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We describe growth majorants of subharmonic in Rm (m ≥ 2) functions. To do this, we
exceptionally reduce the problem to problems in the theory of positive monotonous functions.

Ю. С. Процык, Я. В. Василькив. О мажорантах роста субгармонических функций //
Мат. Студiї. – 2011. – Т.36, №1. – C.73–76.

Описаны мажоранты роста субгармонических в Rm (m ≥ 2) функций. При этом про-
блема исследования мажорант роста сведена исключительно к задачам из теории поло-
жительных монотонных функций.

1. Introduction. Statements of the main results. This communication should be consi-
dered as an addition to [1]. So, we follow the notation from [1]. Recall the following definitions
briefly.

Let λ be a nonnegative, continuous, nondecreasing, and unbounded function on (0,+∞),
named the growth function and λ(0) = 0. The set of nonnegative Borel measures µ in
Rm (m ≥ 2), 0 /∈ suppµ, such that N(r, µ) ≤ aλ(br) for some a, b > 0 and all r > 0 is
denoted byMm

λ . Here

N(r;µ) =


(m− 2)

r∫
0

n(t;µ)t1−mdt, m ≥ 3;

r∫
0

n(t;µ)t−1dt, m = 2;
n(t;µ) = µ ({y : |y| ≤ t}) .

By Smλ we denote the set of subharmonic functions u in Rm (m ≥ 2), u(0) = 0 whose
Riesz measure µu belongs toMm

λ .

Definition 1. Let λ be a growth function. A δ-subharmonic function w in Rm (m ≥ 2),
w(0) = 0, 0 /∈ suppµw, is said to be a function of finite λ-type if there are constants a and
b such that T (r, w) ≤ aλ(br) for all r > 0, where T (r, w) is the Nevanlinna characteristic of
w [2].

The class of such functions is denoted by Λm
δ (λ), and by Λm

S (λ) we denote the subclass
of subharmonic functions of finite λ-type.

We recall the following definitions from [1].
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Definition 2. A class Λm
δ (λ) admits a canonical representation if each function w from

Λm
δ (λ) can be represented as a difference w = u − v of subharmonic functions u, v from

Λm
S (λ) such that µu = µ+

w , µv = µ−w . Here µ+
w , µ

−
w are positive and negative variations of the

Riesz measure µw.

Definition 3. A growth function λ̃ is called a growth majorant for Smλ if for an arbitrary
measure µ fromMm

λ there exists a subharmonic function u from Λm
S (λ̃) such that µu = µ.

Definition 4. A growth function λ̂ is called a minimal growth majorant for Smλ if it is a
growth majorant and for each growth majorant λ̃ for Smλ there exist constants a, b > 0 such
that λ̂(r) ≤ aλ̃(br) for all r > 0.

The following results were obtained in [1].

Theorem A. Let λ be a growth function such that the function rm−1λ′(r) (m ≥ 2) is
nondecreasing on (0,+∞), where λ′(r) denotes the right-hand derivative.

i) Λm
δ (λ) admits a canonical representation if and only if λ is the minimal growth majorant

for Smλ ;

ii) λ is the minimal growth majorant for Smλ if and only if

r2∫
r1

λ(t)

tk+1
dt ≤ akl

(
λ(br1)

rk1
+
λ(br2)

rk2

)
, k ∈ N (1)

for some a, b, l and for arbitrary r1, r2, such that 0 < r1 < r2.

Lemma B. Let m ∈ N ∩ [2,+∞). If a growth function λ(r) is such that the function
rm−1λ′(r) (m ≥ 2) is nondecreasing on (0,+∞) and λ̃(r) is a growth majorant for Smλ , then

1. λ(r) ≤ aλ̃(br) for some a, b > 0 and all r > 0;

2. each function w from Λm
δ (λ) is representable as a difference w = u− v of subharmonic

functions u, v from Λm
S (λ̃) such that µu = µ+

w , µv = µ−w .

From Theorem A it follows that for an arbitrary growth function λ the class Λm
δ (λ) need

not admit a canonical representation. Lemma B lets us to set a more general statement on
solvability of the problem on a canonical representation. The following theorem describes
the growth majorants.

Theorem 1. Let λ be a growth function such that function rm−1λ′(r) (m ≥ 2) is nondecrea-
sing on (0,+∞). Then a growth function λ̃ is a growth majorant for Smλ if and only if

r2∫
r1

λ(t)

tk+1
dt ≤ akl

(
λ̃(br1)

rk1
+
λ̃(br2)

rk2

)
, k ∈ N (2)

for some a, b, l and for arbitrary r1, r2, such that 0 < r1 < r2.

The proof of this theorem is similar (mutatis mutandis) to that of Theorem A so, we
omitted it.

The following result follows from Theorem 1.
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Theorem 2. Let λ be a growth function such that function rm−1λ′(r) (m ≥ 2) is nondecrea-
sing on (0,+∞) and q(t) is nondecreasing, positive, integer function such that the integral
+∞∫
r

(
r
t

)q(t) λ(t)
t
dt is finite for any r > 0. Then the function

λ̃(r) =

r∫
0

(r
t

)q(t)−1 λ(t)

t
dt+

+∞∫
r

(r
t

)q(t) λ(t)

t
dt (3)

is the growth majorant for Smλ .

2. Proof of Theorem 2. Let us show that λ̃(r) from Theorem 1 satisfies condition (2).
Let {n1, n2, . . . , ni, . . . }, ni ∈ N be the set of values for the function q(t). Note that the

elements are placed in the ascending order. We set yi = inf{t : q(t) = ni}.
For arbitrary r1, r2 (0 < r1 < r2), i ∈ N, we have (a) there exists ni ∈ N such that

r1 ≤ yi ≤ r2 or (b) such ni does not exist.
For the case (a), we have

r2∫
r1

λ(t)

tk+1
dt =

yj∫
r1

λ(t)

tk+1
dt+

l−1∑
i=j

yi+1∫
yi

λ(t)

tk+1
dt+

r2∫
yl

λ(t)

tk+1
dt, (4)

where j = min {i ∈ N : r1 ≤ yi}, l = max {i ∈ N : yi ≤ r2}. Now we estimate the first
summand from the right-hand side of (4). For k ≥ nj−1, we get

yj∫
r1

λ(t)

tk+1
dt =

1

rk1

yj∫
r1

(r1
t

)k λ(t)

t
dt ≤ 1

rk1

yj∫
r1

(r1
t

)nj−1 λ(t)

t
dt =

1

rk1

yj∫
r1

(r1
t

)q(t) λ(t)

t
dt.

For k ≤ nj−1 − 1, we obviously have

yj∫
r1

λ(t)

tk+1
dt =

1

rk2

yj∫
r1

(r2
t

)k λ(t)

t
dt ≤ 1

rk2

yj∫
r1

(r2
t

)nj−1−1 λ(t)

t
dt =

1

rk2

yj∫
r1

(r2
t

)q(t)−1 λ(t)

t
dt.

Therefore,
yj∫
r1

λ(t)

tk+1
dt ≤ 1

rk1

yj∫
r1

(r1
t

)q(t) λ(t)

t
dt+

1

rk2

yj∫
r1

(r2
t

)q(t)−1 λ(t)

t
dt. (5)

As above, for the other integrals in the right-hand side of (4), we obtain

yj+1∫
yj

λ(t)

tk+1
dt ≤ 1

rk1

yj+1∫
yj

(r1
t

)q(t) λ(t)

t
dt+

1

rk2

yj+1∫
yj

(r2
t

)q(t)−1 λ(t)

t
dt, j ≤ i ≤ l − 1, (6)

r2∫
yl

λ(t)

tk+1
dt ≤ 1

rk1

r2∫
yl

(r1
t

)q(t) λ(t)

t
dt+

1

rk2

r2∫
yl

(r2
t

)q(t)−1 λ(t)

t
dt. (7)
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Using (4)–(7), we get

r2∫
r1

λ(t)

tk+1
dt ≤ 1

rk1

r2∫
r1

(r1
t

)q(t) λ(t)

t
dt+

1

rk2

r2∫
r1

(r2
t

)q(t)−1 λ(t)

t
dt ≤

≤ 1

rk1

+∞∫
r1

(r1
t

)q(t) λ(t)

t
dt+

1

rk2

r2∫
0

(r2
t

)q(t)−1 λ(t)

t
dt ≤ λ̃(r1)

rk1
+
λ̃(r2)

rk2
.

Similarly, for the case (b), we have

r2∫
r1

λ(t)

tk+1
dt ≤ 1

rk1

r2∫
r1

(r1
t

)q(r1) λ(t)

t
dt+

1

rk2

r2∫
r1

(r2
t

)q(r1)−1 λ(t)

t
dt =

=
1

rk1

r2∫
r1

(r1
t

)q(t) λ(t)

t
dt+

1

rk2

r2∫
r1

(r2
t

)q(t)−1 λ(t)

t
dt ≤

≤ 1

rk1

+∞∫
r1

(r1
t

)q(t) λ(t)

t
dt+

1

rk2

r2∫
0

(r2
t

)q(t)−1 λ(t)

t
dt ≤ λ̃(r1)

rk1
+
λ̃(r2)

rk2
.

Theorem 2 is proved.
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