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Abstract

Modern compilers must expose sufficient amounts of
Instruction-Level Parallelism (ILP) to achieve the promised
performance increases of superscalar and VLIW processors.
One of the major impediments to achieving this goal has been
inefficient programmatic control flow. Historically, the compiler
has translated the programmer’s original control structure
directly into assembly code with conditional branch instructions.
Eliminating inefficiencies in handling branch instructions and
exploiting ILP has been the subject of much research. However,
traditional branch handling techniques cannot significantly
alter the program’s inherent control structure. The advent of
predication as a program control representation has enabled
compilers to manipulate control in a form more closely related
to the underlying program logic. This work takes full advantage
of the predication paradigm by abstracting the program control
flow into a logical form referred to as aprogram decision logic
network. This network is modeled as a Boolean equation and
minimized using modified versions of logic synthesis techniques.
After minimization, the more efficient version of the program’s
original control flow is re-expressed in predicated code. Fur-
thermore, this paper proposes extensions to the HPL PlayDoh
predication model in support of more effective predicate decision
logic network minimization. Finally, this paper shows the ability
of the mechanisms presented to overcome limits on ILP previously
imposed by rigid program control structure.

1 Introduction

Exploiting Instruction-Level Parallelism (ILP) in the presence
of branches has been the subject of much research. The two most
commonly used techniques are control speculation and predica-
tion. Control speculation is most commonly performed in super-
scalar processors using a combination of branch prediction and dy-
namic scheduling [9][19][23]. Control speculation increases ILP
by guessing the outcome of a branch and executing instructions
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along the predicted path. In this manner, control dependences are
broken to execute instructions before the branch outcome is de-
termined. Given an instruction set that supports speculative op-
erations, control speculation can also be performed statically by
an aggressive compile-time scheduler which moves instructions
across branches [3][12].

Predication has become a popular instruction set architecture
feature for expressing program control by conditionally execut-
ing instructions [8][16]. A compiler can employ if-conversion to
convert a sequence of code containing branches into an equivalent
branch-free sequence of conditionally executed instructions [2].
Predicated execution increases ILP by allowing the compiler to
schedule operations from multiple paths of control for simultane-
ous execution.

One fundamental limitation of most previous branch handling
techniques is that they do not significantly alter the program’s con-
trol flow logic. As the compiler translates high-level language con-
trol constructs into assembly-level branches, it does not alter the
basic control structure. Instead, techniques focused on exposing
and increasing ILP within a fixed control structure are applied.
With control speculation, this is obvious. Control dependences are
removed to enable the motion of instructions above branches. The
branches themselves are not altered. Likewise, when predication is
applied by the process of if-conversion, branches are transformed
into predicate computations and control dependent instructions are
rendered conditional by the addition of guarding predicates. This
process converts control flow and control dependences into data
flow and data dependences, but preserves the original program’s
control structure.

Restricting a compiler to use the program’s unaltered control
structure is undesirable for several reasons. First, a high-level lan-
guage such as C or C++ represents program control flow in an ex-
tremely sequential manner through the use of nested if-then-else
statements, switch statements, and loop constructs. Each control
construct is fully evaluated before proceeding to the next. This se-
quential computation often defines the program critical paths that
constrain the available ILP. Second, programmers represent con-
trol flow for understandability or for ease of debugging rather than
for efficient execution on the target architecture. As a result, soft-
ware often contains redundant control constructs that are difficult
to detect with traditional compiler techniques. These may involve
evaluating the same conditions multiple times or evaluating con-
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ditions that partially overlap. An effective ILP compiler should be
capable of transforming the program control structure to eliminate
these problems.

The ability to restructure code aggressively is a critical feature
of an effective ILP compiler. The most obvious situation where
aggressive transformation is regularly applied is on arithmetic ex-
pressions. Compilers often completely restructure the program-
mer’s arithmetic computations into more parallel forms using a va-
riety of transformations. These include expression re-association,
tree height reduction [11], and blocked back substitution [17]. Al-
though ILP compilers may aggressively restructure computation,
they typically preserve the program’s original control structure.
This conservative approach can seriously limit the level of effi-
ciency as well as the level of ILP achieved in branch-intensive
programs.

Our Approach. Motivated by the potential of aggressive tech-
niques for transforming arithmetic expressions, this paper intro-
duces a new approach to optimizing program control flow. The
goal of this work is to develop a systematic methodology for refor-
mulating program control flow for more efficient execution on an
ILP processor. Control expressed in branches and predicate define
instructions is first extracted and represented as aprogram decision
logic network. Then, a new, more efficient network is synthesized
with the goals of reducing dependence height and redundancy. To
accomplish the desired optimization and synthesis, the program
decision logic network is modeled as a Boolean equation. Boolean
minimization techniques are then applied to simplify and optimize
the equation. Finally, the optimized network is re-expressed in the
form of predicated assembly code. One unique feature of this ap-
proach is that all branches and predicates within a segment of code
are treated jointly in a systematic manner.

This paper focuses on compiler techniques and architecture
support for effective optimization of programmatic control flow.
In particular, we highlight the aspects of the HPL PlayDoh predi-
cate define instructions that are the most useful for our purposes.
During the process of developing our compiler support for pro-
grammatic logic optimization, we designed a new class of pred-
icate define instructions that extends the PlayDoh architecture to
support our optimizer more effectively. We present the key idea
behind this extension and show its effectiveness through simula-
tion of compiled codes that use this extension. We observe in our
experiments that programmatic logic optimization indeed results
in substantial performance improvements in functions where con-
trol flow is the major impediment to exploiting ILP.

Previous Work. Previous research in the area of control
flow optimization can be classified into three major categories:
branch elimination, branch reordering, and control height reduc-
tion. Branch elimination techniques identify and remove those
branches whose direction is known at compile-time. The simplest
form of branch elimination is loop unrolling, in which instances
of backedge branches are removed by replicating the body of the
loop. More sophisticated techniques examine program control
flow and data flow simultaneously to identify correlations among
branches [5][15]. When a correlation is detected, a branch direc-
tion is determinable by the compiler along one or more paths, and
the branch can be eliminated. In [15], an algorithm is developed
to identify correlations and to perform the necessary code repli-
cation to remove branches within a local scope. This approach is
generalized and extended to the program-level scope in [5]. The
second category of control flow optimization work is branch re-
ordering. In this work, the order in which branches are evaluated

PlayDoh types New types
pSRC Comp UT UF OT OF AT AF _T _F ^T ^F

0 0 0 0 - - - - - 1 0 0
0 1 0 0 - - - - 1 - 0 0
1 0 0 1 - 1 0 - 1 1 0 -
1 1 1 0 1 - - 0 1 1 - 0

Table 1. Predicate definition truth table.

is changed to reduce the average depth traversed through a network
of branches [22].

The final category of control flow optimization research fo-
cuses on the reduction of control dependence height. This work
attempts to collapse the sequential evaluation of linear chains
of branches in order to reduce the height of program critical
paths [18]. In an approach analogous to a carry lookahead adder,
a lookahead branch is used to calculate the taken condition of a
series of branches in a parallel form. Subsequent operations de-
pendent on any of the branches in the series need only to wait for
the lookahead branch to complete. The control dependence height
of the branch series is thus reduced to that of a single branch. The
mechanisms introduced herein also serve to reduce control depen-
dence height. This paper, however, introduces an approach to min-
imization and re-expression of control flow networks that is far
more general than those proposed in previous work.

2 Architecture Support

Predicated execution, the central architectural feature exam-
ined in this work, is a mechanism that facilitates the conditional
execution of individual instructions [16]. Predicates are registers
that store a single bit value, representing either TRUE or FALSE.
Each instruction is associated with a particular predicate, known as
its guard predicate, that determines its execution. In the case when
an instruction’s guard predicate is TRUE, it executes normally.
Conversely, when an instruction’s guard predicate is FALSE, it is
nullified.

The most important component of a predicate architecture is
the instruction set support for computing predicates or thepredi-
cate define instructions. Predicate defines are inserted by the com-
piler to generate values for control of conditional execution. The
PlayDoh predicate define instruction set provides the baseline for
our work and is first summarized. Our new strategy for the gener-
ation of predicated code identifies several limitations of the Play-
Doh instruction set. These limitations are described and our pro-
posed extensions to the PlayDoh predicate define instruction set
conclude the section.

Baseline Predicate Architecture.PlayDoh is a parameterized
Explicitly Parallel Instruction Computing (EPIC) architecture in-
tended to support public research on ILP architectures and com-
pilation [10]. PlayDoh predicate define instructions generate two
Boolean values using a comparison of two source operands and a
source predicate. A PlayDoh predicate define instruction has the
form:

pD0 type0; pD1 type1= (src0 cond src1) hpSRCi.

The instruction is interpreted as follows:pD0 andpD1 are the
destination predicate registers;type0 andtype1 are the predicate
types of each destination;src0 cond src1 is the comparison,
wherecond can beequal (==), not equal (! =), greater than (>),
etc.; pSRC is the source predicate register. The value assigned



to each destination is dependent on the predicate type. PlayDoh
defines three predicate types,unconditional(UT or UF),wired-or
(OT or OF), andwired-and(AT or AF). Each type can be in either
normal mode or complement mode, as distinguished by the T or
F appended to the type specifier (U, O, or A). Complement mode
differs from normal mode only in that the condition evaluation is
treated in the opposite logical sense.

For each destination predicate register, a predicate define in-
struction can either deposit a 1, deposit a 0, or leave the contents
unchanged. The predicate type specifies a function of the source
predicate and the result of the comparison that is applied to derive
the resultant predicate. Table 1 (left-hand portion) shows the de-
posit rules for each of the PlayDoh predicate types in both normal
and complement modes. Each entry corresponds to the result as-
signed to the destination predicate. Note that a “-” means that the
destination is left unchanged.

As shown in the table, the unconditional types are always as-
signed a value. For the UT-type, the value corresponds to the log-
ical conjunction of the source predicate and the comparison re-
sult. Conversely, the or-type and the and-type each only assign a
value in one circumstance. The OT-type conditionally writes a 1
if both its source predicate and comparison result are TRUE. The
or-type can be used to efficiently compute the disjunction of mul-
tiple compare conditions by accumulating terms into an initially
cleared predicate register. Since the operations computing terms
conditionally write the same value, they can execute in any order
or even in parallel. Similarly, the and-type can be used to compute
the conjunction of multiple compare conditions by accumulating
terms into an initially set predicate register.

Limitations of PlayDoh. The major limitation of the PlayDoh
predicate types is that logical operations can only be performed
efficiently amongst compare conditions. There is no convenient
way to perform arbitrary logical operations on predicate register
values. While these operations could be accomplished using the
PlayDoh predicate types, they often require either a large number
of operations or a long sequential chain of operations, or both.

With traditional approaches to generating predicated code,
these limitations are not serious, as there is little need to support
logical operations amongst predicates. The Boolean minimization
strategy described in the next section, however, makes extensive
use of logical operations on arbitrary sets of both predicates and
conditions. In this approach, intermediate predicates are calcu-
lated that contain logical subexpressions of the final predicate ex-
pressions to facilitate reuse of terms or partial terms. The interme-
diate predicates are then logically combined with other interme-
diate predicates or other compare conditions to generate the final
predicate values. Without efficient support for these logical com-
binations, gains of the Boolean minimization approach are diluted
or lost.

Predicate Define Extensions.Two new predicate types are
introduced to facilitate generating efficient code using our mini-
mization techniques. These are referred to asdisjunctive-type(_T
or _F) andconjunctive-type(^T or ^F). Table 1 (right-hand por-
tion) shows the deposit rules for the new predicate types. The
^T-type define clears the destination predicate to 0 if either the
source predicate is FALSE or the comparison result is FALSE.
Otherwise, the destination is left unchanged. Note that this behav-
ior differs from that of the and-type predicate define, in that the
and-type define leaves the destination unaltered when the source
predicate evaluates to FALSE. The conjunctive-type thus enables
the compiler easily and efficiently to form the logical conjunction

of an arbitrary set of conditions and predicates.
The disjunctive-type behavior is analogous to that of the

conjunctive-type. With thê T-type define, the destination pred-
icate is set to 1 if either the source predicate is TRUE or the com-
parison result is TRUE (FALSE for̂ F). The disjunctive-type is
thus used to compute the disjunction of an arbitrary set of predi-
cates and compare conditions into a single predicate.

3 Overview of Compiler Techniques

This section presents a conceptual overview of the program de-
cision logic minimization process, starting with the conversion of
code to the predicated representation for subsequent optimization.
In order to simplify the extraction and manipulation of control ex-
pressions, the compiler applies if-conversion and reformulation
of non-branch control constructs to transform all programmatic
control flow into the predicated representation. In the IMPACT
compiler, this conversion is fully performed within acyclic code
regions formed usinghyperblockformation heuristics [14]. To
a great extent, the ability of our control logic optimization tech-
niques to improve performance depends on the scope of these re-
gions, as only the control structure transformed into the predicate
domain is available for subsequent optimization. In order to pro-
mote effective hyperblock formation, aggressive function inlining
is performed.

An example extracted from theUNIX utility wc illustrates the
application and benefit of the described techniques. Figure 1
shows the code segment before and after complete if-conversion.
As shown in Figure 1(a), the code before if-conversion consists
of basic blocks and conditional branches (shown in bold) which
direct the flow of control through the basic blocks. As shown in
Figure 1(b), the code after if-conversion consists of only a single
block of sequential instructions, a hyperblock [13]. The condi-
tional branches have been replaced with predicate define instruc-
tions (shown in bold) and the predicate registers defined have been
placed as source operands on all guarded instructions in accor-
dance with their execution conditions.

After if-conversion, control speculation is performed to in-
crease opportunities for optimization. Control speculation is a
means of breaking a control dependence by allowing an instruction
to execute more frequently than is necessary. In a predicated repre-
sentation, this is performed inpredicate promotion, the process by
which predicate flow dependences are broken and instructions are
made to execute speculatively by changing an instruction’s guard
predicate to another predicate, whose expression subsumes that of
the original [14]. When instructions are aggressively promoted,
some predicates may no longer be utilized as guards on compu-
tation. When a predicate is no longer necessary, the program de-
cision logic is simplified. Figure 2(a) shows thewc hyperblock
segment after predicate promotion. Comparison with Figure 1(b)
shows that four instructions (12, 13, 16, and 17) have had their
predicates promoted to the TRUE predicate, denoted in the figure
as the absence of a source predicate. However, no predicates were
rendered completely unused by this process.

Next, the program decision logic network is constructed. Since
predicates can only assume Boolean values, predicates and predi-
cate defines can be viewed as a combinational logic circuit. To de-
rive the Boolean function from a hyperblock, the compiler needs
only to examine the predicate define instructions. Consider in-
structions 7 and 8 in Figure 2(a), in which the expression forp1

can be written as:p1 = C0 andp2 can be written as:p2 = p1C1,
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Jump Loop

r2 = 0 <p5>

p5_of = (r4 != 9) <p8>

p5_of, p8_ut = (r4 != 32)

F

<p7>

MEM[71] = r61 <p6>

r61 = r62 + 1 <p6>

r62 = MEM[r71] <p6>

r2 = r2 + 1 <p3>

MEM[r72] = r26 <p3>
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r27 = MEM[r72] <p3>

p7_ut = (r4 != 10) <p4>

p5_of, p6_uf = (r4 != 10) <p4>

p3_ut = (r2 == 0) <p2>

p4_ot, p2_uf = (r4 >= 127) <p1>
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Loop:Loop:

Figure 1. A portion of the inner loop of the UNIX utility wc. The control flow graph (a), and the corresponding
hyperblock formed after complete if-conversion (b).
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p1

Figure 2. The wc hyperblock after speculation but before logic minimization (a) and its corresponding logic
diagram (b). The hyperblock after logic minimization (c) and its corresponding logic diagram (d).



whereC0 is the condition: (32� r4) andC1 is the condition:
(r4 � 127). The expression forp2, in terms of conditions, is
p2 = C0C1. In the course of this complete back substitution,
expressions based on condition variables are formulated for all
predicate define instructions. The composition of all these expres-
sions is the program decision logic network. This network can be
modeled as a logic circuit that represents all the decisions made in
the program. The logic circuit has conditions as its input and the
predicates which control computation as its output. The multiple-
output Boolean logic circuit for thewc code segment is shown in
Figure 2(b).

Once the logic circuit has been derived, many CAD techniques
can be employed to simplify the program decision logic network.
In the IMPACT compiler, the derived Boolean function is repre-
sented with a Binary Decision Diagram (BDD) [1]. The BDD
algorithms used are described in [6]. Thepredicate BDDcontains
the relationship among predicates as defined by the network of
predicate define operations. The predicate BDD is used through-
out the compiler as a database for queries made by optimizations
when operating on predicated code. For example, one common
query is to determine if one instruction executes only when another
instruction has executed. This query is equivalent to the domi-
nance relationship in the control flow domain. Here, the BDD is
queried to determine if the predicate expression of one instruction
subsumes the predicate expression of another. Queries to the BDD
are made in IMPACT by the optimizer, the scheduler, and dataflow
analysis.

For the purposes of decision logic minimization, the BDD pro-
vides a simple method by which expressions describing the hyper-
block logic can be derived. The only expressions requested from
the BDD are those expressions describing theessential predicates.
Essential predicates are those predicates that guard real computa-
tion instructions (any instruction that is not a predicate define). In
Figure 2(a), the essential predicates arep3, p5, andp6. Predicates
p1, p2, p4, p7, andp8 arenon-essential predicatesas they are used
only as intermediates in evaluation of the essential predicates.

The BDD maintains a canonical representation of the decision
logic functions, from which a Boolean sum-of-products expres-
sion can be produced for any represented function. Note that
the expression thus generated reflects the canonical nature of the
BDD’s internal representation, and is usually not optimal for ex-
pressions with multiple product terms. Therefore, it is necessary
to optimize the derived expression before attempting to synthesize
a predicate defining structure.

The expressions describing the evaluation of the essential pred-
icates are optimized using techniques which eliminate redundant
terms in the function and which re-express the Boolean function
in a more parallel form. The resulting expression is reformulated
back into predicate define instructions in the hyperblock. Section 4
presents the details of the Boolean logic optimizers and reformu-
lators studied in this work. These optimizers and reformulators
must balance the reduction of dependence height with the num-
ber of predicate defines that can be accommodated in the code
schedule. This involves making an accurate estimate of how much
time is available for computation of control functions based on the
availability times of conditions and when predicates need to be
consumed. These and other considerations make the design of an
optimizer and a reformulator nontrivial.

Figures 2(c) and 2(d) show the reformulated hyperblock and
corresponding logic circuit after the minimization process is com-
plete. The number of logic gates in the circuit implementation is

Cycle Instructions issued

0 op1 op2 op3 op12 op16
1 op4 op6 op13 op17
2 op5 op7
3 op8
4 op9 op10 op11
5 op14 op15 op18 op19
6 op20
7 op21 op22

(a) Schedule for the hyperblock in Figure 2(a).

Cycle Instructions issued

0 op1 op2 op3 op12 op16
1 op4 op6 op9 op13 op17
2 op5 op7 op8 op10 op19 op20
3 op14 op15 op18 op21 op22

(b) Schedule for the hyperblock in Figure 2(c).

Figure 3. Comparison of the static schedules for
the wc hyperblock before and after logic minimiza-
tion.

reduced from ten to three. In addition, the six-level gate network
in Figure 2(b) is reduced to a single-level gate network in Fig-
ure 2(d). All non-essential predicates were also eliminated as part
of this process. An example optimization performed on the logic
circuit takes the form:C0 + C1C0 ! C0 + C1. An applica-
tion of this optimization occurs between instructions 7 and 8 when
computingp4.

The values of variables in the decision logic network are sup-
plied by evaluating conditions on predicate define instructions. It
is important to recognize that these variables are not necessar-
ily independent, and that knowledge of the relationships between
these variables can allow for significant further optimization of
the predicate define structure. Consider the computation ofp6 in
Figure 2(a). Instruction 10 computesp6 uf = C3 hp4i. Log-
ically, this leads to the expressionp6 = C3(C0 + C1), where
C0 = (32 � r4), C1 = (r4 � 127), andC3 = (r4 6= 10). Here,
sinceC3 impliesC0 and excludesC1, the expression forp6 can
be simplified top6 = C3. In our approach, the relationships be-
tween conditions are represented in a BDD, termed thecondition
BDD, which can be queried to determine if logical implications
exist between conditions and, if so, what they are. The current
implementation of this mechanism identifies “families” of integer
register-constant comparisons which are based on the same defini-
tion of a given register. Then, within each family, a number line
is created and divided into disjoint segments from which the set
of register values yielding a “TRUE” evaluation for any member
condition can be composed by union. Finally, the relationships be-
tween the comparisons are described in BDD form using a finite
domain technique [7]. Various elements of the optimizer query this
BDD to determine the inherent relationships between conditions,
which are the decision network’s input variables.

The overall effectiveness of the program decision logic mini-
mization process on thewc example is best shown by comparing
the schedules of the code before and after optimization. For illus-
tration purposes, a six-issue processor with no restrictions on the
combination of instructions that may simultaneously be issued is
assumed. Furthermore, all instructions are assumed to have a la-



tency of one cycle. Figure 3 presents the schedules for the exam-
ple hyperblock before and after optimization. The instructions in
bold correspond to the predicate defines in each hyperblock. The
schedule for the pre-optimization hyperblock (Figure 3(a)) is rela-
tively sparse due to the sequentiality of the predicate defines. The
overall schedule length is eight cycles. The schedule after logic
minimization is reduced by a factor of two. The chain of predi-
cate define instructions in the original hyperblock is replaced by a
parallel, more efficient computation in the optimized hyperblock.
The reformulated hyperblock requires only a single level of pred-
icate defines to compute the essential predicates as opposed to the
five-level network used in the original code, yielding a significant
increase in performance.

Once the decision component has been optimized and refor-
mulated back into the predicated representation, further compiler
transformations need to be performed. For machines without real
predication support, complete reverse if-conversion must be per-
formed [21]. For machines which support predication, partial re-
verse if-conversion can be employed to create the proper balance
of control flow and predication for the target architecture [4].

4 Minimization of Program Decision Logic

The previous section provided an overview of the process of
program control height minimization through the optimization of
the predicate define network. This section describes in detail the
mechanisms by which the predicate define optimizer generates
new predicate define instructions to evaluate more efficiently the
program’s essential predicate functions. The discussion in this
section assumes that the program’s decision logic has been rep-
resented by the predicate BDD and the condition BDD, and that
Sum-Of-Products (SOP) expressions for the essential predicates
have been extracted as described in the previous section. Once
the program decision logic has been extracted, program control is
optimized and re-expressed in four steps. First, sum-of-products
expressions are formed to represent predicate functions in terms
of program conditions. These expressions are then optimized us-
ing condition analysis and traditional Boolean logic minimization
techniques. The resulting optimized expressions are then option-
ally factorized based on condition availability times and resource
constraints. Finally, program control is re-expressed in predicate
define instructions, either in a two-level network or in a multi-
level network, depending on whether or not factorization was per-
formed.

The generation of an efficient predicate define network begins
with the extraction and subsequent optimization of the sums-of-
products for the predicate functions. Figure 4(b) shows the ex-
pressions extracted for the essential predicates in thewc example,
as well as the conditions to which the variables in the expressions
correspond. Figure 4(a) shows the original predicate define net-
work for reference. Since the control expressions are completely
represented by the predicate BDD in terms of conditions, the non-
essential predicates are eliminated from consideration. This pro-
cess maps the predicate define structure, in this case five stages
of predicate define instructions, into a sum-of-products which can
be synthesized into a two-cycle sequence of predicate define in-
structions. However, this expression can exhibit a large number of
redundant and constant-FALSE products, and must be refined be-
fore use in define regeneration. From Figure 4(b), two-level regen-
eration of the unoptimized expressions of thewc example would
require thirteen predicate defines in the first level and six in the

<p4>

p4_ot, p1_uf = (32>=r4)
p4_ot, p2_uf = (r4>=127)
p3_ut = (r2 == 0)
p5_of, p8_ut = (r4 != 32)
p5_of = (r4 != 9)

<p1>
p5_of, p6_uf = (r4 != 10)<p2>

<p7>
<p8>

p7_ut = (r4 != 10) <p4>

(a) Original predicate define structure.

C0 (32>=r4)

C1 (r4>=127)

C2 (r2==0)

C3 (r4!=10)

C4 (r4!=32)

C5 (r4!=9)

p3 C0C1C2

p6 C0C3+C0C1C3

C0C3+C0C1C3+

p5 C0C3C4+C0C1C3C4+

C0C3C4C5+C0C1C3C4C5

(b) Conditions and original predicate expressions.

p3 C0C1C2

p6 C3

p5 C3+C4+C5

(c) Optimized predicate expressions.

... p5_of, p6_uf = (r4 != 10) p5_of = (r4 != 9)

p3_af = (32 >= r4) p3_af = (r4 >= 127) p3_at = (r2 == 0) ...

p5_of = (r4 != 32)

(d) Optimized predicate define structure.

Figure 4. Example: optimization of wc predicate
network.

second, far more than the seven required in the initial network.

Optimization of predicate expressions. Predicate expres-
sions are optimized in two steps, as indicated in Figure 5 in the
description ofSimplify funcs. First, expressions are reduced using
condition BDD information. For example, conditions which imply
or exclude each other (i.e. (r1 < 4) implies(r1 < 5) andexcludes
(r1 >= 7)), can cause predicate expressions to contain redundant
or constant-FALSE products, as well as redundant literals in use-
ful products. These extraneous features are removed in this phase.
One such case from the benchmarkwcwas examined in Section 3.

Once redundant and constant-FALSE products and literals
have been removed from the predicate expressions, the iterative-
consensus method is applied to produce a complete sum, and
then to select a subset of prime implicants for a simplified two-
level logic implementation [20]. Pseudo-code for this algorithm is
shown in Figure 5 (MinimizeSOP). The heart of this iterative algo-
rithm is the consensus-taking routine, which applies the Boolean
theoremx + xy ! x + y. After each pass through the product
list, products subsumed (covered) by other products are removed.
The iterative-consensus algorithm generates a complete sum for
the input expression. Non-essential products can then be removed
to generate a minimal covering sum.

In this application, the Boolean predicate expressions can be
composed of a large number of variables and products (more than
thirty in some instances), rendering a direct implementation of the
iterative-consensus algorithm, which is exponential, intolerably
slow. For this reason, when operating on large functions we ap-
ply an heuristic approximation to the iterative-consensus method.
This heuristic decreases dramatically the number of intermediate
products, and therefore renders the compile time reasonable. Fur-
thermore, using this heuristic, the selection of the minimal sum-
of-products expression (covering subset), also ordinarily an ex-
pensive procedure, is reduced to a linear form.

The cost of this heuristic is that the result could be suboptimal,



Simplify funcs(func list)
1 simplified func list = Empty list();
2 FOREACHfunc IN func list DO
3 reduced func = Reduceusing condition BDD(func);
4 simplified func = Minimize SOP(reduced func);
5 List append(simplified func list, simplified func);
6 RETURNsimplified func list;

Minimize SOP(func)
1 product list = func:product list;
2 new product list = product list;
3 WHILE NOT List empty(new product list) DO
4 new insertion list = Empty list();
5 FOREACHproduct x IN new product list DO
6 FOREACHproduct y IN product list DO
7 consensus = Consensus(product x, product y);
8 IF consensus THEN
9 List insert last(new insertion list, consensus);
10 product list = List append(product list, new insertion list);
11 new product list = new insertion list;
12 product list = Eliminate subsumedproducts(product list);
13 product list = Selectcoveringsubset(product list);
14 RETURNproduct list;

Factorize(func list; sched)
1 factor list = Empty list();
2 FOREACHfunc x IN func list DO
3 FOREACHfunc y IN func list BEFOREfunc x DO
4 IF Factorsimplifies(func y, func x) THEN
5 IF Resourceconstrained(func x:id) THEN
6 IF NOT (List member(func y, factor list) THEN
7 List insert last(factor list, func y);
8 func x = FactorSOP(func x, func y);
9 FORcycle = sched:min cycle TO sched:max cycle DO
10 FOREACHfunc IN func list DO
11 FOREACHproduct IN func DO
12 ready prod = Readyproduct(product, cycle);
13 match prod = Match term(ready prod, factor list);
14 IFmatch prod THEN
15 ready factor = match prod;
16 ELSE
17 ready factor = ready prod;
18 ready factor:id = Uniquetoken();
19 List insert(factor list, ready factor);
20 Factorterm(product, ready factor);
21 List insert last(factor list, func list);
22 Factorcommondisjoint subexpr(factor list, func list);
23 RETURNfunc list, factor list;

Factor common disjoint subexpr(factor list, func list)
1 FOREACHfunc IN func list DO
2 product factor list = Extract readyproducts (func);
3 fact func = Find factor(product factor list, func);
4 IF fact func THEN
5 match fact = Match factor(fact func, factor list);
6 IF NOT (match fact) THEN
7 fact func:id = Uniquetoken();
8 List insert(factor list, fact func);
9 match fact = fact func;
10 Factorterm(func, match fact);

Figure 5. Pseudo-code for performing optimization
of predicate expressions

which could cause the generation of expressions with more pred-
icate define instructions than necessary. Depending on the order
in which the comparisons are made, the heuristic may eliminate
some products that are necessary to generate other simpler prod-
ucts. To minimize this problem the heuristic includes a manipula-
tion which sorts the products in order to reduce the likelihood of a
non-optimal solution.

Figure 4(c) shows the expressions to which the essential pred-
icates of thewc example are reduced in the logic optimization
phase. These expressions are both less complex and more parallel
than the original functions.

Two-level predicate synthesis.Following optimization of the
predicate expressions, the control logic can be synthesized most
intuitively as a two-level predicate define network which directly
evaluates the minimized sum-of-products expression. In this ap-
proach, two levels of predicate define instructions are used for each
predicate. The first level consists of and-type predicate defines of
the formpi at = CihT i, where one predicatepi is defined for
each product term in the predicate expression, andT is the TRUE
predicate, which always has the value 1. The second level consists
of or-type predicate defines of the formpj ot = (condT )hpii,
where there is one such predicate define for each product (pi) and
condT is an invariant TRUE condition (e.g. (0 == 0)). Thus, a
predicate expression havingL literals andM products consumes
M + 1 predicates and performsL + M predicate assignments.
Continuing thewc example in Figure 4(d), note that the two spe-
cial cases of two-level predicate synthesis occur, in which the com-
putation of functions containing a single product and functions
that are disjunctions of single-literal products can be performed
in a single cycle. Note also that predicates which have products
in common can share intermediate predicates, allowing for some
savings through reuse. In most cases, however, two-level synthe-
sis generates an enormous number of predicate define instructions,
since redundancy between products is not reduced. Furthermore,
since the evaluation of such a predicate define network usually
takes at least two cycles after the last condition becomes available
(one for the and-level and one for the or-level), the result may also
be suboptimal in latency, even when scheduled for infinite issue.
Results demonstrating both these phenomena are presented in Sec-
tion 6. Clearly, a more sophisticated technique is required.

Factorization. In the example of the previous section, the code
sample fromwc exhibited a large ratio of control height to com-
putation height, and the computation was nearly completely de-
pendent on the outcome of the decision mechanisms. Thus, it was
important to compress the height of the entire decision structure
as much as possible, as any reduction in the decision height im-
proved performance. Furthermore, since the predicate conditions
were strongly related, the resulting predicate define structure ac-
tually reduced the predicate and predicate define count. In many
other situations, however, predicates are based on more indepen-
dent conditions and the number of predicate define instructions
required to generate a two-level network may be quite large. Fac-
torization seeks to use the code’s computation or datapath height
to hide some portions of the decision latency which are not on the
critical path. Thus, the optimizer is free to focus on reducing im-
plementation size rather than delay when implementing these non-
critical sections, saving valuable predicate registers and instruction
issue resources.

The factored generation method determines how much factor-
ing can be performed at no cost. The availability times of con-
ditions and the time at which predicate values are needed by the



computation component drive the factorizer. If parallel computa-
tion height, rather than predicate define height, is the critical path
through the code segment, then it is beneficial to perform factor-
ization instead of full expression flattening.

To measure the availability times of conditions and the time at
which predicate values are needed, a special version of the code is
scheduled. This version of the code has all the predicate depen-
dences between predicate defines removed. For each condition, a
predicate destination is added for each predicate whose function
depends on that condition. In the resultant code, predicate define
instructions are placed as early in the schedule as their condition
availability will allow. Also, all uses of a predicate are placed as
early as possible, but after all the conditions which may be needed
to compute it. By extracting the issue time of these predicate de-
fines and predicate uses, the amount of time the new predicate
network has to compute predicates without performance penalty
is ascertained. This information is then used together with the
previously extracted predicate expressions in later stages of opti-
mization.

With factorization, the goal is to form intermediate predicates
as the conditions to compute them become available, and then
to reuse these intermediate predicates in the computation of the
essential predicates. This activity factors the optimized sum-of-
products expression or its products so that the resulting define
structure may take more cycles, but can reuse more intermediate
predicates, thus saving predicate defines and predicate registers.

In certain cases, when resource utilization is very high and
predicate functions are very complex, factorization becomes crit-
ical for performance. In some cases, generation of code which
would optimally generate the predicate results on an infinitely
wide machine could actually degrade performance in a real ma-
chine due to excessive width. In these situations, an additional fac-
torization preprocessing stage is applied, in which predicates are
selectively factored on subexpressions available in essential predi-
cates generated earlier in the original code. This activity, shown in
lines 2 though 8 ofFactorizein Figure 5, has the effect of moder-
ating the restructuring of control in cases where reordering of the
predicate expressions would generate a define network too wide
for the target architecture.

Figure 6 shows an example extracted from the functioncofac-
tor of the008.espressobenchmark. The minimal sum-of-products
is computed for each of the final predicates, as shown in Fig-
ure 6(a). Next, with the help of condition availability and predicate
use times from Figure 6(a) and 6(b), all useful predicates are fac-
torized, and common expressions are shared. Figure 6(c) shows
the result of this method. This factoring results in the reduction
of the number of predicate define instructions from 37 to 13. Fur-
thermore, the useful predicates (p1 andp2) are available a single
cycle after the last condition is evaluated, sooner than would be
possible using a two-level synthesis of the predicate expressions,
two cycles after the last condition evaluation.

In the direct sum-of-products conversion, the computation of
p1 andp2 begin respectively at cycle 5 and cycle 6, at the avail-
ability time of their latest conditions; results are available two cy-
cles later. With the factorization method, however, predicatesp1
andp2 can be evaluated in a single cycle after the availability of
C5 andC6. Thus, in some cases, the factorization method is able
to reduce predicate latency by one cycle compared to the result of
the direct sum-of-products conversion.

Pred Expression Use Cycle

p1 C0C2C4C5+ 6

C0C2C3C5+

C0C1C5

p2 C0C2C4C5C6+ 7

C0C2C3C5C6+

C0C1C5C6

(a) Optimized predicate expressions.

C0 C1 C2 C3 C4 C5 C6

1 1 2 3 4 5 6
(b) Condition availability.

Time Predicate expression

1 p3 ut = C0

p4 at = C0

p4 at = C1

2 p5 ut = C2

p6 ut = C2 hp3i

3 p7 ut = C3 hp6i

4 p8 ut = C4 hp6i

5 p1 of = C5 hp7i

p1 of = C5 hp8i

p1 of = C5 hp4i

6 p2 ut = C6 hp1i

(c) Factoring with schedule time information.

Figure 6. Factorized predicate define optimization.

5 Architecture Support for Synthesis

Description of the predicate optimization in previous sections
has disregarded the means by which Boolean expressions are con-
verted back into predicate defining instructions. This section ex-
amines the instruction set considerations that evolved in support-
ing an effective predicate synthesis system.

Implementation of two-level predicate synthesis is straightfor-
ward in the HPL Playdoh predicate architecture. For example, in
Figures 2 and 4(c), a simple sum-of-product expression is con-
verted into a small set of predicate defines.

Synthesis of multi-level factored functions is not as simple as
product-of-sums or sum-of-products expressions, but yields sig-
nificant improvements in both performance and predicate define
count. When an expression is factored out of one or more pred-
icate expressions, its value is computed and stored in a predicate
for later use. After factoring, expressions to be synthesized thus
contain predicates as well as conditions. To illustrate the use of
factoring, the example in Figure 7 is presented. In Figure 7(a),
predicatep1 is a subexpression ofp2. FactoringC1 + C2, or p1,
out ofp2 allows more sharing of predicate defines between predi-
cate computations. As can be seen in Figure 7(b), this subexpres-
sion can be computed in cycle 1 using or-type predicate defines.
The availability of this expression before the computation ofp2
allow an efficient application of factorization. In cycle 3, the con-
junction of the subexpression stored inp1 with the previous value
of p2 andC3 is required. This expression is awkward to compute
using the PlayDoh predicate define semantics because the logical



Pred Expression Use Cycle

p1 C1 +C2 3
p2 C0C1C3 + C0C2C3 4

(a) Optimized predicate expressions.

C0 C1 C2 C3

1 2 2 3
(b) Condition availability.

Time Predicate expression

1 p2 ^t = C0

2 p1 ot = C1

p1 ot = C2

3 p2 ^t = C3 hp1i

(c) Factorization with conjunctive-type predicate defines.

Time Predicate expression

1 p3 at = C0

p4 at = C0

2 p1 ot = C1

p1 ot = C2

p3 at = C1

p4 at = C2

3 p3 at = C3

p4 at = C3

4 p2 ot = TRUE hp3i

p2 ot = TRUE hp4i

(d) No factorization

Time Predicate expression

1 p2 at = C0

2 p1 ot = C1

p1 ot = C2

p3 af = C1

p3 af = C2

3 p2 at = C3

p2 af = TRUE hp3i

(e) Factorization without conjunctive-type predicate defines.

Figure 7. Various methods of predicate expresssion regeneration.

combination of predicates is not directly supported. With the ex-
tension to the PlayDoh predicate define semantics, this expression
can be computed with a single conjunctive-type predicate define.
Figure 7(c) shows the final set of predicate defines used to com-
pute the factored predicate expressions. The two expressions are
computed using a total of two predicates and four predicate de-
fines. The last predicate define conjoinsp1 andC3 to the previous
contents ofp2 (C0) to finish the computation of thep2 expression.

Benefit of Architectural Extension. The primary use of the
conjunctive-type predicate defines is to reduce the number of in-
structions required to compute factored expressions. This reduc-
tion is best illustrated when the generation of the predicate expres-
sions is done without the conjunctive type. Figures 7(d) and 7(e)
show two generation options that do not use the conjunctive type.
In Figure 7(d), no factorization is performed and the direct sum-
of-products expressions are computed. This approach requires a
total of ten predicate defines, six more instructions than was re-
quired in Figure 7(c). Further, the two-level nature of the sum-of-
products generation adds an extra level of dependence height. In
Figure 7(e), factorization is performed, but the conjunctive-type is
not used. Here, a total of seven predicate defines, three extra in-
strutions, is necessary. Of these, two predicate defines are needed
to compute the complement of the factored expression. This is
done by applying DeMorgan’s theorem. Another method of com-
plementingp1 could have been used, but it would have cost a cy-
cle of latency. The third extra predicate define is used to nullify
p2 if the complement of the factored predicate is TRUE. Note that
the disjunctive-type predicate defines are analogously useful when
product-of-sum expressions are used.

6 Experimental Results

The effectiveness of the Boolean minimization techniques for
generating predicated code are evaluated in this section. These

techniques have been implemented within the IMPACT experi-
mental compiler framework and applied to a set of benchmarks.

Processor Model and Benchmarks.The processor modeled
is an 8-issue processor with in-order execution and register in-
terlocking. The processor has no limitation on the combination
of instructions that may be issued each cycle, except that only
one branch may be executed per cycle. The instruction laten-
cies assumed match those of the HP PA-7100 microprocessor.
The instruction set contains a set of non-trapping versions of all
potentially excepting instructions, with the exception of branch
and store instructions, to support aggressive speculative execution.
The instruction set also contains support for predicated execution
as described in Section 2.

The execution time for each benchmark was obtained using the
IMPACT emulation-driven simulator. Some dynamic effects such
as branch mispredictions, cache misses, and TLB misses were not
measured. This decision was made to ensure that the experimen-
tal results highlight the effects of the techniques being evaluated.
Since the reformulation of the predicate decision logic does not
affect the basic nature of memory access patterns and branch his-
tories, any change in these dynamic effects between the original
and optimized codes would be spurious in nature.

The benchmarks used in this experiment consist of 13 non-
numeric programs: four of the SPECINT 92 benchmarks,
008.espresso, 022.li, 026.compress, 072.sc; six of the SPECINT
95 benchmarks,099.go, 124.m88ksim, 126.gcc, 129.compress,
130.li, 132.ijpeg; and three UNIX utilities,cccp, lex, wc.

Results. The first set of results presented compare the perfor-
mance of a code set transformed with the described techniques to
the performance of a baseline code set. The baseline code consists
of the best code generated by the IMPACT compiler for a predi-
cated architecture using hyperblock compilation techniques. The
transformed code corresponds to the baseline hyperblock code af-
ter Boolean minimization techniques are used to restructure the
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Figure 8. Speedup from minimization of program
decision logic.

predicate defines, and after the code is rescheduled. Performance
is derived by computing the ratio of the execution cycle count for
the baseline code to that of the transformed code. The performance
is examined at two levels, first at the overall benchmark level and
then at the benchmark function level.

The overall benchmark speedups are presented in Figure 8. For
each benchmark, two results are reported. The first is the bench-
mark speedup on the target architecture. The unweighted average
speedup for all the benchmarks is 1.13. For some benchmarks,
such as022.li, 026.compress, 129.compress, andwc, the program
decision height was significantly limiting performance throughout
the most frequently executed portions of the code; when this height
is reduced by our techniques, speedups of around 1.2 are achieved.

The second result presented for each benchmark, labeled “8-
issue, 256-preds,” is the speedup on a hypothetical machine ca-
pable of issuing eight non-predicate-define instructions and up to
256 predicate defines per cycle. The significance of the second
set of numbers is that they reflect only the dependence height of
predicate defines, while eliminating their resource consumption
characteristics. These results suggest a logical upper bound for
gains possible with more effective factorization techniques. In
most benchmarks, the optimizer produced a number of predicate
defines that was appropriate for the schedule and machine model.
However, in four benchmarks,008.espresso, cccp, 126.gcc, and
lex, the optimizer was unable to balance height reduction with
resource consumption and performance was penalized. This ef-
fect was very dramatic in008.espressobecause it is very decision
height limited. Unfortunately, the excessive optimization oppor-
tunity available in008.espressoallowed the current minimization
heuristic to be overly aggressive in reducing height. With more ad-
vanced factorization techniques, the number of predicate defines
could be reduced in these instances, more closely approximating
the “8-issue, 256-preds” results.

Overall, the full benchmark results are encouraging. In most
cases, the benefit of our technique was limited solely by the bot-
tleneck created by program computation height. During our exper-
imental exploration, we observed that as optimizations which tar-
get computation height were improved, the decision logic became
dominant and relative speedups improved. In particular, data and
memory dependences seemed to hide much of the program de-
cision height reduction in many important hyperblocks. As the
various components of compiler technology mature, the overall

effectiveness of Boolean minimization will improve.
To better understand the effect program decision logic mini-

mization has on complete programs, we measured the performance
and code size characteristics of a number of selected functions.
Table 2 examines the performance of one or more functions from
each of the benchmarks. These functions were chosen based on
two criteria: significant program execution time and potential for
optimization (e.g., the control height was significant relative to the
computation height). The table compares the effectiveness of two
strategies for program logic transformation: two-level predicate
synthesis and factorization. For each strategy, the static number of
predicate define instructions, the performance gain on an 8-issue
processor with unconstrained predicate define resources (1), and
the performance gain on the 8-issue processor are reported. In
addition, the static number of predicate define instructions in the
code before minimization is reported.

From the table, the two-level synthesis approach shows mixed
results. For the unconstrained machine, the reduction in height
translates directly into large speedups. However, the uncon-
strained performance does not always translate into the same per-
formance gain on the 8-issue processor. This is most pronounced
in 008.espresso, essenpartswhere the 1.16 speedup is sharply re-
duced to 0.39. The primary reason for this behavior is the large
increases in the number of predicate define instructions. The pred-
icate defines that are created oversaturate the processor resources
and result in loss of performance. Correspondingly, when the
number of predicate defines is not increased by a large amount,
the unconstrained performance does indeed translate directly into
performance on the 8-issue processor. Clearly, factored synthesis
is necessary for successful optimization of program decision logic.

As shown in the table, the factored approach yields both larger
and more consistent speedups. Both methods reduce the predi-
cate computation height, but the factored approach dramatically
reduces the number of predicate defines required for the optimiza-
tion. The function126.gcc, canonhashprovides a good example
of this behavior. Both methods achieve good speedup for the un-
constrained processor. However, the two-level synthesis approach
requires 149 predicate defines to accomplish the improvement. For
the 8-issue processor, most of the performance gain is lost due to
this increase in instructions. The factored approach reduces the
number of predicate defines to 116, increasing the 8-issue speedup
to 1.74. The number of predicate defines is still more than the orig-
inal 89. Note, however, that simply increasing the number of pred-
icate defines from the original code is not necessarily viewed as a
negative. Boolean minimization approaches do this systematically
to improve performance by identifying condition subexpressions
that can be computed early. This allows the final predicate to be
made available as soon as possible after the final condition is ready.
However, the factored approach is consistently more effective be-
cause it factors predicate expressions into multiple-level structures
which are less demanding of processor resources than two-cycle
evaluations. Another interesting result is that for some functions
such asupdatefrom 072.scthe factored synthesis method outper-
forms the two-level method, even at infinite issue. This is a due
to the ability of the factorizer to generate expressions in one cy-
cle rather than the two usually required by the two-level synthe-
sis approach. The final experiment examines the effectiveness of
the new predicate types (conjunctive and disjunctive, described in
Section 2) in the context of Boolean minimization and justifies the
need for the proposed architectural extensions. Table 3 presents
the effects of the new predicate define types on the speedup for



Original Two-Level Synthesis Factored Synthesis
Benchmark, Function Pred. Defines Pred. Defines Speedup(1) Speedup(8) Pred. Defines Speedup(1) Speedup(8)

008.espresso, essenparts 39 1293 1.29 0.39 49 1.24 1.16
022.li, xleval 48 485 1.07 0.66 80 1.10 1.10
022.li, mark 42 67 1.48 1.48 53 1.50 1.48
026.compress, compress 60 456 1.20 1.03 221 1.23 1.23
072.sc, update 141 240 1.15 1.15 159 1.23 1.23
099.go, getefflibs 98 1083 1.06 0.98 204 1.07 1.07
124.m88ksim, execute 41 47 1.12 1.12 40 1.12 1.12
124.m88ksim, goexec 176 175 1.10 1.09 155 1.09 1.08
124.m88ksim, load data 42 54 1.30 1.30 53 1.30 1.30
124.m88ksim, loadmem 84 88 1.13 1.13 84 1.13 1.13
126.gcc, invalidate 89 202 1.27 1.24 125 1.22 1.21
126.gcc, flow analysis 64 92 1.77 1.69 58 1.86 1.86
126.gcc, canonhash 89 149 1.88 1.20 116 1.90 1.74
129.compress, compress 63 154 1.21 1.21 98 1.26 1.26
130.li, mark 55 148 1.15 1.14 101 1.19 1.19
132.ijpeg, forward DCT 31 47 1.46 1.35 32 1.46 1.43
cccp, skip if group 157 208 1.23 1.05 190 1.32 1.24
lex, cgoto 236 330 1.31 1.10 260 1.18 1.14
wc, main 56 48 1.22 1.31 48 1.22 1.22

Table 2. Speedup and predicate define count for selected functions.

an 8-issue processor, the dynamic predicate define count, and the
static predicate define count. The conjunctive and disjunctive
types allow certain important logical combinations of predicates
and conditions to be expressed more efficiently. For all functions
except022.li, markand130.li, mark, the performance gained from
the program decision logic optimization is diminished when the
proposed predicate define types are not available. Further, in six
of the nineteen functions, the performance improvement is con-
verted into a performance loss. The most dramatic example of this
is 126.gcc, flowanalysis, in which a 46% performance improve-
ment becomes an 8% performance degradation. The lack of the
new predicate define types in the target architecture also causes
a code size penalty. In general, the additional predicate types al-
low significant reductions in both the static and dynamic predicate
define counts. In one case, 74% more predicate defines are re-
quired if the new types are not available. Six functions do not
exhibit this penalty. In these functions, the majority of the pred-
icate expressions are sums of single term “products” making the
conjunctive-type unnecessary for instantiating these functions.

7 Conclusion

In this paper, we have presented a new method for optimizing
programmatic control flow. Our approach provides a systematic
methodology for reformulating program control flow for more ef-
ficient execution on ILP processors. Control expressed through
branches and predicate defines is extracted and represented as
a program decision logic network. Boolean minimization tech-
niques are applied to the network both to reduce dependence
height and to simplify the component expressions. Redundancy
is controlled by employing a schedule-sensitive factorization tech-
nique to identify intermediate logical combinations of conditions
that can be shared. After optimization, the network is reformulated
into predicated code.

We have also presented extensions to the HPL PlayDoh
model of predication that allow more efficient computation of
the predicate expressions produced by our minimization tech-
niques, namely theconjunctiveanddisjunctivepredicate assign-

Pred. Def. Count
Speedup (8) Penalty w/ô t/^f

Benchmark, Function with without dynamic static

008.espresso, essenparts 1.16 0.96 17.2% 17.8%
022.li, xleval 1.10 1.08 35.4% 35.0%
022.li, mark 1.48 1.48 11.5% 11.3%
026.compress, compress 1.23 1.13 59.8% 60.2%
072.sc, update 1.23 0.98 4.3% 5.0%
099.go, getefflibs 1.07 1.06 17.1% 21.1%
124.m88ksim, execute 1.12 0.89 16.9% 10.0%
124.m88ksim, goexec 1.08 0.90 6.3% 6.5%
124.m88ksim, load data 1.30 1.07 15.3% 11.3%
124.m88ksim, loadmem 1.13 1.02 74.1% 14.3%
126.gcc, invalidate 1.14 0.77 30.3% 22.4%
126.gcc, flow analysis 1.86 0.93 0.1% 0.0%
126.gcc, canonhash 1.74 1.60 11.4% 10.5%
129.compress, compress 1.26 1.10 53.4% 35.7%
130.li, mark 1.19 1.19 18.2% 17.8%
132.ijpeg, forward DCT 1.43 1.33 0.0% 0.0%
cccp, skip if group 1.24 1.20 16.8% 14.2%
lex, cgoto 1.14 1.07 4.7% 10.8%
wc, main 1.22 1.16 4.2% 4.2%

Table 3. Effects of conjunctive-type predicate de-
fines on speedup and instruction count.

ment types. Experimental results show that in blocks of predicated
code with significant control height, the application of logic min-
imization techniques together with these architectural enhance-
ments provides substantial performance benefit. Across the bench-
marks studied, program decision logic minimization provided an
average overall speedup of 1.13 for an 8-issue processor. The new
predicate assignment types were also shown to significantly reduce
the number of predicate define instructions required. As compiler
technology progresses to make more extensive and effective use of
predicated code, minimization of program decision logic is likely
to become an increasingly more important part of total program
optimization.
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