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Remark. As we noted, the assumption (*) is valid forn = 2 and 3, and » in
Theorem is 5.2, 8/3 for n = 2, 3, respectively [8]. Thus in the case of n = 2 the
assumptions needed in Theorem are dN > (min N)*?-? and the sufficient size of
min N as in the introduction.
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On Eisenstein’s problem
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NoBuRrO IsHn* (Osaka), PIERRE KAPLAN** (Nancy)
and KENNETH S. WILLIAMS*** (Ottawa)

1. Introduction. Let D be a positive nonsquare integer such that
D = 1(mod 4). In this paper we shall be concerned with the solvability or
insolvability of the equation

(L.1) T?—DU? = +4

in coprime integers T and U (equivalently in odd integers T and U). If there are
odd integers T and U satisfying T2—DU? =4 we say that (1.1) has odd
solutions, and if there are no odd integers T and U satisfying T>—DU? = 4 we
say that (1.1) has no odd solution. When D = 1 (mod 8) simple congruence
considerations modulo 8 show that (1.1) has no odd solution. When
D = 5 (mod 8) the equation (1.1) may (D = 5) or may not (D = 37) have odd
solutions.

In 1844 Eisenstein [1] asked for a necessary and sufficient condition for
(1.1) to have odd solutions. In fact Gauss in his Disquisitiones Arithmeticae
(1801) (see [2], §256, VI) had already mentioned this problem, in a slightly
different setting, and given the list of all D = 5 (mod 8), D < 1000, for which
(1.1) has no odd solution.

When the equation

(1.2) Vo DW?=—|

is solvable a necessary and sufficient condition for the solvability of (1.1) in odd
integers was given recently by Kaplan and Williams [5], in terms of the lengths

I and I* of the continued fraction expansions of \/i_) andl(1+\/5)f2
respectively (see Theorem 0 below). It was known that [ = [* (mod 2), and also
that | = [* = 1 (mod 2) if, and only if, (1.2) is solvable.
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** Research supported by the Government of Canada.
*** Research supported by Natural Sciences and Engineering Research Council of Cunada
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THEOREM 0. Let D = 1 (mod 4) be a positive nonsquare integer such that (1.2)
is solvable. Then the equation (1.1) has odd solutions if, and only if, | = I* (mod 4).

The following corollary is an immediate consequence of Theorem 0.

CoroLLARY. If D = 1 (mod 8) is a positive nonsquare integer such that (1.2) is
solvable then | = I*+2 (mod 4).

In this paper we use the theory of integral indefinite binary quadratic forms
to treat the solvability of (1.1) in odd integers. We state our results in terms of
the lengths L, and L§ of the principal periods of reduced integral binary
quadratic forms of discriminants 4D and D. These terms will be explained in
Section 2. It suffices to remark here that.

Ly=1, L§=1I*  if (1.2) is insolvable,
{Loﬁz 21, L§=2*, if (1.2) is solvable,
and to note that L, and L§ are always even.
Our first result (Section 2) contains the following theorem as a special case.
THEOREM 1. Ly = L§ (mod 4).

We emphasize that Theorem 1 depends neither upon the solvability of (1.1)
in odd integers, nor upon the solvability of (1.2). When (1.2) is solvable
Theorem 1 reduces to ! = I* (mod 2), and when (1.2) is insolvable it has been
proved by Halter-Koch [3] when D is squarefree.

Our second main result (Section 4) concerns the case when (1.1) has odd
solutions.

THEOREM 2. (a) Let D be an integer > 5 such that D = 5 (mod 8) and such
that the equation (1.1) has odd solutions. Then L§+4 < L, < 5L%.

(b) If, furthermore, the equation (1.2) is solvable then L§+8 < L, < 5L%.

Table 1 below gives a few values of D illustrating Theorem 2(a), and Table
2 a few values illustrating Theorem 2(b).

(1.3)

Table 1
D = 5 (mod 8) L, L§ L§E+4 SL§
(1.1) has odd solutions
501 28 8 12 40
509 38 14 18 70
517 2 10 14 50
525 6 2 6 10
333 100 2 6 10
541 78 22 26 110
549 18 6 10 30
565 26 10 14 50
581 24 8 12 40
589 40 16 20 80
597 22 10 14 50
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Table 2

D = 5(mod 8)
(1.1) has odd solutions L, L¥ L¥+8 SI%
(1.2) solvable

733 10 2 10 10
773 22 6 14 30
797 22 14 22 70
821 58 18 26 90
845 10 2 10 10
853 46 14 22 70
941 34 10 18 50
949 54 14 22 70

We note that (b) results from (a) and Theorem 0, but we shall prove
Theorem 2(b) directly, without appealing to Theorem 0.

When the equation (1.1) has no odd solution we prove a result (Theorem
6 in Section 6) which includes the following resuit.

THEOREM 3. Let D = 1 (mod 4) be a positive nonsquare integer such that the
equation (1.1) has no odd solution. Then :

L¥/3<L,<3L3-8.

A few values of D = 5(mod 8) illustrating Theorem 3 are given in Table
3 below. .

Table 3
D = 5 (mod 8)
(1.1) has no odd Ly L% LE/3 3L%-8
solution
813 6 6 3 10
829 34 38 12.66 106
877 30 18 6 46
885 4 4 1.33 4
901 2 6 2 10
909 8 12 4 28
925 10 14 4.66 34
933 8 12 - 4 28
997 26 14 4.66 34

Since (1.1) is always insolvable in odd integers when D = 1 (mod 8), we have
the following corollary to Theorem 3,
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CoRrOLLARY 1. If D is a positive nonsquare integer such that D = 1 (mod 8)
then L§/3 < L, < 3LE—8, equivalently

*3<1<3*—4, if V2—DW? = —1 is solvable,
<

*3<1<3*-8, if V’—DW? = —1 is insolvable.
Table 4
D = 1(mod 8)
V2—DW? = —1 solvable | [* */3 3*—4
185 5 3 1 5
401 1 3 1 5
409 21 27 9 77
425 7 5 1.66 11
D =1 (mod 8)
V2—-DW? = —1 insolvable | [* 1*/3 3*—8
105 2 6 2 10
369 12 16 5.33 40
377 4 4 1.33 4
385 16 12 4 28
393 20 16 5.33 40

The next two corollaries follow from Theorems 1, 2 and 3.

COROLLARY 2. Let D = 1 (mod 4) be a positive nonsquare integer (> 5) such
that L§ = 2. Then the equation (1.1) has odd solutions and L, = 6 or L, = 10. If,
moreover, (1.2) is solvable, then L, = 10.

We remark that if L¥ = 2, Proposition 5 of Section 7 gives a criterium for
Ly, =6 or 10.

COROLLARY 3. Let D = 1 (mod 4) be a positive nonsquare integer such that
(1.2) is insolvable and L§ > 4. Then, if L, < L& the equation (1.1) has no odd
solution whereas if Ly = 3L§—4 the equation (1.1) has odd solutions.

We note that if D = 69 then (1.1) has odd solutions (T'="25, U = 3) and
L, =8, L§ = 4 showing that the inequality L, < L§ in Corollary 3 cannot be
replaced by Ly < L§ +4. Also, if D = 189, then (1.1) has no odd solution and
Ly = L§ =4 showing that the inequality L, > 3L% —4 in Corollary 3 cannot be
replaced by L, = 3L¥—8.

2. The congruence L, = L§ (mod 4). We consider intcgral binary quadratic
forms

2.1) f=fx, y) =ax*+bxy+cy? =[a, b, c]

of discriminant 4 = b? —4ac, where 4 is equal to 4D or D. All forms [a, b, c]
are assumed to be primitive, that is GCD (a, b, ¢) = 1. If f denotes the form
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[a, b, c], we use f to denote the form [c, b, a]. The matrix of the form f

b/2
=[a,b,c]is F = [b;2 : ] An ambiguous form is a form [a, b, ¢] with alb.

A form [a, b, c] of discriminant 4 > 0 is said to be reduced (see [2], § 183) if it
satisfies the inequalities

(2.2) 0<./4—b<2lal < \/E +b,
or equivalently
(23) 0<./4=b<2lc| < /4+b.

If the form [a, b, ¢] is reduced then
{ ac<0,b>0,

lal, b, | < /4,

and the form can be rewritten as

f=1[ea, b, —ec]

with a >0, b>0,¢c>0, e= +1.

Two forms f'= [a, b, ¢] and f* = [a, ¥/, '] are said to be equivalent, written
[~ f", if there exists an integral 2 x 2 matrix M of determinant + 1 such that
F'=M"FM. The class of forms equivalent to the principal form of disc-
riminant 4

(2.4)

[1,0,—D], if 4 =4D; [1, 1,—97_”], if 4=D,
is called the principal class.

The set of classes of a given discriminant A forms a finite abelian group G,
under gaussian composition, whose unit element is the principal class. There
exists a surjective homomorphism 0: G,,— G, which has the following
property:

. Each class of G,, contains forms of the type [a, 2b, 4c] and of the type
[4d’, 20, ¢']. If we denote by {r, s, t} the class of the form [r, s, ], then

{9({a, 2b, 4c}) = {a, b, c},

(23) 0({4a’, 2b', ) = {a, b, ¢'}.

The kernel of 0 is the subgroup of G, consisting of the classes representing
properly 1 or 4, and

if D=5(mod 8) and (1.1) has no odd solution,
if D=1 (mod 8) or if (1.1) has odd solutions,

{see [2], § 256, [4], p. 127, [6], § 150-151).

(2.6) card (ker0) = {31’
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Let f = [ea, b,—e&c] be a reduced form of discriminant 4, and let the integer
t(f) and the matrix T(f) be defined by

b+./4 0 —1

@7 tf) = —s[ ¥ ] T(f) —[] IU)}

where, for a real number «, [«] denotes the unique integer such that
[a] €a<[a]+]1.

Then the form f* = [ —ec, b’, ea’] obtained from f by means of the transform-
ation of matrix T(f) is reduced. Moreover, t(f) is the only integer ¢ such that

|0 = .
the transformation of matrix [ ; r] transforms f into a reduced form. The

form f" is said to be the right neighbouring form to f, and we denote this relation
by f~f". In addition one has

238) i) = -2 _ —E[M].
2c 2¢

If an initial reduced form f, is specified in a class C of discriminant 4, the
reduced forms make a periodic sequence {f,} such that f, ~ f, . ,. The length of
the period of this sequence is always even.

We shall compare the period of a class of discriminant 4D with the period
of its image by 6; our main results will be obtained by comparing the princi-
pal classes. The length of a period of discriminant 4D will be denoted by L
and the length of its image by 0 by L*. The length of the period of the principal
class of discriminant 4D (respectively D) will be denoted by L, (respectively
L3). The reduced forms of classes corresponding by 0 will usually be de-
noted by

Jo=[¢a,-1, 2b,,—¢a,], n=0,...,L—1, (4 = 4D),
Gm = [€an-y, bp,—¢€a,], m=0,...,L¥*—1, (4=D),
so that a,, b,, a,, b, are positive integers such that
29) D =b}+a,_,a, = b}+4al,_,a.,.
As the forms f, and g, are primitive and D = 1 (mod 4) we see that

b,=0(mod 2)=a,-; =a,=1(mod 2), a,-; =4, (mod 4),
(2.10) b,=1(mod2)=a,_, =0(mod4), a,=1(mod 2) or
a,-y = 1(mod 2), a, = 0 (mod 4),

and
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@.11) b= 1(mod 2), ap-a,, =0(mod2), if D=1 (modS8),

' bpn=a,_, =d,=1(mod2), if D=5(mod8).
Next we consider ambiguous classes, that is classes of order 2 in the class
group. The ambiguous classes are the classes which contain ambiguous forms,
and each ambiguous class contains exactly two ambiguous reduced forms;

furthermore the indices n and n’ of these ambiguous forms in the sequence of
reduced forms satisfy

(2.12) n' = n+(A/2) (mod A),

where A (= L or L*) is the length of the period (see [2], § 187). If f, (resp. g,) is
chosen to be ambiguous then the period is symmetric, that is we have
So-r-a=f,0<n<L-1), gt ,_n=4, 0<m< L*—1). We have

LEMMA 1. Let f = [ea, 2b,—ec] be an ambiguous reduced form in a class A of
discriminant 4D. Then a divides b, say b = ka, and the class 0(A) contains the
ambiguous reduced form [ea, la,—ec’], where | = k, if k is odd, and | = k—1, if
k is even,

Proof. We first note that a is odd, otherwise, by (2.10), a = 0 (mod 4) could
not divide 2b = 2 (mod 4). Therefore a divides b, say b = ka, and f= [ea,
2ka,—&c].

If k is odd then, by (2.10), ¢ = 0 (mod 4), so that 0(A4) contains the form
g = (ea, ka,—ec/4].

If k is even, say k = 2K, then the class A contains the form [ea, 22K —1)a,
—ec’], where ¢’=0(mod4), so that 6(A) contains the form g = [ea,
(2K —1)a,—ec’'/4].

We prove that g is reduced in both cases. As f is reduced

(2.13) 0<./D—ka<a<./D+ka,
which implies a < /D, and so
0< \/B—ka <2a< \/l_)+ka,
showing that, if k is odd, g is reduced. If k is even (2.13) becomes
0<./D—2Ka <a<./D+2Ka,
which implies (as a < /D)
0<,/D-(2K-1)a<2a<.,/D+2K-1)q,

showing that if k is even, g is reduced. This completes the proof of Lemma 1.

THeOREM 1'. The lengths L and L* of periods of ambiguous classes cor-
responding by 0 satisfy

L= L*(mod 4).
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Proof. By Lemma 1 the first coefficients of the reduced ambiguous forms
of A and 0(A) are respectively equal, so that, by (2.12), L/2 = (L*/2) (mod 2),
which proves Theorem 1.

Later we shall need the following reduced forms. Let d = [\/B], let d'
denote the greatest odd integer < \/5 and set d” = d’'—2. The reduced forms
(2.14) h=[1,2d, d*-D], of discriminant 4D,

' h* =[1,d, (d*—D)4], of discriminant D,

belong to the principal classes of their discriminant.
If D= 5(mod 8) the forms of discriminant 4D

(2.15) W =[4,2d,(d*-D)4], h"=[4,2d",(d"*—D)/4]

are reduced for D > 5 and belong to a class of kerd@.

If card (ker 0) = 3 then each of the nonprincipal classes C' and C” of ker 0
contains respectively the form h’ and h”, and simple symmetry considerations
show that the lengths Ly and Lg of their periods satisfy

(2.16) T

We conclude this section by indicating the relation between the period of
the principal class of discriminant 4D (resp. D) and the continued fraction
expansion of ﬁ (resp. (1 +‘\/I_))/2). For discriminant 4D (respectively D)
choose f, = h (respectively g, = h*), and set t(f,) = t, (respectively ¢(g,,) = tm)-
Then we have

D = [d; ltol, Itys lealse.]

and

l+J5_[l+d’
M=

5 Itols Ital, It'zl,---]-

3. The mapping ¥ and its properties. In this section we introduce a mapping
¥ from the set of reduced forms of discriminant 4D to the set of reduced forms
of discriminant D. This mapping will be central to everything we do in the rest
of this paper.

From now on a, b, ¢ denote positive integers. We classify the reduced forms
of discriminant 4D into five types, where

11 D = b?+ac, for type (I)
(3.1) D = b?+4ac, for types (II), (IIT), (IV), (V),
as follows:;

I : [ea, 2b,—¢c], ac = 1 (mod 4), b = 0(mod 2),
IT : [ea, 2b,~4ec), a =1 (mod 2), [ea, b,—&c] reduced,
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1 : [ea, 2b,—4ec], a = 1(mod 2), [ea, b,—¢&c] not reduced,
IV : [4ea, 2b,—ec], ¢ = 1 (mod 2), [ea, b,—ec] reduced,
V : [4ea, 2b,—¢c], ¢ = 1 (mod 2), [ea, b,—ec] not reduced,

where ¢ = +1. We define the mapping ¥ from the set of reduced forms f of
discriminant 4D to the set of forms of discriminant D as follows:

r[—a(—a:Zb-i—c)’a;c,s(a+ib—c):|' 1 of type (0),
[ea, b,—ec], J of type (II),
B2 YU) =1 [e(a=b—0), b+2c,—ec], S of type (IID),
[ea; b,—ec], J of type (IV),
([ea, 2a+b,—e(—a—b+0)], f of type (V).

We remark that the form ¥(f) is obtained from the form f by means of the
rational linear transformation with matrix M (of determinant 1/2) given by

[ &2 12 10 10
ga) N "[—1/2 3/2] ®: [0 1/2] h: [—3/2 1/2] (0,

12 0 1/2 ¢/2
[ [

For convenience we note the values of M~ !:

L fe-17. [to 1o
oo w=[ oo g3 [15]am
20 .12 —e
ot [07]m

PROPOSITION 1. If f is a reduced form of discriminant 4D then ¥(f) is an
integral primitive form of discriminant D, which is reduced.

Proof. It is easily checked that ¥(f) is an integral primitive form of
discriminant D. Moreover ¥(f) is reduced. This is clear if f'is of types II or IV.

If fis of type Il we have 0{JB—b<4c{\/D+b but not 0 <./D—b
<2c</D+b so that /D—b>2¢ this implies 0<./D—b—2c<2c
< \/B+b+2c, showing that ¥(f) is reduced. The proof for f of type V is
similar.

Now we consider the case of a form f of type I. As fis reduced we have

0<./D-b<a<. D+b, 0< /D—b<c< /D+b.

Thus we have

\/5<b+c, —\/Bﬁ —a+b,
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and
—./D <b—c, \/1_) <a+b.
Adding the inequalities, we obtain

—a+2b+c>0, a+2b—c>0,

and so

4D—(a+c)* =(—a+2b+c)a+2b—c) > 0,
giving
(3.5) 0<2/D—a—c.

From ./D—b < a we obtain

(3.6) 2 /D—a—c<a+2b—c.
As D—(b—c)* = (a+2b—c)c > 0 we have

(3.7) a+2b—c <2./D+a+c.

The inequalities (3.5), (3.6), (3.7) show that ¥(f) is reduced. o
Proposition 1 shows that ¥ maps the set of reduced forms of discriminant
4D into the set of reduced forms of discriminant D.

PROPOSITION 2. The class of the image by ¥ of a reduced form f of
discriminant 4D is the image by 0 of the class of f.

Proof. By (2.5) the result is clear if f is of type II or IV. To prove Prop-
osition 2 for f of type III or V it is enough to note the equivalences

[e(a—b—c), b+2c,—ec] ~ [ea, b,—ec] ~ [ea, 2a+b,—e(—a—b+c)].
If fis of type I then
f=[ea, 2b,—ec] ~ [ea, 2(a+b), s(a+2b—:':}],

whereas

w(f) = [_B(-—a+2b+c) a+c (a+2b—c)] " [sa, _ e(a+26—c):|

4 2% 4 4
proving Proposition 2. N

The follewing corollary follows immediately from Proposition 2.

COROLLARY, (1) If f; ~f, then ¥(f}) ~ ¥(f3).

(2) If f belongs to the principal class of discriminant 4D then ¥ (f) belongs to
the principal class of discriminant D.

ProposITION 3. The restriction of ¥ to reduced forms of any given type is one
to one.
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Proof. Each of the matrices M listed in (3.3) is invertible.

COROLLARY. The lengths of the periods of classes corresponding by 0 satisfy
L< 51L*

Proof. Each reduced form of the class 6(C) is the image by ¥ of at most
5 forms of C.

We shall need the following properties of the mapping ¥.

LemMMA 2. If f~ f" then the type of (f, f’) is one of the following ten pairs:
@), (I,IN), @100), (LIV), AL V), (ILIV), (IILV), (IV,I), (IV,1I), (V, ).

Proof. Suppose that f = [4ea, 2b,—ec] ~ ' = [—ec, 2V, 4ea’] so that, as
b=b'=c=1(mod?2), the positive integer (b+b')/c is > 2, that is

(3.8) b+b' > 2.

From (3.8) and the fact that fand f” are reduced one deduces easily that the two
forms g = [ea, b,—&c] and ¢’ = [—eéc, b, ea'] are reduced, which shows that fis
of type IV and f* of type II, so that the type pairs (IV, I1I), (V, II) and (V, III) are
not possible. The other twelve impossibilities are obtained immediately by
comparing the parity of the last coefficient of f and the first coefficient of f”.
If f=[a, b, c], we se{ f=[—a, b—c].
Lemma 3. ¥(f) = ¥(7), ¥() = ¥(f).

Proof. Lemma 3 is an immediate consequence of the definition of ¥.

4. Proof of Theorem 2. In this section we suppose that the equation
T?—-DU? = 4 has odd solutions,.so that D = § (mod 8) and the homomorphism
0 is an isomorphism. We first prove a result showing that for any class C the
length of the period of 0(C) is not greater than the length of the period of C.

PROPOSITION 4. If the equation (1.1) has odd solutions then, for any class C,
the mapping ¥ is a bijection of the reduced forms of type I of C on the reduced
forms of 6(C).

Proof. Let g = [ea, b,—&c] be a reduced form of 6(C). As D = 5 (mod 8),
we have a=b=c=1(mod2). We consider the form f=[—g(—a+b+c),
2(a+c), ela+b—c)] of discriminant 4D. As a, b, ¢ are odd, the integers

—a+b+cand a+b—c are odd, and as g is primitive so is £ Moreover, as the
form g is reduced, we have

@1) 0<./D-b<2a<./D+b, 0<./D-b<2 <./D+b,
so that
(2a+b)*—D =4a(@a+b—c) >0, (b+2c)*—D =4dc(—a+b+c)>0,

showing that —a+b+c and a+b—c are positive integers. Thus to show that
J is reduced of type I it is enough to prove

0</D-(a+c)< —a+b+c< . /D+a+e.
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We have
D—(a+c)? =b*—(a—c)* = (b—a+c)b+a—c) >0,

which proves the first inequality. The second and third inequalities are

respectively equivalent to \/l_) <b+2candtob < \/I_J + 2a, which follow from
(4.1). A straightforward calculation shows that ¥(f) = g. As 6 is an isomor-
phism we see that fe C. The result now follows on appealing to Proposition 3.

We have thus shown that, if (1.1) has odd solutions, for any pair (C, 0(0)),
where C is a class of forms of discriminant 4D,

4.2) L* < L < 5L*.

Now we consider the principal classes. The forms &’ and h"” defined in (2.14),
as well as the forms A’ and A", are reduced for D > 5, and they are in the
principal class as they represent 4 and card (ker 0) = 1. Clearly none of i, h", k',
R is of type I, so that we have

L¥+4 < L, <5LE.

Moreover, if the equation (1.2) is solvable, the forms obtained by changing
the signs of the first and last coefficients of i, h", i/, " are also in the principal
class so that

o+8 < L,<S5SL§.
This completes the proof of Theorem 2.
5. Order preserving property of ¥. Let C be a class of forms of discriminant
4D and 0(C) its image by the mapping 0. We choose an initial form f; € C and
denote by f, f1, /3 - - ., the sequence of reduced forms of C, defined by f, % f,+,.

In the class 0(C) we choose as initial form g, = ¥(f,), and define the sequence

9o 915> G2:--- BY G, & g+ 1. The integers t(f)), t(g,,) being defined as in (2.7), we
set

0 —1 e |9 =1
(5.1) T:,—[l IU:.)]’ T’"_[l I(Q...)}

so that T, (respectively T7,) is a matrix of the transformation of‘ 1, (respectively

; . ; 4 . (10
9., into its right neighbouring form. We denote by I the identity matrix l: 0 l]
and define:

(52) A, =

I, if n=0, i oy I if m=20,
Tiiinhri, fnxl, 0 |5 Ti Em>1,

so that the transformation of matrix A4, (respectively 4;,) sends f, (respectively
go) into f, (respectively g,,).
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Then we consider the matrix
(5.3) B,=M;'AM,,

where M, M, (depending upon the types of £, f,) are defined by (3.3) and (3.4).
Clearly B, is the matrix of a rational linear transformation of ¥(f;) into ¥(f,).
We prove

THEOREM 4. (a) The matrix B, is integral and there exists an integer m(n) > 1
such that ¥(f,) = Gmw and
(54) . B, = + A

(b) The function m(n) is a nondecreasing function of n which satisfies
(by) m(n+1) =m(n), if (fy fa+1) is of type (LIII) or (V,I),
(by) m(n+1) = mn)+2, if (fy, fus1) is of type (L11) or (IV,I),
(b3) m(n+1) = m(n)+ 3, if (f, fa+1) is of type (L) such that |t(f)| > 2,
(b)) m(n+1) = m(n)+ 1, otherwise.

(c) The function m(n) satisfies

m(n)+3L*, if (1.1) has odd solutions,
55 =
63 ) {m[n)+L‘. if (1.1) has no odd solution.
Proof. We first prove (a) and (b). As
B,=M5'Ty...T, \M,=(M5'TyM)M{'T,M,)... (M7, T,_M,),

it is enough to consider the last term M, *, T, _, M,. Then f, = [ea, 2b,—¢¢] and
Jas1 =[—ec, 20, ¢a’] are two reduced forms of discriminant 4D such that
fu® fas1, and (= t(f) = —e(b+b')/c, so that & < 0. We shall calculate the
matrix U, = M;'T,M,,, according to the ten possible types of the pair

(fr:’ j:!+ 1)- ‘

(1) (f, fa+1) is of type (L I). Here b= b = 0(mod 2), ¢ = 1 (mod 2) so that
t = 0(mod 2), and one finds

0w e+t/2 et/2
" —a2 e—t2 |

; 0 —1 . .
Ift] = 2, that is t = —2¢, then U, = l:l 2.‘:] so that Y (f) ~ ¥(/,+,) with

t(¥(/,)) = 2¢, which shows that m(n+1) = m(n)+ 1.
If |t| = 4, that is [(b+\/5}/c] =4, we consider the forms

_|_[(=a+2b+c) a+c (a+2b—c)
{p(fll _[ & 4 ] 2 , & 4 :ll

2b—c
g = [a(i-l-—i—c), b—c, —8(.],
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Y [ . (-c+2b’+a’):,
g = —sf.b‘—c,i:"——4— "

(—c+2b'+a) c+a g(c;+2b'—a’)
4 A 4 :

The forms g’ and g¢” are reduced that is

0< \/B—b+c <2< \/I_)+b—c and 0< \/l_)—b’+c <2< \/5+b’—c.

The two first inequalities of each set are clear, as f, and f, , , are reduced. The
third inequalities of each set can be rewritten as

JD+b 9 \/i_):b’) 3

C

Y(fos1) = |:3

which are true, as

Ul = [‘/‘z”’] - [ﬁ:*’] >4

One sees then that Y(f,) ~ ¢’ ~ g" ~ P(fo+,) With
PR =tlg") =¢, tlg)=1/2+¢,
so that ¥(f,) is changed into ¥(f,+;) by the transformation of matrix
[0 —1][0 —1 ][0 —1]=[—a-:/2 —et/2 ]= _U
I e {1 t2+el{tl e g2 —e+t)2 "~
This proves that m(n+1) = m(n)+3 when || > 4.
(2) (fos Jo+1) is of type (I,II) or (IV,I). We consider the type (I,11). Here
Jo=1lea, 2b, —ec], foi1=[—¢c, 2V, 4ea’],

with b=0(mod 2), b' = ¢ =1 (mod 2) so that

t(f,,)=£*—b_—jr-b—'—l(m 0d2).

—1 (—t—¢g)/2
v [t o)
e (et—1)/2
As fo4qis of type IL, ¥(f,+,) = [—ec, b, £a’] is reduced. We prove first that
[t| = 3. Otherwise |f| = 1, so that b+ b’ = ¢, giving

0</D-b<b+b < /D+b (f, reduced),
0 </D=b <2(b+b) < /D+b  (P(f,.,) reduced),

One finds
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which would imply that 2b+b' < /D < 2b+Vb'.

From the fact that [t] > 3, that is (\/5 + b)/c > 3 we see, as in the case where
(fw fa+1) is of type (L), that the form

gr = I:EE_*%:_?I, b—C, _m]

is reduced, so that
PR~ g =~ P(fass)
with
HP(L)=e t(g)=(t+e)2.
Therefore P(f,) is transformed into ¥(f,,,) by the transformation of matrix

0 —1f0 -1 ]_[~-1 (—t—ey2] _ U

1oe |{1 (t+e)2] [ e (=12 ] ™™
which proves that m(n+ 1) = m(n)+2 for (£, fo+) of type (I,II), and also of
type (IV,1) by considering f, and f,.,.

(3) (fy» fa+1) is of type (LIII) or (V,I). We consider the type (I, IIT), that is
Jo=[ea, 2b, ec], fo+y = [—ec, 2, 4ea’], with b = 0 (mod 2), b’ = ¢ = 1 (mod 2)
so that ¢(f,) = 1 (mod 2). As fo+, is of type III, the form [—eéc, b', ea’] is not
reduced, so that one of the inequalities 0 < \/D—b’ < 2c < /D+b' is not
satisfied, but, as f,,, is reduced, 0 <./D-b <c<./D+b, so that
\/5 +b' < 2e¢.

Taking (2.8) into account this shows that |f| = 1.

Now one finds

U = [(—3—3:)/2 (—e—t)/2
"L e+ (—1+e)2
sothat U, = [ _01 _0 J, which proves that m(n+ 1) = m(n) for (f,, £, + ) of type
(II), and (by considering (f,, fu+1)) for (f,, fus1) of type (V,I).

(4) (fy» fa+1) not of above types. One finds that

0 —1
o2 7]
with ¢ = 2¢ (type (I, IV)), ' = —&+ 2t (types (II, V) and (IILIV)), ¢ = — 28+ 2t
(type (IIL V)), ¢’ = ¢/2 (type (IV,II) in which case t = 0 (mod 2)).
This completes the proof of (a) and (b).

Next we prove (c). We define the integer a by

6 — Acta Arithmetica LIV.4
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(5.6) e {1- if (1.1) has no odd solution,

3, if (1.1) has odd solutions.

We denote by T,, U, (respectively T, Up) the smallest even positive
solution (respectively, the smallest solution) of (1.1). The automorphs of
Jo = [¢a, 2b,—é&c] are given by

4. _[@-bU)2 ecU/2
@™ gqup2z (T+bU)2 T

where (T, U) is any even solution of (1.1), and also by (recall (5.2))
+(A)* = +(4)*', k=0,
Similarly the automorphs of Y(f;) = [¢'d’, V', —g'c’] are given by
s, [(T—b'U)/Z gc'U ]
i galU (T+bU)2)
where here (T, U) is any solution of (1.1), and also by (recall (5.2))
(5.7) +(Ap) = +(Ay)*', k=0
It is known (see [7], p. 123) that
(5.8) Ay = Agovey A = Aty

and also that (see [6], § 99)
(59) Alrovo = [Aroual’

Now, by a straightforward calculation, one checks, for each of the five types
of f, that

(5.10) M Ag.nM = Ay

with the same value of (T, U). Therefore by (5.4), (5.8), (5.9), (5.10) one finds
successively

+ Apiy = MFIA:.M i M-IA{To.UnlM oz A;'l"o.l.-'o} = [A;ra.vin]‘ s [A’L‘)“ > A::L"

which implies m(L) = «L* and completes the proof of Theorem 4.

COROLLARY. (a) m(n)=m(n+1)=mn+2) < (fofasvsfas2) is of type
(V, 1, 111).

(b) If m(n,) = m(n,) = m(n,) = m(n,) at least two of the integers ny, ny, Ny, Ny
are equal.

As a first application of Theorem 4 we give a new proof of a generalization
of Theorem 0, the main result of [5]. We prove

THEOREM 5. Let D be a positive nonsquare integer = 1 (mod 4) such that the
equation (1.2) is solvable. Let A be an ambiguous class of discriminant 4D, 0(A) its
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(5.6) ~ |3, if (1.1) has odd solutions.

We denote by T, U, (respectively T;,, Ujp) the smallest even positive
solution (respectively, the smallest solution) of (1.1). The automorphs of
fo = [ea, 2b, —ec] are given by

i (T—bU)/2 ecU)2
TO = equi2 (TH+bU)2 )

where (T, U) is any even solution of (1.1), and also by (recall (5.2))
t(A4)* = £(Aw)*', k=0
Similarly the automorphs of ¥(f,) = (¢'d’, b’, —&'c'] are given by

) __[(T—b‘U}/Z gcU
eadU (T+bU)2 ]

(.o =
where here (T, U) is any solution of (1.1), and also by (recall (5.2))
(5.7) T(Ap)** = £(Ay)*', k=0.
It is known (see [7], p. 123) that
(5.8) AL = Agovey Al = Airivey

_ {l, if (1.1) has no odd solution,

and also that (see [6], § 99)
(59) Atroue = [Airoval™

Now, by a straightforward calculation, one checks, for each of the five types
of f,, that '

(5.10) M Az M = A
with the same value of (T, U). Therefore by (5.4), (5.8), (5.9), (5.10) one finds

successively
Ay = M AM = M7 Ay oo M = Aizovg = [Airoval’ = (Ap)* = Ay,

which implies m(L) = «L* and completes the proof of Theorem 4.

COROLLARY. (a) m(n) =m(n+1) = mn+2) < (fofarr,fas2) is of type
(V, L III).

(b) If m(n,) = m(n,) = m(n,) = m(n,) at least two of the integers n,, n,, ny, i,
are equal.

As a first application of Theorem 4 we give a new proof of a generalization
of Theorem 0, the main result of [5]. We prove

THEOREM 5. Let D be a positive nonsquare integer = 1 (mod 4) such that the
equation (1.2) is solvable. Let A be an ambiguous class of discriminant 4D, 8(A) its
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image by the homomorphism 0, and let L and L* denote the lengths of the periods
of A and 0(A) respectively. Then L= L* = 2(mod 4), and L= L* (mod 8) if,
and only if, the equation (1.1) has odd solutions.

Proof. As the equation (1.2) is solvable we can choose the notation so that,
for the class A,

(5.11) fo=1I[a,2ka,—c}, fo»=[—a, 2ka,c],

with a, ¢, k > 0. For the class 8(4) we take g, = ¥(fy)
By Theorem 4(c) we have m(L) = al* so that (5.11) shows that

.12 m(;‘) = a-{;

The form f, is of type I or II according as k is even or odd. If f, is of type I,
so are the forms f;,, -, = [¢, 2ka, —a] and f;,. Moreover, |t(fi2-)| =2k >4
so that, by Theorem 4(b), one has

oo

If f, is of type II, then fi,,_,, fi,» are of types IV, II respectively so that

o-rl)or

We set f = 1iff is of type I,‘ﬁ = 01if f; is of type II, so that in both cases we
have

(5.13? m(g) =m(§—l)+2ﬁ+l.

Now define the integer 4 by L/2=2i+1. As- (1.2) is solvable it is
known (see [2], § 265, [4], p. 171) that there exists an ¢ = +1 and a decompo-
sition ’

D=A*+B*>, A=I1(mod2), A>0,B>0,

such that f, = [eAd, 2B, —eA]. Since [+, =[—t, 2s,—r] if /-, = [r, 25, t] one
sees, using Lemma 3, that

(5.14) m(g'—l) = 2m(4).

Finally a straightforward calculation shows that ¥(f;) = [—&B/2, A, eB/2]
so that, as the sign of the first coefficient of ¥(f,) = g, is (—1)’, we have

(5.15) m(l) = A+ 14 f(mod 2).
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Using (5.12), (5.13), (5.14), we obtain

a%* = m(g) =m(§—l)+25+1 =2m(A)+2B+1,

which by (5.15) gives

a% =24+3+4p=2443= J—:;-'4-2(“10(.‘] 4).

In view of the definition (5.6) of a, this completes the proof of Theorem 5.

6. Comparison between lengths of corresponding periods when the equation
(1.1) has no odd solution. In this section we suppose that the equation (1.1) has
no odd solution. Then, by Proposition 4, ¥ induces a nondecreasing mapping
n—m(n) of the period of a class C into the period of the class 6(C).
Furthermore Theorem 4(beshows that the possibilities for f,, fo+1,--.:fa+x tO
have the same image by ¥ are limited to the following cases:

{k= Ly Gofars) of type (V,1) or (I,III),
k=2, (fufat1>Jas2) of type (V,LII).

This clearly shows that L < 3L*,

Theorem 4 also shows that the gaps between images by ¥ in the class 0(A4)
have length at most 2, so that L* < 3L.

Now we consider the case of an ambiguous class 4, and we shall prove that
a reduced ambiguous form of the class 6(A) is the image by ¥ of at most one
reduced form belonging to the class A.

Let f = [ea, 2ka, —ec] be an ambiguous form of the class 4, so that f~
and g = (ea, la, —ec’] the ambiguous form of 6(4) given by Lemma 1, where
I =k or k—1 according as k is odd or even.

If k is odd, fis of type II, f of type IV, ¥(f) = g and, by Theorem 4(b), g is
the image by ¥ of no other form than f.

If k is even, so that f'and f are of type I, |t(f)| = 2k > 4. Then, with the
notation of the proof of Theorem 4 (1) we have

¥(f)~g ~g" =~ P(f),

where g” = [&a, al,—c'] is the ambiguous form corresponding to f given by
Lemma 1, and, as ¥ is monotonic on the period of f= f, g cannot be the image
by ¥ of any form of A.

Thus we see that the two ambiguous forms g, h of 0(A), and also the forms
g, k, have at most one antecedent.

Let N, (r = 0) denote the number of reduced forms of the class 6(A) which
are the image of ¥ of r reduced forms of A. By (5.1), N, = 0 for r > 4 and we

have proved that No+N, > 4. On the other hand it is clear that
N,+2N,+3N; =L,
No+N;+N,+N,=L*,

6.1)
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so that
3L* =L+3Ny+2N,+N, =2 L+2(Ny+N,) = L+8.

This completes the proof of the following generalization of Theorem 3.

THEOREM 6. If the equation (1.1) has no odd solution, the lengths L and L* of
the period of the ambiguous classes A and 6(A) respectively satisfy

L*/3< L<3L*-8.

7. Cases LE = 2 and L} = 4. We first consider the case where L§ = 2. We
prove

PROPOSITION 5. Let D = 1 (mod 4) be a positive nonsquare integer. Then
L§ =2 if, and only if, there exist positive odd integers a and | such that

(7.1) D = a%I* +4a.
If (7.1) holds then
2, ifa=1=1(D=Y5),
Ly=+6, ifa=z3,1=1,
10, ifl=3.

Proof. Clearly L§ = 2 if, and only if, the principal period consists of the
two forms (see (2.14))

d*-D d*—D
h*=[1,d ~h* = g
[,d, 3 ] h* [ 3 ,d,l:’,

where d' is the greatest odd integer < \/I_) Thus if L¥ = 2 there exist positive
odd integers a and [ such that a = (D—d'?)/4, d' = al, giving (7.1).
Conversely suppose that (7.1) holds, with a, [ odd and positive. Then, as

a’l* < D < (al+2)?, the greatest odd integer < \/5 is al so that the period of
the principal class of discriminant D is

h* =[1,al,—a]l ~ h* =[—a, al, 1].

Ifa=1=1,D =235 and L, = 2. Suppose now al > 1, so that D > 5. Then,
by Corollary 2, the principal class of discriminant 4D contains the reduced forfhs

W =[4,2al,—a]l ~ k' =[—a, 2al, 4].
The form A’ is ambiguous, as well as the principal form
={[1,2a!,—4a], if I1>1,
[1,2(a+1),1=-2a], ifl=1.
If I=1 the form A" =[1-2a, 2(a—2), 4] satisfies
ha R~ N

proving that L, = 6.
If I > 1 the last coefficient of h and the first coefficient of b’ are even, so no
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primitive form f exists such that h~f=~ K, which implies L, > 6, so that
Lo, = 10. This completes the proof of Proposition 5. '

For the case L§ = 4, Theorem 1, Corollary 3 and (4.2) give the following
result.

PRrROPOSITION 6. For D such that L§ = 4, the equation (1.1) has no odd solution
if Ly =4, whereas it has odd solutions if L, =8, 12, 16 or 20.

Moreover, we have

PROPOSITION 7. (a) L§ = 4 if, and only if, there exist integers a, | and t such
that

e az3,1>1,t>1, a=1=1(mod2),
; -1

(7.3) t divides a—1 and a!+(aT),

(74) | D = Zla(it+27—4).

In this case the nonprincipal reduced ambiguous form of the principal class of
discriminant D (respectively 4D) is
al a—1 ) k*a*—D
9, = [a, al, T+?~] (respectively f 2 = [a, 2ka, = ]),

where (d and d' are defined in § 2)

d=d+1, k=I+1, ift=1,
(7-3) {d =d, k=1, ift#1.
Furthermore, we have '
(b) L,=4, if and only if t =0 (mod 2),
(cy) L,=38, ift=l=1,
(cy) Ly=12, ift=1,1=3,
(c3) Ly=16, ift=3,1=1, t=1(mod2),
(cq) Ly=20, ift=3,1=3,t=1(mod2).

Proof. Clearly L§ =4 if, and only if, the principal period P’ of dis-
criminant D has the following shape

,d?—D ?a*—D X <
Go = lvd’ 4 :“"gl= T)Ia,a zg2=glzg3:-g(:|’

that is if, and only if] there exist integers a, I, t satisfying (7.2) and
(7.6) 2(d' +1a) = t(D-d'?),
(7.7) D—-Pa* = a(D—-d?),

(7.8) la < /D < (I+2)a.
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From (7.7) we obtain (a—1)(D—d'?) = d'*—al?, so that (7.6) gives
(7.9)  2(a—1)=td—al),
which shows that ¢ divides a—1 and that

(7.10) d = al+2(a:1),

which, by (7.6), shows that t divides a!+(a;t1], proving (7.3). Also (7.7) follows

from (7.6) and (7.9), and a straightforward calculation proves (7.4).
Conversely, suppose that (7.2) and (7.3) hold. Then one checks that D,
defined by (7.4), is a positive integer = 1 (mod 4) and that, if one sets,

-1
d=al+2 —T—), then (7.9), (7.6) and (7.7) are satisfied, as well as the

inequalities (7.8) and d' <./D < d'+2, proving that L¥ = 4.
Furthermore one checks easily that

t=led+1</D; t=1wal+1)<./D,

proving (7.5), and completing the proof of (a).
Next we prove (b). If L, = 4 then the principal period P of discriminant 4D is

fo "~“ng;2 X fron "~".;::--
If d were even these four forms would be of type I, contradicting Theorem 4(b,)

and (), as t(f;) > 2. Therefore we have d =d', k=1 and, as fy ~ fi.,» =f,
there exists a positive integer u such that

la+d = u(D—d",

which, compared with (7.6), shows that t = 2u.
Conversely, if ¢t is even, say t = 2u, then (7.6) and (7.9) imply

D= d'2+(d%) - d’2+£—(9;—1) <(@+1)?,

u

showing that d = d'. Then (7.6) and (7.7) with d' =d and ¢t = 2u show that
fo ® fio, that is L, = 4. This completes the proof of (b).

We suppose from now on that L, > 4. Then the equation (1.1) has odd
solutions, so that, by Theorem 4, ¥ maps in an order-preserving fashion the
first half H of P on the sequence of six forms

90*91“92=51393=§'0ﬁ94=90395=9u

s0 that ¥(fy,2) = g, or g5 according as k is even or odd. Moreover H contains
a couple of contiguous forms f, _; = f, equal to A ~ h” or to A" ~ K, such that
Y(fi) = g4 We show that f; = h”. Otherwise k' (of type IV) would be followed
by fi+y of type I and ¥(fi+1) = ge, OF by fir: (of type II) with ¥(fi+,) = g5,
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and so ¥ (k) would be g,, with m > 5. Therefore f, = h”, of type V, so that one
has the following diagram

7
(7.11) N l Vi it d is even
=g,

.12 | T ¢4 s os

9o= 1= = Jo= Go=

Suppose first that d is even. Then, appealing to Lemma 2 and Theorem 4, one
sees easily that either

(7.13) foxF, Ly=38,
or
(7.14) forfinfaml, Ly=12,

Y(fi)=9:,, Y()=g, [, of type IV.

Now we consider the case where d is odd, and complete the diagram (7.12). The
form f, such that f, = f] is of type IV or V and ¥(f;) = g,. If f; were of type IV,
then either f, is of type II with ¥(f,) = g,, and f; is of type IV or V with
Y(f,) = g,, or £, is of type I, with ¥(f,) = g,, which in both cases contradicts
the fact that &' is of type II and that ¥ (k') = g,. Therefore f, is of type V, and
¥Y(f;) =g,. and thus f, is of type I with ¥(f,) =g,. As the mapping ¥,
restricted to the forms of type I is a bijection, there cannot be another form of
type I between f, and /', so that either f; is of type II with ¥(f;) = g5, that is
fy = R, orf, is of type III with ¥(f,) = g,, and f is of type IV with ¥(f,) = g,
and f, ~ I; f, cannot be of type V which would be followed by a form of type 1.
Thus when d is odd we have the two possibilities:

AN

= j;-fsfsft=hch'- f,*-‘g’f;_nn

(7.16) 9o = sn g sa= 90 =

" Thus we see that L, = 12 (if d is cven) or L0 = 20 (if d is odd) if, and only if,
the form g, = §, = [a, la, (I*a* — D)/4a] is the image by ¥ of a form of type IV,
that is if, and only if, the form [4a, 2la, (I a* — D)/4a] is reduced, that is if, and
only if,

(7.17) 0<./D-la<d4a<./D+la

ﬁ:

/.

o0/2

(7.15) (Lo=16)

‘ﬂ-q— =
.‘F‘—-..

-n:{ﬁ
_"n"I—'.-""!

or
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But, as §, is reduced, we have

(7.18) 0<./D—-la<2a<./D+la,

so that, as la < \/E, (7.17) is true provided [ = 3. When | = 1 the last inequality

of (7.17) reduces to 3a < \/i_), which contradicts the definition of / (and also the
second inequality of (7.18)). This completes the proof of Proposition 7.

COROLLARY. (1) L§ =4 and L, = 8 if, and only if, D = 9a* —4a, with a odd
and a = 3.

(2 L§ =4and L, = 12 if, and only if, D = m*a*—4a witha = m = 1 (mod 2)
and m= 5.
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