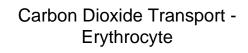
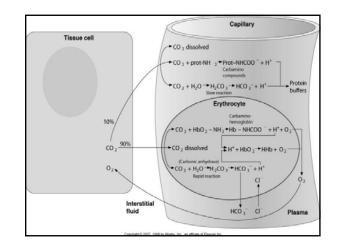
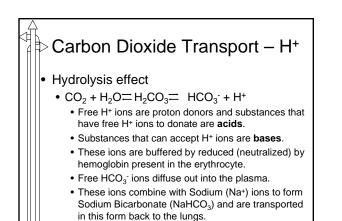
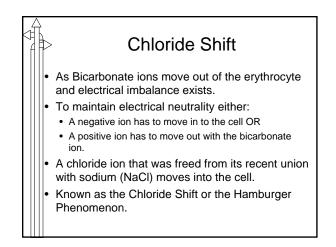

Module H: Carbon Dioxide Transport

Beachey – Ch 9 & 10 Egan – pp. 244-246, 281-284

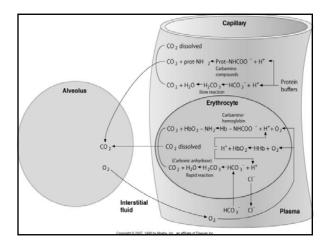


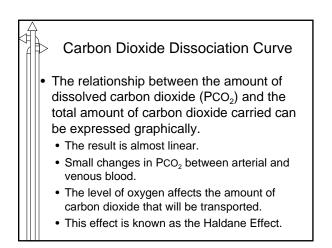

Hydrolysis of Water Carbon Dioxide and water combine in a process called hydrolysis. CO₂ + H₂O = H₂CO₃ = HCO₃⁻ + H⁺ H₂CO₃ is Carbonic Acid and is a very volatile acid. This process is normally very slow but is increased SIGNIFICANTLY in the presence of an enzyme called Carbonic Anhydrase.

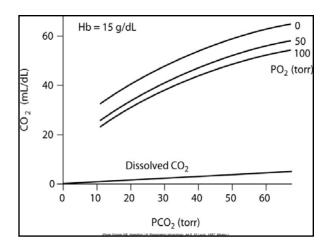

Carbon Dioxide Transport -Plasma

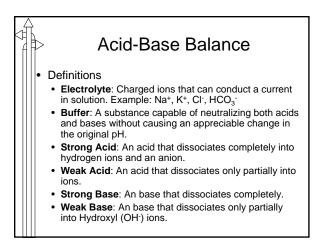

- 1% is bound to protein as a Carbamino compound.
- 5% is ionized as plasma bicarbonate (HCO₃⁻).
- 5% is dissolved in the plasma and carried as $Paco_2$ and P \dot{v} CO₂.
 - This value is directly proportional to the amount of Carbonic Acid (H₂CO₃) that is formed, and it is in equilibrium. You can convert the Paco₂ to H₂CO₃ by multiplying the Paco₂ by 0.03. This will express the Paco₂ in mEq/L instead of mmHg.

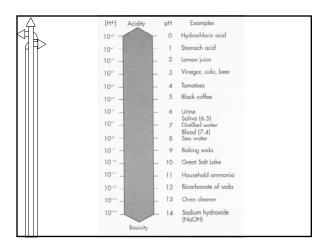
- 5% is dissolved in the intracellular fluid and carried as Paco₂.
- 21% is bound to a specific protein: Hemoglobin. It is then carried as a Carbamino-Hb.
- 63% is ionized as plasma bicarbonate (HCO₃⁻). This reaction is catalyzed by Carbonic Anhydrase, which is present in great quantities in the erythrocyte, but <u>not</u> in the plasma.

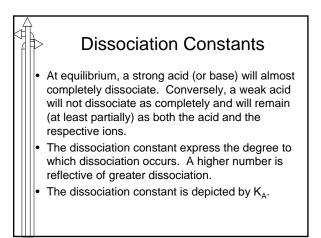



Ratio of HCO_3^- to $H_2CO_3^-$

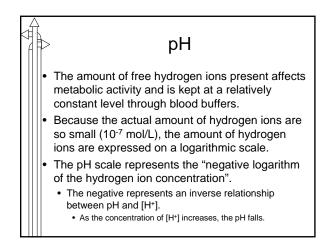

- The ratio of bicarbonate (HCO₃-) to Carbonic Acid (H₂CO₃) is maintained at a relatively constant level.
- The relationship between the two is at a ratio of **20:1**.
- This ratio keeps the pH in the normal range of 7.35 to 7.45.
- As the ratio increases, the pH rises and we say the blood becomes more alkaline. As the ratio falls, the pH falls, and we say the blood becomes more acidic.

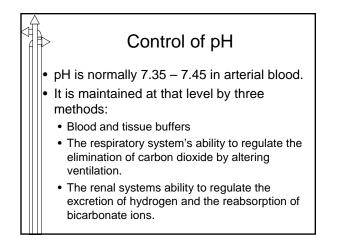

Carbon Dioxide Elimination The process of carbon dioxide transport is reversed at the lung. CO₂ is released from the hemoglobin in the erythrocyte. CO₂ is released from protein in the plasma. HCO₃ is converted back to CO₂ in the plasma.

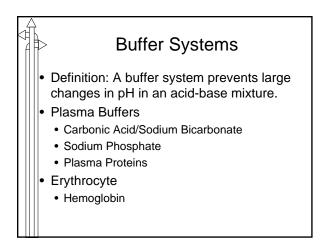

- HCO₃ is transported back to CO₂ in the plasma.
- (Chloride Shift) and is converted back into the erythocyte (Chloride Shift) and is converted back to CO_2 in the presence of Carbonic Anhydrase.
- The freed sodium ions join back up with chloride ions that have moved out into the plasma.

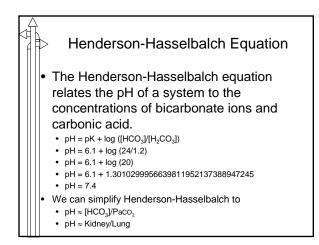


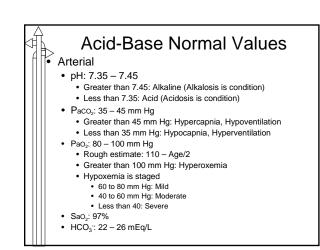


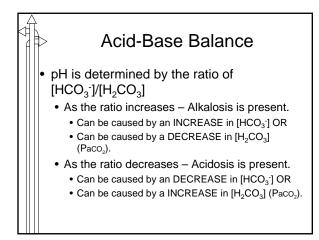


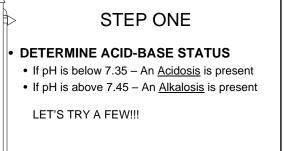


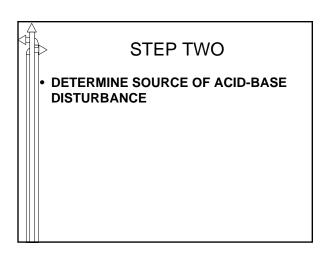


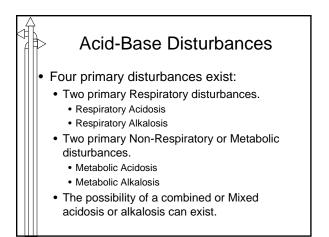


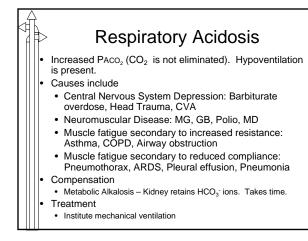






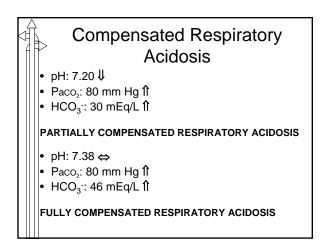


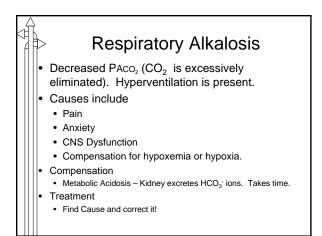




Example: Respiratory Acidosis

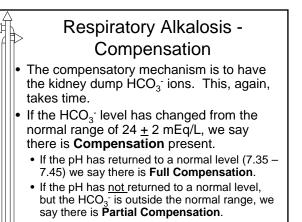
• pH: 7.10 ↓

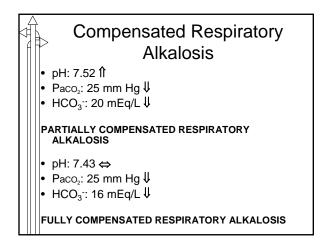

- Paco₂: 80 mm Hg **1**
- HCO₃⁻: 24 mEq/L ⇔

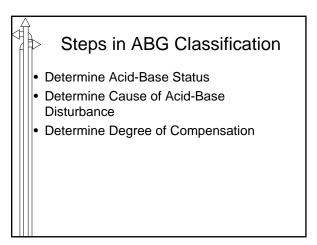

STEP THREE

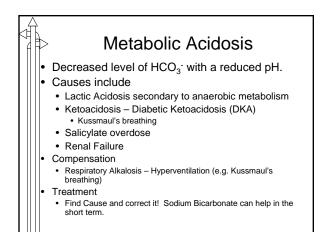
- DETERMINE IF COMPENSATORY MECHANISM IS PRESENT
 - Compensation can be "Partial" or "Full"
 - Over-compensation is rare.

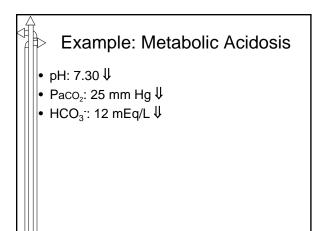
Respiratory Acidosis -Compensation The compensatory mechanism is to have the kidney retain HCO₃⁻ ions. This takes time. If the HCO₃⁻ level has changed from the normal range of 24 ± 2 mEq/L, we say there is Compensation present. If the pH has returned to a normal level (7.35 – 7.45) we say there is Full Compensation. If the pH has not returned to a normal level, but the HCO₃⁻ is outside the normal range, we


say there is **Partial Compensation**.

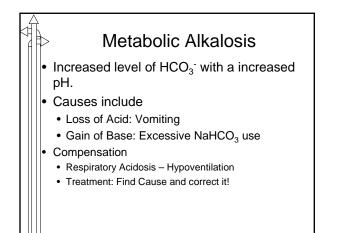





Example: Respiratory Alkalosis • pH: 7.60 ft

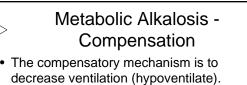

- Paco₂: 25 mm Hg ↓
- HCO₃⁻: 24 mEq/L ⇔

- The compensatory mechanism is to increase ventilation (hyperventilate).
- If the Paco₂ level has changed from the normal range of 35 – 45 mm Hg, we say there is **Compensation** present.
 - If the pH has returned to a normal level (35 45) we say there is **Full Compensation**.
 - If the pH has <u>not</u> returned to a normal level, but the Paco₂ is outside the normal range, we say there is **Partial Compensation**.

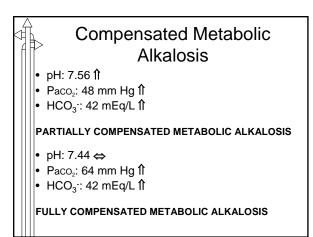

Compensated Metabolic Acidosis

- pH: 7.26 ↓
- Paco₂: 32 mm Hg ↓
- HCO₃⁻: 14 mEq/L ↓

PARTIALLY COMPENSATED METABOLIC ACIDOSIS


- pH: 7.39 ⇔
- Paco₂: 24 mm Hg **↓**
- HCO₃⁻: 14 mEq/L ↓

FULLY COMPENSATED METABOLIC ACIDOSIS



Example: Metabolic Alkalosis

- pH: 7.52 🏦
- Paco₂: 40 mm Hg ⇔
- HCO₃⁻: 32 mEq/L ↑

- If the Paco₂ level has changed from the normal range of 35 45 mm Hg, we say there is **Compensation** present.
 - If the pH has returned to a normal level (35 45) we say there is **Full Compensation**.
 - If the pH has <u>not</u> returned to a normal level, but the Paco₂ is outside the normal range, we say there is **Partial Compensation**.

PRACTICE

- Program in Computer Lab
- CAUTION! The normal value for HCO₃- is 22 to 28 mEq/L.
- Random Generator on <u>www.macomb-</u> <u>rspt.com</u>
 - May require an adjustment to MS Excel.
- ..\..\RSPT 2350\pH Tool RANDOM GENERATOR.xls