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We describe growth majorants of subharmonic in R™ (m > 2) functions. To do this, we
exceptionally reduce the problem to problems in the theory of positive monotonous functions.

1O. C. TIponpik, 4. B. Bacunbkus. O wmastcopanmax pocma cybzapmoruseckur Gyrnkyud //
Mart. Crynii. — 2011. — T.36, Nel. — C.73-76.

Omnncanbl MayKOpaHTHI pocTa cybrapMorndeckux B R (m > 2) dyuxmuit. [Tpu sTom 1po-
6JieMa, UCCIIEIOBAHUS MAayKOPAHT POCTa CBEIEHA UCKJIIOYUTENBHO K 3aJadaM U3 TEOPHU IIO0JIO-
JKUTEIbHBIX MOHOTOHHBIX (DYHKITHIA.

1. Introduction. Statements of the main results. This communication should be consi-
dered as an addition to [1]. So, we follow the notation from [1]. Recall the following definitions
briefly.

Let A be a nonnegative, continuous, nondecreasing, and unbounded function on (0, +00),
named the growth function and A(0) = 0. The set of nonnegative Borel measures p in
R™ (m > 2), 0 ¢ supp p, such that N(r,pn) < aX(br) for some a,b > 0 and all » > 0 is
denoted by M7Y'. Here

T

(m —2) [ n(t; wt'—"dt, m>3;

N(rsp) =< + 0 ntp) =p{y: [yl <t}).
[ n(t; p)ttdt, m=2;

By S{* we denote the set of subharmonic functions v in R™ (m > 2), u(0) = 0 whose
Riesz measure j,, belongs to MY

Definition 1. Let A be a growth function. A §-subharmonic function w in R™ (m > 2),
w(0) =0, 0 & supp py, is said to be a function of finite A-type if there are constants a and
b such that T'(r,w) < aA(br) for all » > 0, where T'(r,w) is the Nevanlinna characteristic of
w [2].

The class of such functions is denoted by AJ*()A), and by AZ(\) we denote the subclass
of subharmonic functions of finite A-type.
We recall the following definitions from [1].
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Definition 2. A class AJ*(\) admits a canonical representation if each function w from
A (M) can be represented as a difference w = w — v of subharmonic functions u,v from
AZ()) such that p, = puf, p, = u,. Here uf), p,, are positive and negative variations of the
Riesz measure fu,,.

Definition 3. A growth function X is called a growth magjorant for SY* if for an arbitrary
measure £ from MY there exists a subharmonic function u from A%(\) such that p, = pu.

Definition 4. A growth function \ is called a minimal growth magjorant for SY' if it is a
growth majorant and for each growth majorant A for SV there exist constants a,b > 0 such
that A(r) < aA(br) for all r > 0.

The following results were obtained in [1].

Theorem A. Let A be a growth function such that the function v *X(r) (m > 2) is
nondecreasing on (0,400), where X (r) denotes the right-hand derivative.

i) A7'(X\) admits a canonical representation if and only if X is the minimal growth majorant
for SY';

ii) A is the minimal growth majorant for SY' if and only if

f&dt < ak’ (A(b“) + A(bm) ,  keN (1)

k+1 k k
t ry Ty

T1

for some a, b, | and for arbitrary ri, 79, such that 0 < ry < rs.

Lemma B. Let m € NN [2,+00). If a growth function A(r) is such that the function
r™IN(r) (m > 2) is nondecreasing on (0, +00) and \(r) is a growth majorant for S, then

1. M) < aX(br) for some a,b > 0 and all > 0;

2. each function w from AJ*(\) is representable as a difference w = u — v of subharmonic
functions u,v from A% () such that p, = pt, e, = p,.

From Theorem A it follows that for an arbitrary growth function A the class AJ*(\) need
not admit a canonical representation. Lemma B lets us to set a more general statement on
solvability of the problem on a canonical representation. The following theorem describes
the growth majorants.

Theorem 1. Let A be a growth function such that function 7™ X (r) (m > 2) is nondecrea-
sing on (0, 400). Then a growth function X is a growth majorant for SY* if and only if

2

/&dt < ak! <X(brl) + X(bm)) , keN (2)

k+1 k k
t ry Ty
T1

for some a, b, | and for arbitrary ri, 19, such that 0 < r; < rs.

The proof of this theorem is similar (mutatis mutandis) to that of Theorem A so, we
omitted it.
The following result follows from Theorem 1.
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Theorem 2. Let A be a growth function such that function r™~*X(r) (m > 2) is nondecrea-
sing on (0,+00) and q(t) is nondecreasing, positive, integer function such that the integral

+o0
f (f)q(t) @ dt is finite for any r > 0. Then the function

T

o= [ () M [ () 2 g

is the growth majorant for SY'.

2. Proof of Theorem 2. Let us show that A(r) from Theorem 1 satisfies condition (2).

Let {ny,ng,...,n;, ...}, n; € N be the set of values for the function ¢(t). Note that the
elements are placed in the ascending order. We set y; = inf{t: ¢(t) = n;}.

For arbitrary ry, ro (0 < 71 < 79), ¢ € N, we have (a) there exists n; € N such that
r1 < y; <19 or (b) such n; does not exist.

For the case (a), we have

T

/Z)j\k(fzd /tk-i—ldt Z 7 tk+1dt /tkgrzdt (4)

T1 U

where j = min{i € N: r <y;}, | = max{i € N: y; <ry}. Now we estimate the first
summand from the right-hand side of (4). For k > n;_;, we get

JECT I i R U FE EER P e R

1 1 1 1

AY) o L [ PA) 1 [ )
7“2 / 7‘2 Mi—1— /
——dt = — —=dt < — —=dt = — —=dt.
tk+1 / t % t &

1 T1

Therefore,

Yj
7’1 1 ro\ 2= ()
W - / dt+— (?) St (5)

71 7'1

As above, for the other integrals in the right-hand side of (4), we obtain

(-1
/tkﬂdt —/ (B)" =2 / (=) At )dt j<i<i—1,  (6)
T2 T2
M) 1 [ raya® 1 q(t) LAt )
/ ped < / (7) to / 2. (7)

Y Y
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Using (4)—(7), we get

i 17 (1) 1 (-1
/A(t)dm_k/(%)q AW gy L (2) @dts

tht1 = ph t rh t
T1 71 71
1 e At 17 (-1 \(t iy A
q q\t)—
<2 [ (™) QdH_k/(?“_z) (8) g < A1) 4 Alra)
ry t t ry t t ry ry
1 0

Similarly, for the case (b), we have

[ 17 () 17 (r)-1
/Mdtg_k/(%)q &dt—i-— (T_2>q @dt:

th+l ry t rh t
71 71 T1
17 0 At 1 (-1 A(t
q a(t)—
M [y s
rh t t rh t t
71 T1
L e A 17 (-1 A(t A h
q q(t)—
Ty t t ry t t ry ry
T1
Theorem 2 is proved.
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