme of the adult. Growth thereafter is by lateral expansion to maximum size before a definitive hypertrophied inner lamina develops. Although presumably capable of developing a wall with a circular or ovate outline, the barnacle is constrained by having settled between hydnons and therefore it can only extend into the space available between them, the spatial arrangement of which dictates the barnacle's protean outline. In certain cases growth of the coral exceeds the rate of basal elongation by the barnacle and the hydnons form a tall palisade surrounding it, but there is no
indication of successful coalescence with and burial of, the bamacle.
CORALOVERGROWTHS. The ideal condition in Hockini is apparcntly a full cloak of soft fissue, upon which it feeds, extending to and covering the orilice, without the production of scletites on the outer lamina of the wall. In all of the species we have studied, most do not have a recognisable pattem of sclerites on the outer lamina of the wall. This contrasts with the present species from Bowden Reef in which the majority of the walls have clearly defined skeletal elements of the coral and a few even have small hydnons (Fig. 1E).

The growth of selerites and hydnons on the wall in some of the present specimens suggests they are either diseased and/or becoming senescent and no longer capable of inhibiting overgrowth. Alternatively, they may allow the growth of this covering, which would further conceal their presence on the host. Although we favor the first inference, the second may represent a means of forestalling predation, as is evident in many other pyrgomatids.
BIOGEOGRAPHY'. According to Ogawa \& Matsuzaki (1992) the relatively generalised Gulkinia indica (Annandale, 1924) and Canpellius errspinulesa (Broch, 1931) accur on Hydnophora. It is important to note that while these species occur on numerous other coral genera, the Hockini only occur on Hydnophora. This is in accord with the hypothesis that relatively generalised species exploit a greater variety of hosts than de more specialised species, and that they also have a broader geographical distribution (Nexman et al., 1976). Even though the highly specialised Hoekiini ranges throughout most of the Indo-West Pacific tegion, it is noted that both gencra and species of this tribe have relatively narrow latitudinal and longitudinal ranges, perhaps more so than is documented for any other pyrgomatid genus. But why the genera as well as the species are so regional when the host species are apparently wide-ranging is not intuitively obvious. It likely has something to do
with modest larval dispersal capabilities, but the type of larva produced by the lioekiini is yet unknown.

ACKNOWLEDGEMENTS

We thank Siephen D. Cook, Queensland Museum, Brisbane for permission to study the specimens comprising the type material. We also thank Carden C. Wallace, Museum of Tropical Queensland, Townsville, for forwarding reference specimens and SEM photographs of them. We are indebted to the many studen yolunteers at the Museum of Tropical Queensland, especially Michelle Lee, for taking the time to search the collections for these and other coral barnacles. The SEM photographs used herein were taken by Charles Graham, Scripps Institution of Oceanography Analytical Facility. A Contribution of the Scripps Institution of Oceanography, new series.

LITERATURE CITED

ANDERSON, D.T. 1992. Structure, function and phylogeny of coral-inhabiting barnacles (Cimpedia. Batanoidea). Zoological Joumal of the Linmean Society 106: 277-339.
NEWMAN, W.A., JUMARS. P.A. d. ROSS, A. 1976. Diversity trends in coral-inhabiting bamacles (Cirripedia, Pyrgomatinac). Nicponesica 12(1): 69-82
OGAWA, K. \& MATSUZAKI. K. 1992. An essay on host speciticity. systematic taxonomy. and Evolution of the eoral-barmacles. Bulletin of the Biogeographical Socicty of Japan 47 (10):87-101.
OGAWA.K., PILLAY,R.M. Q KAWASAKI, H. 1948. Coral-inhabiting barmacles (Cirripedia: Pyrgomatidae) from Atbion, west coast of Republic of Mautitius. Bulletan of the Biogeographical Society of Japan 53(2): 1-21.
ROSS. A. \& NEWMAN, W.A. 1969. A coral-cating barnacle. Pacific Science 2312): 252-256.
1973. Revision of the corat-inhabiting barmactes (Cirripedia: Balanidac). Transactions of the San Dicgo Society of Natural History 17(12): 137.174.
1945. A coral-iating hamacle, revisited (Cirripedia. Pyrgomatidae). Comributions to Zoology h55(3): $129-175$.
VERON. J.E.N. 1993. Cotals of Austali a and the IndePacific. (University of Hawaif Press: Ifonolulu).

SA, THOMSON

Thomson, S. A. 2000 (1630 A revision of the fossil chelid turtes (Pleurodira) described by C.W. de Vis, 1897. Alemoirs of the Quechstand Afusenm 45(2): 593-598. Brishame. ISSN 0079-5835.

Will increasing knowledge of the morphology of Australian chelid turtles and major changes in tavonomy in has become necessary to assign, where possible, the fossil species described last century by C.W. Ue Vis. It was found that four of these. Chelymy:s uberimu, C. atata. C. antiqua and Pelcoomaster ampla, were synonynous, with C. uberima being the senior synonym. Chedoms atherima was determined to be a member of the Elseyunthose aflinities lie with the Elvey lavarackum group of species. The paralectotypes of Chelyms antiqua were found to he anew species of the enenus Rheodytes and sister to R. lenkops. These specimens are described as a new species. Chelodima insculpha was found to be a valid taxon whose aftinities probably lie with C, expansa, \square Tesmulines, side-necked purfer, Chelidue, Miorente. Pleistocene.
S.d. Thomson. Applicd Ecology Rescarch Group und CRC for Freshwater Ecoloyv: Thiversity of Canberra, Canberru 2601, Australia. (e-mail: thomson(a) actg. comberractu.am): 29 October 1499.

The identification of fossil forms is an important addision to the understanding of the evolution and zoogeography of any species group. This is made difficult when the taxonomy of the extant forms is not well defined, as is the case for the Australian chelid turtles (Cogger et al., 1983; Thomson et al., 1997). With some recent advances on the skeletal morphology of chelids (Thomson de Georges, 1996: Thomson et al., 1997) it is now possible. and appropriate, to examine the fossil forms that have been described formally. For cxample, the recent description of a fossil turle from Riversleigh, Elseta lavarachorum (While \& Archer, 1994), and the subsequent discovery of a living population of this species (Thomson et al., 1997).
Fossil turles in Australia have for many years heen ignored due to the lack of detailed description of extant species. Rarely have skeletal diagmoses accompanied descriptions of the Australian chelid turtes, even those more recent. This makes the identification and placement of fossils difficult or impossible.

Apart from Elseya lavarackorm and E. madibajagu Thomson \& Mackness, 1999, only five other species of fossil chelid turtles have been described from Australia (Gafliney, 1981). all by C. W. de Vis (1897). Galfney (1981) found that the available material was indeterminate below family or genus level was the last to revise the de Vis specimens. Three of the species. Chelymus uberima, C. antiquatand C. arata, were
identified as Emvdura sp. ($=$ Emydura + Liseya of Gafiney, 1977): another, Chefodina insculpita. was identified as Cheladima sp.; and the last. Pelecomastes ampla, could not be identified to family (Gaffney, 1981). These species were all described from framentary material from the Darling Douns with no holotypes identified (de Vis, 1897) hence Gaffney (1981) set lectotypes from each set of fragments and placed the rest of the specimens as symtypes. The specimens were originally diagnosed using difficrences in sulci (de Vis, 1897) but it seems that they were actually arranged according to scute ornamentation (Gaffney. 1981). This is a highly variable character and I agree with Gaffney (1981) that it is of little phylogenetic significance.
In this paper the fossil turtles described by de Vis (1897) are reanalysed and where appropriate, resurrected or placed in synonymy. They are placed in their correct gencra using previously published diagnostic characters and their allinities and phylogenetic implications discussed. The purpose of this paper is to solve the nomenclatural problems associated with having described specimens ofunknown aftinity. It is not the purpose ol this paper to present a review of the living genera with respect to the fossils.

METHODS

Turlles representing all extant Australasian species bave been burrowed from museums, collected or othemise obtained, and skeletonised

FIG. 1. A, Lectotype of Elseya uberima, QMF9040, showing the enlarged first vertebral. B, Lectotype of Elseya arata, QMF16-1099B, now synonymised with Elseya uberima. C-D, dorsal and ventral views of the Lectotype of Pelecomastes ampla, QMF1102D, now synonymised with Elseya uberima; ventral view shows the large deviation of the anterior bridge strut from the rib/gomphosis.
as per methods outlined in Thomson et al. (1997). This turtle collection of some 350 specimens is housed at the University of Canberra. Characters described in Thomson et al. (1997) were used for diagnosis and the fossils were then assigned to genus and their affinities demonstrated. A complete list of specimens examined can be found in Thomson et al. (1997). Further specimens with locality data will be presented in a future major analysis of the Elseya genus.

SYSTEMATICS

Elseya uberima (de Vis, 1897)

Chelymys uberima de Vis, 1897: 3.
Chelymys antiqua de Vis 1897:4.
Chelymys arata de Vis 1897: 5.
Pelecomastes ampla de Vis 1897: 6-7.
MATERIAL. HOLOTYPE: none set (de Vis, 1897). LECTOTYPE: QMF9040 by subsequent designation (Gaffney, 1981) (Fig, 1A). PARALECTOTYPES: QMF1104, 1105 by subsequent designation (Gaffney, 1981). LECTOTYPE of Chelymys arata QMF16-1099B by subsequent designation (Gaffiney, 1981) (Fig. 1B). LECTOTYPE of Pelecomastes ampla QMF1102D by subsequent designation (Gaffney, 1981) (Fig. 1C-D).

LECTOTYPE of Chelymys antiqua QMF16-1106E by subsequent designation (Gaffney, 1981).

HORIZON. Pliocene or Pleistocene.

LOCALITY, Darling Downs, Queensland, Australia.

DISCUSSION. Material consists of: QMF9040, nuchal, right peripherals 1-3, left and right pleural 1, articulated; QMF1104, numerous unarticulated carapace fragments including peripherals and pleurals; QMF1105, numerous unarticulated plastral fragments.
The lectotype assigned by Gaffney (1981) is suitably diagnostic and can be recognised as an Elseya without difficulty. The first vertebral scute is significantly wider than the second (Fig. 1A), a character found only in the Elseya and Chelodina (see Thomson et al., 1997). The Chelodina have either an anterior bridge strut restricted to the peripheral bones and not continuing on to the pleural bones, e.g. C. longicollis group except C. novaeguineae (see Thomson, in press; Thomson et al., in press), or the strut continues on to the pleurals but not contributed to
by the rib gomphosis, alhough it crosses it in some species, is wide throughout its length with a significant enlargement at the medial end, e,g. C. expansa group and C. novaeguineae (see Thomson, in press; Thomson et al., in press). The structure of the anterior bridge struts in Cheldmys uherima is consistent with neither of the Chelodina conditions and is similar in structure to that described for the Elsevet lavarackorum group (Thomson et al., 1997) (Fig. 2.), The structure of the first pleural and the indentation at the nuchal region places this species in the Elserg lavarockorum group of species. The fact that this species has a cervical scute is not unusual among fossil Elseya, particularly those from western flowing drainages. Specimens in the South Australian Museum from Lake Palankarina and Lake Ngapakaldi all exhibit this feature and may represent an entire extinet radiation of Elseva turles.

The four species synonymised above are, in this paper, recognised as a single diagnosable taxon, with C. uberima being the senior-most available name (page priority). The genus Chelymur has been synonymised in recent years with Emvedura (Cogger et al., 1983), the genus Pelecomastes is considered here a junion synonym of the genus Elseya, Gray 1867.

These species were diflerentiated largely by shell ornamentation (Gaffiney, 1981), an unsatisfactory method since this character can vary significantly even within a single population of turtles. The lectotype of Chelymys antigur is not easily diagnosable. Based on the morphology of the pygal bone of extant species it would be attributed to almost any short-necked taxon in that the posterior suture of the ilium is in close proximity to the vertebral column. The Elseya latisternum group and Pseudemydura have a triangular suture on the pygal (unpublished data) ruling out these taxa, This pygal is either Elseyu or Emyduras but without the eighth pleural it is impossible to identify further (Thomson \& Mackness, 1999). As there are no other diagnostic features between these specimens, all are considered as a single diagnosable taxon and assigned to Elseya.

Rheodytes devisi sp. nov.

ETYMOLOGY. This species is named for C.W. de Vis who described most of the material presented in this paper as well as many other taxa within Australia.

MATERIAL HOLOTYPE: OMF 16-1106B (Fig. 3A-B). I'ARATYPES: QMF16-1106A, C-D.

FIG. 2. Comparative diagrams of representative short-necked genera. A, Elseya latisternum; B, Elseya dentara; C. Rheodytes leukops: showing the angle between the rib/gomphosis (K) and the anterior bridge strut suture ($B C S$) on the first pleural (Pl). (From Thomson et al., 1947).

FIG. 3. Ventral and dorsal views of Rheodytes devisi, the ventral views showing parallel sutural edges and low angle of the anterior bridge strut. A-B, Holotype, QMF16-1106B; C, Paratype QMF16-1106C.

HORIZON. Pliocene or Pleistocene.

LOCALITY. Darling Downs, Queensland, Australia.

DIAGNOSIS. The genus Rheodytes can be diagnosed by the presence of a $10-15^{\circ}$ angle between the anterior bridge strut and the rib/gomphosis of pleural one, and by the parallel sutural edges of the bridge strut with intervening deep socket like sutural surface (Thomson et al., 1997) (Fig. 2C). This combination of characters is unique to this genus and is present in both specimens of first pleurals in the type series (Fig.

3B-C). The species Rheodytes devisi is diagnosed by its thicker, better formed, carapacial bones. Deeper insertion of the anterior bridge strut suture and the failure of the anterior bridge strut to either break through, or come close to breaking through, the pleural surface.

DISCUSSION. Material consists of: QMF161106B, right first pleural, almost complete (Fig. 3A-B); QMF 16-1106C, distal section of a right first pleural (Fig. 3C); QMF16-1106D, left partial pleural of indeterminate position but likely from the seventh pleural.
Rheodytes leukops is an inhabitant of the Fitzroy River in eastern Queensland, whereas R. devisi is found in the western flowing drainages of the Darling Downs. Among the extant taxa Rheodytes leukops can be identified by its extremely thin shell, to the point that the ilium and bridge strut often break through the carapace, all other genera have thicker shells ranging from the Elseya latisternum group through to the Enydura and Elseya groups. R. devisi has a thick shell much like other short-necked species and hence it can be diagnosed from its congener R. leukops. The species are allochronic and allopatric and appear to have inhabited different environments.

Chelodina insculpta de Vis, 1897
Chelodina insculpta de Vis, 1897.
MATERIAL. HOLOTYPE: none set (de Vis, 1897). LECTOTYPE: QMF1109A by subsequent designation (Gaffney, 1981) (Fig. 4). PARALECTOTYPES: QMF16-1107, F1109B-G by subsequent designation (Gaffney, 1981).

HORIZON. Pliocene or Pleistocene.
LOCALITY. Darling Downs, Queensland, Australia, restricted (this study).
DISCUSSION. Material consists of: QMF161107 (fig. V in de Vis, 1897), numerous carapace fragments including parts of pleurals and peripherals. Most of these are not particularly diagnostic. There is a partial articulated 6th and 7th pleural from the left side that has characters diagnostic of Chelodina. The fragment listed as D in de Vis' figure V is actually a 7th pleural not a 6th. QMF1109a-g (fig. VI in de Vis, 1897), various plastral units which can clearly be diagnosed as Chelodina using the lectotype, QMF1109A (Gaffney, 1981). This would appear, however, to represent at least two animals as sutural surfaces are preserved yet there is no match between the anterior and posterior halves of the plastron.

FIG. 4. Ventral view of Lectotype of Chelodina insculpta, QMF1109A, showing large area of the intergular scute on this unit.

The material available is diagnosable to genus using the scute sulci arrangements of the lectotype, an entoplastron in which there is clearly a large intergular which is scparated from the margin anteriorly by the gulars a unique feature of the Chelodina (Gaffncy, 1981) (Fig. 5). There is further evidence of generic assignment from the relative widths of the anterior and posterior parts of the posterior lobe of the plastron and from the positioning of the pelvic suture on pleural seven of the carapace.

Chelodina insculpta possessed a large, robust bridge strut, a character unique to the C. expansa group of species (Thomson, in press; Thomson et al., in press.). Further, this specimen had a large carapace excluding many species from the C. expansa group, such as C. rugosa, which have a reduced margin. However, the margin is not as flared at the posterior or as wide as C. expansa. Therefore, C insculpta is recognised as a valid taxon.

The locality data for this species was originally given as a combination of the Darling Downs, Queensland; Warburton River, South Australia; and Eight Mile Plains near Brisbane, Queensland (de Vis, 1897). In the original description de Vis states that the Warburton material was not figured and consisted of seven carapace fragments. As the name bearing lectotype is an entoplastron this

FlO. 5. Comparison of the intergular region of A , Chelodina rugosa and B, Elsela dentata; showing difference between the Chelodina and Shorenecked Chelid conditions,
rules out the Warburton River as a type locality. There is no mention of Eight Mile Plains until the locality section of the paper and de Vis clearly states that "in addition to the fragments of carapace figured, sixteen others from the Darling Downs It seems clear that despite other material examined only Darling Downs material was tigured. As the lectotype (QMF1109a) is clearly identifiable in figure VL of de Vis (1897) I am restricting the type locality to the Darling Downs of Queensland.

DISCUSSION

The tive species and one genus described by de Vis (1897) are reduced to three species and Chelymys and Pelecomastes are synonymised with Elseya. Elseva uberima is an extinct form of snapping turtle belonging to a large group that possibly contains the New Guinea forms as their sole surviving relatives. They would appear to be the sister group of the Elseya lavarackorum group (sensu Thomson et al., 1997). Rheodytes devisi is the first lossil record of this highly restricted genus of Lurlles. Clearly sister tasa, they were found on opposing sides of the Great Dividing Kange. Chelodina insculpou is a large long neek turtle from an area where C. expansed may still be found. This species would appear to be part waly between the body forms associated with C. expamsa and C. rugosa, and likely to be the sister species of \mathcal{C}. expansa.

ACKNOWLEDGEMENTS

I thank the Queensland Museum lor loan of the type materjal of de Vis (1897). I thank those who have supplied specimens for the skeletal collection at the University of Canberra and Arthur Georges for his continuing support of my rescarch on turtle morphology.

LITERATURE CITED

COGGER, H,G, CAMERON, E.E.\& COGGER,H.M. 1983. Zoological Catalogue of Australia. Vol. 1. Amphibia and Reptilia. (Australian Government Printing Service: Canberra).
DE VIS, C.W, 1897. The extinct freshwater turtles of Queensland. Annals of the Queensland Muscum. 3: 3-7.
GAFFFNEY.E.S. 1981. A review of the fossil turtes of Australia. American Museum Novilates 2720: 1-38.
GRAY, J.E. 1867. Description of a new Australiar tortnise (Elseya latisternum). Annals and Magazine of Natural History 20(3): 43-45.
THOMSON, S. 1997. Manarement implications of poor alpha taxonomy. Neivsletter of the Australian Wildlife Management Society Newsletter (March, 1997): 14-16.
In press. The identification of the holotype of Chetoding oblonga (Testudines: Chelidae) with a discussion of taxomamic implications. Chelonian Conservation and Binloyy.
THOMSON, S. \& GEORGES, A. 1996. Neural bones in Australian chelid turtles. Chelonian Conservation and Biology 2(1): 82-86.
THOMSON, S. de MACKNESS, B. 1999. Fossil turtles from the early Pliocene Bluff Downs Local Fauna, with a description of a new species of Elseyca. Transactions of the Royal Society of South Australia 123(3): 101-105.
1 HOMSON S., WHITE, A. \& GEORGES, A. 1997. A re-evaluation of Emydura lavarackorum: Identification of a living fossil. Memoirs of the Qucensland Museum 42(1): 327-336.
IHOMSON, S., KENNETT, R. \& GEORGES, A. In press. A new species of freshwater turtle (Testudines: Chelidac) from the sandstone plateau of Arnhem Land, in tropical northern Australia. Chelonian Conservation and Biology.
WHITE, A. \& ARCHER, M. 1994. Emydura lavarackorum, a new Pleistocene turtle (Pleurodira: Chelidae) from fluviatile deposits at Riversliegh, Northwestern Queensland. Records of the South Australian Museum 27: 160-167.

BREEDING, FEEDING AND ARBOREALITY IN PARADELMA ORIENTALIS: A POORLY KNOWN, VULNERABLE PYGOPODID FROM QUEENSLAND, AUSTRALIA

PETER R. TREMUL

Abstract

Tremul, P.R. 200006 30: Breeding, feeding and arboreality in Paradelma orientalis: a poorly known, vulnerable pygopodid from Queensland, Australia. Memoirs of the Queensland Muscumt 45(2): 599-609. Brisbane. ISSN 0079-8835.

On Boyne Island, in central Queensland, Paradelma orientalis (Gunther, 1876) is noctumal and (at least) partly arboreal. Specimens are found frequently on the trunks of Acacia falciformis. They feed, but not exclusively, on the sap of A. falciformis while scats analysis has also revealed remains of arthropods. P. orientalis is active in warm months and inactive when the night maximum temperature falls below $19^{\circ} \mathrm{C}$. One female specimen encountered during this study laid two elongate eggs $(34 \times 12 \mathrm{~mm}, 37 \times 11 \mathrm{~mm})$ which hatched 81 ± 1 and 82 ± 1 days later. At emergence, neonates measured 69.0 and 72.0 mm , respectively. \square Pygopodidac, Paradelma orientalis, sap-feeding, arboreality, reproduction, Brigalow Belt.

P.R. Tremul, 5 Kilman Court, Boyne Island 4680, Australia: 20 July 1999.

Paradelma orientalis (Gunther, 1876) is one of four pygopodids confined to Queensland. Its distribution has been reviewed recently by Schulz \& Eyre (1997). P. orientalis occurs in a wide variety of open forest habitats on several soil types between the Carnarvon Ranges $\left(25^{\circ} 19^{\prime} \mathrm{S} 148^{\circ} 20^{\circ} \mathrm{E}\right.$) and Eena State Forest, ($28^{\circ} 19^{\prime} \mathrm{S} 150^{\circ} 50^{\circ} \mathrm{E}$), via Inglewood; and between the Chesteron Ra. ($26^{\circ} 09^{\prime} \mathrm{S} 147^{\circ} 14^{\circ} \mathrm{E}$), via Charleville, and Boyne Island ($23^{\circ} 56^{\prime} \mathrm{S} 51^{\circ} 20^{\circ} \mathrm{E}$), via Gladstonc. Although Wilson \& Knowles (1988) reported P. orientalis to be '... moderately abundant, particularly on sandstone ridges ...', it has been regarded as 'restricted to specific habitats, vulnerable' (McDonald et al., 1991) and 'vulnerable' (Cogger et al., 1993; Nature Conservation Wildlife Regulation, 1994).

Most recently, under (IUCN definitions) it has been treated as 'vulnerable' with 'population reduction ... decline in area of extent of occurrence and ... quality of habitat ...' (Covacevich ct al., 1998).

The bulk of this species' range lies in Queensland's Brigalow Belt, a region in which habitats are known to be seriously assailed by extensive clearing (e.g. Johnson, 1996).

Greer (1989) observed that two species of pygopodids (Pygopus nigriceps and P. orientalis) are 'largely, if not exclusively nocturnal'. Of the latter, he noted, '... active at night' (in captivity) but '... inactive by day'. Data on the biology of this species are scant. Save for one recent, brief account of sap-feeding by P. orientalis (Tremul, 1997), nothing has been added to knowledge of the habits of the species since the summary by

Greer (1989) 'Little is known of the biology ... found in woodland under cover ... reproduction in late spring and early summer ...'。

An apparently substantial and healthy population of P. orientalis was discovered on Boyne 1 ., near the Lilly Hills Boyne Island Conservation Park in 1989. Observations made on specimens encountered there over ten years provide new data on arboreality, feeding and breeding behaviour and daily and seasonal activity cycles of P. orientalis. Hopefully this data will assist the conservation of a vulnerable species and highlight the significance of the Acacia falciformis woodlands on Boyne I.

STUDY SITE

Lilly Hills is in the SE portion of Boyne I. ($23^{\circ} 56^{\prime} 54^{\prime \prime} \mathrm{S} 151^{\circ} 20^{\prime} 53^{\prime \prime} \mathrm{E}$). Some 43.9 ha of the hills are reserved under the Lilly Hills Boyne Island Conservation Park. A triangular section (defined by two almost perpendicular ridges) in the NE region (adjacent to the park) was selected as a study site, an area of approximately $13,000 \mathrm{~m}^{2}$ (Fig. 1). The vegetation in this area is a Corymbia citriodoralEucalypius exsertalE. clarksoniana/E. crebra tall woodland with a sparse upper-mid-stratum of Acacia falcifornis, a sparse mid-stratum dominated by Pogonolobus reticulatus/Jacksonia scoparia/Acacia conferta and a sparse ground stratum dominated by Xanthorrhoea latifolia and clumps of Entolasia stricta, Themeda triandra and other tussock grasses. The substrate is covered by a dense layer of dry Eucalypius/Acacia leaf litter. Soils are shallow and contain quartz, greywacke,

FIC B. Study ares show ing the coordmates of P omentulis feeding trees $A-J$ and SB. R1 sugar glider feeding tree; $\mathrm{K} 2=$ Gehyra dubia feeding tree. Scale: distance between tree F and site $\mathrm{SB}-17.7 \mathrm{~m}$.
mudstone and rare chert rock fragments. Very few large rocks occur in the area.

METHODS

Early observations indicated that P. orientalis was easily found at night, but difficult to locate by day; so all searches were made after sundown. Between 1989 and 1996 random searches were conducted throughout the northern region of Lilly Hills and alongside roads adjacent to the area. Observations of any activity were recorded. The data collected suggested that P. orientalis was reasonably common and active throughout the warmer months of the year. Some of the feeding trees during this period were measured and labeled as sites (Site A-H). Unfortunately many of these early sites on private land became inaccessible and were damaged by fire. As a result, in 1997 a smaller area, more suitable for comprehensive study, was selected (Fig. 1). On the 5/8/97 a maximum/minimum thermometer was placed in the shade of a grass-tree near the top of the SE ridge. Previous observations had suggested early August to be a dormant period and a suitable time to record the gradual temperature increases during late winter and monitor the commencement of activity of P. orientalis. The following night the SE ridge was searched on foot by torchlight. Maximum, minimum and current ground temperature were recorded, and a roughly diagonal path was taken to the top of the E ridge then back to the base corner (tree F, Fig. 1). A search of approximately one hour was conducted within an hour after dusk. This sequence of events was repeated for 48 consecutive nights. All observations were recorded and when any arboreal activity was seen the position of the specimen was estimated and the tree measured and labeled (tree A-G). Spacing between trees were later measured and exact positions were plotted by use of a compass and GPS (refer Fig. 1). Random searches were conducted again until late February 1998, when it was decided to measure as many individuals as possible during 12 consecutive nights. Four of these individuals were marked with white 'correction fluid' to enable them to be identified for a short period of time. This would hopefully give some indication of population size and establish whether or not individuals frequently visited the same tree. Random searches continued once again until May 1999. Searches during the following three months were increased to observe the beginning of the dormant period. The study concluded towards the

FIG. 2. Temperatures and activity recorded at P. orientalis site during August-September 1997.
end of July 1999. Scats were collected to ascertain if the species was an exclusive sap feeder.

RESULTS AND DISCUSSION

POPULATION SIZE. During the ten years of studying P. orientalis in the field, only 36% of specimens were handled and measured to minimise observer effect on behaviour. Between the 25/2/98 and the 8/3/98 (12 nights) 19 specimen measurements were recorded. Of these, 16 could be distinguished easily by dimensions and autotomy (Table 2). From these data, it seems reasonable to surmise that on Boyne I. at least, P. orientalis is fairly common. However, with land clearing of areas neighbouring the Lilly Hills, human population increase on the island and the introduction of roadside lighting, pressures are undoubtedly mounting. Lilly Hills Reserve and other areas supporting Acacia falciformis woodlands do provide a viable habitat and food source for P. orientalis.

DAILY ACTIVITY. Weather conditions on nights when P. orientalis were observed were generally warm, clear and still (Table 1). Hand-searches in the study area (1989) resulted in the collection of only one inactive specimen under a rock. Sporadic visual-searches (not listed in tables) over the following 10 years revealed no obvious diurnal activity, although disturbance to the areas was minimal. By contrast, using a battery-operated light for P. orientalis from early evening (within the first hour post sundown) till

FIG. 3. Average ten-ycarly temperatures (1989-1998). Temperatures recorded at Gladstone (Bureau of Meteorology).

0120 hours was successful. This study confirms that P. orientalis is nocturnal.

SEASONAL ACTIVITY. On Boyne Island P. orientalis is active between late August and early June (i.e. late Winter-Autumn). Data relating to late winter temperature ranges and associated behavioural observations of P. orientalis are summarised in Fig. 2 for August-September, 1997. No activity has been observed when the maximum night temperature was below $19^{\circ} \mathrm{C}$. Observations throughout late autumn and winter (obs. \#121-140 and obs. \#42-65) and the ten yearly average temperatures for the Gladstone region (Fig. 3) suggest a dormant period between mid June and late August.

ARBOREALITY. Many pygpodids are known to climb into thick vegetation or on shrubs and trees. Greer (1989) summarises reports of such behaviour in Pygopus lepidopodus, Lialis burtonis, some Delma spp. and Pletholax gracilis noting that members of only two genera of pygopodids (Ophidiocephalus, Aprasia) do not climb. However, he records no evidence of arboreality in P. orientalis. Table 1 summarises observations of close to 10 years' encounters with P. orientalis specimens in trees or above ground. P. orientalis is rather conspicuous when perched on a feeding tree, the lead-grey colour often deeply contrasting. Specimens are able to climb the trunk by obtaining purchase on the rough, flaky bark (Fig. 4), and have been observed at heights in excess of 2 m . Only the trunk and main branches are scaled. Feeding trees have been at varying growth stages (refer Table 3) and have only included A. falciformis. Specimens found

FIG. 4. P. orientalis scaling an Acacia falciformis trunk.
in/on these acacias represent 75% of all specimens encountered during the study. From the recorded data, only 25 of a total of 101 specimens/observations were encountered on the ground, of these, 10 were observed on roads (7 active and 3 roadkills). Of the 4 individuals that were marked, one specimen was observed active on Tree I during 3 consecutive nights (obs. \#101-103). It appears likely that trees which provide an accessible supply of sap are visited frequently until the sap source dries up. Tree I was investigated closely and no bark or crevices were suitable for daily refuge of an animal of such size. However, Tree 1 was a small A. falciformis (refer Table 3) and other much larger trees may provide shelter as well as sap. The possibility of a 'home,' feeding tree could not be investigated properly without severe damage to the trees. Shea (1987) records finding a specimen of P. orientalis inactive in a fold in a sheet of stringybark lying alongside a large fallen eucalypt in the Moura district (CQ).
FEEDING. Pygopodids are known to include both generalist arthropod feeders (e.g. Pygopus spp.) and specialist ant and skink feeders (Aprasia spp. and Lialis burtonis, respectively), (Greer, 1989). However, until a preliminary observation from this study (Tremul, 1997), sap feeding was unknown amongst pygopodids and

FIG. 5. P. orientalis feeding on sap.
nothing was known about the feeding habits of P. orientalis (see Greer, 1989).

Table 1 details observations of sap-feeding on Acacia falciformis specimens by juvenile and adult specimens of P. orientalis. Sap constitutes a significant portion of the diet of P. orientalis, Newly hatched individuals have a natural instinct to climb in search of this food. A specimen measuring 69 mm snout-vent-length (SVL) and 76 mm tail length (TL) and weighing 1.5 g (body measurements and weight consistent with those taken of the hatched neonates) was observed on the trunk of A. falciformis, 30 cm from the ground (obs. \#93). Sap feeding continues through to adulthood with observations being recorded during all seasonal activity (Fig. 5). Of the 76 specimens/observations on trees, 20% were feeding and a further 9 were in very close proximity to sap. Adult specimens have remained perched at feeding sites for up to 46 minutes. However, the species is not an exclusive sap feeder. Scats collected from an individual from the study site (obs. \#111) have also contained spider and some cricket-like, orthopteroid remains and many unidentified insect fragments. Three other scats collected ($25 / 1 / 99$) outside of Boyne I. (20 km , N of Dingo, CQ) have consisted of tightly compressed membranous material (mostly plant) and the remains of a large spider and cricket. Other animals also feed on the sap of A. falciformis. The Sugar Glider (Petaurus breviceps) and Gehyra dubia, a common gecko, both do so in the study area (obs. \#88, \#103, \#107). The former is well known as a sap feeder and noted for its ability to make incisions into the bark of trees to assist sap flow. These gliders have been observed feeding on sap at a height and position well within reach of P. orientalis. The latter was reported recently to include sap in its
diet with feeding trees known to include Acacia leiocalyx, A. conferta and A. decora (Couper et al., 1995).

BREEDING. There is little data on breeding in all pygopodid lizards, no direct observation on any aspects of breeding in P. orientalis have been reported. It was believed to be an egg layer with a clutch size of two (e.g. Wilson \& Knowles, 1988; Greer, 1989). During this study one gravid female P. orientalis was collected (27 October, 1994. obs. \#30) and held captive in a closed container, consisting of leaf litter and moist, friable soil.
Between 6-8 November, 1994 this specimen deposited two pale, elongate eggs ($34 \times 12 \mathrm{~mm}$; $37 \times 11 \mathrm{~mm}$). The latter weighed 3.9 g (to maximise hatching chances, the former was not handled). Eggs hatched (81 and 82 ± 1 days later, during an estimated temperature range of $18-36^{\circ} \mathrm{C}$) on 27 and 28 January, 1995. The hatching process took from 7.5-53 hours. First indication that the smaller egg was hatching occurred at $9.00 \mathrm{am}, 25$ January, when transparent fluid exuded from a small slit in the shell. This continued for 12 hours, when a small, serrated object (possibly an egg tooth) protruded from the slit. Twenty-two and a half hours after the process had begun, the serrated object had been shed; at 28 hours the neonate began to emerge; final detachment from the egg/yolk was complete at 53 hours (on 27 January, 1995); refer Fig. 6. The second egg (diameter 12 mm) began to hatch at 7.00 am on 28 January. The process was similar but was completed in considerably less time (7.5 hours). At emergence, the neonates had the following dimensions and weights: SVL 69 mm , 72 mm ; TL $71 \mathrm{~mm}, 78 \mathrm{~mm}$; weight 1.5 g .1 .7 g . Both were released with their mother at the point of capture.

AUTOTOMY/AGGRESSION. Of the 16 individuals measured, 75% had varying stages of obvious autotomy (Table 2). No evidence of intraspecific aggression has been observed. Large adults feeding off the same clump of sap, and two sub-adults and a juvenile within very close proximity have not displayed any agonistic behaviour (obs. \#41, \#75). Predation on P. orientalis was not seen during this study. Vocalisation was only heard from one specimen handled (obs. \#115) with the call consisting of a soft squeak. Specimens pursued in the open have occasionally flung themselves into the air (obs. \#8, \#32, \#93), a habit shared by some species of Delma (see Greer, 1989).

 from eger.

ACKNOWL.EDGEMENTS

Jeanette Covacevich of the Queensland Museum encouraged me to pursue this study and assisted in preparing the manuscript. I am gratelul also to Peter Robertson who gave technical advice throughout the study. J. Brushe and R. Hendy kindly provided the habitat description presented. Geoff Monteith and Chris Burwell (QM) analysed faecal samples. Special thanks are due to my wife lnge and my two children, Alana and Matthew, who understood my sacrifice of family time in the pursuit of conservation. Raymond Tremul and Jason Jacobi helped survey the site and Tim Farry and Peter Auschra from the Department of Environment and Heritage (Gladstone) contributed data on the Boyne Island Conservation Park. The Bureau of Meteorology made available temperature data. Study permits were obtained from the Dept of Environment and IIeritage.

LITERATURE CITED

SIIEA, G.M. 1987. Notes on the hiology of Paradelma orientalis. Herpetofauna 17(1): 5-6.
COGGER. II.G. CAMERON. E. SADLIER. R. \& EGGLER. I' 1993. The Action Plan for Australian Reptiles. (Australian Nature Conservation Agency: Canberra).
COUPER, P.J.. COVACEVICH, J.A. \& WILSON, S.K. 1995. Sap feeding by the Australian gecko Gehry clubia. Memoirs of the Queensland Aluseum 38(2): 396.
COVACEVICH. J.A., COUPER, P.J.\& McIDONALD. K.R. 1998. Reptile diversity at risk in the Brigalow Belt, Queensland. Memoirs of the Queensland Museum 42(1): 475-486.
GREER, A. 1989. The Biology and Evolution of Australian Lizards. (Surrey Beatty \& Sons: Chipping Normon).
JOHNSON, R.W. 1996. The impact of clearing on Brigalow communities and consequences for conservation. Unpubl. conference presentation, 'Conservation outside nature reserves'. University of Queensland, Feb. 1996. Abstract published in Anon (ed.) Conservation outside nature reserves. a conference to look at nature conservation in landscapes managed primarily for
other uses. (Centre for Conservation Biology, the University of Queensland: St lucia).
McDONALD, K.R., COVACEVICH, J.A., INGRAM, G.J. \& COUPER, P.J. 1991. The status of frogs and reptiles. Pp. 338-345. Ingram, G.J. \& Raven, R.J. (eds) An atlas of Queensland's frogs, reptiles, birds and mammals. (Queensland Museum: Brisbane).
NATURE CONSERVATION (WILDLIFE) REGULATION 1994. Queensland Subordinate Legislation 1991 No. 474, Nature Conservation Act 1992.

SCHULZ, M. \& EYRE, T.J. 1997. New distribution and habitat data for the prgopodid, I'artulelma orientalis (Gunther, 1876). Memoirs of the Queensland Museum 42(1): 212.
TREMUL. P. 1997. An untold tale. Wildlife Australia 34(1): 19-20.
WII SON. S.K. \& KNOWLES. D.G. 1988. Australia's Reptiles. A photographic reference to the terrestrial reptiles of Australia. (William Collins: Sydney).

TABLE 1. Observations of P. orientalis. \# = observation number; $\mathrm{Cu}=$ current temp., $\mathrm{m}=$ minimum temp., $\mathrm{M}=$ maximum temp.; $\mathrm{P}=P$. orientalis, $\mathrm{J}=$ juvenile, $\mathrm{A}=$ adult, $\mathrm{S}=$ sub-adult; rd $=$ road, $\mathrm{rk}=$ road kill, $\mathrm{T}=\operatorname{tree}, \mathrm{G}=$ ground; $\mathrm{u}=\mathrm{up}, \mathrm{d}=$ down, $\mathrm{hz}=$ horizontal; $\mathrm{y}=\mathrm{yes}, \mathrm{n}=\mathrm{no}, \mathrm{l}=$ likely; $\mathrm{nr}=$ not recorded. Temperatures in bold measured at Lilly Hills, temperatures in italics measured at Gladstone (Bureau of Meteorology).

\#	Date	Time	Temp. ${ }^{\text {a }} \mathrm{C}$			Activel loc.	Tree/ Grd.	Height/ Facing	$\begin{aligned} & \text { Feed- } \\ & \text { ing } \end{aligned}$	Weather / comments
			Cu	m	M					
1	18/4/89	7-9pm	$n r$	20	29	S/ site b	T	$0.4 \mathrm{~m} / \mathrm{d}$	n	π
2	22/4/89	$7-9 \mathrm{pm}$	$n \mathrm{nr}$	21	27	S/ site a	T	0.15 m	n	$\pi \mathrm{r}$
3	28/4/89	7.40 pm	$n r$	19	29	J/site c	T	$0.2 \mathrm{~m} / \mathrm{d}$	n	cloudless, no wind
4	10/12/89	7.20 pm	$n \mathrm{n}$	21	30	P / nr	T	nr	n	nr
5	11/12/89	7.30 pm	$n \mathrm{nr}$	21	32	P,P/n r	T.T	nr	n	Ir
6	14/12/89	8.05 pm	$n r$	23	32	P / nr	T	nr	n	$\pi \mathrm{r}$
7	17/12/90	8.50 pm	$n r$	23	31	S/site c	T	n / $/$ d	1	nr/ sap present near head
8	17/12/90	$\begin{aligned} & 9.00- \\ & 10.00 \mathrm{pm} \end{aligned}$	$n r$	23	31	A/ rd	G	-	-	no/ specimen flung itself up into the art when pursued
9	18/12/90	10.20 pm	$n r$	22	31	J/nr	G	-	1	nif specimen had to, head in a groove of a trunk which contained sap
10	$19 / 12 / 90$	n/r	$n{ }^{1}$	23	32	A / nr	G	-	.	ni/ active in dense leaf hater, opposite study site
11	20112\%0	11.28 pm	$n r$	23	32	$\mathrm{J} / \mathrm{site}$ d	T	ni/ ${ }^{\text {a }}$	0	$\mathrm{nr} /$ specimen retreated down burrow when disturbed
12	20/12/90	nr	$n r$	23	32	S/ site c	G	nr	-	nr
13	21/12/90	$\begin{aligned} & 8.08- \\ & 8.54 \mathrm{p} . \mathrm{m} \\ & \hline \end{aligned}$	$n r$	27	32	A/site e	T	nr / y	y	nr/ specimen feeding for 46 minutes
14	$\begin{aligned} & \hline 4 / 1 / 91- \\ & 5 / 1 / 91 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.15 \mathrm{pm} \\ & 12.01 \mathrm{am} \\ & \hline \end{aligned}$	$n r$	21	25	попе	-	-	-	160% overeast: strong to moderate wind heavy rain fell during the day; ground and trunks of Acacias damp.
15	$\begin{aligned} & 5 / 1 / 41- \\ & 6 / 1 / 91 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \mathrm{pm}- \\ & 12.01 \mathrm{am} \end{aligned}$	n	23	29	none	-	-	-	100% overcast, high humidity; calm, heavy rann fell dunng the day: ground and trunks of Acacras damp.
16	$\begin{aligned} & 6 / 1 / 91- \\ & 7 / 1 / 91 \end{aligned}$	$\begin{aligned} & 11.15 \mathrm{pm}- \\ & 12.15 \mathrm{am} \\ & \hline \end{aligned}$	$n r$	25	30	none	-	-	-	75% overcast; calm; light drizzle occasionally; ground and trunks of Acacias saturated.
17	8/1/91	$\begin{aligned} & 9.15 \mathrm{pm}- \\ & 10.10 \mathrm{pm} \end{aligned}$	$n \mathrm{r}$	23	29	none	-	-	-	cloudless; moderate to strong SE wind; trunks of Acacias dry; ground damp.
18	9/1/91	$\begin{aligned} & 830 \mathrm{pm}- \\ & 9.30 \mathrm{pm} \\ & \hline \end{aligned}$	$n \mathrm{r}$	21	28	none	-	-	-	moderate to strong SW wind, light ram dunne the day: ground and Acacia trunks dry.
19	10/1/91	$\begin{aligned} & 8.20 \mathrm{pm}- \\ & 9.15 \mathrm{pm} \\ & \hline \end{aligned}$	$n \mathrm{n}$	21	28	none	-	-	-	strong SW wind; 75% overcast; ground and trunks of Acacias dry.
20	11/1/91	$\begin{aligned} & 8.20 \mathrm{pm}- \\ & 9.15 \mathrm{pm} \end{aligned}$	$n r$	21	30	S, A, S/ site d.d, nr	T,G,T	пr	n	nr/ 3 specimens active; large Lialis burtonis active on ground at site c
21	15/1/91	$\begin{aligned} & 9.15 \mathrm{pm}- \\ & 10.05 \mathrm{pm} \end{aligned}$	$n r$	22	31	P.P/ mr	T.T	nr	n	10\% cloud cover; no wind
22	29/8/91	8.10 pm	21	18	29	P/nr	T	$0.2 \mathrm{~m} / \mathrm{u}$	y	10\% cloud cover
23	30/8/91	8.30 pm	22	19	28	A/mi	T	$0.05 \mathrm{~m} / \mathrm{d}$	n	no cloud cover
24	30/10/91	8.45 pm	$n r$	19	27	P/rk	G	-	-	nr/ found on Handlcy Dave
25	13/9/93	nr	$n r$	17	25	P,P/nr, rd	T,G	$\begin{aligned} & 0.03 \mathrm{~m} \\ & \mathrm{mr} \\ & \hline \end{aligned}$		$\mathrm{nr} /$ second specimen found on Centenary Drive
26	20/9/93	nr	$n \mathrm{nr}$	19	31	P/rd	G	-	-	specimen active on Handley Dryve
27	3/4/94	mr	$n r$	21	31	S/rk	G	\cdot	-	found on Centenary Drve. opposite study site.

TABLE 1. (cont.)

\#	Date	Time	Temp. ${ }^{\circ} \mathrm{C}$			Actived loc.	Treel Grd.	Height/ Facing	Feeding	Weather / comments
			Cu	m	M					
28	11/10/9.	8.00pm	$n r$	18	2.8	P,P/nr	T,T	\cdots	I	$<10 \%$ cloud cover/ both specimens had therr heads between loose bark and a clump of sap
29	21/10/94	nr	nr	20	30	P/rd	G	-	-	ns/ active on Handley Drive
30	27/10/94	nr	$n \mathrm{nr}$	18	28	P/rd	G	-	-	nr/ active on Handley Drive; gravid.
31	11/1/95	nr	$n r$	22	32	A/rd	G	-	-	nr/ active on Handley Drive.
32	21/3/95	7.45 pm	$n r$	23	$n \mathrm{r}$	S/rd	G	-	-	$<10 \%$ cloud cover, warm/active on Handley Dr spectmen flung itself into the air in a similar manner to Delma.
33	27/3/95	$\begin{aligned} & 7.30- \\ & 8.00 \mathrm{pm} \\ & \hline \end{aligned}$	$n \mathrm{r}$	26	$n \times$	$\begin{aligned} & \begin{array}{l} P, P, P l \\ \mathrm{nr} \\ \hline \end{array} \\ & \hline \end{aligned}$	T.T.T	$\begin{aligned} & \mathrm{nr}, \mathrm{nr}, \\ & 1 \mathrm{~m} / \mathrm{nr} \end{aligned}$		$<10 \%$ cloud cover/ there is an abundance of sap.
34	25/9/95	ar	$n \mathrm{r}$	20	30	$\begin{aligned} & \overline{\mathrm{P}}, \mathrm{P}, \mathrm{P} /^{\mathrm{nr}} \end{aligned}$	T,T,T	$\begin{aligned} & 0.67,1.2, \\ & 1.3 / \mathrm{u}, \mathrm{u}, \mathrm{u} \end{aligned}$	l, y, n	humid, cloudless night/ sp. I had sap present near head; sp. 2 was feeding; sp. 3 had sap 0.76 m above it.
35	8/2/96	nt	nr	25	3.4	$\begin{aligned} & \hline \text { P.P.P/ } \\ & \mathrm{nr} \\ & \hline \end{aligned}$	T,T,G	nr	n	a warm, humid and cloudless night.
36	18/8/96	7.00 pm	21	18	26	none	$-$	-	-	nt/ Heteronotia bynoei and Morelia spilota active.
37	17711/96	8.00pm	$n r$	24	32	A / nr	T	0.2m/d	n	cloudless nighV sap 0.1 m below head
38	18/11/96	nr	$n r$	27	36	A/nr	T	0.3m/up	ก	cloudless, high humidiy / specimen slowly moved up tree towards sap exudates.
39	22/1/97	II	$n 7$	20	28	A. $A_{0} A^{2}$ A,A/ tree f, nr	$\begin{aligned} & \mathrm{T}, \mathrm{~T}, \mathrm{~T}, \\ & \mathrm{~T}, \mathrm{~T} \end{aligned}$	nr	$\begin{aligned} & y, n, n_{4} \\ & n, n_{r} \end{aligned}$	nirl three specimens clumsily fell to the ground when disturbed.
40	24/1/97	$\begin{aligned} & \hline 7.45- \\ & 8.45 \mathrm{pm} \\ & \hline \end{aligned}$	n	22	n	Altree f	T	$n \mathrm{r}$	y	nr/ specimen was photographed feeding on sap.
41	28/1/97	$\begin{aligned} & 7.45- \\ & 8.45 \mathrm{pm} \end{aligned}$	$n r$	26	32	A. A, P. P.P.P nr	$\begin{aligned} & \mathrm{T}, \mathrm{~T}, \mathrm{~T} \\ & \mathrm{~T}, \mathrm{G} \end{aligned}$	$2 \mathrm{~m}, 2.5 \mathrm{~m}$. nt/up,n. ni	y,y	Wann, high humidity / one specimen climbing to a clump of sap (2 m); another specimen from higher above (2.5 m) climbed down to the same sap; both specimens fed off sap simultaneously, the presence of another individual tolerated.
42	6/8/97	7.35 pm	18	13	23	поле	-	-	-	40\% cloud cover, no wind.
43	7/8/97	7.50 pm	18	15	23	none	-	-	-	no cloud cover or wind.
44	8/8/97	8.00 pm	19	16	26	none	-	-	-	50% cloud cover, no wind/ Oedura rhombifer active on tree
45	9/8/97	8.10 pm	17	15	22	none	-	-	-	30% cloud cover, no wind/ heavy rain fell at 3am.
46	1018/47	8.00 pm	17	13	23	none	-	-	-	no cloud cover or wind/ a windy day; Gehyra dubia active.
47	11/8/97	8.10pm	17	12	23	none	-	-	-	no cloud cover or wind.
48	128/97	8.15 pm	19	15	26	none	-	-	-	20% cloud cover, no wind/ Gehyra dubia active on ground.
49	13/8/97	7.45pm	16	13	26	none	-	-	-	no cloud cover, slight breeze/ strong moonlight.
50	14/8/97	8.10 pm	18	12	25	none	-	-	\bullet	no cloud cover, slight breeze/ waxing gibbous, strong moonlight.
51	15/8/97	7.35pm	18	15	26	none	-	-	-	no cloud cover, slight breeze/ strong moonlight.
52	16/8/97	7.55 pm	17	15	26	none	-	-	-	no cloud cover, slight breeze/ strong moonlight.
53	17/8/97	8.05pm	18	15	27	none	-	-	+	no cloud cover or wind/ strong moonlight.
54	18/8/97	8.15 pm	18	15	27.	none	-	-	\checkmark	no cloud cover or wind/ full moon.
55	19/8/97	8.05pm	18	15	27	none	-	-	-	no cloud cover or wind.
56	2018/97	7.55pm	19	16	27	none	-	-	-	no cloud cover or wind/ no moonlight; Heteronotia bvnoei active.
57.	21/8/97	7.40 pm	19	15	26	none	-	-	-	10\% cloud cover, slight breeze/ no moonlight.
58	22/8/97	7.35pm	19	15	26	none	-	-	-	10\% cloud cover, slight breeze/ no moonlight.
59	23/8/97	7.55pm	17.	13	26	none	-	\checkmark	-	no cloud cover or wind/ no moonlight.
60	24/8/97	7.40 pm	19	15	25	none	-	-	-	no cloud cover, slight breeze/ no moonlight.
61	25/8/97	7.35 pm	14	12	25	none	-	\cdot	-	no cloud cover or wind/ no moonlight
62	26/8/97	800 pm	15	10	25	none	-	-	-	no cloud cover, slight breeze/ no moonlight; sugar glider seen.
63	27/8/97	7.45 pm	15	10	27	none	-	-	-	no cloud cover or wind/ no moonlight, calm and cold.
64	28/8/97	7.50.pm	18	12	25	none	-	-	-	no cloud cover, slight breeze/ no moonlight.
65	$29 / 8 / 97$	7.40 pm	19	15	27	none	$-$	-	-	40% cloud cover, slight breeze/ no moonlight.
66	30/8/97	8.00pim	19	15	27	S/tree a	T	nr	\square	40% cloud cover, moderate wind/ no moonlight, humid.
67	31/8/97	7.50 pm	19	17	27	попе	-	-	-	no cloud cover, slight breeze/ rat active in A. fulctformus
68	1/9/97	7.55 pm	19	16	27	поле	-	-	-	no cloud cover slight breezej no moonlight.
69	29/97	7.52 pm	22	17	27	none	$-$	-	-	60% cloud cover, moderate wind/ no moonlight.
70	3/9/97	8.15 pm	20	20	27	none	-	-	-	30% cloud cover, slight breeze/ leaf litter damp. heavy rain fell during the day: no moonlight.
71	4/9/97	8.10 mm	21	17	27	S/ tree h	C	-	-	40\% cloud cover, no wind/ no moonlight.
72	5/9/97	8.15 pm	22	19	31	none	-	-	-	no cloud cover, slight breeze/ Oedura rhombyer active on A. falciformis; no moonlight.
73	6/9/97	8.17 pm	19	16	30	none	-	-	-	no cloud cover, slight breeze/ waxing crescent.
74	7/4/97	8.35pm	19	15	27	попе	-	-	-	no cloud cover or wind/sugar glider seen; partial moonlight.

TABLE 1. (cont.)

\#	Date	Time	Temp. ${ }^{\circ} \mathrm{C}$			Active/ loc.	Tree/ Grd.	Height/ Facing	Feeding	Weather/ comments
			Cu	m	M					
75	8/9/97	8.20pm	21	17	32	S,S, J, S,S/ tree c, d, d. d. a	$\begin{aligned} & \hline \text { T,G, } \\ & \text { G.G. } \\ & T \end{aligned}$	$\pi \mathrm{r}$	y, y	no cloud cover or wind, humid, poor moonlight/ five specimens active, two up trees; the other three on the ground at the base of tree d and in very close proximity to each other.
76	9/4/97	8.10 pm	19	16	29	$\mathrm{P} /$ trees	T	nr	n	no cloud cover, slight breeze/ poor monnlight, (first gu.)
77	109/47	8.13 pm	19	15	27	none	-	-	-	no cloud cover or ind/ moderate moonlight; nippy.
78	11/4/97	815 pm	19	15	27	none	-	-	-	$71 \%^{\%}$ cloud cover, conl breeze, light min/ (ichinra dubies active on ground: filtered moonlight.
79	12/9/97	8.05 pm	17	15	27	none	-	-	-	no cloud cover, moderate to strong wind/ ground and leaf litter damp; sugar glider seen at clump of sap; heavy rain fell during the day.
80	13/9/97	8.10 pm	19	15	27	none	.	-	-	no cloud cover, cool breeze/ bnght moonlight, (waxing gibbous.)
81	14/9/97	8.05 pm	19	15	27	none	-	-	-	no cloud cover or wind/ very bright moonlight; nippy.
82	15/9/97	8.25pm	19	14	30	none	-	-	-	no cloud cover or wind/ very hright moonlight (full moon).
83	16/9/97	8.12 pm	19	15	27	none	-	-	-	no cloud cover or wind/ very brighs moonlight
84	17/9/97	8.30 pm	19	16	30	none	\square	-	-	no cloud cover or wind/ bright moonlight.
85	18/9/47	8.20 pm	20	16	30	A/tree f	T	nr	n	10\% cloud cover, slight breeze/ full moon. rising.
86	19/9/97	8.40 pm	21	19	26	none	-	-	-	80% cloud cover, slight breeze/ no moonlight. an overcast day with light rain.
87	2019/97	8.30 pm	21	19	30	A/ treeg	T	$1 \mathrm{~m} / \mathrm{mr}$	π	10\% cloud cover, cool breeze/ no moonlight.
88	21/497	8.30 pm	22	20	31	none	-	-	*	40% cloud cover, no wind/two sugar gliders observed, one feeding on sap of A. falciformis, tree r1; heavy rain fell at 7.45 pm .
89	2299/97	8.30pm	22	20	31	none	-	-	-	20% cloud cover, no wind/ no moonlight; Gehyra dubia active on A. falciformis 4 m up, next to clump of sap; Pogona barbata 2m's up an A. falciformis, motionless; vemal equinox
90	4/11/97	715 pm	$n r$	20	31	A/treef	T	$0.3 \mathrm{~m} / \mathrm{nr}$	π	nri sugar ghder active on A. falcyfurmis.
91	14/11/97	8.00 pm	$n r$	24	31	$A /$ treed	T	nr	v	mr ' adult, gravid female feeding on sap
92	9/2/98	815 pm	$n r$	25	33	A tree h	T	$1.5 \mathrm{~m} / \mathrm{nr}$	n	nr
93	25/2/98	8.900 pm	$n r$	23	31	S, J/nr	T.T	$0.3 \mathrm{~m} / \mathrm{nr}$ 。 up	1	nr/ sap present near head of sub-adult; juvenile has weight (1.5 grams) and dimensions (s.v. 69, t.l. 76 mm) similar to newly hatched individuals; when continually disturbed specimen flung itself up into the air (similar to Delma), no vocalisation was heard.
94	26/2/98	$\begin{aligned} & 1.10- \\ & 1.20 \mathrm{am} \end{aligned}$	25	24	31	$\mathrm{A}, \mathrm{A} / \mathrm{nr}$, tree a	G,G	\square	-	no cloud cover, slighe breezel first specimen was active at base of unmarked A. falciformis, the other specimen was 3 m from tree a.
95	26/2/98	9.30mm	27	24	31	J/nr	T	$0.3 \mathrm{~m} / \mathrm{nr}$	y	<10\% cloud cover.
96	26/2/98	11.00pm	25	24	31	A/tree	T	$2 \mathrm{~m} / \mathrm{dn}$	n	light rain/ a large adult
97	27/2198	$\begin{aligned} & 8.15- \\ & 8.45 \mathrm{pm} \\ & \hline \end{aligned}$	26	23	32	J / mr	T	$\begin{array}{\|l} \hline 0.25 \mathrm{~m} / \\ \mathrm{nr} \\ \hline \end{array}$	n	10\% cloud cover.
98	2712/98'	$\begin{aligned} & 9.45- \\ & 11.00 \mathrm{pm} \end{aligned}$	ar	23	32	none	\checkmark	-	-	nir/ sugar glider observed at clump of sip on A. falciformis.
99	28/2/98	$\begin{aligned} & 7.50- \\ & 8.30 \mathrm{pmm} \end{aligned}$	27	23	32	A, A/ tree h, tree e	T,T	0.3 $0.9 \mathrm{~m} / \mathrm{nr}$, up	y, π	nu/ two large individuals; sap present near head of second specimen.; both specimens marked with whiteout, sp . A- one mark, 1 cm back from dark neck band; sp. B- two marks, 2 cm back from dark neck band.
100	1/3/98	$\begin{aligned} & 7.45- \\ & 8.45 \mathrm{pm} \\ & \hline \end{aligned}$	24	23	30	none	-	-	-	no cloud cover/ leaf litter damp; heavy rain fell midafternoon.
101	2/3/58	$\begin{aligned} & 7.30- \\ & 8.30 \mathrm{pm} \end{aligned}$	25	23	32	$\begin{aligned} & \hline \mathrm{S}, \mathrm{~S} / \\ & \text { tree } \mathrm{l}, \mathrm{nr} \end{aligned}$	T. G	$0.6 \mathrm{~m} / \mathrm{up}$	ก	307 cloud cover/ both specimens marked with whiteout, sp. C- three marks, 3 cm back from dark neck band; sp. D- one mark on mid-body.
102	3/3/98	$\begin{aligned} & 7.30- \\ & 8.15 \mathrm{pm} \end{aligned}$	25	22	32	S, A_{3} S/ tree J, f, nr	T,T,T	nr, 0.8 $0.2 \mathrm{~m} / \mathrm{nr}$, up. up	n,n,n	no cloud cover/ first specimen is sp. C, second consecutive night at tree I; specimen fell to ground when disturbed.
103	4/3/98	$\begin{aligned} & 7.30- \\ & 8.15 \mathrm{pm} \end{aligned}$	26	23	30	$\begin{aligned} & \hline \text { S.A.S/ } \\ & \mathrm{mr}, \mathrm{nr}, \\ & \text { tree } 1 \end{aligned}$	T.T.T	$0.9 \mathrm{~m}, \mathrm{nr}$, nr/ up, nr	n,n,n	40% cloud cover, humid/ the first two specmens were active on the same tree, third specimen is $s p$. C , third consecutive night at tree I; Gehyra dubia photographed feeding on sap of A. falciformis, (tree r2).
104	5/3/98	$\begin{array}{\|l\|} \hline 7.30- \\ 8.30 \mathrm{pm} \\ \hline \end{array}$	26	23	32	none	-	-	-	no cloud cover; moderate moonlight (first quarter).
105	6/3/98	$\begin{aligned} & 7.30- \\ & 8.30 \mathrm{pm} \\ & \hline \end{aligned}$	26	23	34	none	-	-	*	no cloud cover; moderate moonlight.

TABLE 1. (cont.)

\#	Date	Time	Temp. ${ }^{\text {c }}$ C			Active/ loc.	Treet Grd.	Height/ Facing	Feed ing	Weather/ comments
			Cu	m	M					
106	7/3/98	8-8.45pm	27	23	36	$\begin{aligned} & \mathrm{S}, \mathrm{~A}, \mathrm{~S}, \mathrm{P} / \\ & \text { trec } \mathrm{f}, \mathrm{~d}, \\ & \mathrm{f}, \mathrm{f} \end{aligned}$	$\begin{aligned} & \text { T,G,T, } \\ & T \end{aligned}$	$\begin{aligned} & 0.8,2, \\ & 0.9 \mathrm{~m} / \\ & u_{\mathrm{P}}, \mathrm{dr}, \\ & \mathrm{dn} \\ & \hline \end{aligned}$	L,n,n,n	no cloud cover, moderate moonlight (waxing gibbous)/ sap present near head of first specimen; second specimen resting head on base of tree d; both other specimens active on tree f.
107	8/3/98	$\begin{aligned} & 8.45- \\ & 9.40 \mathrm{pm} \end{aligned}$	24	24	33	$\begin{aligned} & \mathrm{S}, \mathrm{~S} / \\ & \text { tree } \mathrm{I}, \mathrm{nr} \end{aligned}$	G, T	$\begin{aligned} & <0.1 \mathrm{~m} / \\ & \mathrm{nr} \end{aligned}$	n, ${ }^{\text {l }}$	40% cloud cover, light rain/first specimen was at base of tree I; second specimen had sap near head; Gehyra dubia observed feeding on sap of A. falciformis, tree r2.
108	12/4/98	8.05 pm	$n r$	23	31	S/nr	T	$0.8 \mathrm{~m} / \mathrm{up}$	1	80\% cloud cover, humid/ sap present near head.
109	31/12/98	8-9pm	27	23	31	A, J/ nr	T, T	$\begin{aligned} & <(0.1 .1 .5 \\ & \mathrm{m} / \mathrm{up}, \mathrm{hz} \end{aligned}$	n,1	30% cloud cover/sap present near head of juvemile.
110	11/1/99	9-10pm	26	22	32	$\begin{aligned} & \mathrm{J}, \mathrm{~S} / \text { tree } \\ & \mathrm{d}, \mathrm{rk} \end{aligned}$	T,G	$0.1 \mathrm{~m} / \mathrm{dn}$	n	no cloud cover, slight breeze/ faecal sample collected from first specimen.
111	9/3/99	7-9pm	$n \mathrm{n}$	23	30	P, nr	T	תr	n	nr/ faecal samples collected for analysis.
112	2/5/99	$7-8.00 \mathrm{pm}$	$n \mathrm{r}$	14	26	none	-	-	-	nr
11.3	7/5/99	$7-8.00 \mathrm{pm}$	18	18	26	none	-	-	-	nr/ Diplodactylus vitratus active on ground.
11.4	8/5/49	7.800 pm	19	18	25	none	-	-	-	nr/ Diplodsctylus vittotus active in leaf litter.
115	15/5/94	8.84.5pm	19	17	28	S/ne	T	$0.5 \mathrm{~m} / \mathrm{dn}$	n	no cloud cover/ specimen emitted a sott squeak when handled roughly.
116	22/5/99	$6.15-7 \mathrm{pm}$	20	18	$\cdots r$	none	.	-	-	nt/ Gehyra dubia and Heteronotia bynoei active.
117	28/5/99	$6.15-7 \mathrm{pm}$	21	18	20	none	-	-	-	no cloud cover or wind/ Gehyra dubra active on ground.
118	29/5/99	$\begin{aligned} & 6.30- \\ & 7.15 \mathrm{pm} \\ & \hline \end{aligned}$	20	18	26	none	-	-	-	no chud cover; full moon.
119	31/5/99	7.7 .45 pm	20	18	28	none	-	-	\cdots	no cloud cover; full moon,
120	1/6/99	7-8pm	20	19	27	J, J, J/ nr	T,T,T	<01. (0) 1,1.1 m/up.up. up	y,y,y	slight breeze; waning gibbous, rising/ Heteronotiu bynoei active on ground.
121	2/6/99	$\begin{aligned} & 6.30- \\ & 7.15 \mathrm{pm} \\ & \hline \end{aligned}$	19	16	20	none	-	-	-	slight breeze. cool.
122	3/6/99	$\begin{aligned} & \hline 6.30- \\ & 7.15 \mathrm{pm} \\ & \hline \end{aligned}$	20	17	25	none	-	-	-	overcast. slight breeze/ Gehyra duboa active on ground.
123	4/6/99	$\begin{aligned} & 6.30- \\ & 7.15 \mathrm{pm} \end{aligned}$	19	16	nr	none	-	-	-	no sloud cover or wind
124	5/6/99	$\begin{aligned} & 6.30- \\ & 7.15 \mathrm{pm} \\ & \hline \end{aligned}$	19	17	$n \mathrm{r}$	none	-	-	-	100.\% overcast, no wind, dnzzle.
125	6/6/99	$\begin{aligned} & 6.30- \\ & 7.15 \mathrm{pm} \end{aligned}$	18	17	24	none"	-	-	-	30% cloud cover, no wind; light rain fell dunng the day, ground damp, tree trunks dry.
126	12/6/99	$\begin{aligned} & 6.15- \\ & 6.45 \mathrm{pm} \end{aligned}$	14	10	21	none	-	-	-	no choud cover or wind.
127	13/6/99	$\begin{aligned} & 6.10- \\ & 6.45 \mathrm{pm} \\ & \hline \end{aligned}$	19	12	23	пол¢	-	-	-	no cloud cover, moderate wind/ juvenile Gehyra dubia active on A. falciformis trunk.
128	20/6/44	6-6.30 1 m	16	13	23	none	-	-	*	no cloud cover or wind/moderate moonlight.
129	30/6/99	$\begin{aligned} & 7.30- \\ & 8.15 \mathrm{pm} \\ & \hline \end{aligned}$	18	15	22	none	-	-	*	overcast, slight breeze/ rain during the day, trunks of trees and leaf litter still damp.
130	5/7/99	$\begin{aligned} & 6.45- \\ & 7.15 \mathrm{pm} \end{aligned}$	18	15	22	none	-	-	-	no cloud cover or wind/ Gehyra dubia active on A. falciformis trunk; Pogona barbata perched on limb of A. falciformis.
131	7/7/99	7.15-8pm	17	16	23	none	-	-	-	no cloud cover or wind.
132	877199	$\begin{aligned} & 7.45- \\ & 8.15 \mathrm{pm} \end{aligned}$	17	15	23	none	-	-	-	no cloud cover or wind; nuppy.
133	11/7/99	7.15-9pm	18	16	23	none	-	-	-	no cloud cover or wind; warm.
134	12/7/99	$\begin{aligned} & 6.30- \\ & 7.20 \mathrm{pm} \\ & \hline \end{aligned}$	19	17	24	none	-	-	-	10% cloud cover; slight breeze/ Oedura rhombifer active on A. falciformis; H. bynoei active on ground.
135	17/7/99	$6.30-7 \mathrm{pm}$	16	13	23	none	-	-	-	no cloud cover or wind.
136	19/7/99	$6.30-7 \mathrm{pm}$	18	13	25	none	-	-	-	no cloud cover or wind: moderate monnlight.
137	20/7/99	$\begin{aligned} & 6.30- \\ & 7.15 \mathrm{pm} \\ & \hline \end{aligned}$	16	13	25	none	-	\checkmark	-	no cloud cover or wind.
138	23/7/99	$\begin{aligned} & 6.15- \\ & 6.45 \mathrm{pm} \end{aligned}$	17	11	20	none	-	*	-	misty; no wind.
139	24/7/99	$\begin{aligned} & 6.30 \\ & 7.00 \mathrm{pm} \end{aligned}$	13	13	17	none	-	-	-	30% cloud cover; no wind/ consistent light rain throughout the day.
140	25/7/99	$\begin{aligned} & 6.20- \\ & 7.00 \mathrm{pm} \end{aligned}$	17	12	20	none	-	-	-	100\% cloud cover; strong wind; mild.

TABLE 2. Body measurements of P. orientalis. SVL $=$ snout-vent length, $T L=$ tail length.

Date	SVL (mm)	TL (mm)	Total length (mm)	No. of distinguishable individuals 25/2/98-8/3/98
18/12/90	122	157, regrown	279	N/A
3/4/94	155	regrown	?	N/A
11/1/95	170	192, regrown	362	N/A
26/1/95	69	71, original	140	N/A
28/1/95	72	78, original	150	N/A
21/3/95	152	215 , regrown	367	N/A
3018/97	137	98, regrown	235	N/A
4/9/97	153	232, original	385	N/A
8/9/97	147	201, original	348	N/A
8/9/97	150	189, original	339	N/A
8/9/97	111	111, regrown	222	N/A
8/9/97	151	75, regrown	226	N/A
25/2/98	69	76 , original	145	1
26/2/98	182	73, regrown	255	2
26/2/98	174	215, regrown	389	3
26/2/98	70	76, original	146	1?
26/2/98	182	227, regrown	409	4
27/2/98	79	85, original	164	5
28/2/98	182	110 , regrown	292	6
28/2/98	190	257, end regrown	447	7
2/3/98	156	188, regrown	344	8
2/3/98	128	156, regrown	284	9
3/3/98	188	165, regrown	353	10
3/3/98	166	249, original	415	11
4/3/98	152	148, regrown recently	300	12
4/3/98	178	240 , regrown	418	13
7/3/98	152	202, original	354	14
7/3/98	188	261, end regrown	449	7 ?
7/3/98	154	151, regrown	305	15
8/3/98	152	207	359	14 ?
8/3/98	132	183, end regrown	315	16
12/4/98	148	195, original	343	N/A
31/12/98	172	225	397	N/A
31/12/98	97	114	211	N/A
11/1/99	108	132, end regrown	240	N/A
11/1/99	160	broken (roadkill)		N/A
15/5/99	145	212, end regrown	357	N/A
1/6/99	77	90 , original	167	N/A
1/6/99	104	118 , end regrown	222	N/A

TABLE 3. Measurements of feeding trees of P. orientalis.

Tree	SA	SB	SC	SD	SE		SF	SG	SH	A	B	C	I)	L	1	(${ }^{\text {a }}$	11	1	1
Dia. Im un (mm)	55	150	105	110	55	1	35	55	55	125	150	60	85	75	230	50	130	100	140
Esl. height (m)	4	6	5	6	4		4	4	4	5	6	4	5	4	10)	5	7	5	5

REASSESSMENT OF NORTHERN REPRESENTATIVES OF THE ANTECHINUS STUARTII COMPLEX (MARSUPIALIA: DASYURIDAE): A. SLBTROPICUS SP. NOV. AND A. ADUSTUS NEW STATUS

S. VAN DYCK AND M.S. CROWTHER

Van Dyck, S. \& Crowther, M.S. 200006 30: Reassessment of northern representatives of the Antechinus stuartii complex (Marsupialia: Dasyuridae): A. subtropicus sp, nov. and A. adustus new status. Memoirs of the Queensland Museum 45(2): 611-635. Brisbane. ISSN 0079-8835.

Abstract

Antechinus subtropicus sp. nov. is described from the subtropical rainforests of southeastern Queensland and northeastern New South Wales, and A. adustus from tropical rainforests in northeastern Queensland is elevated to full specific status from A. stuartii adustus. Antechinus subtropicus differs from other members of the A. stuartii complex (which includes A. stuartii, A. agilis and A. adustus) by its larger size (weight, body length and cranial length), relatively longer and narrower rostrum, extremely large palatal vacuities and large entoconid on M_{3}. Antechinus adustus differs from other members of the A. stuartii complex by its darker pelage, short, broad rostrum, very large crowned upper incisors, small alisphenoid tympanic wings and fixed differences at 15% of isozymes screened. These species and current research show that much work is still needed to resolve the taxonomy of the A. stuartii-A. flavipes species complex, and that a combined morphological and biochemical approach is likely to be most productive. \square Antechimus subtropicus, Antechinus adustus, Antechinus stuartii, rainforests, Queensland, northern New South Wales, morphometrics, dasyurid.

S. Van Dyck, Queensland Museum, PO Box 3300, South Brisbane 4101; M.S. Crowther, School of Biological Sciences and Institute of Wildlife Research. University of Sydney 2006, Australia: 29 October 1999.

Continuing uncertainty surrounds the taxonomic status of populations currently allocated to Antechinus stuartii and A. flavipes (Marsupialia: Dasyuridae) in eastern Australia, with substantial morphological variation existing within and between both taxa (Dickman et al., 1998). A lack of reliable diagnostic characters separating these two taxa has persisted for some three decades following the resurrection of A. stuartii from synonymy with A. flavipes by Wakefield \& Warneke (1967).

Macleay (1841) erected the genus Antechinus and described stuartii on the basis of the collector's notes of a lost specimen from Sydney, although he later examined a skeleton from the same locality (Macleay, 1842). Wakefield \& Warneke (1967) selected a neotype from Waterfall, Royal National Park, near Sydney. Prior to Wakefield \& Warneke's revision, A. stuartii had been synonymised with A. flavipes by most authors from Iredale \& Troughton (1934).
Dickman et al. $(1988,1998)$ discovered that A. stuartii as recognised by Wakefield \& Warneke (1967) actually consisted of more than one electrophoretically and morphologically distinct species. These species appear to be reproductively isolated in sympatry by synchronisation of
ovulation and mating at different rates of change of photoperiod (McAllan \& Dickman, 1986; Dickman et al., 1988). Antechinus stuartii sensu stricto was found to occur from Kioloa ($35^{\circ} 32^{\prime} \mathrm{S}$, $150^{\circ} 23^{\prime} \mathrm{E}$) in the south to Barrington Tops $\left(32^{\circ} 03^{\prime} \mathrm{S}, 151^{\circ} 27^{\prime} \mathrm{E}\right)$ in the north with the new species, A. agilis, occurring in southern New South Wales (NSW) and Victoria (Vic.). No electrophoretic sampling of Antechinus had been done in northern NSW until Sumner \& Dickman (1998), who suggested further that A. stuartii extends into southern Queensland (Qld).

Van Dyck (1982a) found that A. stuartii from the subtropical rainforest in southeastern Qld differed greatly in morphology from the type of A. stuartii and populations in NSW and Vic. Van Dyck (1997) raised the southeastern Qld populations to subspecies level (A. stuartii subtropicus) but even at that time suspected that subtropicus likely warranted full specific rank. Antechimus stuartii subtropicus and A. stuartii showed substantial overlap in their distributions, which alerted us to their possible full species status (Van Dyck, 1997).

The distinct nature of Antechinus adustus was first realised by Thomas (1923). Initially, he assigned it to Phascogale flavipes adusta, but a

FIG. 1. Measurements taken of skull, dental and external characters of Antechinus. Basicranial skull length (BL); length of palate (PL) ; crown length P^{1} to $\mathrm{P}^{3}\left(\mathrm{P}^{1-3}\right)$, crown length P^{1} to $\mathrm{P}^{2}\left(\mathrm{P}^{1-2}\right)$; skull width across anterior of $C^{1}-C^{1}$ (SWR-LC ${ }^{1} B$); skull width across posterior of $C^{1}-C^{1}$ (SWR-LC 1 A); crown length C^{1} to $M^{4}\left(C^{1} M^{4}\right)$; inter-palatal vacuity distance (IPVL); skull width level with junction $\mathrm{M}^{3}-\mathrm{M}^{4}$ (SWR-LM ${ }^{3}$); minimum separation between transverse canals (TC); interbulla width (IBW); maximum width across bullae (OBW); interorbital constriction (IOW); zygomatic width (ZW); snout-Cl depth, at right angle to dorsal surface of rostrum (SCD); anterior palatal vacuity length (APVL); posterior palatal vacuity length (PPVL); dentary length, excluding incisors (DL); crown length from M^{1} to $\mathrm{M}^{3}\left(\mathrm{M}^{1-3}\right)$; crown length from M_{1} to $\mathrm{M}_{4}\left(\mathrm{M}_{1-4}\right)$; skull height (HT); snout-vent length (HB); Tail length, from vent (TV); ear length from the notch to pinna tip (EAR); pes length taken from the heel to distal tip of toe (PES); body weight (WT).
year later, recognising a great similarity between the syntypes of Phascogale unicolor and P. adusta, assigned his P. adusta to Gould's P. unicolor ($=$ A. stuartii stuartii) (see Thomas, 1924). However, it was another 44 years before P. adusta was formally disentangled, along with A. stuartii, from synonymy with A. flavipes (Wakefield \& Warncke, 1967). Since its description until 1967, it was referred to in the literature as a subspecies of A. flavipes (e.g., Troughton, 1941 (as Antechimus); Tate, 1947; Tate, 1952; Brass 1953; Homer \& Taylor, 1959; Marlow, 1961; Walker, 1964). However, Jenkins \& Knutson (1983) still considered the P. adusta holotype (BMNH 1922.12.8.54) referable to A. flavipes. Wakefield \& Warneke (1967) concluded that there were insufficient specimens and distribution data to assess the status of the tropical population but noted that 'The population of northeast Qld probably warrants separate subspecific status" (p. 73). Van Dyck (1982a) presented a range of morphological and distributional data supporting the subspecific nature (at the least) of A. adustus, but added "while the subspecific status of adustus is justified on the basis of pelage, cranial and dental uniqueness, these factors combined with its geographical isolation should accord it with full specific rank. Its status, however may be revealed more reliably through such channels as reproductive biology and biochemical comparison (Van Dyck 1982a: 749). Results of isozyme electrophoresis have since showed A. adustus from Ravenshoe to differ from A. stuartii and A. agilis from south coastal NSW at 15% of 32 loci scored (Baverstock et al., 1982; Dickman et al., 1998).

In this paper we define a new species, Antechinus subtropicus, and raise A. stuartii adustus to full species.

METHODS

Listed in Figure 1 are the 21 skull and dental, and 5 external measurements taken, their abbreviations, and the manner in which the measurements were made. Skull and dental dimensions were taken with digital calipers. Age variation was minimised for statistical analysis by using only those skulls which possessed fully erupted permanent P^{3}, and no measurements were taken from sub-adult animals captured in the four months prior to April in any year.
Tooth number follows Luckett (1993), tooth nomenclature follows Archer (1974) and basicranial nomenclature follows Archer (1976).

Colour nomenclature follows Ridgway (1912) and is designated with a capital letter in the text.

Univariate summary statistics and tests, and multivariate statistical analyses were undertaken with Systat 7 (SPSS 1997). Samples were tested for normality with the Kolmogorov-Smirnov Lillefors test and homogeneity of sample variances was tested with Levene's test. Canonical variates analysis, discriminant function analysis and one-way ANOVA with Tukey's Post Hoc test were used to compare species. Tests were considered significant at the experiment-wide error rate $\alpha<0.05$ after application of the sequential Bonferroni test (Rice, 1989).
The A. stuartii and A. agilis used in the analyses were specimens used in Dickman et al. (1998); some were electrophoretically typed, others were from localities mentioned in Dickman et al. (1988). This was to allow for variation within these species as well as minimising the use of undescribed or misidentified taxa. Exact locations are given in Dickman et al. (1998) and are lodged with the Australian Museum.
Institution abbreviations. In the course of this study, many specimens were examined from the Queensland Museum, Brisbane (QM); Australian Museum, Sydney (AM); Museum of Victoria, Melbourne; Australian National Wildlife Collection, Canberra (CSIRO); British Natural History Museum, London (BMNH); and American Museum of Natural History.

SYSTEMATICS

Antechinus subtropicus sp. nov.
(Figs 2, 3; Table 1)
ETYMOLOGY. The species name is a reference to the subtropical distribution and habitat of the species.

MATERIAL. HOLOTYPE: QM J17407, adult male skull. dentaries and puppet skin; 2 July 1969, 'T.H. Kirkpatrick. OTHER MATERIAL: Anstead, Moggill $27^{\circ} 33^{\prime} \mathrm{S}$ $152^{\circ} 52^{\circ} \mathrm{E}$ (QM JM9737): Ballandean $28^{\circ} 48^{\prime} \mathrm{S} 151^{\circ} 50^{\circ} \mathrm{E}$ (J6080); Bellthorpe $26^{\circ} 51^{\circ} \mathrm{S}$ 152 43^{\prime} (QM JM9803); Binna Burra $28^{\circ} 12^{\circ} \mathrm{S} 153^{\circ} 11^{\prime} \mathrm{E}(\mathrm{QM}$ J11442); Blackfellow Creek, Gatton $27^{\circ} 45^{\circ} \mathrm{S} 152^{\circ} 13 \mathrm{E}$ (QM JMI0269); Border Ranges National Park $28^{\circ} 15^{\prime} \mathrm{S} 153^{\circ} 05^{\prime} \mathrm{E}$ (QM JM79437948,7965); Ferny Grove $27^{\circ} 24^{\prime} \mathrm{S} 152^{\circ} 56^{\circ} \mathrm{E}$ (QM JM7813); Jolly's Lookout $27^{\circ} 24^{\prime} \mathrm{S}$ 152 ${ }^{\circ} 48^{\prime} \mathrm{E}$ (QM JM5500); Conondale Range $26^{\circ} 51^{\prime} \mathrm{S} 152^{\circ} 43^{\prime} \mathrm{E}$ (QM JM2258-2261, 2263-2266) Cunninghams Gap $28^{\circ} 03^{\prime} \mathrm{S}$ $152^{\circ} 24^{\prime} \mathrm{E}$ (QM JM256); Eastern Border Ranges National Park $28^{\circ}{ }^{\circ} 7^{\prime}$ 'S $152^{\circ} 50^{\prime} \mathrm{E}(\mathrm{QM}$ JM7941, 7942, 7959-7962); Emu Vale $28^{\circ} 14^{\prime} \mathrm{S} 152^{\circ} 15^{\prime} \mathrm{E}(\mathrm{QM} \mathrm{J} 15888,9996,9997$); Farm Creek, Mt Colliery $28^{\circ} 17^{\prime} \mathrm{S} 152^{\circ} 09^{\circ} \mathrm{E}$ (QM J21315); Joyners Ridge $27^{\circ} 1^{\prime}$ 'S $152^{\circ} 52^{\circ} \mathrm{E}$ (QM JM5504);

 (below).

FIG. 3. Skull and left dentary of the holotype of Antechinus subtropicus. (QM J17407). Scales in millimetres.

Kondalitla National Park $26^{\circ} 40^{\circ} \mathrm{S} 152^{\circ} 52^{\circ} \mathrm{E}$ (QM JM1597-1599); Lamington Plateau $28^{\circ} 16^{\circ} \mathrm{S} 153^{\circ} 09^{\prime} \mathrm{E}(\mathrm{QM}$ JM3570); Mapleton $26^{\circ} 38^{\prime} \mathrm{S} 152^{\circ} 52^{\circ} \mathrm{E}$ (QM JM9944); Mebbin State Forest $28^{\circ} 28^{\prime} \mathrm{S} 153^{\circ} 10^{\prime} \mathrm{E}$ (CSIRO CM2988, 2991, 3713); Montville $26^{\circ} 41^{\prime} \mathrm{S} 152^{\circ} 54^{\prime} \mathrm{E}$ (QM JM2770); Morans Falls $28^{\circ} 14^{\prime} \mathrm{S} 153^{\circ} 08^{\circ} \mathrm{E}$ (QM JM9941); Mt Gannon $28^{\circ} 12^{\prime} \mathrm{S} 153^{\circ} 19^{\circ} \mathrm{E}$ (QM JM5654, 5655, 6932, 6933); Mt Glorious $27^{\circ} 20^{\prime} \mathrm{S} 152^{\circ} 46^{\prime} \mathrm{E}$ (QM JM7, 9-15, 19, $22-27,30,47,51,134,136-170,183,185-188,205,206$, $569,570,1221,1229,1421,1912,1913,1920-1936,2204$, $2205,2290-2292,2773-2775,2841,2850,2878,2879$, 5653, 5656, 6181-6183, J10471, J10773, J10882, J11098, J11443, J11486, J12669, J13234, J13235, J13244, J13383, J16158, J16458, J16535, J16543, J17410, J17429-J17432, J19864); Mt Nebo $27^{\circ} 24^{\prime}$ S $152^{\circ} 47^{\prime} \mathrm{E}$ (QM JM6184, 5501); Mt Nullum $28^{\circ} 50^{\prime}$ S $153^{\circ} 26^{\circ} \mathrm{E}$ (AM M24904, 24905); Mt Roberts $28^{\circ} 13^{\circ} \mathrm{S} 152^{\circ} 27^{\prime} \mathrm{E}$ (QM J11618, 11619); Mt

Tamborine $27^{\circ} 56^{\prime} \mathrm{S}$ 153 ${ }^{\circ} 12^{\prime} \mathrm{E}$ (QM J3716); Numinbah Arch, Nerang Valley $28^{\circ} 13^{\prime} \mathrm{S} 153^{\circ} 14^{\prime} \mathrm{E}$ (QM JM1420); O'Reillys $28^{\circ} 14^{\prime} \mathrm{S} 153^{\circ} 08^{\prime} \mathrm{E}$ (QM JM7107, 7108); Rozens Lookout, Beechmont $28^{\circ} 08^{\circ} \mathrm{S} 153^{\circ} 12^{\prime} \mathrm{E}$ (QM JM1418); Rummery Park, Whian Whian State Forest $28^{\circ} 38^{\prime} \mathrm{S}$ $153^{\circ} 19^{\circ} \mathrm{E}$ (AM M29961); Sheepstation Creek, Border Ranges National Park $28^{\circ} 24^{\prime} \mathrm{S} 153^{\circ} 01^{\prime} \mathrm{E}$ (AM M22782-22785, 22789); Sunday Creek $26^{\circ} 44^{\prime} \mathrm{S}$ 152 ${ }^{\circ} 30^{\prime} \mathrm{E}$ (QM JM1601); Uki $28^{\circ} 28^{\circ} \mathrm{S} 153^{\circ} 14^{\prime} \mathrm{E}$ (QM JM4432); Upper Tallebudgera Creek $28^{\circ} 06^{\prime} \mathrm{S} 153^{\circ} 27^{\prime} \mathrm{E}$ (QM J20265); Warrie National Park $28^{\circ} 13^{\prime} \mathrm{S} 153^{\circ} 17^{\prime} \mathrm{E}$ (QM JM1600, 1596); Warwick district $28^{\circ} 13^{\prime} \mathrm{S} 152^{\circ} 02^{\prime} \mathrm{E}(\mathrm{QM}$ J17400-17403, 17406, 17407); Whian Whian State Forest, via Dunoon $28^{\circ} 38^{\prime} \mathrm{S} 153^{\circ} 19^{\prime} \mathrm{E}$ (QM JM1919, 1419); Woondum State Forest, near Gympie $26^{\circ} 15^{\prime} \mathrm{S} 152^{\circ} 44^{\prime} \mathrm{E}$ (QM J15870).

TABLE 1. Selected measurements of type specimens (all male) of Antechinus subtropicus, A. adustus, A. stuartii, A. agilis, A. unicolor, A. flavipes burrelli and A. flavipes based on measurements taken by Van Dyck, Crowther and Dickman. Abbreviations as in Fig. 1.

Meswarement (mm)	1 whtromicar Q.i. 117407	$\begin{gathered} \text { A allusm: } \\ \text { B\INII } \\ 22.12 .18 .54 \end{gathered}$	1) shuriii A11 M15294	$\begin{gathered} \text { f wifs } \\ \text { dillib3319 } \end{gathered}$	$\begin{aligned} & 1 \text { wis olt, } \\ & \text { BAINII } \\ & 54.11 .19 .2 \end{aligned}$	$\begin{aligned} & \text { 1 flanipes } \\ & \text { hurel/t } \\ & \text { AMM2593 } \end{aligned}$	$\begin{aligned} & 1 \text { /hwipes } \\ & \text { BMNNI\| } \\ & 55.12 .24 .75 \end{aligned}$
BL	27.93	26.2	26.76	25.16		24.4	
PL	15.76	14.8	15.13	13.45		c. 12.2	18.0
P^{1-3}	3.89	3.29	3.88	3.29	3.46	2.3	3.16
P^{1-2}	2.82		2.57	2.37		3.3	
SWR-LC ${ }^{1} \mathrm{~A}$	4.68	5.45	5.15	4.28	5.51	4.9	5.29
$\mathrm{C}^{1} \mathrm{M}^{4}$	11.44		11.00	10.36			
IPVL	2.09		4.44	5.21			
SWR-LM ${ }^{3}$	12.04	13.09	12.85	11.28	14.27	12.3	14.1
IBW	4.36	4.68	4.00	4.04	4.34	3.7	
OBW	10.95	10.72	10.87	10.33	11.69		
IOW	7.08	6.65	7.19	6.47	7.21	6.0	6.95
ZW	15.98	16.09	16.73	14.71	17.67	c. 14.3	
SCD	5.26	5.0	5.75	4.46			
APVI.	4.16	2.96	2.85	2.30	c. 3.0	2.7	2.99
PPVL	6.82	4.7	5.16	4.15	c. 5.9	5.2	
DL	22.29		21.45	19.80	22.5		
HB	111	107	101	94	127	90	114
TV	91	94	94	79	92	80	85
EAR	16	18	17	15			18
PES	20	21	18	16.5	20		20
WT (g)	36.7			27			

TYPE LOCALITY. Emu Creek $28^{\circ} 13^{\circ} 03^{\prime \prime} \mathrm{S}$ $152^{\circ} 24^{\prime} 54^{\prime \prime} \mathrm{E}$ (38 km E of Warwick), SE Qld.

DIAGNOSIS. Antechinus subtropicus differs from A. stuartii in having more highly developed entoconids on M_{3}; longer posterior and anterior palatal vacuities, and shorter inter-palatal vacuity distance (Fig. 7); relatively narrower rostrum and less expanded lachrymals and jugals (Fig. 9).
Antechinus subtropicus differs from A. agilis in larger body size (Fig. 7); dorsal fur brown rather than grey-brown; longer posterior and anterior palatal vacuities with a shorter inter-palatal vacuity distance, both in relative and absolute terms (Fig. 7, Tables 2,4); relatively longer premolar row; significantly more developed entoconids on M_{3} and the first interdigital pad is not usually fused with the first inner metatarsal pad.
Antechinus subtropicus differs from A. adustus in lighter colour fur; relatively longer, narrower rostrum (Fig. 9); larger alisphenoid tympanic bullae (Fig. 8); relatively longer premolar row; significantly more developed entoconids on M_{3};
less pronounced enlargement of I^{1-4}; and females have eight nipples instead of six
Antechinus subtropicus differs from A. flavipes in absence of prominent buff fur surrounding the eyes; absence of tannish patch of post-auricular fur, uniform dorsal fur colour compared with a prominent change in antero-posterior fur colour from grizzled greyish shoulders to tannish rump; tail tip generally a uniform colour; relatively narrower rostrum; less expanded lachrymals and jugals; longer premolar row; less massive canines; and significantly more developed entoconids on M_{3} (Van Dyck, 1982a).
Antechinus subtropicus differs from A. bellus by its darker, more uniform colour; much narrower rostral width; less expanded lachrymals and jugals; a well-developed entoconid and a non-thickened supratragus (Van Dyck, 1997).
Antechinus subtropicus differs from A. godmani in having relatively smaller inter-palatal vacuities and a correspondingly greater inter-palatal vacuity distance; a smaller body size; and a non-thickened supratragus (Van Dyck, 1982b).

Antechimus subtropicus differs from A. leo by its narrower rostral width at the level of the upper canine; a smaller body size; and having a non-thickened supratragus (Van Dyck, 1980).
Antechinus subtropicus differs from A. swainsonii in lighter colouring; having shorter claws; relatively larger ears and eyes; relatively shorter premolars; relatively shorter inter-palatal vacuity distance; a diastema between I1 and 1^{2}; more developed stylar cusp B on M^{1}; having posterior cingula on the upper molars; M_{3} talonid wider than the trigonid; and more procumbent upper incisors.

Antechinus subtropicus differs from A. minimus in having a relatively longer tail; shorter claws; relatively shorter premolars; having posterior cingula on the upper molars; an upright I^{1}, a diastema between I^{1} and I^{2}; the M_{3} talonid wider than the trigonid; and no posterior accessory cusp on I^{3}.

DESCRIPTION OF HOLOTYPE. Pelage (Fig. 2). The fur of the mid-back is up to 12 mm long with basal 9 mm Slate colour, median 2 mm Isabella colour and apical 1 mm black. The overall dorsal impression is one of speckled Buffy Brown (a mid biscuit-brown), however, mid-way along the dorsum fur colour warms to become a slightly darker Saccardo's Umber to the base of the tail. Guard hairs, interspersed thinly through the fur, are 13 mm on the rump, and reduce to 5 mm where they terminate at the crown of the head. Fur on and below the shoulders. thighs, flanks and chin lacks black tips and these areas, and the belly, appear as Chamois (a light fawn).
There is no head-stripe and no impression of a dark head 'patch', nor are there any eye-rings (although animals in the field appear to have a head-stripe). The soft ventral fur (8 mm long on the belly) is Mouse Gray on the basal half and Cartridge Buff on the apical half, and is interspersed with colourless medially thickened guard hairs 11 mm long. The belly is thus an overall Chamois. Forefeet and hindfeet are thinly covered with Cartridge Buff hairs. The tail is moderately thickly covered with hair and is very weakly bicoloured dorso-ventrally. Hairs average 2.0 mm along the tail length but increase to 6.5 mm at the tip. Dorsally, the tail hairs are uniform Buffy Brown with Fuscous Black tips, but the distal third is covered with Olive Brown hairs dorsally and Deep Olive Buff ventrally which form a ventral 'crest'. Ventrally, the black
tips are lost completely and the hairs become almost colourless toward the tip.
Vibrissae. There are approximately 22 mystacial vibrissae on each side which are up to 31 mm long. The more dorsal mystacial vibrissae are Fuscous Black while those lower are colourless; supra-orbital vibrissae number 2 (left), 1 (right); genals (Fuscous Black and colourless) number 5 (left) and 6 (right); ulna-carpals (colourless) number 4 (left) and 5 (right); submentals (colourless) number 3.
Tail. The tail is shorter than the nose-vent length. It is thin, tapers toward the tip and has a weak ventral crest.
Hindfool. The interdigital pads are separate and are elongate and striate. Enlarged, unfused, hallucal, post-hallucal and metatarsal pads are present on both feet.
Ears. The ears are rounded with a ventral lobe defined by a shallow notch in the posterior margin. The supratragus is simple and leaf-like with no pronounced thickened posterior-margin or distal-end reflex.
Dentition. (Fig. 3). Upper Incisors. I ${ }^{1}$ roots are narrow, crowns are short and high, relatively broad and weakly cingulated buccally. They are procumbent but the crowns are uncurved posteriorly. The roots of LI^{1} and RI^{1} are separated by a diastema but they contact at the crown tips. For I^{2+} crown height, $\mathrm{I}^{2}>I^{3}>I^{4}$. All upper incisors have very weak buccal cingula. The root and crown are clearly differentiated. I^{+}carries no anterior cusp and the root of I^{+}is narrow.
Upper Canines: C^{1} is narrow and caniniform with a distinct boundary between the root and the crown. A weak buccal cingulum and a very weak lingual cingulum are present. There is no anterior cusp, but a minute posterior cingular cusp is present.
Upper Premolars: A very slight diastema occurs between C^{1} and $\mathrm{P}^{1}, \mathrm{P}^{1}$ and P^{2} and P^{2} and P^{3}. All upper premolars carry strong buccal and lingual cingula. P^{P} crown (broken off in RP^{1}) is shorter than P^{2}, which is shorter than P^{3}. Small but clearly definable anterior and posterior cusps are present on $\mathrm{P}^{1}, \mathrm{P}^{2}$ and $\mathrm{P}^{3} . \mathrm{P}^{1}$ and P^{2} possess very weak postero-lingual lobes.
Upper Molars: The posterior tip of p^{3} is positioned in the parastylar comer of M^{1} but lingual to and explanar with stylar cusp A. The anterior cingulum below stylar cusp B is very broad and complete. Stylar cusp B and the paracone are relatively unworn, and a minute protoconule is present at the base of the paracone
apes. The protoconule is accompanied by a small bulge of enamel directly below it on the face of the anterior protocrista. The paracone on M^{1} is approximately half the height of the metacone. Stylar cusps C and E are not visible. M ${ }^{1}$ has a very weak posterior cingulum. Stylar cusp D is greatly enlarged and makes a great contribution to endoloph bulk.
In M^{2} the broad anterior cingulum, which contacts the metastylar corner of M^{1}, tapers quickly as it progresses down and along the base of the paracrista, however it is complete and does not degenerate totally at the base of the paracone apex. A minute protoconule is visible. M2 lacks stylar cusps A and E. Stylar cusp D is slightly reduced, broad and there is a very weak posterior cingulum. Stylar cusp C is just visible on LM^{2}, however it is absent on RM2.
In M^{3} the anterior cingulum is as in M^{2}, and is narrow but complete. Stylar cusp D is reduced to a small, sharp peak. Stylar cusps C and E are absent. There is a very weak posterior cingulum.
In M ${ }^{4}$ the metastylar corner is very poorly developed. The narrow anterior cingulum reduces quickly away from the anterior corner of M^{3} and runs to the trigon basin. A posterior cingulum is weakly present. The protocone is reduced but relatively broad. In occlusal view, the angle made between the post-paracrista and the post-protocrista is close to 110°.
Lower Incisors: The crown height of I_{1} is taller than $I_{2} . I_{1}$ and I_{2} are oval in antero-lateral view and gouge-like in occlusal view. The crown height of I_{2} is larger than in $I_{3} . I_{3}$ is incisiform in lateral view with an insignificant posterior cusp at the base of the crest, which descends posteriorly from the apex of the primary cusp. The lower canine rests lingually to the posterior cusp. In occlusal view, a small notch separates the posterior cusp from the prominent postero-lingual lobe, and crown enamel of the primary and posterior cusps folds noticeably lingually such that the crest of the two cusps bisects the tooth longitudinally.
Lower Canines: C_{1} is caniniform and characterised by upward projection and moderate curvature from root to crown tip. It has weak buccal and lingual cingulation and a weak posterior cusp. Some thegotic wear is evident just anterior to the posterior cusp.
Lower Premolars: There are no diastemata between the premolars, however only P_{1} and P_{2} contact. Between $\mathrm{C}_{1}-\mathrm{P}_{1}$, and $\mathrm{P}_{2}-\mathrm{P}_{3}$, there is a minute gap between the crowns. All are weakly
cingulated buccally and lingually. In crown height, P_{2} is taller than P_{1}, which is taller than P_{3}. P_{1} and P_{2} are broad and long. P_{3} is narrower and short. All possess posterior cusps. P_{1} has weak postero-lingual lobing.
Lower Molars: The M_{1} talonid is wider than the trigonid and a very weak anterior cingulum is present. There is no buccal cingulum. The narrow paraconid appears, in occlusal view, as a small inclined spur, the lingual edge of which makes a slight swelling on the endoloph of M_{1}. The paracristid is almost horizontal from the paraconid to the paracristid fissure and vertical from the paracristid fissure to the protoconid. The metacristid and hypocristid are roughly oblique to the long axis of the dentary. The short cristid obliqua extends from the hypoconid to the posterior wall of the trigonid intersecting the trigonid at a point just buccal to that point directly below the tip of the protoconid. The hypocristid extends from the hypoconid to the hypoconulid. The entoconid is long but low. From the metaconid posteriorly, the talonid endoloph follows a line more lingual to the axis of the dentary until the base of the hypoconulid.
In M_{2}, the trigonid is slightly narrower than the talonid. The anterior cingulum is moderately well-developed originating lingually in a weak parastylid notch into which the hypoconulid of M_{1} is tucked. There is a very weak buccal cingulum. A very narrow, weak posterior cingulum extends from the hypoconulid to the posterior base of the hypoconid. The paraconid is well developed and is the smallest trigonid cusp. A very large entoconid, as tall as the protoconid, is present. The cristid obliqua extends from the hypoconulid to the posterior wall of the trigonid intersecting the trigonid at a point directly below the tip of the protoconid but well buccal to the metacristid fissure. The hypocristid (worn in LM_{2}) extends from the hypoconulid to the tip of the hypoconid. From the base of the metaconid posteriorly, the endoloph follows a line of orientation more lingual than the line of the dentary axis.
In M_{3}, the width of the trigonid is equal to that of the talonid. Λ weak parastylid wraps around the hypoconulid of M_{2} and there is a moderately well developed anterior cingulum on M_{3}. Buccal and posterior cingula are as in M_{2}. The reduced cristid obliqua intersects the trigonid at a point well lingual to the longitudinal vertical mid-line drawn through the tip of the protoconid, but slightly buccal to the metacristid fissure. The
entoconid on M_{3} is very well developed and just shorter than the well-developed paraconid. The endoloph on the talonid of M_{3} takes a more buccal orientation than that seen in M_{2}. The rest of M_{3} morphology is as in M_{2}.
In M_{4}, the trigonid is much wider than the talonid. The anterior cingulum is as in M_{2}. The posterior cingulum is absent. Of the three main trigonid cusps, the metaconid is slightly taller than the paraconid but both are dwarfed by the protoconid. The hypoconid of M_{4} is small but distinct. Between the hypoconid and the base of the metacristid, the cristid obliqua forms a low crest, which contacts the anterior base of the well-developed entoconid directly below the metacristid fissure. The hypoconulid is reduced to a low crest.
Skull. (Fig. 3). The rostrum is slightly concave due to a depression between the lachrymals at the nasal-frontal sutures. The left and right (damaged) alisphenoid tympanic bullae are widely separated and poorly developed. The foramen pseudovale is large and is not bisected by a bridge of the alisphenoid. The eustachian canal opening is very large. The internal jugular canal foramina are large, the canals are raised and prominent. The posterior lacerate foramina are large and exposed, as are the entocarotid foramina. The large premaxillary vacuity extends from the level of the I^{1} root back to the level of the $\mathrm{P}^{1} / \mathrm{P}^{2}$ diastema. The very large maxillary vacuities extend from the level of the anterior root of P^{3} and extend back to the level of the $\mathrm{M}^{3} / \mathrm{M}^{4}$ interface. Palatine vacuities are not present. There is minimal anterior flaring of the jugals, and the lachrymals are unexpanded, giving the skull a long and narrow appearance when viewed dorsally.
HABITAT AND DISTRIBUTION (Fig. 6). In SE Qld A. subtropicus is essentially restricted to subtropical vine-forests, and occurs from sea level (Tallebudgera Creek $28^{\circ} 08^{\circ} \mathrm{S} 153^{\circ} 26^{\circ} \mathrm{E}$) to altitudes of 1000 m (Lamington Plateau $28^{\circ} 16^{\prime} \mathrm{S}$ $153^{\circ} 05^{\prime} \mathrm{E}$). It is abundant in major tracts of vine-forest on or east of the Great Dividing Range south of Gympie $26^{\circ} 11^{\prime} \mathrm{S} 152^{\circ} 40^{\circ} \mathrm{E}$ to NE New South Wales. Structural features of typical complex notophyll vine-forests inhabited by A. subtropicus include the abundance of notophylls and microphylls, lianas, vascular epiphytes, plant buttresses, compound entire leaves and trunkobscuring aroids such as Pothos (Webb 1959). The uneven canopy of mixed evergreens and occasional deciduous emergents range in height
from 21-45m. Antechimus subtropicus is found rarely in sclerophyll associations, where its presence is limited to humid, dense areas such as fern gullies and vine entanglements along watercourses. It is particularly abundant in the perimeter vegetation of vine forests and favours dense tangled stands of invasive pioneer shrubs such as Lantana camara, wild raspberry Rubus spp., bleeding heart Omolanthus spp., and bracken Pteridium esculentum. Braithwaite (1973) studied a population at Mt Glorious $\left(27^{\circ} 20^{\circ} \mathrm{S} 152^{\circ} 47^{\circ} \mathrm{E}\right)$ and found that A. subtropicus avoids both mature forest with sparse ground cover and disturbed areas with cunjevoi (Alocasia machorhiza) and young palm growth. He found a greater preference for areas of tangled and fallen lianas, and rotten logs. All areas where A. subtropicus occurs experience relatively high average annual rainfall of $u p$ to 2000 mm (Van Dyck, 1982a).
REPRODUCTION. At Mount Glorious, SE QId, mating occurs only in the last two weeks of September each year and is followed immediately by the death of all males (Wood, 1970; Braithwaite, 1973). Females of A. subtropicus gestate for 25-26 days and all births at Mt Glorious occur in the last two weeks of October. The young remain in the pouch for approximately 5 weeks and are weaned after three months (Wood, 1970). Litter size at Mt Glorious averages 7.5 young (Wood, 1970). In more northerly districts mating occurs slightly earlier than at Mt Glorious (SVD pers. obs.). At the Conondale Range ($26^{\circ} 52^{\circ} \mathrm{S}, 152^{\circ} 40^{\prime} \mathrm{E}$), female A. subtropicus captured from 21 to 25 October had pouches containing seven or eight $1-1.5 \mathrm{~cm}$ young. Their ages were therefore approximately 12-20 days (cf. Marlow, 1961); their births having taken place early in October. In New South Wales (near Sydney) A. stuartii reproduces nearly six weeks earlier than A. subtropicus from SE Qld (Dickman, 1982).
Nipple Number. Nipple numbers appear to be regular in SE Qld. Or 32 female specimens, representing localities over the entire range of A. subtropicus in SE Qld, all had pouch areas containing eight nipples. A.B. Rose (pers. comm.) also reported this for animals from the Border Ranges National Park in NE New South Wales. Eight nipples were also found by Cockburn et al. (1983) for SE Qld females.
DECIDUOUS PREMOLAR MORPHOLOGY. The dP^{3} may be double- or triple-rooted. When double-rooted the tooth is less molariform, with a

FIG. 4. Study skin of the holotype of Phascogale flavipes adusta Thomas, 1923 (now Antechinus adustus) (BMNH 1922.12.18.54). Dorsal view (above) and ventral view (below).
poorly developed protocone, well-developed paracone, and a small metacone. When triplerooted this tooth is more molariform with a well-developed protocone, but with the paracone and metacone coalescing into a single cusp. Buccal cingulation is strong.
The dP_{3} may be single or double-rooted. When single-rooted, it is premolariform, exhibiting a single anterior cusp. When double-rooted it is rounded and more molariform with a large
protoconid and possible traces of a metaconid and hypoconid.

Antechinus adustus (Thomas, 1923)
(Figs 4, 5; Table 1)
Phascogale flowipes adusta. Thomas. 1923.
Phascogule unicolor adusta Thomas, 1924.
Antechinus stuartii cdustus Wakelield \& Warneke, 1967.
MATERIAL. HOLOTYPE: BMNH1922.12.18.54, aduli male, skull, dentaries and puppet skin, I Jun 1922, T.V. Sherrin. OTHER MATERIAL: Bellenden Ker $17^{\circ} 16^{\circ} \mathrm{S}$

FIG. 5. Skull and right dentary of the holotype of Phascogale flavipes adusta Thomas, 1923. (BMNH 1922.12.18.54). Scales in millimetres.

1455ํ'ㄹ (QM J19669); 'Bluewater', 17 km S of Rollingstone $19^{\circ} 10^{\prime} \mathrm{S} 146^{\circ} 23^{\prime} \mathrm{E}$ (QM JM3755, 3756); Charappa Creek, near Ravenshoe $17^{\circ} 38^{\circ} \mathrm{S} 145^{\circ} 35^{\prime} \mathrm{E}$ (AM M8302, 8317); Ebony Road, Forestry track 20km SE of Ravenshoe $17^{\circ} 44^{\prime} \mathrm{S} 145^{\circ} 33^{\prime} \mathrm{E}$ (QM JM6715); Ebony Road, $850 \mathrm{~m} 17^{\circ} 44^{\prime} \mathrm{S} 145^{\circ} 32^{\circ} \mathrm{E}$ (QM JM1785, 1897-1901, 1903-1906, 1910, 1911, 1915, 2751, 3919, 5543); Ebony Road, $780 \mathrm{~m} 17^{\circ} 44^{\circ} \mathrm{S} 145^{\circ} 33^{\prime} \mathrm{E}$ (QM JM5540-5542); Forestry track 15 km SE of Ravenshoe, $840 \mathrm{~m} 17^{\circ} 43^{\prime} \mathrm{S}$ $145^{\circ} 31^{\prime} \mathrm{E}$ (QM JM1902); George Creek area $17^{\circ} 49^{\prime} \mathrm{S}$ 145³2’E (QM JM6898); Koombooloomba Creek $17^{\circ} 51^{\prime} \mathrm{S} 145^{\circ} 35^{\prime} \mathrm{E}$ (QM JM6889); Macalister Mountains, W of Cardwell, $650 \mathrm{~m} 18^{\circ} 19^{\prime} \mathrm{S} 145^{\circ} 57^{\prime} \mathrm{E}$ (QM JM6560); Mt Lewis $16^{\circ} 35^{\prime} \mathrm{S} 145^{\circ} 16^{\prime} \mathrm{E}$ (QM JM3758, 3619); Mt

Lewis $16^{\circ} 36^{\prime}$ S $145^{\circ} 15^{\circ} \mathrm{E}$ (QM JM3757); Mt Lewis Forestry hut, $0.5 \mathrm{~km} \mathrm{~S} 16^{\circ} 35^{\prime} \mathrm{S} 145^{\circ} 16^{\prime} \mathrm{E}$ (QM JM6906); Mt Lewis Forestry hut, 1 km NW $16^{\circ} 35^{\prime} \mathrm{S} 145^{\circ} 16^{\prime} \mathrm{E}(\mathrm{QM}$ JM 6905); Mt Spec, NW of Townsville $18^{\circ} 58^{\prime}$ S $146^{\circ} 09^{\prime} E$ (QM J10108); Mt Spurgeon $16^{\circ} 26^{\prime} \mathrm{S} 145^{\circ} 12^{\prime} \mathrm{E}(\mathrm{QM}$ JM809, J7143, J7144); Niblet Creek, Kooroomool Saddle Road, 5 km ENE of Koombooloomba $17^{\circ} 49$ 'S $145^{\circ} 38^{\prime} \mathrm{E}$ (QM JM6716, 6717); North Koombooloomba Dam $17^{\circ} 48^{\prime} \mathrm{S} 145^{\circ} 37^{\prime} \mathrm{E}(\mathrm{QM}$ JM6896); Palmerston Range, Forestry road to Maalan, $710 \mathrm{~m} 17^{\circ} 36^{\prime} \mathrm{S} 145^{\circ} 39^{\prime} \mathrm{E}$ (QM JM1907-1909); Paluma $19^{\circ} 00^{\prime} \mathrm{S} 146^{\circ} 12^{\prime} \mathrm{E}$ (QM JM2788) Paluma Dam, Forestry track approach, $780 \mathrm{~m} 18^{\circ} 58^{\prime} \mathrm{S}$ $146^{\circ} 09^{\circ}$ E (QM JM1847, 1893-1896 JM1914); Paluma township $19^{\circ} 00^{\prime}$ S $146^{\circ} 12^{\prime} \mathrm{E}$ (QM JM2789); Severin State

Forest $17^{\circ} 11^{\prime} \mathrm{S} 145^{\circ} 40^{\prime} \mathrm{E}$ (CSIRO CM10561-10563); Windsor Tableland $16^{\circ} 15^{\prime} \mathrm{S} 145^{\circ} 02^{\prime} \mathrm{E}(\mathrm{QM}$ JM2822).

TYPE LOCALITY. Dinner Creek (now Charmillan Creek), Ravenshoe, Qld, $17^{\circ} 42^{\prime} \mathrm{S}$ $145^{\circ} 31^{\prime} \mathrm{E}$, altitude 885 m .
DIAGNOSIS. Antechinus adustus differs from A. stuartii in having a longer, darker pelage; relatively smaller and more widely spaced bullae (Fig. 8) and females have six nipples compared with eight to ten nipples.

Antechinus adustus differs from A. agilis in having a longer, darker pelage: a relatively broader rostrum (Fig. 9); relatively smaller bullae (Fig. 8); the first interdigital pad not usually fused with the first inner metatarsal pad; and females having only six nipples.

Antechinus adustus differs from A. subtropicus in having a smaller body size (Fig. 7, Tables 2, 3); relatively shorter, broader rostrum (Fig. 9); relatively smaller palatal vacuities with a corresponding larger inter palatal vacuity distance (Fig. 7); longer, darker pelage; less developed entoconids on M_{3} and females with only six nipples.

Antechinus adustus differs from A. flavipes in having a smaller body size; a longer, darker pelage; absence of prominent buff fur surrounding the eyes; absence of tannish patch of post-auricular fur; uniform dorsal fur colour compared with a prominent change in antero-posterior fur colour from grizzled greyish shoulders to tannish rump; tail tip generally a uniform colour, more developed entoconids on M_{3}; and females with only six nipples.
Antechinus adustus differs from A. bellus by its much darker and more uniform colour; smaller body size; well-developed entoconids; much narrower rostral width from the level of the upper canine; through to the level of the upper third molar; and a non-thickened supratragus.

Antechinus adustus diflers from A. godmani in having a much smaller body size; darker colouration; shorter skull length; relatively shorter, broader rostrum; shorter premolar row; and a non-thickened supratragus (Van Dyck, 1982b).

Antechinus adustus differs from A. leo by its narrower rostral width at the level of the upper canine; well-developed entoconids; a smaller body size; darker colour; and non-thickened supratragus (Van Dyck, 1980).

Antechinus adustus differs from A. swainsonii in having a narrower inter-orbital width; shorter anterior palatal vacuities; shorter premolar row; a
relatively broader rostrum; smaller body size; shorter claws; more massive I ${ }^{1}$; more massive ${ }^{2}{ }^{2-1}$; prominent postero-lingual lobes on Pl^{1-3}; having posterior cingula on the upper molars; an upright 1^{1}; and no posterior accessory cusp on I^{3}.

Antechimus adustus differs from A. minimus in having a relatively longer tail; a relatively broader rostrum; a smaller body size; shorter claws; more massive 1^{1}; more massive $\left[^{2-4}\right.$; prominent postero-lingual lobes on P^{1-3}; having posterior cingula on the upper molars; an upright I^{1} and no posterior accessory cusp on 1^{3}.
DESCRIPTION OF HOLOTYPE. Pelage (Fig. 4). Fur of the mid-back (8 mm long) with basal 6 mm Slate Colour, median 1 mm Tawny Olive and apical 1 mm Fuscous Black. The back appears overall to be Sepia. Medially thickened guard hairs, interspersed thinly through the fur, are 11 mm long on the rump, and reduce to 3 mm where they terminate at the crown of the head. Fur on and below the shoulders, thighs, flanks and chin lacks black tips or coarse guard hairs and these areas and belly appear Cinnamon Buff.

The soft ventral fur (7 mm long on the belly) is Mouse Gray on the basal 1.5 mm and Cinnamon Buff on the apical 5.5 mm and is interspersed by Cinnamon Buff guard hairs (8 mm long). The belly is thus an overall Cinnamon Buff. Fore and hindfeet are covered with hairs which are coloured Saccardo's Umber. The tail appears weakly bicoloured, this being an illusion due to the denser coverage of hairs ventrally, which are 3.6 mm long midway along the tail, and 6.4 mm long at the ventral tip. Dorsally, the hairs are 2.7 mm long midway down the tail and 2.7 mm long at the dorsal tip. All tail hairs are Fuscous Black.
Vibrissae. Approximately 24 mystacial vibrissae occur on each side and are up to 27 mm long. The more dorsal vibrissae are coloured Fuscous Black while those lower are colourless; supra-occipital vibrissae (Fuscous Black) number 2 left and 2 right; genals (Fuscous Black and colourless) number 9 left and 9 right; ulna-carpals (colourless) number 4 right and 6 left; submentals (colourless) number 4.
Tail. The tail is shorter than the nose-vent length. It is thin and tapers toward the tip.
Hindfoot. Interdigital pads are separate. The apical pad is enlarged, elongate and striate. Hallucal and post-hallucal pads are separate on both feet. Metatarsal pads or granules are not present in the holotype although a minute calcaneal granule is visible. An auxiliary apical
granule is visible outside left and right third digit apical granules.
Ears. It was not possible to closely examine supratragus morphology in the holotype dry skin. (In other specimens, the supratragus is simple).
Dentition (Fig. 5). Upper incisors: I^{1} is massive, broad, very procumbent, strongly curved and taller-crowned than all other upper incisors. It is caniniform with a greatly developed crown. Left and right I^{1} touch. I^{1} and I^{2} are so highly developed that they almost contact, and the diastema traditionally separating I^{1} from I^{2} in Antechinus (other than A. minimus and A. swainsonii) is minute. In other incisors, $\mathrm{I}^{3}>\mathrm{I}^{2}>\mathrm{I}^{4}$ and all have strong buccal cingula. Roots of I^{-2} are narrow while the crowns are very broad. I^{4} carries no anterior cusp but a minute posterior cusp is present.

Upper canines: C^{1} is short, stout and caniniform with a distinct boundary between root and crown. It carries a weak buccal and weak lingual cingulum. A minute anterior cingular cusp is present along with a slightly larger posterior cusp.

Upper premolars: There are no diastemata between premolars. All right upper premolars contact. Left P^{1} and P^{2} crowns are slightly separate, P^{1} and P^{2} carry strong buccal and lingual cingula. In crown size $\mathrm{P}^{3}>\mathrm{P}^{2}>\mathrm{P}^{1}$. There is a small posterior cusp on P2 and a large posterior cusp on $\mathrm{P}^{3} . \mathrm{P}^{1}$ and P^{2} bear heavy postero-lingual lobes and in occlusal view appear almost square.

Upper Molars: The posterior tip of P^{3} lies in the parastylar corner of M^{1} but lingual to and coplanar with stylar cusp A (right dentary) and just below stylar cusp A in the left dentary. The anterior cingulum below stylar cusp B is short, broad and just complete. Stylar cusp B is tall and the paracone is slightly worn. A minute protoconule is present at the base of the paracone apex. The minute protoconule is accompanied by a small bulge of enamel directly below it on the face of the anterior protocrista. The paracone on M^{1} is approximately half the height of the metacone. Stylar cusp C is not visible on either LM^{1} or RM^{1}, and stylar cusp E is not visible. M^{1} has a poorly developed posterior cingulum. Stylar cusp D is very large and broad.

In M^{2} a broad anterior cingulum which contacts the metastylar corner of M^{1} tapers slowly as it progresses down and along the base of paracrista and finally unites with the trigon basin. A small protoconule is visible. M^{2} lacks
stylar cusps A, C and E. Stylar cusp D is slightly reduced, but broad, and there is a weak posterior cingulum.

In M^{3} the anterior cingulum is as broad as in M^{2}, but becomes more indistinct after covering $2 / 3$ distance between stylar cusp B and the base of the paracone. It does, however, unite with the trigon basin. Stylar cusp D is reduced to a very small, broad peak. Stylar cusp E is absent, as is stylar cusp C.

In M^{4} the metastylar comer is poorly developed. The broad, complete anterior cingulum narrows quickly away from the metastylar comer of M^{3}, and a posterior cingulum is absent. The protocone is much reduced and narrow, In occlusal view, the angle made between the postprotocrista and the post-paracrista is close to 90°.

Lower Incisors: The gross development of the upper incisors is not reflected in the lowers. The first lower incisor is almost $11 / 2$ times the crown height of $I_{2} \cdot I_{1}$ and I_{2} are oval in antero-lateral view and gouge-like in occlusal view. I_{2} is subequal in crown height to $I_{3} . I_{3}$ is incisiform in lateral view but with a conspicuous posterior cusp at the base of the crest, which descends posteriorly from the apex of the primary cusp. The lower canine rests against this posterior cusp. In occlusal view, a small notch separates the posterior cusp from the prominent posterolingual lobe, and crown enamel of the primary and the posterior cusps fold noticeably lingually, such that the crest of the two cusps bisects the tooth longitudinally.

Lower Canines: C_{1} is caniniform, broad and erect, and is characterised by maximum curvature from root to crown tip. It has strong buccal and lingual cingulation and a strong posterior cusp.

Lower Premolars: P_{1-3} are large, rectangularly shaped and all in contact. They are strongly cingulated buccally and lingually. In crown height, P_{2} is taller than P_{1}, which is taller than P_{3}. All possess small posterior cusps; P_{1} possesses a very weak anterior cusp. P_{1} and P_{2} do not have postero-lingual lobes.

Lower Molars: All molars are broad. The M_{1} talonid is much wider than the trigonid and the anterior cingulum is present but poorly developed. It terminates at the posterior base of the protoconid. There is no buccal cingulum. The narrow paraconid appears in occlusal view as a small steeply sided spur, the lingual edge of which makes no appreciable swelling on the endoloph of M_{1}. The paracristid is almost 45° to

FIG. 6. Distribution of Antechinus subtropicus and A. adustus.
the horizontal from the paraconid to the paracristid fissure and 45° from the paracristid fissure to the protoconid. The metacristid is roughly oblique to the long axis of the dentary while the hypocristid is oblique. The cristid obliqua is long and extends from the hypoconid to the posterior wall of the trigonid, intersecting the trigonid at a point slightly lingual to that point directly below the tip of the protoconid. The hypocristid terminates midway between the hypoconid and the metastylid. The entoconid is very low. From the base of the metaconid posteriorly, the talonid endoloph follows the line of the dentary until the base of the hypoconulid.
In M_{2}, the trigonid is slightly narrower than the talonid. The anterior cingulum is poorly developed, originating lingually in a weak parastylid notch into which the hypoconulid of M_{1} is tucked. There is no buccal cingulum. A
strong, broad, posterior cingulum extends from the hypoconulid to the posterior base of the hypoconid. The paraconid is well developed and is the smallest trigonid cusp. A well developed, but narrow entoconid is present. The cristid obliqua extends from the hypoconulid to the posterior wall of the trigonid intersecting the trigonid at a point directly below the tip of the protoconid but well buccal to the metacristid tissure. The hypocristid extends from the hypoconulid to the tip of the hypoconid. From the base of the metaconid posteriorly, the endoloph follows the line of the dentary axis.

In M_{3}, the trigonid is as wide as the talonid. A prominent parastylid wraps around the hypoconulid of M_{2} and there is a strong anterior cingulum on M_{3}. The posterior cingulum is as in M_{2} but more poorly developed. The reduced cristid obliqua intersects the trigonid at a point

FIG. 7. Bivariate plot of inter-palatal vacuity distance (IPVL) (mm) against basicranial skul! length (BL) (mm) for male Antechinus subtropicus ($\mathbf{\Delta}$), A. adustus (\bullet), A. stuartii $(+)$ and A. agilis (\times).
well lingual to the longitudinal vertical mid-line drawn through the tip of the protoconid, but slightly buccal to the metacristid fissure. The entoconid on M_{3} is small. The endoloph on the talonid of M_{3} follows the line of the dentary axis. The rest of M_{3} morphology is as in M_{2}.

In M_{4}, the trigonid is wider than the talonid. The anterior cingulum is as in M_{2} but more poorly developed. The posterior cingulum is absent. Of the three main trigonid cusps, the metaconid is slightly taller than the paraconid but both are dwarfed by the protoconid. The hypoconid of the M_{4} talonid is the only cusp. Between the hypoconid and the base of metacristid, the cristid obliqua forms a low, weak crest, which contacts the trigonid wall just lingual to the metacristid fissure. A significant feature of the M_{4} morphology is the reduction of talonid crown enamel below the cristid obliqua, which results in the talonid appearing (in occlusal view) as a narrow oblique spur jutting off the trigonid wall.
Skull. (Fig. 5). The rostrum is slightly grooved longitudinally by a depression running along the nasal sutures. There is no concavity at the nasalfrontal sutures. The left and right alisphenoid tympanic bullae are moderately widely separated and only moderately enlarged. The foramen pseudovale is large and not bisected by a bridge of the alisphenoid. The eustachian canal opening is moderately large. The internal jugular canal

FIG. 8. Bivariate plot of interbulla width (IBW) (mm) against zygomatic width (ZW) (mm) for malc Antechinus subtropicus (() , A. adustus (©), A. stuartii $(+)$ and A. agilis (\times).
foramina are large, the canals are raised and prominent. The posterior lacerate foramina are large and exposed, as are the entocarotid foramina. The premaxillary vacuity extends from the level of the I^{2} root back to the level of the posterior edge of the C^{t} root. The small maxillary vacuities extend from the level of the posterior root of P^{3} back to the level of the metacone root of M^{3}. There are no palatine vacuities.

HABITAT AND DISTRIBUTION (Fig. 6). This small species is restricted to dense tropical vine-forests (mostly complex mesophyll on basalt) from Paluma $19^{\circ} 00^{\circ} \mathrm{S}, 146^{\circ} 12^{\circ} \mathrm{E}(60 \mathrm{~km}$ north of Townsville) to Mount Spurgeon $16^{\circ} 26^{\circ} \mathrm{S}, 145^{\circ} 12^{\prime} \mathrm{E}$ (near Mossman), a geographically isolated distribution with a north-south range of approximately 300 km . It does not inhabit lowland vine-forest and is found only in very wet and cloudy uplands, at altitudes above approximately 800 m , in areas that receive highly seasonal rainfall of up to 1500 mm annually. This species appears to have similar habitat preferences to A. subtropicus and has been trapped most frequently along perimeter vegetation in entanglements of ferns and wild raspberry and around recently fallen and decaying logs. Around Ravenshoe it occurs sympatrically with A. godmani and A. f. rubeculus (see Van Dyck, 1982a).

TABLE 2. Univariate summary statistics for cranial, dental and external characters of Antechinus subtropicus. Abbreviations as in Fig. 1.

Variable	n	Mean	s.d.	Min.	Max.	CV
A. subtropicus males						
BL	28	27.87	0.63	26.62	29.24	2.27
ZW	27	16.31	0.51	15.43	17.19	3.15
IOW	28	7.15	0.20	6.86	5.27	2.84
SWR-LC ${ }^{\text {d }}$ B	28	4.74	0.23	4.19	5.83	4.87
SWR-LC ${ }^{\text {d }}$ A	28	5.23	0.22	4.89	13.26	4.15
SWR-LM ${ }^{3}$	28	12.39	0.51	11.09	13.26	4.15
DL	28	21.88	0.64	20.66	22.97	2.93
$\mathrm{C}^{1} \mathrm{M}^{4}$	28	11.13	0.32	10.42	11.74	2.90
APVL	28	3.66	0.64	2.6	4.78	17.40
PPVL	28	6.09	0.44	5.41	7.13	7.23
IPVL	27	2.57	0.51	1.5	3.78	19.90
IBW	28	4.13	0.25	3.42	4.6	6.06
OBW	27	10.88	0.44	9.83	11.78	4.00
PL	28	15.03	0.39	14.22	15.76	2.63
P^{1-3}	28	3.57	0.24	3.14	4.02	6.60
P^{1-2}	27	2.46	0.15	2.23	2.82	6.00
M^{1-3}	27	5.98	0.26	5.43	6.5	4.39
M_{1-4}	19	7.30	0.29	6.74	7.83	3.97
SCD	28	5.86	0.56	5.01	6.9	9.63
HT	27	9.82	0.46	8.87	10.92	4.65
HB	115	\| 116.59	0.63	102	136	5.80
TV	114	96.54	0.54	84	106	6.00
WT	11	60	5.30	52	67	
A. subtropicus females						
BL	16	26.37	1.19	23.85	24.31	4.52
ZW	16	15.50	0.71	13.66	14.43	4.58
IOW	16	7.12	0.25	6.74	6.74	3.53
SWR-LC ${ }^{1}$ B	16	4.49	0.30	3.86	3.86	6.67
SWR-LC ${ }^{1}$ A	16	5.03	0.33	4.33	4.33	6.60
SWR-LM ${ }^{3}$	16	11.78	0.48	10.66	10.66	4.10
DL	16	20.79	0.87	18.9	19.44	4.18
$\mathrm{C}^{\prime} \mathrm{M}^{4}$	16	10.76	0.26	10.11	10.11	2.42
APVL	16	3.39	0.64	2.26	2.26	1903
PPVL	16	5.68	0.46	5.05	5.05	8.19
IPVL	16	2.64	0.40	1.89	1.89	15.00
IBW	16	4.11	0.37	3.37	3.37	8.90
OBW	16	10.39	0.54	9.2	9.2	5.22
PL	16	13.49	2.59	4.32	4.32	19.17
P^{1-3}	16	3.33	0.24	2.75	2.75	7.12
P^{1-2}	16	2.33	0.17	2.03	2.03	7.49
M^{1-3}	16	5.80	0.26	5.3	5.3	4.56
M_{1-4}	8	7.21	0.24	6.78	6.84	3.27
SCD	16	5.45	0.54	4.44	4.44	9.90
HT	15	9.30	0.57	8.43	8.6	6.16
HB	32	102.19	1.02	94	112	5.60
TV	32	88.47	0.91	64	100	5.80
WT	6	28	2.44	24	32	

TABLE 3. Univariate summary statistics for cranial, dental and external characters of Antechinus adustus. Abbreviations as in Fig. 1.

Variable	n	Mean	s.d.	Min.	Max.	CV
A. adustus males						
BL	10	27.20	0.47	26.4	27.84	1.71
ZW	11	16.28	0.49	15.19	16.83	3.00
IOW	11	7.09	0.22	6.76	7.58	3.15
SWR-LC ${ }^{1}$ B	10	4.87	0.17	4.55	5.08	3.51
SWR-LC'A	11	5.39	0.22	5.02	5.75	4.03
SWR-LM ${ }^{3}$	11	12.67	0.48	11.99	13.54	3.79
DL	11	21.06	0.42	20.08	21.7	2.00
$\mathrm{C}^{1} \mathrm{M}^{4}$	11	10.65	0.21	10.38	11.06	1.99
APVL	10	2.67	0.19	2.42	2.99	7.02
PPVL	11	4.74	0.56	3.25	5.27	11.91
IPVL	10	4.66	0.42	3.89	5.37	9.04
IBW	11	4.44	0.24	4.01	4.73	5.30
OBW	11	10.94	0.43	10.34	11.67	3.91
PL	10	14.69	0.27	14.13	15	1.86
P^{1-3}	11	3.34	0.14	3.12	3.58	4.20
P^{1-2}	11	2.26	0.12	2.06	2.42	5.44
$\mathrm{M}^{1.3}$	11	5.82	0.07	5.72	5.95	1.27
M_{1-4}	11	7.11	0.19	6.74	7.34	2.60
SCD	10	5.43	0.30	4.91	5.92	5.54
HT	10	9.39	0.41	8.65	9.93	4.42
HB	9	101.67	8.72	94.00	119.00	7.90
TV	9	98.33	3.77	91.00	103.00	3.80
WT	15	33.4	3.31	30	42	10
A. adustus females						
BL	11	25.84	0.59	25.24	26.94	2.30
ZW	10	15.23	0.44	14.64	16.12	2.91
IOW	11	6.89	0.10	6.74	7.05	1.47
SWR-LC ${ }^{1}$ B	11.	4.51	0.26	4.06	4.9	5.84
SWR-LC ${ }^{\text {d }}$ A	11	5.12	0.24	4.66	5.43	4.71
SWR-LM ${ }^{3}$	11	11.53	0.49	10.68	12.16	4.25
DL	11	19.98	0.48	19.34	20.84	2.38
$\mathrm{C}^{\prime} \mathrm{M}^{4}$	11	10.43	0.24	10.1	10.83	2.31
APVL	11	2.52	0.28	2.17	3.13	11.24
PPVL	10	4.73	0.46	4.14	5.45	9.80
IPVL	11	4.62	0.43	3.93	5.08	9.35
IBW	11	4.41	0.33	3.83	4.95	7.38
OBW	11	10.61	0.42	10.15	11.32	4.00
PL	10	14.19	0.26	13.74	14.61	1.85
P^{1-3}	11	3.36	0.20	2.95	3.68	6.07
P^{1-2}	11	2.32	0.15	2.08	2.61	6.66
$\mathrm{M}^{1.3}$	11	5.72	0.17	5.31	5.96	2.90
M_{1-4}	11	7.02	0.22	6.66	7.41	3.08
SCD	11	5.13	0.37	4.67	5.74	7.16
HT	11	9.24	0.48	8.33	9.96	5.18
HB	10	93.00	3.05	89.00	100.00	3.30
TV	10	90.10	1.07	89.00	93.00	1.50.
WT	15	24.07	3.86	21.00	34.00	16.11

FIG. 9. Bivariate plot of skull width across $C^{\prime}-C^{\prime}$ (SWR-LC ${ }^{1}$ A) (mm) against basicranial skull length (BL) (mm) for male Antechinus subtropicus ($\mathbf{\Delta}$), A. adustus (\bullet), A. stuartii (+) and A. agilis (\times).

REPRODUCTION. Van Dyck (1982a) reported that several specimens (e.g., QM JM1907, 1908, 1911) collected near Maalan ($17^{\circ} 37^{\prime} \mathrm{S} 145^{\circ} 40^{\circ} \mathrm{E}$) on 2 August 1976 had well-developed pouch areas. One of these females (QM JM1908) gave birth to six young on 4 August 1976. From this information, Van Dyck (1982a) suggested that this species probably mates early in July and gives birth early in August. Of thirteen males collected live between 30 June 1976 and 18 July 1976, none survived captivity beyond 29 July 1976 (SVD pers. obs.). Preliminary post-mortem examinations revealed gastric and duodenal haemorrhages, hepatic necrosis, degeneration in proximal tubules of kidneys, and anaemia. Van Dyck (1982a) concluded that male A. adustus experience a yearly die-off similar to that described for A. stuartii but which probably takes place at the end of July each year. Watt (1997) concluded that mating in A. adustus took place from late June to late July. Pouch young were first observed in early August, were carried in the pouch for four to five weeks and suckled until the end of November. All males in the population had died by the first week of August. If A. adustus breeds at specific rates of change of photoperiod like those observed in A. stuartii and A. agilis (McAllan \& Dickman, 1986; Dickman et al., 1988), then it is responding to a rate of change as little as $20 \mathrm{~s}^{\mathrm{day}}{ }^{-1}$.

TABLE 4. F-test values after One-way ANOVA for the four species. See text for results of comparisons after Tukey's Post Hoc test. Abbreviations as in Fig. 1.

Male				Female		
Variable	F	d.f.	P	F	d.f.	P
BL	38.68	3/131	1<0.001	22.35	3/95	<0.001
ZW	\| 24.189	3/132	$\|<0.001\|$	10.213	3/93	0.001
IOW	44.003	3/134	<0,001	19.065	3/96	<0.001
SWR-LC'B	28.547	3/733	<0.001	11.207	3/97	<0.001
$\text { SWR-LC }{ }^{\prime} \text { A }$	31.263	3/133	\|<0.001	12.964	3/95	<0.001
$\text { SWR-LM }{ }^{3}$	7.966	3/134	\|<0.001	4.816	3/94	0.004
DL	33.993	3/133	\|<0.001	19.278	3/95	\|<0.001
$\mathrm{C}^{1} \mathrm{M}^{4}$	36.404	3/134	< <0.001	19.718	3/97	<0.001
APV	51.135	3/131	<0.001	21.696	3/95	<0.001
PPV	95.15	3/133	$\|<0.001\|$	45.906	3/94	! <0.001
IPVL	1139.056\|	3/131	<0.001	62.736	3/95	\| <0.001
IBW	22.048	3/132	$\|<0.001\|$	8.895	3/93	<0.001
OBW	28.352	3/131	<0.001	40.292	3/93	<0.001
PL	27.716	3/132	\|<0.001	5.472	3/93	0.002
$\mathrm{P}^{\text {l-3 }}$	19.411	3/133	$\|<0.001\|$	9.183	3/94	<0.001
P^{1-2}	16.232	3/132	\|<0.001	12.832	3/94	\|<0.001
M^{1-3}	26.108	3/124	<0.001	19.255	3/92	<0.001
M_{1-4}	12.467	3/115	<0.001	14.798	3/81	<0.001
SCD	15.87	3/131	$\mid<0.001$	6.655	3/93	<0.001
HT	19.531	3/130	\|<0.001	12.448	$3 / 92$	$1<0.001$

Nipple Number. Of 10 specimens examined from three collecting localities, all pouches contained six teats. This is consistent with the findings of Cockburn et al. (1983) and Watt (1997).

REMARKS. Several authors (Wakefield \& Warneke, 1967; Van Dyck, 1997) synonymised two previously described taxa Phascogale unicolor Gould (1854) and A. flavipes burrelli (Le Souef \& Burrell, 1926) with A. stuartii. Thomas (1924) noted the similarity between A. unicolor and A. adustus and assigned them to the same species. We concur that neither unicolor or flavipes burrelli are A. subtropicus or A. adustus. From comparisons of zygomatic breadths, A. unicolor appears too large to be A. adustus and too broad to be A. subtropicus ($\mathrm{ZW}=15.67 \mathrm{~mm}$). The colour of A. flavipes burrelli and A. unicolor appears to be too light to be A. adustus. No location was given for A. unicolor (Gould 1854 said only "by way of Sydney') but the location for A. burrelli is the Guy Fawkes region of New South Wales. No animals showing the characteristics of A. subtropicus or A. adustus are known at that location.

COMPARISONS WITH OTHER TAXA

A plot of scores for individuals on the three canonical-variate axes based on cranial measurements shows a broad separation of each species for each sex (Fig. 10). The first three canonical-variate axes accounted for all the variation. The classilication function generated from linear discriminant-function analysis of the same data enabled allocation of most individuals to correct species for both sexes. One male A. adustus was misclassified as A. stuartii and one female A. stuartii and one female A. agilis were misclassified as each other (Table 6).

Antechinus subtropicus separated from all the other taxa on the first canonical-variates axis. Standardised coefficients on the first canonicalvariates axis (Table 5) suggests that the characters contributing to species separation are a contrast between BL, $\mathrm{C}^{1} \mathrm{M}^{+}$with ZW , IPVL and SWR-LM ${ }^{3}$.

Antechinus adustus separated from the other taxa on the third canonical-variates axis. Standardised coefficients on the third canonicalvariates axis suggests that the characters contributing to species separation are a contrast between BL, IBW, SWR- LC ${ }^{1}$ A and SWR-LM ${ }^{3}$ with ZW, DL and PPVL (Table 5).

COMPARISON BETWEEN A. SUBTROPICUS AND A. ADUSTUS.

External Characters. Males of Antechimus subtropicus are the largest of the A. suartii complex yet described. Braithwaite (1973) recorded the mean weight of A. subiropicus caught in September from 1963-1966 as 60 g for males ($\mathrm{n}=$ 11 , range $=52-67$) and 28 g for females $(\mathrm{n}=6$, range $=24-32$). One male individual collected from Tallebudgera Creek, West Burleigh (J20265) weighed 72 g . Collections made by A.B. Rose (pers. comm.) from Border Ranges National Park (NE NSW) in July 1977 had a mean for males of $57 \mathrm{~g}(\mathrm{n}=12$, range $=48-68)$ and a mean for females of $32 \mathrm{~g}(\mathrm{n}=5$, range $=22-54)$.

Antechinus adustus is much smaller than A. subtropicus. Males have a mean weight of 33 g (n $=15$, range $=30-42$) and females a mean of $24 \mathrm{~g}(\mathrm{n}$ $=15$, range $=21-34$). Watt (1997) recorded the average weight of male A. adustus from three locations (Mt Spec, Koolmoon Creek and Mt Father Clancy) as $33 \mathrm{~g}(\mathrm{n}=51$, range $=23-41)$ and female A. adustus as $28 \mathrm{~g}(\mathrm{n}=63$, range $=19-38)$.

Antechinus subtropicus is much longer than A. adustus. The mean male head-body length of A. subtropicus from southeastern Qld is $117 \mathrm{~mm}(\mathrm{n}=$

115 , range $=102-136)$ whereas the mean for A. cadustus is $98 \mathrm{~mm}(\mathrm{n}=9$, range $=91-103)($ Van Dyck, 1982a). Braithwaite (1973) recorded an average head-body length of males in September from Mt Glorious as $127 \mathrm{~mm}(\mathrm{n}=8$, range $=$ 120-131) and A. B. Rose recorded an average head-body length for males from Border Ranges National Park as 120 mm ($\mathrm{n}=12$, range $=$ 113-130). The mean female head-body length for female A. subtropicus from southeastern Qld is $102 \mathrm{~mm}(\mathrm{n}=32$, range $=64-100)$ as opposed to female A. adustus which is $90 \mathrm{~mm}(\mathrm{n}=10$, range $=$ 89-93) (Van Dyck, 1982a). Braithwaite recorded an average head-body length for first-year females from Mt Glorious as 94 mm ($\mathrm{n}=6$, range $=91-112$) and for second-year females as 109 mm ($\mathrm{n}=5$, range $=102-117$); and A.B. Rose (pers. comm.) for Border Ranges National Park females as $102 \mathrm{~mm}(\mathrm{n}=5$, range $=92-120)$.

The tails of A. adustus are relatively longer than those of A. subtropicus. The tails of male A. adustus average around 0.89 of the head-body length while the tails of females average around 0.96 of the head-body length (Van Dyck, 1982a). The tails of male A. subtropicus average around 0.78 of the head-body length while the tails of females average around 0.87 of the head-body length (Van Dyck, 1982a).

Based on study skins and extensive field observations, fur of A. adustus is a much darker brown than that of A. subtropicus.
Cranial and Dental Characters. Antechinus adustus tends to be much smaller than A. subtropicus as reflected by the smaller BL and ZW (Tables 2-4, Figs 7, 8). Antechinus adustus has both relatively and absolutely smaller anterior and posterior palatal vacuities and a correspondingly larger inter-palatal vacuity distance (Fig. 7, Tables 2, 4; $\mathrm{P}<0.001$) than A. subtropicus. The larger IBW of A. adustus reflects its relatively smaller alisphenoid tympanic wings (Fig. 8, Tables 2, 3, 4; P = 0.003 for males). The rostrum of A, adustus also tends to be relatively wider as indicated by the relatively greater SWR-LC ${ }^{1}$ A (Fig. 9). Entoconids are well developed on M_{3} in both A. adustus and A. subtropicus but they are much more enlarged in A. subtropicus (see Van Dyck 1982a, fig. 21).
The incisors of A. adustus are much more specialised than the incisors of A. subtropicus. ${ }^{1}$ in particular of A. adustus is much more massively crowned and procumbent than I^{1} in A. subtropicus. 1^{2-4} are also more massive in A.

FIC. 10. Phot of canonical-variate (CV) scores for tirst three (V axes based on 18 cranial and dental measurements for: (A), (B) male Antechimu and (C). (D) temale Intechimus. Intechinus subtropiens (A) A. adustus (O), A. shartii $(+)$ and A. agilis (X).
adustus than the spatulate incisors of A. subtropicus. I ${ }^{2}$ and [${ }^{3}$ are also higher crowned in A. adustus.

The prominent postero-lingual lobes on P^{1-3} of A. adustus, which cause the premolars to appear more rounded, are accentuated in comparison with A. subtropicus.

COMPARISONS OF A. ADUSTUS AND A. SUBTROPICUS WITH A. STUARTII.

MATERIAL of A, stuarifi. Barrington Tops (AM M32936-32949); Jervis Bay (AM M32831-32887): Kioloa (AM M32889, 32891, 32905); Kangaroo Valley (AM M22623); Myall Lakes (AM M3173-3176, 3178,

3179, 3181-3184, 3186, 12591-12593, 12595, 12596); Waterfall (AM M5294).

External Characters. Antechimus stuariti is generally smaller than A. subtropicus, although the southern-most populations approach A. subtropicus in weight. The mean weights of various A. stuartii populations are Jervis Bay males $51 \mathrm{~g}(\mathrm{n}=33$, range $=32-70)$, Jervis Bay females $26 \mathrm{~g}(\mathrm{n}=25$, range $=20-33$): Ku-ring-gai Chase National Park males $47 \mathrm{~g}(\mathrm{n}=14$, range $=$ 38-59), Ku-ring-gai Chase National Park females $27 \mathrm{~g}(\mathrm{n}=14$, range $=22-37)$; Myall Lakes males $27 \mathrm{~g}(\mathrm{n}=10$, range $=18-43)$ and Barrington Tops males $29 \mathrm{~g}(\mathrm{n}=34$, range $=20-38)$, Barrington

TABLE 5. Standardised canonical coefficients for each character for canonical-variates analysis of skull and dental measures of Antechimus. Abbreviations as in Fig. 1.

Variable	Male			Female		
	1	2	3	1	2	3
BL	0.601	1.637	1.602	0.379	0.072	2.283
ZW	-0.271	-0.330	-0.968	-0.655	1.259	-0.566
10W	0.356	-0.346	0.206	0.408	-0.21	0.281
SWR-LC ${ }^{1}$	0.110	-1.032	0.581	-0.013	-0.738	-0.083
SWR-LM ${ }^{3}$	-0.371	0.124	0.147	-0.093	-0.014	0.179
DL	-0.041	-0.629	-1.39	0.209	0.081	-0.897
$\mathrm{C}^{1} \mathrm{M}^{4}$	0.405	0.363	0.088	0.574	0.398	-0.669
APVL	0.132	0.023	-0.174	0.188	0.018	-0.139
PPVL	0.058	-0.704	-0.266	-0.09	-0.313	-1.027
1PVI	-0.942	-0.414	0.090	-0.865	-0.605	-0.339
1BW	0.074	-0.250	0.334	0.032	-0.223	0.509
OBW	0.332	0.239	0.643	0.419	-0.873	0.216
P^{1-3}	-0.287	-0.046	-0.102	-0.422	-0.162	0.023
P^{1-2}	-0.075	-0.178	-0.536	0.187	-0.289	-0.057
Eigenvalue	7.956	1.549	0.701	5.358	1.714	1.310
Variance (\%)	77.95	15.17	6.87	63.92	20.45	15.63

Tops females $21 \mathrm{~g}(\mathrm{n}=30$, range $=15-28)$. There appears to be clinal variation within A. stuartii, with larger animals in the south and smaller in the north (MSC, pers. obs.).
Antechinus stuartii tends to be smaller in head-body-length than A. subtropicus. The mean head-body lengths of various A. stuartii populations are Jervis Bay males $117 \mathrm{~mm}(\mathrm{n}=33$, range $=99-126$); Jervis Bay females 98 mm ($\mathrm{n}=$ 25 , range $=93-105$); Ku-ring-gai Chase National Park males $120 \mathrm{~mm}(\mathrm{n}=13$, range $=108-140)$, Ku-ring-gai Chase National Park females 94 mm $(n=15$, range $=85-105)$; Myall Lakes males $100 \mathrm{~mm}(\mathrm{n}=8$, range $=85-118$), and Barrington Tops males $101 \mathrm{~mm}(\mathrm{n}=32$, range $=84-120)$, Barrington Tops females $92 \mathrm{~mm}(\mathrm{n}=30$, range $=$ 75-108).

The tails of A. stuartii appear to be relatively longer than the tails of A. subtropicus. The tails of males from Jervis Bay average 0.97 , Ku-ring-gai Chase National Park 0.80, Myall Lakes 0.83 and Barrington Tops 0.89 of head-body length. The tails of females from Jervis Bay average 1.00, Ku-ring-gai Chase National Park 0.93 and Barrington Tops 0.87 of head-body length.
Cranial and Dental Characters. The skull length of A. stuartii tends to be shorter than in A. subtropicus as reflected by the smaller BL. The skull also tends to be more brachycephalic with a

TABLE 6. Classification results from discriminantfunction analysis based on 16 cranial and dental measurements for individual Antechinus, showing percentage and number (in parentheses) of individuals allocated to groups by species males and females.

Males						
		\|A. subtropicus		A. adustus	A. stuartii	A. agilis
A. subtropicus	26	100 (27)	0	0	0	
A. adustus	10	0	100 (10)	0	0	
A. stuartii	48	0	2 (1)	98 (48)	0	
A. agilis	45	0	0	2 (1)	98 (44)	
Females						
	n	A. subtropicus	A. adustus	A. stuartii	A. agilis	
A. subtropiczs	16	100 (16)	0	0	0	
A. adustus	9	0	100 (9)	0	0	
A. stuartii	43	0	0	98 (42)	2 (1)	
A. agilis	25	0	0	4 (1)	$196(24)$	

broader rostrum in A. stuartii as reflected by the absolutely and relatively greater ZW (Fig. 8, Tables 2, 4; P=0.021 for males) and SWR-LC ${ }^{1}$ A (Fig. 9, Tables 2, 4; $\mathrm{P}=0.005$ for males). The palatal vacuities in A. stuartii also tend to be relatively shorter as reflected by the relatively shorter APVL (Table 2; $\mathrm{P}<0.001$) and PPVL (Table 2, $\mathrm{P}=0.043$ for males) and the corresponding longer IPVL (Tables 2, 4, Fig. 7; P <0.001).
The incisors of A. adustus are much more specialised than the incisors of A. stuartii. I^{1} of A. adustus is much more massively crowned and procumbent than I^{1} in A. stuartii. \mathbb{I}^{2-4} are also more massive in A. adustus than the spatulate incisors of A. stuartii. I^{2} and I^{3} are also higher crowned in A. adustus. The prominent posterolingual lobes on P^{1-3} of A, adustus, which cause the premolars to appear more rounded, are accentuated in comparison with A. stuartii. The alisphenoid tympanic bullae tend to be larger in A. stuartii compared to A. adustus as reflected by the smaller IBW (Tables 3, 4, Fig. 8; $\mathrm{P}=0.037$ for females).

COMPARISONS OF A. ADUSTUS AND A. SUBTROPICUS WITH A. AGILIS.

MATERIAL of A. agilis. Bega (AM M33046, 33048, 33050-33068, 33073-33078); Bodalla (AM M32912); Brindabella Ranges (AM M32913-32916, 32918-32920, 32888, 33011, 33015-33017, 33029-33033, 33036-33038, 33157-33159, 33319, 33342, 33343); Gundaroo (AM M33160, 33161); Kioloa (AM M32890, 32892-32911); Mit Canobolas (AM M33344).

External Characters. Antechinus agilis is much smaller and lighter than A. subtropicus. The mean weights of various A. agilis populations are Loch Valley males $30 \mathrm{~g}(\mathrm{n}=29$, range $=16-41)$, Loch Valley females $21 \mathrm{~g}(\mathrm{n}=5$, range $=17-26)$; Mitta Mitta males $26 \mathrm{~g}(\mathrm{n}=21$, range $=16-36)$, Mitta Mitta females $19 \mathrm{~g}(\mathrm{n}=31$, range $=14-26)$ and Brindabella Range males $26 \mathrm{~g}(\mathrm{n}=24$, range $=$ 17-35), Brindabella Range females $18 \mathrm{~g}(\mathrm{n}=14$, range $=14-26$).

Antechinus agilis has a much smaller head-body length than A. subtropicus. The mean head-body lengths of various A. agilis populations are Loch Valley males $95 \mathrm{~mm}(\mathrm{n}=58$, range $=77-107$), Loch Valley females 85 mm ($\mathrm{n}=$ 13 , range $=76-93)($ Wakefield \& Warneke 1967); Mitta Mitta males 104 mm ($\mathrm{n}=21$, range $=$ $85-124$), Mitta Mitta females 98 mm ($\mathrm{n}=29$, range $=85-115$); Bega males $96 \mathrm{~mm}(\mathrm{n}=13$, range $=89-102$), Bega females $87 \mathrm{~mm}(\mathrm{n}=15$, range $=82-95$) and Brindabella Range males $100 \mathrm{~mm}(\mathrm{n}=26$, range $=89-110)$, Brindabella Range females $89 \mathrm{~mm}(\mathrm{n}=13$, range $=70-100)$.
Antechinus agilis generally has a relatively longer tail than A. subtropicus but the proportion is similar to that found in A. adustus. The tails of males from Loch Valley average 1.03 (Wakefield \& Warneke, 1967), Mitta Mitta 0.77, Bega 0.99 and Brindabella Range 0.9 of head-body length. The tails of females from Loch Valley average 1.03 (Wakefield \& Warneke, 1967), Mitta Mitta 0.79 , Bega 1.00 and Brindabella Range 0.9 of head-body length.

The fur colour of A. agilis tends to be a more greyish brown rather than the much darker brown of A. adustus. However, Wakefield \& Warneke (1967) claim that dark specimens of A. agilis from high altitude areas of Victoria (e.g. Mt Macedon, Mt Arnold and Loch Valley) were hard to distinguish on pelage from A, adustus.
Cranial and Dental Characters, Antechinus agilis tends to be much smaller than A. subtropicus as reflected by the absolutely smaller BL (Fig. 7, Tables 2, 4; $\mathrm{P}<0.001$). The skull of A. agilis appears to be more brachycephalic than that of A. subtropicus as reflected by the relatively greater ZW (Fig. 8). Antechinus agilis has both relatively and absolutely smaller anterior and posterior palatal vacuities and a correspondingly larger IPVL (Fig. 7, Tables 2, 4; $\mathrm{P}<0.001$).

The incisors of A. adustus are much more specialised than the incisors of A. agilis. I^{1} in particular of A. adustus is much more massively
crowned and procumbent than I' in A. agilis. I2-4 are also more massive in A. adustus than the spatulate incisors of A. agilis. 1^{2} and I^{3} are also higher crowned in A. adustus. Antechinus agilis is smaller than A. adustus as reflected by the smaller basicranial length (Tables 3, 4; $\mathrm{P}<$ 0.001). Antechinus agilis has a relatively and absolutely narrower rostrum as reflected by the larger SWR-LC ${ }^{1} \wedge$ (Fig. 9, Tables 3, 4; P <0.001). The alisphenoid tympanic wings of A. agilis are relatively larger as reflected by the relatively and absolutely smaller IBW (Tables 3, 4, Fig. 8; P $<$ 0.001).

COMPARISONS OF A. ADUSTUS AND A. SUBTROPICUS WITH A. FLAVIPES.

External Characters. Antechinus flavipes is much larger and heavier than A. adustus (Van Dyck, 1982a; Tables 3, 4).

Antechinus flavipes differs from both A. subtropicus and A. adustus in the colouration of its pelage. Antechinus flavipes is lighter in colour, possesses prominent buff fur surrounding the eyes and tannish patches of post-auricular fur, has dorsal fur with a prominent change in anteroposterior fur colour from grizzled greyish shoulders to a tannish rump and a black tail tip.
Cranial and Dental Characters. Most of the cranial and dental comparisons between A. subtropicus and A. flavipes are given in Van Dyck (1982a). In summary, A. flavipes has: a relatively and absolutely greater zygomatic width (Van Dyck, 1982a fig. 17, table 2); relatively and absolutely shorter anterior and posterior palatal vacuities with corresponding longer inter-palatal vacuity distance (Van Dyck, 1982a, figs 13,14,15, table 2); a wider rostrum (Van Dyck, 1982a, fig. 16, table 2); a narrower inter-orbital width (Van Dyck, 1982a, fig. 17, table 2); greater snout-canine depth (Van Dyck, 1982a, fig. 20, table 2); relatively shorter and wider premolars with corresponding shorter premolar row (Van Dyck, 1982a, figs 18, 25, table 2); narrower separation of transverse canal foramina (Van Dyck, 1982a, fig. 19, table 2); and absent to tiny entoconids (as opposed to large entoconids) and narrower talonids on M_{3} (Van Dyck, 1982a, fig. 21).

Antechinus flavipes differs from A. adustus in larger basicranial length, relatively larger alisphenoid tympanic wings, more massive canines and much smaller entoconids on M_{3}.

DISCUSSION

This study, and that by Dickman et al. (1998), shows that a reappraisal of interpopulation variation and taxonomic status of eastern Australian populations currently attributed to A. stuartii and A. flavipes is required.

Since A. adustus is geographically isolated from the rest of the A. stuartii complex, it would be difficult to grant it species status on isozymes or morphology alone. It differs from both A. stuartii and A. agilis at 15% of loci (Baverstock et al., 1982; Dickman et al., 1998), which is higher than the isozyme differentiation of A, stuartii and A. agilis (see Dickman et al., 1988) and almost as high as the isozyme differentiation of A. stuartii from A. flavipes (see Baverstock et al., 1982). This work and Van Dyck (1982a) demonstrate the marked morphological distinctiveness between A. adustus and the other members of the A. stuartii complex, confirming its species status. It is surprising that A. adustus is morphologically closer to A. stuartii and A. agilis than it is to the geographically closest member of the complex, A. subtropicus. Watt (1997) found that A. adustus is much more similar in ecology to A. stuartii and A. agilis than it is to A. subtropicus, which could explain the morphological similarity.
Sumner \& Dickman (1998) found some electrophoretic differences between A. subtropicus populations from Mt Glorious and NSW A. stuartii. The lack of fixed differences could be caused by examination of an insufficient number of isozymes (A. stuartii and A, agilis only differ slightly electrophoretically) or the northern NSW sample of A. stuartii they examined actually consisted of both A. stuartii and A subtropicus which would mask the differences between taxa. Reanalysis of the allozyme work of Sumner \& Dickman (1998) is in progress and there are differences in allele frequencies between the species (Crowther \& Sumner unpublished), Current work (Crowther, Elphinstone \& Baverstock unpubl.) using the control region of mitochondrial DNA also is showing some genetic difference between A. stuartii and A. subtropicus. Morphological work in progress will indicate whether the species described in this paper correspond with the genetic forms (Crowther unpubl.).
The larger size of A. subtropicus, together with its relatively longer, narrower rostrum could be attributed to character release because of a lack of competition from A. swainsonii compared to that in A. agilis and A. stuartii. This has been
suggested by Crowther (1996). Competition has previously been demonstrated between A. agilis and A. swainsonii (see Dickman, 1986). The large and long rostrumed A. swainsonii is absent or very uncommon within the range of A. subtropicus (see Van Dyck \& Ogilvie, 1977). This could imply that A. subtropicus consumes relatively more larger, softer, terrestrial prey than A. stuartii or A. agilis. The relatively longer tail of A. agilis may assist it in climbing trees (Dickman, 1983).
The small size, rounded premolars with shortened premolar row and broad rostrum of A. adustus could be the response to competition with the ecological equivalent of A. swainsonit in NE QId, A. godmani. Antechinus adustus may have to consume more smaller, abrasive and arboreal prey than A. godmani. The large, procumbent incisors of A. adustus resemble those of the arboreal Phascogale and could imply convergence in feeding niche.
In A. subtropicus, the premaxillary vacuities extend posteriorly to a position midway between P^{1} and P2. Although Archer (1981) found that a direct correlation existed between the degree of aridity of habitat and length of palatal vacuities in Sminthopsis such that those species occupying arid climates have larger vacuities and vice versa; the opposite is true for species of Antechinus. In fact, A. subtropicus from the vine-forests of SE Qld and NE NSW has a greater proportion of palatal fenestration than most other dasyurids. The size of the palatal vacuities is of great use in diagnosing species of dasyurids, particularly Antechinus species (Van Dyck, 1982a; Dickman et al., 1998), and the extremely large palatal vacuities of A. subtropicus distinguish it from any other Antechimus.

Entoconid size on M_{3} was claimed by Van Dyck (1982a) to be a good diagnostic feature separating A. stuartii from A. flavipes. Dickman et al. (1998) found that this was not the case and that it was often difficult to tell apart A. stuartii, A. agilis and A. flavipes using entoconids alone. The very large entoconids on the M_{3} of A. subtropicus make it an extremely useful diagnostic character. Archer (1981) could suggest no reason for the difference in entoconid size between Sminthopsis species, except that more inland forms tended to have smaller entoconids than coastal forms. He found no clear relationship between the food consumed and the presence or absence of entoconids in dasyurids.

The small alisphenoid tympanic bullae found in A. adustus are possibly an adaptation to its dense vine forest habitat. Webster $(1961,1962)$ and Lay (1972) have produced evidence in rodents and Archer (1981) in Sminthopsis, that there is a direct correlation between bulla size and increasing aridity. Webster \& Webster (1975) concluded that larger bullae in rodents enhance sensitivity to low frequency sounds such as produced by the attack tlight of owls and the strike of snakes. Antechinus adustus does not need to forage far from cover and so may not require large bullae. Antechinus flavipes inhabits drier, more open country and may thus require larger alisphenoid tympanic bullae.

Extensive examination of specimens from the Queensland Museum shows that A. subtropicus is not the only member of the A. stuartii complex in southern Qld. Specimens from near Wallangarra $28^{\circ} 55^{\circ} \mathrm{S} 151^{\circ} 55^{\prime} \mathrm{E}$ (e.g. J77277729) and Pyramid Creek, Wyberba $28^{\circ} 50^{\prime} \mathrm{S}$ $151^{\circ} 57^{\prime}$ E (e.g. J8088, J8089) can be currently allocated to A. stuartii. The habitat is dry sclerophyll woodland with abundant granite outcrops and bracken gullies as opposed to the subtropical rainforest habitat preferred by A. subtropicus. The specimens from these areas have reduced entoconids, smaller palatal vacuities and flaring of the jugals with expansion of the lachrymals which is more typical of A. stuartii. The pelage colour and patterning more resemble that of A. flavipes than A. subtropicus. Further biochemical and morphological work needs to be done on specimens from this area as well as in northern NSW. A complete study of variation within A. stuartii and A. flavipes has to be completed before any contídence can be placed on the identifications of these specimens. It is even possible that some specimens represent A. unicolor, despite synonymisation of this taxon with A. stuartii by Wakefield \& Warneke(1967).

As stated in Dickman et al. (1998), resolution of species limits among Australian mammals has been neglected during the past four decades, and it is evident from this study, those of Dickman et al. $(1988,1998)$ and unpublished morphological and molecular by MSC, that A. stuartii and possibly A. flavipes consist of species-complexes. The results of these studies emphasise the critical importance of a sound taxonomic framework both to mammalian research generally and to conservation management in particular (Parnaby, 1991). An example of the former is geographical differences in nipple number (Cockburn et al., 1983), attributed previously to plasticity within
A. stuartii that now appear to be due in part to interspecific variation. Although 'A. stuartii' is one of the most intensively studied small mammals in eastern Australia, much of the research in the past two decades will require reassessment in the light of taxonomic revision. At present, 'A. stuartii' is considered one of the commonest and most widespread species of small mammals in eastern Australia and is not believed to be of conservation significance. This belief will require urgent reassessment and further taxonomic clarification of the group, as it appears that taxa currently included under ' A. stuartii' comprise several species each with a concomitantly reduced geographic range. We recommend that relevant land-management and conservation agencies acknowledge the importance of studies of combined morphological and biochemical systematics to conservation management.

ACKNOWLEDGEMENTS

Assistance and access to their respective collections and data was kindly provided by DrS. Ingleby, P. Ennis and L. Gibson (Australian Museum, Sydney), L. Frigo and J. Dixon (Museum of Victoria, Melbourne), J. Wombey and Dr R. Schodde (CSIRO, Canberra), Dr R. Green (formerly Queen Victoria Museum, Launceston), and Dr P. Jenkins (British Museum, Natural History). Dr C.R. Dickman (University of Sydney) provided much advice, data, specimens and support for this research. Prol. P.R. Baverstock and M.S. Elphinstone (Southern Cross University) provided advice and specimens. Dr H.E. Parnaby provided critical comments on the manuscript. A.B. Rose generously provided many external measurements for NSW Antechimus. The Australian Museum Collection Fellowship and The Australian Museum Postgraduate Award provided financial assistance to MSC. The Royal Zoological Socicty of New South Wales Ethel Mary Read Fund and The Linnean Society of New South Wales Joyce W. Vickery Award provided financial assistance for both SVD and MSC.

LITERATURE CITED

ARCHER, M. 1974. The development of cheek-teeth in Antechinus flavipes (Marsupialia : Dasyuridae). Journal of the Royal Society of Western Australia 57: 54-63.
1976. The basicranial region of marsupicarnivores (Marsupialia), inter-relationships of carnivorous marsupials, and affinities of the insectivorous
marsupial peramelids. Journal of the Royal Society of London, Zoology 59: 217-322.
1981. Results of the Archbold Expeditions. No. 104. Systematic revision of the marsupial genus Sminthopsis Thomas. Bulletin of the American Museum of Natural History 169: 61-224.
BAVERSTOCK, P.R., ARCHER, M., ADAMS, M. \& RICHARDSON, B.J. 1982. Genetic relationships among 32 species of Australian dasyurid marsupials, Pp. 641-650. In Archer, M. (ed.) Carnivorous marsupials. (Royal Zoological Society of NSW: Sydney).
BRAITHWAITE, R.W. 1973. An ecological study of Antechinus stuartii (Marsupialia: Dasyuridae). Unpubl. M.Sc. thesis. University of Queensland, Brisbane.
BRASS, L.J. 1953. Results of the Archbold Expeditions. No. 68. Summary of the 1948 Cape York (Australia) Expedition. Bulletin of the American Museum of Natural History 102: 135-206.
COCKBURN, A., LEE, A.K. \& MARTIN, R.W. 1983. Macrogeographic variation in litter size in Antechinus (Marsupialia: Dasyuridae), Evolution 37: 86-95.
CROWTHER, M.S. 1996. The role of interspecific competition in the evolution of south-eastern Australian Antechinus. (Abstracts of the 42nd Mammal Society Meeting: Melbourne).
DICKMAN, C.R. 1982. Some ecological aspects of seasonal breeding in Antechinus (Dasyuridae, Marsupialia). Pp. 139-150. In Archer, M. (ed.) Carnivorous marsupials. (Royal Zoological Society of NSW: Sydney).
1983. Competition between the dasyurid marsupials, Antechimus stuartii and Antechinus swainsonii. Unpubl. PhD thesis, Australian National University: Canberra.
1986. An experimental study of competition between two species of dasyurid marsupials. Ecological Monographs 56: 221-241.
DICKMAN, C.R., KING, D.H., ADAMS, M. \& BAVERSTOCK, P.R. 1988. Electrophoretic identiffication of a new species of Antechinus (Marsupialia : Dasyuridae) in south-eastern Australia. Australian Journal of Zoology 36: 455-463.
DICKMAN, C.R., PARNABY, H.E., CROWTHER, M.S. \& KING, D.H. 1998. Antechinus agilis (Marsupialia: Dasyuridae), a new species from the A. stuartii complex in south-castern Australia. Australian Journal of Zoology 46: 1-26.
GOULD, J. 1854. The mammals of Australia. Part vi. (J. Gould: London).
HORNER B.E. \& TAYLOR, J.M. 1959. Results of the Archbold Expeditions. No. 80. Observations on the biology of the Yellow-footed Marsupial Mouse Antechinus flavipes flavipes. American Museum Novitates No. 1972: 1-23.

IREDALE, T. \& TROUGHTON, E. 1934. A check-list of the mammals recorded from Australia. Memoirs of the Australian Museum vi: 1-122.
JENKINS, P.D. \& KNUTSON, L. 1983. A catalogue of the type specimens of Monotremata and Marsupialia in the British Museum (Natural History). (British Museum (Natural History): London).
LAY, D.M. 1972. The anatomy, physiology, functional significance and evolution of specialized hearing organs of gerbilline rodents. Journal of Morphology 138: 41-120.
LE SOUEF, A.S. \& BURRELL, H. 1926. The wild animals of Australasia. (Harrap: London).
LUCKETT, W.P. 1993. An ontogenetic assessment of dental homologies in therian mammals. Pp. 192-204. In Szalay, F.S., Novacek, M.J. \& McKenna, M.C. (eds) Mammal phylogeny: Mesozoic differentiation, multituberculates monotremes, early therians and marsupials. (Springer-Verlag: New York).
MACLEAY, W.S. 1841. Notice of a new genus of Mammalia discovered by J. Stuart, Esq. in New South Wales. Annals and Magazine of Natural History VIII, 241-243.
1842. Additional particulars respecting Antechimus Stuartii, a new marsupial quadruped. Annals and Magazine of Natural History VIII: 337.
MARLOW, B.J. 1961. Reproductive behaviour of the marsupial mouse Antechinus flavipes flavipes Waterhouse (Marsupialia) and the development of pouch young. Australian Journal of Zoology 9: 203-218.
MCALLAN, B.M. \& DICKMAN, C.R. 1986. The role of photoperiod in the timing of reproduction in the dasyurid marsupial Antechinus stuartit. Oecologia (Berlin) 68: 259-264.
PARNABY, H. 1991. A sound species taxonomy is crucial to the conservation of forest bats. Pp. 101-112. In Lunney, D. (ed.) Conservation of Australia's forest fauna. (Royal Zoological Society of New South Wales: Sydney).
RICE, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223-225.
RIDGWAY, R. 1912. Color standards and color nomenclature. (The Author: Washington).
SPSS 1997. Systat 7.0 manual. (SPSS: Chicago).
SUMNER, J.M. \& DICKMAN, C.R. 1998. Distribution and identity of species in the Antechinus stuartii-A. flavipes group (Marsupialia: Dasyuridae) in south-eastern Australia. Australian Journal of Zoology 46: 27-41.
TATE, G.H.H. 1947. Results of the Archbold Expeditions. No, 56. On the anatomy and classification of the Dasyuridae (Marsupialia. Bulletin of the American Museum of Natural History 18: 97-156.
1952. Results of the Archbold Expeditions. No. 66. Mammals of the Cape York Peninsula. Bulletin of the American Museum of Natural History 98: 567-616.

THOMAS, O. 1923. The Godman Exploration Fund: List of mammals from north Queensland collected by Mr T. V. Sherrin. Annals and Magazine of Natural History (Series 9) XI: 170-178.
1924. A new pouched mouse (Phascogale) from northern New South Wales. Annals and Magazine of Natural History (Series 9) XIV: 528-529.
TROUGHTON, E. 1941. Furred animals of Australia. (Angus \& Robertson: Sydney).
VAN DYCK, S. 1980. The cinnamon antechinus, Antechinus leo (Marsupialia: Dasyuridae), a new species from the vine-forests of Cape York Peninsula. Australian Mammalogy 3: 5-17.
1982a. The relationships of Antechinus stuartii and A. flavipes (Dasyuridae, Marsupialia) with special reference to Queensland. Pp. 723-766. In Archer, M. (ed.) Carnivorous marsupials. (Royal Zoological Society of New South Wales: Sydney).
1982b. The status and relationships of the Atherton antechinus, Antechinus godmani. Australian Mammalogy 5: 195-210.
1997. Revisionary studies in Antechinus and Murexia (Marsupialia: Dasyuridae). Unpubl. PhD thesis, University of New South Wales: Sydney.
VAN DYCK, S. \& OGILVIE, P. 1977. Antechinus swainsonii (Waterhouse, 1840), the Dusky

Marsupial Mouse, an addition to the mammal fauna of Queensland. Memoirs of the Queensland Museum 18: 69-73.
WAKEFIELD, N.A. \& WARNEKE, R.M. 1967. Some revision in Antechinus (Marsupialia-2). Victorian Naturalist 84: 69-99.
WALKER, E. 1964. Mammals of the world: Vol. 1. (John Hopkins University Press: Baltimore).
WATT, A. 1997. Population ecology and reproductive seasonality in three species of Antechinus (Marsupialia: Dasyuridae) in the wet tropics of Queensland. Wildlife Research 24: 531-547.
WEBB, L.J. 1959. A physiognomic classification of Australian rain forests. Journal of Ecology 47: 551-570.
WEBSTER, D.B. 1961. The ear apparatus of the kangaroo-rat Dipodomys. American Journal of Anatomy 108: 123-148.
1962. A function of the enlarged middle-ear cavities of the kangaroo-rat, Dipodomys. Physiological Zoology 35: 248-255.
WEBSTER, D.B. \& WEBSTER, M. 1975. Auditory systems of the Heteromyidae: Functional morphology and evolution of the middle ear. Journal of Morphology 146: 243-376.
WOOD, D.H. 1970. An ecological study of Antechinus stuartii (Marsupialia) in a south-east Queensland rainforest. Australian Journal of Zoology 18: 218-294.

NEW SYNONYMY BETWEEN OXYOPES GRACILIPES (WHITE) AND OXYOPES MUNDULUS L. KOCH (OXYOPIDAE: ARANEAE)

COR J. VINK AND PHIL J. SIRVID
Vink, C.J. \& Sirvid, P.J. 200006 30: New synonymy between Oxyopes gracilipes (White) and Oxyopes mundulus L. Koch (Oxyopidae: Araneae). Memoirs of the Queensland Museum 45(2): 637-640. Brisbane. ISSN 0079-8835.

A new synonymy is proposed between Oxyopes gracilipes (Whitc, 1849) and Oxyopes mundulus L. Koch, 1878. It is based on the examination and comparison of the type of O. mundulus and authenticated samples of O. gracilipes, A neotype is designated for O. gracilipes. The distribution of O, gracilipes in Australia is shown. It is proposed that O. gracilipes is Australian in origin. \square Oxyopidae, Oxyopes, synomym; Australia, New Zealand, neotype.

Cor J. Vink, Ecology \& Entomology Group, PO Box 84, Lincoln University, New Zealand (email: vinkc@lincoln.ac.nz); Phil J. Sirvid, Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand (email: phils@tepapa.govt.nz); 13 April 2000.

The Oxyopidae (lynx spiders) of New Zealand were revised and found to comprise only one species Oxyopes gracilipes, also present in Tasmania (Vink \& Sirvid, 1998). Shortly after the publication of that paper one of the authors (CJV) had the opportunity to examine specimens of Oxyopidae in the Western Australian Museum, Perth and the Australian Museum, Sydney. Specimens identified by Judy Grimshaw as Oxyopes mundulus in both collections appeared identical to O. gracilipes.
To clarify the situation, we borrowed the holotype O. mundulus and compared it to specimens of O. gracilipes and other specimens identified as O. mundulus.
Roewer (1954) listed 16 Australian species in the family Oxyopidae, of which 14 were in the genus Oxyopes. The only published taxonomic work on Australian oxyopids since then was the description of two new species in the genus Hamataliwa by Grimshaw (1989). This was part of an unpublished revision of the Oxyopidae of Australia (Grimshaw, 1991).
Abbreviations. $\mathrm{AM}=$ Australian Museum, Sydney; LUNZ = Entomology Research Museum, Lincoln University; MONZ = Museum of New Zealand Te Papa Tongarewa, Wellington; WAM = Western Australian Museum, Perth.

COMPARISON OF THE TWO SPECIES

Koch's (1878) description and illustrations of Oxyopes mundulus were not accurate enough for a conclusive comparison with O. gracilipes. The female holotype of O. mundulus was borrowed from the Zoological Museum, Hamburg, examined and compared to specimens of O.
gracilipes. Overall appearance, size, colour pattern, spination and genitalic structure of the type of O. mundulus were identical to those of specimens of O. gracilipes. No significant qualitative differences were found among specimens of O. gracilipes and O. mundulus, including comparisons of male palpal structure and intemal female genitalia.

We have also examined the types of Oxyopes rubicundus L. Koch, 1878, Oxyopes elegans L. Koch, 1878 and specimens of an undescribed Australian Oxyopes. It appears that O. gracilipes is part of a group of closely related Australian species, which includes O. rubicundus, O. elegans and an undescribed Oxyopes sp .

SYNONYMY

Oxyopes gracilipes (White, 1849)

Sphasus gracilipes White, 1849: 5.
Oxyopes mundulus L. Koch, 1878: 1025, pl. xc, fig 3. (New synonymy)
Sphasus gregarius Urquhart, 1885: 51, pl. xi, figs 20a-e.
Oxyopes gracilipes (White); Vink \& Sirvid, 1998: 1-9.
TYPE MATERIAL. Sphasus gracilipes White 1849:5. This species was described from an unspecified number of unsexed specimens collected from New Zealand. Type/s not located by CJV after a thorough search in the Natural History Museum, London (BMNH), where type specimens of other species described by White were deposited.
O. mundulus L. Koch 1887:1025. This species is described from a female collected from Sydney, Australia. The type is part of the Godeffroy Museum collection housed in the Zoological

FIG. 1. Distribution of Oxvopes gracilipes (White) in Australia.

Museum, Hamburg (ZMH) (Godefroy Collection Nr. 16501 (Rack, 1961)).

COMMENTS. Our examination of a large range of material leads us to conclude that the type and other Australian specimens identified as 0 . mundulus are the same species as O. gracilipes. We therefore consider Oxyopes mundulus \mathcal{L}. Koch, 1878 to be a junior synonym of Sphasus gracilipes White, 1849.

NEOTYPE DESIGNATION

White's (1849) description of Sphasus gracilipes, while limited, is sufticient to identify New Zealand's single oxyopid species. His placement of this species in the genus Sphasus and his description of the abdomen as 'attenuated at the end' clearly indicate a species of Oxyopidae. White, a British entomologist, would almost certainly have been familiar with oxyopids because of the presence of Oxyopes heterophthalmus Latreille, 1804 in England.

White's type material was reported to be in the BMNH (Forster, 1967), but could not be located after thorough searching and is now presumed lost.
With only one species of oxyopid recognised for New Zealand, designation of a neotype was not considered necessary. However, the subsequent discovery of this species in Australia, and the recognition of the synonymy with O. mundulus means it is now advisable to designate a neotype to fix the concept of Sphastis gracilipes White, 1849 as interpreted and redescribed in Vink \& Sirvid (1998).

NEOTYPE. Here designated, male, in 70\% ethanol, from New Zealand, AK, near Clevedon, Thorps Bush, sweeping streamside vegetation, 27.xi.1982, P. Maddison, deposited in New Zealand Arthropod Collection, Auckland, New Zealand. The neotype locality within New Zealand is arbitrary as White simply recorded it

FIG. 2. Oxyopes gracilipes (White), male palp, thia, bult and cymbium, dorsal left: A, ventral view: B, retrolateral view.
as "Hab. New Zcaland". This specimen is described and illustrated in Vink \& Sirvid (1998).

OTHER MATERIAL. QUEENSLAND: 9, Eurimbula, SE of Gladstone, $24^{\circ} 11 \mathrm{~S}, 151^{\circ} 50 \mathrm{E}$, iii. 1975, C. Horseman (AMKS 12784); QMS.49010; \%, Lake Broadwater, Lakeview, $27^{\circ} 20^{\prime} \mathrm{S} 151^{\circ} 05^{\prime} \mathrm{E}$, SE Qld, lake edge, 26 Jan 1984, M. Bennie; QMS49011: ©́, Brisbane, Acacia Ridge, $27^{\circ} 28^{\circ} \mathrm{S} 153^{\circ} 02^{\circ} \mathrm{E}$, SE Qld, malaise trap, Jan 1979, E.C. Dahms; QMS49012: © , Lake Broadwater via Dalby, $27^{\circ} 20^{\circ} \mathrm{S} 151^{\circ} 05^{\circ} \mathrm{E}$, SE Qld, on grass, 20 May 198 t, M. Bennie; QMS4y013: 8 , 9. Mt Tamborine, $27^{\circ} 55^{\circ} \mathrm{S}$ $153^{\circ} 11^{\circ} \mathrm{E}$, SE Qld, sweeping/beating $10 \mathrm{Jul} 1974, \mathrm{C} . \mathrm{L}$. Wilton: QMS49014: Q, Junction Vicw, S Gatton, $27^{\circ} 34^{\prime}$ S $152^{\circ} 16^{\circ} \mathrm{E}, \mathrm{SE}$ Qld, 30 Dec 1984 , ^. Rozefelds; QMS49015: \%, 1 juv. Laidley Ck , Laidley, $27^{\circ} 44^{\prime} \mathrm{S}$ 152022'E, SE QId, 27 Dec 1980, M. Grant; QMIS49016: 29, Lake Broadwater, $27^{\circ} 20^{\circ}$ S $151^{\circ} 05^{\circ}$ E, SE Qid, 12 Feb 1984, M. Bennie; QMS49017: \%. Monto, 3.2kN, 24 ${ }^{\circ} 50^{\circ} \mathrm{S}$ $151^{\circ} 07^{\prime} \mathrm{E}$, SE Qld, 19 Apr 1971, R. Monroe: OMS49018: $30^{\circ}, 33^{\circ}$. Lake Broadwater, NE shore, $27^{\circ} 20^{\circ} \mathrm{S} 151^{\circ} 05^{\circ} \mathrm{E}$. SE Qld, sweeping, 26 Nov 1984, M. Bernie; QMS47944: O, Mt Coolum, W stopes, $26^{\circ} 34^{\circ} \mathrm{S} 153^{\circ} 05^{\circ} \mathrm{E}$, SE Qld, open forest, Jan 1984, B.R. Jahnke.
WESTERN AUSTRALIA: o, Miling, $30^{\circ} 29^{\circ} \mathrm{S}$, $116^{\circ} 22^{\circ}$ E, 22.xi.1974. A. Page (WAM 87/1739); 0°, Darlington, $31^{\circ} 54^{\circ} \mathrm{S}, 116^{\circ} 04^{\circ} \mathrm{E}, \mathrm{V}, 1975$, GH, Lowe (WAM

87/1551): ©', Darlington, $31^{\circ} 54^{\prime} \mathrm{S}, 116^{\circ} 04^{\prime} \mathrm{E}$, iii. 1976, GH. Lowe (WAM 87/1553); ¿ै, Mt Lawley, $31^{\circ} 56^{\prime} \mathrm{S}$, 11553'E. 19.x.1986, JM. Waldock (WAM 87/1763): ${ }^{\circ}$. Forrestfield, Whistlepipe Gully, $31^{\circ} 59^{\prime} \mathrm{S}, 115^{\circ} 58^{\prime} \mathrm{E}$, 4.ix. 1986, J.M. Waldock (WAM 87/1558); ㅇ, Kelmscott High School, $32^{\circ} 07^{\prime} \mathrm{S}, 116^{\circ} 01^{\prime} \mathrm{E}, ~ A$. Page (WAM 87/1722); \%', Furnissdale, $32^{\circ} 34^{\prime} \mathrm{S}, 115^{\circ} 46^{\prime} \mathrm{E}, 22 \times .1984$, F.H. Uther-Baker (WAM 87/1560): ${ }^{\circ}$, Grass Patch, Fitz, $33^{\circ} 14^{\prime}$ S, $121^{\circ} 43^{\prime} \mathrm{E}, 16 \times \mathrm{xi} .1978$, A.F. Longbottom (WAM 87/1567); © ', Grass Patch. Fitz., $33^{\circ} 14^{\prime} \mathrm{S},\left.12\right|^{\circ} 43^{\prime} \mathrm{E}$, A.l . Longbothom (WAM 87/1569); ¢, Glenbourne, near Margaret River, $33^{\circ} 53^{\circ} \mathrm{S}, 15^{\circ} 00^{\prime} \mathrm{E}, 2.1 .1978$, P.G. Kendrick (WAM 87/1732); $\delta, 15 \mathrm{~km}$ SW of Bridgetown. $34^{\circ}\left(4^{\prime} \mathrm{S}, 116^{\circ} 06^{\circ} \mathrm{E}\right.$, 8xii. 1985 , J.M. Waldock (WAM $87 / 1533$); $2,15 \mathrm{~km}$ SW of Bridgetown, $34^{\circ} 04^{\prime} \mathrm{S}$, $116^{\circ} 06^{\prime}$ E, 29xi.1986, D.Terry (WAM 87/1535); ㅇ, 15 km SW of Bridgetown, $34^{\circ} 04^{\prime} \mathrm{S}, 116^{\circ} 06^{\circ} \mathrm{E}, 29 \times \mathrm{xi} .1986, \mathrm{D}$. Terry (WAM 87/1536); $3,15 \mathrm{~km}$ SW of Bridgetown, $34^{\circ} 04^{\prime} \mathrm{S}, 116^{\circ} 06^{\prime} \mathrm{E}, 29 \times$ xi.1986, D. Terty (WAM 87/1537): 3.15 km SW of Bridgetown, $34^{\circ} 06^{\prime} \mathrm{S}, 116^{\circ} 06^{\prime} \mathrm{E}_{\text {, }}$ 29xi.1986, D. Terry (WAM 87/1539).
NEW SOUTH WALES: d, Green Pidgeon near Kyogle, $28^{\circ} 30$ S, $153^{\circ} 04 \mathrm{E}_{\mathrm{E}}$, 21.xi.1984, E.D. Scambler (AM KS16310); ㅇ, Washpool SF, Moogem Rd, 29 16 S , 152²2E, 9.ii.1482, C. Horseman (AM KS9077); 9.18 km N of Tarce, $31^{\circ} 48 \mathrm{~S}, 152^{\circ} 29 \mathrm{E}$, 10 xii. $1981, \mathrm{M}$. Gray \& C Horseman (AM KS10188); $\delta, 7 \mathrm{~km}$ N of Taree, $31^{\circ} 53 \mathrm{~S}$.
$152^{\circ} 29 \mathrm{E}, 6 \times \mathrm{xii} .1981$, M. Grayetal. (AM KS9384); ${ }^{\circ}, 6 \mathrm{~km}$ S of Forster, $32^{\circ} 12 \mathrm{~S}, 152^{\circ} 31 \mathrm{E}, 10$ xii.1981, M. Gray \& C. Horseman (AM KS 10206); ㅇ, 6 km S of Forster, $32^{\circ} 12 \mathrm{~S}$, $152^{\circ} 31 \mathrm{E}, 10$ xii.1981, M. Gray \& C. Horseman (AM KS10210); \circ, Pittwater, Sydney, $33^{\circ} 38 \mathrm{~S}, 151^{\circ} 18 \mathrm{E}$, 1.i.1967, J. Child (AM KS17305); 8̊, Mascot, 3356S, $151^{\circ} 12 \mathrm{E}, 21 . x .1969$, R.E. Mascord (AM KS17308); © , q, Botany, 33 ${ }^{\circ} 57 \mathrm{~S}, 151^{\circ} 12 \mathrm{E}, 3 \times 1965$, R.E. Mascord (AM KS17284).
AUSTRALIAN CAPITAL TERRITORY: q, Canberra, $35^{\circ} 17 \mathrm{~S}, 149^{\circ} 13 \mathrm{E}$, 7.iii.1970, H. Evans (AM KS17285). TASMANIA: ㅇ, Queens Domain, Hobart, 4252S, $147^{\circ} 19 \mathrm{E}$, 2xii.1963, V.V. Hickman (AM KS30787); ㅇ, Queens Domain, Hobart, $42^{\circ} 52 \mathrm{~S}, 147^{\circ} 19 \mathrm{E}, 13$ xiii.1963, V.V. Hickman (AM KS30788); 우, Queens Domain, Hobart, $42^{\circ} 52 \mathrm{~S}, 147^{\circ} 19 \mathrm{E}, 1 . x i i 1.1966$, V.V. Hickman (AM KS30790); Queens Domain, Hobart, $42^{\circ} 52 \mathrm{~S}, 147^{\circ} 19 \mathrm{E}$, ii.1977, V.V. Hickman (AM KS30789); 29, Queen's Domain, Hobart, $42^{\circ} 52 \mathrm{~S}, 147^{\circ} 19 \mathrm{E}, 20 \times x i, 1997$, L.J. Boutin, (MONZ); ठठ, New Town, $42^{\circ} 53 \mathrm{~S}, 147^{\circ} 19 \mathrm{E}$, x. 1967, V.V. Hickman (AM KS30785).

NEW ZEALAND: 2 \&, Cuvier I., $36^{\circ} 26 \mathrm{~S}, 175^{\circ} 46 \mathrm{E}$, vii1.1943, R.R. Forster, (MONZ); 4ठ, 2 ㅇ, Korapuki I., $36^{\circ} 40 \mathrm{~S}, 175^{\circ} 51 \mathrm{E}, 29 \times \mathrm{xi} .1997$, B.M. Fitzgerald, (MONZ); ठ, Stump Bay Swamp, near Lake Taupo, 38 ${ }^{\circ} 57$ E, $175^{\circ} 49$ S, 9 xi.1994, C.J. Vink \& A.D. Blest (LUNZ); ó, q. Cape Palliser, $41^{\circ} 37 \mathrm{~S}, 175^{\circ} 15 \mathrm{E}, 26 \times \mathrm{xi} .1974$, (MONZ); ㅇ. Travis Swamp, Christchurch, $43^{\circ} 30 \mathrm{~S}, 172^{\circ} 42 \mathrm{E}$, 1.xii.1995, R.P. MacFarlane (LUNZ); ठ, Hinewai Reserve, malaise trap, $43^{\circ} 50 \mathrm{~S}, 173^{\circ} 04 \mathrm{E}$, 10 .xi. 1997 , J.B. Ward (LUNZ); 3 우, Cardrona Valley, $44^{\circ} 47 \mathrm{~S}, 169^{\circ} 05 \mathrm{E}$, 9.i. 1999, C.J. Vink, (LUNZ).

DISTRIBUTION. Oxyopes gracilipes is found in Australia south of $24^{\circ} 11^{\prime} \mathrm{S}$. The Australian geographic distribution (based on muscum collection records) of O. gracilipes is shown in Fig. 1.

REMARKS. A full description of Oxyopes gracilipes and notes on its biology are given in Vink \& Sirvid (1998).

DISCUSSION

O. gracilipes is the only species of oxyopid found in New Zealand (Vink \& Sirvid, 1998) and has been collected from sub-tropical and temperate regions of Australia. A comparison of the palps and epigyna of O. gracilipes and those of O. rubicundus, O. elegans and another undescribed Australian Oxyopes sp. reveals that these four species are closely related.
The presence of at least four similar species of Oxyopes in Australia and the presence of only one of these species, O. gracilipes, in New Zealand leads us to believe that O. gracilipes has established in New Zealand from Australia relatively recently. Oxyopes species are known to disperse by ballooning (Brady, 1964) and it is
possible that O. gracilipes arrived in New Zealand from Australia by this method. Its widespread distribution throughout Australia and New Zealand and lack of divergence in New Zealand indicates that this species is highly mobile.

ACKNOWLEDGEMENTS

We thank the following individuals and institutions for the loan of material under their care: Hieronymus Dastych (Zoological Museum, Hamburg), Mike Gray and Graham Milledge (Australian Museum), Mark Harvey and Julianne Waldock (Western Australian Museum). Thanks to Rob Raven (Queensland Museum) for providing the SEM of the male palp, for extremely valuable comments and for providing us with Queensland locality records. Thanks to David Hirst (South Australian Museum) for providing us with South Australia locality data. We thank Rowan Emberson (Lincoln University) and Ricardo Palma (Museum of New Zealand) for taxonomic advice and for critically reviewing the manuscript. Thanks to Adrian Paterson for critically reviewing the manuscript.

LITERATURE CITED

brady, A.R. 1964. The lynx spiders of North America, north of Mexico (Araneae: Oxyopidae). Bulletin of the Muscum of Comparative Zoology 131:429-518.
FORSTER, R.R. 1967. The spiders of New Zealand. Part 1. Otago Museum Bulletin 1:1-124.
GRIMSHAW, J.F. 1989. The genus Hamataliwa Keyserling (Araneae: Oxyopidae) in Australia with description of two new species. Journal of the Australian Entomological Society 28: 181-186.
1991. Revision of the Oxyopidae (Araneae: Arachnida) of Nustralia. (Unpubl. MSc thesis, University of Queensland).
KOCH, L. 1878. Die Arachniden Australiens. 1(2): 969-1044. (Bauer and Raspe: Nürnberg).
RACK, G. 1961. Die Entomologischen Sammlungen des Zoologischen Staatsinstituts und Zoologischen Museums Hamburg. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut. 59: 1-60.
ROEWER, C.F. 1954. Katalog der Araneae. 2a: I-923 (Paul Budy: Bremen)
URQUHART, A.T. 1885. On the spiders of New Zealand. Transactions and Proceedings of the New Zealand Institute 17: 31-53.
VINK, C.J. \& SIRVID, P.J. 1998. The Oxyopidae (Iynx spiders) of New Zcaland. New Zealand Entomologist 21: 1-9.
WHITE, A. 1849. Descriptions of apparently new species of Aptera from New Zealand. Proceedings. Zoological Society of London 1849: 3-6.

ADDITIONAL MATERIAL OF DASYURUS DUNMALLI FROM THE PLIOCENE CHINCHILLA LOCAL FAUNA OF QUEENSLAND AND ITS PHYLOGENETIC IMPLICATIONS

STEPHEN WROE AND BRIAN S. MACKNESS

Abstract

Wroe, S. \& Mackness, B.S. 200006 30: Additional material of Dasyurus dunmalli from the Pliocene Chinchilla Local Fauna of Queensland and its phylogenetic implications. Memoirs of the Queensland Museum 45(2): 641-645. Brisbane. ISSN 0079-8835.

Abstract

New material of Dasyurus dunmalli from the Pliocene Chinchilla Local Fauna provides previously unknown data relevant to determining its phylogenetic position. The presence of a V-shaped lower incisor arcade in D. dunmalli detracts from the case for a special relationship between this fossil taxon and Dasyurus maculatus, suggested by a previous investigation. Parsimony-based analysis also supports a special relationship between Sarcophilus harrisii and Dasyurus maculatus. \square Dasyuridac, Dasyurinae, Dasyurus dunmalli, Chinchilla Local Fauna, Pliocene, Queensland.

Stephen Wroe, Institute of Wildlife Research, School of Biological Sciences, A08, University of Sydney, Sydney 2006; Centre for Research into Australia's Total Ecosystems, Mammal Section, Australian Muscum, 6-8 College Street, Sydney 2000; School of Biological Sciences, University of New South Wales, Kensington 2052 (e-mail; s.wroe@student,unsw.edu.au). Brian Mackness, Institute of Wildlife Research, School of Biological Sciences, A08, University of Sydney, Sydney 2006; Current address: PO Box 560 Beerwah 4519, Australia (e-mail: megalania@compuserve.com); 12 July 1999.

Determining the relationship of D. dummalli to other Dasyurus has proven problematic with significant levels of homoplasy indicated regardless of phylogenetic interpretation (Bartholomai, 1971; Archer, 1982; Van Dyck, 1987; Wroe \& Mackness, 1998). Hypotheses put forward to date include D. dunmalli as a sister taxon to: D. viverrinus (Bartholomai, 1971; Archer 1982); all extant Dasyurus (Archer, 1982); all extant Dasyurus except D. hallucatus (Archer, 1982); D. spartacus + D. albopunctatus (Van Dyck, 1987) and D. maculatus (Wroe \& Mackness, 1998). Alternatively, Archer (1982) suggested that D. dunmalli may have shared no special relationship with any living species of Dasyurus.
A paucity of material has clearly constrained elucidation of the position of D. dunmalli relative to other Dasyurus. With the inclusion of newly discovered material from the Chinchilla Local Fauna we re-analyse the data and method presented by Wroe \& Mackness (1998) in their parsimony-based investigation of relationships among species of Dasyurus.

Dental nomenclature follows Flower (1867) and Luckett (1993) regarding the molar-premolar boundary, where the adult (unreduced) postcanine cheektooth formula of marsupials is P1-3 and M1-4. Dental terminology follows Wroe (1999). Systematic terminology incorporates amendments to Archer's (1982)
classification as suggested by Krajewski et al. (1994) and Wroc (1996, 1997, 1999). QMF $=$ Queensland Museum fossil collection.

SYSTEMATICS

DASYUROMORPHIA (Gill, 1872) Wroe 1996
DASYURIDAE Goldfuss, 1820
DASYURINAE (Goldfuss, 1820)
Krajewski et al., 1994
Dasyurus dunmalli Bartholomai, 1971
(Fig. 1)
REFERRED MATERIAL. QM F3357, partial right dentary, preserving roots of $1_{1.3,3}, \mathrm{C}_{1}, \mathrm{P}_{1}$, and complete $\mathrm{P}_{2.3}$, 11.2

LOCALITY AND AGE. North bank of the Condamine River, Chinchilla Rifle Range $\left(26^{\circ} 48^{\circ} \mathrm{S}, 150^{\circ} 41^{\circ} \mathrm{E}\right)$. The Chinchilla Sand was named by Woods (1960) for a sequence of weakly consolidated grey to yellowish and light brown sands, ferruginised heterogeneous conglomerates, grits, sandy clay and clays. These outcrops range from shallow beds to sections several metres deep. The specimens described come from a fossil-bearing unit within the Wilkinson's Quarry that lies unconformably on an indurated layer of fine sand. The sediments are primarily fluviatile in nature and represent a number of depositional events. Most fossils in these units occur as isolated pieces. On the basis

FIG. 1. Dasyurus dunmalli. QM F3357, partial right dentary, preserving roots of $\mathrm{I}_{1-3,}, \mathrm{C}_{1}, \mathrm{P}_{1}$, and complete P_{2-3}, M_{1-2} in $\mathrm{A}-\mathrm{A}^{\prime}$, stereo pair occlusal view; B , lingual view; C , buccal view. Scale bar = 1 cm .
of biocorrelation with the Kanuka Local Fauna of the Tirari Desert in South Australia, Tedford et al. (1992) suggest an age of around 3.4 million years for the Chinchilla Local Fauna.

DESCRIPTION. The crowns of I_{1-3} are broken away. In anterior view, the root of I_{1} is positioned ventral to that of I_{2} and lingual to that of I_{3}. This gives a V-shaped lower incisor row. The anterior tip of the dentary is compressed on the lingualbuccal axis. Observable morphology of $\mathrm{C}_{1}, \mathrm{P}_{1-3}$, and M_{1-2} is consistent with that of other D. dunmalli from the Chinchilla Local Fauna, as described by Bartholomai (1971), Archer (1982) and Wroe \& Mackness (1998).

PHYLOGENETIC ANALYSIS

The arrangement of the lower incisors and anterior of the dentary have not been previously described for D. dunmalli. This region differs between dasyurid taxa and is consequently of significance in phylogenetic reconstruction. In
most dasyurids, the lower incisors form roughly a V-shaped profile in occlusal view. Sarcophilus harrisii and Dasyurus maculatus, with linear profiles, represent the only exceptions. Wroe \& Mackness (1998) posited a special relationship between D. maculatus and D. dunmalli based on the results of a computer-generated parsimony analysis. We have re-run this analysis incorporating this additional character. In the process we detected some errors in both our own (Wroe \& Mackness, 1998) character analysis, as well as that of Van Dyck (1987). Corrections and additions are listed below and have been added to Tables 1-2. Results are presented in Fig. 2. Dental measurements are given in Table 3. Method otherwise follows Wroe \& Mackness (1998).
a) Wroe \& Mackness (1998) and Van Dyck (1987) consider only two character states regarding the shape of the upper incisor row (V-shaped and U-shaped). As observed by Archer (1976), a third state is evident in D. maculatus and Sarcophilus harrisii, i.e. 'straight'.

FIG. 2. Three most parsimonious trees ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) of 39 steps produced using PAUP 3.1.1 for seven species of Dasyurus, Neophascogale lorentzii and Sarcophilus harrisii. Analysis used DELTRAN optimisation and the branch and bound search option. Strict majority-rule consensus produced a tree identical to tree C.
b) Wroe \& Mackness (1998) and Van Dyck (1987) score Dasyurus hallucatus as showing plesiomorphic phallic morphology. However, Archer (1974) and Woolley \& Webb (1977) note that an erectile organ is present in D. hallucatus. Indeed, Archer (1974) describes it as identical to that of D. geoffroii.
c) Historically, a number of morphologists have argued for the recognition of possible monophyly for D. maculatus and Sarcophilus harrisii (see Ride, 1964; Archer, 1982). Some, but not all, recent molecular-based studies have supported this contention (Krajewski et al., 1994, 1997). Also, some molecular investigations have suggested that phascolosoricines (sensu Archer, 1982) represent the sister clade to Dasyurus and Sarcophilus. Consequently, we have included both S. harrisii and Neophascogale lorentzii in the re-analysis of data presented by Wroe \& Mackness (1998).
d) Characters 12 and 17 in the analysis by Wroe \& Mackness (1998) are unambiguously correlated. Consequently, we have removed character 12 . Re-running the analysis produced 3 most parsimonious trees of 39 steps with uninformative characters excluded: $\mathrm{CI}=0.806$, $\mathrm{HI}=0.194, \mathrm{RI}=0.875$ and $\mathrm{RC}=0.718$ (Fig. 3). In all 3 trees, D. dunmalli formed a monophyletic clade with D. albopunctatus, D. spartacus, D. maculatus and Sarcophilus harrisii. This group was united by the following synapomorphies: premolars large, ovate in occlusal view (C 5); hypertrophy of M2 trigonid relative to talonid (C 14); and intermediate reduction of the metaconid (C 15). In one of these trees (C), a special relationship was evident between D. dunmalli and D. spartacus. In another (A), D. dummalli appeared as the sister taxon to D. maculatus + Sarcophilus harrisii. Curiously, in neither case was the monophyly of Dasyurus dunmalli with either of these clades supported by any

TABLE 1. Characters and character states used in phylogenetic analysis with ' 0 ' = plesiomorphic, ' l ' = apomorphic and ' $?$ ' = missing.

1. Diastema between $\mathrm{J}^{1-2} .0$, present; 1 , absent.
2. I' morphology. 0 , hypsodont relative to $I^{2} ; 1$, not hypsodont relative to \mathbf{I}^{2}.
3. Shape of incisor row. $0, \mathrm{~V}$-shaped; 1 , U-shaped; 2, straight.
4. C_{1} morphology. 0, proportionate to uppers. I not proportionate.
5. Premolar morphology. D, premolars narrow and small in occlusal view; 1 , large and ovate in occlusal view.
6. Premolar occlusion (ordered), 0, shear past each other in occlusion; 1 , do not shear past one another in occlusion.
7. P_{3} retained/lost. 0 , retained; 1, lost.
8. M_{3} postmetacrista/paracristid length (ordered), 0 , shorter than in $\mathrm{M}_{2} ; 1$, about equal to $\mathrm{M}_{2} ; 2$, clearly longer than in M_{2}.
9. Position of metacone relative to stylar cusp D on M^{I}. 0_{3} perpendicular relative to st $\mathrm{D} ; 1$, not perpendicular (i.e., posterobuccal).
10. Paracone morphology (ordered). 0, unreduced; 1 , intermediate; 2 , greatly reduced.
11. Distance between metacone and stylar cusp B (ordered). 0, not approximated; 1, intermediate; 2, approximated.
12. Molar shape. 0 , not bulbous; 1 , bulbous.
13. Posterior cingulid. 0 , well developed; 1 , reduced or lost.
14. M_{2} trigonid vs talonid length. 0 , trigonid equal to or less than talonid in length; 1 , trigonid $>$ in length than talonid.
15. Metaconid size (ordered), 0 , unreduced; 1 , intermediate; 2 , greatly reduced.
16. M_{4} morphology 0 , entoconid present; 1 , entoconid absent.
17. Skull height. 0 , low; 1 , high.
18. Rostrum beneath lachrymals. 0 , not broad; 1 , broad.
19. Penis morphology. 0 , simple; 1 , complex.
20. Hallux morphology (ordered), 0, present; 1 , reduced; 2 , absent.
21. Hind foot morphology. 0 , pes short and broad; 1 , elongate.
22. Lower incisor row, 0, V-shaped; 1 , straight.

TABLE 2. Taxon/character matrix based on the distribution of 22 characters using the 7 species of Dasyurus, as well as Neophascogale lorentzii and Sarcophilus harrisii. Modified from Wroe \& Mackness (1998).

Character	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
ancestor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Neophascogale lorentzii	1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dasyurus hallucatus	0	0	0	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0
Dasyurus viverrimus	1	1	1	1	0	1	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0
Dasyurus dummalli	$?$	$?$	$?$	1	1	$?$	0	$?$	$?$	$?$	$?$	0	0	1	2	$?$	$?$	$?$	$?$	$?$	$?$	0
Dasyurus albopunctatus	1	1	1	1	1	2	1	2	1	2	1	0	1	1	2	1	0	0	1	1	0	0
Dasyurus spartacus	1	1	1	1	1	2	1	2	1	2	1	0	1	1	2	1	1	1	1	1	0	0
Dasyurus geoffroii	0	0	1	1	0	2	1	1	1	2	1	0	1	0	1	0	1	1	0	0	0	0
Dasyurus maculatus	1	1	2	1	1	2	1	3	1	2	2	1	0	1	3	0	0	0	1	1	0	1
Sarcophilus harrisii	1	1	2	1	1	2	1	3	1	2	2	1	1	1	3	0	0	0	1	1	0	1

synapomorphy. A third tree (B) also treated D. dunmalli, D. spartacus, D. albopunctatus, D. maculatus and Sarcophilus harrisii as monophyletic, but within this clade, only the position of S. harrisii and Dasyurus maculatus as sister taxa was resolved. A strict majority-rule consensus produced a phylogeny identical to this third tree. In all trees, a special relationship between Sarcophilus harrisii and Dasyurus maculatus was supported by the following synapomorphies: development of a straight upper incisor row (C3); marked elongation of the M3 postmetacrista/paracristid relative to that of M2 (C8); approximation of stylar cusp D and the metacone (C11); development of bulbous molars (C12); development of greatly reduced metaconids (C15) and the development of a linear lower incisor row (C22).

In our view, these results provide no support for the existence of a special relationship between D. maculatus and D. dunmalli as postulated by Wroe \& Mackness (1998). Moreover, although on the face of it, the results of this analysis seemingly provide equivocal support for the monophyly of either D. dunmalli + D. spartacus or D. dunmalli + D. maculatus + Sarcophilus harrisii, the absence of potential synapomorphies uniting either clade provides no real foundation on which to base these phylogenies. Consequently, we consider the position of D. dunmalli unresolved within a clade inclusive of D. albopunctatus, D. spartacus, D. maculatus and Sarcophilus harrisii. In this regard, both the present
study and those of Van Dyck (1987) and Wroe \& Mackness (1998) largely concur, excepting the placement of S. harrisii, which was not included in the latter two studies. Support for the monophyly of S, harrisii and Dasyurus maculatus will require further testing using an expanded taxon/character matrix for corroboration.

ACKNOWLEDGEMENTS

The study of the Chinchilla Local Fauna has been supported in part by an ARC Program Grant to M. Archer; a grant from the Department of Arts, Sport, the Environment, Tourism and Territories to M. Archer, S. Hand and H. Godthelp; a grant from the National Estate Program Grants Scheme to M. Archer and A. Bartholomai; and grants in aid to the Riversleigh Research Project from the University of New South Wales, Wang Australia, ICI Australia and the Australian Geographic Society. Cec and Doris Wilkinson have undertaken most of the scientific exploration of the Chinchilla Local Fauna over the last ten years and have provided access to their specimens as well as valuable new material.

TABLE 3. Dental measurements (mm) of QM F3357. $1=$ anteroposterior
length; $w=$ maximum width (premolars); $w 1=$ maximum transverse
dimension of trigonid; $w 2=$ maximum transverse dimension of talonid.

Taxon	QMF No.	P_{2}		P_{3}		M_{1}			M_{2}		
		1	w	1	w	1	wl	w2	1	wl	w2
D. dunmalli	3357	4.3	2.4		2.0	1.8	5.4	2.7	3.1		6.7

LITERATURE CITED

ARCHER, M. 1974. Some aspects of reproductive behaviour and the male erectile organs of Dasyurus geoffroii and D, hallucatus (Dasyuridae, Marsupialia). Memoirs of the Queensland Museum 17: 63-67.
1976. The dasyurid dentition and its relationship to that of didelphids, thylacinids, borhyaenids (Marsupicarnivora) and peramelids (Peramelina: Marsupialia). Australian Journal of Zoology, Supplementary Series 39: 1-34.
1982. Review of the dasyurid (Marsupialia) fossil record, integration of data bearing on phylogenetic interpretation and suprageneric classification. Pp. 397-443. In Archer M. (ed.) Carnivorous Marsupials, Vol. 1. (Royal Zoological Society of New South Wales: Sydney).
BARTHOLOMAI, A. 1971. Dasyurus dunmalli, a new species of fossil marsupial (Dasyuridae) in the upper Cainozoic deposits of Queensland. Memoirs of the Queensland Museum 16: 19-26.
DAWSON, L., MUIRHEAD, J.\& WROE, S. 1999. The Big Sink local fauna: a lower Pliocene mammalian fauna from the Wellington Caves complex, Wellington, New South Wales. Records of the Western Australian Museum, Supplement 57: 265-290.
FLOWER, W.H. 1867. On the development and succession of teeth in the Marsupialia, Philosophical Transcripts of the Royal Society of London 157: 631-641.
GILL, T. 1872. Arrangement of the families of mammals with analytical tables. Smithsonian Miscellaneous Collection 2: 1-98.
GOLDFUSS, G.A. 1820. Handbuch der Zoologie. (Nuremberg).
KRAJEWSKI, C., PAINTER, J., BUCKLEY, L. \& WESTERMAN, M. 1994. Phylogenetic structure of the marsupial family Dasyuridae based on cytochrome b DNA sequences. Journal of Mammalian Evolution 2: 25-35.
KRAJEWSKI, C., YOUNG, J., BUCKLEY, L., WOOLLEY, P.A. \& WESTERMAN, M. 1997. Reconstructing the taxonomic radiation of dasyurine marsupials with cytochrone b, 12 S rRNA, and protamine P1 gene trees. Journal of Mammalian Evolution 4: 217-236.
LUCKETT, P.W. 1993. An ontogenetic assessment of dental homologies in therian mammals. Pp.

182-204. In Szalay, S.F., Novacek, M.J. \& McKenna, M.C. (eds) Mammal Phylogeny; Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians and Marsupials. (Springer-Verlag: New York).
RIDE, W.D.L. 1964. A review of Australian fossil marsupials. Journal of the Royal Society of Western Australia, 47: 97-131.
TEDFORD, R.H., WELLS, R.T. \& BARGHOORNE, S.F. 1992. Tirari Formation and contained faunas, Pliocene of the Lake Eyre Basin, South Australia. The Beagle 9: 173-194.
WOODS, J.T. 1960. Fossiliferous fluvatile and cave deposits. The Geology of Queensland. Journal of the Geological Society 7: 393-403.
VAN DYCK, S. 1982. The relationships of Antechinus stuartii and A. flavipes (Dasyuridae, Marsupialia) with special reference to Queensland. Pp. 723-766. In Archer M. (ed.) Carnivorous Marsupials, Vol. 2. (Royal Zoological Society of New South Wales: Sydney).
1987. The Bronze Quoll, Dasyurus spartacus (Marsupialia: Dasyuridae), a new species from the savannahs of Papua New Guinea. Australian Mammalogy 11: 45-156.
WOOLLEY, P.A., \& WEBB, S.J. 1977. The penis of dasyurid marsupials. Pp. 307-323, In Stonehouse, B. \& Gilmore, D. (eds) The Biology of Marsupials. (Macmillan Press: London).
WROE, S. 1996. Muribacinus gadiyuli (Thylacinidae, Marsupialia), a very plesiomorphic thylacinid from the Miocene of Riversleigh, Northwestern Queensland, and the problem of paraphyly for the Dasyuridae. Journal of Paleontology 70: 1032-1044.
1997. A re-examination of proposed morphologybased synapomorphies for the families of Dasyuromorphia (Marsupialia): Part 1, Dasyuridae. Journal of Mammalian Evolution 4: 19-52.
1999. The geologically oldest dasyurid (Marsupialia), from the middle Miocene of Riversleigh, northwestern Queensland. Palaeontology 42:501-527.
WROE, S. \& MACKNESS, B.S. 1998. Revision of the Pliocene dasyurid Dasyurus dunmalli (Dasyuridae: Marsupialia). Memoirs of the Queensland Museum 42: 605-612.

CONTENTS (contimued)

FRY'DA. J.
Some new Givetian (late Midde Devonian) gastropods from the Patirath area (Bergisches Land, Germany) 359
GREER, A.E. \& SHINE, R.
Relationship between mass and length in Ausiralian elapid snakes 375
HARTENSTEIN, V \& DWINE, K.A.
Freshwater dalyelfid flaworm, Gieyszroria superba sp. nov. (Dalyellidae: Rhabdocoela) from southeast Queensiand, Australia 381
HERBERT, B. \& TIMMS, B.V.
A new species of Streptocephalus (Parastreptocephalus) (Crustacea; Anostraca: Streptacephalidae) from noth Queensland, Australia 385
HINES. B.M., IANNAH, D., YFNZ, M. \& EYRE, T.
New distribution and habirat data for the vulnerable pygopodid, Delma torquata (Kluge, 1974). 391
HOARE, R.D, \& COOK, A.G. Devonian and Early Carboniferous Pọlyplacophora frôm Westem Austrāla 395
HOCKNULL, S.A
Mesozoic freshwater and estuarime bivalves from Australia 405
HOOPER, JN.A., KELLY, M. \& KENNEDY, J.A. A new Clathrid (Porifera: Demospongiae: Microcionidae) from the western Indian Oecan 427
KENNEDY, J.A. \& HOOPER, JN.A.
New spectes af toxic Tedomia from northern Vanuatu (Porifera: Demospongiac: Poeciloselerida: Tedaniidac) 445
KENNEDY J.A.
Resolving the 'Jaspis stellifera' comples 453
RANDALL, J.E. \& IOHNSON. J.W.
Perca lineala and P. vittatu established as valid species of Plector himehus (Perciformes: Haemulidac) 477
MCLOUGHLIN, S. TOSOLINI, A-M.F \& DRINNAN, A.N.
Revision of an Early Cretaceous macroflora from the Maryborough Formation, Marytorough Basin, Queensiand, Australia 483
OTTO, J.C.
Simognathinae (Acarina: Halacaridac) front the Great Barrier Reef and Coral Sea, description of thirteen sew species 505
OTTO. JC.
Halacaridae from the Great Barrer Reef and Coral Sea: the genera Lohmamella. Seapognathides and Seaprogmahur (Acarina: Halacaridae: Lohmannellinae) $\$ 35$
PATERSON, R.A. CALO, D.H. JANETZKI, H,A. \& WILLLAMS, S.C.
An aduht Dwarf Minke Whale Balacnoptera acultorostrata Lacépede, 1804 from Fraser Island, Queensland $\$ 57$
RAVEN, R.J.
Taxonomica Araneae 1; Barychelidae, Theraphosidac, Nemesidae and Dipluridae (Arsneac) 569
RAVEN, R.J. \& BAEHR, BC.
Revised status of the genus Hotaerica Rambow (Araneac: Zodariddae), 577
ROSS, A. \& NEWMAN, W, A
A new coral-eating barnacle: the first record from the Great Barrier Reet. Australia 58.
THOMSON, S.A.
A revision of the fossil chelid turdes (Hleurodira) described by C.W. De Vis, 1897 593
TREMUL*R.
Brecding, fecding and arboreality in Paradelma oriehtalis: a pootly known. vulnerable pygopodid from Queensland, Australia 594
V'AN DYCK, S, \& CROWTHER, M.S.
Reassessment of northern representatives of the Antechinns stuartic complex (Marsupialia: Dasyuridae): A subtrepicus sp. nov. and a udustus new status 611
VINK, CJ, \& SIRVID, PJ.
New synonvmy between Oxyoper gracilipes (white) and Oxyopes munclulus L, Koch (Oxyopidac: Araneae) 637
WROF S. \& MACKNESS. B,S.
Additional material of Daspurus dummali from the Pliocene Chinchilla Local Fauma of Queensland and its phylogenetic implications 641

CONTENTS

BARTSCH, I.
Rhombognathinae (Acari: Halacaridae) from the Great Barrier Reef, Australia 165
BEVERIDGE, I.Species of Discocelis (Platyhelminthes: Polycladida) from Queensland, with description of anew species205
BEVERIDGE, I. \& CRIBB, T.H.
Notoplana dubia (Schmarda) (Platyhelminthes: Polycladida) from Queensland 215
BUCKERIDGE, J.
Cirripedes as palaeoecological indicators in the Te Aute lithofacies limestone, North Island, New Zealand 221
CLIFFORD, H.T. \& PEMBERTON, M.R.
Stem casts of Leptophloeum australe (McCoy) Walton and the response of their leaf-cushion bases to compression 227
COOK, A.G. \& BANN, K.
Trace fossils from the Upper Carboniferous Jericho Formation, central Queensland 235
COUPER, P.J., SCHNEIDER, C.J., HOSKIN, C.J. \& COVACEVICH, J.A.
Australian leaf-tailed geckos: phylogeny, a new genus, two new species and other new data 253
DAVIE, P.J.F. \& NG, P.K.L.
Bountiana, a new genus for Eriphia norfolcensis Grant \& McCulloch, 1907 (Crustacea: Brachyura: Eriphiidae) 267
DAVIES, V.T. \& LAMBKIN, C.L.
Malarina, a new spider genus (Araneae: Amaurobioidea: Kababininae) from the wet tropics of Queensland, Australia 273
DETTMANN, M.E. \& CLIFFORD, H.T.
Gemmae of the Marchantiales from the Winton Formation (Mid-Cretaceous), Eromanga Basin, Queensland 285
FRITH, C.B. \& FRITH, D.W.
Bower system and structures of the Golden Bowerbird, Prionodura newtoniana (Ptilonorhynchidae) 293
FRITH, C.B. \& FRITH, D.W.
Attendance levels and behaviour at bowers by male Golden Bowerbirds, Prionodura newtoniana (Ptilonorhynchidae) 317
FRITH, C.B. \& FRITH, D.W.
Home range and associated sociobiology and ecology of male Golden Bowerbirds Prionodura newtoniana (Ptilonorhynchidae) 343

