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ORIGINAL ARTICLE
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CHRISTOFFER SCHANDER1,2*, HANS TORE RAPP1,2, JON ANDERS KONGSRUD3,

TORKILD BAKKEN4, JØRGEN BERGE5, SABINE COCHRANE6, EIVIND OUG7,

INGVAR BYRKJEDAL3, CHRISTIANE TODT2, TOMAS CEDHAGEN8, AUDUN

FOSSHAGEN2, ANDREY GEBRUK9, KIM LARSEN10, LISA LEVIN11,

MATTHIAS OBST12, FREDRIK PLEIJEL13, SABINE STÖHR14, ANDERS WARÉN14,
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Abstract
The macrofauna of the newly discovered hydrothermal vent field on the Mohn Ridge at 718N was investigated. Samples
were collected during the cruise BIODEEP 2006 using the ROV ‘Bathysaurus’. A total of 180 species-level taxa were
identified. The region contains very few vent-endemic species, but some species of Porifera, Crustacea and Mollusca may be
vent-associated. Dense aggregations of motile non-vent species such as Heliometra glacialis and Gorgonocephalus eucnemis
surrounded the vent area, but the area in general only held small numbers of sedentary animals. Calcareous sponges
comprised an unusually high portion of the sponge species found and they constitute one of the first pioneers among the
sessile invertebrates settling on these vents. Possible explanations for the structure of the fauna in the region are discussed.

Key words: Arctic fauna, bacterial mats, Beggiatoa, hydrothermal vents, Mohn Ridge, vent fauna, white smoker

Introduction

Deep-sea hydrothermal vents are usually associated

with a highly specialized fauna and since their

discovery in 1977 more than 400 species of animals

have been described (Van Dover et al. 2002; Des-

bruyères et al. 2006). A specialized vent fauna

includes most animal phyla, but the most conspi-

cuous and well known are annelids, molluscs and

crustaceans. All previously investigated vent regions

have had some specific fauna unique to them, and vent

communities are usually distinct from the surround-

ing waters. Only a few species inhabit both vent

and non-vent areas. Some vent fauna can also be

found associated with hydrocarbon seeps and whale

and wood falls (e.g. Black et al. 1997; Feldman et al.

2001; Smith & Baco 2003; Levin & Mendoza 2007).
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We have investigated the fauna collected around

newly discovered hydrothermal vents on the Mohn

Ridge north of Jan Mayen (Figures 1 and 2).

The vent fields are located at 718N and the

venting takes place within two main areas separated

by 5 km (Pedersen et al. 2005). The shallowest vent

area is at 500�550 m water depth and is located at

the base of a normal fault. This vent field stretches

approximately 1 km along the strike of the fault, and

is composed of 10�20 vent sites each with multiple

chimney constructions discharging up to 2608C hot

fluids. A large area of diffuse, low-temperature venting

surrounds the high-temperature field (Pedersen et al.

2005; Pedersen et al. in press). Here, partly microbially

mediated iron oxide-hydroxide deposits occur in

abundance (Thorseth et al. 2005, 2007; Øvreås et al.

2007; Schander et al. 2007; Steinsbu et al. 2007).

The second area is located at a rifted volcanic

ridge at 700�750 m depth, where venting takes

place at two fields, each �100�200 m across. At

both fields white smoker fluids with temperatures

up to 260�2708C discharge from numerous chim-

neys, whereas lower temperature fluids slowly

emanate from up to 10 m tall, irregular sulphate

and sulphide formations (Pedersen et al. 2005,

Pedersen et al. in press) (Figure 2).

The vent fluids have up to 6 mmol/kg H2S

(Pedersen et al. 2007) and both vent sites host a

rich flora of sulphide and methane oxidizing bacteria

(Øvreås et al. 2007; Steinsbu et al. 2007).

The only other vent area north of Iceland pre-

viously investigated is the very shallow Kolbeinsey

field (Fricke et al. 1989). The Kobeinsey field was

discovered in 1974 a few kilometres south of the

volcanic island of Kolbeinsey off North Iceland. Two

venting areas are located at approximately 90 m water

depth (Olafsson et al. 1989). The vent area was first

visited and sampled in 1988 when venting was

documented from fissures, small chimneys, and

large, crater-like dips in the volcanic seafloor. The

highest temperature of fissure effluents was �898C
(Fricke et al. 1989). The hydrothermal fluids were

either crystal clear or very turbid, loaded with large

pieces of bacterial mats. There were no significant

amounts of hydrothermal deposits at the vent sites,

but the venting areas were distinguished from the

non-vent bottom by their whitish overgrowth of thick,

filamentous mats of Beggiatoaceae (Fricke et al.

1989). The macrofauna at Kolbeinsey was domi-

nated by the sponges Sycon quadrangulatum and

Tethya aurantium (Fricke et al. 1989). Shallow vents

are also known from the Grimsey region north of

Iceland (Hannington et al. 2001), but the fauna of

the Grimsey vent field has not been investigated yet.

Venting has also been reported from the Gakkel

Ridge, but no specialized vent fauna have been

recorded (Ramirez-Llodra et al. 2007), while the

fauna from the hydrocarbon seeps of the Haakon

Mosby Mud Volcano was described by Gebruk et al.

(2003).

This study aims to present the first comprehensive

investigation on fauna found at high- and low-

temperature shallow hydrothermal vents in the

northernmost Atlantic Ocean.

Figure 1. Location of the hydrothermal vents on the Mohn Ridge.

156 C. Schander et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
S
a
n
 
D
i
e
g
o
]
 
A
t
:
 
1
7
:
0
2
 
2
8
 
J
u
n
e
 
2
0
1
0



M
a
te

r
ia

ls
a
n

d
m

e
th

o
d

s

M
a
teria

l
w

a
s

co
llec

ted
d

u
rin

g
th

e
cru

ise
B

IO
D

E
E

P

2
0
0
6

a
ro

u
n

d
th

e
ven

t
sites

in
Ju

n
e

2
0
0
6

u
sin

g
th

e

R
O

V
‘B

a
th

ysa
u

ru
s’

eq
u

ip
p
ed

w
ith

a
h
o
rizo

n
ta

l

b
o
x
co

re
r

(to
b
e

d
escrib

e
d

elsew
h
ere)

a
n

d
a

su
c
tio

n

sa
m

p
ler

w
ith

a
sin

g
le

co
llectio

n
co

n
ta

in
e
r.

M
a
te

ria
l

w
a
s

o
b
ta

in
ed

in
th

e
d

irect
v
icin

ity
o
f

th
e

v
en

ts
a
n

d
a
t

th
e

a
ctu

a
l

v
en

tin
g

sites
(F

ig
u

res
1

a
n

d
2
).

A
list

o
f

th
e

sa
m

p
lin

g
sta

tio
n

s
is

fo
u

n
d

in
T

a
b
le

I.
A

lso
,

o
b
serva

tio
n

s
fro

m
v
id

eo
a
n

d
still

p
h
o
to

s
a
re

in
-

clu
d

ed
.

D
u

e
to

th
e

sa
m

p
lin

g
g
ea

r
em

p
lo

yed
a
n

d

sin
ce

th
e

sa
m

p
les

w
ere

sp
lit

to
b
e

u
se

d
a
lso

fo
r

m
icro

b
io

lo
g
ic

a
l

a
n

d
g
eo

lo
g
ica

l
a
n

a
ly

ses,
th

e
sa

m
p
les

m
u

st
b
e

reg
a
rd

ed
a
s

p
u

re
ly

q
u

a
lita

tiv
e.

F
ig

u
re

2
.

A
.

L
o
ca

tio
n

o
f

th
e

tw
o

m
a
jo

r
v
en

t
sites

a
t

th
e

so
u

th
-

ern
m

o
st

seg
m

en
t

o
f

th
e

M
o
h

n
R

id
g
e.

B
.

D
eta

il
sh

o
w

in
g

th
e

S
o
ria

M
o
ria

a
n

d
T

ro
ll

W
a
ll

v
en

t
sites.

Table I. Dive and sampling locations during the 2006 cruise.

Dive NO Location (start G.O. Sars) Location samples Depth (m) Sampling/substrate Comments

01 71817.893N�5847.048W 71817.99N�5846.82W 616 Horizontal box chore � Fe mound ‘Gallionella Garden’ low-temperature hydrothermal vent field

03 71815.578N�5848.974W 71815.55N�5848.86W

71815.55N�5848.85W

711�713 Suction sampler � sediment High-temperature vent field ‘Soria Moria II’, located southeast

of the vent field ‘Soria Moria I’. Only a couple of m from the

chimneys Lilleputt/Storestå

04 71815.547N�5848.936W 71815.56N�5848.88W 711 Horizontal box chore � white

bacterial mat

High-temperature vent field ‘Soria Moria II’, located southeast

of the vent field ‘Soria Moria I’. Only a couple of m from the

chimneys Lilleputt/Storestå

07 71817.992N�5846.824W 71817.99N�5846.8W 616 Horizontal box chore � sediment ‘Gallionella Garden’ low-temperature hydrothermal vent field

09 71817.875N�5846.322W 71817.869N�
5846.29W

556 White bacterial mat and sediment ‘Trollveggen’ high-temperature venting area east of Gallionella

Garden low-temperature area

11 71817.988N�5846.839W 71817.99N�5846.8W 616 Suction sampler ‘Gallionella Garden’ low-temperature hydrothermal vent field

12 71817.990N�5846.845W 71817.98N�5846.92W 616 Horizontal box chore � sediment ‘Gallionella Garden’ low-temperature hydrothermal vent field

13 71815.687N�5848.812W 71815.59N�5848.82W 667 � Soria Moria I � Sfinxen. Part of dead smoker covered with

bacterial mats

16 71817.878N�5846.331W 71817.86N�5846.29W 557 Suction sampler � on smoker ‘Trollveggen’ high-temperature venting area east of Gallionella

Garden low-temperature area. Sample from active smoker

18 71815.535N�5848.870W 71815.54N�5848.86W

71815.59N�5848.87W

724 Suction sampler � sediment High-temperature vent field ‘Soria Moria II’, located southeast

of the vent field ‘Soria Moria I’. Sample directly on smoker
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The samples were sorted on board ship under a

stereo-microscope directly after coming up on deck and

then fixed in 96% alcohol and/or 5% formaldehyde.

Most of the material has been deposited in Bergen

Museum, University of Bergen.

Results

General notes about the fauna

A total of 180 taxa have been identified from the two

investigated vent fields (Table II). Of these, only a

handful of species of sponges, crustaceans and

molluscs are potential vent specialists. The absence

of large long-living sessile invertebrates (with the

exception of actinians, cladorhizid sponges, and the

soft coral Gersemia, mainly on vertical surfaces at

some distance from the vents), even though there does

not seem to be any shortage of hard bottom substrate,

is noteworthy. Dense aggregations of the motile

crinoid Heliometra glacialis dominate large areas

surrounding the vent fields. Gorgonocephalus eucnemis

is also very common in the area. In situ observations

show that anthozoans near to the venting feed on

amphipods stunned by hot plumes of water.

Large clouds of planktonic organisms were ob-

served above the vents. Such clouds have also been

observed over other venting areas (Wiebe et al.

1988; Thomson et al. 1992; Burd & Thomson

1994, 1995; Burd et al. 2002), but little is known

about the trophic interactions. During the cruise in

2006, preliminary studies and sampling of the

hydrothermal cloud were carried out using acoustic

equipment and MOCNESS trawls. From this ma-

terial it was concluded that the plankton clouds were

comprised mainly of crustaceans, and 18 species

were identified (Aarbakke 2007).

The trophic interactions remain to be studied, but

few of the species appear to be able to feed directly

on bacteria. One of these is the gastropod Rissoa cf.

griegi. It is found in high densities on the bacterial

mats covering the chimneys, and is the dominating

macroorganism inhabiting this part of the system.

Selected representatives of the fauna are shown in

Figure 3 and a list of all identified species is found in

Table II.

Foraminifera

The foraminiferans found in the area are well known

from many areas of the Northeast Atlantic region.

Some of the species, for example Tholosina spp.,

Cibicides spp. and Rupertia stabilis, are firmly at-

tached or cemented to the substrate. Other species

such as Miliolinella cf. enoplostoma and Rosalina

globularis are loosely attached. None of the species

here reported can be classified as typical vent fauna

or are known to host any symbiontic microorgan-

isms. A previously undescribed monothalamous

foraminiferan (Allogromiidae) is recorded here, but

this is not surprising since these foraminifera are

poorly known in this region (Gooday et al. 2005).

Porifera

The sponge fauna found in the vent area is char-

acterized by very small sponges of the classes

Demospongiae and Calcarea. The fauna is domi-

nated by species also found outside the area of

hydrothermal activity. However, the three cladorhi-

zid sponges Asbestopluma pennatula, Cladorhizidae

sp. 1 and Cladorhizidae sp. 2 were found in a high-

temperature venting area directly associated with

smokers. They are also found on substrates com-

pletely covered by dense bacterial mats. Some

cladorhizid sponges are known to harbour sym-

biothic methane-oxidizing bacteria and to utilize

the enriched water surrounding the vents (Vacelet

et al. 1996; Vacelet & Boury-Esnault 2002). In

addition, these sponges are carnivorous, feeding on

the highly abundant small crustaceans in the vent

area (Vacelet & Duport 2004; Vacelet 2006). Calcar-

eous sponges have not previously been reported

from high-temperature vents, but Sycon quadrangu-

latum was reported to be the dominant macroorgan-

ism on shallower and colder seeps on the Jan Mayen

Ridge (Fricke et al. 1989). Calcareous sponges

normally represent only a minor fraction of the

sponge fauna and it was therefore surprising that 8

out of a total of 13 species reported here are

calcareans. They mainly represent species well-

known from bathyal and abyssal depths in the

Nordic Seas (Janussen et al. 2003; Rapp 2006;

Rapp unpublished data). Calcareous sponges of the

genus Guancha are found on bare surfaces and seem

to be among the first invertebrates settling in this

harsh environment. The same species are also in

number dominating among the very scarce fauna

found on recently formed pillow lavas in deep waters

along the Mohn and Knipovich Ridges, indicating

that calcareous sponges may be pioneers also in deep

waters (Rapp unpublished data).

Some thinly encrusting sponges (probably Hyme-

desmidae) were observed at some distance from the

smokers, but no larger erect or massive demosponges

or hexactinellids characteristic of rocky bottoms in

this part of the north Atlantic were found.

Cnidaria

The hydroid Corymorpha groenlandica was mainly

found scattered around the base of the chimneys.

However, some specimens were also found directly

158 C. Schander et al.
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Table II. Fauna found at the hydrothermal vents on the Mohn Ridge. Taxa identified from the Kolbeinsey shallow vents (Fricke et al. 1989) and the Håkon Mosby mud volcano (Gebruk et al.

2003) are included for comparison. Numbers 1�18 refer to station data found in Table I.

Video 1 3 4 7 9 11 12 13 16 18 Kolbeinsey Håkon Mosby

FORAMINIFERA

Anomalina balthica (Schröter, 1783) �
Cibicides lobatulus (Walker & Jacob, 1798) � �
Cibicides cf. lobatulus (Walker & Jacob, 1798) �
Cibicides refulgens Montfort, 1808 � �
Hanzawaia sp. �
Miliolinella cf. enoplostoma (Reuss, 1851) �
Rosalina globularis d’Orbigny, 1826 �
Rupertia stabilis Wallich, 1877 �
Sagenina sp. ? �
Tholosina vesicularis (Brady, 1879) � �
Tholosina sp. �
Allogromiidae sp. nov. �

PORIFERA

Artemisina arcigera (Schmidt, 1870) �
Asbestopluma pennatula (Schmidt, 1875) � �
Baeridae indet. �
Breitfussia sp. �
Cladorhizidae sp. 1 � � �
Cladorhizidae sp. 2 � � �
Guancha sp. nov. �
Guancha pellucida Rapp, 2006 �
Hymedesmiidae indet. �
Leucandra sp. 1 � �
Leucandra sp. 2 � �
Leucandra sp. 3 �
Sycon quadrangulatum (Schmidt, 1868) �
Sycon abyssale Borojevic & Graat-Kleeton, 1965 �
Tethya aurantium (Pallas, 1766) �

CNIDARIA

Corymorpha groenlandica (Allman, 1876) � �
Gersemia rubiformis (Ehrenberg, 1834) � � �
Hormathia sp. � �
Urticina felina (Linnaeus, 1761) �
Umbellula ecrinus Linnaeus, 1758 �

BRYOZOA

Celleporina sp. �
Crisia sp. �
Disporella hispida (Fleming, 1828) �
Hemicyclopora microstoma (Norman,1864) �
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Table II (Continued)

Video 1 3 4 7 9 11 12 13 16 18 Kolbeinsey Håkon Mosby

Hornea lichenoides (Linnaeus, 1758) � �
Palmiskenea skenei (Ellis & Solander, 1786) �
Smittoidea reticulata (MacGillivray, 1842) �
Stomatopora sp. ? �
Unidentified cheliostome �
Unidentified bryozoan �

NEMERTEA

Procephalotrix aff. spiralis (Coe, 1930) �
Micrura aff. varicolor Punnett, 1903 �
Nemertea indet. �

ANNELIDA: Polychaeta

Abyssoninoe cf. scopa (Fauchald, 1974) �
Ampharete sp. �
Amphinomidae indet. �
Amphitritinae indet. juv. �
Baldia johnstoni Garwood & Bamber, 1988 �
Brada villosa (Rathke, 1843) �
Brada sp. �
Capitella capitata (Fabricius, 1780) �
Capitella sp. � � � � �
Capitellidae indet. �
Chaetozone cf. jubata Chambers & Woodham, 2003 � �
Chaetozone sp. � � �
Chone paucibranchiata (Krøyer, 1856) �
Chone sp. � �
Chaetopteridae indet. �
Diplocirrus longisetosus (Marenzeller, 1890) � �
Eclysippe sp. �
Ephesiella abyssorum (Hansen, 1879) � �
Euchone papillosa (M. Sars, 1851) �
Euchone (‘Chiade’) indet. � �
Euphrosine sp. �
Galathowenia oculata (Zachs, 1923) � �
Glyphanostomum pallescens (Théel, 1879) � �
Grubianella klugei (Pergament & Chlebovitch in Chlebovitch, 1964) �
Harmothoe fragilis Moore, 1910 �
Lanassa nordenskioeldi Malmgren, 1866 �
Lacydoniidae indet. �
Laonice cirrata (M. Sars, 1851) �
Leaena ebranchiata (M. Sars, 1865) �
Lumbrineris sp. � �
Macrochaeta polyonyx Eliason, 1962 �
Macroclymene sp. A � � �
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Table II (Continued)

Video 1 3 4 7 9 11 12 13 16 18 Kolbeinsey Håkon Mosby

Melythasides laubieri (Desbruyéres, 1978) � � �
Myriochele heeri Malmgren, 1867 �
Myriochele olgae Blake in Blake, Hilbig & Scott, 2000 �
Nereimyra punctata (O.F. Müller, 1776) �
Nerilla sp. �
Nicomache quadrispinata Arwidsson, 1907 � �
Nothria conchylega (M. Sars, 1835) � � �
Notomastus latericeus M. Sars, 1851 � �
Notoproctus oculatus arctica Arwidsson, 1907 � � �
Oligobrachia haakonmosbiensis Smirnov, 2000 �
Ophelia sp. �
Ophelina sp. � � �
Orbiniidae indet. �
Oweniidae indet. (fragment) �
Petaloproctus tenuis (Théel, 1879) � �
Pterocirrus slastnikovi Annenkova, 1946 �
Pholoe assimilis (Ørsted, 1844) � �
Polycirrus medusa Grube, 1850 � � �
Polycirrus sp. �
Polynoidae indet. �
Praxillura longissima Arwidsson, 1907 � �
Prionospio cirrifera Wirén, 1883 � �
Prionospio (not cirrifera) sp. �
Proclea graffi (Langerhans, 1884) � �
Pseudoscalibregma parvum (Hansen, 1879) � �
Scolelepis foliosa (Audouin & Milne-Edwards, 1833) �
Scoletoma sp. � � �
Sclerolinum contortum Smirnov, 2000 �
Serpulidae indet. �
Sphaerodoropsis philippi (Fauvel, 1911) � �
Spionidae indet. �
Spiophanes kroyeri Grube, 1860 �
Spiochaetopterus typicus M. Sars, 1856 �
Spirorbidae indet. �
Syllidae indet. epitok �
Thelepus cincinnatus (O. Fabricius, 1780) � �
Terebellidae indet. � �
Terebellides sp. �
Trichobranchidae indet. �

SIPUNCULIDA

Ochnesoma sp. �

MOLLUSCA

Alvania sp. 1 �
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Table II (Continued)

Video 1 3 4 7 9 11 12 13 16 18 Kolbeinsey Håkon Mosby

Alexandromenia sp. �
Anatoma crispata (Fleming, 1828) � �
Astarte acuticostata Friele, 1877 �
Bathyarca sp. �
Bathyarca frielei (Friele, 1877) �
Buccinum sp. �
Cuspidaria glacialis (G.O. Sars, 1878) �
Cyclopecten imbrifer (Lovén, 1846) �
Dacrydium sp. �
Diaphanidae indet. � �
Heternomia squamula (Linnaeus, 1758) �
Limacina retroversa (Fleming, 1823) � �
Limatula hyperborea Jensen, 1905 �
Lionsiella abyssicola G.O. Sars, 1878 �
Mohnia mohni (Friele, 1877) �
Oenopota sp. �
Onoba semicostata (Montagu, 1803) �
Thyasira (Parathyasira) dunbari Lubinsky, 1976 �
Thyasira sp. � �
Rissoa cf. griegi Friele, 1879 � � � � �
Rugulina fragilis (G.O. Sars, 1878) �
Simrothiella margaritacea (Koren & Danielssen, 1877) �
Skenea sp. juv. �
Skenea basistriata (Jeffreys, 1877) � �
Toledonia limnaeoides (Odhner, 1913) �
Velutina undata J. Smith, 1839 �
Yoldiella propinqua (Leche, 1878) �

CRUSTACEA: Amphipoda

Amphilochopsis hamatus Stephensen, 1925 �
Amphilochus sp. �
Amphipoda indet. �
Amphitoe sp. �
Amphitoe cf. rubricata Montagu, 1808 �
Andaniexis lupus Berge & Vader, 1997 �
Anonyx nugax (Phipps, 1774) �
Aristias sp. �
Bouvirella sp. �
Byblis minuticornis G.O. Sars, 1879 �
Cleippides quadricuspis Heller, 1875 �
Ericthonius difformis Milne-Edwards, 1830 �
Gammaropsis sp. �
Harpina abyssi G.O. Sars, 1879 �
Harpiniopsis similis Stephensen, 1925 �
Hyperia galba (Montagu, 1815) �
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Table II (Continued)

Video 1 3 4 7 9 11 12 13 16 18 Kolbeinsey Håkon Mosby

Leptamphopus sarsi Vanhoffen, 1897 �
Leptamphopus sp. �
Liljeborgia fissicornis (G.O. Sars, 1858) �
Lysianssoidea indet. �
Metacaprella horrida (G.O. Sars, 1877) �
Metopa boecki G.O. Sars, 1892 �
Metopa sp. �
Monoculodes latissimanus Stephensen, 1931 �
Onisimus sp. � �
Parapleustes aff. gracilis (Buchholz, 1874) �
Pardalisca tenuipes G.O. Sars, 1893 � �
Paroediceros propinquus (Goes, 1866) � � � � � �
Paroediceros sp. � �
Pleusymtes sp. � � � �
Pleustidae indet. �
Stenopleustes eldingi Gurjanova, 1929 �
Stenopleustes malmgreni (Boeck, 1871) � � �

CRUSTACEA: Copepoda

Aetididae indet. � � �
Amphiascopsis sp. �
Amphiascus sp. �
Calanus hyperboreus (Krøyer, 1838) � � � � � �
Calanus sp. � � � � � � �
Conchoecia sp. �
Harpacoidea indet. � � � �
Heterolaophonte sp. �
Idyella (?) sp. �
Metridia longa (Lubbock, 1854) � �
Neoscolecithrix sp. �
Parastenhelia sp. �
Schizopera sp. �

CRUSTACEA: Cirripedia

Fragments �

CRUSTACEA: Isopoda

Astacilla sp. � �
Eurycope producta G.O. Sars, 1868 ? � � �
Eurycope sp. �
Gnathia sp. � � � �
Idothea cf. emarginata (Fabricius, 1793) � � �
Ilyaracna sp. � � �
Janthe sp. � �
Munna sp. � � � �
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Table II (Continued)

Video 1 3 4 7 9 11 12 13 16 18 Kolbeinsey Håkon Mosby

CRUSTACEA: Tanaidacea

Akanthophoreus gracilis (Kröyer, 1842) �
Leptognathia sp. � �
Pseudotanais sp. � � �
Sphyrapus sp. �

CRUSTACEA: Ostracoda

Paracytherois aff. arcuata (Brady, 1868) �
Ostracoda spp. � � �

CRUSTACEA: Decapoda

Hyas sp. �
Lebbeus polaris (Sabine, 1824) �

HALACARIDA

Halacarellus sp. �
Lohmanella sp. �
Indet. �

PYCNOGONIDA

Colossendeis proboscidea (Sabine, 1824) � �
Nymphon sp. � � �

NEMATODA

Linhomoeus aff. hirsutus Bastian, 1865 �
Desmodora scaldensis de Man, 1889 �
Desmodora communis (Bütschli, 1874) �
Anticoma acuminata (Eberth, 1863) �
Enoplus communis Bastian, 1865 �
Neochromadora poecilosoma (de Man, 1893) �

ECHINODERMATA

Amphioplus daleus (Lyman, 1879) �
Crossaster papposus (Linnaeus, 1767) �
Gorgonocephalus eucnemis (Müller & Troschel, 1842) � � �
Heliometra glacialis (Owen, 1833 ex Leach MS) � �
Lophaster furcifer (Düben & Koren, 1846) �
Ophiacantha bidentata (Retzius, 1805) � �
Ophiopleura borealis Danielssen & Koren, 1877 �
Ophiocten gracilis (G.O. Sars, 1871) � � � � �
Ophiopus arcticus Ljungman, 1867 �
Ophiura sarsii Lütken, 1858 � �
Strongylocentrotus droebachiensis (O.F. Müller, 1776) � � �
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attached to black smokers. At vertical surfaces some

meters away from the smokers there were dense

aggregations of Hormathia sp. and several unidenti-

fied anthozoans. These anthozoans are also found at

the base of the chimneys, completely embedded in

microbial mats. The cold water octocoral Gersemia

rubiformis was found at some metres distant from the

chimneys.

Crustacea

One of the largest groups collected in the vent areas

of Jan Mayen, both in terms of number of specimens

and species, was the Crustacea. An array of surveys

of other vent areas around the world (e.g. Vinogra-

dov 1995; Bellan-Santini & Thurston 1996; Des-

bruyères et al. 2001; Martin 2003; Martin & Haney

2005; Larsen 2006) have revealed a large number of

species that apparently are specially adapted to this

unique environment. However, in the samples from

the Jan Mayen vents, the vast majority of identified

species are commonly reported from the surround-

ing waters. Among the few exceptions are a new

tanaid species (one ovigerous female belonging to a

new taxon closely related to Portaratrum) and a

pleustid species (Amphipoda) that appear to be new

to science. Of the crustacean taxa, the Amphipoda

had the highest number of both species and indivi-

duals with approximately 280 specimens allocated to

19 different species (15 genera). Apart from the new

pleustid species (above), the most striking feature of

the fauna around the vents is the relatively low

number of scavenging lysianassid taxa that are very

common elsewhere in the North Atlantic (Palerud

et al. 2004). From investigations of vent fauna in

other areas, this group appears to have the highest

potential for colonization of such chemically reduced

environments (Vinogradov 1995) representing more

than 99% of all collected species in the Pacific. Most

of the amphipod species identified belong to taxa

dominated by either opportunistic predators (Dauby

et al. 2001) or micropredators on other marine

invertebrates, such as sea anemones and other

cnidarians (Moore et al. 1994; Berge unpublished

data).

Annelida

A relatively diverse fauna of annelids was recorded

from the two vent areas, and a total of 53 taxa (23

families) were recorded. Several taxa are only

represented by fragments, making exact identifica-

tion difficult, and this partly explains why only about

60% of the recorded taxa were identified to species

level. The material also contains species (e.g. Macro-T
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Figure 3. A. White smokers on the Soria Moria vent field. B. Chimneys covered by a dense mat of Beggiatoa-like bacteria. B’. A juvenile of

Skenea sp. from the bacterial mats. Note the filamentous bacteria growing on the shell. C. Typical vertical rocky surface just some meters

away from the chimneys. These surfaces are covered by large anthozoans (Hormathia sp. (h) and others), several species of cladorhizid

sponges (cl) and the hydroid Corymorpha groenlandica (co). D. The crinoid Heliometra glacialis form dense aggregations surrounding the vent

fields. E. Unidentified cladorhizid sponge found growing directly on a smoker. F. Sycon abyssale, one of the calcareous sponges common in

the area. G. Corymorpha groenlandica (co) and a cladorhizid sponge (cl) hanging on a vertical surface. H. Rissoa cf. griegi without bacterial

filaments (SEM photo).

166 C. Schander et al.
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clymene sp. A and Euchone sp.) which are believed to

be undescribed.

The list of species shows strong similarities to the

polychaete fauna known from Jan Mayen (Bakken et

al. in press). Most of the species are also known from

other deep-sea and shelf areas in the Nordic seas. No

typical vent species were identified.

Mollusca

The molluscan fauna found in the vent area is an

assortment of bathyal species known in the area.

Rissoa cf. griegi is by far the most abundant species,

and was found on smokers, in the bacterial mats and

on the ferric deposits. The shell of this species was

commonly covered by threads of Beggiatoa-like

bacteria, indicating a close association with the

bacterial mats in the area. This or a similar species

has also been identified from woodfalls and seeps in

the North Atlantic (Warén unpublished).

Eight of the species collected around the vents

have not previously been recorded from the vicinity

of Jan Mayen (Friele 1878; Ockelmann 1958;

Gulliksen 1974a) (Alexandromenia sp., Anatoma

crispata, Onoba semicostata (probably drifted with

algae), Rugulina fragilis, Simrothiella margaritacea,

Skenea basistriata, Toledonia limnaeoides, Velutina

undata), while Anatoma crispata, Rissoa cf. griegi,

Skenea basistriata, Toledonia limnaeoides and Velutina

undata have been recorded from the Jan Mayen area

(Friele 1879; Sneli & Steinnes 1975; Sneli 1977;

Warén 1996; Brattegard 2000; Gulliksen et al. 1999,

2004; Palerud et al. 2004).

Echinodermata

The echinoderm fauna at the vent areas consists of

species common to the North Atlantic at similar

depths. None of the species seem to be related to the

vent environment or are known to harbor symbiotic

bacteria. Two ophiuroid species have not previously

been found at Jan Mayen: Ophiocten gracilis, a boreal

species, which otherwise has its northernmost dis-

tribution south of Greenland (Paterson et al. 1982),

and Amphioplus daleus, a widespread abyssal species.

The former is also by far the most numerous and

common echinoderm species at these vents. Outside

of the venting areas dense aggregations of Heliometra

glacialis and Gorgonocephalus eucnemis were found.

The echinoderms from Jan Mayen have previously

been studied by Skjæveland (1973).

Vertebrata

The fish species observed in the area seem to be more

or less typical cold-water northern species (Byrkjedal

& Høines 2007) such as Amblyraja hyperborea, Lycodes

reticulatus, Leptagonus decagonus and to some degree

also Macrourus berglax. Gaidropsarus argentatus is

more of a continental slope species known from a

zone around Norwegian Sea and Greenland Sea area

(Pethon 2005). Somewhat unexpected was a speci-

men of Ciliata septentrionalis, but this species is poorly

known both when it comes to biology and distribu-

tion. The closest record found in the literature is from

the east cost of Iceland (Cohen et al. 1990).

Discussion

Unlike other deep-sea vent fields, the Jan Mayen

fields do not support a high biomass of vent-endemic

fauna. No mussel beds or alvinocarid shrimps

characteristic for vent sites further south on the

Mid Atlantic Ridge (MAR) were found.

This distinguishes these fields from the vent fields

found south of the Azores. This difference may be

related to the fact that the Jan Mayen fields occur in

relatively shallow waters. At these depths penetration

of bathyal species may lead to impoverishment of

hydrothermal species, as has been observed when

going from the Lucky Strike field at 1700 m to the

Menez Gwen field at 850 m at the Azore platform

(Desbruyères et al. 2001). However, at Menes

Gwen � which is only 150 m deeper than the deepest

of the Jan Mayen vent fields � there is still a high

biomass of chemosynthetic organisms. Furthermore,

at newly discovered Western Pacific vent sites, vent

organisms thrive in much shallower waters, and 200 m

seems to be a critical depth above which ‘vent-

obligate’ animals do not exist (Tarasov et al. 2005).

Vent fluids discharging at relatively shallow depths

may, as a result of subsurface mineral precipitation,

have lost more of their reduced chemical species vital

for chemosynthetic life than their deeper-water

counterparts. Analyses of hydrothermal waters

sampled from the chimney orifices at the Jan Mayen

vent fields yielded H2S content up to 6 mmol/kg

(Pedersen et al. 2007). This is above the values

reported from Menez Gwen (Charlou et al. 2000),

and in the range observed at sites with a thriving vent

endemic fauna. Therefore, the vent fluids seem not

to lack the chemical energy needed to sustain a high

biomass of chemosynthetic fauna. This conclusion is

supported by the presence of a very visible microbial

biomass at the Jan Mayen vent fields. Dense micro-

bial mats with a diverse flora of sulfur and methane

oxidizing bacteria cover chimneys and large areas of

diffuse venting (Pedersen et al. 2005; Øvreås et al.

2007; Steinsbu et al. 2007). Specialized members of

diverse animal taxa are known to feed on this type of

bacterial mats (e.g. Bennett et al. 1994; Heptner &

Ivanenko 2002; Tarasov et al. 2005; Dahlgren et al.

2006). Thus, the low number of such specialized

Hydrothermal vent fauna 167
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fauna at the Mohn Ridge vents is unexpected and

requires further explanation.

It is obvious that there is little difference in faunal

composition between the surrounding waters and

the actual vent fields on the Mohn Ridge. All of the

studied animal groups show an assemblage very

similar to what is usually found at comparable

depths in the surrounding waters. The same is true

for the Kolbeinsey vents that were investigated by

Fricke et al. (1989). This clearly indicates that depth

may be a more important factor in this region than

the actual venting. However, a striking pattern is that

there are almost no faunal elements in common

between the Mohn Ridge vents and the Kolbeinsey

vents. The only hitherto reported species common

to both Kolbeinsey and Mohn vent areas is the

hydroid Corymorpha groenlandica (see Fricke et al.

1989), which is not an exclusive vent species, but

among the most prominent species in both regions.

As neither of the vent areas is fully investigated yet it

is likely, however, that additional faunal elements

common to both regions will be discovered.

Fricke et al. (1989) proposed that the barely

specialized fauna found at the Kolbeinsey vent area

represents a model for an early evolutionary step

towards the formation of a genuinely specialized vent

community. This is highly relevant to the Mohn vent

fauna as well. Furthermore, it has been proposed

that there is a general trend towards less specialized

fauna in shallower vent areas (Sahling et al. 2003;

Tarasov et al. 2005), which seems to be applicable

for most groups, but is not clear for the molluscs

(Sasaki et al. 2005). Absent or poorly developed vent

fauna communities are commonly reported from

many shallow vent areas (e.g. Kamenev et al. 1993;

Cardigos et al. 2005), but there is a number of fully

developed hydrothermal ecosystems that have been

found in shallow waters (e.g. Pansini et al. 2000;

Jeng et al. 2005; Sasaki et al. 2005). This indicates

that depth is but one of many factors influencing

hydrothermal vent communities.

Comparing the Mohn’s Ridge vent sites with the

MAR vent fields, little is found in common. The

sponge Asbestopluma pennatula is one of the few

species reported from both the Jan Mayen fields and

from the Lucky Strike site on the MAR (Des-

bruyères et al. 2001). The most abundant echino-

derm species at the MAR vents, in contrast, is

lacking at the Mohn Ridge sites. The brittle star

Ophioctenella acies is strongly related to reducing

environments in the North Atlantic, has not been

found shallower than 1600 m, reaches its greatest

densities at depths below 3000 m (Stöhr & Segonzac

2005), and is usually associated with beds of Bath-

ymodiolus spp. mussels, which are also absent on the

Mohn Ridge. Both the shallower depth and the

absence of mussel beds may account for the absence

of O. acies, but here the long distance between the

two areas, which are also part of different biogeo-

graphical regions, may most likely explain the

differences. It is also possible that geographic

barriers, such as Iceland and the Greenland�
Iceland�Faroe Ridge, prevent larvae from spreading

from the MAR to the northern areas, but we still

know very little about the amount of venting in the

northern part of the MAR.

Most interestingly the fauna of the Mohn Ridge

vent fields has more in common with the Haakon

Mosby seep fauna reported by Gebruk et al. (2003)

than with any of the other Atlantic vent field faunas.

The polychaetes Praxillura longissima, Glyphanosto-

mum pallecens, Melythasides laubieri, Telephus cincin-

natus and the gastropod Skenea basistriata occur both

at the Mohn Ridge and at the Haakon Mosby Mud

Volcano (Gebruk et al. 2003). Among the echino-

derms, the ophiuroid O. gracilis is as common at the

mud volcano as at the Mohn Ridge vents. However,

the fauna associated with the Haakon Mosby seep

was dominated by two species of symbiotrophic

pogonophorans, Sclerolinum contortum and Oligobra-

chia haakonmosbiensis, which are not found at the

Mohn Ridge.

The fauna similarities and exchange of species

may be explained by the small geographic distance

between the Mohn Ridge and the Haakon Mosby

mud volcano, the currents and the dominating water

masses. Even with the difference in depth (500�700

m compared to 1250 m), both sites are under the

influence of the same main water mass. The water

surrounding the Haakon Mosby volcano is domi-

nated by north-east Atlantic deep and intermediate

waters flowing northwards along the Norwegian

continental margin up to Svalbard. One branch of

this current flow to the NW following the ridge

between the Norwegian and Lofoten basins, and

then flows to the NE along the southern side of the

Mohns Ridge. In addition, some influence from

arctic intermediate waters flowing over the Mohns

Ridge from the Greenland Sea can be expected. The

species identified from the Haakon Mosby Mud

Volcano are included in Table II.

We can presently see several possible explanations

for the low abundance of endemic vent fauna at the

Mohn Ridge vent fields (Table III). It is obvious that

it is not a single factor that affects the current

composition of the fauna of the hydrothermal vent

fields on the northernmost Atlantic/Arctic mid

ocean ridge. During ROV dives in 2008 a number

of experiments, including incubators and a range of

different settling substrates, were placed at the vent

site and recovery of these will hopefully give us

additional information on which factors are most
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important in explaining the faunal composition at

these vents.
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