УДК 517.574

YU. S. PROTSYK, YA. V. VASYL'KIV

ON GROWTH MAJORANTS OF SUBHARMONIC FUNCTIONS

Yu. S. Protsyk, Ya. V. Vasyl'kiv. On growth majorants of subharmonic functions, Mat. Stud. 36 (2011), 73–76.

We describe growth majorants of subharmonic in \mathbb{R}^m $(m \ge 2)$ functions. To do this, we exceptionally reduce the problem to problems in the theory of positive monotonous functions.

Ю. С. Процык, Я. В. Василькив. О мажорантах роста субгармонических функций // Мат. Студії. – 2011. – Т.36, №1. – С.73–76.

Описаны мажоранты роста субгармонических в \mathbb{R}^m $(m \ge 2)$ функций. При этом проблема исследования мажорант роста сведена исключительно к задачам из теории положительных монотонных функций.

1. Introduction. Statements of the main results. This communication should be considered as an addition to [1]. So, we follow the notation from [1]. Recall the following definitions briefly.

Let λ be a nonnegative, continuous, nondecreasing, and unbounded function on $(0, +\infty)$, named the growth function and $\lambda(0) = 0$. The set of nonnegative Borel measures μ in \mathbb{R}^m $(m \ge 2)$, $0 \notin \operatorname{supp} \mu$, such that $N(r, \mu) \le a\lambda(br)$ for some a, b > 0 and all r > 0 is denoted by \mathcal{M}_{λ}^m . Here

$$N(r;\mu) = \begin{cases} (m-2) \int_{0}^{r} n(t;\mu) t^{1-m} dt, & m \ge 3; \\ \int_{0}^{r} n(t;\mu) t^{-1} dt, & m = 2; \end{cases} \quad n(t;\mu) = \mu \left(\{y \colon |y| \le t\} \right).$$

By S_{λ}^{m} we denote the set of subharmonic functions u in \mathbb{R}^{m} $(m \geq 2)$, u(0) = 0 whose Riesz measure μ_{u} belongs to $\mathcal{M}_{\lambda}^{m}$.

Definition 1. Let λ be a growth function. A δ -subharmonic function w in \mathbb{R}^m $(m \geq 2)$, $w(0) = 0, 0 \notin \operatorname{supp} \mu_w$, is said to be a *function of finite* λ -type if there are constants a and b such that $T(r, w) \leq a\lambda(br)$ for all r > 0, where T(r, w) is the Nevanlinna characteristic of w [2].

The class of such functions is denoted by $\Lambda^m_{\delta}(\lambda)$, and by $\Lambda^m_{S}(\lambda)$ we denote the subclass of subharmonic functions of finite λ -type.

We recall the following definitions from [1].

²⁰¹⁰ Mathematics Subject Classification: 31A05.

Definition 2. A class $\Lambda_{\delta}^{m}(\lambda)$ admits a *canonical representation* if each function w from $\Lambda_{\delta}^{m}(\lambda)$ can be represented as a difference w = u - v of subharmonic functions u, v from $\Lambda_{S}^{m}(\lambda)$ such that $\mu_{u} = \mu_{w}^{+}, \ \mu_{v} = \mu_{w}^{-}$. Here $\mu_{w}^{+}, \ \mu_{w}^{-}$ are positive and negative variations of the Riesz measure μ_{w} .

Definition 3. A growth function $\widetilde{\lambda}$ is called a *growth majorant for* S^m_{λ} if for an arbitrary measure μ from \mathcal{M}^m_{λ} there exists a subharmonic function u from $\Lambda^m_S(\widetilde{\lambda})$ such that $\mu_u = \mu$.

Definition 4. A growth function $\hat{\lambda}$ is called a *minimal growth majorant for* S_{λ}^{m} if it is a growth majorant and for each growth majorant $\tilde{\lambda}$ for S_{λ}^{m} there exist constants a, b > 0 such that $\hat{\lambda}(r) \leq a \tilde{\lambda}(br)$ for all r > 0.

The following results were obtained in [1].

Theorem A. Let λ be a growth function such that the function $r^{m-1}\lambda'(r)$ $(m \geq 2)$ is nondecreasing on $(0, +\infty)$, where $\lambda'(r)$ denotes the right-hand derivative.

- i) $\Lambda_{\delta}^{m}(\lambda)$ admits a canonical representation if and only if λ is the minimal growth majorant for S_{λ}^{m} ;
- ii) λ is the minimal growth majorant for S^m_{λ} if and only if

$$\int_{r_1}^{r_2} \frac{\lambda(t)}{t^{k+1}} dt \le ak^l \left(\frac{\lambda(br_1)}{r_1^k} + \frac{\lambda(br_2)}{r_2^k} \right), \qquad k \in \mathbb{N}$$
(1)

for some a, b, l and for arbitrary r_1 , r_2 , such that $0 < r_1 < r_2$.

Lemma B. Let $m \in \mathbb{N} \cap [2, +\infty)$. If a growth function $\lambda(r)$ is such that the function $r^{m-1}\lambda'(r)$ $(m \geq 2)$ is nondecreasing on $(0, +\infty)$ and $\lambda(r)$ is a growth majorant for S_{λ}^{m} , then

- 1. $\lambda(r) \leq a \widetilde{\lambda}(br)$ for some a, b > 0 and all r > 0;
- 2. each function w from $\Lambda^m_{\delta}(\lambda)$ is representable as a difference w = u v of subharmonic functions u, v from $\Lambda^m_S(\lambda)$ such that $\mu_u = \mu_w^+, \ \mu_v = \mu_w^-$.

From Theorem A it follows that for an arbitrary growth function λ the class $\Lambda_{\delta}^{m}(\lambda)$ need not admit a canonical representation. Lemma B lets us to set a more general statement on solvability of the problem on a canonical representation. The following theorem describes the growth majorants.

Theorem 1. Let λ be a growth function such that function $r^{m-1}\lambda'(r)$ $(m \ge 2)$ is nondecreasing on $(0, +\infty)$. Then a growth function λ is a growth majorant for S_{λ}^m if and only if

$$\int_{r_1}^{r_2} \frac{\lambda(t)}{t^{k+1}} dt \le ak^l \left(\frac{\widetilde{\lambda}(br_1)}{r_1^k} + \frac{\widetilde{\lambda}(br_2)}{r_2^k} \right), \ k \in \mathbb{N}$$

$$\tag{2}$$

for some a, b, l and for arbitrary r_1 , r_2 , such that $0 < r_1 < r_2$.

The proof of this theorem is similar (mutatis mutandis) to that of Theorem A so, we omitted it.

The following result follows from Theorem 1.

Theorem 2. Let λ be a growth function such that function $r^{m-1}\lambda'(r)$ $(m \ge 2)$ is nondecreasing on $(0, +\infty)$ and q(t) is nondecreasing, positive, integer function such that the integral $\int_{r}^{+\infty} \left(\frac{r}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt$ is finite for any r > 0. Then the function

$$\widetilde{\lambda}(r) = \int_{0}^{r} \left(\frac{r}{t}\right)^{q(t)-1} \frac{\lambda(t)}{t} dt + \int_{r}^{+\infty} \left(\frac{r}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt$$
(3)

is the growth majorant for S_{λ}^m .

2. Proof of Theorem 2. Let us show that $\widetilde{\lambda}(r)$ from Theorem 1 satisfies condition (2).

Let $\{n_1, n_2, \ldots, n_i, \ldots\}$, $n_i \in \mathbb{N}$ be the set of values for the function q(t). Note that the elements are placed in the ascending order. We set $y_i = \inf\{t: q(t) = n_i\}$.

For arbitrary r_1 , r_2 $(0 < r_1 < r_2)$, $i \in \mathbb{N}$, we have (a) there exists $n_i \in \mathbb{N}$ such that $r_1 \leq y_i \leq r_2$ or (b) such n_i does not exist.

For the case (a), we have

$$\int_{r_1}^{r_2} \frac{\lambda(t)}{t^{k+1}} dt = \int_{r_1}^{y_j} \frac{\lambda(t)}{t^{k+1}} dt + \sum_{i=j}^{l-1} \int_{y_i}^{y_{i+1}} \frac{\lambda(t)}{t^{k+1}} dt + \int_{y_l}^{r_2} \frac{\lambda(t)}{t^{k+1}} dt,$$
(4)

where $j = \min\{i \in \mathbb{N}: r_1 \leq y_i\}, l = \max\{i \in \mathbb{N}: y_i \leq r_2\}$. Now we estimate the first summand from the right-hand side of (4). For $k \geq n_{j-1}$, we get

$$\int_{r_1}^{y_j} \frac{\lambda(t)}{t^{k+1}} dt = \frac{1}{r_1^k} \int_{r_1}^{y_j} \left(\frac{r_1}{t}\right)^k \frac{\lambda(t)}{t} dt \le \frac{1}{r_1^k} \int_{r_1}^{y_j} \left(\frac{r_1}{t}\right)^{n_{j-1}} \frac{\lambda(t)}{t} dt = \frac{1}{r_1^k} \int_{r_1}^{y_j} \left(\frac{r_1}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt.$$

For $k \leq n_{j-1} - 1$, we obviously have

$$\int_{r_1}^{y_j} \frac{\lambda(t)}{t^{k+1}} dt = \frac{1}{r_2^k} \int_{r_1}^{y_j} \left(\frac{r_2}{t}\right)^k \frac{\lambda(t)}{t} dt \le \frac{1}{r_2^k} \int_{r_1}^{y_j} \left(\frac{r_2}{t}\right)^{n_{j-1}-1} \frac{\lambda(t)}{t} dt = \frac{1}{r_2^k} \int_{r_1}^{y_j} \left(\frac{r_2}{t}\right)^{q(t)-1} \frac{\lambda(t)}{t} dt.$$

Therefore,

$$\int_{r_1}^{y_j} \frac{\lambda(t)}{t^{k+1}} dt \le \frac{1}{r_1^k} \int_{r_1}^{y_j} \left(\frac{r_1}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt + \frac{1}{r_2^k} \int_{r_1}^{y_j} \left(\frac{r_2}{t}\right)^{q(t)-1} \frac{\lambda(t)}{t} dt.$$
(5)

As above, for the other integrals in the right-hand side of (4), we obtain

$$\int_{y_j}^{y_{j+1}} \frac{\lambda(t)}{t^{k+1}} dt \le \frac{1}{r_1^k} \int_{y_j}^{y_{j+1}} \left(\frac{r_1}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt + \frac{1}{r_2^k} \int_{y_j}^{y_{j+1}} \left(\frac{r_2}{t}\right)^{q(t)-1} \frac{\lambda(t)}{t} dt, \ j \le i \le l-1,$$
(6)

$$\int_{y_{l}}^{r_{2}} \frac{\lambda(t)}{t^{k+1}} dt \leq \frac{1}{r_{1}^{k}} \int_{y_{l}}^{r_{2}} \left(\frac{r_{1}}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt + \frac{1}{r_{2}^{k}} \int_{y_{l}}^{r_{2}} \left(\frac{r_{2}}{t}\right)^{q(t)-1} \frac{\lambda(t)}{t} dt.$$
(7)

Using (4)–(7), we get

$$\int_{r_1}^{r_2} \frac{\lambda(t)}{t^{k+1}} dt \le \frac{1}{r_1^k} \int_{r_1}^{r_2} \left(\frac{r_1}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt + \frac{1}{r_2^k} \int_{r_1}^{r_2} \left(\frac{r_2}{t}\right)^{q(t)-1} \frac{\lambda(t)}{t} dt \le \frac{1}{r_1^k} \int_{r_1}^{+\infty} \left(\frac{r_1}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt + \frac{1}{r_2^k} \int_{0}^{r_2} \left(\frac{r_2}{t}\right)^{q(t)-1} \frac{\lambda(t)}{t} dt \le \frac{\widetilde{\lambda}(r_1)}{r_1^k} + \frac{\widetilde{\lambda}(r_2)}{r_2^k}.$$

Similarly, for the case (b), we have

$$\int_{r_1}^{r_2} \frac{\lambda(t)}{t^{k+1}} dt \leq \frac{1}{r_1^k} \int_{r_1}^{r_2} \left(\frac{r_1}{t}\right)^{q(r_1)} \frac{\lambda(t)}{t} dt + \frac{1}{r_2^k} \int_{r_1}^{r_2} \left(\frac{r_2}{t}\right)^{q(r_1)-1} \frac{\lambda(t)}{t} dt = \\ = \frac{1}{r_1^k} \int_{r_1}^{r_2} \left(\frac{r_1}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt + \frac{1}{r_2^k} \int_{r_1}^{r_2} \left(\frac{r_2}{t}\right)^{q(t)-1} \frac{\lambda(t)}{t} dt \leq \\ \leq \frac{1}{r_1^k} \int_{r_1}^{+\infty} \left(\frac{r_1}{t}\right)^{q(t)} \frac{\lambda(t)}{t} dt + \frac{1}{r_2^k} \int_{0}^{r_2} \left(\frac{r_2}{t}\right)^{q(t)-1} \frac{\lambda(t)}{t} dt \leq \frac{\widetilde{\lambda}(r_1)}{r_1^k} + \frac{\widetilde{\lambda}(r_2)}{r_2^k}.$$

Theorem 2 is proved.

REFERENCES

- Yu.S. Protsyk, Growth majorants and canonical representation of δ-subharmonic functions, Mat. Stud. 20 (2003), №1, 40–52. (in Ukrainian)
- M.G. Arsove, Function representable as differences of subharmonic functions, Trans. Amer. Math. Soc. 75 (1953), 327–365.

Technological Faculty, Ukrainian National Forestry University, yu.protsyk@gmail.com

Faculty of Mechanics and Mathematics, Lviv National University, yavvasylkiv@gmail.com

> Received 16.05.2006 Revised 18.03.2011