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In this paper an examination has been outlined a possibility of further generalization respecting the 
Dudás’s kinematic-mathematical model, which is suitable for the production geometric development of 
elements of helicoid drive pairs. The positioning of the rolling surfaces of the cylindrical and conical 
surfaces, as axoids of worms, in the extended model to the projective space under the right conditions, 
based on the surfaces invariant to projective transformations can be a right extension of the model, as the 
projective space model includes the Euclidean space model in full. The machining of the conical worm 
surfaces modelled in this method involves the clarification of the kinematic-geometric relations of pro-
duction geometry in the Euclidean space model, which shows the possibility of further development of 
production geometry.  
The goal of generalization of the mathematical description is the systematization by creating central 
collinear projective connection between axoids (rolling cones and rolling cylinders). Managing the pro-
duction geometry of the worms in a system is also a further improvement in manufacturing precision. 
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 Introduction 

The developments of construction, quality as-
surance and manufacturing geometry in the University 
of Miskolc has been produced a significant field of 
worm drivings research for more than half a cen-
tury.  One of the outstanding topics of the Worm 
Scientific Team lead by Professor Dudás is the exami-
nation of the meshing of cylindrical and conical worm 
gear drives. In order to examine the geometry of the 
cylindrical and conical worms and their tools, the 
known Dudás's integrated general kinematic-mathe-
matical model can be seen on Figure 1.  

 
Fig. 1 General kinematic-mathematical model for the met-

hods of the manufacturing technology [4] 

The coordinate systems and applied geometrical 
parameters for the production geometrical analysis of 
the cylindrical and conical worms with the axis coinci-
ding z1F, furthermore the worm-gears and the tools of 
worms with the axis coinciding z2F have been shown 
in Figure 1 abowe, where: 

a, c...Distances of axes [mm], 
α…Forming, tilting angle of tool to the helical sur-
face in a characteristic section, e.g. grinding of an 
evolvent worm surface with a flat operating surface 
grinding wheel [°],  
γ…Lead angle on the worm’s reference surface [°],  
K0 (x0, y0, z0)...Stacionary coordinate system [-],  
K1F (x1F, y1F, z1F)... Rotating coordinate system affi-

xed helicoid surface [-],  
K1 (x1, y1, z1)... Coordinate system connected to li-

near moving table [-], 
K2F (x2F, y2F, z2F)… Rotating coordinate system fi-
xed to tool [-], 
K2 (x2, y2, z2)… Stationary coordinate system fixed 
to tool [-], 
K20 (x20, y20, z20)… Coordinate system of the gene-
rating curve of a tool of surface of revolution [-],  
Kk (xk, yk, zk)… Auxiliary coordinate system [-],  
O0, O1, O2, O1F, O2F, Ok…. Origins of coordinate 
systems related to their subscripts [-],  
p… Screw parameter of the helix on worm [-],  
pa… Axial screw parameter [-],  
pr… Radial screw parameter [-] 
φ1…Angle rotation of the helical surface [°], 
φ2…Angle rotation of the tool surface [°],  
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ω1…Angular velocity of the worm [s-1],  
ω2…Angular velocity of the tool [s-1]. 
 
The mathematical analysis required for manufactu-

ring geometry of elements of conical or cylindrical 
worm gear drives can be done in this model. During 
the manufacturing process, from the kinematic substi-
tution aspect, all continuous machining can be seen as 
mapping of relative motions or motion informations, so the 
theorem of motion mapping, which is the production 
method of the related surfaces of special kinematic 
pairs, can be considered an organic part of manufactu-
ring geometry. The analaysis of the relative motions of 
the drive pair’s elements can be done by rigid space 
systems of elements, which leads to the examination 
of the axoids.  Due to the handling of rolling cones 
and rolling cylinders of worms in one model, the use 
of projective geometry has been introduced as a gene-
ralization of the Euclidean geometry, which includes 
the Euclidean geometric system. In the case of mode-
ling manufacturing geometry, in several specific cases, 

the Euclidean spatial model should be complemented 
by infinite distant space elements. [1, 4, 8, 14] The ge-
ometric analysis is performed through the invariants 
of the transformation groups, such as the fiting, or 
distance and angle. For the analysis of technical con-
structions, similarly to other researchers, a synthetic 
form of geometry has been selected to stimulate thin-
king, with the support by analytic geometry, conti-
nuing Petrich’s professional work, who has been foun-
ded the Department of Descriptive Geometry in Uni-
versity of Miskolc [12]. 

 Development task 

During machining of the conical worm surface on 
a traditional machine with apex adjustment, the 
straight-line creator of the cone has been setted into 
parallel situation to the axis of the grinding wheel as 
shown in Figure 2.  

 

Fig. 2 Shifting of the apex at the conical worm manufacturing [10] 
 
By producef adjusting on the tailstock, the thread 

of the conical worm has been machined on a plane 
perpendicular to main spindle‘s axis on an elliptical or-
bit, due to an setted angle between the rotating main 
spindle and the lathe dog. In case of conical worm‘s 
machining the thread is influenced by the peripheral 

speed. The peripheral velocity of the chuck denoted vt 
can be written in the next form  
 ωv  rt

 (1) 

The constant velocity of drive pin contact point deno-
ted vm can be written in the next form based on Figure 
3. 

(1)

driving pin

(2)

1

(1)
(2)

ball bearing

w. p.
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2.   Over-set (    )

r 1

1
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mmm r ωv   (2) 

The angular velocity of workpiece denoted ωmwp can 
be specified as  

 
2

2

2 r

r

r

mm
mwp

ωv
ω


   (variable quantity)  (3) 

Variable distance from the axis changed the peripheral 

velocity and caused a H pitch error among other pro-
blems  
 

mwppH ω  (4) 

Depending on the angular position of the workpiece, 
sometimes the pitch is smaler, sometimes greater, that 
is, it fluctuates around a nominal value based on 

1ωp

value. 

 

Fig. 3 Mathematical layout of the thread in case of conical worm manufacturing [10]

 About the axoids 

During the development of manufacturing geome-
try of helicoidal surfaces and their tools the necessity 
to investigate kinematic relationships and to treat 
rolling surfaces in one model is well established. [ 2, 4, 
5, 6, 7, 9, 10, 13] 

 In case of the moving of the rigid plane system in 
its own plane, the relationship between it’s two different 
positions can always be given by rotation around a point, 
or by a parallel offset to a straight line, in the case of 
the infinite instantaneous rotation point.  

In case of the moving of the rigid three dimensio-
nal system in its own space, the relationship between it’s 
two different positions can always be given by a helical 
movement along a straight line. The spatial rigid system has 
been descriptived by the Descartes‘ right-handed mu-
tually-orthogonal normalized axis system, which is de-
fined by it’s own three non-collinear points, such as 
the origo O, as well as the unit points Ex  and Ey on 
the x and y axes. The spatial movement of triangle 
OExEy between it’s position O1Ex1Ey1 and 

O1(φ)Ex1(φ)Ey1(φ), can be replaced by one helical mo-
vement along the helical axis ct. In the first step the 
direction of the helical axis ft can be determined as 
shown in Figure 4. In case of parallel offsetting with 
itself on the two triangles O1Ex1Ey1 and 
O1(φ)Ex1(φ)Ey1(φ) onto a point in the space in so way, 
that one of the matched pointpairs, such as the O1 and 
O1(φ) overlape each other, the triangles O1Ex1Ey1 and 
O1(φ)Ex1(φ)Ey1(φ) can be placed in an overlap position 
with one rotation. The axis ft of rotation passes 
through on point O1 = O1(φ). The rotation-axis ft is 
created by the intersection of two planes, of which the 
first plane is the bisector perpendicular plane of the 
section Ex1Ex1(φ), and the second plane is the bisector 
perpendicular plane of the section Ey1Ey1(φ).  In the 
second step, it is necessary to determine the exact po-
sition of the helical movement‘s axis ct. The triangles 
O1Ex1Ey1 and O1(φ)Ex1(φ)Ey1(φ) are projected from 
their original positions parallel to the direction of ro-
tation axis ft, onto the plane Ks perpendicular to the 
rotation axis ft, as shown in Figure 4. 
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Fig. 4 Determination of the direction ft of the torsion axis c1 

 
Since the planes of the congruent triangles 

O1Ex1Ey1 and O1(φ)Ex1(φ)Ey1(φ) creates an equal angle 
with the plane Ks, the projections of triangles will be 
congruent also. In the plane Ks the congruent projecti-
ons of triangles can be rotated into overlap with an 
angle φ, around an point O. The axis of the helical mo-
vement is a straight line ct parallel to the the rotation 
axis ft and passing through point O.  

 
Fig. 5 The instantaneous torsion axis of motion between two 

spatial position 
 
In Figure 5 the planes of the triangles O1Ex1Ey1 and 

O1(φ)Ex1(φ)Ey1(φ) intersect the axis ct at points T1  and 
T2. The measure of displacement between points T1 and T2 
is p·φ. The triangle O1(φ)Ex1(φ)Ey1(φ) can be offset pa-
rallel to direction of rotation axis ft  and the size of the 

section 
21TT  into the intermediate position 

O1(φ)Ex1(φ)Ey1(φ), which can be rotated into position 
O1Ex1Ey1 around axis ct, by angle φ. The resulting mo-
vement follows the helical lines described by the 
points O1, Ex1 and Ey1, the common axis of the helical 
lines is the ct, and the common parameter is the p. (If 
we interpret rotation angle φ+2n̟ instead of rotation 
with angle φ, then with a constant amount of offset, 
we get a solution with different pitch helices.)  

A machine tool stand and it’s any moving unit, a 
workpiece and tool fixed in the tool machine one by 
one may be considered belonging to a rigid space sys-
tem.  

The most general motion of the moving rigid space 
system Σ1 correlated to the fixed rigid space system Σ0 is an 
instantaneous screw motion. The instantaneous screw mo-
tion is determined by the instantaneous position of the 
instantaneous axis c10, furthermore the instantaneous 
angular velocity ω10 of the Σ1 space system correlated 
to Σ0 space system, and it’s instantaneous screw para-
meter p10≠0. If the position of the screw axes c10 in the 
space system Σ0, the angular velocity ω10 and the screw 
parameter p10 are constant, the screw motion is named ele-
mentary. [3]  

If a space system Σ1 and another spaces system Σ2 
are in the relative motion each other, the instantaneous 
screw axes of this relative motion create a line surface 
α1 in space system Σ1 and an another line surface α2 in 
space system Σ2. An axoid is the family of instanta-
neous axes of the relative motion of Σ1 and Σ2 three 
dimensional systems, that is generated in three dimen-
sional systems Σ1 or Σ2. [8] The axoids have always ap-
peared in pairs, they are connected (conjugated). [13] 

In the space system Σ0 fixed to the drive mecha-
nism casing the screw motion space system Σ1 with 
axis c10 , angular velocity ω10, parameter p10 and also 
screw motion space system Σ2 with axis c20 , angular 
velocity ω20 , parameter p20 are in relative motion, that 
is generally between in them a continuous motion of 
screw motions. The instantaneous screw axes create 
the axoid α1 in Σ1 and axoid α2 in Σ2, which are slipping 
and rolling on a distorted screw surface on each other 
in the most comprehensive case.  These are touched 
together in a Σ0 space system in an instantaneous rela-
tive screw axis c12 = c21. In special cases the element of 
the axoid pairs may be a distorted screw surface, clo-
sed or opened and sharp or flat screw surfaces, a de-
velopable helicoid, a rotary distorted hyperboloid, a 
cylinder generated by rotation, a cone generated by ro-
tation, ect. .  

 About the projective spaces model 

For the analytical description of the Euclidean 
space, it‘s points are assigned a triplet of real numbers 
(x, y, z) in the Descarte coordinate system. The homo-
geneous coordinates of points of the Euclidean space 
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model are obtained with the following identities 

 0x,
x

x
z,

x

x
y,

x

x
x  4

4

3

4

2

4

1 ,  (5) 

where the rang   14321 x,x,x,x . 
Two points are identical, if their corresponding 

coordinates are product of scalar to each other. In case 
of x4=0, the coordinates (x1, x2, x3, 0) represent the 
point in the infinite distance in direction (x1, x2, x3). 

  The homogeneous coordinates of the points 
fitting to the second-order surface of the projective 
space fulfil the next form 
 0 KIIK xxα     4321 ,,,I,K    (6) 

By successive application of projective transfor-
mations, it is always possible that the matrix of the 
second order surfaces can be made into symmetric 
matrix, which only has the elements in the diagonal 
that are different from 0, which can be +1 and -1. The 
range and signature of the matrix of the second-order 
surface are invariant with projective transformation. 
The second-order surfaces are classified according to 
the range and signature of their matrix representation.  

Classes of second-order surfaces include surfaces 
with same range, denoted with R, and with same sig-
nature, denoted with S.  

In case of R= 3 and S= 1, the second-order surface 
can be written by homogeneous coordinates in the 
next form 
 02

32

2

22

2

12  xxx  (7) 
and the same surface can be written by Descartes co-
ordinates in the Euclidean space 
 0

222  zyx   (8) 
The class of the real cone surface generated by ro-

tation also includes the rotated surface, which means 
that in the projective spatial model has the same qual-
ities. Since their qualities are invariant with projective 
transformation, therefore projective transformation 

can be created between them.  
The matrix form of all second order surface  

 0 XAX
T  (9) 

where the  XT is transposed of matrix X. 
Developments in the projective space model can be 
linked to the Dudás‘ ProMat model [5]. 

 The central collineation relation between 
the rolling surfaces of cylindrical and co-
nical worms 

Based on the Dudás mathematical-kinematical mo-
del, the Euclidean space model has been complemen-
ted by the infinite distant plane, so the rolling cone and 
rolling cylinder of the worms have been located in the 
projective space model in a central collineation relati-
onship. In the projective space model the cylinder is a 
cone with an infinity vertex. To create a central colli-
neation relationship between the two surfaces, the 
cone generated by rotation and the cylinder generated 
by rotation have been placed on the common axis z1F 
with the following correspondence: the finite vertex 
Mk of the cone on the axis z1F and the infinite distance 
vertex Mh of the cylinder on the axis z1F, correspond 
to each other, the plane of the common circle of the 
cone and cylinder is the base plane As of the central 
collinearity, and the C center of the central collinearity 
may be any point of the axis z1F without the axis point 
on the base plane and without the vertex of the cone 
and cylinder. The straight line lieing on the Ph point of 
the cylinder and on the Pk point of the cone has been 
passed through the center C. These points have been 
assigned to each other in the central collinear con-
nection. The disappearing planes have been posinti-
oned, that one of the vanishing planes has been as far 
as away from the center C as the other vanishing plane 
from the base plane As. 

 
Fig. 6 Central collineation relation betwee the rolling cone and rolling cylinder of worms [11] 
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The vanishing plane Ek of the cone fits the cone 
vertex Mk, as it can be seen on Figure 6. The coordi-
nates of the cylinder’s points (marked by x) satisfy the 
next equation 
 0 KIIK xxh      4321 ,,,I,K    (10) 
that can be written in the following matrix format 

 0 XHX
T  (11) 

The coordinates of the cone’s points (marked by x) 
satisfy the next equation 
 0 KIIK xxk      4321 ,,,I,K   (12) 
that can be written in the following matrix format 
 0 XKX

T  (13) 
In case of transformation from rolling cone to rolling 
cylinder the required identical has been fulfilled, as it 
can be seen in the following equation

       XCHCXXCHCXXKX
TTTTT   (14)

where the C matrix represents the central collinear re-
lationship. 

 Creating of helicoid surfaces 

The rolling surfaces of the conical and cylindrical 
worms have been located in the projective space mo-
del based on their central collinearity relationship.  
Than the worm’s teethsurfaces produced by a rotary 
motion and a tangential and a radial displacement in 
the Euclidean space model, as the Euclidean geometry 
is the theorem of the transformation group’s invari-
ants.  

The creation of the helicoid surfaces, and it’s 
matrix representation can be done into relation with 
analytical modelling of Euclidean space. An important 
goal is to provide usability in a single model. In the 
following the connection is worth examining between 
the locating in the projective space model of the 
worms’ rolling surfaces and the manufacturing of the 
teeth surfaces in the Euclidean space model along it’s 
matrix representations as well. The combined motion 
can be described by a 44  matrix. Placing behind the 

33  matrix of the rotating motion the column matrix 
of the translation, so the 43  matrix has to be com-
plemented in the bottom line with the row  1000 ,,,  to 
a 44  matrix.  

Handling of the coordinates of the points is also 
important to consider the theoretical clarification. The 
rolling surface of the worms can be written in the pro-
jective space using a 44  matrix, to which can be 
used the homogeneous coordinates of points. The ho-
mogeneous coordinates    04321   ,x,x,x,x  
of points can be formed by  z,y,x  Descartes coordi-
nates of points according to formula (1). 

The description of the combined motions can be 
done with a part homogeneous coordinates  1,z,y,x  
formed from the   z,y,x  Destartes coordinates of 
points in the Euclidean space model, using only 14 x  
from the endless possibilities.  

One of the importan direction of the mathematical 
development is to set the goal of systematization, to 
improve the manageability of the task in the system. 

 

Fig. 7 The mathematical-kinematical model for the theory of 
manufacturing of the cylindrical and conical worms  and their 
tools for uniaxial conical and cylindrical rolling surfaces [11] 

 Result 

Worms from worm gearboxes for high power 
transmition have been machined by grinding wheel in 
a modern machining plants. From the rolling surfaces 
of the helicoidal elements of worm gear drive pairs ac-
cording to their projective classification, the members 
of a class in the projective space have the same beha-
vioral characterictics, so the were placed in a central 
collinear relationship, which futher developed the 
mathematical- kinematical model for unification. All 
this has been already described in the Euclidean space 
model, the geometrically correct machining leads to 
increased accuracy informing the operating surface of 
the conical worms.   

In our further developed mathematical-kinematical 
geometric model of manufacturing process in case of 
changing distance of axes (aop1), the elliptical errors 
have been eliminated. The geometrically correct manu-
facturing of conical worm surfaces, so elements of spi-
roid drives has become possible, as it can be seen in 
Figure 8. 
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The above model‘s geometrical development 
requires the construction of a new NC machine, which 
is  also suitable of transverse movement with the grin-
ding wheel in case of manufacturing. 

 

Fig. 8 The locating of the rolling surfaces of the cylindrical 
and conical worms mounted the same shaft in case of manu-

facturing with grinding wheel [11] 

 Summary 

Based on the knowledge of projective geometry - 
using the Dudás‘s mathematical-kinemathical model, 
the further developed using the projective geometrical 
model has been demonstrated. The necessy examina-
tion has been outlined about axoides of conical and 
cylindrical worms gear drives. The central collinear re-
lationship has been determined between the rolling 
cone and the rolling cylinder in case of a rotating 
common axis. The examination has been performed 
to confirm that the matrix representation of the cen-
tral collinearly relationship between the rolling cone 
and rolling cylinder surfaces is suitable to fit ProMat 
model. The improved mathematical-kinematical mo-
del ensures geometrically accurate production of coni-
cal worm.  
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