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Raman Spectroscopy and Chemometrics for Identification and Strain
Discrimination of the Wine Spoilage Yeasts Saccharomyces cerevisiae,
Zygosaccharomyces bailii, and Brettanomyces bruxellensis

Susan B. Rodriguez,a Mark A. Thornton,b Roy J. Thorntona

Department of Enology and Viticulture, California State University, Fresno, Fresno, California, USAa; Department of Psychology, Harvard University, Cambridge,
Massachusetts, USAb

The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevi-
siae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemomet-
ric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts.
Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were clas-
sified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Further-
more, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the
strain level with an overall accuracy of 81.8%.

Wines that develop defects result in reduced revenues for wine
companies due to expensive ameliorative treatments,

blending, or downgrading. The yeasts Zygosaccharomyces bailii,
Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and
Saccharomyces cerevisiae are responsible for the vast majority of
spoilage of aging and packaged wine (1). For forensic reasons, i.e.,
to identify the source(s) of these yeasts, it is important to differ-
entiate B. bruxellensis and Z. bailii from the yeast that is used to
conduct the alcoholic fermentation, S. cerevisiae.

B. bruxellensis is commonly associated with red wines that have
contact with oak barrels during aging (2). B. bruxellensis can alter
wine aroma through production of volatile phenol compounds.
Some winemakers consider the alteration to be a desirable in-
crease in wine complexity, while others view it as spoilage, using
descriptors such as “barnyard” and “Band-Aid” (3). The physio-
logical diversity of this species complicates this situation further
(2). Classification at the strain level for B. bruxellensis is important,
as there is much debate in the wine industry regarding “good” and
“bad” strains of B. bruxellensis, possibly the result of the diversity
of ploidy and chromosome number in B. bruxellensis strains (4, 5).
Many wineries, as part of their quality assurance/quality control
(QA/QC) programs, implement a barrel-sampling schedule to de-
tect B. bruxellensis. This QA/QC measure involves plating wine
samples on yeast-mold (YM) or Wallerstein Laboratories nutrient
(WLN) agar medium. Any colonies that grow on these plates must
be identified to determine the spoilage potential. Differential me-
dia containing cycloheximide can be used to select for Brettano-
myces; however, strains of other wine yeasts are also cycloheximide
resistant, e.g., Hanseniaspora spp., and this yeast is morphologi-
cally similar to B. bruxellensis.

Winemakers may produce wines with increased levels of resid-
ual sugar for those consumers who dislike dry wines, increasing
the probability of refermentation of the packaged wine. Arresting
fermentations to leave sufficient residual sugar is very costly, in-
volving the use of centrifugation and refrigeration. Thus, wineries
often purchase grape juice concentrate to add to dry wines prior to
bottling to increase residual sugar levels. Z. bailii is a common
contaminant of fruit juice concentrates since it is an extremely

osmotolerant yeast that is able to grow in up to 72% (wt/vol)
glucose (6). Z. bailii is very ethanol tolerant (up to 20%, vol/vol)
and very resistant to weak acid preservatives used in the food and
beverage industries, such as sorbic acid (up to 575 mg liter�1), the
sterilant dimethyl dicarbonate (up to 300 mg liter�1), and high
levels of SO2 (3 mg liter�1, molecular) (6). Z. bailii is probably the
most serious spoilage yeast in wineries and in juice and concen-
trate plants, causing substantial loss of profits in these industries
(1). Substantial quality control efforts in wineries are directed at
monitoring concentrate tanks and bottling lines for the presence
of Z. bailii, since as little as one Z. bailii cell can result in refermen-
tation of a bottle of sweet wine, causing turbidity, gassiness, and
high levels of acetic acid (7).

S. cerevisiae also poses a spoilage threat for sweet wines. Many
commercial S. cerevisiae strains have been selected for their etha-
nol tolerance so that high-alcohol wines can be produced with a
reduced probability of stuck or sluggish fermentations. These
strains are capable of spoiling sweet wine by initiating a secondary
fermentation.

Winery QA/QC programs track wine from the storage tank to
the bottle. Samples from a wide range of critical sites, including
bottles off the bottling line, are plated on agar media (8). Identi-
fication of yeast colonies on these plates is laborious and time-
consuming or expensive (if samples are sent to a laboratory for
DNA-based identification) and thus is rarely done. Action is taken
on the basis of the number of yeast colonies. Packaged wine in
which an unacceptable level of yeast colonies have been found is
put on extended hold in the warehouse until it has cleared further
microbiological testing. Alternatively, the wine may be dumped,
refiltered, and rebottled. A delay on the supply chain is a source of

Received 10 June 2013 Accepted 30 July 2013

Published ahead of print 2 August 2013

Address correspondence to Susan B. Rodriguez, susanr@csufresno.edu.

Copyright © 2013, American Society for Microbiology. All Rights Reserved.

doi:10.1128/AEM.01886-13

6264 aem.asm.org Applied and Environmental Microbiology p. 6264–6270 October 2013 Volume 79 Number 20

 on M
ay 31, 2014 by H

arvard Library
http://aem

.asm
.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1128/AEM.01886-13
http://aem.asm.org
http://aem.asm.org/


economic loss. A method which could provide accurate, rapid
identification of S. cerevisiae, Z. bailii, and B. bruxellensis would
allow the swift implementation of remedial measures, averting
economic loss due to spoilage.

In the present study, we used Raman spectroscopy and high-
dimensional chemometric analysis to develop a method for iden-
tifying the three major wine spoilage yeasts. Raman spectroscopy
detects slight differences in the frequency of rare photons of inci-
dent light (approximately 1 in 107) inelastically scattered by mol-
ecules, as opposed to the elastically scattered photons that make
up the majority of incident photons. These photons have gained
or lost energy in the midinfrared range by interacting with bonds
in a compound. Functional groups of biomolecules, such as pro-
teins, lipids, carbohydrates, and nucleic acids, e.g., COC, COH,
and CAO stretching bonds and HOCOH bending bonds, can be
detected as bands in Raman spectra. Whole cells represent a com-
plex mixture of compounds, and the fingerprints (FPs) of all the
molecules are superimposed in a Raman spectrum (9). In this
case, a statistical approach is needed to interpret the data. One
major area of new application of Raman spectroscopy is the iden-
tification of microorganisms. Most of the microbial work has been
done with medically important isolates, e.g., urinary tract infec-
tion isolates, Escherichia coli, Klebsiella pneumoniae, and Proteus
spp., which have been classified with over 94% accuracy (10), and
Candida spp. from peritonitis patients, which have been classified
with 90% accuracy (11). Raman spectroscopy has been used to a
lesser extent to differentiate species of food microorganisms, spe-
cifically, lactic acid bacteria found in yogurt, Lactobacillus aci-
dophilus, L. delbrueckii, and Streptococcus thermophilus (12), and
in kefir, L. kefir, L. parakefir, and L. brevis (13).

A major advantage of the use of Raman spectroscopy for yeast
identification is the low cost. The cost of a Raman spectrometer
similar to the one used in this study is approximately the same as
that of a PCR thermal cycler. Raman sample preparation involves
suspending colonies in phosphate-buffered saline (PBS) and cen-
trifuging. As opposed to DNA-based molecular techniques, no
chemical reagents, water baths, freezers, etc., are required. Glass
cuvettes, microcentrifuge tubes, pipette tips, and PBS are the only
consumables required. Turbidity adjustments of yeast suspen-
sions or exact sample volumes are not required. The presence of
microorganisms or DNA in the laboratory environment is not a
concern in Raman spectroscopy, as it can be in PCR-based assays.

The Raman spectroscopy assay described in this paper is also
very rapid: sample preparation, instrument calibration, reading of
the sample, and analysis of imported spectra can be done in 10 to

15 min, enabling rapid identification of yeast from colonies on
agar plates. DNA-based molecular techniques take 4 to 5 h; how-
ever, some of these techniques, such as those involving Scorpions,
can be done directly from wine, obviating the need to culture wine
samples.

The major advantage of the Raman-based identification tech-
nique is that highly accurate strain identification is possible. Tra-
ditional morphological and physiological tests cannot differenti-
ate among strains. Strain differentiation by molecular techniques,
if possible, takes substantially longer than the species-level identi-
fication.

MATERIALS AND METHODS
Yeast strains and culture conditions. The yeast strains employed in this
study are listed in Table 1. Yeasts were stored at �20°C in Pro-Lab Diag-
nostics Microbank vials containing cryoprotectant (Austin, TX). Strains
were grown from a Microbank bead on Difco YM agar (Becton, Dickin-
son, Sparks, MD) plates at 30°C. Twenty-four subcultures were streaked
from each bead plate. Subculture plates were incubated at 30°C for 48 h
for S. cerevisiae and Z. bailii. Plates of B. bruxellensis required 72 h of
incubation to reach the same level of growth.

Raman spectroscopy. A loopful of cell mass from a subculture was
mixed in 1.5 ml filtered PBS (pH 7.4; Santa Cruz Biotechnology, Santa
Cruz, CA) in 1.7-ml microcentrifuge tubes. The suspension was centri-
fuged at 6,708 � g for 3 min. Cell pellets were resuspended in 1.5 ml PBS
in 1.7-ml microcentrifuge tubes. The turbidity of the suspensions was not
adjusted. One milliliter of suspension was pipetted into a VWR shell vial
(Radnor, PA), which was placed in the cell holder of a DeltaNu Advantage
532 Raman spectrometer (DeltaNu, Laramie, WY) with a frequency-dou-
bled neodymium-doped yttrium aluminum garnet laser emitting at 532
nm and a spot diameter of 35 �m. Medium power (30 mW) was used.
Each day, prior to running of samples, the spectrometer was calibrated
using a polystyrene standard. Cyclohexane was run prior to running of the
samples to check the baseline and peaks. The sample holder was covered
with optical cloth after the cuvette was inserted into the cell holder to
exclude extraneous light. Spectra were acquired for each sample over a
Stokes Raman shift range of 3,400 to 200 cm�1 with a 15-cm�1 resolution.
The low-resolution setting was used to optimize the signal to noise in the
spectra. Ten spectra, each with a 5-s integration time, were collected and
averaged for each of the 24 subcultures of each strain. The averaged spec-
tra were exported from the DeltaNu control software as GRAMS files. A
total of 432 spectra were collected.

Preprocessing. Preprocessing and classification were completed using
the statistical computing language R (14). Several stages of preprocessing
were undertaken in order to maximize the ability to discriminate the yeast
samples. First, an automated polynomial subtraction method (15) was
used to remove the background fluorescence present due to the biological
nature of the samples. In this method, a fifth-order polynomial was re-

TABLE 1 Yeast strains used in this study

Species Strains

Zygosaccharomyces bailii Z. bailii CBS 749,a Z. bailii CBS 1170,a Z. bailii CBS 4688,a Z. bailii IGC 4269,a Z. bailii IGC 4806,a Z. bailii Phaff 68-113b

Brettanomyces bruxellensis B. bruxellensis CBS 2499,a B. bruxellensis CBS 4459,a B. bruxellensis Vin1(1),a B. bruxellensis Vin8(A),a B. bruxellensis ETS
11,c B. bruxellensis ETS 159c

Saccharomyces cerevisiae S. cerevisiae UCD 522,a S. cerevisiae UCD 595,a S. cerevisiae Maurivin PDM,d S. cerevisiae Enoferm CSM,e S. cerevisiae
Nobleferm,f S. cerevisiae VL3cg

a Viticulture Enology Research Center (VERC) Culture Collection, California State University, Fresno, CA.
b Herman J. Phaff Culture Collection, University of California, Davis, CA.
c ETS Laboratories, Napa, CA.
d Mauri Yeast Australia, Toowoomba, QLD, Australia.
e Lallemand, Montreal, QC, Canada.
f Chr Hansen, Horsholm, Denmark.
g Laffort, Bordeaux Cedex, France.
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peatedly fit with least squares to the Raman spectrum of each sample. On
each iteration of the algorithm, a new data curve was formed by taking a
wavelength-wise minimum of the previous data curve and the polyno-
mial. Convergence was reached, and the algorithm was terminated when-
ever the number of data points below the polynomial did not change from
one iteration to the next. At this point, the final polynomial curve was
subtracted from the original sample spectrum to produce the fluores-
cence-corrected sample spectrum.

The second stage of preprocessing consisted of normalizing wave-
lengths using a standard normal variate (SNV) transform of each variable.
This process scaled all variables so that they had a mean of 0 and a standard
deviation of 1 and would thus be equally weighted in subsequent analyses.
The final stage of preprocessing consisted of multivariate outlier removal
through principal component analysis (PCA). Scores were calculated for
each sample on all principal components with eigenvalues greater than 1
(16). The Mahalanobis distance of each sample from the mean spectra was
calculated on the basis of these scores, and samples with a distance 3
standard deviations greater than the mean distance were eliminated as
outliers. This process resulted in the elimination of four samples.

Classification. Classification of samples was performed with a one-
against-one multiclass linear support vector machine (SVM) classifier
from the LIBSVM extension in R (17, 18). The SVM classifier is a type of
classifier that functions by maximizing the margin between the hyper-
plane dividing two classes and the nearest examples of each class. The
relative insensitivity of this type of classifier to nonmarginal cases allows it
to deal with high-dimensionality data with minimal overfitting and no
need for dimensionality reduction as in linear discriminant analysis. SVM
classifiers have previously been used to great effect in classifying lactic acid
bacteria on the basis of Raman spectra (12). In the present case, each strain

of yeast was treated as a separate class, for a total of 18 classes. Full leave-
one-sample-out cross-validation was employed to assess the performance
of the model in terms of generalization accuracy.

RESULTS AND DISCUSSION

The aim of this study was to determine if the Raman spectra of
wine spoilage yeasts grown on YM agar could be used to obtain an
accurate prediction of their identity. The spectra, an average of
144 per species with outliers and fluorescence contribution re-
moved, were very similar for the three yeast species (Fig. 1). Sig-
nificant differences among the three species were observed when
the SNV transforms of the spectra were compared (Fig. 2). Simi-
larly significant differences among the strains of each of the three
species were observed (Fig. 3).

Overall, the SVM classifier achieved very high performance
across all classes using the entire spectrum, 3,400 to 200 cm�1.
Accuracy was 94.9% at the species level and 81.8% overall at the
strain level (Table 2). Chance classifier performance was approx-
imately 33.3% at the species level and 5.6% at the strain level, and
binomial tests confirmed the statistical significance of the ob-
served accuracies (P � 0.001). These results also supported our
choice of preprocessing techniques. An alternative approach using
dimensionality reduction through PCA combined with feature
selection through analysis of variance produced a substantially
lower overall classification accuracy at the strain level with both
linear discrimination analysis (72.7%) and linear SVM classifica-
tion (68.2%).

FIG 1 Raman spectra of the three yeast species after fluorescence subtraction. Each spectrum resulted from the averaging of the spectra for 24 samples of six
strains (spectra for 4 outlier samples were removed). The spectra have been offset vertically on the intensity axis for clarity.

FIG 2 Raman spectra of the three yeasts after fluorescence subtraction and standard normal variate transformation of each wave number. The width of the
shaded area around each spectrum indicates the 95% confidence interval for the mean spectrum of that species.
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Sensitivity and PPV. The sensitivity and positive predictive
value (PPV) for each class are reported in Table 2. Sensitivity in-
dicates the proportion of samples in a class (144 samples per spe-
cies class and 24 samples per strain class) that were accurately
classified. PPV indicates the proportion of samples classified as a
certain class that actually belong to that class. Other class-specific
performance metrics, such as accuracy, specificity, and negative
predictive value, are highly dependent on overall performance and
thus of little diagnostic value, due to the large number of classes in
the analysis.

In the full validation confusion matrix, the strain intersection
boxes show the number of samples of a yeast strain correctly clas-
sified (Table 3). For example, in the first row, one can observe that
23 of the 24 S. cerevisiae PDM samples were correctly classified as

PDM. One of the samples was incorrectly classified as S. cerevisiae
VL3c. Thus, the S. cerevisiae PDM sensitivity is 23/24, or 0.958.
Although 24 samples were classified as S. cerevisiae PDM (column
in Table 3), 1 of these was a VL3c sample incorrectly classified as
PDM. Thus, S. cerevisiae PDM has a PPV of 0.958.

The confusion matrix reflects that there were few between-
species errors: 5% for all the strains (Table 3). A disproportionate
number (64.3%) of within-species errors was found in Z. bailii.
Five of the six Z. bailii strains had within-species misclassified
samples.

Spectral regions. A region of the Raman spectrum (1,800 to
200 cm�1) is called the fingerprint (FP) region due to bonds of
many important biomolecules that can be detected there. Sugars
and polysaccharides are detected by multiple bands in the 1,200-

FIG 3 Raman spectra with outliers removed. Spectra were averaged, fluorescence was subtracted, and wave numbers were SNV transformed. Shaded areas
indicate 95% confidence intervals. Raman spectra for six S. cerevisiae strains (A), six Z. bailii strains (B), and six B. bruxellensis strains (C) are shown.
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to 300-cm�1 region. Amide I and amide II bands of peptides and
proteins are detected at ca. 1,650 and 1,550 cm�1, respectively.
The vibration for the CAO stretching bond of lipids is detected at
ca. 1,740 cm�1. DNA and RNA are detected at ca. 1,300 cm�1.

Bands for phospholipids are found in the 1,500- to 1,200-cm�1

region. The FP region is commonly used for bacterial identifica-
tion and human tissue characterization. Within the FP region, the
three yeast species differed significantly (P � 0.05, uncorrected for
multiple comparisons) in most of the 1,700- to 1,000-cm�1 range
(Fig. 2). In two of the carbohydrate absorption regions, two of the
yeasts were differentiated from the third: B. bruxellensis from Z.
bailii and S. cerevisiae in the 500- to 200-cm�1 region and Z. bailii
from S. cerevisiae and B. bruxellensis and in the 900- to 500-cm�1

region (Fig. 2).
Information from the high-wave-number (HW) region (3,400

to 2,400 cm�1) has not typically been used in characterization of
biological matter; however, recently, medical diagnosis research
has found valuable information in this region (19). The COH
stretching modes of lipids and proteins are detected in the 3,100-
to 2,800-cm�1 range. Within the HW region, the three yeast spe-
cies differed significantly (P � 0.05, uncorrected for multiple
comparisons) in the 2,800- to 2,200-cm�1 range (Fig. 2). The in-
tensity of the band at ca. 3,010 cm�1 has been used to correlate
with the degree of unsaturation of fatty acids. The ratio of unsat-
urated to saturated fatty acids of yeasts grown in the presence of
ethanol has been implicated in ethanol tolerance (20). The inten-
sities for S. cerevisiae and B. bruxellensis in this region are very
similar and significantly higher than that of Z. bailii (Fig. 2). How-
ever, all three yeast species are extremely ethanol tolerant. Ethanol
tolerance may be further understood by study of this membrane-
rich region in spectra of yeasts sampled during fermentation.

When classification performance at the strain level was studied
as a function of spectral regions, we found that the performance
with the full spectrum, 81.8%, was better than the performance

TABLE 2 Sensitivities and PPVs for yeast SVM classification

Yeast species or strain Sensitivity PPV

Yeast species
S. cerevisiae 0.986 0.940
Z. bailii 0.938 0.958
B. bruxellensis 0.923 0.949

Strains
S. cerevisiae PDM 0.958 0.958
S. cerevisiae CSM 0.826 0.731
S. cerevisiae Nobleferm 0.913 0.913
S. cerevisiae UCD 522 0.958 0.920
S. cerevisiae UCD 595 0.958 0.821
S. cerevisiae VL3c 0.875 0.913
Z. bailii CBS 749 0.667 0.640
Z. bailii CBS 1170 0.792 0.792
Z. bailii CBS 4688 0.583 0.609
Z. bailii IGC 4269 0.792 0.826
Z. bailii IGC 4806 0.542 0.565
Z. bailii Phaff 68-113 0.750 0.783
B. bruxellensis CBS 2499 1.000 1.000
B. bruxellensis CBS 4459 0.833 0.800
B. bruxellensis ETS 11 0.870 0.952
B. bruxellensis ETS 159 0.833 0.769
B. bruxellensis Vin1(1) 0.875 0.840
B. bruxellensis Vin8(A) 0.696 0.941

TABLE 3 Validation confusion matrix from SVM classification
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S. cerevisiae PDM 23 1
S. cerevisiae CSM 19 2 1 1
S. cerevisiae Nobleferm 1 21 1
S. cerevisiae UCD 522 1 23
S. cerevisiae UCD 595 1 23
S. cerevisiae VL3c 1 2 21
Z. bailii CBS 749 16 3 4 1
Z. bailii CBS 1170 19 2 1 2
Z. bailii CBS 4688 1 3 1 14 3 2
Z. bailii IGC 4269 3 19 1 1
Z. bailii IGC 4806 6 1 4 13
Z. bailii Phaff 68-113 2 1 18 1 2
B. bruxellensis CBS 2499 24
B. bruxellensis CBS 4459 1 20 2 1
B. bruxellensis ETS 11 1 2 20
B. bruxellensis ETS 159 4 20
B. bruxellensis Vin1(1) 1 2 21
B. bruxellensis Vin8(A) 1 1 1 1 3 16
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with the HW region removed, 77.3% (P � 0.017), suggesting that
the HW region does contribute unique information to the overall
classification accuracy of the yeast strains. However, the perfor-
mance with wave numbers 200 to 2,400 cm�1 (77.3%) was signif-
icantly better than the performance with just the FP region, 73.1%
(P � 0.001), suggesting that the 1,800- to 2,400-cm�1 region also
contributes to strain classification accuracy over and above that
achieved with the fingerprint area. The performance with the HW
region, 67.1%, was significantly worse than the performance with
the FP region, 73.1% (P � 0.027).

Z. bailii strains did not differ significantly across the FP region,
with the exception of strain Phaff 68-113, which differed signifi-
cantly from the other five strains across most of the spectrum.
More heterogeneity was evident among strains of S. cerevisiae and
B. bruxellensis in the FP region (Fig. 3). B. bruxellensis strains were
divided into two groups in the 1,000- to 200-cm�1 region, where
carbohydrates and proteins are detected. In the HW region, S.
cerevisiae strains were differentiated in the 2,700- to 2,400-cm�1

range, and the B. bruxellensis strains were differentiated in the
3,400- to 2,900-cm�1 range.

Z. bailii is a poorly characterized yeast, with the exception of its
wide-ranging chemical resistances. Its genome has not been se-
quenced, and some believe that it is a heterothallic haploid (8), but
others believe that it is a diploid that conjugates and undergoes
mitotic sporulation (21). The strain confusion in Z. bailii ob-
served by the Raman spectra (Table 3) could be the result of the
major biochemical changes associated with conjugation and
mitotic spore formation. In this study, conjugation was observed
in all Z. bailii strains within a week’s incubation on YM agar. In a
study of carbon source assimilation and oxidation (Biolog micro-
plates), seven Z. bailii strains were correctly identified only 50% of
the time, whereas seven S. cerevisiae and seven B. bruxellensis
strains were correctly identified 100% of the time (22). In another
study, four Z. bailii strains were spread across three classes of
spoilage yeasts on the basis of the variable growth on pantothe-
nate-free and lysine media (23). In our study, although the species
identification of Z. bailii by SVM classification was very high (sen-
sitivity, 0.938), strain differentiation was the least sensitive for Z.
bailii strains at 68.8%, as opposed to 91.5% for S. cerevisiae and
85.1% for B. bruxellensis. Thus, Z. bailii strains appear very differ-
ent from S. cerevisiae and B. bruxellensis strains by Raman spec-
troscopy, but strains of this yeast appear to be more similar to each
other than do strains of the other two yeast species. Strain identi-
fication, however, is the least important for this yeast, since any Z.
bailii organism isolated from bottled wine would be considered a
threat regardless of the strain.

The widespread diversity of B. bruxellensis strains in terms of
physiology and morphologically is well documented. In this study,
strain Vin8(A) was selected for its extensive pseudomycelial
growth compared to that of the other strains. Strain ETS 159 was
selected as a high 4-ethyl guaiacol producer rather than a 4-ethyl
phenol producer. The genetic diversity of this yeast is also being
demonstrated. The chromosome number of 30 B. bruxellensis
strains was found to vary from four to nine (5). Eight genotypes
were discovered in a study of 244 B. bruxellensis strains collected
from 31 Australian wine regions (24). Recently, the genome of a B.
bruxellensis wine isolate, AWRI 1499, was sequenced (4). This
yeast is reportedly a heterozygous triploid. Another wine isolate
which has been sequenced, CBS 2499 (25), was the only strain of
the 18 in this study to be identified with 100% accuracy (Table 3).

S. cerevisiae wine strains are homothallic diploids, polyploids,
or aneuploids with very low levels of heterozygosity. These strains
typically require the standard method of growth on rich medium,
such as glucose nutrient agar (GNA), followed by starvation on
potassium acetate agar (PA) to induce meiotic sporulation. Many
strains require repeated rounds to induce significant sporulation
(26). In this study, CSM was the only S. cerevisiae strain observed
to sporulate on YM agar. This characteristic may be associated
with the difference in the width of the 95% confidence interval for
this yeast’s spectrum, especially in the polysaccharide region
(Fig. 3).

The difficulty in discriminating between and identifying fer-
mentation yeast strains in wine populations has hampered mon-
itoring of the fermentation kinetics of S. cerevisiae inocula in grape
must. Six S. cerevisiae wine yeasts were identified by this Raman
spectroscopy assay at a sensitivity averaging 91.5%, indicating the
assay’s potential as a tool to track the fate of inoculated strains
through fermentation.

In this study, the Raman spectra of Z. bailii, B. bruxellensis, and
S. cerevisiae strains differed sufficiently that highly accurate classi-
fication at the species and strain levels were obtained using an
SVM classifier. This discrimination, combined with the ease, ra-
pidity, and low running costs of this assay, has the potential to
provide a significant improvement in the ability of QA/QC per-
sonnel in wineries to identify yeast colonies isolated from wine
samples.
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