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Abstract

Let K be a commutative field of characteristic
zero. Let A be a finite dimensional algebra over K,
not necessarily commutative and D(A) the noncom-
mutative duplicate of A. Here we give necessary and
suffisant conditions for D(A) to be a Jordan algebra.
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Résumé
Soit K un corps commutatif de caractéristique zéro. Soient

A une K-algèbre non nécessairement commutative de dimension
finie et D(A) sa dupliquée non commutative. Nous donnons ici des
conditions nécessaires et suffisantes pour que D(A) soit une algèbre
de Jordan.
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1 Introduction

This paper follows an article ([8]) where it is given a characteriza-
tion of the subalgebra A2 of A when the noncommutative duplicate
D(A) of A is Jordan algebra and A2 is a flexible, power-associative,
but not a nilalgebra; in this study, it is obtained the following result
”The noncommutative duplicate D(A) of A is a Jordan algebra if
and and only if dimK(A2) = 1”. We give here a characterization of
the subalgebra of A2 when D(A) is a Jordan algebra and the result
mentioned will be a corollary.

2 Noncommutative duplicate

We recall here some general results on the duplicate ([6], [7]).

Definition 1. ([7]) Let K be a commutative field of charac-
teristic zero and let A be a finite dimensional K-algebra. The non-
commutative duplicate D(A) of A is defined as the algebra whose
underlying vector space is the tensor product A⊗

K
A endowed with

the product (x⊗ y)(x′ ⊗ y′) = xy ⊗ x′y′ for all x, y, x′, y′ in A.

Note that if dimK(A) = n, (n ≥ 1), then dimK(D(A)) = n2.
Moreover, if (ei)0≤i≤n−1 is a basis of A, then (ei ⊗ ej)0≤i,j≤n−1 is a
basis of D(A).

The linear mapping µ : D(A) −→ A2 with µ(x⊗y) = xy defines
an algebra epimorphism. If ND(A) is the kernel of µ, there exists
an algebra isomorphism D(A)/ND(A) ∼= A2 and ND(A)D(A) =
{0} = D(A)ND(A). Since the exact sequence 0 −→ ND(A) −→
D(A)

µ−→ A2 −→ 0 splits, there exists a K-linear application η :
A2 −→ D(A) such that µ ◦ η = IdA2 . The K-bilinear application
ϕ : A2 × A2 −→ ND(A) defined by ϕ(x, y) = η(x)η(y)− η(xy) and
the conditions ND(A)D(A) = {0} = D(A)ND(A) are used to define
on the product A2×ND(A) a finite dimensional K-algebra structure
where the multiplication is given by (x,m)(y, n) = (xy, ϕ(x, y)) for
all x, y in A2 and all m,n in ND(A).
We denote this algebra by A2 ×

s.d.
ND(A) (s.d. for semi-direct).

This allows us to state the following result:
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Theorem 2. (Etherington) ([7]) Let K be a commutative field
and A a finite dimensional K-algebra. Then D(A) ∼= A2 ×

sd
ND(A)

an isomorphism of K-algebras.

In the following we will adopt the notation D(A) = A2×
ϕ
ND(A),

where the structure of the noncommutative duplicate of an algebra
A is given by (x,m)(y, n) = (xy, ϕ(x, y)) and ϕ is defined above.
It should be noted that the structure of A2 ×

ϕ
ND(A) is, up to

isomorphism, independent of the choice of the linear application η.

Proposition 3. ([5]) Let C be a class of algebras and A a
finite dimensional K-algebra. The algebra D(A) = A2 ×

ϕ
ND(A) is

in the class C if and only if the algebra A2 is in the class C and ϕ
is a 2-cocycle with coefficients in ND(A).

Then it is clear that the properties of D(A) depend on the prop-
erties of A2.

In the following, we examine the conditions that D(A) is a Jor-
dan algebra.

We mention now some results which are necessary.

Lemma 4. For all z, z′ in D(A), zz′ = µ(z)⊗ µ(z′).

Using Lemma 4, we have the following result:

Lemma 5. Let η : A2 −→ D(A) be a K-linear application
such that µ ◦ η = idA2 and D(A) = A2 ×

ϕ
ND(A) where ϕ(x, y) =

η(x)η(y)− η(xy). Then for all x, y ∈ A2, η(x)η(y) = x⊗ y.

Remark 6. If the characteristic of the field K is zero, then in
the tensor produit A⊗

K
A, x⊗ y = 0 if and only x = 0 or y = 0 ([4]

p.257).

Corollary 7. ([3]) If the characteristic of the field K is zero,
in the tensor product A ⊗

K
A, if x is a nonzero vector in A and

x ⊗ y = z ⊗ x then there exists a linear form f on A such that
z = y = f(x)x.
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Proof. If x = 0, then x ⊗ y = z ⊗ x for all y, z in A. Suppose
that x is not zero and let y, z be the vectors of A. If x⊗ y = z⊗ x,
then y ∈ Kx and z ∈ Kx say that it exists forms K-linear f
and g on A such that y = f(x)x and z = g(x)x. Thus, we have
0 = f(x)x ⊗ x − g(x)x ⊗ x = (f(x) − g(x))x ⊗ x; as x is nonzero
then f(x) = g(x).

3 Duplication and Jordan algebras

Let A be a finite dimensional K-algebra not necessarily commuta-
tive or associative whose multiplication is denoted by xy.

We say that A is flexible if (xy)x = x(yx) for all x, y in A.
We say that A is a K-Jordan algebra if A is flexible and x2(yx) =

(x2y)x for all x, y in A ([10] p. 141).
Let K be a commutative field, A a K-algebras of finite dimen-

sional and D(A) the noncommutative duplicate of A.

Theorem 8. The algebra D(A) is a Jordan algebra if and only
if A2 is a Jordan algebra and ϕ(xy, x) − ϕ(x, yx) = 0, ϕ(x2y, x) −
ϕ(x2, yx) = 0 for all x, y, z in A2.

Proof. That is a traduction of Proposition 3.

We have these following results which are immediate ([8]).

Proposition 9. If A2 is a zero-algebra then, D(A) is a Jordan
algebra.

Proposition 10. If dimK(A2) = 1, then D(A) is a Jordan
algebra.

The following result will be widely used.

Lemma 11. If A2 is a Jordan algebra, the map ϕ : A2 ×
A2 −→ ND(A) verifies ϕ(xy, x) − ϕ(x, yx) = xy ⊗ x − x ⊗ yx and
ϕ(x2y, x)− ϕ(x2, yx) = x2y ⊗ x− x2 ⊗ yx.
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Proof. Suppose that D(A) is a Jordan algebra. We have:

ϕ(xy, x)− ϕ(x, yx) = η(xy)η(x)− η((xy)x)− η(x)η(yx) + η(x(yx))

= η(xy)η(x)− η(x)η(yx)− η((xy)x− x(yx))

= η(xy)η(x)− η(x)η(yx)− η(0)

= xy ⊗ x− x⊗ yx.

Similary we get the relation ϕ(x2y, x)− ϕ(x2, yx) = x2y ⊗ x− x2 ⊗ yx.

For the sequel, we denote:

ΦJ2(x, y) = x2y ⊗ x− x2 ⊗ yx

and
ΨJ2(x, y) = xy ⊗ x− x⊗ yx.

Corollary 12. The algebra D(A) is a Jordan algebra if and
only if the three following conditions are satisfied: (i) A2 is Jordan
algebra, (ii) ΦJ2(x, y) = 0 and (iii) ΨJ2(x, y) = 0 for all x, y in A2.

Remark 13. Let A be the three dimensional K-algebra with
multiplication e2 = e, xy = yx = x with respect to the basis
{e, x, y}, other products being zero. The subalgebra A2 =< e, x >
is a Jordan algebra, but Ψ(e + x, y) = (e + x)y ⊗ (e + x) =
(e+x)⊗y(e+x) = x⊗e−e⊗x and the noncommutative duplicate
is not a Jordan algebra.

4 Algebras which the noncommutative

duplicate is a Jordan algebra

These following results will be helpful.

Lemma 14. ([3]) Let A be finite dimensional K-algebra. Then
the following conditions are equivalent for two vectors x and y in
A.

1. f(x) = 0 for all linear form f on A implies f(y) = 0 for all
linear form f on A.
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2. The two vectors x and y are linearly dependant.

Proof. The fact that the assertion 2 implies the assertion 1 is
trivial. Let us show that assertion 1 implies assertion 2. Suppose
that the vectors e1 = x and y = e2 are K-linearly independent
and complement the pair e1, e2 in a basis B = {e1, e2, e3, ..., en}
of the K-vector space A. Let {e′1, e′2, e′3, ..., e′n} be the dual basis
of B, basis of A∗ the dual algebra of A. This basis satisfies the
conditions e′i(ej) = δij (i, j = 1, 2, ..., n) where δij is the Kronecker
symbol. We have the linear form e′2 on A that satisfies e′2(e1) = 0
and e′2(e2) = 1.

Corollary 15. Let A be a algebra and D(A) its noncommu-
tative duplicate. If D(A) is Jordan algebra, then dimK(A2)2 ≤ 1.

Proof. Indeed, sinceD(A) is a Jordan algebra, xy ⊗ x− x⊗ yx = 0
for all x, y in A2. Corollary 7 says that xy and x are linearly de-
pendant for all x, y in A2; then dimK((A2)2) ≤ 1 .

Remark 16. Let A be the three dimensional K-algebra which
the multiplication relative to the base {e1, e2, e3} is gived by: e22 =
e2, e

2
3 = e1 and the other products are nul. We have A2 =< e1, e2 >

and (A2)2 =< e2 >. In the noncommutative duplicate of A, we
have:

ΨJ2(e1 + e2, e2) = (e1 + e2)e2 ⊗ (e1 + e2)− (e1 + e2)⊗ e2(e1 + e2)

= e2 ⊗ (e1 + e2)− (e1 + e2)⊗ e2
= e2 ⊗ e1 + e2 ⊗ e2 − e1 ⊗ e2 − e2 ⊗ e2
= e2 ⊗ e1 − e1 ⊗ e2.

Then ΨJ2(e1 + e2, e2) is not zeo and the noncommutative duplicate
of A is not a Jordan algebra.

We consider the field of reel numbers R and recall the classifi-
cation of the two dimensional commutative R-Jordan algebras give
in [2].

Theorem 17. ([2]) A two dimensional commutative R-Jordan
algebras is isomorphic at one of the following algebras.
AJ1 : (e1)

2 = e1, e1e2 = e2, (e2)
2 = e1;
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AJ2 : (e1)
2 = e1, e1e2 = e2, (e2)

2 = 0;
AJ3 : (e1)

2 = 0, e1e2 = 0, (e2)
2 = e2;

AJ4 : (e1)
2 = e2, e1e2 = 0, (e2)

2 = 0;
AJ5 : (e1)

2 = e1, e1e2 = 1
2
e2, (e2)

2 = 0;
AJ6 : (e1)

2 = e1, e1e2 = e2, (e2)
2 = −e1.

Moreover, the algebra AJ5 is a commutative simple Jordan algebra.

Remark 18. It is clear that in Theorem 17, the two dimen-
sional zero-algebra must be added.

We use Theorem 17 to give a characterization of the two dimen-
sional reel commutative Jordan algebras when their noncommuta-
tive duplicates are Jordan algebras.

Theorem 19. Let A be a reel commutative algebra such that
A2 is two dimensional Jordan algebra. The noncommutative dupli-
cation of A is a Jordan algebra if an only if A2 is a zero-algebra.

Proof. Since A2 is a two dimensional reel commutative Jordan
algebra, A2 is a zero-algebra or is isomorphic to one of the alge-
bra quoted in Theorem 17. Then using Corollary 12 and a direct
calculation we have the result.

We have the following results.

Theorem 20. Let K be a commutative field characteristic
zero and A a K-algebra. Suppose that dimK(A2) = 2. Then the
following assertions are equivalent.

1. D(A) is Jordan algebra.

2. A2 is a zero-algebra.

Proof. Suppose that D(A) is a Jordan algebra. Using Corollary
15, we have dimK(A2)2 ≤ 1. Let {e, f} be a basis of A2 such that
(A2)2 ⊆ Ke and write e2 = αe, ef = βe, fe = β′e and f 2 = γe. We
have ΨJ2(f, e) = fe⊗f −f ⊗ ef = β′e⊗f −f ⊗ (βe). The relation
ΨJ2(f, e) = 0 says that β = β′ = 0. ΨJ2(e+ f, e) = (f + e)e⊗ (e+
f)−(e+f)⊗e(e+f) = αe⊗(e+f)−(e+f)⊗(αe) = α(e⊗f−f⊗e).
The relations ΨJ2(e + f, e) = 0 says that α = 0. Similary the
relation ΨJ2(f, e + f) = 0 implies γ = 0. Thus it is proved that
assertion 1. implies assertion 2.. The converse is obvious.
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Theorem 21. LetK be a commutative field characteristic zero
and A a K-algebra. Then the following assertions are equivalent.

1. D(A) is Jordan algebra.

2. One of these conditions is satisfied:

(a) dimK(A2) ≤ 1;

(b) dimK(A2) ≥ 2 and A2 is a zero-algbra.

Proof. Suppose that D(A) is Jordan algebra. Corollary 15 says
that dimK((A2)2) ≤ 1. If dimK(A2) ≤ 1, then Proposition 10
allows to conclude. If dimK(A2) = 2, Theorem 20 allows to con-
clude. Suppose that dimK(A2)2 ≤ 1 and dimK(A2) ≥ 3; consider
a family {e, u, v} of linearly independent vectors of A2 such that
(A2)2 ⊆ Ke. The condition (A2)2 ⊆ Ke says that B =< e, u, v >
is a subalgebra of A2 and that, B1 =< e, u > and B2 =< e, v > are
subalgebras of A2. Applying Theorem 20 to Bi (i = 1, 2), we get:
Bi (i = 1, 2) is a zero-algebra. Then B is a zero-algebra or B has
one of the following multiplication tables:

y e u v
e 0 0 βe
u 0 0 γe
v β′e γ′e 0

y e u v
e 0 δe 0
u δ′e 0 ρe
v 0 ρ′e 0

If B is a zero-algebra, as the vectors u and v are arbitrary such that
e, u, v are lineary independant, then A2 is a zero-algebra. Suppose
that B has a multiplication gived by the first table. ΨJ2(v, e) =
ve⊗v−v⊗ev = β′e⊗v−βv⊗e and then the relation ΨJ2(v, e) = 0
say that β = β′ = 0; ΨJ2(v, u) = vu⊗v−v⊗uv = γ′e⊗v−γv⊗e and
then the relation ΨJ2(v, u) = 0 say that γ = γ′ = 0. We conclude
that A2 is a zero-algebra. If B has a multiplication gived by the
second table, using the relations Ψ(u, e) = 0 and Ψ(u, v) = 0, we
get δ = δ′ = 0 and ρ = ρ′ = 0 and then we conclude that A2 is a
zero-algebra. So it is proved that the assertion 1. implies assertion
2.. The converse is immediate.

In [8] having assumed that A is an algebra not necessearily
commutative and A2 is flexible, associative powers and non-nil, it
is studied the conditions for the noncommutative duplicate of A to
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be a Jordan algebra using the Peirce decomposition given by in [1];
it is obtained the following result which is a corollary of Theorem
21.

Theorem 22. ([8]) Let A a K-algebra such that A2 is flexi-
ble, power-associative and non nil. The noncommutative duplicate
D(A) of A is Jordan if and only dimK(A2) = 1.

Proof. The given conditions allow to say that A2 possesses a
nonzero idempotent e ([1]). The idempotent e is a nonzero vector
of (A2)2 and finally Theorem 21 allows us to say that A2 = (A2)2 =
Ke.
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