Operação de separação de partículas sólidas suspensas com densidade superior à do líquido circundante.

>Aplicação

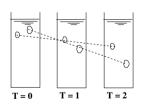
- ✓ Tratamento preliminar : remoção da areia
- ✓ Tratamento primário: decantação primária
- ✓ Tratamento secundário: decantação secundária
- ✓ Tratamento terciário: sedimentação após precipitação química
- √ Tratamento do lodo: adensamento

>Objetivos

- ✓ Produzir um efluente clarificado
- √ Adensamento do lodo

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO


SEDIMENTAÇÃO DISCRETA

Velocidade de sedimentação

Força de atrito

Força gravitacional

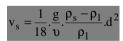
- ✓ Sem aglomeração das partículas
- Manutenção das propriedades físicas (forma, tamanho, densidade
- √ Velocidade de sedimentação constante

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

>Formas de sedimentação

Tipo de sedimentação	Descrição	Aplicação/ Ocorrência			
Discreta	Partículas sedimentam-se como entidades individuais e não ocorre interação significativa com partículas vizinhas (baixa conc. Sólidos)	Remoção de areia			
Floculenta	Partículas aglomeram-se durante a sedimentação, aumentando o tamanho e sedimentam-se com velocidades superiores. (suspensões diluídas)	- Dec. primários - Dec. secundários (superior) - Tanques sedimentação (precipitação)			
Zonal	Partículas tendem a permanecer em uma posição fixas com relação as partículas vizinhas e sedimentam-se com uma massa única de partículas (suspensões concentradas)	- Dec. Secundários			
Compressão	A concentração de partículas é tão elevada que ocorre a formação de uma estrutura e sedimentação ocorre apenas pela compressão desta estrutura, devido ao peso das partículas				


✓Ocorrência simultânea dos vários tipos de sedimentação

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO DISCRETA

>Lei de Newton e Stokes

Vs: velocidade de sedimentação da partícula (m/s)

g: aceleração da gravidade (m/s²)

υ: viscosidade cinemática da água (m²/s)

 ρ_s : densidade da partícula (kg/m³) ρ_i : densidade do líquido (kg/m³)

d: diâmetro da partícula (m)

>Exemplo: Calcular a velocidade de sedimentação de partículas de areia, considerando:

-Diâmetro da partícula: 0,90 mm e 0,45 mm

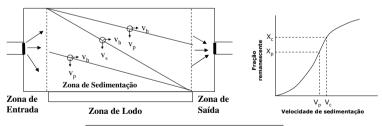
-Densidade da partícula: 2650 kg/m³

-Densidade do líquido: 1000 kg/m³

-Viscosidade cinemática (25° C): 0,90x10-6 m2/s

SEDIMENTAÇÃO DISCRETA

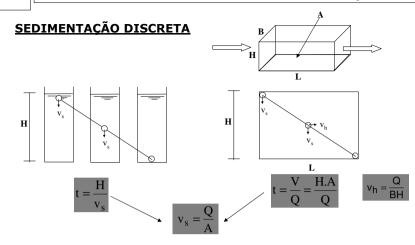
>Tanque de sedimentação ideal


- ✓ Zona de entrada: partículas uniformemente distribuídas
- ✓ Zona de lodo: partículas removidas
- ✓ Zona de saída: partículas não removidas

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO DISCRETA



Fração removida =
$$(1 - X_C) + \int_0^{X_C} \frac{V_p}{V_C} dx$$

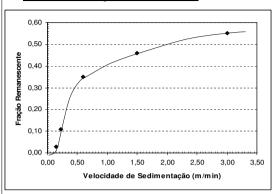
Fração removida =
$$(1 - X_c) + \frac{1}{V_c} \sum V_p.dx$$

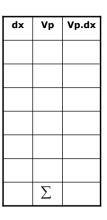
Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

- vs: taxa de aplicação superficial (m/h ou m³/m².h)
- Remoção da partícula f(A)
- Vs: parâmetro de projeto, obtido experimentalmente, valores de literatura.

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

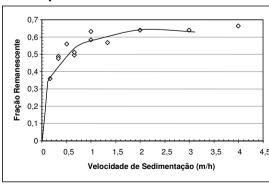

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO


SEDIMENTAÇÃO DISCRETA

>**Exemplo:** Considere os dados abaixo da distribuição de partículas de areia obtidas através de ensaios de peneiramento. Para cada fração foi calculada a velocidade média de sedimentação. Calcular a remoção total de partículas, considerando uma taxa de aplicação superficial de 2,8 m³/m².min.

Velocidade sedimentação (m/min)	Fração de sólidos remanescente
3,00	0,55
1,50	0,46
0,60	0,35
0,23	0,11
0,15	0,03

SEDIMENTAÇÃO DISCRETA


Fração removida =
$$(1 - X_C) + \frac{1}{V_C} \sum V_p.dx$$

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO DISCRETA

>Exemplo

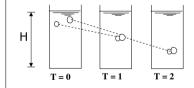
dx	Vp	Vp.dx
	Σ	

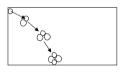
$$Fração removida = (1-X_C) + \frac{1}{V_C} \sum V_p.dx$$

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO DISCRETA

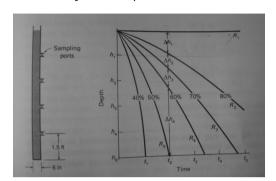

≻Exemplo: Os resultados de um teste de sedimentação efetuado numa suspensão conduziram os valores abaixo. Calcular a remoção total de partículas, considerando uma taxa de aplicação superficial de 1,0 m³/m².h.


#	Profundidade da coleta (m)	Tempo de amostragem (h)	SS na amostra (mg/L)	Velocidade sedimentação (m/h)	Fração de sólidos remanescente
1	0,0	0,0		-	=
2	0,0	0,0	222	-	-
3	0,0	0,0		-	=
4	1,0	1,0	140		
5	1,0	3,0	108		
6	1,0	6,0	80		
7	2,0	1,0	142		
8	2,0	3,0	110		
9	2,0	6,0	106		
10	3,0	1,0	142		
11	3,0	3,0	130		
12	3,0	6,0	124		
13	4,0	1,0	147		
14	4,0	3,0	126		
15	4,0	6,0	114		

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO FLOCULENTA



- ✓ Ocorrência floculação ou coalescência
- ✓ Aumento do tamanho da partícula
- ✓ Aumento da velocidade de sedimentação
- - √ Taxa de aplicação superficial
 - ✓ Altura do tanque
 - √ Gradiente de velocidades do sistema
 - ✓ Faixa de tamanhos de partículas

Testes de sedimentação

SEDIMENTAÇÃO FLOCULENTA

- >Cálculo da remoção total
 - ✓ Teste de sedimentação
 - ✓ Remoção de alíquotas a vários intervalos de tempo

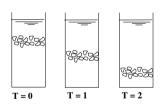
$$Remoção = \frac{\Delta h_1}{h_5}.\frac{R_1 + R_2}{2} + \frac{\Delta h_2}{h_5}.\frac{R_2 + R_3}{2} + \frac{\Delta h_3}{h_5}.\frac{R_3 + R_4}{2} + \frac{\Delta h_4}{h_5}.\frac{R_4 + R_5}{2}$$

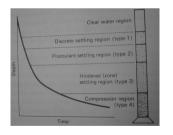
Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO FLOCULENTA

Exemplo: assumindo-se os valores do teste de sedimentação abaixo, calcular a percentagem de remoção esperada para as seguintes condições:


- tanque de 2,0 m de profundidade, com tempo de detenção de 1,5 h
- tanque de 2,0 m de profundidade, com tempo de detenção de 3,0 h
- tanque de 1,0 m de profundidade, com tempo de detenção de 3,0 h
- tanque de 2,5 m de profundidade, com tempo de detenção de 3,75 h


Profundidade	Tempo de amostragem							
(m)	0,5	1	1,5	2	2,5	3	3,5	4
1	26	44	49	55	63	66	71	77
2	20	34	44	51	56	60	62	64
3	19	27	37	45	51	57	60	68

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO ZONAL

- ✓ Alta concentração de sólidos (formação manto)
- ✓ Partículas tendem a uma posição fixa
- ✓ Formação de uma interface (fase líquida sólida)
- √ Movimento descendente da interface

>Características de sedimentação da suspensão

- √ Grande variabilidade
- ✓ Testes de sedimentação

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO ZONAL

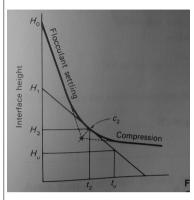
>Dimensionamento baseado testes em bateladas

A taxa de aplicação superficial deve ser considerando:

- ✓ Área necessária para clarificação
- √ Área necessária para o espessamento do lodo (maior)
- √ Taxa de remoção do lodo
- >Área para o espessamento do lodo (Método Talmadge e FItch

A: área para espessamento (m²)

Q: vazão de entrada no tanque (m3/s)


Ha: altura inicial da interface na coluna (m)

t_u: tempo necessário para alcançar determinada concentração (s)

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

SEDIMENTAÇÃO ZONAL

»Área espessamento do lodo (A_e) (Método Talmadge e FItch)

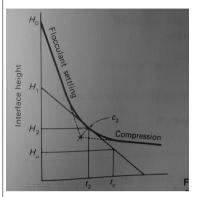
$$A_e = \frac{Qt_u}{H_0}$$

•Determinação de t

$$H_u = \frac{C_0 H_0}{C_u}$$

- Traçar tangente a ${\rm C_2}$

C2: determinado pela extensão da bissetriz do ponto de interseção das tangentes curva na região de sedimentação e compressão.


- Traçar horizontal de H_u até tangente a C_2 e ler t_u no eixo x

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

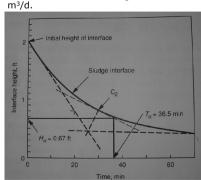
ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO ZONAL

⊳Área para clarificação (A_c)(Método Talmadge e FItch)

- •V: velocidade de sedimentação da interface (inclinação da tangente da porção inicial da curva de sedimentação)
- $\bullet Q_c\colon$ Taxa de clarificação (proporcional ao volume do líquido acima da zona crítica de lodo)

$$\mathsf{Q}_{c} = \frac{\mathsf{Q}.(\mathsf{H}_{0} - \mathsf{H}_{u})}{\mathsf{H}_{0}}$$

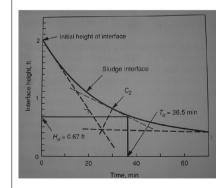

- Traçar horizontal de H_u até tangente a C_2 e ler t_u no eixo x

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO ZONAL

 \succ Exemplo: A curva de sedimentação abaixo foi obtida para um lodo ativado com concentração inicial de sólidos C_0 de 4000 mg/L. A altura inicial da interface H_0 na coluna de sedimentação foi de 2,0 ft. Determine a área requerida para alcançar uma concentração de sólidos C_u de 12000 mg/L, considerando uma vazão de entrada de 400 m³/d.


Área de espessamento

$$H_u = \frac{C_0.H_0}{C_u}$$

$$A_e = \frac{Q.t_u}{H_0}$$

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO ZONAL

Área de clarificação

- Velocidade de sedimentação da interface (inclinação tangente região sedimentação)

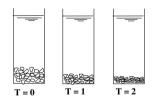
$$V = \frac{2,0-0,8}{20} = 0,06 \text{ ft/min} = 1,10 \text{ m/h}$$

Taxa de clarificação

$$Q_{C} = Q(\frac{H_{0} - H_{u}}{H_{0}})$$

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

SEDIMENTAÇÃO ZONAL


 \succ Exemplo: O teste de sedimentação de um lodo com concentração inicial de sólidos de 2900 mg/L apresentou os resultados apresentados na tabela a seguir. A altura inicial da interface H_0 na coluna de sedimentação foi de 0,40 m. Determine a área requerida para alcançar uma concentração de sólidos C_u de 10000 mg/L, considerando uma vazão de entrada de 500 m³/d.

Tempo (min)	Altura (m)
3	0,4
3	0,39
6	0,35
9	0,3
12	0,26
15	0,23
18	0,19
21	0,16
24	0,13
27	0,12
30	0,1
45	0,09
60	0,07
90	0,06

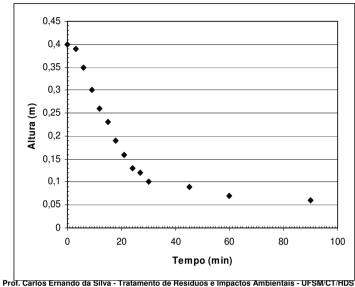
Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

SEDIMENTAÇÃO POR COMPRESSÃO

- ✓ Altíssima concentração de sólidos
- ✓ Sedimentação por compressão da estrutura da partícula
- ✓ Compressão devido ao peso das partículas

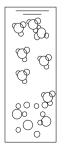
✓ Volume requerido pode ser determinado por teste de sedimentação


$$H_t - H_{\infty} = (H_2 - H_{\infty})e^{-i(t-t_2)}$$

H₊: altura do lodo no tempo t H∞: altura do lodo após longo período (24 horas) H₂: altura do lodo no tempo t₂ i: constante para uma dada suspensão

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO


SEDIMENTAÇÃO ZONAL

ASPECTOS TEÓRICOS DA FLOTAÇÃO

FLOTAÇÃO

Operação unitária usada para separar partículas sólidas ou líquidas de uma fase líquida. A separação é obtida pela introdução de bolhas de gás (ar) na fase líquida. As bolhas aderem à superfície da partícula e a força de empuxo da espécie partícula-bolha é grande o bastante para promover a subida da partícula para a superfície.

- ✓ Superfície da partícula importante flotação
- ✓ Modificação das características superfície
 - √ Criar superfície ou estrutura com maior afinidade com as bolhas de ar
- ✓ Aditivos inorgânicos: sais alumínio e ferro, sílica ativada - flocos
- ✓ Polímeros Orgânicos: mudar a natureza da interface ar-líquido

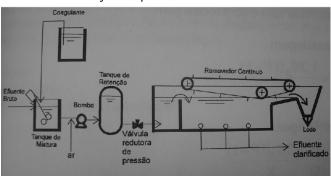
ASPECTOS TEÓRICOS DA FLOTAÇÃO

>Vantagens frente a sedimentação

- √ Lodos mais concentrados
- ✓ Remoção de sólidos de difícil sedimentação
- ✓ Maiores taxas de aplicação superficial menor área

>Aplicação

- ✓ Curtumes, refino de óleo, conservas, lavanderias, matadouro e frigoríficos;
- √ Petroquímica, papel e celulose;
- √ Lodos ativados adensamento do lodo


Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA SEDIMENTAÇÃO

TIPOS DE FLOTAÇÃO

>Flotação por ar dissolvido

Consiste em dissolver o ar na água residuária sob condição de elevada pressão (2-4 atm) em um tanque de retenção, seguido do lançamento no tanque de flotação, controlado através de uma válvula de redução de pressão.

Tanque de flotação sem recirculação

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA FLOTAÇÃO

TIPOS DE FLOTAÇÃO

>Flotação por ar disperso

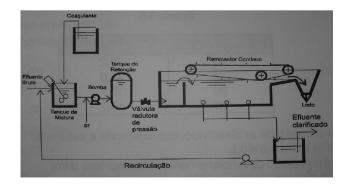
Consiste em introduzir o ar diretamente na suspensão, através do fundo do tanque de flotação.

- ✓ Baixa eficiência na remoção de sólidos
- ✓ Recomendado na remoção de espuma

>Flotação a vácuo

Consiste na saturação da água residuária com ar:

- ✓ Diretamente em um tanque de aeração
- ✓ Permitindo a entrada de ar na sucção do bombeamento


Vácuo parcial é aplicado no sistema e o ar dissolvido passa para a forma de pequenas bolhas, promovendo assim a interação ar-partícula.

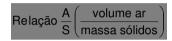
Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA FLOTAÇÃO

TIPOS DE FLOTAÇÃO

>Flotação por ar dissolvido

Tanque de flotação com recirculação


ASPECTOS TEÓRICOS DA FLOTAÇÃO

FLOTAÇÃO POR AR DISSOLVIDO

>Dimensionamento – Fatores importantes

- √ Concentração das partículas
- ✓ Quantidade de ar utilizado
- ✓ Velocidade ascendente das partículas
- ✓ Taxa de aplicação de sólidos

>Critérios de dimensionamento

→ Variável para cada tipo de suspensão

Testes bancada e

piloto

- √S constante
- ✓ A baixa flotação parcial
- ✓ A elevada agitação excessiva

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA FLOTAÇÃO

DIMENSIONAMENTO FLOTAÇÃO POR AR DISSOLVIDO

Exemplo: Dimensionar um sistema de flotação com e sem recirculação, cuja vazão afluente é de 30 m³/h, contendo sólidos em suspensão em concentração igual a 300 mg/L. A relação ótima A/S encontrada em escala piloto é de 0,02 mL $_{\rm ar}$ /mg $_{\rm sólido}$ e a temperatura de operação de 30°C (s $_{\rm a}$ = 15,7 mL/L). Adotar f=0,5 (mais conservador). Adotar taxa aplicação superficial de 7,2 m³/m².h.

Exemplo: Dimensionar um espessador com e sem recirculação de um lodo ativado, assumindo as seguintes condições:

- -Vazão afluente: 400 m³/d
- A/S \acute{o} tima = 0,008 mL/mg
- concentração de sólidos = 3000 mg/L
- Solubilidade do ar = 18,7 mL/L
- Fração de ar em P = 0.5
- Taxa de aplicação superficial = 0,008 m³/m².min

Prof. Carlos Ernando da Silva - Tratamento de Resíduos e Impactos Ambientais - UFSM/CT/HDS

ASPECTOS TEÓRICOS DA FLOTAÇÃO

DIMENSIONAMENTO FLOTAÇÃO POR AR DISSOLVIDO

>Determinação da pressão (P) de operação

$$\begin{split} \frac{A}{S} &= \frac{1,3.s_{\underline{a}}.(fP-1)}{X_0} \quad \text{(sem recirculação)} \\ \frac{A}{S} &= \frac{1,3.s_{\underline{a}}.(fP-1).}{X_0} \frac{R}{Q} \quad \text{(com recirculação)} \end{split}$$

- A/S: razão ar/sólidos (mL ar/mg sólido)
- s_a: solubilidade do ar (mL/L)
- f: fração ar dissolvido na pressão P (0,5)
- P: pressão do sistema (atm)
- R: razão de recirculação
- Q: vazão afluente

>Área requerida

$$A = \frac{Q}{I} \quad \text{(sem recirculação)}$$

$$A = \frac{Q + R}{I} \quad \text{(com recirculação)}$$

- I: taxa de aplicação superficial $(m^3/m^2.h)$

4,8 - 9,6 m³/m².h

0,47 - 0,96 m³/m².h (espessamento lodo)