THE

PALEONTOGRAPHICAL SOCIETY.

INS'IT'U'IED MDCCCXLYII.

LONDON:

MONOGRAPH OF THE CRETACEOUS LAMELLIBRANCHIA OF ENGLAND.
 VOL. II.

ORDER OF BINDING AND DATES OF PUBLICATION

pages	plates	issued in vol. for yeak	published
General Title-page aud Contents	-	1912	February, 1913
1-5i	I-VII	1904	December, 1904
57-96	VIII-XI	1905	November, 1905
$97-132$	XII-XIX	1906	December, 1900
133-180	XX-XXVII	1907	December, 1907
181-216	XXVIII-XXXIV	1908	December, 1908
$217-260$	XXXV-XLIV	1909	December, 1909
261-284	XLV-L	1910	January, 1911
285-340	LI-LIV	1911	February, 1912
$341-473$	LV-LXII	1912	February, 1913

[^0]
CRETACEOUS LAMLELLIBRANCHIA

or

ENGLAND.

BY
HENRY WOODS, M.A.,
UNIVERSITY LECTURER IN PALEOZOOLOOT. (AMBRIDGE.

VOL. II.

LONDON:
PRINTED FOR THE PALAONTOGRADHICAL SOCIETY

$$
1904-1913 .
$$

CONTENTS OF VOI. II.

page
Ostrea 342
Exogyra 395
Lima 1
, (Plagiostoma) 10
.. (Acesta) 25
., (Mantellum) $\because 8$
, (Ctenoides). 40
,, (Limatula)... 45
,, (Limea) 53, 425
Pteria (Oxytoma) 57
,, (Pseudoptera) 63, 425
Aucella 69
Aucellina 72
Gervillia 74, 425
Perna 87
Inoceramus 262, 433
Pinua 96
Astarte... 102
Opis (Eriphyla) 113, 426 118
Cardita 121
Crassatellites 128, 426
Anthonya
Cyprioa... 131, 427
Trapezium 148
Isocardia 151
Lucina 152
Corbicella 157
Sphæra... 157
Mutiella 160
Unicardium 162, 428
Thetironia 165
Tellina 171, 429
," (Palæomœra) 17:
" (Linearia) 175
Mactra 177
Ptychomya 179
PAOE
Dosiniopsis 181
Cyprimeria (Cyclorisma) 183, 431
Clementia (Flaventia) 189
Callista 192
Tilpes (Icanutia) 431
Protecardia 194
Cardium 201
(Granocardium) 205
Toucasia 207
Gyropleuria 208
Durania... 420
Corbula 210
Pharus 217
Solecurtus (Azor?) 218
Leptosolen 219, 432
Panopea 221
Martesia 231
Turnus 233
Teredo 237
Plectomya 238
Anatina (Cercomya) 238
Tluracia 240, 432
Pholadomya 245
Myopholas 253
Goniomya 254
Pleuromya 256
Liopisthat (Psilomyat) 257
Cuspidaria 259
Additions and Corrections 423
'I'ables of Distribution 434
Biblingraphy 449
Iudex 462

THE

PALEONTOGRAPHICAL SOCIETY.

VOLCOME FOR 1:Mt
L.0.1)(0N:

A MONOGRAPI

OF THE

CRETACEOUS LAMELLIBRANCHIA

10 F

ENGLAND.

BY
HENRY WOODS, M.A.

VOL. If. PAR'T I.

IIMID.E.

Pases 1-in: Phates I-V゙ll.

1.0N1)ON:

1! 101.

DESCRIPTION OF SPECIES.

Fumily_LIMIDE, dOrrigny. Genus-Lima, J. G. Bruguière, 1797.
('Encyc. méthod.,' Tabl. Vers., pl. cevi.)
Lima canalifera, Golifuss, 1836. Plate I.
1836. Lima canalifera, A. Goldfusr. Petref. Germ., vol. ii, p. 89. pl. civ, fir. 1. 1839. - - H. B. Geinitz. Char. d. Schicht. u. Petref. des saichs. Kreidegeb., pt. i, p. 24.

- - multicostata, Geinitz. Ibid., p. 24, pl. viii, fig. 3.

1841. -- canalifera, F. A. Rümer. Die Verstein. d. nord-deutsch. Kreilegel.. p. 56.

- - laticosta, Römer. Ibid., p. 57, pl. viii, fig. 9.

1843. - molticostata, H. B. Geinitz. Die Verstein von Kieslingswalda, p. ©:3. pl. vi, tig. 10.
1844. - laticosta, A. E. Reuss. Die Verstein. der bühm. Kreideformat., pt. 2, p. 34.

- - multicostata, Reuss. Ibil., p. 34, pl. xaxviii, fig's. 7, 8, l8.
- - \quad - H. B. Geinitz. Grundr. d. Verstein., p. 4π.

1850. - canalifera, Geinitz. Das Quadersaudst. oder Kreidegeb. in Deutschland, p. 190.

- - molticostata, Geinitz. Ibid., p. 192.
- - canalifera, A. d'Orbigny. Prodr. de Pal., vol. ii, p. 167.
: - - molticostata, dorbigny. Ibid., p. 248 .
- - laticosta, d'Orligny. Ibid., p. $\mathbf{2 4 9}$.

1863. - canalifera, A. Kunth. Zeitschr. d. deutsch. geol. Gesellsch., vol xr. p. 726.

- - - R. Drescher. Ibid., vol. xv, p. 356.
: 1868. - multicostata, E. Eichwald. Lethau Rossica, vol. ii, p. 45!.

1870. - multicosta, F. J. Pictet and (r. Campiche. Fuss. Terr. Crit. Ste. Croix (Matér. P’al. Suisse, ser. 5), p. 174

- - canalifera, Pictet and Campiche. Ibil., p. 175.

1872. - \quad - H. B. Geinitz. Dis Elbthathel. in Sachsen (Paheon-
 pl. ix, tirs. ti-8.
1873. Lima canalifera, D. Branne. Zeitschr. f. d. gesammat. Naturwiss., vol. slvi,
p. 386.

Drerciption.-Shell moderately convex, oval or subtriangular; height a little greater than length; outline rounded, except the antero-dorsal margin, which is nearly straight and rather long. Apical angle from 105° to 110°. Umbones rather small, close together. Anterior area slightly depressed, with small radial ribs. Anterior ear's small; posterior larger, with growth-lines and faint radial rilss.

Ornamentation consists usually of 18 , but sometimes of as few as 14 or as many as 21 very strong, rounded, straight ribs, which are separated by broader furrows. In well-preserved specimens numerous concentric linear ridges occur on both rilss and furrows, and projecting growth-ridges are seen at regular intervals on the rils.

Mroswements:

	(1)	(2)	(3)	(1)	(5)	
Length	70	56	52	43	32 mm .	
Height ${ }^{1}$	76	58	54	4	35	"
	(1-5) Upper Greensand, Veutuor.					

Alfiuition.-An exact comparison of the English specimens with the foreign examples of Limu comelifiren is rendered difficult owing to the fact that the former have the shell well preserved whilst the latter occur chiefly as casts. In both cases the number and breadth of the ribs show considerable variation. The fine concentric ornamentation is the same in both, as is shown by Goldfuss' figure, but in some of the best preserved English specimens there occur also transverse ridges on the ribs at regular intervals. Somewhat similar ridges are shown in Goldfuss' figure, but they seem to be present chiefly on the sides of the ribs and

[^1]in the neighbourhood of the umbe only. With the exception of this character the English specimens agree closely with the foreign examples, and this difference may very well be due to the latter being much less perfectly preserved than the former. Moreover, in some English specimens the ridges mentioned are partly or entirely wanting.

The English camples occur at a lower horizon than those found abroad, namely, in the zone of Pecton aspre. The foreign specimens are found in the Turonian and Senonian, and possibly also in the Cenomanian, and, like the English examples, they occur chiefly in beds of a sandy nature. This last fact may account for the absence of the species in the English Chalk, during the deposition of which the sea-floor was formed of ooze and was at a greater depth.

Lima Etalloni, Pictet and Campiche,' from the Valanginian, presents some resemblance to L. cenulifera, but has a smaller apical angle; the character of its fine ornamentation is unknown.

TYype.-Goldfuss' specimens came from the Senonian of Quedlinhurg, Halterm and Regensburg.

Distrilution.-Upper Greensand (zone of Perten asper) of Ventuor.

Lima Gamennfi, l'OMifmy, 1847. Plate II, figs. 1"—c.

1847.		Gallienniana, A. dorbigny.	Pal. Franc. Terr Crét., vol. iii. p. 5.48. pl. ccecxx, figs. 1-3 (Galliennei in plate).
1850.	-	- -	Prodr. de Pal., rol. ii, p. 166.
1854.	-	Gallifnnei, J. Morris. Cat	Brit. Foss., ed. 2, p. 171.
1867.	-	E. Guéranger.	Album Palcont. de la Sarthe, p. 18. pl. xxiii, figs. 23, 24.
1869.	-	F. J. Pictet and	G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser : B). p. 168 .
1871	D	Galliennei, F. Stoliczka.	Palwont. Indica, Cret. Fauna S. India. vol. iii, p. 414.

Deseriptim.-Shell compressed, more or less oblong with rounded margin: height greater than length. Antero-dorsal margin straight or slightly concave. A pical angle large. Umbones close together. Anterior area only slightly depressed, with sharp borders.

Ornamentation consists of 12 to 1 : strong, much elevated tiths with romeded 1. Terr. Crít. Ste. Croix (1869). p. 141. pl. elxiv. fiy. 3.
summits, separated by broader rounded furrots. Both ridges and furrows bear mumerous flattened radial ridges separated by linear grooves; the ridges, in well-preserved specimens, are serrate or gramular. At distant intervals a few well-marked growth-ridges occur.

Mrasuremputs:

Affinitios.-This species is distinguished from L. comalifera (p. 1) by the valves being more compressed, the ribs fewer in number, the grooves relatively broader, and by the presence of fine radial ornamentation on the ribs and grooves.

Remmils.-This appears to be a rare species in England. The specimens from Devizes are in the Muscum of Practical Geology. The specimen from Humble Rocks was collected by Mr. Jukes-Browne, and is now in the Sedgwick Museum.

T' $!p^{\prime \prime}$. -From the Cenomanian of Coudrecicux, Sarthe.
Distrilution.-Upper Greensand (zone of Schlmhlarhia rostruta) of Devizes. Base of (Chalk Marl (Bed 10) of Humble Rocks, West of Lyme Regis.

Lima recerensis, sp. not. Plate II, figs. 2, a-e.
Description.-Shell large, rather compressed, ovate, height greater than length; antero-dorsal margin straight, the remainder forming a regular curve. Anterior area deeply depressed. Λ pical angle apparently about 100°. Anterior ear small; posterior car larger, with a few ribs.

Ornamentation consists of about 40 rather strong, narrow ribs, with rounded summits which, in places, are slightly tubercular. The ribs are closer together on the anterior part of the valves than elsewhere. The interspaces are much broader than the ribs, and are flat or slightly concave; they are marked by numerous fine, concentric ridges.

Alimitirs.-This species resembles Limu Dujardiui, Deshayes, ${ }^{1}$ from the Senonian, but the interspaces are flat or nearly flat instead of concave, and the well-marked seale-like projections which, in L. Dujeidini, are placed at intervals on the ribs, but without a concentric arrangement, are not seen.

[^2]Remarks.-I have seen one example only; it consists of both valves, but with the posterior margin imperfect.

Type.-In the Muscum of the Ventnor Institute.
 of Wight.

1836. Lima? sobovalis, J. de C. Sowerby. Trans. Geol. Soc., ser. 2, vol. iv, pp. 359, 342, pl. xrii, fis. 21.
1839. - aspera, H. B. Geinitz. Char. d. Schicht. u. Petref. les sichs. Kreidecgel., pt. 1, p. 23 (${ }^{\text {martim) }}$.
\therefore 1847. - subovalis, A. diarchiac. Móm. Sue. ǧol. de France, ser. 2, vol. ii, p. 309.

- - ornata, A. d'Orbigny. Pal. Franç. Terr. Crút., vol. iii, p. 551 , pl. cccexxi, figs. 6-10.

1850. - $\quad-\quad$ Prodr. de Pal., vol. ii, p. 167.

- - - H. B. Geinitz. Das Quadersandst. oiler Kreidegel. in Deutschland, p. 192.

1867. - - E. Guéranger. Album Paléont. de la Sarthe, p. 19, pl. xxiv, figs. 7, 12.
1868. - . sobovalis, F. J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. is), p. 168.
1869. - ornata, Pictet and Campiche. Ihill, pp. 169, 173.
1870. Radola (Acesta) ornata, F. Stoliczka. Paleont. Indica, Cret. Fauma S. India, vol. iii, p. 414.
1871. Lìma ornata, H. B. Geinitz. Das Elbthalgeb. in Sachsen (Palrontographica, vol. xx, pt. 1), p. 205, pl. xlii, figs. 16, 17.
:1877. - - A. Peron. Bull. Soc. geol. de France, ser. 3, vol. v, p. 502.
1872. - Rauliniana, A. J. Jukes-Bromene. Quart. Journ. Geol. Sue., vol. xxxiii, p. 502, pl. xxi, fig. 2.
1873. -- ornata, R. Michael. Zeitschr. d. deutsch. geol. Gesellsch., win. slv. p. 234.

Non 1852. - - A. Bumignier. Statist. génl., etc., de la Mreuse. Atlas. p. 23 . $\mathrm{p}^{1 .}$ xviii, figs. 17-19.

Description.-Shell compressed, ovate or sultrigonal, oblique, considerably higher than long, with the ventral and posterior margins rounded. Apical angle about 74°. Umbones small, close together. Anterior area rather small, depressed, limited by a ridge, ornamented with ribs separated by broader grooves.

Ornamentation consists of mumerous ($6:=$ to 70) fairly strong, rounded ribs of
nearly efinal size, but sometimes (chiefly near the posterior border) with smaller intercalated ribs. The ribs diverge slighty from a nearly median line, and bear short spiny or scaly projections at regular intervals hut unt usually with a concentric arrangement. The spines are rather nearer the imner than the outer side of each rib. The groores are narrow near the umbo but become broader in passing ventrally, and at the rentral margin may exeed the ribs in brealth. The grooves are roundel and (in some specimens) show transverse ridges. More or less distinct growth-lines oceur at intervals.

Morsumromeuls:

	(1)	(2)	(3)	(4)	(5)	(6)
Length	$2 \cdot$	21	90	17	16	14 mm
Height	$\because 1$	$\because 8$	29	2;	93	$\because 0$

(1.3) Cambridge Civernsand.
(2) Base of Chalk Marl, Folkestone.
$(4,5)$ Upper Greensand, Warminster.
(6) .. ,. Haldon.

Affinities.-This species belongs to the same group as the Senonian forms L. Dhunlieri, ILagenow, ${ }^{1}$ and L. muriortn, Goldfuss. ${ }^{2}$ It is distinguished from the former by its smaller apical angle and by the spines on the ribs being placed more closely together. L. muricutu differs from L. sulboralis in having fewer ribs with their ornamentation developed into long scale-like projections, and in having oblique grooves in the interspaces.

Remulis.-A comparison of the type of Limu sulbotalis with examples of L. ormutu leaves no doubt as to their identity. The type-specimen of the former is somewhat worn, but sufficiently well-preserved for identification, and another specimen on the same tablet shows the ornamentation quite clearly; the shell is not silicified, so that it was evidently not obtained from Blackdown-the locality given by Fitton-but it has all the appearance of specimens found at Warminster.

The examples from the (ambridge Greensand were referred to L. Rouliuina, d'Orbigny, ${ }^{3}$ by Mr. Jukes-Browne. The interior of these is filled with phosphate, and the shell, although in some respects well-preserved, is rather abraded, so that the remains of the spines usually appear as notches on the inner side (that facing the median line) of each rib. The transverse ornamentation in the grooves is often very distinct. Mr. Jukes-Brome has recently re-cxamined these specimens and agrees with me in thinking that they camot be separated from L. sultoratis. I

1 ' Neues Jahrl, fïr Min., ete.' (1842), p. 556; Vogel, 'Hollind. Kreide' (1895), p. 17, pl. i, fig. 9: Ravn, 'Mollusk. Danmarks Kridtaflej.' (1902), p. 100. pl. ii, fig. 14.
$2 \cdot$ Petref. Germ.,' vol. ii (1836), p. 89 . pl. ciii, fig. 4; Vogel. op. cit., p. 17, pl. i, figs. 10, 11.
 vol. ii, p. 138; Pictet and Campiche, "Foss. Terr. Crét. Ste. Croix" ('Matér. Pal. Suisse,'ser. 5. 1869). p. 154. pl. clxvi. fig. 2.
have not been able to obtain specimens of L. Rewliuiun", but it seems to differ from L. subocatis in having a larger posterior car and in other characters.

Typers.-In the Bristol Musem (No. 1778), from the U'pper Greensaml, probably: of Warminster. The type of L. orrutu is from the Cemomanian of Le Mans. The specimen from the Cambridge Greensand figured by Jukes-Browne is in the Scdgwick Museum, Cambridge.

Distribution.-Upper Greensand (zone of Schlumbuchin restrutu) of Haldon. Upper Greensand (zone of Pecten axper) of North Dorset, and Warminster. Cambridge Greensand (derived). Rye Hill Sand of Maiden Bradley. Chloritic Marl of Rocken End (Isle of Wight). Base of Chalk Marl (Greensand bed) of Folkestone. Also recorded by the Geological Survey from the Cenomanian of Devon aud Chard.

Deseription.-Shell compressed, ovate, height greater than length; anterodorsal margin rather short, straight or slightly concave, ventral and posterior margins forming a regular curve. Anterior area much depressed, sharply limited, nearly smooth or with faint ribs. Apical angle about 92. Posterior car of moderate size, with distinct growth-lines; anterior car small.

Ornamentation consists of a large number of narrow, rounded, more or less undulating ribs separated by broader grooves. The ribs are generally of uearly equal size, but smaller ones may be intercalated in the grooves. At regular intervals the ribs bear scales or lappet-like projections which are arranged concentrically and may become vertical at their ends; these scales are continued across the grooves as laminar projections. On the anterior and posterior ribs the "scales" become more pointed.

Measurements:

 Cenomanian of Rouen, but is distinguished from it by leing much less convex, by having a smaller anterior area and a smaller apical angle, and by the ribs beins relatively narrower and the grooves broader.

Types.-In the Museum of Practical Geologr.

Lima aspela (Mnutrll) 1820. Plate 1I, figs. 10, 11 ; Plate III, figs. 1 n, $1,2-4$.
182!.2. Plagiostoma: aspera, G. Mantell. Foss. S. Dowus, p. 199, pl. xxvi, fig. 18. 1854. Lima aspera, J. Morris. Cat. Brit. Foss., ed. 2, p. 170.
1870. - - F.J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 169.
1871. Radula (: Acesta) aspera, F. Stoliczik. Palæont. Iudica, Cret. Fauna S. India, vol. iii, p. 415.
1903. Lima aspera, A. J. Jukes-Browne. Cret. Rocks of Britain (Mem. Geol. Survey), vol. iii, p. 450.

| Nou 1836. | - | - | A. Goldfuss. Petref. Germ., vol. ii, p. 90, pl. civ, fig. 4. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - 1839. | $-\quad$ H. B. Geinitz. Char. d. Schicht. u. Petref. des siichs. | | | Kreidegeb., pt. 1, p. 23, pl. sxi, fig. 10.

- 1841. - - F. A. Rümer. Die Verstein. d. nord-deutsch. Kreidegeb., p. 56 .
- 1846. - - A.E. Reuss. Die Verstein. der bühm. Kreideformat., pt. 2. p. 34 , pl. xxxviii, fig. 17.
- 1847. - - A. d'Orligny. Pal. Fraug. Terr. Crít., vol. iii, p. 566, pl. ceccexv, figs. 3-6.
- 1850. - - Prod. der Pal., vol. ii, p. 248.
- - - A. Alth. Beschreib. d. Umgebung vou Lemberg (Haidinger*s Naturwiss. Abhandl., vol. iii, pt. 2), p. 243.
- 1863. - - A.r. Strombeck. Zeitschr. d. deutsch. geol. Gesellsch.. vol. xv, p. 150.
- 1869. - E. Farre. Moll. Foss. de la Craie de Lemberg. p. 135.
- 1870. - - F.J. Pictet and G. Campiche. Fuss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), pp. 171, 173.
- 1877. - - A. Fritsch. Stud. im Gebiete der böhm. Kreideformat. : II. Die Weisseuberg. u. Malnitz. Schicht., p. 132, fig. 118.
- 1883. - - Ibid., III, Die Iserschicht., p. 114.
- 1887. - - A. Peron. L'Hist. Terr. de Craie (Bull. Soc. Sci. hist. et nat. de l'Yonue, ser. 3, vol. xii), p. 150.
- 1889. - (Plagiostoma) aspera, O. Griepenkerl. Senon. von Königslutter (Palæout. Abhandl., vol. iv), p. 40.
- 1898. - aspera, G. Mïller. Mollusk. Unterseu. v. Braunschweig u. Ilsede (Abhandl. d. k. preussisch. geol. Laudesanst., N.F., Heft 25), p. 26, pl. iv, fig. 5.
- 1900. - - C. Gagel and F. Kaunhowen. Jahrb. d. k. preussisch. geol. Landesanst. für 1899, p. 232.

Inseriftion. Whell ovate, higher than long, outline rounded, with the anterodorsal and postcro-dorsal margins straightened; convexity small. Umbones small, pointed, close together, apical angle 80° to 90°. Antorior area deep, uarrow.

Anterior cars triangular, rather small ; posterior cars obtnsely triangular, chomgatr, with radial ribs.

Valves ornamented mith numerous flattened ribs arranged on cither sille of a line passing from the umbo to the ventral margin, from which they diverge slightly. The ribs are nearly straight or slightly undulating, hat are often bent ahruptly. where they cross growth-lines. Surface of ribs nearly smooth, but sometines showing very fine concentric ridges or (when worm) ohlique striae. On the immer edge of each rib-that facing the middle line-there are short, slit-like indentations, above each of which a short spiny projection is seen in perfectly preserved specimens. These slits and spines do not, as a rule, show a concentric arrangement. The grooves separating the ribs are very marrow and are marked with pits near the umbo and with transverse grooves ventrally. Sometimes now the margins of the valves new ribs are intercalated or old ones bifurcate.

Measurement:

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Length	31	30	28	96	24	19	16 mmm .
Height	36	:33	3:3	3\%	96	23	$\because 1$
Number of ribs	66	H1	60	40	12	11	-!

(1, 2, 3, 7) Tutternhoe Stone, Burwell.
(4) ,, , Cherry Hintom.
(5, 6) Chall Marl, Folkestone.
Affinities.-The Senonian form figured as Lium "sproth by Goldfuss, Reuss, and Fritsch is clearly distinguished from this species by the cheron-like ormamentation on the ribs. Pictet and Campiche suggest that Goldfuss' species may be identical with Limu Dunliori, Hagenow,' from Rügem, but this view is not supported by the figures given by Vogel and Ravn. The form figured by d'Orbigny hats a larger apical angle than L. "spera, Mantell, and does not show the spiny projections on one side of the rils.
 Mantell, but does not appear to possess the spine projections on the ribs.

T'ypes.-I have not been able to find the typer.3 'They came from the ('hall Marl of Hamsey and Stoneham.

Distrilution.-Chloritic Marl of Easthomenc (halk Marl of Folkestome: and Blue Bell Hill (Burham). 'Totternhoe Stome of Arlesey, Burwill. Chery Hintun. and Stoke Ferry.

1 'Neues Jalırl). für Min., ete. (1842), p. inti.
2 'Verstein. bühmisch. Kreideformat.' (1844), p. 35, pl. xxxiii, fis. $\mathbf{2}$ (

 "eprer. Mantell.
(' Min. Conch.,' wol. i, p. 175.)
 figs. 1, 2, 3 .
1836. Lima subrigida, F. A. Rumer. Verstein. nord-deutsch. Oolithen-geb., p. 79, pl. xiii, fig. 16.

- - plana, Römer. Ibid., p. 80, pl. xiii, fig. 18.

1841. - subrigida, Rïmer. Die Verstein. d. nord-deutsch. Kreidegel., p. 57.

- - plana, Rimer. Mbid., p. 57.

1877. - subrigida, G. Bïhm. Zeitschr. d. deutsch. geol. Gesellsch., vol. xxix, p. 235.
1878. - - A. Wollemann. Ibid., vol. xlviii, p. 836.
1879. - Wollemamn. Die Biv. u. Gastrop. d. deutsch. u. hollind. Neocoms (Abhandl. d. k. preussich. geol. Land., N.F., pt. 31), p. 30.

Fio. 1.-Lima (Plagiostoma) subrigidr, Rimer. Clanhy Ironstome, Lincolnshire. Right valve. Natural size. Solgwick Museum, Camhridge.
Description.-Shell convex, oval, height slightly greater than length; anterodorsal margin nearly straight, postero-dorsal much shorter and nearly straight, the remainder rounded and forming a regular curve. Apical angle rather more than a
right angle. Umbones of moderate size. Area large, with a large triangular ligament pit near the middle but bending posteriorly. Anterior area large, decply depressed, especially near the ears. Ears rather large, the anterior triangular, the posterior rather larger, more elongate ; surface with growth-lamella only.

Surface ornamented with numerous (43 to 52) radial ribs, which are straight or slightly undulating. The ribs are flattened; near the umbo they are separated by narrow grooves, but in passing ventrally the grooves increase in width and become as wide as or wider than the ribs. The grooves are rather shallow and rounded The anterior and posterior rits are narrower than the others. Near the umbo the grooves are punctate, but in passing ventrally the pits soon become replaced by

Fig. 2.-Lima (Playiostoma) subrigida, Komer. Claxby Ironstone, Benniworth Haven. Rirht valve. Natural size. Sedgwick Museum.
transverse furrows separated by ridges, and the latter may pass on to the ribs. On the anterior area ribs are small or absent, but growth-lines are usually distinet.

Mensurements:

	(1)	(2)	(3)	(t)	(3)	(i)	(7)	(s)	(1)
Length	109	100	80	73	-	cit	(1:)	:3	:31 mm.
Height	114	108	85	$7!$	-1i	(i.)	(i.)	: ${ }_{6}$	1.1
Thickness	-	(i)	-	-	-	-	: 6	--	- .
Number of ribs:		19	以	.1	41	f:)	-	\therefore	1.1

Affinitirs.-L. cigurnlomsin, Pietet and ('ampiche,' is distinguished from L. subrigide by its more quadrilateral outline, more numerous ribs and tiner

grooves, and also liy the earlier part of the shell being nearly smooth. L. cubros, m, \quad, mis, Pictet and ('ampiche,' is relatively longer and has narrower grooves.
 the English specimens have not hitherto been referred to that species; they agree perfectly with the descriptions except in the number of ribs, but Dr. Wollemam informs me that that character is variable. I have sent a specimen from the ('laxhy Ironstone to Dr. Wollemam, and he is able to confirm my identification of the suecies. Specimens from the speeton Clay differ from those found in Lincolnwhire in having fewer ribs with relatively fewer grooves, but since this is a very variable character it camot be regarded as indicative of more than a local variety.

 valve. $\times \underset{3}{z}$. Sedgwick Muscum.

T! ! $/ \mu^{\prime \cdots}$.-From the Hilsthon of Brunswick.
Distritmentio- Claxhy lronstome (zone of limemmites lateralis) of Benniworth Haven. Upper part of the Speeton Clay of Specton.

1812			P. Mutheron	Cat. Foss. des. Buaches-du-Rhone, p. 182, pl. xxix, figs. 3, 4.
1546.	-	-	A. crorbigny	Pall. Framç. Terr. Crit., vol. iii, p. 530 pl. cecesv, tigs. 1-4.
12:50.		--	d'Orrigny.	Prowlr de Pal., vol. ii, p. 107.
1×55			ci. Cortean.	Moll. Foss de le Yomee, p. 100.
65.	-		II. Cornumel.	Mon. Aptien de l'Esprane, pr 14!
1×66.			P'. de Lariol.	Foss. Oulith. Curall. Valaner. et Ursom Mt. Salive, p. 8:, pl. D, fig. 13.
1867.	-	-	dr Loriol, in	F'acre Rech. riol. Sims Satvoie, vol. i, p. 387, pl. C, fig. 24.
1869.	-	-	F. J. Pictet	and G. Campiche. Foss. Terr. Crít. Ste. Crvix (Matér. Pall. Suisse, ser. 5). p. 126 , pl. clxi, fig. 4.

1871. Rabula (Acesta) Orbignyana, F'. Stuliczlia. Palgout. Indica, Cret. Fauma S. India, vol. iii, p. 414.
[^3]Desreiption.-Shell moderately convex, oval, higher than long, ventral and posterior margin rounded. Umbones sharp. Apical angle aloout s: Ant Antor area depressed, limited by a rounded edge, ornamented with rihs. Bars with distinct growth-ridges. Posterior ear higher than long, and larger than the anterior ear.

Ornamentation consists of about 52 flattened ribs, slightly undulating, separated by very narrow grooves with pits. Near the ventral margin the rithe become divided by a median groove. Near the anterior and posterior margins the ribs are rather narrower thin elsewhere. A few moderately distinct growthlines occur.

Merrsurements:
Length 20 mm .
Height

- ,

Affinities.-This is distinguished from L. villerserusis (see below) by its more numerous and narrower ribs.
hemarli-I have seen one specimen only, which is preserved in the British Museum, No. L 1575t.

Distrilutim.-Lower Greensand (Ferruginous Sands) of Shanklin.
 $111,124,1,1: 3$.
1869. Lima villersensis, F. J. Pictet and G. Cumpiche. Foss. Terr. Creit. Ste. Crois (Matér. Pal. Suisse, ser. 5). 11p. 127, 162. pl. clxi, fig. 5.

Inscription.-Shell moderately convex, oval, higher than long, ventral and posterior margins rounded. Umbones sharp. Apical angle about 8.5°. Anterior area depressed, bounded by a sharp edge. Posterior car larger than the anterior, higher tham long, with the outer angle obtuse, and with a few radial ribs.

Ornamentation consists of from :32 to 36 broad, flattened, nearly staight rihs, separated by linear grooves with distinct pits. Near the anterior, and sometimes near the posterior border, the ribs become narrower. A few well-marked growthridges may oceur at distant intervals. Near the sentral margin of the valves (ventral to a growth-ridge) the position of the ribs is sometimes slightly shifted, and the number of ribs may increase owing to the fission of some.

Mensurements:

	(1)	(2)	(3)	(1)
Length	90	19	18	14 mm
Height	- 6	25	\because	17
	(1 -4) Luwer Greessand, Faring			

I!finitios.--I have seen only a few examples of this form. They agree with L. rillersemsis except in having a rather smaller apical angle. In this respect they resemble L. Orbignymm, Matheron (see above), but they differ from that species in possessing fewer and straighter ribs. I have not seen any undoubted example of L. rillevermsix and am unable to state whether the apical angle is constantly larger than in the English specimens. Pictet and Campiche say that it is about 95°, but the specimen they figure possesses an apical angle of 90° only. In the English specimens it is about 85°.

This is the form which was referred by Sharpe to I. comsoblutinn, d'Orbigny, Dut it possesses considerably fewer ribs than that speeces.

I'ype.-I. villersensis is found in the Valanginian of Ste. Croix.
Distribution.-LLower Greensand of Faringdon.
 Plate IV, fig. 1.
1847. Lima semiornata, A. d'Orbig'y. Pal. Franç. Terr. Crét., vol. iii, p. 555. pl. cecexxii, figs. 1-3. 1850. - $-\quad$ d'Orbigmy. Prodr. de Pal., vol. ii, p. 167.
1867. - \quad E. Gufarager. Album Paléont. de la Sartle, p. 19, pl. xxiv, fig. 13.
1870. - - F. J. Fictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 5), 1. 169.
1871. Radula (Plagiostoma) semiornata, F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 414. \div 1885. - \quad - F. Nïtling. Die Fauna d. baltisch. Cenoman. (Palxont. Abhandl., vol. ii), 1. 15, pl. ii, fis. 4.

Inescriptinn.-Shell compressed, rounded, height and length nearly equal. Antero-dorsal border straight or slightly concave. Umbones close together. Anterior area depressed, with a sharp edge. Apical angle 120°.

Surface nearly smooth, shiny, with numerous, very fine, regular, concentric linear ridges, and with radial punctate grooves near the umbo and near the anterior and posterior margins. The grooves near the anterior margin are fewer and more widely separated than those near the posterior margin.
' 'Quart. Journ. Geol. Suc.,' vol. x (1853), p. 193 (sul-comsobrina, d'Orbigny, 'Prodr. de Pal'ont.,

Measurements:

Affinitics.-This species is distinguished by its compressed valves and rounded outline.

Type.-From the Cenomanian of Le Mans.
Distribution.-Upper Greensand (zone of S'chlmblarhiurostritu) of Potterne (Devizes) and Blackdown. Upper Greensand (\%one of I'r, ren "spri) of Ventnor. Chalk Marl of Folkestone.

Lima (Plagiostoma) Meyeri, sp. not. Plate IV, figs. 2,3. Text-fig. 4.
1896. Lima simplex, A. J. Jukes-Broune. Quart. Journ. Geol. Soc., vol. lii, p. 150.

Description.-Shell ovate or subtrigonal, much compressed, a little higher than long, oblique, considerably inequilateral; antero-dorsal margin long and

Fig. 4-Lima (Plagiostoma) Meyeri, sp, nov. Upper (ireensand, Warminster. Museum of Practical diondioy. No. ss:3s. Left valve and antero-dorsal view. Natural size.
straightened, ventral and postero-ventral margins rounded. ['mbones small, close together. Apical angle from 90° to 100°. Anterior area depressed, long and narrow, with a few radial ribs and vertical grooves. Posterior car small; anterior ear not seen.

Ornamentation consists of narrow, linear, shallow, pitted arowses which may
be confined to the anterior and posterior parts of the valses or may extend over the whole surface. The grooves are somewhat irregular and the interspaces are broad and flattened. At distant intorvals a fow well-marked growth-rings oceur, beyond which, in some cases, the rihs cease.

Mrastroment:

	(1)	(2)	(3)	(1)	(5)
Length	(6)	:3\%	48	42	: 1 f mm
Height	71	. 6	S	1.7	37

 relatively higher, more trigomal in outline, and in having the ratial grooves more extensively developed. It is distinguished from Limm simpler, dorligny, in being much less convex, in the height being relatively less, the antero-dorsal margin shorter, the anterior area smaller, and the anterior grooves less prominent.

The shell is relatively longer and the apical angle larger than in 1 . sult-rousohimi, d'Orbigny: ${ }^{-2}$ It is also relatively longer, with a longer antero-dorsal margin and the radial grooves less well developed, than in L. retererel (\mathfrak{p}. 29).

I'y/f:-From Warminster. In the Museum of Practical Geology.
listribution.-Upper Greensand (zone of Prefen (apmir) of Warminster. Rye Hill Sands and Chloritic Marl of Maiden Bradley. Cemomamian (Me Yior's Beds 10 and 11) of Hooken and Dunscombe (Devon coast).

> 1836. Luelna! gidobosa, J. dr C. Somerhy. Trans. Geol. Suc., ser. 2, vol. iv. 1. 335, pl. xi, figr. 2 (nom Luciut globosen. Römer, 1839).
> 185.t. Lama mobosa. J. Mhris. Chat. Brit. Fons., el. 2. p. 171.
xhii, p. 473.

Insiscripinu. Whell very convex, of moderate size, oval, length considerably greater than height, outline rounded with the antero-dorsal margin long and straightened. Umbones incurved, blunt. Apical angle about 118. Anterior area large, very deep, limited by a sharp edge, with radial ribs. Ears small.

Surface of valves polished, with faintly-marked growth-lines at intervals;

 (18:0). p 167 .
ornamented with mumerous pits having a regular rallial and concentric arrangement and giving rise (in some cases) to the appearance of slightly-raised radial and concentric ribs. Near the ventral margin the pits become more elongated (parallel with the margin) and their concentric arrangement may become wavy or irregular. At the anterior and posterior margins the radial arrangement is often more distinct than elsewhere. Sometimes on the median part of the valve the concentric arrangement alone can be recognised.

Measurements:

	(1)	(2)	(3)	(${ }^{(1)}$	(5)	(6)	(7)	(s)
Length	31	27	2.5	24	22	20	18	12 mm .
Height	25	2:3	21	21	19	17	16	10
		($1-3,5,7,8$) Totternhoe Stone, Burwell. (4) Chalk Marl, Ventnor. (6) ,. , Clevancy.						

A!fuitios.-This species closely resembles Limu allrinsis, d'Orbigny, from the Gault of Ervy (Aube), Machéroménil (Ardemnes), the Perte-du-Rhône, etc. I have not seen any specimens of L. culurusis, but it appears to differ from L. glubosio in the absence of the punctate ormamentation and in having a smaller apical angle.
L. globose is distinguished from L. Hoperi (see below) by its smaller size, more inflated valves, and by the close-set rows of radial and concentric pits.

Type.-In the Museum of the Geological Socicty, No. 15:38, from the Chloritic Marl of the Isle of Wight.

Distribution.-Gault of Folkestone. Red Limestone of Hunstanton. Lpper Greensand of Warminster. Cambridge Greensand (base of (halk Marl). Chalk Marl of Ventnor, Clevancy, Chilcomb well (Winchester), Burham, Folkestone and Cherry Hinton. Cenomanian of Wilmington. Totternhoe Stone of Burwell. Zone of H. subylobosus of Chilcomb and Fulbourn.
 $11!, l, 1 \mathbf{l n}, l$.

18:2. Plagiostoma Hoperi. G. Muntell. Fuss. S. Dowhs. p. 20t. pi. avi. tigs. 9.3 .15.

- - J. de C: Somectly. Min. Comelh.. wh. iv. p. 111.

 fig. 9; Pictet and Campiche, "Foss. Terr. Crét. Ste. Croin" (Matr. Pal. Suisme; ner. B, latia). 1. 160 .

1xz?. Plagostoma Mantelli, A. Brongniart. Descript.géol. euvir. de Paris. In Cuvier's Ossem. Foss., vol. ii, pt. 2, p. 600, pl. iv, fig. 3.
18:\%. Pachytos Hoperi, M. J. L. Defrance. Dict. Sci. nat., vol. xxxvii, p. 207.
1827. Plagiostoma punctatum, S. Nilsson. Petrif. Suecana, p. 24, pl. ix, fig. 1.

18:32. Lima Hoperi, G. P. Deshayes. In J. G. Bruguiire, Hist. nat. des Vers et des Moll. (Encyc. méthod.), vol. ii, p. 349.
18:36. - Mantellii, A. Guldjuss. Petref. Germ., vol. ii, p. 92, pl. civ, fig. 9.

- - Hoperi, Goldjuss. Ibid., p. 91, pl. civ, fig. 8.
- - - Lamarck. Auim sims Vert. (ed. 2 by Deshayes and MilueEdwards), vol. vii, p. 120.

1837. Plagiostoma punctatum, W. Hisinget. Lethæa Suecica, p. 54 (not pl. xy. fig. 3).
1838. Lima Hoperi, H. G. Bromu. Lethæa Geognost., vol. ii, p. 682, pl. xxxii, fig. 8. 1839. - - H. B. Geinitz. Char. d. Schicht. u. Petref. des sächs. Kreidegeb., pt. 1, p. 24 (\% partim).
1839. - Mantellii, F. A. Römer. Die Verstein. d. nord-deutsch. Kreidegeb., p. 58.

- - Hoperi, Rümer. Ibid., p. 58.
- - Nilssoni, Rimer. Ibid., p. 57.

1842. - Goldfussi, F. v. Hayenow. Neues Jahrb, für Miu., ete., p. 555.
:1846. - Mantelli, H. B. Geinitz. Gruadr. d. Verstein., p. 472, pl. ax, fig. 13.

- - Hoperi, Geinitz. Ibid., p. 473, pl. xx, fig. 14.
- - - A. E. Reuss. Die Verstein. der böhm. Kreideformat., pt. 2, p. 34, pl. xxxviii, figs. 11, 12.

1847. -- Sowerbyi, J. Milller. Petref. der Aachen. Kreidef., pt. 2, p. 67.
1848. - Huperi, H. B. Geinitz. Das Quadersaudst. oder Kreidegeb. in Deutschland, p. 192.
Suwerbyi, Geinitz. Ibid., p. 192.

- - Hoperi, A. Alth. Geogn.-palæont. Beschreib. von Lemleerg (Haidinger's Naturwiss. Abhandl., vol. iii, pt. 2), p. 240.
$:-\quad$ Mantelli, R. Kiner. Verstein. v. Lemberg (Haidiager’s Naturwissensch. Abhandl., vol. iii, pt. 2), p. 29.
-- Plaglostoma Hoperi, var., J. de C. Sowerby, in F. Dixon. Geol. Sussex, pp. 348, 356 (p. 383, ed. 2), pl. xxviii, fig. 21.
1851-2. Lima Suwerbyi, II. G. Broun. Lethaa Geogn., ed. 3, vol. ii, pt. 5, p. 278, pl. xxxii, fis. 8.
؟1852. - Huperi, R. Kner. Denkshr. d. k. Akad. d. Wissensch. Wien, Math.nat. Cl., vol. iii, p. 318.

1854. - - J. Murris. Cat. Brit. Foss., ed. 2, p. 171 (partim).
1855. - - S. Placketku. Das Becken von Lemberg (Jahresber. d. k. k. zweit. Ober-gymuas. in Lemberg, 1863), p. 19. A. von Strombeck. Zeitschr. d. deutsch. geol. Gesellsch., vol. sv, p. 148.

- - - R. Drescher. Ibid., p. 355.

1869. E. Futre. Moll. Fuss. de la Craie de Lemberg, p. 137, pl. xii, fig. 19.
1870. Lima Hoperi, F. Rïmer. Geol. von Oberschles., p. 315, pl. xxxir, fig. 10.

1871. - Hoperi, IF. Schrïder. Zeitschr. der deutsch. geol. Gesellsch., vol. xxxiv, p. 263.
1872. - Sowerbyi, A. Fritsch. Stud. im Geliete der böhm. Kreideformat.:

III, Iserschicht., p. 115, fis. 87.
1888. - Hoperi, A. Peron. L'Hist. Terr. de Craic, p. 149.
1889. - (Plagiostoma) Hoperi. O. Griepenkerl. Senon. v. Königslutter (Palæont. Abhandl., vol. iv), p. 40.

	-	Hoperi, A. Fritsch. Stud. im Gehiete der hühm. Kreideformat. IV, Teplitz. Schicht., p. 84, fig. 78.
		E. Holzapfel. Die Mollusk. Aachen. Kreide (Palæontographica, vol. xxxv), p. 240, pl. xxrii, fig. 5.
1892.	-	(Plagiostoma) Hoperi, E. Stolley. Die Kreide Schleswig-Holsteins (Mittheil. a. d. Mineralog. Instit. Univ. Kiel, vol. i), p. 237.
1893.	-	Hoperi, A. Fritsch. Stud. im Gebiete der böhm. Kreiteformat.: V, Priesener Schicht., p. 100.
1894.	-	B. Lundgren. Mollusk. i Mammillatus- och Mucromata zonerna (K. Svenska Vet. Akad. Handl. N. F., vol. xxvi, No. 6), p. 42.
1897.	-	R. Leonhard. Kreideformat. in Oberschles. (Palæontographica, rol. xliv), p. 46.
-	-	A. Hennig. Revis. Lamellibr. i Nilsson's 'Petrific. Suecana, (K. Fysiogr. Sallsk. i Lumd. Handl., N. F., vol. viii), p. 30, pl. ii, fig. 13.
	-	lagiostoma) Hoperi, H. Woods. Quart. Journ. Geol. Soc., vol. liii, p. 383.
1898.	-	opery, G. Mïller. Mollusk. Untersen. r. Braunschweig u. Ilvele. p. 24, pl. iv, fig. 12.
1901.	-	A. Wollemann. Jahrb. d. k. preussisch. geol. Lamlesanst. für 1900, vol. xxi, p. 15.
1902.	-	- A. Wollemann. Lüneburg. Kreide (Abhandl. d. k. preussisch. geol. Landesanst., N. F., Heft 37), p. 58.
-	-	J. P.J. Ravn. Mollusk. Danmarks Kridtaflej. : I, Lamellibr. (K. Danske Vil. Selsk. Skrift. © Rakke. nat. og math. Afd., vol. xi), p. 99. pl. ii fig. 18.

Descriptim. -Shell convex, oval, rounded, considerably inequilateral, longer than high. Antero-dorsal margin rather long, slightly convex or nearly straight ; postero-dorsal margin rather short; the remainder forming a regular curve. Umbones close together. Apical angle 119° to 117°. Ears rather small, with growth-lines; the posterior longer than high and larger than the anterior car. Anterior area large, deep, with a more or less sharp border, often with radial grooves which vary in number and are more distinct near the umbo than anteriorly.

Surface of shell nearly smooth. In the region of the umbo numerous linear grooves with pits occur; these may also extend on to the anterior and posterior parts of the shell, and in some cases they are present on the middle of shell, reaching a part of the way or even quite to the ventral margin. The grooves are slightly wavy, sometimes discontinuous, and are deeper near the anterior and posterior margins, and often more widely separated near the former. New grooves are introduced at various distances from the umbo.

Mensurements:

	(1)	(2)	(3)	(${ }^{\text {(}}$	(5)	(6)	(7)	(8)	(9)	(10)	(11)		
Length	57	57	56	52	51	51	17	41	37	34	31		mm .
Height	52	50	52	0	47	40	42	39	32	32	28		

(1) M. cor-anguinum zone, Gravesend.
(2) Uintacrinus band, Devizes Road. Salisbury.
(3, 6, 12) A. quadratus zone, East Haruham.
$(4,7) M$. cor-anguinum zone, Gravesend.
(5, 10) M. cor-anguinum zone, Northfleet.
(8) Chalk Rock, Underwood Hall, Dulling. ham.
$(9,11)$ B. mucronata zone, Norwich.

Affinitirs.-This species was described by Brongniart under the name Plagiasthma Mrntrlli from specimens which were sent to him by Mantell from near

Brighton—probably from Lewes. Mantell' regarded Pla!iustume Mrutelli as a synonym of his Playiustomu Mrpmi, and I think there can be no donbt as to the correctness of that riew.

Geinitz (1872) considered Jimu IIoperi of Sowerhy to be distinct from L. IIoperi of Mantell, thinking that the former (which he named $L_{\text {. sumern }}$, wif was distinguished by being almost smooth, whereas the latter is covered with radial grooves. The smooth and the grooved forms agree exactly in shape, and between these extremes in ornamentation every gradation may be seen. Moreover, although one of the specimens figured by Mantell (fig. 3) is ornamented all over, the others (figs. 2, 15) possess grooves on the sides only. I think, therefore, that there can be no doubt as to the identity of I. ILopri of Sowerby and L. IIn,wri of Mantell. Further, it should be noted that Sowerby's specimens were sent to him by Mantell as examples of his L. Hopriri.

The specimens figured by Geinitz (1872) as I. IL'priri (from the Pliner-kalk of Strehlen) are relatively higher (especially fig. 11) than Mantell's species, and are probably examples of I. cietarea (see below).
L. Hoperi of d'Orbigny ${ }^{2}$ differs in having a smaller apical angle, in being relatively higher, much compressed, and with the grooves more widely separated. It may, however, be only a variety of I. Ifoperi, Mantell. I have seen undoubted examples of L. Hoperi, Mantell, from the Senonian of Marromme (near Rouen), Lillebonne (Seine-Inférieure), and from other French localities. The form described and figured by d'Orbigny as L. Mantelli is referred to below (p. Q:3).
L. Lamberti of Peron, ${ }^{3}$ from the zone of Micruster liecipurus of Joigny, may be only a variety of $L . H_{o q}, \ldots, i$. It is stated to differ chiefly in its greater length, but in this respect it can, I think, be matched by some undoubted varieties of L. IIoperi.

For the relation of L. Hoperi to L. globosa see page 17, and to L. cretacen see page 23.

Remarks.-This species varies considerably in the extent of the ornamentation. Some examples are smooth, save for the pitted grooves near the umbo; in many cases the grooves are continued on to the sides of the shell; less freepuently they extend to the middle of the valve, and may even reach the ventral margin. I have not seen sufficient examples, of which the exact horizons are known, to enable me to determine whether any of the varieties are characteristic of certain zones.

Types.-I have not seen the types. The specimens figured by sowerly are in the British Museum. The types, and also Sowerby's specimens, came from the Upper Chalk (probably from the zone of Micrester ror-testminurium or the zone of

[^4]M. com-an! $\mu \mathrm{min} \mathrm{\prime m}$) near Leres. An example from Cambrai is in the d'Orbigny Collection at P'aris, but it is probably not the specimen figured in the 'Palcontologie Frameaise.'

Jistril,"tion.-(i) Zone of Trwhtatulinu of Berendean, near Brighton. ${ }^{1}$
(ii) Zone of Indistire phum: of Winchester, Lewes, Dover, Kenley, Cuxton. (halk Rock of Boxmoor, Luton, Chderwood Hall (Dullingham), Westley Waterless.
(iii) Zone of Mirrestrir roi-testmdinarium of Lewes, Dover, Purley, Strood, ('hatham, Swaffham ${ }^{2}$ (Norfolk).
(iv) Zone of Mirimstrir 'mi-unquium of Winchester, Porton, Witherington, Quidhampton, Lewes, the Sussex coast, St. Margaret's, Gravesend, Northfleet, Halling Pit (South (roydon).
(v) Zone of Mnisulitrs testulinnrins of the coasts of Sussex, Thanet, and Yorkshire. TZ̈ntacrinus band of Devizes Road, Salishury.
(vi) Zone of Acfinmenmur qumdraths of East Harnham, Hursley (Winchester), the coasts of Sussex and Yorkshire.
(vii) Zone of Dirlmuitelly murromat, of the Dorset eoast and Norwich.
(viii) ('halk of Trimingham.

Lima (Plafilintoma) nemarfa, nom. nov. Plate IV, figs. 13, 14 "-r, 15. Plate V, figs. 1", $1,2,3,4 \prime$, 1 .

Description.-Shell of small convexity, oval, very inequilateral, higher than long. Antero- and postero-dorsal margins nearly straight, the remainder forming a
${ }^{1}$ Also recorded from the Terebratulina zone of South Dorset by Dr. Barrois.
\simeq This may be from the MK. cor-anguinum zone.
regular curve. Umbones small, close together. Apical angle usually about $10 \mathrm{r}^{2}$, but sometimes only 90°. Ears small, the posterior larger than the anterior. Anterior area of moderate size, very deep, with a sharp edge and numerous radial ribs.

Ornamentation consists of numerous, well-defined, radial grooves with distinct pits, covering the entire surface of the shell. The grooves are straight or slightly. wavy, and in some cases are linear, in others broader, the latter giving the appearance of flattened or rounded ribs to the interspaces. The pits in the grooves sometimes extend into the sides of the ribs. New grooves may be introduced near the ventral margin or occasionally near the middle of the valve. In well-preserved specimens very fine concentric ridges are sometimes seen. A few growth-rings are usually present.

Measurcments:

	(1)	(2)	(3)	(${ }^{\text {(})}$	(5)	(6)	(7)	(8)	(9)	
Length	32	32	26	21	21	17	16	12		IIm.
Height	37	35	30	24	อ9	$1!$	19	1.	12	
nus zone, Cuxton.		(5-7)				A qumdretus zone. East Hamham				

(1) H. planus zone, Cuxton.
" " Cheveley.
(8) M. cor-anyuinum zone, Witherington.
(3) " , Borsted.
(9) Uintacrinus bamel, Devizes Riviml, salishury.
(4) A.quadratus zone, Whaddun railway cutting, near Salisbury.
 apical angle, by being relatively higher and shorter, with the valves less convex, the anterior area relatively smaller, the entire surface of the shell always ormamented, and the grooves usually deeper.

The specimen figured by d'Orbigny as Linu Mrutrlli is similar in form to some examples of L. cretuece, but d'Orbigny states that the furrows are shallow and without pits. A specimen, however, in the d'Orbigny Collection at Paris shows pits in the grooves.

Lima læviuscula, Sowerby (in Dixon) is probably a small example of this species, but its locality and horizon are not stated.

One of the specimens from the Pliner-kalk of strehlen figured by (icinitz (1872) as L. Hoperi (fig. 11) agrees very closely with this species.
 Twyford and Cheveley. Zone of Mirmestir cor-tratulimurium of Borstal and Cuxton. Zone of M. cor-ronguinum of Micheldever, Witherington aud ('amp Ifill (South Wiltshire). Zone of Mursupites of Highfield. LZuturinue band of Devizes Road (Salisbury). Zone of Letinuramer, qumbratus of Winchester, East Marnham, West Harnham, and Milford (Salistury). Zone of Belcimuitelle mucronata of Norwich. Chalk of 'Trimingham.

1847. Lima Marrotiana, A. dorbigny. Pal. Frauc. Tetr. Crét., vol. iii. p. Eb1. pl. cecexxiv, figs. 1-4.
1850. - - dOrbigny. Prodr. de Pal., vol. ii, p. 247.
1889. - (Radula) Marrotiana, O. Griepenkerl. Senon. von Königslutter (Palæont. Abhandl., vol. iv), p. 39.

Nou 1850. -- Marottiana, A. Alth. Geogn.-pal. Beschreib. v. Lemberg (Haidinger's Naturwiss. Abhaudl., vol. iii, pt. 2), p. 240. pl. xii, fig. 25. (L. Althi, Farre).

Description.-Shell of moderate convexity, oval, more or less trigonal. Anterodorsal margin rather long, nearly straight; postero-dorsal margin much shorter ; the remainder forming a regular curve. Umbones rather small, pointed. Apical angle about 105°. Anterior area large, deeply depressed, sharply limited, ornamented with 10 to 12 strong, rather narrow ribs, which bear, in places, small nodular projections. Ears rather large, with growth-ridges, without ribs; the posterior rather larger than the anterior ear.

Ornamentation consists of 30 to 32 broad ribs with a few smaller ribs near the posterior margin; the ribs are smooth, with flattened or somewhat rounded summits, and are scparated by narrow rounded grooves. The grooves show, in places, transverse ridges and grooves which may extend to the sides of the ribs, giving them a notched appearance. Near the ventral margin, especially in old specimens, the ribs be come more flattened and the grooves shallower.

Meastrements:

	(1)	(2)
Length	59	27 mm.
Height	60	28 m

(1, 2) Upper Chall (B. mucronata zone). Norwich. The measurements of the larger specimen are approsimate only.

Alfinities.-This is distinguished from other species found in the Chalk by its strong ribs. In Limen Althi, Favre, the ribs are more numerous and not so broad.

Lima Marotiana differs from most of the species which are referred to I'linjustomu in having much stronger ribs, but in other respects it agrees closely with that sub-genus.
liemurk.-The only specimens I have seen are from Norwich, where it appears to be rare. The shell is usually more or less crushed, so that its proper outline is distorted.

Types.-D'Orbigny's specimens came from the Lower Senonian of Dordogne, Charente-Inférieure, Cambrai, and Aube.

Distribution.-Zone of Belemnitella mucronatu of Norwich.

> Sub-genus-Acesta, H. and A. Adtoms, 1858.
> (' Genera of Recent Mollusca,' vol. ii, p. 558.)

Lima (Acesta) longa, Rümer, 1841. Plate V, figs. $8 \|, l, 9-11,12 \pi, b$.
1836. Lima elongata, F. A. Römer. Die Verstein. d. nord-deutsch. Oolith.-geb., p. 79, pl. xiii, fig. 11 (nou elonguta, Sowerby).
1841. - longa, Rümer. Die Versteiu. d. nord-deutsch. Kreidegeb., p. 57.
1847. - - A. d'Orbigny. Pal. Franç. Terr. Crét., vol. iii, p. 529, pl. ccecxiv, figs. 13-16.
1850. - - \quad Prodr. de Pal., vol. ii, p. 81.
1865. - - H. Coquand. Mon. Aptien de l'Espagne, p. 149.
1868. - - P. de Loriol. Valanģien d’Arzier. (Matér. Pal. Suisse, ser. 4). p. 41, pl. iii, fig. 11.
1869. - - F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. l’al. Suisse, ser. 5), p. 128. pl. clxi, figs. 6, 7.
1871. - - W. A. Ouster. Protozue Helvetica, vol. ii, pp. 104, 123.
1877. - - G. Bïhm. Zeitschr. d. deutsch. geol. Gesellsch., vol. xxix. p. 235.
1883. -. - W. Keeping. Foss., etc., Neoc. Upware and Brickhill, $\mathbf{1 , 1 1 2}$, pl. v, fig. 6.
1884. - n. sp., O. Weerth. Die Fauna des Neocom. im Teutoburg. Wahle (Palæont. Abhandl., vol. ii), p. 51.
! 1895 . (Plagiostoma) ef. Robinaldina, F. Vogel. Hullind. Kreide, p. 56.
1896. - Longa, A. Wollemann. Zeitschr. der deutsch. geol. Gesellsch.. vol. xlviii, p. 836 .
1900. - - Die Biv. u. Gastrop. d. deutsch. w. hellimh Neocoms (Abhandl. d. k. preussisch. geol Land., N. F., pt. 31), p. 2 T.

Description.-Shell compressed, sub-triangular, roundel, considerably higher than long, of small obliquity. Posterior and ventral margins convex; anterior margin straight. Umbones pointed, close together. Apical angle small-about 70 . Posterior ear large, not separated from the rest of the valve by a depression, ornamented with radial ribs. Anterior ear smaller, much higher than long.

Anterior area lanceolate, depressed, limited hy a sharp edge, ornamented with madial ribs.

Ornamentation consists of very mmerous, small, somewhat flattened ribs, separated by much narrower grooves. The rils are usually wavy, and are not all of equal size; posteriorly smaller ribs sometimes alternate with larger. The grooves are punctate and vary somewhat in width. A few distinct growth-lines are seen, below which the direction of the ribs may undergo some deflection.

Mr, sumement:

		(1)	(2)	(3)	(4)	(5)	(6)
Length	.	37	35	31	23	21	20 mm.
lleight	.	.62	35	56	37	35	$30 \quad$,

$(1,2,3,5)$ Lower Greensand, Upware.
(4) Tealby Limestone, North Willingham.
(6) Speeton Clay, Speeton.

Alfinities.-Limu lom!ue has a smaller apical angle and is relatively shorter than 1. 1 unlutu, Deshayes ${ }^{1}$; it is also clearly distinguished by the absence of the prominent concentric scales, and by the occurrence of pits in the grooves.

Rimatris.-In some cases, especially when the specimens are not perfectly preserved, the ribs (as remarked by Wollemann) become indistinct on the middle of the shell. This is the case in specimens from the Tealby Limestone, and in some from the Speeton Clay, in which the middle part of the shell is almost smooth. The outline of the shell and the relative size of the posterior ear are rather variable.

A specimen from West Dereham (Plate V, fig. 13) possesses finer ribs, but may perhaps be only a variety of this species.

T!yprs.-From the Hilsthon of Elligser Brink. A specimen from the same locality (imperfect on the posterior side of the umbo) is figured by d'Orbigny and is preserved in the Muscum of l'aloontology at laris. Two of the specimens from Lipware figured by Keeping are in the Sedgwick Museum, Cambridge, and another is in the collection of Mr. J. F. Walker.

Distribution--Lower Greensand of Upware, Potton, and Brickhill. Teally Limestone (zone of Redrmiters licunscicrensix) of North Willingham. Upper part of Specton Series of Specton.

1847. Lima clypelformis, A. d'Orbigny. Pal. Frame. 'Lerr. Crét., vol. iii, p. 543. pl. cecexvii, figs. ! 10.
18:50. -. \quad - TOMigny. Prodr. de Pal., vol. ii, p. 1 ti6.

[^5]1869. Lima clypeiformis, F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse ser. 5), p. 168 .
1871. Radula (Acesta) clypeiformis, F. Stuliczka. Paleont. Iurlica, Cret. Fauma S. India, vol. iii. p. 414.

Description.-Shell very large, compressed, oval, rounded, only slightly oblique. Height equal to or slightly greater than length. Antero-dorsal margin more or less

Fıo. 5.-Lima (Acesta) clypeiformis, d'Orbigny. Upper Greensand, Chard. Right valve. Taunton Museum. $\times \frac{2}{3}$.
straightened and relatively short. Ears rather small, the anterior larger than the posterior. Surface of shell smooth, except for growth-lamelle at intervals.

Measurements:

Alfinitios.-Limu sulurlymimimis, Futterer, ${ }^{1}$ is stated to be related to L. clypeiformis.

Remmit.-This is the largest species of Lima known in the Cretaceous of England. I have seen two specimens only, one of which is in the Museum of the Somersetshire Archrological and Natural History Society at Taunton, and the other in the Exeter Musemm. The occurrence of this species in England was first recorded by Mr. Jukes-Browne. ${ }^{\text {a }}$

T'ype.-D'Orbigny's specimens came from the Cenomanian of Le Mans, ete.
Distrilution.-Topmost bed of the Upper Greensand of Chard.

$$
\begin{aligned}
& \text { Sul-grmus-Mantelitm, I. F. Bolfon, 1798. } \\
& \text { (' Mus. Bolten.,' 2, p. 160.) }
\end{aligned}
$$

Lima (Manthlim) paralida (Sowerly) 1812. Plate V, figs. 1f, 15 a-d.
1812. Momola parallela, J. de C. Sowerby. Min. Conch., vol. i, p. 31, pl. ix (right-hand top figure).
1842. Lima mlegans, A. Leymerif. Mém. Soc. géol. de France, vol. v, p. 27. pl. vi, fig. 6. (Non Dujardiu, non Nilsson.)
1845. - elongata, E. Forbes. Quart. Journ. Geol. Soc., vol. i, p. 248.
1846. - miefans, A. Leymerie. Statist. géol. et min. de l'Aube, pl. vi, fiy. $\overline{\mathrm{z}}$.
1847. - Cottaldina, A. dOrbigny. Pal. Franç. Terr. Crét., rol. iii, p. 537. pl. ccecxvi, figs. 1-5.
1850. - - dorbigny. Prodr. de Pal., vol. ii, p. 119.
1854. - parallela, J. Marris. Cat. Brit. Foss., ed. 2, p. 171.
1855. - Cottalinina, G. Cotteau. Moll. Foss. de l'Yonne, p. 101.
1858. - - J. Vilanova-y-Piera. Mem. geog.-agric. de Castellon, pl. ii, fig. 15.

- - parallela, F. J. Pictet and E. Renevier. Foss. Terr. Aptieu (Matír. Pal. Suisse, ser. 1), p. 126, pl. xix, fig. 1.

1865. - \quad H. Coquand. Mon. Aptien de l'Espagne, p. 148.

18i9. - Cottaldina, F. J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 151, pl. clxvi, fig. 1.
1883. - farringdonensis, W. Keeping. Foss., etc., Neoc. Upware and Brickhill, p. 112, pl. v, fig. 12.
1884. - Cottaldina, O. Weerth. Die Fauna des Neocom. im Teutoburg. Walde (Palæout. Abhandl., vol. ii), p. 52.

[^6]1895. Lima Cottaldina, G. Mame. Zeitschr. der deutsch. grol. Gesellseh., wo xlvii, p. 267.

- - (Radola) Cottalidina, F. Fogel. Hollïnlisch. Kreide., p. 56.

1900. - Cottaloina. A. Wollomann. Die Biv. u. Gastrop. d. deutsch. in. hollind. Neocoms (Ahhandl. d. k. preussisch. geol. Land., N. F., ${ }^{1 t}$. 31), p. 35, pl. ii, figs. 2. 3.
```
Non 1847. - parallela, dOrbigmy. (See p. 31).
```

Description.-Shell moderately convex, oblique, oval or rounded-oblong, higher than long. Antero-dorsal margin long, nearly straight, more or less parallel with the postero-ventral margin; postero-dorsal margin short, more or less nearly straight. Anterior margin regularly rounded. Umbones sharp, only slightly curved; apical angle about 90°. Ears of moderate size. Anterior area rather large, slightly convex ventrally, depressed near the umbo, usually smooth except for growthlines.

Ornamentation consists of 18 to 20 principal ribs, and sometimes of a few smaller ribs near the posterior margin. The principal ribs are roof-like with sharp summits; they are strongest on the antero-dorsal part of the valve and hecome less elevated and rather more widely separated in passing posteriorly; the two or three anterior ribs (near the anterior area) are rather smaller and closer together. A small rib occurs at the bottom of the furrows between the main ribs; smaller linear ribs may occur on the sides of the principal ribs, especially on the posterior part of the shell. Fine concentric growth-lines are seen on the rils and furrows.

Mrisurements :

	(1)	(2)	(3)	(4)	(3)	(6)	(i)	(8)
Length	26	26	2.5	23	2:3	22	19	14 mm
Height	$\underline{\sim} 1$	22	20	19	18	17	14;	

$(1,4)$ Perna-bed, Atherfiell.
(2, 5) Hythe Beds, Lympue.
(3) Lower Greensand, Upware.
(6,7) Hythe Beds, Hythe.
(8) Ferruginous Sands, Shanklin.

Affinities.-This species is closely allied to T. Raymiunn, d'Orbigny, but in the latter the ribs do not decrease in size nor become more widely separated on the posterior part of the shell, and the small rib in the furrows is absent or indistinct.
L. parallela is distinguished from L. gaultiun (p. :31) by heing relatively shorter and less compressed, by the ribs on the posterior part of the shell being

1 'Pal. Franç. Terr. Crét.,' vol. iii (1847), p. 527, pl. cecexir, firs. 5-8; Pictet and Campiche, - Terr. Crét. Ste. Croix ' (1869), p. 142, pl. clxiv, figs. 4, 5.
more distinctly smaller than those on the anterior part, and by the presence of the small rib at the bottom of each groove. See also L, findimitmensis (helow).
I. erpminist, Forbes, ${ }^{1}$ from the Itythe Beds of Hythe, is known to me only from the type specimen which is preserved in the Museum of the Geological Society (No. 20,4i). It is an internal cast in clay, somewhat crushed, and shows the ribhing only imperfectly. I think it is probably an example of L. purallihli, but more specimens from the same horizon are needed before a confitent opinion can be given. Similar remarks apply to J. linym, Forbes, ${ }^{?}$ which comes from the same horizon and locality, and is likewise preserved in the Musemm of the Geological Suciety (No. 20:8).

This and the following eight species are provisionally referred to the sub-genus Mant, mhm, with which they agree in the form of the shell and, in many cases, in the general character of the ornamentation. They differ, however, from the type of Mrutrllum in having the valves closed or almost closed, but there is, as Phillipi has pointed out, every transition from the species in which the valses gape widely: to others in which they are closed.

Remorlis.-This species shows a fair amount of variation in the propertions of length and height, and also in the obliguity of the shell.

The type-specimen of L. purithlif is an internal cast, and consecquently all whiters have found it practically impossible to make out the characters of the species from Sowerby's figure. A comparison of the type with better preserved specimens leaves no doubt in my mind that Sowerhy's species is really identical with the form deseribed by d'Orhigny as I. ('ofteldian. The latter author

I! !/fe. Whe type is from the Hythe Beds of Maidstone and is preserved in the British Museum (No. +3, 2 ! 2). The specimen from Upware figured as L. furrin!dmomsis by Keeping is in the Sedgwick Museum, Cambridge.
 of Shanklin. Hythe Beds of Hythe, Lympne, and Maidstone. Sandgate Beds of Sevenoaks. Folkestone Beds of Folkestone. Lower Greensand of Faringelon and Upware. Specton Clay of Specton.

Lima (Minthiam) farmingonemsis, Shitip, 18:3.
1853. Lima farringmonensis, D. Sharpe. Quart. Journ. Geol. Soc., vol. x, p. 198, pl. vi, fig. 2.
Non 1883. - , - W. Keping. Foss., etc., Neoc. Upware and Bricklill, p. 112, pl. v, fis. 12.
1 'Quart. Journ. Geol. Soce, $\overline{\text { vol. }}$ i (1845), p. 249, pl. iii, fis. 11.
2 Ibill., p. 249, pl. iii, fig. 10.

Remarks.-The chicf character in which Lim" fincimylumensis differs from L. parallela seems to be in the possession of well-marked rilss over the whole of the anterior area. It also differs from the majority of examples of L. percellele in that the ribs only decrease in size to a very small extent in passing from the anterior to the posterior part of the shell; and further, the shell is less inequilateral than is usual in L. perallela.

I am inclined to regard Limu firriugdoneusis as not more than a variety of L. perallela, but without better material it is impossible to express a confident opinion. Almost all the specimens seen are in the condition of internal casts in a brownish ferruginous sandstone.
$T y p e$.-The figure given by Sharpe is taken from a gutta-percha cast of an external mould. It was obtained from Seende and is preserved in the Museum of the Geological Society.

Distribution.-Lower Greensand of Seende and Faringdon.

Lima (Mantemom) (inchina, nom. nov. Plate V, figs. 16-90.

> ; 1897. Plagiostoma elongata, J. de C'. Sueerby. Min. Conch., vol. vi. p. 113. pl. dix, fis. 2 (upher tisure only).
> 1847. Lima parallela, A. d'Orbiguy. Pal. Frame. Terr. Crét, vol. iii, p. 5:3:, pl. ecexvi, figs. 11-14. 1850. - - d'Orhigny. Prodr de Pal., vol. ii, p. 138. 1855. - - G. Cottcall. Moll. Foss. de I'Yome, p. 101.

> 1875. - - A. J. Jukes.Browne. Quart. Journ. Geol. Sow., vol. xxxi. p. 296 .
> 1897. - parallela, R. B. Newtm. Proc. Durset Nat. Hist. aud Autiy. Field Club, vol. xrii, p. 88 , pl. iii, fig. 11.
> 1900. -- \quad E. T'. Neutun and A. J. Jukes-Brome. Cret. Rochs of Britain, vol. i, p. 449.

Nou 1850. Plagiostoma parallelus. J. de C. Sueterby in F. Di,om. Geol. Sussex, p. 350 (p .386 , ed. 2). $\mathrm{p}^{\mathrm{l} .}$ xxriii, fis. 16 ($=$ L. elunguth. Sowerly).

Description. -Shell rather compressed, sub-quadrangular or nearly oblong, very oblique, much longer than high, rounded posteriorly; antero-dorsal margin long and nearly straight, almost parallel with the postero-ventral margin. Apical angle about 100°. Umbones pointed, close together. Eiars of moderate si\%e, the anterior larger than the posterior. Anterior area large, slightly concave dorsally, ornamented with fine radial ribs.

Ornamentation consists of 18 to 20 main ribs with a fow smaller riths posteriorly. The ribs are strong, with sharp summits, but become somewhat
weaker posteriorly. The sides of the ribs are ormamented with fine radial ribs, and at the summit there is sometimes a rib with pointed projections. Concentric growth-lines are present.

Mensurement:

	(1)	(2)	(3)	(${ }^{\text {) }}$	(5)	(6)
Length	39	34	29	29	28	17 mm
Height ${ }^{1}$	28	23	20	18	20	12
	$(1,4)$ Gault, Black Ven. ($2,3,5,6$) Gault, Folkestone					

LIfinitiss-Limen Iterima, Pietet and Roux,' appears to differ from this species in having a small ribl at the bottom of the groove, and in being relatively shorter. l'ictet and Campiche state that the small rib is not always present. I have seen no trace of such a rib in even the best preserved examples of L. yuultina. See also Lima mlunyrita (p. 36).

Remurls.-One of the specimens figured by Sowerby as I'higiostomut dongratie (the upper figure 2 of Plate DLIX) is probably an eximple of this species, but since it is an internal cast only, it is difficult to be sure of its identity without sceing other specimens from the same horizon. The specimen in question, however, agrees in form and in the characters of the ribs with other internal casts which undoubtedly belong to this species. D'Orbigny referred this species to Lima percullelu (Sowerby) and also included with it L. clouyutu, Sowerby (p. 3-).
l'ypes.-The specimen figured by Sowerby, mentioned above, is stated to come from the "Greensind of Folkestone." D'Orbigny's specimens of Limu parellilu, d'Orbigny non Sowerl)y, came from the Gault of Gérodot and Dienville (Aube).

Distribution.-Gault of Folkestone (zones ii, vii, ix). Gault of Ventnor and Black Ven. Cambridge Greensiand (derived). Upper Greensimd (zone of Shllenlachia restrath) of Devizes. Internal casts from the Specton Clay (zone of birlrmuites jaculum, (11) seem to be indistinguishable from this species.

1877. Lima interlineata, A. J. Jukes-Broenc. Quart. Juurn. Geol. Sue.,

Descripion.-Shell moderately convex, rounded-oblong. Umbones and ears nut seen.

[^7]Ornamentation consists of 10 to 12 strong ribs with broal interspaces. On the posterior part of the shell the ribs are more widely separated and the interspaces flatter than on the anterior part. In the interspaces there are small radial rilbs, separated by broad spaces.

Remarks.-The only specimens seen are a few imperfect internal moulds with very small portions of the shell preserved. L. iuterlineate appears to be allied to L. gaultina (see above) but is distinguished by possessing fewer ribs with broader and flatter interspaces. The smaller radial ribs are perhaps also better developed than in L. goultina.

T!ype.-In the Sedgwick Museum, Cambridge.
Distribution.-Cambridge Greensand (derived from the Gault).

Description.-Shell moderately compressed, oblique, oval or rounded-ohlong, higher than long. Antero-dorsal border rather long and roughly parallel to the slightly curving postero-ventral border; both curve gradually and regularly to join the posterior border. Postero-dorsal shorter than the antero-dorsal border. Umbones inconspicuons, close together. Apical angle about 100°. Ears small, of nearly equal size, the posterior with three or four small radial ribs and with growthridges. Anterior area moderately large, slightly convex except near the umboner, smooth or with a few small ribs at the sides.

Ornamentation consists of 20 to $2: 3$ ribs. Those on the antero-ventral region are strong and roof-like, and, in old specimens, bear a swaller rib on each side; posterior to this region the ribs become much smaller and hess elerated, some being almost linear and with broad and nearly flat interspaces. At the bottom of the furrows and in the middle of the flat interspaces there is a lincar rib. In well-preserved specimens very finc radial ribs and concontric liuce are seen.

Measurements:

		(1)	(2)	(3)
Length	-	35	30	30 mm.
Height		31		28
Thickness	.	18	.	17

(1, 2) Rye Hill Sands, Warminster.
(3) Upper Greensand, Longbridge, Devizes.

Lffinitirs.-This species is closely allied to Limu parellela, but is distinguished by being less convex (especially in the region of the umbones), by being rather shorter and higher, and by the ribs decreasing in size rather more rapidly when traced from the antero-ventral region to the posterior region. The fine radial ornamentation is also perhaps rather better marked than in L. parcallele.
L. intermediu differs from L. elonyata (see below) in being less convex, relatively shorter, in the ribs being less elevated and decreasing in size posteriorly, and in the absence or indistinct character of the ribs on the anterior area.

It is also relatively shorter and higher than Lime gueltina, and the ribs on the posterior half are much smaller and have broader and flatter interspaces. The intermediate rib is distinct in L. intermedia, but is absent or indistinct in L. yuultina.

Type.-From the Cenomanian of Le Mans.
Distribution.-Upper Greensand (zone of Pecten asper) of Longbridge, near Devizes. Rye Hill Sands of Warminster.

Limi (Manteleum) blongata (Sulcerby), 1827. Plate VI, figs. é, 6a-c, 7 u, b.

Non 1836. Lima elongata, A. Gollfuss. Petref. Germ., vol. ii, p. 87, pl. cii, fig. 1:; (L. Mïnsteriana, dOrhigny).

Description.-Shell of moderate convexity, subquadrangular or nearly oblong, rounded anteriorly, much longer than high. Antero-dorsal margin long, nearly straight, and nearly parallel with the postero-ventral margin; postero-dorsal margin short, nearly straight. Apical angle about 100°. Umbones sharp, close together. Ears of moderate size. Anterior area large, the dorsal part slightly concave, ornamented with from five to seven fairly strong rils which are crossed by fine growth-ridges.

Ornamentation consists of 19 or 20 very strong ribs, with sharp, and sometimes (especially on the dorsal part of the shell) slightly serrate summits. The ribs have usually at their summits a distinct ridge with a shallow furrow on each side, which sometimes gives rise to the appearance of a ridge on each side of the rib. The grooves between the main ribs are decp, rounded, distinctly limited, and of about the same width as the ribs. On thedorsal portions of the shell fine radial ribs occur on both ribs and grooves; on the ventral portions they are not seen. Fine concentric growth-lines cross both ribs and grooves, and some few (at intervals) are more distinct.

Meusurements:

	(1)	(2)	(3)	(4)	(5)	(6)
Length	3.4	27	26	2.)	$\bigcirc 1$	$\underline{91} \mathrm{~mm}$.
Height	24	18	20	$\bigcirc 0$	15	

(1.3,5,6) Chalk Marl, Folkestone.
(2) M. subylobosus zone, Stoke Ferry.
(4) Chalk Marl, Ventnor.

A!pinitios.-This species agrees in form with Lim" grultina (p. :31), but is distinguished (1) by the stronger ribs on the anterior area, (2) by the groores being relatively broader and more distinctly limited, (:3) by the ribs being more elevated, (1) by the fine radial ribs being usually indistinct except on the dorsal portions of the shell.

The form from the Planer-kalk (Turomian) of Saxony figured as Lima oltu!yt, by Geinitz seems to differ from this species in having fewer and more romaded ribs, and in the ribs being more widely separated on the posterior part of the shell than elsewhere. Similar remarks apply to the specimen figured by Fritsch. Without the opportunity of comparing specimens I am unable to give a definite opinion as to the Turonian form being distinct from L. Murymin.

Jimu Astieriun", d'Orbigny, is perhaps identical with L. elonguta, but the summits of the ribs appear to be somewhat more rounded.

Limn Reussi, d'Orbigny (L. rlongatu of Reuss) seems to differ from L. "lonyutu in having a smaller apical angle.

Remerks.-Under the name Ilafinstoma olongatw Sowerhy figured two species. It seems advisable to retain the name rlmyut", for the one shown in the lower of his t wo figures, sinee that form had been previously figured and deseribed (but without a specific name) by Mantell, and Sowerby refers to Mantell's figure as an example of Pluyiostrome clomgratu.

Thpes.-I have not seen the specimen figured by Mantell. Sowerby's type, from the Chalk Marl of Hamsey, and also the specimen figured in Dixon's work are in the British Muscum.

Instribution.-The range is from the Chloritic Marl to the zone of Inclustror sulhglobosus. Chloritic Marl of Eastbourne and the Isle of Wight. Chalk Marl of Ventnor, Folkestone, and Prince's Risborough. Totternhoe Stone of Arlesey. Zone of IInlustor subylulusiss of Blue Bell IIill (Burham), Stoke Ferry, and Hunstanton.

1881. Lima ecminata, R. Etheridge. In Penning and Jukes-Browne, Geol. Camloidge, p. 144, pl. ii, fig. 2.

Remorlis.-The examples described by Etheridge as Lima cchinata agree perfectly in form, in size, and in the number and character of the ribs with J. elongute, but on the ridge at the summit of each rib there is a row of short spines which are frequently rounded and stumpy, and on each side of the rib (outside the
shallow groore mentioned in the description of L. whontil) there is another row of similar, but slightly smaller spines. In the furrows between the main ribs there are transverse ridges.

On account of the close resemblance in the form and ribbing of L. crhi,.,fth to I. elonguta, and also from the fact that in some specimens of the former the ornamentation of the ribs is absent from a part of the shell and the rils are then indistinguishable from those of L. "lourfuttu, I am led to consider I. whinut, as not more than a variety of I. almgutn. Further, in some specimens of I. whygut, the summits of the ribs are serrate.
L. clongutic var. schiumt/, presents some resemblance to L.Schmeis.siri, Wollemann, ${ }^{1}$ from the Rhotomagensis-Pläner of Liuneburg.

Types.-In the Sedgwick Muscum, from Burwell.
Distribution.-Totternhoe Stone (Itulustrus sululdulusis zone) of Burwell and Cherry Hinton. Also recorded in the 'Geological survey. Memoirs' from the \%one of Schlonbucthio carians.

Lema (Mantelime) (axtabruimasis, nom. nov. Plate VI, figs. 10a,, , 11, 12. 1881. Lima ornata. R. Efleridye. In Peminig and Jukes-Broune, Geol. Cambrilge, p. 14t, pl. iii, fig. 2 (non mata, d'Orbigny, 1847; non ormata, Burignier, 18:2).

Dresription. Shell moderately convex, oval or rounded-oblong. Anterior margin rounded. Umbones and ears not scen.

Ornamentation consists of 16 or 17 main ribs with a few small ribs at the posterior end. The anterior rils are strong, roof-like, with ridged summits; posteriorly the ribs become less prominent and the interspaces less depreseed. Both ribs and grooves are ornamented with fine, well-developed rils, which are closer together on the ribs than in the grooves; usually three or four occur on each side of a main rib and three in each groove. Numerous concentric ridges occur and give rise to spiny projections where they cross the fine radial ribs.

A!finitios.-In form this appears to be similar to C. pmirellell (p. Qs), but has fewer ribs and is much more highly ornamented. The small ril) at the hottom of the groore is not distinguishable from the other rils.

It is more convex, has fewer ribs, and has the fine ornamentation better developect than in I. intermerlia.

Rrimetils.-This species is known by three specimens only. All are imperfect near the umbo, but the fine ornamentation is well-preserved.

[^8]On account of the name wrath having been previously used by d'Orbigny and byurignier for other species it is necessary to substitute some other name.

I'!n":-From the C'ambridge (ireensand (indigenous), preserved in the Sedgwick Mascum, Cambindge.

Instichimin.-('imminge Greemsand (imdigemous). Lower Chalk of Burwell.

18:7. Lima elegnns, J. W. Salter. Quart. Journ. Geol. Soc., vol. xiii, p. 85, pl. ii, fig. 3 (non elegans, Nilsson).

Inserimith.-Shell moderately convex, sub-quadrate or nearly oblong, very ollifue. Antero-dorsal and postero-rentral margins more or less parallel; posterior margin roundect. Ears of moderate size, with a few ribs on the inner portions, and with distinct growth-lines; the anterior larger than the posterior car. Anterior area not distinctly limited, covered with rils similar to those on the rest of the valve but of nearly uniform size.

Ornamentation consists of eighteen main ribs, which are strong on the anterior part of the shell, but hecome smaller in passing to the posterior end. At the summit of each main rib) is a narrow, clevated, secondary rib, and on each side of a main rib are two or three similar but rather small rils. The secondary ribs are separated by broad and rounded furrows. The summits of the secondary ribs are usually sharp and even, but occasionally slightly serrate.

Mraswremruts:

$$
\begin{array}{ll}
\text { Length } & 19 \mathrm{~mm} . \\
\text { Height } & 24, "
\end{array}
$$

Afinitirs.-This form, of which I have seen one example only, agrees with the specimen preserved in flint from Moreseat (Aberdeenshire) which was described and figured by Salter as Limu elrgfors (Nilsson). That specimen is now in the Museum of Practical Geology. Nilsson's ${ }^{1}$ figure is scarcely sufficient to enable one to determine the species, but from the recent illustrations given by Hemnig. ${ }^{2}$ it is seen that the British specimens differ from Lima alogans in being more distinctly oblong and especially in having more numerous secondary ribs.

1 'Petrif. Suecana' (1827), p. 26, pl. ix, fig. 7; Hisinger, 'Lethæa Succica' (1837), p. 55, pl. xv, fig. 10.
${ }^{2}$ Revis. Lamellihr. i Nilsson's 'Petrif. Suecana' (1897), p. 33, pl. ii, figs. 9, 10, 11. 24; Lima eleffans, Dujardin ('Móm. Soc. géol. de France,' vol. ii, 1837, p. 226, pl. xvi, fig. 1), is apparently distinct from Nilsson's species.

T!ype.-In the collection of Mr. R. M. Brydone.
Distribution.-Lower part of the zone of Mirrustra rar-an!uinnm of sicaturl.

Lina (Mantellum) Reiehenbacin, recinit:, 18:39. Plate VI, figs. 14", и, 1\%.
1839. Lima Reichenbachi, II. B. Geinit:. Char. d. Schicht. u. Petref. dees sieche. Kreidegel., pt. 1, p. \mathbf{Q}^{4}, pl. viii, fig. 4.
1841. - Reichenbachit, F. A. Rimer. Die Verstein d. uorl-deutsch. Kreidegeb., p. 57.
1843. - Reichenbachi, H. B. Geinit:. Die Verstein. von Kieslingswalda, p. 23 , pl. v, fig. 9 .
1846. - - A. E. Rellss. Die Verstein. der bülm. Kreilefurmat., pt. 2, p. 34.
1847. - Reichenbachif, A. dOrligny. Pal. Frame Terr. Crét., vol. iii, p. 544. pl. cecexviii, figs. 1-4.
1850. - Reichenbachi, H. B. Geinitz. Das Quadersandst. wler Kireidegel. in Deutschlaul, p. 190.

- - Reichenbachif, A. doorbigny. Prult. de Pal., vol. ii, p. 166.

1855. - $\quad-\quad$ G. Cotteau. Moll. Fuss, de l'Younc, p. 101.
1856. - \quad E. Gứranyer. Albun Paléont. de la Sarthe. p. 19. $\mathrm{p}^{1 \mathrm{~L}}$. xiv, fig. 5.
1857. - Reichenbachil, F. J. Pictet and G. Campiche. Fuss. Terr. Crét. Ste. Croix (Natér. Pal. Suisse. ser. 5), p. 168.
1858. - - H. B. Geinitz. Das Elbthalgel. in Sachsen (Palæoutographicia, vol. xx, pt. 1). p. 203 , pl. sliii, figs. 1,2 .
1859. - Reichenbachi, H. Deiche. Tourtial v. Mülheim a. d. Kuht, p. 27.
1860. - Refchenbachit, P. de Loriol. Gault de Cosue, p. 101, pl. xiii. fix. is.

Description.-Shell convex, oblong, oblique, rounded ventrally; antero-dorsal margin long, nearly straight and almost parallel with the opposite margin. Height considerably greater than length. Auterior area large, smooth, not depressed. Ears rather small, the anterior somewhat larger than the posterior.

Shell ornamented with from seven to ten very strong ribs, which hate rounded summits and are separated by rounded grooves of about the same width as the ribs. Small and narrow radial ribs are present on both ribs and grooves.

Measurements :

Rermilis.-This species is casily distinguished by the very strong radial rils. The English specimens, which at present are known from three localities only, are not well-preserved, so that the details of the ornamentation camot be seen clarly.

The occurrence of L. Reichemburli in England (from Wilmington) was first noted by Mr. Jukes-Browne in 1898. The only specimens which I have seen are now in the Museum of Practical Geology and the Sedgwick Museum.

T'yn's.-From the Lower Pliner (Cenomanian) of Planen near Dresden.
Instribution.-Upper Greensand (zone of Preten rexpri) of Warminster. Chloritic Marl of Chard. Cenomanian Sandstone of Wilmington.

Limil (Maxtelicm), sp. Plate VI, fig. $16 a, b$.
Remark.-A small specimen in the Museum of Practical Geology (No. 7896) is similar in form and in the general character of its ormamentation to L. cautalirigimasis (see p. 37), but the main ribs are not so strongly developed, the interspaces are flatter, and the intermediate ribs are more prominent. It differs from L. intermetia in its more distinctly oblong form and in the occurrence of well-developed intermediate ribs.

This specimen resembles closely the lowest of the three figures referred to Limu elegrens by Guéranger. ${ }^{1}$

Distribution.-Chloritic Marl of Chardstock.
('Gencra of Recent Mollusca,', vol. ii, p. 557).
 Text-fig. 6.
1847. Lima rapa, A. dOrbigny, Pal. Framg. 'Terr. Crét., vol. iii, p. 546. pl. eecexix, figs. 1-4.
1850. - -- d. drorbiymy. Prodr. de Pal., vol. ii, p. 166.

- - - H. B. Geinitz. Das Quadersandst. oder Kreidegel. in Deutschland, p. 188.

1855. - - G. Cotteare. Moll. Foss. de l'Youne, p. 101.
1856. - - E. Gu'ranyer. Album Palćont. de la Sarthe, p. 19, pl. xxiv, figs. 16, 17.
$1 \cdot$ Album Paléont. de la Sarthe ' (1867), p. 18, pl. xxiv, fig. 1.

1869. Lima rapa, F. J. Pirtet ame G. Campiche. Foss. Tert. Crót. Ste. Craix (Matér. Pal. Suisse, ser. 5). p. 168.
 1871. Radula (Ctenoides) rapa, F. Stoliczha. Palæout. Indica, Cret. Fauma S. India, vol. iii, p. 414.

1872. Lima rapa, F. B. Gcinitz. Das Ellothalgeb. in Sachsen (Paloontonraphica, vol. xx, pt. 1), p. 206, pl. xliii, fig. 4.

Description.-Shell moderately and regularly convex, with ovate outline, nearly equilateral, considerably higher than long, margins evenly rounded. Umbones small, pointed, close together. Apical angle about 8.5°. Ears rather large, much

Fio. G.-Lima (Ctenoides) rapa, d'Orbigny. Upper Greensand, Itahdon. British Museum, No. L. Indig. Interior of right valve. Natural size.
higher than long, with fine radial ribs; the anterior car larger than the posterior, the latter with its outer angle obtuse.

Ornamentation consists of numerous fine radial ribs which diverge slightly from a median or nearly median line or sometimes in places from two lines. 'These rihs are slightly raised and rounded, and are separated by very narrow grooves; near the anterior and posterior margins the ribs become much narrower and sharper, and may bear small pointed projections. The ribs are slightly wayy and their course is often more or less shapply deflected where they pass the growth-lamellæ. Numerous fine linear concentric ridges occur, and also some growth-lamellax.

Measurements:

	(1)	(2)	(3)
Length	66	43	30 mm .
Height	90	59	41

(1-3) Upper Greensand, Haldon.
 are less flattened and the anterior part slopes gradually to the margin; the outline is more regularly ovate, and the anterior and posterior ribs are much narrower than the others. I. rapa is usually considerably larger than L. diraricata.

T!gpes.-From the Cenomanian of Coudrecieux and Le Mans.
Remarls.-The presence of this species in English deposits appears to have been recognised first by the late Mr. C. J. A. Meyer; it was recorded by Mr. Jukes-Browne in 1896.

Distribution.-Upper Greensand of Haldon. Cenomanian (Meÿer's Bed 10) of Dunscombe.

Lima (Ctenomens) tecta, Goliffuss, 1836. Plate VII, figs. 2, 3.
1836. Lima tecta, A. Goldfuss. Petref. Germ., vol. ii, p. 91, pl. civ, fig. 7.
1837. - frondosa, F. Dujardin. Mém. Soc. giol. de France, vol. ii, pp. 216, 227, pl. xvi, fis. 10.
1839. - lamellosa, H. B. Geinitz. Char. d. Schicht. u. Petref. des siechs. Kreidegeb., pt. 1, p. 23.
1841. - tecta, F. A. Rïmer. Die Verstein. l. nord-deutsch. Kreidegeb., p. 58.
1847. - - A. dorbigny. Pal. Franç. Terr. Crét., vol. iii. p. 547, pl. cecexix, figs. 5-8.
1850. - - H. B. Geinitz. Das Quadersandst. oder Kreidegeb. in Deutsch. land, p. 188.

- - - A. dOrligny. Prodr. de Pal., vol. ii, pp. 166, 247.
- - - ?, A. Alth. Geogn.-pal. Beschreib. Ungeb. v. Lemberg (Haidinger's Naturwiss. Abhandl., vol. iii, pt. 2), p. 243.
? 1852. - - ?, R. Kner. Denkschr. d. k. Akad. Wissensch. Math.-nat. Cl., vol. iii, p. 318, pl. xvii, fig. 7.

1867. - - E. Gu'ranger. Album Palćont. de la Sarthe, p. 19, pl. xxiv, fig. 11.
1868. - - E. Favre. Moll. Foss. de la Craie de Lemberg, p. 135.

1869-70. - - F.J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), pp. 168, 170, 173.
1871. Radula (Ctenoides) tecta, F. Stoliczza. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 420, pl. xxx, fig. 12.
1872. Lima tecta, H. B. Geinitz. Das Elbthalgeb. in Sithsen (Palwontographica, vol. $\mathrm{xx}, \mathrm{pt} .1), \mathrm{p} .206, \mathrm{pl}$. xliii, fis. 3.

1895. - \quad F. Vogel. Holländisch. Kreide, p. 18.

- - cf. тecta, E. Tiessen. Zeitschr. d. deutsch. geal. Gesellsch., vol. slvii, p. 474.

1898. - тecta, G. Miller. Mollusk. Untersen. v. Braunschweig u. Ilsede, p. 27.
1899. - - M. e. Pálfy. Mittheil. a. d. Jahrb. d. l. ungarisch. geol. Anstalt, vol. xiii, p. 275, pl. xx, fig. ${ }^{5}$.

Description.-Shell convex, much flattened, sub-ovate, slightly oblique, considerably higher than long; antero-dorsal part sloping steeply to the anterodorsal margin which is rather long and straightened. Umbones small, only slightly incurved. Ears rather large, relatively high, the anterior larger than the posterior.

Ornamentation consists of numerous small radial ribs, which are rounded, and smooth or nearly smooth. At fairly regular intervals the course of the ribs is interrupted by strong growth-lamellæ, ventrally to which the direction of the ribs is sometimes deflected. Growth-lamellæ, and sometimes ribs, are present on the ears.

Measurements:

$$
\begin{aligned}
& \text { Length } \\
& \text { Height } 37 \mathrm{~mm} .
\end{aligned}
$$

From the Cenomanian (Bed 11) of Dunscombe.
Affinities.—This species is related to L. dicuricatu (see p. 4t), but is distinguished by the growth-lamellæ, by the ribs not diverging from a median line, and by the absence of the fine concentric ridges. Lima "ssirtersis, de Loriol," from the Urgonian, is a similar form but is distinguished by the growth-lamella being more closely placed.

Remarlis.-This species has a considerable stratigraphical range, extending from Lower Cenomanian to Senonian. It has been recognised in France, Holland, Scandinavia, Saxony, Bohemia, Hungary, etc. In England it has been found in the Cenomanian of Devon only, having been discovered and identified by the late Mr. C. J. A. Meÿer, and first recorded by Mr. Jukes-Browne. The examples from the Arrialoor Group, described by Stolicaka, seem quite indistinguishable from the European forms.
 - Recherch. géol. Savoie,' vol. i (1867), p. 388 , pl. c, fig. 23 ; Pictet and C'ampiche, ' Terr. Crét. Ste. Crois ' (1869), p. 139, pl. clxiii, fig. 7.

T'y/es.-From the Senonian of Maestricht. D'Orbigny's specimens came from the Cenomanian of Le Mans and from the Senonian of Tours and Loir-etCher.

Distribution.-Cenomanian (Bed 11) of Dunscombe.

1837. Lima divaricata, F. Dujardin. Mém. Soc. géol. de France, vol. ii, p. 227, pl. xvi, fig. 7.
18ヶ4). - arcuata, II. B. Geinitz. Char. d. Schicht. u. Petref. des sächs. Kreidegeb., pt. 2, p. 57, pl. ix, fig. 7.
1841. - divaricata, F. A. Rïmer. Die Verstein. d. nord-deutsch. Kreidegeb., p. 58.
1850. - A. WOrbigny. Prode de Pal, vol. ii, p. 248.

- - granosa, J. de C. Smoully in F. Dixon. Geol. Sussex, p. 317 (p. 382, ed. ©), pl. xxviii, figs. $\because 4, \mathbf{2 5}$.

1854. - - J. Morris. Cat. Brit. Foss., el. 2, p. 171.
1855. Mytilus: spectabilis, J. Mifller. Petref. der Aacheu. Kreidef., supplement., p. 10, pl. vii, fig. 10 .
1856. Lima granosa, F'. J. Pictet and G. C'ampiche. Fuss. Terr. Crét. Ste. Croix. (Matt́r. Pal. Suisse, ser. 5), p. 169. - divalicata, Pictet and Campiche. Ibid., pp. 171, 173.
1857. Radula (Ctenoides) granusa, F'. Stoliczke. Palieont. Indica, Cret. Fiuna S. India, vol. iii, p. 415.

- - - divaricata, Stoliczka. Ibid., p. 415.

187‥ Lima divaricata, II. B. Geinitz. Das Elbthalgeb. in Sachsen (Palxoutographica, vol. $\left.x x, \mathrm{p}^{\text {t. }} 1\right)$, p. 205 , pl. xlii, fig. 18.
1889. - - A. Fritsch. Stud. im Gebiete der bühm. Kreideformat.: IV, Teplitz. Schicht., p. 83, fig. 77.
-- - -- E. Molatijel. Die Mollusk. Aachen Kreide (Palwontographica, rol. xxxv), p. 241 , pl. xxvii, fig. 7.
1897. - granosa, II. Wueds. Quat. Journ. Geol. Soc., vol. liii, p. 383.

19ME. -- divaricata, M. e. Pilfy. Mitheil. Jahrb. d. k. ungariseh. geol. Anstalt, vol. xiii, p. 274, pl. xx, tig. 4.

Iferriftion.-Shell consex, flattened, the anterior marginal part sloping steeply, the posterior part more gradually; outline rather variable, more or less ovate or approaching to ollong, considerably higher than long, only slightly unsymmetrical. Umbones rather small, not much incurved. Ears relatively short and high, not sharply limited; the anterior larger than the posterior.

Ormamentation consists of mumerous small ratial ribs which diverge from a median or nearly median line or sometines in part from two lines forming an
inverted W. The ribs are slightly raised and often somewhat wavy or irregular, especially near the growth-ridges. The ribs and grooves are crossed by mumerous concentric livear ridges. The ribs are sometimes nodular, the nodules having a concentric arrangement. At intervals, usually rather distant and fairly regular, distinct growth-lamellæ are seen.

Measurements :

	(1)	(2)	(3)	
Length	37		90	22 mm.
Height	37	3	37	$32 \quad$,

(1) Chalk, Newtimber.
(2) B. mucronata zoue, Norwich.
(3) H. plemus zone, Dover.

 in the Danian of Faxe.

Remarks.-This species has hitherto been known in England as Lima grimens, Sowerby. After making a careful comparison I feel no hesitation in regarding it as identical with the widely-distributed L. dirmricalh, Dujardin. This form is comparatively rare in England, and the part of the shell near the umbo is usually. wanting or imperfectly preserved.

T'ype-From the Chalk (5 Lower Senonian) of Touraine. Sowerby does not mention the locality or the horizon from which he obtained Limen Irrenesa, and I have not succeeded in finding the type.

Distribution.-Zone of Terrbratnliut of Hitchin. Zone of Holuster planus of Winchester, Dover, and Cheveley, Blue Bell Hill, Burham (: II. plumus zonc). Chalk Rock of Cuckhamsley. Zone of Micruster cor-otuminum of Micheldever. Zone of Actinocamax quadratus of Salisbury. Zone of Belemmitelle mucronata of Salisbury and Norwich.

(• Mar. Nat. Hist.,' new series, vol. iii, p. 233.)

1847. Lima Tumbeckiana, A. dOrbigny. Pal. Frauc. Turr. Crét., vol. iii, p. 534. pil. ceecxv, figs. 13-17.
1850. - - d'Orbigny. I'rodr. de Ial., vol. ii, p. 8!.

[^9]

Description.-Shell oval, inflated, higher than long, produced a little more anteriorly than posteriorly. Umbones rather small, close together. Ears equal. Margins of valves rounded, the posterior with a greater curvature than the anterior.

Ornamentation consists of from 13 to 16 strong, rounded or slightly keeled ribs separated by narrow grooves. The ribs are confined to the median part of the shell, and the anterior and posterior parts are without ribs. The ribbed portion is not quite symmetrically placed, the anterior smooth portion being rather larger than the posterior smooth portion. Very fine concentric ridges are present on the shell, and may form scale-like projections where they cross the ribs.

Mecasurements:

	(1)	(2)		(${ }^{\text {) }}$	(5)	(i)	
Length	9	9	8	8	7	11	mm .
Height	12	11	12.5	13	10	15:	,
	(1-5) Hythe Beds, Court-at-Street. (6) Lower Greensand, Brickhill.						

Al/inities.-Some specimens of L. Tombeckitun approach very closely L. Fittoni from Blackdown and Haldon (see p. 48), and it is quite possible that the latter is only a local variety of the former since some examples found in the Upper Greensand of Charmouth and l'otterne (Plate VII, fig. 10) seem indistinguishable from L. T'ombeckiunn. As a rule L. Tomberclitum differs from L. littomi in having the ribbed part of the shell more nearly symmetrical in position, in the shell being rather longer and rather more convex with the umbonal part more pointed, and in the ribs being more rounded.
L. T'ombechium differs from L. semisulcutu, Nilsson, in being smaller, relatively longer, less symmetrical, and with the umbonal part more pointed. In this connection, however, it should be noted that Hemnig ${ }^{1}$ considers that specimens which

[^10]he has seen from the Lower Greensand of Atherfield and Blackgang belong to L. semisulcata. L. Tombeckiana also resembles I. suprajurensis, Contejean,' found in the Upper Jurassic.

T!ipes.-D'Orbigny does not give the locality of the type, but says that he obtained specimens from the Neocomian of Neuchâtel, Auxerre, Saint Sauveur, etc.

Distrilution.-Hythe Beds of Court-at-Street near Lympne. Lower Greensand of Brickhill. Teally Limestone (zone of B. Inmusiormsis) of North Willingham.

Lima (Limatiai) Dupiniana, d'Orligm!, 18 t7. Plate VII, figs. 11 a一r. ? 1845. Lima semisulcata, E. Forbes. Quart. Journ. Genl. Soc., vol. i, p. 948 (non semisulcata, Nilsson).
1847. Lima Dupiniana, A. d'Orbigny. Pal. Franç. Terr. Crét, vol. iii, p. 535, pl. cccexv, figs. 18-22.
1850. - - d'Orbigny. Prodr. de Pal., vol. ii, p. 81. 1854. - \quad J. Morris. Cat. Brit. Foss., ed. 2, p. 171. 1855. - - G. Cotteau. Moll. Foss. de l'Yonne, p. 100. 1865. - - H. Coquand. Mon. Aptien de l'Espagne, p. 151. 1869. - - F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 150.
1871. Radula (Limatula) Dupiniana, F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 414.

Non 1883. Lima Dopiniana, A. Fritsch. Stud. im Gebiete der bühm. Kreideformat.: III, Iserschichten, p. 112, fig. 81.

Description.-Shell oral, moderately convex, much higher than long, nearly equilateral, with the posterior margin more convex than the anterior. Umbones very small, pointed, close together. Ears unequal.

Ornamentation consists of from ten to fourteen very narrow radial ribs, usually with sharp summits, separated by broad rounded grooves. The anterior and posterior parts of the shell are without rils, and the posterior part is considerably larger than the anterior. Very fine concentric ridges are present.

Mrosurements:

	(1)	(2)
Length	11	8 mm .
Height	21	1.45

(1) Tealby Limestone, North Willingham.
(2) Ferruginous Sands, Shanklin.

[^11] by its relatively higher and less inflated form, by the narrow ribs, and by the less symmetrically placed ribbed area.

In its narrow rils L. D"niuian" resembles L. sularquilataralis, d'Orbigny (see page 49) but the ribs in the latter are distributed over the greater part of the shell and are more widely separated and more numerous.

The specimens referred to L. somisultata by Forbes are poorly preserved, hut probably belong to this species.

Typrs.-From the Neocomian of Marolles (Aube) and Saint Siuveur (Yome).
Mistrilution.-Tealby Limestone (zone of I. hrmsriremsis) of North Willingham. Ferruginous Sands of Shanklin. Atherfied Beds of Redhill. Thythe Beds of Hythe (fill, Topley).

Lima (Limatcta) Fityoni, dorligny, 1850. Plate VII, figs. 12-14, 15 "-r.
1836. Lima semisulcata, J. de C. Sowerby. Trans. Geol. Soc., ser. 2, vol. iv, pp. 336, 359 (not 129, 158), p^{11}. xi, fig. 10 .
1850. - Fittoni, A. d'Orbigny. Prodr. de Pal., vol. ii, p. 82.
1854. - semisulcata, J. Morris. Cat. Brit. Foss., ed. 2, p. 172 (partim).
1869. - F. J. Pidat and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5). 1. 166 (partim).

Itssifition. Whell oval, moderately convex, higher than long, slightly inequilateral, with rounded margins, the posterior being more convex than the anterior. Umbones small, close together. Ears equal.

Ornamentation consists of from $1: 3$ to 15 radial rils with sharp summits. separated by narrow grooves. Pointed projections are present on the summits, of the rils, especially near the ventral horder of the shell. The anterior and posterior parts of the shell are without ribs. The ribled area is unsymmetrically placed, and the anterior smooth part of the shell is considerably smaller than the posterior part. Fine concentric ridges are seen on well-preserved specimens.

Mrasurements :

	(1)	(2)	(3)	(4)	(i)	(6)	(i)
Length	10	9	8	8	7	7	(${ }^{\text {mmm }}$
Height	16	14	14	13	125	12	

Affinitirs.-This form was referred by Sowerhy (in Fitton) to the Semonian species L. semisulcatn, Nilsson, ${ }^{1}$ but has been regarded by most later writers as distinct from that species, and was named I. F'ittomi by d'Orhigny.
L. Fittomi differs, as a rule, from L. semisulcutu in its smaller size, and in having the ribbed area less extensive and much more asymmetrical in position, though occasionally, however, it is nearly symmetrical. It also appears to differ in having a relatively shorter hinge-line and less equilateral form.

For the relation of I. Fittmi to I. Tombreckianu see p. 46.
Type.-The type is Lima semisulcata, Sowerby (imen Nilsson) from the Upper Greensand of Blackdown. A specimen in the Bristol Muscum is regarded as the type, but does not agree very well with the figure.

Distribution.-Upper Greensand (zone of Schlomburliiu rostrata) of Blacklown and Haldon. Cenomanian of Axmouth (Bed 19 of Meÿer), Dunscombe (Bed 10), and Pinhay.

Lima (Limatcla) subequilatriadis, d'Obigmy, 1847. Plate VII, figs. 16a, $1,17$.
1847. Lima subequilateralis, A. d'Orbigny. Pal. Frauç. Terr. Cret., vol. iii,
p. 558, pl. cecexxiii, figs. 1-5.
1850. - - dorbigny. Prodr. de Pal., vol. ii, p. lī.
1870. - - F. J. Pictet and G. Campiche. Fuss. Terr. Crét. Ste. Croix (Matir. Pal. Suisse, ser. 5), p. 169.
1871. Radula (Limatula) subequilateralis, F. Stıliczki. Palaont. Indicia. Cret. Fama S. Imlia, vol. iii, p. 415 .

Description.-Shell oval, or rounded oblong, peinted at the umbenes, nearly equilateral, about twice as high as long, of moderate convexity. Antcrior margin less curved than the posterior. Ears equal, smooth, with pointed conds.

Ornamentation consists of about oo very narrow ribs separated by broml. slightly concave, interspaces which are crossed he growth-lines. Ribs are ahsent near the anterior and posterior margins.

Mensurements:

Length	111 mm.
Height	$1!$

Upper Greensamd. Wirminster.

Remarks.-I have seen only two English examples of this speries, both of
'Fur refurences, seep p. in. fontmitc.
which are more or less imperfect, but after an examination of specimens of L. suliequilutrothis from Le Mans in the Museum of Palaontology at Paris I am inclined to refer them to that species. In the specimens from Le Mans the number of rihs is sometimes greater than is shown in D'Orbigny's figure, also the ears may be less sharply separated from the valve, and in one case the hinge-line was seen to be relatively longer.

T'Ipes.-From the Cenomanian of Le Mans. The specimens here figured are in the British Museum.

Distrilution.-Upper Greensand (zone of Preten asper) of Warminster.

Lima (Limatima) decussata, Gollfuse, 1836. Plate VII, figs. $18 a, l, 19,20 a, h$.
1836. Lima decussata, A. Goldfuss. Petref. Germ., vol. ii, p. 91, pl. cir, fig. 5. 1837. Plafiostoma grantlatum, W. Hisinger. Lethea Suecica, pl. xp, fig. 7. 1841. Lima decussata, F. A. Rimer. Die Verstein. d. nord-deutsch. Kreidegel., p. 55.
1846. - - A. E. Reuss. Die Verstein. der bühm. Kreideformat., pt. 2, p. 32, pl. xxxviii, fig. 15.
1847. - semisulcata, J. Miiller. Petref. der Aachen. Kreidef., pt. 1, p. 33.
1850. - decussata, A. dOrbigny. Prodr. de Pal., vol. ii, p. 248.

- - semisulcata, R. Kner. Verstein. v. Lemberg (Hailinger's Naturwiss. Abhandl., vol. iii, pt. 2), p. 29.
- -- decussata, A. Alth. Geogn.-palæont. Beschreib. v. Lemberg (Haid. inger's Naturwiss. Abhandl., rol. iii, pt. ©), p. 241.
- - semisulcata, Allh. Ibid., p. 242.

1863. - decussata, A. r. Strombeck. Zeitschr. d. deutsch. geol. Gesellsch., vol. xv, p. 151.
? - - \quad S. Placketho. Das Becken von Lemberg (Jahresb. d. k. zweite Ober-Gymuas. in Lemberg), p. 20, pl. i, fig. 19.
1864. - - K. A. Zittel. Die Bivalven d. Gosaugeb. (Denkschr. d. k. Aliad. d. Wissensch. Wien, rol. xxp), pt. ii, p. 105, pl. xvi, fig. 4.
1865. - E. Farre. Moll. Foss. de la Craie de Lemberg, p. 136.
1866. - - F. J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 174.
1867. Radula (Limatula) decussata, F. Stoliczka. Pilæont. Indica, Cret. Fauna S. India, vol. iii, p. 415.
1868. Lima decussata, A. Peron. L'Hist. du Terr. de Craie, p. 145, pl. i, fig. 18. 1889. - - E. Holzapfel. Die Mollusk. Aachen. Kreide (Palæon. tographica, vol. xxxv), p. 242, pl. xxvii, fig. 4.

1902.	-	-	J. P. J. liutu.	Landesaust. für 1599, p. 232
	-	-	J. P. J. Rurn.	ellibr. (K. Dauske Vid. Selsk. Skrift. 6 Rokke, nat. og. math. Afd., vol. xi), p. 96, pl. ii, fis. 11.
	-	-	A. Wollemann.	Fauna d. Liunclurg. Kreide (Abhandl d. k. preussisch. geol. Landesanst. N. F., Heft 37), p. 57.

Description.-Shell inflated, ovate or roundel-oblong, nearly equilateral. Umbones small. Ears rather small, nearly equal.

Ornamentation consists of numerous sharp ribs, separated by narrow grooves. The ribs become less distinct on the anterior and posterior parts of the shell. Numerous fine concentric ridges occur, and sometimes give rise to a tubercular appearance on the summits of the larger ribs.

Merusurements:

	(1)	(2)	(3)	(1)	(5)
Length	10	9	7	7	(6\% mm
Height	135	12	11	10.j	9\%

$(1,2,4,5)$ A. quadrutus zone, East Haruham.
(3) Uintacrinus band, Devizes Road, Salisbury.

Affinities.-L. semisulleata, Nilsson, ${ }^{1}$ is distinguished from L. Inetussuth by the ribs being limited to the median part of the shell, and by the relatively higher valves.

Peron thinks that L. prectiuctn, d'Orbigny, may be only a variety of L. decussuta. It appears to differ from the latter in having the ribs more tubercular and usually fewer in number.

T'ype.-From the Senonian of Rinkerode, near Mïnster.
Distrilution.—Uiutucrimus band of Devizes Road, Salisbury. Zone of drfinu-
 of Clarendon.

Description.-Shell inflated, ovate, nearly equilateral, pointed dorsally.
Ornamentation consists of 1.5 or 16 strong, romuded ribs on the median part of the valve only. The ribs are separated by very narrow greoves, and bear many
 Suecaua' (1897), p. 아. pli. ii. figs. 14, 17 .
strong ridges placed concentrically and regularly. Below a growth-ring the ridges are sometimes situated more closely together. One or two ribs at the margins of the ribled area are rather smaller than the others. The parts between the ribled area and the anterior and posterior margins of the valve are smooth exeept for faint growth-lines.

Mectanements:

	(1)	(2)	(3)	(${ }^{(1)}$	(5)	
langth	7	(\therefore	\therefore	$\begin{aligned} & 5 \mathrm{~mm} . \\ & 7 \mathrm{n} . \end{aligned}$	
Height	11	8	8	7-5		
	$\begin{aligned} & (1) \\ & -5) \end{aligned}$	Clith	Win			

L!fiuiliox.-This species is distinguished from L. decesserta (p. 50) by being more pointed dorsally, by having fewer ribs, which also are rounded and confined to the median part of the valve, and by the strong ridges which extend across the rils.

In outline this species resembles Lima pretimatu, d'Orbigny, ${ }^{1}$ but differs in having fewer ribs, in the absence of ribs on the anterior and posterior parts of the valves, and in the ribs not being carinated and having ridges across them instead of tubercles at the summits.

This species resembles closely the form figured by Geinitz" as I. semisulcoln, Nilsson.

Mistrihution.-Zone of Actinurtmare quadraths of Winchester. Upper Chalk (probahly zone of Mirrestor cor-testudinurium) of Kenley.

Lam. (Lamatias), sp. Plate Vil, fig. 23 ", b.
Description.-Shell inflated, oval, nearly equilateral. Umbones small. Hingeline relatively long. Ears not sharply limited, nearly equal.

Ornamentation consists of about, 20 narrow ribs, separated by very broad and shallow interspaces in which very fine radial ribs may be seen. The ribs anterior to the median line are closer together and rather stronger than the others. On the parts of the valves next to the ears ribs appear to be absent.

Méustrements:
Length 6.5 mm .
Height - ! ",
${ }^{1}$ 'Pal. Frauc. 'Terr. Crét.,' vol. iii (1847), p. 572 , pl. cecexxvii, figs. 15-19.
2'Das Elbthalgeb. in Sachsen,' pt. 2 (1873), p. 53, pl. xvi, fig. 14.

Affinities.-In the chamater of its ormamentation this form resembles limu sul, aryuilateralis, d'Orbigny (see p. fir), from the (emomanian of Le Mans, hat the shell is not so high, is less pointed in the umbonal region, and has a longer hinge-line.

In outline this form resembles the example figured ly Ravn as Lium Jin, ${ }^{1}$, hammeri, von Hagenow, but possesses a much larger mumber of ribs.

Remarks.-I have seen one specimen only, which is in Dr. Blackinore's collection.

Distribution.-Zone of Belrmuitelln mutroment of (larendon (Salisbury).

$$
\begin{aligned}
& \text { (Italiens 'Tertiair-Gebilde und deren Organische Einschliasse,' } 1 \text { P. } 115 \text {.) }
\end{aligned}
$$

1836. Pecten compositus, J. de C. Sutcerby. Trans. Geol. Soc., ser. 2, vol. iv, $\mathrm{p}^{\prime} \mathrm{p} .2+11,342$, pl. xii, fig. 20 .
1847. Lima cenomanensis, A. d'Orbigny. Pal. Franç. Terr. Crét., vol. iii, p. 552, pl. cecexxi, figs. $11-15$.
1850. - - d'Orliyny. Prodr de Pal., vol. ii, p. 16i7.
1867. - - E. Gurumger. Alhum Paléont. de la Sarthe. 1. 1!1, pl. xxir, fiss. 4, !
1870. - - F. Pictet and G. Cempiche. Foss. Terr. Crit. Ste. Croix (Matér. P'al. Suisse,

1871. Limea - F' stolic:kik. Palaont. Indica, Cret. Fauza S. India, vol. iii, p. 416.
1882. Lima - R. Windmaller. Jahbld. k. preussisch. reol. Landes. anst. für 1881, 1p. $9.4,09$.

Measurements:

	(1)	(2)	(3)	(4)	(5)	(6)	
Length	$12 \cdot 5$	11	10	9	9	8	$11 m$.
Height	15	13	11%	$10 \cdot 5$	10	9%	

(1,3-6) Upper Greensand, Warminster.
(2) Rye Hill Sand, Maiden Bradey.

Adiuitie's.-This form is closely related to Limu arenelleln (sece below). The
 scale-like spines on the ribs are much less perfectly preserved and manally appar as tubercles only. In L. commesite the shell appars to be rather less ohlipue and

[^12]more nearly equilateral than in L. gromuluta; the height is also slightly greater and the umbones rather more prominent ; the ribs appear to be narrower and to have sharper summits. The smaller convexity of L. compusita mentioned by d'Orbigny does not seem to be constant.

Remurls.-An examination of the type of I'rhen rompowitus, Sowerly, shows that it is an example of this species (sec Vol. I, p. 188, footnote), and consequently the specific name comumitu must take the place of cenomauensis.

The French examples which I have seen are, on the average, larger than the English.

I'yn'es.-The type of L. cenomumensis came from the Cenomanian of Le Mans. The type of l'ecten rompmitus is in the Bristol Museum; it is labelled " Blackdown" but is not siliceous and is more probably from Warminster.

Instrilution.-Upper Greensand (zone of I'ecten ("spre) of Warminster. Rye Hill Sand of Maiden Bradley. I have not seen the specimens recorded in the Memoirs of the Geological Survey from the zones of Schlembachia rariens and Holuster sulliglubosus of Hunstanton.

1827. Plaghostoma granulatum, S. Nilsson. Petrif. Suecaua, p. 2G, pil. fig. 4.
1833. - Granulosum, S. Woodward. Geol. Norfolk, [1! 48, 51, pl. v , fig. 26.
1836. Lima granulata, A. Goldfuss. Petref. Germ., vol. ii, p. 89, pl. ciii, fig. j. 1837. Plagiostoma granulatum, W. Hisinger. Lethæa Suecici, p. 54 (not the figure, pl. xv, fig. 7).
1841. Lima muricata, F. A. Romer. Die Verstein. d. hurd-deutsch. Kreidegeb., p. 5.5.
1842. - \quad (iranulata, F. v. Hegenow. Nenes Jahrb. für Min., ete., p. 555.
1846. - - A. E. Reuss. Die Verstein. der bühm. Kireideformat., pt. 2, p. 32, pl. xxxviii, fig. 21.
1847. - - A. d'Orbigmy. Pal. Frame. Terr. Cret., vol. iii, p. 570 , pl. cecexxvii, figs. 5-9. (Named L. gramosa on plate.)
1850. - -- d'Orbigny. Prodr. de Pal., vol. ii, p. 248.
1851. - pseuducardium, inflata et dentata, J. Miller. Petref. der Aachen. Kreidef., pt. 2, pp. 67, 68.
18.55. - arandlata, G. Cetteau. Moll. Foss. de l'Yonne, p. 102.
1870. - - C. Schliter. Neues Jahrb. für Min., etc., p 950.

- -- F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 170.

1876. Limea granulata, D. Brauns. Zeitsehr. f. d. gesammt. Niturwiss.. vol. xlvi, p. 386.
? - Lima oranulata, H. Deicke. Die Tourtia von Mïlheim a. d. Ruhr, p. 2 .
1877. Limea granulata, K. A. Ziftel. Handh. d. Palæont., vol. ii, p. 27.
1878. Lima granulata, A. Peron. L'Hist. Terr. de Craie, p. 147.
1879. Limea granulata, O. Griepenlert. Senon. ron Königslutter (Palæont. Abhandl., vol. iv), p. 41.

- Lima aranolosa, E. Molzapfel. Die Mollusk. Aachen. Kreide (Palmontogriphica, vol. xxxv), p. 239, pl. xxvii, fig. 6.
- - granulata, A. Fritsch. Stul, im Geliete der bühm Kreideformat.: IV, Teplitz. Schicht., p. 83, fig. 76.

1893.	Fritsch. Ibid., V, Priesener Schicht., p. 100.	
1894.	-	B. Lundgren. Mollush-funan i Mammill. och Mucron.

1897. - \quad A. Hemig. Reris. Lamell. i Nilsson's•Petrific. Suecana,
(K. Fys. Silllsk. i Land. Handl., N. F., vol. riii), p. 26, pl. ii, figs. 6-8.
1898. - G. Mïller. Mollusk. d. Untersen. v. Braunschweig u. Ilsede (Abhandl. d. k. preussisch. geol. Landesanst., N. F., Heft 25), p. 29, pl. iv, fig. 6.

1901.	-	-	A. Wollemamn.	Jahrb. d. k. preussisch. geol. Landesanst. fïr 1900 , vol. xxi, p. 16.
1902.	-	-	Wollemann. Li	neburg. Kreide (Abhandl.d.k. preussisch. geol. Landesanst., N. F., Heft 37), p. 57.
-	-	-	J. P. J. Rǎn.	Mollusk i Danmarks Kridtaflej. I. (K. Danske Vid. Selsk. Skrift., 6 Række, nat. og. math. Afd., vol. si), p. 101.

Non 1837. - \quad F. Dujardin. Mém. Soc. gíol. de France, vol. ii, p. 226, pl. xvi, fis. 4 ($=$ L. Meslei, Peron, 1888).

Description.-Shell very convex, oval, slightly oblique, with rounded outline; height a little greater than length. Apical angle very large. Umbones small, incurved, close together. Ears of moderate size, nearly equal, rather low and long, with a few spiny ribs.

Ornamentation consists of numerous (usually from 22 to 24) strong ribs with sharp summits, separated by narrow furrows. Each rib bears three rows of scalelike spines, one row being at the summit and one on cach side. The spines are placed near together, at regular intervals, and curve upwards from the surface of the shell, the terminal parts sometimes becoming quite erect. The middle row is rather larger than the rows on the sides. In some cases the spines are represented by granules. On the anterior and posterior parts of the shell the ribs may be
smaller than elsewhere, but the middle wows of spines are here often relatively larger.

Metasitrements:

	(1)	(2)	(3)	(t)	(5)	(6)	(7)	(s)	(9)	(11)	(1)	
Length	19	16	15)	11	111	110	10	\checkmark	(\%)	16		1 mm .
Hefight	$\bigcirc 1$	14	16	12\%	11	11.5	11	9	10	1s	\div	1

(6) ,, , Alderlury.
(7) A. quadratus zone, East Haruham.
(8) B. mucronata zone, Clirendon.
($9-11$) Chalk of Trimingham.
Affinitirs.-The form from the Lower Senonian of Touraine described and figured as Lima yramulutu by Dujardin, is regarded by Peron ${ }^{1}$ as belonging to another species which he names Lime Mrslei. Peron states that L. Meslei differs from L. gromulutu in having more numerous ribs ornamented with fine granules of which the middle row is not larger than the lateral rows; further, the ribs disappear on the anterior and posterior parts of the shell, and the ears are without ornamentation.

Rudulu scalrienta, Stoliczka," from the Arrialoor Group, is closely related to Lima gromuluta, but owing to the imperfect preservation of the single valve on which the species is founded, an exact comparison is not possible. The ornamentation, however, seems to differ, since it apparently consists of small tubercles of nearly equal size. It has been suggested by Holzapfel and Hemnig that Limu psemthirarditm, Reuss, ${ }^{3}$ may be identical with L. treunletu, but the ornamentation on the ribs of that species appears to be unknown.

Remarks.-This species has been referred to Limen by Brauns, Zittel, and Griepenkerl, but later writers-Holzapfel, Hennig, and Ravn-retain it in the genus Lima since they find no evidence of the existence of a taxodont hinge. The specimens which I have seen do not show the hinge.

The outline of the shell varies to some extent in L. gramulata, depending mainly on the obliquity of the valves. The appearance of the ribs varies considerably and is probably due chiefly to the state of preservation; in the more perfect specimens the terminations of the scale-like spines become erect, in others the spines are in the form of sloping seales, whilst in some cases they are represented by tubercles only. The number of ribs also shows variation.

[^13]
Malwontoguphical $\mathfrak{F o c i c t e} 1905$.

A MoNo(iRAPH

CRETACEOUS LANELLIBRANCHIA

0 F

> ENGLAND.

BY
HENRY WOODS, M.A.

VOL. II. PAR'I II.

Pages ri-inif Plates VIII-XI.
LONDON:

This species was figured from the Norwich Chalk by S. Woolward (1833) as Plagiostoma gromulosum, but apparently he was unaware that it had been previously: described and figured by Nilsson under the similar name I. gram, , tmm. Woodward's figure seems to have been overlooked by later writers.

Distribution.-Actinocamar quadrutus zone of East Hamham, Salishury.. Belemnitella mucronata zone of Alderbury, Clarendon (near Salishury), and rarious localities near Norwich. Chalk of Trimingham.

> Family-PTERIID.E, Merl.
> Gemus-Preria, J. A. Scopoli, 1777.'
> ('Introd. Hist. Nat.,' p. 397.)
> Sub-gemus-OxyTona, Meeli, 1864.
('Check List Invert. Foss., N. America,' p. 39 ; Meek and Hayden, 'Palæont. U. Missouri,' 18b4. Part I, p. 79.)

Pterla (Oxytoma) Cornumliana (d'Orbigny), 184t. Plate VIII, figs. 1, $2,3 a, 4,4-7$.

: Syn. Aviculu, Bruguicre, 1791.
1889. Avicula infaqoivalvis, G. W. Lampluyh. Quart. Joum. Geol. Soc., vol. xlv, p. 615.
1895. Cornueliana, G. Mfror. Zeitschr. der deutsch. reol. Gesellsch., vol. xlvii, p. 2 if.
1845. - F. Togel. Holliandisch. Kreide, p. 53.
1896. - - A. W.,ll'mant. Zeitschr. dl. deutsch. deol. Gesellsch., vol. slviii. p. 842.
1900.

Die Biv. u. Gastrop. d. leutsch. u. holland. Neocoms (Ahandl. d. k. preussisch. geol. Laml., N. F., pt. 31), p. 52.
1901. Oxytoma inequivalve cer. macroptera, L. Wogem. Jahrh. d. k.-k. geol. Reichsanst., vol. li, pp. 12, 15, pl. i, figes. 7, 14, 15 .

Description.-Shell obliquely oval, rounded. Height a little greater than length. Left valve moderately convex. Anterior ear triangular. Posterior car larger and longer than the anterior. Surface of valve with from 12 to $\varrho 1$ main ribs which are rounded, and form projections on the margin of the valve. Between the main ribs are broad flat interspaces in the middle of each of which a smaller rib occurs, and between these secondary ribs and the main rills one or more still smaller ribs are found. On the middle and posterior parts of the valve the ribs are nearly straight, but on the anterior part they curve forward. Similar ribs occur on the anterior ear; on the posterior ear much smaller ribs are present, and growth lines are seen. Fine concentric ridges cross both ribs and interspaces.

Right valve nearly flat, with many small, sometimes irregular ribs, which may be alternately large and small. Anterior ear rather small, with a well-marked byssal sinus. Posterior ear large, pointed, with small radial ribs.

Mresturements:

	(1)	(2)	(3)
Length	$\underline{9}$	$\underline{-1}$	13 mm .
Height	$\bigcirc 7$	25)	

(1,2) Speeton Clay (D 1), Speeton.
(3) Claxby Iromstone, Claxley.

A!finities.- l^{\prime}. (Or'ytumu) ''urnumlitmen is distinguished from the other C'retaccous species of Orytuma by the broad interspaces on which several smaller ribs occur. It belongs to the persistent and variable series of forms, ranging from the Rhetic to the Chalk, of which Ptoriu inaryuirulris (Bowerhy) is the type, and it is regarded by L. Waagen as only a variety of that species.

In most of the English specimens the main ribs are more numerous but less prominent than in the examples figured by d'Orbigny and by Pictet and Campiche.

But the number of those ribs varies considerably, and our specimens agree perfectly with the figures given by Waagen. The specimens from Faringdon are smaller than those found in the Speeton Clay, and they present some resemblance to P. prectinatu (see below), but the presence of several smaller ribs in the interspaces comnects them with I^{\prime}. Commelitua.
$T!\mid p$ es.-From the Hils-thon of Elligser Brink. The specimen from Upware figured by Keeping is in the Sedgwick Musemm ; it is imperfectly preserved, but is probably an example of this species.

Distribution.-Speeton Clay (zone of Brlemuites lateralis, D) 1) of Speeton. Claxby Ironstone (zone of R. litermix) of Claxhy. Teallyy (lay (zone of li.jacmum) of Clasby. Lower Greensand of Faringlon. Gault of Folkestone. ${ }^{1}$
 11-1:3, $14 \ldots, \ldots$.
1836. Avicula pectinata, J. de C. Sorerby. Trans. Geol. Soc., ser. 2, vol. iv, py, 128, 338, pl. xir, fig. 3.
1854. - - J. Morris. Cat. Brit. Foss., el. 2, p. 163.
1869. - - F.J. Pictet and G. Campiche. Fuss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 70.

Non 1846. - \quad A. d'Orbigny. Pal. Franc̣. Terr. Crét., vol. iii, p. 473. pl. cecxci, figs. 1-3.

Descrifition.-Shell small, ohliguely oval, with eveuly rounded margin. Height a little greater than length.

Left ralve convex, ornamented with numerous slender ribs often having sharp summits. Frequently the ribs are of two sizes-larger and smaller, alternating in a more or less regular manner. But in some cases the ribs near the margin of the valve are of equal or nearly equal size. The interspaces are flattened and considerably broader than the ribs. Anterior ear moderately large, triangular, the outer angle nearly a right angle; surface with ribs similar to those on the rest of the valve. Posterior ear much longer than the anterior, wing-like, with concave growth-lines; on the dorsal part a few slender ribs occur but are often indistinct or absent near the valve.

Right valve moderately convex dorsally, flattened ventrally, surface smooth or with very fine radial and concentric ribs. Posterior ear large, not distinctly limited. Anterior ear small.
${ }^{1}$ The only specimen seen from this horizon is in the British Musemm. No. I. 16,880.

Measmirments:

	(1)	${ }^{(2)}$	(3)	(${ }^{\text {) }}$	(5)
Length	16	10	95	9	8 mm .
Height ${ }^{1}$	17	12	10	11	

(1) Hythe Beds (Bargate Stone), St. Katherine's Chapel, Guildford. (2-5) Folkestune Beds, Folkestone.

L!finities--The shell in this species is smaller than in l^{\prime}. 'momulimua (see above); also the main ribs on the left valve are closer together, more numerous, and between them not more than one small rib) is found. The ornamentation on the right valve is very much finer than in 1 '. Cornutianu. See also l'teria (Orytomu) teruicostuta (below).

T'ype.-'The type came from the Folkestone Beds of Risborough, but appears to have been lost. Another specimen, however, from the same locality is in the Fitton Collection in the Museum of the Geological Society.

Distrilution.-Hythe Beds (Bargate Stone) of St. Katherine's Chapel, Guildford. Sandgate Beds of Parham. Folkestone Beds of Folkestone. Recorded ly Topley from the Hythe Beds of Hythe. Gault of Folkestone (British Museum, No. L, $4\left(\underline{2}(5) .^{2}\right.$ Upper Greensand of Ventnor, and Crook Hill, Cheddington (Dorset).

Ptera (Oxytoma) sp. Plate VIII, fig. 15", b.
Some very small examples of a I'torit similar to P. pectinntı are found in the Totternhoe Stone of Hitchin. They are not well preserved, but appear to be distinguished from l^{\prime}. pectinuta by the presence of transverse ribs placed at regular distances in the spaces between the radial ribs.

Prebla (Oxytoma) mbia (Etherit! \boldsymbol{m}^{\prime}), 1881. Plate VIII, fig. 16 a, b.
1881. Avicula dubia, R. Etheridge. In Pemning and Jukes-Brome, Geol. Cambridge, p. 14.5, pl. ii, fiss. 4, 4 a.

Remulls.- Whis is known only by the two type specimens-one being a right valve separated from the matrix, the other a left showing the interior only. The surface of the right valse is smooth. Since the exterior of the left valve is un-

[^14]known, the characters and affinities of this "species" camnot be determined. The left valve has a length of 6 mm .

T'ypes.-In the Sedgwick Museum, Cambridge.
Distribution.-Totternhoe Stone (zone of Holester sulyluly sus) of Burwell. ${ }^{1}$

Pteria (Oxytoma) tenuicustata (Rümer), 1841. Plate VIII, figs. 17 a-d, 18 , $19 a, b, 20 a, l, 21 a, b, 22,23$.
1841. Avicula lineata, F. A. Rimer. Die Verstein. d. nord-deutsch. Kreidegeb., p. 64, pl. viii, fig. 15 (A.tenuicostata on pl. viii).

Description.-Shell obliquely oval, usually longer than high.
Left valve moderately convex ; with evenly convex margins, except the posterodorsal, which is slightly concave. Ears large, the anterior indistinctly limited, and with its outer angle rectangular or slightly obtuse. Posterior ear longer and more distinctly limited than the anterior, with the dorsal portion extented and winglike.

Ornamentation of left valve consists of numerous (sometimes as many as 100) narrow, well-marked, evenly rounded ribs separated by broad, Hat interspaces. The anterior ribs are slightly less prominent than the others; those near the posterior border are often closer together. At the margin of the valve the ribs usually
${ }^{1}$ Another specimen from the same locality and horizon was described by Etheritge as Aricula

 allied to the shell described as Anomia subradiata by Reuss ('Die Verstein. dev bohn. Kirdilefomat.,' pt. 2, 1846, p. 45, pl. xxxi, figs. 18, 19). The type and three other specimens of Arion't filata are in the Sedgwick Museum, Cambridye.
show a more or less regular alternation in size, but sometimes two or three of the larger ribs occur in proximity without the intervention of smaller ribs. In some cases between the large and small ribs a rib of still smaller size is found. Some of the large ribs start from near the umbo; others start at some little distance from it but soon reach the same size as the primary ribs; still other ribs are intercalated at a greater distance from the umbo and do not attain the same size as the earlier ribs. The anterior and posterior rihis have a slight curvature; the others are more nearly straight. Occasionally the anterior and posterior ribs have a faintly marked nodose appearance. The interspaces are smooth, or have a very faintly marked radial ribhing. 'The anterior ear is ornamented with ribs similar to those on the remainder of the valve, but they are of uniform or nearly uniform size. The posterior ear is marked with growth-lines parallel to its posterior concave border ; radial ribs also occur, and are rather larger and more widely separated on the dorsal portion than on the part near the junction with the rest of the valve.

Right valve much smaller than the left; flattened, but convex in the median dorsal part. Anterior ear with a deep sinus. Posterior ear much larger, but not marked off from the rest of the valve. Surface smooth, or with very faint concentric lines.

Measurements of left calces:

	(1)	(2)	(3)	(4)	(5)	(6)	(i)	(8)
Length	97	26	26	$20 \cdot 5$	19	19	$13 \cdot 5$	12
Height (oblique)	$25 \cdot 5$	23	29	19	18	17	$14 \cdot 75$	$11 \cdot 25$,

$(1,8)$ A. quadratus zone, West Haruham.
$(2,5) \quad, \quad, \quad$ Coddenham.
(4) Upper Chalk, Ruston Parra.
($3,6,7$) ,. Wells.
Affinitiss-Pterit dauict (Ramn) ${ }^{1}$ is similar in outline and the general character of its ornamentation to Pteria temuicostnte, but appears to be distinguished by the possession of fewer rilhs and by their absence in the neighbourhood of the umbo.

In the character of its ormamentation l^{\prime}. trunicostutu closely resembles P. pectinata (see p. 59), but is distinguished by its larger size, relatively greater length, and smaller convexity; also the ribs are more numerous, the ears are relatively larger, and the anterior left car is less distinctly limited.

The specimen from Simbirsk figured by d'Orbigny (184.) as Acicula temuicostutu differs from that species in the possession of fewer and stronger ribs. It was subsequently regarded by d'Orbigny" as an example of Aricule laripes, Morton. ${ }^{3}$

[^15]Remarks.-In England this species has, up to the present time, been definitely recognised in the Actinocamars qualutus zone only.

The specimen figured ly Römer is relatively higher than most of the English examples, but in other characters there is close agreement.

Pteria seminuda (Dames) ${ }^{1}$ resembles Pteria tenuicostrta, but appears to differ in the ribs on the left valve being of more nearly uniform size, and in the presence of distinct ornamentation on the right valve.

Type.-The type is stated by Römer to have come from the Lower Chalk of Lindner Berg, near Hanover, but according to Dr. J. Böhm the horizon is really the quadratus Chalk.

Distribution.-Zone of Actinocamax quadretu; of West Harnham, near Salishury, and Sewerby (Yorkshire). Upper Chalk (\because I. quadratus zone) of Coddenham (Suffolk), Wells (Norfolk), and Ruston Parva (Yorkshire).

$$
\text { Sub-yeuns-Pseumopter., F. B. Meeli, } 1873 .
$$

(' 6th Aun. Rep. U.S. Geol. Survey of the Territories,' p. 489 ; Meek, ' Invert. Cret. and Tert. Foss. U. Missouri' (Rep. U.S. Geol. Survey, vol. ix, 1876), p. 29.)

Remaks.-This species is very imperfectly known at present. It resembles I. haldonensis from the Upper Greensand of Haldon (see beluw) but is easily distinguished by the strong concentric ridges; it also appears to be relatively longer and less convex.

T'!pe.-In the Museum of the Geological Society (No. 20.01).
Distribution.-Lower Greensand (Crackers) of Atherfiedd. Recorded ly Topley from the Atherfield Clay of Peasmarsh and Shalford.
 d. baltisch. Cenoman.' (Palæont. Abhandl., vol. ii, 189.5). 1. 21. pl. iii, tiss. 7. ※.

Preria (Pseldoptera) anomala (Sonerby), 1836. Plate IX, figs. 9 a-d, $3 a, h, 4 a, b$.

Description.-Shell rather large; outline (without the ears) triangular, very oblique ; anterior margin conrex, forming a rounded angle with the sinuous posteroventral margin. Umbo of left valve pointed, acute, near the anterior extremity. Apical angle about 45°.

Left ralve rery convex, with a strong, rounded ridge extending from the umbo to the postero-ventral extremity. In front of this ridge the shell curves rapidly downwards, and becomes nearly vertical to the plane of the valves near the anterior margin and near the anterior ear. Behind the ridge the valve is flattened and slopes dorsally (fig. 2 a); but this part is sometimes divided into two
by a median step-like fold (fig. :3 11). A narrow part adjoining the pwaterior ear slopes rather rapidly.

Anterior ear of moderate size, convex, much higher than long. Posterior ear large, united to the whole of the postero-tomsal margin of the valve; posterior margin of ear slightly concave or simous, forming an ohtuse angle with the hingeline and also with the postero-ventral margin.

Ornamentation consists of numerous radial ribs which are straight or slightly undulating, and extend over the larger part of the valve. On the posterior ear the ribs are narrow and separated by broad, flat or slightly concave interspaces. On the flattened part of the valve the ribs are rather more rounded and become less distinct towards the postero-ventral margin in large specimens. In front of the main ridge the ribs are closer together and the interspaces very narow; on the anterior part of the ralve and on the anterior ear, ribs are either absent or indistinct. Numerous, close-set, regular, concentric linear rilges cross both ribs, and interspaces.

In small specimens (figs. 4", h) haring the ornamentation well preserver, the ribs on the flattened part of the valve are narrow, rounded, distinctly limited. and separated by broad interspaces; new ribs are introduced in the middle of some of the interspaces. The ribs and interspaces are crossed at regular interval, by concentric ridges which form squares or oblongs with the rils. On the posterior ear similar ornamentation occurs, hut the concentric ridges cut the ribs obliguels.

Right valve not seen.
Mfrusuremintu:

	(1)	(2)
Umbo to postero-ventral extremity	86	7.) mm .
Length of hinge-line	$4!$	it

(1,2) Blackitown.
Affiutiors.-The specimen from the Cenomanian of Le Mans figured hey d'Orbigny as Ariculn commen appears to be distinct from Sowerhy's species on account of its larger apical angle and its fewer, stronger, and more spiny rihs. See also I^{\prime}. (l'seml(optrin) haldmensis (below).

The character of the hinge in this and the other species here incluled in the sub-genus I'sendoptem is mknown ; consequently their systematic position cammot be regarded as definitely determined.

Remork.-The only examples which I have seen are the type pecimen, six specimens in the British Musemm, and two in the Museum of lractical ficolores. Those from Haldon have the ornamentation very perfectly preserver.

T'! $!$ pe. - In the Bristol Museum, from Blacklown.
Distribution--L'pper Greensand (zone of schlwhmehin iostratu) of Blackiluwn and Haldon.

Description.-Shell of moderate size, triangular, very oblicque. Anterior margin slightly convex, forming a rounded angle with the postero-ventral margin. Umbo pointed, acute, near the anterior extremity. Apical angle about $+3^{\circ}$.

Left valve very convex, with a sharp carina extending from the umbo to the postero-ventral angle. The part of the valve in front of the carina is bent sharply downwards along its whole length, and is ornamented with from ten to eighteen slender, linear ribs, which are separated by broad flat interspaces. The mumber of ribs increases with age owing to the intercalation of new ribs in the interspaces. The space between the carina and the first rib, and sometimes also between the first and second rib, is greater than the space between the ribs near the middle of the anterior part of the valve. Minute spiny projections are present on the ribs in well-preserved ipecimens. A similar but rather stronger rib, also with spiny projections, occurs on the carina. Behind the carina two short ribs, extembing from near the middle to the margin of the valve, are sometimes seen. The larger part of the value behind the carina is flattened and smooth except for numerous, slightly curving growth-ridges, which are continued on to the posterior ear, and are sometimes seen in front of the carina, where they may hecome more prominent.

Anterior ear small, with romnded margin, indistinctly separated from the remainder of the valve, ormamented with radial rilss similar to those on the adjoining part of the ralve.

Posterior ear compressed, very large, separated from the remainder of the value hy a very shallow depression. Growth-ridges concave and parallel with the posterior margin.

Right valve not seen.
Measurements:

	1)	(2)	(3)	(t)	(5)
Height (oblique)	28	$\underline{26}$	$\underline{9}$	2:3	18
Length of hinge-lin		$1{ }^{\prime}$	18	15	

(1--5) Upper Greensimd, Haldom.
A!fiiuties.-This species is closely allied to I'terim (P'semtopteril) raricustu (Renss), ${ }^{2}$ from the Gosan Bets of St. Wolfgang (Salzourg), but is distinguished by the smaller obliquity of the shell, by the angle formed by the anterior and postero-

1 This measurement is approximate only, since the posterior wing is usually imperfectly preserved.
\because Reuss, 'Char. d. Kreideschicht. in len Ostalpen, ete. (Denksehr. d. k. Akad. Wisseusch. Wien,

 Famat d. baltisch. Cemoman.' (Palaont. Alhamall., vol. ii, l885), p, 20, pl. iii, fig. 9.
ventral margins being smaller, and by the shorter postero-ventral margin. It also, resembles P. (I'senduptrim) igmabergensis (Lundgren), from the Senonian of Ignaberga.
P. (Pseudry, teicu) haldonensis is distinguished from the young of I^{\prime}. ('somilopteri") anomulte (see above) by its sharp carina; by the part of the valve behind the carina, and the posterior wing, being smooth; also ly the strong and more widely separated ribs in front of the carina.

T'ypres.-In the British Museum and the Sedgwick Museum.
Distribution.-UPper Greensand (zone of I'reten asimer) of Haldon.

Descrition.-Shell small, very oblicque. Umbo acute, near the anterior extremity. Apical angle 26° to 32°.

Left valve moderately convex, with the median triaugular part raised but flattened; in front of this the ralve bends sharply to the anterior margin; behind, it bends rather sharply to join the posterior ear, which is distinctly demarcated. Anterior ear small. Posterior ear moderately large, united to the greater part of the postero-dorsal margin of the value; its posterior margin concave.

A few narrow, well-defined radial ribs occur on the anterior part of the masel triangular portion and just in front of it. In some cases less distinct ribs with spiny projections are present on the whole of the triangular part of the valve. Growth-ridges are often well-marked, and are continued on to the posterior ear.

Meusuremeats:

Hinge-line	
Height (oblicque)	11 mm.
	Black Ven.

Affinities.-This species is distinguished from l'teria (Pseudripteru) haldmensis (see above) by (1) the greater obliquity of the shell, (2) the smaller apical angle, (3) the absence of the sharp carina, (4) the distinctly limited posterior car.

Types.-In the Museum of Practical Geology (No. 10, 280) and the Sedgwick Museum.

Distrilution.-Gault of Black Ven.
 18, $19 \ldots, \ldots$.
1827. Avicula cervlescens, S. Nilesim. Petrif. Suecama, p. 1s. pl. iii, fis. 1!?
? 18:36. - A. Goldfuss. Petref. Germ., will ii. P. 132. phaviii. fir. ti .

[^16]| $\bigcirc 1841$. | Avicel | fertimescess | F. A. Rimmer. | Die Verstein. al. nord-lentsch. Kreileseb., p. bi.t. |
| :---: | :---: | :---: | :---: | :---: |
| 18.50 | - | - | A. AOPhiguy. | |
| 1888. | - | cermuescess | A. Perom. H | ist. Terre de Craie, p. 155, pl. i. fir. 14. |
| $\div 188$. | - | certiescess | E. HuIzaltil. | Dir Mollusk, Aachen. Kreide (Palæ(mitenraphica, vol. xxxv), p. 2.27 . |
| 1897. | - | -- | A. Herniy. | Revis. Lamell. i Nilsson's Petrif. Sueana, p. 54, pl iii, firs 25-27. |

Description.-- Whell rather small, oblique, triangular'. Anterior margin slightly convex or nearly straight. U'mbo rather near the anterior extremity, sometimes curved slightly backwards. Anterior ear small, not distinctly marked off from the rest of the valve. Posterior ear large, triangular, its inner margin not limited, its posterior margin slightly concave and continuous with the postero-ventral margin of the valve. Median part of the valve raised, extending obliquely backwards, sometimes subcarinate anteriorly. In front of this raised part the valve is bent more or less sharply; behind, it is compressed gradually. Surface with weak radial ribs, which are straight or slightly undulating, and bear small spiny or scaly projections sometimes close together, sometimes more or less widely separated. The ribs may occur on the anterior part only, or may be present over the entire shell, incluting the ears. Often on the anterior part they are closer together than elsewhere. The number of ribs and the width of the flat interspaces vary in different specimens. New ribs may be introduced in the interspaces at varying distances from the umbo. In some specimens numerous fine concentric lines are seen.

Mersuremonts:

		(1)			(3)		$(31$
Length	\cdot	11	.	11	.	10	mm.
Height	.	13	.	12	.	$10 \cdot 5$,

(1) A. quadratur zone, East Harnham.
(2) B. murromutu zone, Norwich.
.. Clarembon.
Aftinitisx.-The imperfect specimen from the Lower Senonian of Brunswick figured by (t. Mïller as Ariculn sp may perhaps be an example of I ' curoulescens.

Ariculn allubr, Reuss," resembles in form I'. cormberens, but is distinguished by the absence of radial ribs.

Aciruln sulmodosi, Hagenow, ${ }^{3}$ from the Senonian of Riigen, is perhaps identical with l '. corruleserens, but in the absence of a figure of the former I am unable to make a comparison.

[^17]Remaris.-The English specimens lave the median part of the valve apparently less sharply marked off from the anterior and posterior parts than it is in the examples figured by Hemnig, but they agree in this respect with the figure given by Peron.

The specimens show some variation in obliquity and in their relative height and length. The differences seen in the ornamentation are probably due, in part, at any rate, to imperfections in the preservation of the surface layer of the shell. Like Peron, I have seen no specimen of the right valve.

Examples of this species are preserved in the Norwich Museum, in Dr. Blackmore's collection, and in Mr. Brydone's collection.

Distribution-Z Zone of Actinocamar quadratus of East and West Harnham (Salisbury). Zone of Belemnitelln muriounta of Clarendon (Salisbury) and Norwich. Chalk of Trimingham.

> Gemus-Aucella, A. Kassliny, 1846.
> ('Reise in das Petschora-Land, p. 297. .

Description.-SShell large, obliquely ovate, much higher than long, moderately inflated, with regularly curving margin.

Right valve of moderate convexity, flattened. Umbo relatively small, and curving only slightly. Anterior ear triangular, with a deep, narrow byssal sinus. Posterior ear indistinctly limited.

Left valve very convex and rounded, the dorsal portion continued into a large and prominent umbo which curves anteriorly. Postero-ventral part of valve produced and somewhat compressed.

Surface of valves with concentric growth-ridges, sometimes produced into lamellæ, and forming regular curves.

Metsurements:

Affinities.-The shell in this species is larger, relatively ligher, more oblique, and less inflated than in A. Keyserlinginizu (see below). The right valve is more flattened, and its umbo is only slightly curved. The umbo of the left valve is larger and more prominent.

Remarks.-The only specimens I have seen are internal casts from the Spilsby Sandstone. The example of this species described by Parlow as var. rarliolatin shows faint radial ribs on the internal cast of the right ralve, and a slight depression on the left valve extending from the umbo to the postero-ventral margin (Plate X , fig. 2).

T'ypes.-From the Upper Volga beds of Kaschpur (Simbirsk), Staraja-Rjasan, and Olenek. The specimens figured by Pavlow are in the Sedgwick Museum and are here re-figured.

Distrilution.-Spilsby Sandstone (zone of Belemuites lateralis) of Donnington.

1837. Inoceramus concentrices, G. Fischer de Waldheim. Oryctographie du grouverum. de Moscou, p. 177, pl. ax, figs. 1-3.
1846. Adcella concentrica, ror. rugosa, A. Kryserling. Reise in das PetschoraLaud, p. 300, pl. xvi, fig. 16.
1850. Avicula (Buchia) n. sp., F. Rimer. Neues Jahrb. für Min., ete., p. 393.
1868. Aucella Keyserlinglana, H. Trautechioh. Verhaudl. d. russisch-kaiserlich. mineral. Gesellsch. in Petershurg, ser. 2, vol. iii, p. 250.
1874. - concentrica, ver. rlgosa, F. Tould. Mesozoisch. Verstein. v. d. Kuln-Insel (Die 2 weite deutsch. Nordpolf., in 1869, 1870, unter hitpitän K. Koldewey), vol. ii, p. 503, pl. ii, figs. 2, 3.
1874. -- rar. rugosissima, F. Twula. Ibil., p. 504, pl. ii, fig. 4.
1875. Perna imbricatus [Bem MS.], J. Phillije, Geol. Forks., pt. i, ed. 3, p. 247.

- - venustelus [Beam MS.], Phillil": Ibid., p. 247.

1884. Avicula? tectobtrgiensis, O. Weerth. Neocom. im Teutoburg. Walde (Palæont. Abhandl., vol. ii), p. 50, pl. ix, fig. 9.
1885. Aucella Kieyserlingiana, J. Lahuem. Mém. Acal. Imp. St. Pétersbourg, ser. vii, vol. xxxiii, No. 7, p. 4.
1886. - Kerserlingi, J. Lahusen. Ceber die russischen Aucellen (Mám. Comité géol. Russ., vol. viii, No. 1). pp. 21, 40, pl. iv, figs. 18-23.
1887. Inoceramus ventestlets et imbricatts, G. W. Lamplugh. Quart. Journ. Geol. Suc., vol. slv, p. 615.

1896.	Aucella Keyserlingi, A. P. Pavlow. Ibid., vol. lii, p. 550, pl. xxvii, fig. 3.			
1899.	-	-	G. Maas. Zeit:	schr. d. deutsch. geol. Gesellsch., vol. p. 249.
1900.	-	-	A. Wollemann.	Die Biv. u. Gastrop. d. deutsch. u. holliand. Neocoms (Abhandl. d. k. preussisch. geol. Land., N. F., pt. 31), p. 56, pl. ii, figs. 6-9.
1901.	-	-	J. F. Pompeckj.	Neues Jahrb. für Min., ete., Beil.Bd . xiv, p. 319, pl. xv, figs. 3, 6, $8-10,13,14,17,18,20,21$.
1903.	--	-	A. Wrillememn.	Zeitschr. d. deutsch. geol. Gesellsch., vol. lv, p. 34 (Briefl. Mitteil.).

Description.-Shell of moderate size, oblique, with more or less triangular outline and rounded margins, higher than long, inflated. Umbones prominent, at the anterior end of the hinge-line, almost touching, curved inwards and forwards.

Right valve convex in the neighbourhood of the umbo, but usually flattened elsewhere. Anterior ear close to the umbones, triangular, convex, narrow where united to the rest of the valve, with a deep and narrow byssal sinus. Posterior ear longer, but indistinctly limited.

Left valve much more convex than the right valve, especially in the dorsal part, somewhat compressed posteriorly; greatest convexity between the umbo and the postero-ventral extremity. Umbo more prominent than in the right valve. Ears indistinctly limited.

Both valves ornamented with many narrow, concentric lamellae which are placed more or less vertically to the surface and are separated by broad, flat interspaces. The lamelle occur at fairly regular intervals, but the distance between them varies on different parts of the shell. They curve gently on the median part of the valve, but bend more sharply in passing on to the anterior and posterior parts, where they become closer to one another. The lamellix have often disappeared from the parts near the umbones.

Merswements :

	(1)	(2)	(3)	${ }^{(4)}$
Length	31	28	$\underline{9}$	18 mm
Height	39	32	30	$\underline{2}$,
Thickness	-	16	16	

Aftiuities.-S.See Aurellar colyrnsis (p. 69).
Type.-The specimens figured by Pavlow are in the Sedgwick Museum.
Distribution.-Claxby Ironstone (zone of Belemnites leterolis) of Claxby. Speeton Clay (zone of Belemmites juculum) of Speeton.

Gonus-Atcrionsi, I. F. I'mperlij, 1901.
(' Neues Jahrb. fair Min.,' ett., Beil.-Bl. xir, p. 365.)
Aucellina gryphaomes (Smuprly), 1836. Plate X, figs. 6 a-d, 7 a-r, 8 a, l, 9 "-c', 10-13.
1836. Avictla gryphfoides, J. de C'. Somphy. Trans. Geol. Sue., ser. 2, vol. iv. pp. 156, 335, pl. xi, fig. 3.
1841. - - F. A. R"imer. Die Verstein. d. mord-deutsch. Kreidegeb., p. 64, pl. viii, fiy. 16.
1846. Inoceramus Coquandianus, A. d'Orligny. Pal. Franc̣. Terr. Crét., vol. iii, p. 505, pl. cecciii, firs. 6-8.
1850. - - - Prodr. de Pal., vol. ii, p. 139.
1853. Aucella grypheoides, A. r. Strombeck. Zeitschr. der deutsch. geol. Gesellsch., vol. v, p. 509.
1854. Avicola - J. Morvis. Cat. Brit. Foss., ed. 2, p. 163.
1856. Aucella A. r. Stromberk. Zeitschr. der deutsch. geol. Gesellsch., vol. viii, p. 488.
1864. -- H. Büleche. Neues Jahrb. für Min., ete., p. 669.
1869. Inoceramus Coqtandianos, F. J. Pictet and G. Compiche. Foss. Terr. Crít. Ste. Croix (Matír. Pal. Suisse, ser. 5), p. 111, pl. clx, figs. 9, 10.
1875. Avicula grypheoides, A. J. Jukes-Bromene. Quart. Journ. Geol. Soc., vol. xxxi, p. 298.
1882. - -- K. Windmialler. Jahrb. d. k. preussisch. geol. Landesanst. für 1881, pp. 20, 21.
1893. -- A. . Strombeck. Zeitschr. der deutsch. geol. Gesellsch., vol. xlv, pp. 490, 493.
1895. - \quad E. Tiessen. Zeitschr. der deutsch. geol. Gesellsch., vol. xlvii, p. 478.
1899. Aucella Coquandi, D. J. Anthula. Kreidefoss. des Kaukasus (Beitr. z. Paliant. u. Geol. Osterr.-Ungarns u. d. Orients, vol. xii), p. 78.
1901. Aucellina griphfoldes, J. F. Pomperkj. Neues Jahrh. fïr Min., ete., Beil.-Bd. xir, pp. 354, 365, pl. xvi, figs. 6-8.
190ㄹ. - \quad A. Wollemam. Lïneburg. Kreide (Alhandl. d. k. preussisch. geol. Landesanst., N. F., Heft 37), p. 64, pl. iii, figs. 2, 3.

Non 1829. Avicola
? Non 1847. -
J. de C. Somprly. Trans. Geol. Soc., ser. 2, vol. iii, p. 119 [Pseudomonotis speluncaria (Schlotheim)].
J. Mi"ller. Petref. der Aachen. Kreidef., pt. 1, p. 29.

Description.-Shell oval, very oblifue, very inerguvalve; dorsal part of posterior margin more or less straightened, the remaining margins forming a regular curve.

Right valve flattened, but convex near the umbo; height and length nearly equal. Umbo small, near the middle of the hinge-line, curving slightly. Hingearea obtusely triangular. Anterior car long, triangular, with a very deep, narrow, curved byssal sinus on each edge of which is a row of tubercles. Posterior car usually of about the same length as the anterior car, but indistinctly limited, with the outer angle obtuse.

Left valve convex, especially the dorsal part, more compressed postero-vertrally, sometimes with a shallow sulcus extending from the umbo to the posteroventral extremity. Dorsal portion of the valve produced into a large, prominent, much curved umbo. Hinge-area oltusely triangular. Posterior ear larger than the anterior, with a rounded depression between it and the umbo; anterior car short, triangular.

Ornamentation consists of numerous concentric growth-lines which sometimes become lamellar, and are separated by flat interspaces. Small, cluse-set, radial ribs occur, especially in the neighbourhood of the umbo.

Measurements of lift valve:

	(1)	(2)	(3)	(4)	
Length	22	21	18		11111.
Height (oblique)	29	97	25	17	"

(1-4) Cimbridge Gremsand.
Affinities.-The probable relationship of this species to Ameella hats been pointed out by von Strombeck, Stolicaka, and Jukes-Browne. Recently its. affinities to Preudmumotis and Aurella have been fully diseussed by Prof. Pompeckj, by whom the genus Aluellimu has been established to include dritula
 allied to Ancella, but differs from it in the absence of arn articulating groove in the linge-area of the left valve.

Inoceramus Cummadionus, d'Orbigny, was regarded by Jukes-Browne as identical with Aucellina gryphersides, and 1 agree with that view. 'The delentity is also supported by the fact that Pictet and Campiche referred the specimens foum in the

T'Ipes.-I have not seen the types; Fitton stated that they were in the collection of Mrs. Murchison, and came from the Lpher (irecmanal of Nursted and Cambridgeshire (? ('ambridere (Greensand).

Distrihution.-Upper Gault of Folkestone and Easthourne. Red Limestone of Hunstanton and Specton. (ambridge Greensand (derived).

Upper Greensand (\%one of Schlomhurhim restratu) of Hamphire, Devizes, and

bridge Greensand (indigenous). Chloritic Marl of Maiden Bradley, Devizes, Isle of Wight, Urehfont (Wilts), Holybourne (Hants), and Eastbourne. Chalk Marl (zone of Schlumbachia curians) of the Isle of Wight, Folkestone, Hunstanton, Lincolnshire, and Yorkshire. Totternhoe Stone of Fulbourn and Burwell. Zone of IIolaster sullylolosus (above Totternhoe Stone) of Eversden (Cambs.).

> F'umily-PERNID.E, Zittel. (icmus-GervilaLa, M. J. L. Uefrumce, 1820.
> ('Dict. Sci. mat., vol. sviii, p. 502.)

Gervinal stblamenata (dorbigmy), 1850. Plate X, figs. $14-16$; Plate XI, fig. 1. Text figures 7, 8 .
1826. Gervillia aviculoides, J. de. C'. Suwerly. Min. Conch., vol. vi, p. 16, pl. dxi, figs. 1, 2, 3, 5 (not 4), [non Perne aviculoides, Suwerly, 1814].
1845. -- -- E. Forbes. Quart. Journ. Geol. Soc., vol. i, p. 246.

- Avicula lanceolata, - Ibid., p. 247, pl. iii, fig. 8.

1850. - sublancellata, A. d'Orbigny. Prodr. de Pal., vol. ii, p. 119.
1851. Gervilia alpina, F. J. Pictet and W. Roux. Moll. Foss. Grès verts de Geuìve, p. 496, pl. xli, fig. 3.
1852. Gervillia anceps, J. Murris. Cat. Brit. Foss., ed. ii, p. 167.

- Avicula lanceolata, Murris. Ibid., p. 163.

1858. Gervilia anceps, F'. J. Pictet and E. Renevier. Foss. Terr. Aptien (Matir. Pal. Suisse, ser.1), p. 121, pl. svii.
1859. II. Caruand. Mon. Aptien de l'Espragne, p. 145.

186!. alpina, F. J. Pietet and G. Campiche. Fuss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 83, pl. clv, figs. 2-4.
1902. Gervilleia anceps, F. Frech. Centrallb. für Min., etc., p. 612 (text-figure).

Insertption.-Shell elongate, very oblique, slightly inequivalve, the left valve rather more convex than the right. Posterior extremity lanceolate, but rounded. Postero-lorsal margin slightly sinuous. Antero-ventral marginal parts nearly perpendicular to the plane between the valves and slightly concave. Umbones inconspicuous, almost terminal. Only a very small portion of the valve is seen in front of each umbo; on the left valve this portion is bounded by a lincar depression, but on the right valve it is not limited. The median part of each valve is convex, but hecomes compressed towards the posterior extremity. Between the convex portion and the hinge-line (posterior to the umbo) is a long, triangular, compressed, winglike portion, of which the inner boundary is not limited, and the posterior margin
is slightly convex or sometimes almost straight; on this part the growth-lines are convex posteriorly and curve towarls the umbo, except in young specimens where they curve posteriorly as they approach the hinge-line.

Hinge-line long, forming rather less than half the greatest length of the valve,

Fia. 7.-Gervillia sublanceolata (d'Orbigny.) Lower Greensand (Crackers), Atherfield. Sedqwick Musemm.
\times. a, left valve; b, antero-dorsal view of another specimen; c, left valve of another specimen.
and making an obtuse angle with the posterior margin. Ligament pits large, usually from six to nine in number, placed at nearly equal distances, and usually of nearly equal size, except the anterior and posterior, which may he smaller thatu the others.

Surface of valves omamented with growth-lamella only.

Measurements:

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	${ }^{(9)}$	
Ilinge-line	92	86	86	$8: 3$	74	66	41	54		1 mm .
Umbo to posterior extremit	182	200	182	163	159	$1+9$	89	110		
	$(1-7)$ Crackers, Atherfield.									

Affinities.-(i,millia smblumeolutn is closely allied to G. anceps, Deshayes, ${ }^{1}$ of which the types are from the Neocomian of Aube. The English specimens have usually been referred to the latter species, but Pictet and Canpiche regarded them as distinct.

The characters which separate the two species are (1) the antero-ventral margin
 straight; (2) the posterior margin of the posterior wing-like part is convex, or in some cases nearly straight, and the growth-lines on this part of the shell are convex, whilst in G. "unerps the corresponting margin and growth-lines are concave, and the wing-like part is more distinct ; (3) the line of greatest convexity-extending from the mmbo posterionly-is near the middle of the valve in fi. sublemereolutu, but near the antero-ventral margin in ci. "urreps ; ($\cdot \boldsymbol{f}$) it is possible that fi. sublumerolutu is less inequivalve than (f. antre $)^{2},{ }^{2}$ hut at present this point camot be proved, since only a few specimens of the latter species showing loth valves have been fomel. All the examples known of (i. "mrep, appear to be larger and to have thicker shells than (i. sultulumembute.

Pietet and Campiche thought that fi. (merepse conld be distinguished by the seeond and thind ligament pits being close together, whereas in Ci. smblancorlet, the pits are nearly equidistant. An examination of specimens of the former shows that the pesition of the secome and third pits, shown in d'Orhigny's figure, is an individual variation, ${ }^{3}$ and is mot usually found. Pietet and (ampiche mention as another distinction the sharp line of separation between the posterior wing and the rest of the valve in C. muce)s; although this feature is shown in d'Orbigny's figure it is not evident in the specimens.
(i. sublameroleth differs from (i. cosmenis, de Loriol,' in the rapid tapering of the shell towards the posterior extremity and in the less extensive development of the posterior wing-like part.

Remarlis.-Examples of this species from Λ therfield were deseribed and figured as Cirmillicu "lpinn, Pictet and Roux, by Pietet and Renevier and by Pietet and

2 She Deslayese' fiy. $3 r$.
${ }^{3}$ 'The probability of this hats bean mentioned hy F. G. Skeat and V. Mansen, 'Jur. Neoce and

Campiche. The specimen figured by Pictet and Roux is not sufficiently perfect to enable us to state whether it is specifically identical with G. sullanceolutu, but since Pictet, Renevier, and Campiche were acquainted with the type and other specimens of G. alpina, and had also good specimens from Atherficld, we may feel every confidence in their judgment in this matter.

Fia. 8.-Gervillia sublanecolata (d'Orligny). Lower Greensand (Crackers), Atherficld. Sedgwick Museum. Right and left valves of the same specimen. \times.

A young individual of this species from Atherfied was described and figured by Forbes as Aricula lanceolnta. This name, however, had previously been employed by Sowerby (1826) for a species from the Lias, and consequently d'Orbigny altered the name of Forbes' species to Ariculat sultemreolata. Goldfuss (1836) had also used the name Giorrillia lanceolatu for a species from the Middle Jurassic of Würtemberg. Since d'Orhigny's name has printity over cirrillia alpina of Pietet
and Roux, the species now under consideration must be known as Giprillia sullanceolata (d'Orbigny).

The young individuals of r. sublanceolate differ from the adults in that the anterior part of the shell is relatively longer and more wing-like, the posterior ear is more sharply limited and its growth-lines are concave posteriorly, and the valves are more unerual (Plate X, figs. 14, 15).
(f. sullaureoluta belongs to Frech's 'Group of a. aviculoides.' Frech gives a figure of the hinge and interior of a specimen from Atherfield.

I am greatly indebted to Professor Douville for the opportunity of seeing a specimen of (irrillia aureps from Aube, and also for his kindness in comparing (i.

T!! $/$ ess.-One of the specimens figured by Sowerby (fig. 5) is in the British Musemm; the others (figs. 1-3) cannot be traced. Sowerly's fig. 4 is from the Comallian of Shotover, and does not belong to this species. Ariruln lancoulata, Forbes, from the Lower Greensand (prolably (rackers) of Atherfield, is in the Museum of the Geological Society (No. 20:7). The type of cierrillin clpina came from the Gault of Saxonet.
lhistrihution.-Lower Greensand (Crackers and Fitton's Beds 20 and 45) of Atherfiedd. Atherfiedd Beds of Sevenoaks.

Recorded hy Topley from the Atherfield Beds of Haslemere, Peasmarsh, Shalford, and Redhill; from the Hythe Beds of Hythe, Lympne, Maidstone, and Pullorough; and from the Samlgate Beds of Sandgrate, Folkestone, and Parham.

Upper Grecusand (zone of Schlmherchia rostrata) of the Isle of Wight, Blackdown, and Haldon.

Gervilaia hinimomen, Forles, 1845. Plate XI, figs. 2-8.
1845. Gervillia linguloines, E. Forbes. Quart. Journ. Geol. Soc., vol. i, p. 246, pl. iii, fig. 9 .
Avicula ephemera, Forbes. Ibid., p. 247, pl. iii, fig. 6.
1846. Gervillia linguloides, A. d'Orligny. Pal. Franç. Terr. Crét., vol. iii, p. 485, pl. cecxcvi, figs. 1-4.
1850. - - d Orbigny. Prodr. de Pal., vol. ii, p. 119.

- Avicula ephemera, - Ibid., p. 119.

1854. Gervillia linguloides, J. Morris. Cat. Brit. Foss., ed. 2, p. 167.
-- Avicula epliemera, Morris. Ibid., p. 163.
1855. Gervillia linguloides, F. J. Pictet and E. Renevier. Foss. Terr. Aptien (Matér. Pal. Suisse, ser. 1), p. 123, pl. xviii, figs. 3, 4.
1856. -- \quad F. J. Pistet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 91.

Descriptiou.-Shell small, thin, elongate, compressed, very oblique, angular anteriorly, truncated posteriorly. Left valve more convex than the right. Umbones almost terminal. Ligament area narrow, with four or five pits, one of which is under the umbo. Anterior part of the shell very small, compressed. Median part flattened. Postero-dorsal part relatively large, compressed, wing-like. On the left valve a rounded ridge extends from the umbo to the postero-ventral angle; below this ridge the shell is bent sharply.

Surface smooth, or ornamented with concentric lines.

Measurements:

	(1)	(2)	(3)
Length of hinge	15\%	15	1:\% mm .
Umbo to postero-ventral angle	23	29	25

Affinities.-G. recta, Meek and Hayden, ${ }^{1}$ from the Fox Hill Beds of the Upper Missouri, is closely allied to this species. The imperfectly known (ir, rillin hirimi, Römer, ${ }^{2}$ resembles G. linguloides, but appears to have the posterior wing more distinctly limited.

In the form of its shell G. linguluides resembles some of the species of l^{\prime} terin which belong to the sub-genus Pseutoptera (see p. 63), but the presence of ligament pits proves it to be a Gercillic.

Remarks.-Pictet and Renevier showed that Acicula ephemera, Forbes, is only an internal cast of Gervillia limynluiles.

This species occurs commonly in the Crackers of Atherfied and is gregarions.
Types.-From the Crackers of Atherfield, in the Muscum of the Geological Society (Nos. 2040, 2054). The types of Acicula 'phemere, also from Atherfield, are in the same collection (Nos. 20.51, 20.52).

Distribution.-Lower Greensand (Crackers) of Atherfield. Recorded by Topley from the Atherfield Clay of Peasemarsh and Shalford.
 figures ! 1 - 1 .

 fis.
 U. Missouri ' (1876), p. 66, pl. xxix, fig. 1 a, b.

2 'Die Verstein. d. nord-deutsch. Kreidegeb.' (1841), 1. 64, pl. viii, tio. 14 (named G. C'ult:e on pl. viii).
1846. Gervilia alaformis, A. dorbigny. Pal. Franç. Terr. Crút., vul. iii, p. 484, pl. ceesev, figs. 1-3.
1850. - - dOrbigny. Prodr. de Pal., vol. ii, p. 8.2.
1852. Avicula Rhodani, F. J. Pictet and W. Roux. Moll. Fuss. Grès verts de Genève, p. 494, pl. xli, fig. 2.
1854. Gervillia alfformis, J. Morvis. Cat. Brit. Fuss., ed. e, p. 167.
1853. Gervilia aliformis, F. J. Pictet and E. Renevier. Foss. Terr. Aptien (Matír. Pal. Suisse, ser. 1), p. 120, pl. xviii, figs. 1, 9.
1865. - - H. Coquand. Mon. Aptien de l'Espagne, p. 144.
1869. - - F. J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matír. Pal. Suisse, ser. 5), p. 86, pl. clvi, fig. 1.
1871. Gervillea - F. Stoliczizu. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 399.

Drescription.-Whell thick, large, much inflated, triangular or rhombic, oblicque.

Fig. 9.-Gervillia alaformis (Sowerhy). Lower Greensand (Crackers), Atherfield. Sedgwick Musemm. Dorsal view, showing the ligament area of the right valve. Natural size.

Anterior parts of both valves more or less nearly vertical to the plane of the valves. Around the byssal opening the marginal parts of the valves are sometimes concave. Umbones near the anterior extremity. Hinge-area large with large ligament pits -usually five or six. Numerous narrow transverse tectl.

Left valve larger and more inflated than the right, with its umbo strongly incurved. A very prominent, convex portion extends from the umbo to the rounded postero-ventral extremity; dorsally it bends anteriorly; ventrally it has a slight posterior curvature. This convex part is separated by a shallow depres-
sion from a small anterior portion, and by a linear depression from a very large triangular posterior portion, which is flattened in small specimens but morlerately convex in older examples. This posterior portion has a wing-like projection in young specimens, but in older forms its posterior border is nearly straight and forms an obtuse angle with the hinge-line.

Right valve similar to the left, but smaller, less convex, with the posterion portion more flattened, and with the umbo not incurved.

Ornamentation in the adult shell consists of mumerous growth-lamella. On the earlier part of the shell, and in young examples, there are a few rather strong, broad, rounded radial ribs with a few smaller rils between.

Fig. 10.-Gervillia aleformis (Sowerby). Left valve of specimen shown in Fig. 9. \times.

Measurements:

		(1)		(2)	(3)
Length of hinge		97		90	85) mm.
Height (oblique)	.	122		1:30	116
	(1-3)	Crack	A	field.	

Affinities.-This species presents some rescmblance to Ii. allaudirusis $^{\text {a }}$ (Matheron ${ }^{1}$) but is more inflated, less inequivalve, and less oblique.

Pictet and Campiche regarded the form figured as G. alaformis he d'Orbigny as distinet from Sowerby's G. alxformis, and they believed that the former was limited to the Neocomian whereas the latter occurs in the Aptian. Some specimens from the Perna-bed of Atherfield agree almost exactly with d'Orbigny's figure, and I

1'Catal. Foss. des Bouches-du-Rhone ' (1842), p. 175, pl, xxvi, firs. 1: Pictet and Campicher. 'Terr. Crét. Ste. Croix ' (1869), p. 81, pl. clv, fig. 1.

Fig. 11.-Gervillia aleformis (Sowerby). Right valve, and umbo and ligament area of the left valve of the specimen shown in figs. 9, $10 . \times \frac{3}{4}$.

Fıas. 12, 13.-Gervillia alpformis (Sowerby). Lower Greensand (Crackers), Atherfield. Sedgwick Musenm. 12. Ieft valve. 13. Right valve. \times.
cannot regard them as more than a varicty in which the central convex part is rather narrower and more elevated than usual (fig. 14).

Remarks.-G. alaformis belongs to Frech's ' 'Group of Gervillia Itartmanni,' in which the shell is obliquely rhombic and has numerous small teeth.

Young specimens of (7 . alaformis differ from older examples in having wellmarked radial ribs, in the valves being less inflated, and in the occurrence of a wing-like projection on the posterior ear. They resemble the form described by d'Orbigny as Avicula Cottaldimu, but in the latter the radial ornamentation and well-marked posterior wing are retained in the adult state, whercas they soon become obsolete in G. alexformis. I am not accuainted with the character of the hinge of Avicula Cuttaldina.

 Left valve of a narrow varicty. $\times 3$.

T'ype- The type cannot be found ; it came from the Lower Greensand (prob)ably the Perna-bed) of Sandown, Isle of Wight.

Distribution.-Pernt-bed of Atherfield and Sandown. Crackers and Bed 11 (of Fitton) of Atherfield. Atherfield Clay of Haslemere. Hythe Beds of IIythe and Lympne.

Gervilla rusthata (Soucerly), 1836. Plate XI, figs. 12 (", 1,13 -2:3.
1836. Perna rostrata, J. de C. Sumerby. Trams. Geol. Suc., ser. D, vil. iv., Mp. 241,342, pl. xvii, fig. 17.
1846. Avicula cenomanensis, A. dOrbigny. Pial. Framc. Terr. Cret., vol. iii, p. 476. pl. ceexci, figs. 11-13. 1850. - \quad dorbigmy. Prodr. de Pal., vol. ii. p. 167. 1 Centralb. für Min., ete. (la(t), p 613.
1850. Perna rostrata, dorbigny. Ibid., p. 168.
1854. Gervillia - J. Morris. Cat. Brit. Foss., ed. 2, p. 168.
1871. Melina - F. Stoliczha. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 400.
? 1895. Avicula cf. cenomanensis, E. Tiessen. Zeitschr. d. deutsch. geol. Gesellscl., vol. xlvii, p. 479.

Description.-Shell rather small, of moderate convexity, often very oblique, triangular. Ventral and posterior margins rounded. Hinge-line long.

Left valve more convex than the right, with the umbo moderately incurved. The large, central, very convex portion is indistinctly separated from the large, anterior, triangular, wing-like car and from a narrow, flattened, obtusely triangular posterior part.

Right valve similar to the left but less convex and with the umbo only slightly incurved, and with the anterior ear more distinctly limited.

Surface of valves with narrow, regular growth-layers.
Measurements:

Affinitics.-Aticula cenomanensis, d'Orbigny, from the Cenomanian of Le Mans, appears to be identical with (i. rostrata. In all the specimens of the latter which I have seen, the terminal portion of the posterior wing is more or less imperfect, but the growth-lines show that the posterior margin must have had the same form as in d'Orbigny's fig. 11.
(iarvillia rostratin presents some resemblance to the young forms of G. alafirmis (p. 79) but is more oblique and without radial ribs, also the central convex portion is less sharply marked off from the lateral parts, and the anterior ear is larger.
G. rostrata is allied to (r. trmicustrta, Pictet and Campiche (see below), but the right valve is less flattened, and the concentric ornamentation appears to be less developed-this, however, may be due to difference of preservation, since some of the Blackdown specimens are nealy smooth whereas others show distinct concentric ridges.

Remorks.-This species is moderately common at Blackdown but is usually imperfectly preserved. An example from the Gault of Folkestone, recorded by Price as Acicula cenomenensis, is probably referable to this species, but the greater part of the shell has disappeared, leaving a mould of the right valve; the specimen is now in the Musem of Practical Geology (No. 1694).

The examples of (i. rostrata show a considerable amount of variation in obliguity,
and some of the less oblique specimens (Plate XI, figs. 17, 18) appear at first sight to be distinct from the more abundant oblique forms, but there is a complete transition between the extremes.

Distribution.-Upper Greensand (zone of Schlanhachiat roshicta) of Blackduwn, Haldon, and ? Devizes. ? Upper Gault (zone xi) of Folkestonc.

Gervillia, sp. Plate XI, figs. 2-1, 25.
Specimens from the Ferruginous Sands of Shamklin, which were collected by the late C. J. A. Meÿer and are now in the Sedgwick Muscum, resemble closely G. rostratu and G. tenuicostata (Pictet and Campiche), ${ }^{1}$ but the material at present available is hardly sufficient to justify a definite conclusiou as to their relatiouship. The specimen from the Lower Greensand of Upware figured by Keeping ${ }^{3}$ as Perna sp. nov. resembles still more closely some examples of (i. rostruta; the original is in the collection of Mr. J. F. Walker.

Gervilla Forbesiana, d'Orbigny, 1846. Plate XI, figs. 26, 27. Plate Xil, figs. 1-i.). 1826. Gervillia solenoides, J. de C. Souerby. Miu. Couch., vol. vi, p. 1.t, fi. dx, tigs. 1-:3 (not +). 1845. - \quad E. Forbes. Quart. Journ. Geol. Suc., vol. i, p. $24 i$. 1846. - Forbesiana, A. dOrbigny. Pal. Franç. Terr. Crét., vol. iii, I' 486, pl. ceexevi, figs. 5, 6. 1850. - \quad Ortigny. Prodr. de Pal., vol. ii, p. 119. 1854. - solenoldes, J. Marris. Cat. Brit. Foss., ed. 2, p. 168 (furfiom). 1897. - Forbesiana, R. B. Newton. Proc. Dorset. Nat. Hist. and Antiy. Field Club, vol. xviii, p. 87.

Desrription.-Shell compressed, slender, greatly elongated, sabre-shaped, tapering posteriorly to a rounded or subtruncate extremity. Dorsal margin slightly concave; ventral margin convex, with a rather greater curvature than the dorsal margin. Near the dorsal margin the valves are compressed rather abruptly, hut ventrally to this they are compressed gradually, giving rise to a kaife-like colge. Umbones terminal, acute. Josterior car large, triangular, with its dursal margin straight or very slightly concave and its posterior margin curving lack wards son at to form an acute angle with the dorsal margin of the value. The ear is marked ly fine growth-lines parallel with its posterior border.

[^18]Surface of valses smooth except for growth-ridges, of which the curved portions near the dorsal margin are more distinct than the other portions.

Hinge with small transverse teeth at the anterior end and six or seven long narrow obligue teeth near the posterior end-the latter decreasing in length posteriorly.

Mriosturments:

	(1)	(2)	(3)	${ }^{(+1)}$
Height ${ }^{\text {1 }}$:31	$9+$	1.5	
Length *	182	125	74	:35

A!finitios.-This species lelongs to Frech's" ' (Gromp of Girrillin solrmuides.'
The only localities given for (i. Forlursima by d'Orbigny are Shanklin and Atherfield, and apparently his figured specimen came from the latter place. All the examples from Shanklin are in the form of casts of which the posterior part is usually missing; it is consequently difficult to make out their real characters, but they probably belong to this species.

The examples found in the Gault and Upper Greensand differ somewhat from the specimen figured by d'Orbigny. In the former the shell is less slender and tapers more quickly posteriorly ; the posterior car, however, agrees with d'Orbigny's figure.

A considerable number of examples of cirrillin from different localities and horizons have been referred by various writers to G. solrmoides, Defrance, but without seeing a large collection of those forms it is impossible to determine their relationship to one another and to the examples here described. The figures given hy Defrance do not enable us to form a satisfactory idea of the characters of the species ; in his original account (1820) he gave " Ile d'Aix" as the locality, hut in his later remarks (1824) he states that the specimens came from the department of Le Manche.

The Senonian specimens figured by d'Orbigny ${ }^{6}$ as (i. aciculvides (non i i.
: From posterior end of hinge-line to opposite margin of valve.
a From umbo to posterior extremity.
\therefore 'Centrallb. für Miu.,' etc. (1902), p. 615.
4 Sowerhy (1826), Goldfuss (1836), Reuss (1846), Mïller (1847), dorhigny (1847), Alth (1850), Zittel (1866), Favre (1869), Stoliczka (1871), Geinit\% (1873), Brauns (1876), Fritsch (1877-93), Nötling (1885), Griepenkerl (1889), Holzapfel (1889), Lündgren (1894), Vogel (1895), Müller (1898), G. oblonga, Bühm (1885).
; Dict. Sci. nat.,' vol. xviii (1820), p. 503; vol. xxxii (1824), p. 316, pl. lxxxvi, fig. 6.
© 'Pal. Franç. Terr. Crét.,' vol. iii (1846), p. 489, pl. ccexcvii, fig. 2 (and perhaps fig. 1). Prof. M. Buale informs me that the original of fig. 1 cannot be found in the d'Orbigny collection, and that the original of fig. 2 comes from Valognes (Manche).
aviculoides, Sowerby) were afterwards ${ }^{1}$ referred by that writer to G. solenmilds, Defrance, whilst the Cenomanian forms from Le Mans, also figured as Gi, solemites, were named ${ }^{2} G$. subaviculoides.

The examples of (t. solenoides from the Senonian of Aachen figured by Holzapfel ${ }^{3}$ differ from our specimens of G. Forbesiana in the greater height of the posterior car and in its indistinct separation from the rest of the valve, also in having a larger apical angle.

T!!pes.-Two of the specimens figured as (i. sulenoides by Sowerly (figs. 2, :3) are in the British Museum and came from Shanklin. Another specimen figured by Sowerby (fig. 1), from the Upper Greensand of Lyme Regis, is in the Museum of the Geological Society of London (No. 1555), but is not recorded in Mr. Blake's "List of Types." D'Orbigny's type of G. Forlesian" apparently came from the Crackers of Atherfield, but Professor Boule informs me that the specimen camnot now be found in the d'Orbigny Collection.

Distribution.-l'erme-bed, Atherfield Clay, and (rackers of Atherficld. Fitton's Bed 36 of Blackgang. Ferruginous Sands of Shanklin. Atherfiedd Beds of Peasmarsh. Hythe Beds of Pulborough. Sandgate Berls of Parham Park.

Gault (zones iii to vii, and viii) of Folkestone. Zone of IIo,litwisintri"thens of Okeford Fitzpaine (Dorset). Cambidge Greensand (derived). I'pure (ircemsand of Blackdown.

> (ipmus-Perva, J. (i. Brutuuiire, 17s!!.
> ('Encyc. Méthod., Vers,' vol. i. p. xiii.)

Peinn Mulaett, Deshuyes, 18t'. 'I'ext-figure 1\%.
1842. Perna Mulefti, Deshages in A. Leymeric. Mém. Soc. géol. de France, ser.

2, vol. v. μ. 8 , pl. xi, figs. 1-3.
1845. - - E. Forbes. Quart. Journ. Geol. Suc., vol. i, p. \because thi. il. i. figs. 1-4.
 cece, ceeci, figs. 1-:3.
1848. - Mulaeti, C. L. Korh. Paleontegraphicia, vol. i, p. 171, pl. xiv. figs. $14-17$.

1 'Prodr. de Pal.,' vol. ii, 1850, p. 250.
 pl. cecxevii, figs. 3, 4, 5. Prof. Boule informs me that these are from la Mans, and are now in the dorhigny collection.

 (Mater. Pal. Suisse, ser. 5), p. 97, pl. clviii.

- Forbest. Pictet amd Campiche. Thid., p. 99. pl. clix.
 vol. iii, p. $\boldsymbol{q}^{0} 0$.
186:3. Perna Muliett. W. Kerpiny. Fuss ete, Neoc. Upware amd Brickhill. p. 150 .

1884. - O. Weerth. Die Fauna des Neocom. im Teutohurg. Walh. (Palæont. Alhandl., vol. ii). p. 49.
1885. - (Mulietia) Mulifti, P. Fischer. Manuel de Conch., p. 956, fir. 725.
1886. - Mulieti, F. Vögrl. Holliandisch. Kreide, p. 55.

- - - G. Mans. Zeitschr. der deutsch. geal. Gesellsch., vol. xlvii, p. 267.
189\%. - A. W',lı'mann. Ibid., vol. xlviii, p. 843
19\%W. - - Die Biv. u. Gastrop. d. deutsch. u. holliand. Neocoms (Abhandl. d. k. preussich. geol. Laml., N. F., pt. 31). p. 60.

Description.-Shell large, thick, compressed, more or less quadrilateral, with unequal angles. Hinge-line long. Umbones almost terminal. Anterior part of the shell sharply bent, and more or less nearly perpendicular to the plane of the two valves; anterior marginal part more or less deeply concave. From the umbo start two strong, broad, rounded folds; the anterior of these is near the anterior margin and curves anteriorly, its extremity forming the antero-ventral angle; the posterior fold at first curves ventrally and afterwards posteriorly, and its termination forms the postero-ventral angle. The part of the shell behind the posterior fold is compressed and flattened and produced into a wing of varying length. The junction of the two valves is sinuous, the anterior, the ventral, and the posterior margins (between the angles) being concave on the right valve and convex on the left.

The shell is ornamented with distinct growth ridges which bend ventrally in passing over the folds and form a semicircular or semi-oval curve near the hinge-line.

Measurements:

Affinities.-The forms found in the Lower Greensand of England which had been referred to Perna Mulleti by carlier writers were regarded as distinct by Pictet and Campiche, and were named by them Perna Forbesi. They considered that the latter were distinguished by the more prominent folds, the shorter and more deeply concave anterior margin, and the longer posterior wing. An examination of a number of specimeus shows that these characters are variable, and I am led to agree with Wollemam in thinking that the forms described by Pictet and Campiche caunot be regarded as more than varieties of a variable species.

Fio. 15.-Perna Mulleti, Deshayes. Lower Greensiml (Parnt-bed), Samdown. Sulgwick Musemm. Lett valve \times 3. ('Ihe posterior wing is bruken. Furbes gives a figure of a specimen in which the winer is perfectly preserved.)

Perna Mulleti is the type of Fischer's section Mulletin.
Type.-From the Neocomian of Veudeuvre. I have not seen the specimens figured by Forbes.

Distribution.-Perna-bed of Atherfield and Sandown. Atherfield Beds of Haslemere, Peasmarsh, Shalford, Redhill, Sevenoaks, and Hythe. Hythe Beds of Hythe (fide 'lopley). Lower Greensand of Potton and Upware. 'Teally Limestone (zone of B. brunsricensis) of North Willingham. Specton Clay of Speetou.

Perna Ricombana, l'Oiligny, 1846. Text-figures 16-18.

1846.	Perna	Ricordeana, A. l'Orbigny. Pill. Framc. Terr. Crét., vul. iii, p. 494, pl. cecxcix, figs. 1-3.
1850.		dorbigny. Prodr. de Pal., vol. ii, p, 82.
1854.	-	J. Mourris. Cat. Brit. Foss., ed. 2, p. 179.
1855.		(2. Cottean. Mull. Foss. de l'Yonne, p. 107.
1858.	-	I'. J. Pietet end E. Renevier. Fuss. Terr. Aptien (Matír. Pal. Suisse, ser. 1), p. 125.
1869.	-	F'. J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 93, pl. clvii, fig. 1.
1869.	-	Fitroni, Pictet and Campiche. Ibid., p. 95, pl. clvii, fig. 2.
1883.	-	Ricoldiana, W. Keeping. Foss., etc., Neoc. Upware and Bricbhill, p. 150.
1900.	-	Ricordeana, A. Wollemann. Die Biv. u. Gastrop. d. deutsch. u. hollind. Neocoms (Abhaudl. d. k. preussisch. geol. Land., N. F., pt. 31), p. 61.

Fig. 1G.- Ierna Ricordeana, d'Orbigny. Lower Greensand (Perna-bed), Atherfield. Museum of Practical Geulury, No. 12351 . Left valve. $\times \frac{1}{4}$.

Description.-Shell large, thick, sub-quadrate, compressed; left valve more convex than the right. Posterior margin slightly convex or nearly straight and forming with the hinge-line an angle which is rather greater than a right-angle.

Ventral margin curved regularly. Dorsal part of anterior margin concave. Valves moderately convex near the anterior margin, but flattened elsewhere. Dorsal half or more of the anterior marginal parts concave and depressed. Umbones sharp, close together, projecting beyond the rest of the anterior margin of the valves.

Surface with growth-lamella at more or less regular intervals.
Measurements :

		(1)	(2)	(3)
Length of hinge		105	91	75
Height of valve	.	110	.	1010

(1-3) Perna-hed, Atherfieht.

Fıa. 17.-Perna Ricordeana, dOrhigny. Lower Greensand (Perne-bed), Atherfieh. Sollnwick Museum.
Right valve and anterior view of both valves. \times.
Affinities.-Examples of this species from the Lower Greensand of the Isle of Wight were regarded by Pictet and Campiche as distinct from I. Ricordrama and were described as Perna Fittoni. According to those writers the former is distinguished from the latter chicfly by the wide separation of the umbones; this separation, however, seems to me to be due to the thickening of the valves in old age, such as may be seen not infreguently in Gercillia and other allied forms. The postero-dorsal angle of the valve, according to d'Orbigny's figure, appars to be rather smaller in P. Ricorifana than in l^{\prime}. Fittoni, but the difference is not great, and moreover, the outline of the shell and the size of this angle vary in different specimens of P. Fittoni. I'. Cirmami, Pictet and ('ampiche, is very closely allied to P. Ricorileana.

Types.-From the Neocomian of Seignelay, near Auxerre. The type of l^{\prime}. Fittoni is from the Perna-bed of the Isle of Wight.

Distrilution.-Lower Greensand (Ierma-hed) of Atherfield. Teally Limestone (zone of Belemnites lrunsricensis) of North Willingham.

Fia. 18.-Perna Ricordeana, d'Orbigny. Tealby Limestone, North Willingham. Sedgwick Museum. Left valve. $\times \frac{3}{4}$.

Pbrna Rauliniana, d’Orbigmy, 1846. Plate XII, figs. 6, $7 a, b, 8,9$.

1846. Perna Radininat, A. dOrbigny. Pal. Franc. Terr. Crít., vol. iii, p. 497,
ple cecci, figs. 4, 5.

Description.-Shell of moderate convexity, valves nearly equal, compressed posteriorly, sub-rhomboidal, ollifuc, much higher than long; postero-ventral margin rounded, anterior margin slightly concave, posterior margin slightly convex,
forming an obtuse angle with the hinge-line. Umbonal portion angular. Apical angle small. Surface with growth-lines.

Measurements : ${ }^{1}$

	(1)	(2)	(3)	(1)	(5)	
Length	35)	34	21	2\%		mm .
Height	73	69	$4!9$	1.1	¢2	
	(1-3, 5) Cambridge Green					

Affinities.-This species is closely allied to P. Ricordeana (see above), but appears to differ (1) in being relatively shorter and higher; (2) in its more obtuse postero-dorsal angle; (3) in the less prominent umbones; (4) in the anterior marginal parts (near the byssal opening) being less depressed; (5) in the smaller size of the shell.

Remarlis.-This species occurs commonly in the Cambridge Greensand in the form of internal casts; these differ in outline from specimens with the shell preserved on account of the fact that the postero-dorsal part is missing-probably owing to the two valves being in contact or almost in contact at this part. Even when the shell is preserved, as in specimens from the Gault, some portion of the postero-dorsal margin is frequently missing.

Types.-From the Albian of Avocourt (Meuse) and Escragnolles.
Distribution.-Cambridge Greensand (derived, intermal casts). Lower (iault of Folkestone.

Perna oblonga, Seeley, 1861. Text-figure 19 a.
1861. Perna oblonga, H. G. Seeley. Aun. Mag. Nat. Hist., ser. 3, vol. vii, p. 121, pl. vi, fig. 6.

Remarks.-This species is known only from internal casts, and apparently differs from P. Rauliniana in having a larger apical angle and in the smaller angle formed by the hinge-line and the posterior margin. Some of the specimens, however, agree very closely with the figure of a cast of I^{\prime}. Ramlimiana given by Pictet and Campiche (pl. clx, fig. 2).

Seeley compared P. oblonga with P. subspathulata, Reuss, ${ }^{*}$ and P. lanceolatn, Geinitz (see below). It is distinguished from the former by its relatively greater height, and from the latter by its larger apical angle.

1 The height in this case is measured from the umbo to the postero-ventral margin, and the length is taken at right angles to the beight.
\because Die Verstein. der bühm. Kreideformat., pt. ii (1844). p. 24. pl. xxxii. firs. 16, 17.

Rounded depressions which are found commonly on the casts of this and some other species of Iיrmu from the Cambridge Greensand are regarded by Seeley as evidence of the occurrence of pearls.

A specimen from the Gault (Plate XII, fig. 10) resembles Γ. whomg, but is more convex between the umbo and the postero-ventral extremity.
$T!/ p e$.-In the Sorlgwick Museum.
Distrilution.-Cambridge Greensand (derived).

Fig. 19.-Permu. Cambrilge (ireensand (derived). Internal casts. Selgwick Museum. Natural size, except firr. E.-A. Perma oblonya, Seeley. The Type-b, c, Perna, sp. (roferred to P' lanceolata, Geinitz, hy Seeley).-D. Perna seminlliptica, Seeley. The Type.-e, Perma, sp. (rorarded by Seley as a variety of P. lanceolata, (reinitz) $\times \frac{\mathrm{a}}{1}-\mathrm{r}$, Perna, sp. (referred to P. subspathulata, Rouss, hy Seeley).

Prina smmeditiptica, Sefley, 1861. Text-figure 19 n.
1861. Perna semielliptica, H. G. Seeley. Anu. Mag. Nat. Hist., ser. 3, vol. vii, p. 121, pl. ri, fig. 7.

Remarks.-This is distinguished from P. Rauliniana (p. 92) by its relatively greater length, larger apical angle, and more rounded outline.

Measurements:

	(1)	(2)	(3)
Length	58	$4(i)$	32 mmin.
Height	87	70	$17 \quad "$
	$(1-3)$	Cambridge Greelisiand.	

T'!pe.-From the Cambridge Greensand. In the Sedgwick Museum, Cambridge. Distribution-Cambridge Greensand (derived, internal casts).

Perina, sp. Text-figures 19, be.
1861. Perna lanceolata, H. G. Seeley. Aun. Mig. Nat. Hist,, scy. 3, vol. vii. p. 122.

Remarks.—This species (figs. 19 n , (') was referred by Professor Seeley to l'erna lanceolata, Geinitz, ${ }^{1}$ and it presents a general resemblance to the examples figured by Reuss and by d'Orbigny, but is less oblique. No satisfactory comparison, however, can be made, since the specimens from the Cambridge Greensand are in the form of internal casts.

Some examples (fig. 19 E) were named Perna lanceolatu, var., by Seeley; they differ from Geinitz's species in the postero-ventral part being more produced and less rounded, so that the outline of the valve becomes more distinctly quadrate. By this quadrilateral outline they are distinguished from $P^{\text {P }}$. lianliniana.

Distribution.-Cambridge Greensand (derived, internal casts).

Perna, sp. Text-figure 19 f.
1861. Perna subspathulata, H. (i. Sceley. Amu. Mag. Nat. Hist., ser. 3. vol. vii, p. 194.

Remarks.-Internal casts were regarded by Professor S'celey as examples of l^{\prime}. sultspathulata, Reuss," but they appear to differ from the latter in their greater convexity. The height is less and the length greater than in I'. oblomig.

Distribution.-Cambridge Greensand (derived). ${ }^{3}$
1'Das Elbthalgeb. in Sachsen,' pt. i (1873), p. 210, pl. xlvi, fig. 8. References to wther figures are given by Geinitz.

${ }^{3}$ Avicula cuneata, Secley, may be a Perma. Pernu lised, P. phenc, and P. trinservan, Sechey. appear to be Inocerami. All four come from the Red Limestone of Hunstanton. Seeley, 'Aun. May. Nat. Hist.,' ser. 3, vol. xiv (1864), p. 277, and vol xvii (1866), pl' 178, 179.

Fimily-PINNIDE, Girioy.
 Limus-Pinna, Linnaw:, 1758.

('Syst. Nat.,' ed. 10. p. 707.)
Pinna Rominamina, l'Orliguy, 18tly, Plate XII, figs. 11-1j; Plate XIII, fig. 1.
1839. Pinna rugoba, F. A. Rimer. Die Verstein. d. nord-deutsch. Oolith.geb. Nachtrag., p. 32, pl. sviii, fig. 37 (uои rugosa, Schlotheim).
1841. - - F. A. Rümer. Die Verstein. d. nord-deutsch. Kreidegeb., p. 65.
1844. - Robinaldina, A. d'Orbigny. Pal. Franç. Terr. Crét., vol. iii, p. 251, pl. cecxxx, figs. 1-3.
1845. - restituta, E. Forbes. Quart. Journ. Geol. Soc., vol. i, p. 248.
$1850 . \quad$ Robinaldina, A. d'Orbigny. Prodr. de Pal., vol. ii, p. 80.

- - subrugosa, d’Orbigny. Ibid., p. 80.

18゙̈̈. \quad - sulcifera, J. Morris. Cat. Brit. Foss., ed. 2, p. 180.
1855. - Rodinaldina, G. Cotteau. Moll. Foss. de l'Youne, p. 89.
1858. - - F. J. Pictet and E. Renevier. Foss. Terr. Aptien (Matér. Pal. Suisse, ser. 1), p. 117, pl. xvi, fig. 5.

| - | - | - | J. Villanova-y-Piera. Mem. geog.-agric. de Castellon, |
| :---: | :---: | :---: | :---: | :---: |
| pl. iii, fiy. 17. | | | |

Palaontograpbical $\mathfrak{S o c i c t g}$, 1906.

A MoNo(iliAPI

(H) THF:

CRETACEOIS LAMLELLIBRIRNCHIA

(1F

$$
\operatorname{ENGLAND} \text {. }
$$

IIENRY WOODS, M.A.

VOL. H. IAR'T III.

AND (YPRLNIDE.

1!"!ri.

\% 1888.	Pinna Robinaldina, P. Chịizt. Stratigr. et Paléont. d'Angola (Mím. Soc. phys. et d'hist. wat. de Genève, vol. xxx, No. 2), p. 86, pl. v, figs. 4, 5.		
? 1903.	-	- C. Burchhardt.	Jura u. Kreilef. d. Cordillere (Palæoutographica, vol. 1), p. 79, pl. xv, figs. 6, 7.
? 1905.	-	cf. Robinaldina, E. Habiot.	Fauna d. Schaumburg-Lippe'schen Kreidemulde (Abhandl. d. k. preussisch. geol. Latudesanst., N.F., Heft 45), p. 47, pl. v, fis. 5; pl. rii, figs. 2, 3.

Despription.-Shell straight, much elongated; pyramidal, slightly compressed; margins nearly straight; section sul-quadrangular.

Each valve is divided into two parts, which meet at an angle. The dorsal part is smaller and more flattened than the ventral part, and is ornamented with from 6 to 8 or more ribs, which are narrow, strong, and nearly equi-distant. The ribs are separated by broad, shallow, rounded depressions; both depressions and ribs are crossed by very fine, somewhat irregular, concentric ridges, which sometimes give a slightly serrated appearance to the ribs. The ventral part of each valve is moderately conrex, and its dorsal portion is ornamented with from ; to 7 radial ribs similar to those on the dorsal part of the valve, but decreasing in size ventrally; the last one or two of these ribs sometimes become irregular and discontimuous. These radial ribs and their interspaces are crossed by fine concentric ridges. The rentral portion of the ventral part of the valse is ornamented with strong growthridges or folds, which curve rapidly in the direction of the umbo, and form an acute angle where they meet the ribs.

Merrsurements :

	(1)	(2)
Length	135	94 mm .
Height	- 49	

(1) Perna-bed, Atherfield.
(2) Crioceras-bed, Whale Chine.

Apinities.-The figure of P. gracilis, Phillips,' is not sufficiently grool to enable one to form a satisfactory idea of the character of the species, and the type camot now be found. But other specimens from speeton, although very imperfectly preserved, are sufficient to suggest that l^{\prime}. grucilis is probably identical with J^{\prime}. Robinaldina.

It is suggested by Pictet and Campiche that P. thtrif,m, Sowerby, from the
1 'Geol. Yorks.' (1829), p. 122, pl. ii, fig. 22.
 p. 180; P. subtetragona, d'Orbigny, ' Prodr. de Pal.,' vol. ii (1850), $\mathrm{l}^{\text {'. } 16:-1}$; Pictet and Campiche. 'Terr. Crét. Ste. Croix' (1867), p. 537 ; nou P. tetrayona, Brocehi, 1814.

Upper Greensand of Devizes, is probably identical with P. Rolimuldinn. The specimens from Devizes agree with those found at Blackdown in having the folds on the ventral part of the valve rather more strongly marked than in l'. Robinaldinu from the Lower Greensand. In other respects the Upper Greensand form does not appear to differ from l^{\prime}. Robiumlitinu, and may be regarded as a variety of it, I'. limbinuldiner var. tetritma, Sowerby.
P. Lergursi, Hébert and Munier-C'halmas, ${ }^{1}$ is similar to P. Rolinaldina, but apparently differs in that the ribs on the ventral part of the shell are all smaller than those on the dorsal part, and do not diminish gradually in size.
l. arturen (Schlotheim) ${ }^{2}$ is closely related to l^{\prime}. Robinuldimu, but appears to be distinguished (1) by the ribs covering a larger proportion of the ventral part of the shell and being of nearly uniform size, (2) by the growth-lines on the rentral part being more nearly straight, (3) by the shell being usually more elongate.

Rrominks.-The specimens of Pimn found in the Gault of Folkestone and Black Ven have usually been named l'. tetcutom, Their mode of preservation is more or less unsatisfactory, owing to crushing and to the absence of some of the outer layers of the shell, but after a close comparison with examples of I. Robinaldina from the Lower Greensand I am mable to see any reason for regarding the former as specifically distinct from the latter.

Pictet and Campiche thought that the examples from Blackdorn were referable to P. Robinmlilim, differing only in having the folds on the ventral part of the shell rather more strongly marked.

The specimens from the Lower Greensand of the Isle of Wight agree well with the figures given by Pictet and Renevier and by Pictet and Campiche. The number of rils varies considerably, and in young specimens the apical angle is smaller than in older examples.

A specimen from the Epper Greensand.of Ventnor, which has been referred ${ }^{3}$ to l^{\prime}. Requesi, Hébert and Mmier-(Chalmas, is probably a crushed example of 1. Robinuldina.

T! ! 1 ". The type of I. requse came from the Hils-conglomerate of Osterwald. The type of P. trtotymu, Sowerly, came from the Upper Greensand of Devizes and is now in the British Museum.

Distrilutiom.-Permm-bed, Crackers, and Fitton's Beds 16 and 38, of Atherfield. Ferruginous Sands of Shanklin. Atherfield Beds of Redhill, Reigate. Sandgate Beds of Parham Park. Lower Greensand of Brickhill. PSpeeton Clay (zone of liclemuites hrumstirensis) of Speeton. Gault of Folkestone and Black Ven.

[^19]Upper Greensand (zone of Schlembachin rostruta) of Blackdown, Devizes, and Ventnor. ${ }^{1}$

Pinna, sp. Plate XIII, figs. 2, 3.
Some specimens of Piume found in the Gault of Folkestone differ from P. Rolinnldiua in having smaller and more numerous ribs, which are crossed at regular intervals by narrow concentric ridges.

Pinna tegolata, Etheridge, 1881.
1881. Pinna tegulata, R. Etheridge, in Peuning and Jukes-Browne's Geol. Cambridge (Mew. Geol. Survey), 1. 142, pl. i, fig. 2.

Remurks.-This species is known only by the type and a few fragmentary specimens. The type shows the interior of a right valve. The ornamentation appears to be similar to the form from the Gault described above. On the dorsal half of the valve there are about 18 narrow rils, which are crossed at regular intervals by concentric ridges, giving rise to a fimbriated appearance. About s similar ribs are found on the dorsal part of the ventral half of the valve, below which are strongly curved growth-ridges.

Type.-In the Sedgwick Museum, C'ambridge.
Distribution.-Totternhoe Stone (zone of Holuster sulbglulusus) of Burwell.

Pinna dectssata, Goldjuss, 18:3̄. Plate XIII, figs. tu-i, 5, 6. Plate XIV, fig. I.

1837. - decussata, A. Guldfuss. Petref. Germ., vol, ii, p. 16ic, ill canviii. figs. $1,2$.

- - compressa, Goldjues. Ibid., p. 167, pl. exxiiii, fy. 4.
:1840. - prramidalis, H. B. Geinitz. Char. d. Schicht. u. 'étref. des sichs.

- \quad compressa, Gcinitz. Ibid, p. $\mathbf{j 5}$.

1841. - fenestrata, F. A. Rïmer. Die Verstein. di nurd deut sch. Kividageth. p. $65, \mathrm{p}^{\mathrm{l}}$. viii, fire.

- - decessata, Rimer. Ibil., $1^{1 .}$ di.

[^20]| 1846. | Pinna | decessata, A. E. Reus. Die Verstein. der bühm. Kreideformat., pt. 2, p. 14, pl. xxxvii, figs. 1, 2. |
| :---: | :---: | :---: |
| 1850. | - | A. dOrbigny. Prodr. de Pal., vol. ii, p. 165. |
| - | - | fenestrata, d'Orbigny. Ibid., p. 246. |
| | - | decussata, J. de C. Souerly, in F. Divom. Geol. Sussex, p. 355 (p. 386, ed. 2), pl. sxviii. fig. 20. |
| - | - | diluviana, H, B. Geinitz. Das Quadersandst. oder Kreidegeb. in Deutschland, p. 166. |
| | - | fenestrata, Geimitz. Ibid., p. 166. |
| 1854. | - | decussata, J. Morris. Cat. Brit. Foss., ed. 2, p. 180. |
| - | - | sulcata, Murris. Ibid., 1. 180. |
| 1873. | - | decussata, H. B. Geinitz. Das Elbthalgeb. in Sachsen (Palirontu. graphica, vol. xx), pt. i, p. 211 , pl. xlvii, figs. 4, 5 ; pt. ii, p. 53, pl. xv, figs. 2, 3 ; pl. swi, fig. 1. |
| 1877. | - | A. Fritsch. Stud. im Gebiete der bühm. Kreideformat., ii. Weissenberg. u. Malnitz. Schicht., 1. 120 , fig. 86. |
| 1883. | - | Fritsch. Ibid., iii. Iserschicht., p. 104. |
| 1888. | - | G. Mïller. Mollusk. d. untersen. v. Braunschweig (Jahrb).
 d. k. preussisch. geol. Lamdesanst. für 1887), p. 420 . |
| 1889. | - | Fritsch. Stud. im Gebiete der böhm. Kreideformat., iv. Teplitz. Schicht., p. 79. |
| ¢ 1890. | - | - M. Blanckenhorn. Beitr. \%. Geol. Syrieus : Kreidesyst. in Mittel u. Nord-Syrien, p. 80. |
| 1893. | - | Fritsch. Stud. im Gebiete der bühm. Kreideformat., v. Priesen. Sclicht., p. 94. |
| 1897. | - | Ibid., vi. Chlomek. Schicht., p. 57. |
| P1894. | - | of. decussata, A. Hennig. Om Åhussandst. (Geol. Fören. i Stockholm Förhandl., vol. xvi), p. 522. |
| 1902. | - | decussata, J. P. J. Rarn. Mollusk. i Dammarks Kridtaflej., i. Lamellibr., p. 104. |
| n 1846. | - | - E. Forbes. Traus. Geol. Soc., ser. 2, vol. vii, p. 153 ($=P$. arata, Forbes). |

Description.-Shell moderately elongate, triangular, laterally compressed, section rhombic, but becoming lenticular in the later portion. Dorsal margin straight, ventral margin slightly curved.

Each valve is divided into two nearly ergal parts. The dorsal part is flattened and bears from 7 to ! strong rounded ribs, separated by broad, shallow, rounded depressions. The distance between the ribs increases in passing from the apex to the posterior extremity. In well-preserved specimens linear ridges are seen crossing the ribs and interspaces at regular intervals. The dorsal portion of
the ventral part of the valve bears from ; to 7 rilss similar to those on the dorsal part and of nearly uniform size, with transverse lincar ridges. On the ventral portion of the ventral part of the valve there are strong ridges or folds which form an acute angle with the last rib, and curve slightly towards the umbo.

Measurements (approwimute):

	(1)		(2)		(3)
Length	125		117		120
Height	66		69	.	$66 \quad$,

(1) Chalk Marl, Folkestone.
${ }^{(2)}$ Cbalk, Newtimber (Sussix).
(3) Cbalk, Trimingham.

Remarks.-Most of the specimens of l'inm from the Chalk are very imperfectly preserved, and it is not unlikely that better material would show that more than one species could be distinguished.

In the examples from Trimingham the ribs are rather broader and more rounded than in most of the specimens found at lower horizons.

A f initios.-This species is less elongate than P. cretaren (Schlotheim), ${ }^{1}$ and has the ridges on the ventral part of the valves more distinctly curved than in that form. It has a larger apical angle than P. liobinuldinn (see p. 9ri) ; also the shell is rather more compressed, and the ribs on the ventral part do not decrease regularly in size as they do in I^{\prime}. Rowimbldinu.
P. sulceta, Woodward (Plate XIV, fig. 1), from the Norwich Chalk, as was suggested by J. de C. Sowerby, does not differ from l'. Ierussatu. Woodward's name is prior to that of Goldfuss, but since the original figure was scarcely sufficient for the recognition of the species and was not accompanied by any description, I do not think it is desirable that the well-known name I'. decnssuth" should be displaced by P. sulcutu.

Most of the English specimens of I'. derussitt agree better with the figures given by Geinitz (1873) than with those of Goldfuss and Reuss. But the example figured by Dixon seems to be very similar to the types of Goldfuss.

T'ypes.-From the Quadersandstone of Haltern (Westphalia) and schamdau (Saxony). The specimen figured by Dixon camot be found. The type of I'. sulcuta is in the Norwich Museum.

Distribution.-Chalk Marl of Ventnor and Folkestone. Terrlintuliur zone of Arn Hill near Warminster. Zone of Molnster phans of Balsham. Chalk of Newtimber. Zone of Microster rer-cumpintm of Charlton and (iravesend. ['pper Chalk

 mucronate of Norwich. Chalk of Trimingham.

F'amily-ASTARTID成, Giray.
(iculus-Astarite, I. Souerly, 1816.
(‘ Min. Conch.,’ vol. ii, p. 85.)

1842. Astarte oblongata, Deshayes in A. Leymerie. Mém. Soc. géol. de France, ser. 2, vol. v, pp. 5, 24, pl. vi, fig. 1 (uou oblonga, Sowerby, 1826).
1844. - elongata, A. d'Orbigny. Pal. Franç. Terr. C'rét., vol. iii, p. 68, pl. cclxiii, figs. 8-11.
1850. - - TOrbigny. Prodr. de Pal., vol. ii, p. 77.
1855. - \quad - Cotteau. Moll. Foss. de l'Yonue, p. 69.
1866. - -- F. J. Pictet and G. Campiche. Foss. Terr. Crút. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 310, pl. exxiv, figs. $8,9$.

1sfis. - - P^{\prime} de Leriol. Valangien d'Arzier, p. 28 , pl. ii, fig. 7.
1871. -- -- F' Stuliczke. Paleont. Indica, Cret. Faunal S. India, vol. iii, p. 285.
$1900 . \quad-\quad$ A. Wollemann. Die Biv. u. Gastrop. d. deutsch. u. hol. länd. Neocoms (Abhandl. d. k. preussiscl. geol. Laud., N. F., pt. 31), p. 102.

Description.-Shell thick, clongate, rounded-oblong or oval, convex, compressed, very inequilateral. Postero-dorsal margin curving ventrally to join the obtuse and slightly curving posterior margin. Postero-ventral extremity rounded. Ventral margin nearly straight. Anterior margin rounded. Umbones small, with an indistinct keel passing from them towards the postero-ventral extremity. Lunule narrow.

Ornamentation consists of strong concentric ribs, somewhat unequal in size, and separated by narrow grooves. Margins of valves crenulated.

Length 21 mm . ; height 22 mm .
A!finities.-Astartr rimgulutu, Geinita, ${ }^{1}$ from the Cenomanian of Plauen, is probably identical with this species.
A. mongut/ is casily distinguished from other Cretaceous species by its elongate form.

Remmelis.-The only specimens seen are in the Museum of Practical Geology.
1 'Das Elbthalseb). in Sachsen' (Palæontographica, vol. xx, pt. i, 1873), p. 2266, pl. 1, fig. 8. Non A. cinyulatu, Contejean, 'Kimmérid. de Montbéliard' (1859), p. 267, pl. xi, figs. 5-7.

One has the shell preserved, the others are internal casts showing deep musculat impressions.

Types.-Leymerie's specimens came from the Lower Neocomian of Avalleur, Chenay, and Marolles (Aube). D'Orbigny records specimens from the Lower Neocomian of St. Saureur (Yonne). Pictet and Campiche figure specimens from the Valanginian of Ste. Croin.

Distribution.-Lower Greensand of Seend.

Astarte subacuta, d'Urrigny, 1850. Plate XIV, figs. +-6.

1844.	Astarte	carinata, A. dorbigny. Pat	Pal. Franç. Terr. Crít., vol. iii, p. 63, pl. celxii, figs. 1-3. (non A. carinata. Phillips, 1829.)
1847.	-	actia, d Orbigny. Ibid., p.	p. 759. (non A. acuta, Reuss, 1846.)
1850.	-	subacuta, doorbigny. Prod	rodr. de Pal., vol. ii, p. 77.
1866.	-	F. J. Pictet and	nd G. Campiche. Foss. Tarr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 4). p. 318.
1900	-	A. Wollemann.	Die Biv. u. Gastrop. d. deutsch. u. hollind. Neocoms (Albhandl. d. k. preussisch. geol. Land., N. F., pt. 31), p. 99.

Description.-Shell triangular, much compressed, length greater than height, slightly inequilateral. Antero-dorsal margin long and concave. Postero-dorsal margin longer than the antero-dorsal, and either concave or nearly straight. Buth of these margins form obtuse angles with the well-rounded margin of the ventral half of the shell. Umbones very acute, projecting, often nearly median and not curved. Lunule narrow, with a sharp edge. Escutcheon very narrow.

Ornamentation consists of prominent concentric ribs separated by broad interspaces. The distance between the ribs increases in passing from the umbw ventrally. Margins of valves crenulated.

Measurements:

Affinities.-A. subaruta is distinguished from the other ('retaceous species by. its acute umbones and flattened valves.

Remarks.-The only specimens which I have seen are in the Meyer Collection, Sedgwick Museum.

T! ! $\mu^{\prime \prime}$. -From the Neocomian of Brienne (Aube).
Ihistrilution.-P'rim-l)ed of East Shalford. Atherfield Beds of Sevenoaks.

Antare sincta, dolli!my, 184+. Plate XIV, figs. 7-9.
1844. Astarte sinvata, A. dOrbigny. Pal. Franç. Tert. Crét., rol. iii, p. 69, pl. cclxiv, figs. 1-3.
1850. - - dorbigny. Prodr. de Pal., vol. ii, p. 118.
1856. - F.J. Pictet and E. Renevier. Foss. Terr. Aptien (Matér. Pal. Suisse, ser. 1), p. 89. pl. x, fig. 3.
1866. - - F.J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 311.
1871. - - F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, Pp. $251,285$.
1895. - - G. Maas. Zeitschr. d. deutsch. geol. Gesellsch., vol. xlvii, p. 261.
1900. - - A. Wollemann. Die Biv. u. Gastrop. 1. deutsch. u. holliad. Neocoms (Alhandl. d. k. preussisch. geol. Laud., N. F., pt. 31), p. 100 .

Description. - Shell sub-quadrate, rounded ventrally, truncated posteriorly, longer than high, slightly or moderately inequilateral, much compressed. A furrow extends from just behind the umbo to the sinuosity on the posterior margin, and cuts off a triangular, flattened, postero-dorsal part of the valve. Antero-dorsal margin nearly straight. Anterior margin rounded, passing gradually into the curved ventral margin. Posterior margin with a sinuosity above the posteroventral angle. Postero-dorsal margin straight or slightly concave, longer than the antero-dorsal margin, and forming an angle with the posterior margin. Umbones pointed, inconspicuous. Lunule and escutcheon long, narrow, with sharp edges which have tooth-like projections where the ribs end.

Ornamentation consists of rounded, concentric ribs separated by shallow furrows. The ribs are rather stronger on the posterior than on the anterior part of the shell, and are sinuous where they cross the posterior furrow. Smaller ribs are present on the main ribs and furrows.

Measurements:

			(1)		(2)	
Length	.		16	.	.	15 mm.
Height .	.	.	$1+5$.	.	$1+$

(1, 2) Cratckers, Atherfieh.

Lffinities.-A. simuta is distinguished from other Cretaceous species of . Istart, by the furrow passing from the umbo to the posterior margin. Conrad' thought that this species might belong to his genus Lirodisens. I am mable to express an opinion on this matter, since I have seen only three examples, none of which shows, the hinge, nor is it seen in the figures given by previous writers.

T! ! pe.-From the Aptian of Marolles (Aube).
Distribution.-Lower Greensand (Crackers) of Atherfield. Recorded by l'ictet and Renevier from the Lower Greensand of Peasmarsh.

Astarte uprarensis, sp. nov. Plate XIV, figs. $10 a-c, 11 a, l, 12$.
1883. Astarte, sp. nov., W. Keeping. Foss., etc., Neoc. Upware aud Brickhill, p. 122, pl. vi, fig. 9 .

Description.-Shell ovate, a little higher than long, moderately and evenly inflated, moderately (or sometimes only slightly) inequilateral. Dorsal half narrowing gradually to the umbo; ventral half larger and with evenly-rounded margin. Anterodorsal border slightly concave; postero-dorsal border long and conrex. Umbones curving forward. Lunule large, ovate, depressed, with a sharp border. Escutcheon lanceolate, with a sharp edge.

Ornamentation consists of many flattened, inconspicuous, concentric ribs separated by linear grooves.

Measurements:

	(1)	(2)	(3)	(1)	(5)
Length	24	21	19	14	$1: 3 \mathrm{~mm}$
Height	25	215	21	1.5	

(1-5) Lower Greensand, U1, ware
 and Campiche, ${ }^{2}$ but its dorsal half is not so narrow and pointed, and the anterndorsal margin is less concave. It is also similar to A. Rlonluni, lictet and Campiche, ${ }^{3}$ from the Gault of Cosne, but the umbones are less prominent.

Astarte "purarensis is distinguished from A. "irularis, (iućranger,' by its wate outline and greater height.

T'ype.-Of the specimens of this species which were figured hy \mathbb{W}°. Keppur an
1 'Amer. Journ. Conch.,' vol. v (18644), p. 4 i.

${ }^{3}$ De Loriol, 'Gault de Cosne ' (188\%), p. 94 . ${ }^{\prime \prime}$, xii, fiss. $1-7$.

+ 'Album Paléout. de la Sarthe ' (1867), p. 12, pl, xr, tis. 12, pl. xvi, tigs. i. \%.

Asturt, sp. nov., one is in the Sedgwick Musemm (fig. 9"), the other in Mr. J. F. Walker's collection (fig. ! (b).

Distribution.-Lower Greensand of C pware.

Astame senecta, sp. nov. [ex lien MS.] Plate XIV, figs. 13-20.
1889. Astarte senecta [Bean MS.] (f. W. Lamplugh. Quart. Journ. Geol. Suc., vol. xlv, p. 61ts.

Drerription.-Shell subtriangular, or approaching subquadrangular, sometimes rounded, rather compressed, usually very inecuilateral; height usually a little greater than length. Anterior margin rounded, ventral margin curving slightly and often forming a rounded angle with the posterior margin, which is slightly curved and usually makes an obtuse angle with the postero-dorsal margin. Umbones small, curving forwards. Lumule ovate, deep, with a sharp border. Escutcheon narrow, deep, with a sharp border.

Ornanentation consists of strong concentric rils, with sharp summits, separated by broad furrows, on both of which are numerous small ribs. The ribs bend sharply in passing on to the postero-dorsal part of the valve, and cut the posterodorsal margin oblifuely. Margins of valves strongly crenulated.

Measwoments:

	(1)	(2)	(3)	(4)	(3)	(6)	(7)	(5)	(9)	(10)	(1)	
Length	23	22	21	19	1:3	26	2.5	25)	23	23		1 mm .
Height	215	20	19	17	11	24	29.5	29	23	$\underline{2}$	21	
			$\text { 1) } \mathrm{Cl}$	\%	y, S_{1}	on.	th H					

Alimitien.-Asturt, comeris, Eichwald, is similar to this species, but has a deeper and larger lunule, more prominent umbones, less compressed valves, and more slender ribs. Specimens of A. reneris from the 'Volgian' of Moscow are in Mr. Lamplugh's collection.

Remmiks.-This species has been known to collectors for a long time, and has appeared in lists of fossils under the name Astarte sernecte, Beam MS., but has not hitherto been described and figured.

The specimens from the Claxby Ironstone are, as a rule, more rounded in outline than those from Speeton, and their ornamentation is not so well preserved on account of the difficulty of separating the shells from the hard matrix in which they are found.
${ }^{1}$ D'Orbigny, in Murchison, de Verneuil, and de Keyserling, ' Géol. Russ. d'Europe,' vol. ii (1845), p. 456, pl. xxxviii, figs. 21, 22.

Distribution.-Zone of Belmuites literalix: in the Speeton Clay of Speeton and the Claxby Ironstone of Bemniworth Haven.

Astarte, sp. Plate XIV, fig. 21.
Description.-Shell oval, moterately conrex, slightly inerpuilateral, length greater than height. Antero-dorsal margin concave. Anterior margin rounded, passing gradually into the curved ventral margin. Postero-dorsal margin convex, forming a rounded angle with the posterior margin. Umbo pointed.

Ornamentation consists of about 15 strong, rounded, concentric ribs separated by rounded furrows of greater breadth. Fine concentric ridges occur on both rilss and furrows. The ribs cut the postero-dorsal margin at a large angle; they are more widely separated on the dorsal than on the ventral half of the valve.

Length 12.5 mm . ; height, 11.2 mm .
Remarlis.-This species is known by a single right valse only. The ornamentation is somewhat similar to that of A. semecte, but the shell is more oral and less inequilateral, also the ribs are more numerons and form a larger angle with the postero-dorsal margin.

Distribution.-Speeton Clay of Specton.

1883. Astarte subdentata, IT. Keeping. Foss., etc., Neoc. Upmare aud Brickhill, 1^{1}. 122, pl. ri, fig. 11 (nnn Rümer).

Description.-Shell subquadrate, longer than high, very inerguilateral, moderately inflated, with the greatest convexity between the muno and the postero-ventral angle. Postero-dorsal margin long, slightly convex, forming an obtuse angle with the truncated posterior margin, and a blunt angle where it joins the slightly convex ventral margin. Anterior margin rounded. Lumule deep, ovate, distinctly limited. Escutcheon deep, with a sharp edge.

Ornamentation consists of strong concentric ribs bearing fincr ribs.
Measurements :

	(1)	(2)	(3)	(1)	(5)	(ii)	(1)	(1)
Length	17.5	15	1.5	1.4	11	1:3	1:3	1: mm
Height	16	1:3\%	13	1\%5	12	$12 \div$	11\%	10:

(1-8) Lower Griensimul, Lpware.

Adfinities.-This species was identified by W. Keeping with A. sululentatu, Römer,' from the Neocomian of Brunswick. I have submitted photographs of the British fossil to Dr. A. Wollemann and he agrees with me in thinking that it is quite distinct from A. sululentutco. In the latter the shell is smaller, the valves are much flatter and more elongate, and the umbones are more pointed and less anterior in position.

The ornamentation, when well preserved, is somewhat similar to that of A. senerft (see above), but the shell is more inequilateral, more nearly quadrate in outline, and the postero-dorsal part is more compressed.

Irmurlis.-The ornamentation is often imperfectly preserved, and in some cases it has almost entirely disappeared. The hinge has not been seen.

I'ype.-The specimen figured by Keeping is in the Sedgwick Muscum, Cambridge.

Distrilution.-Lower Greensand of Upware.

Astate claxbiansis, sp. nov. Plate XIV, figs. 25-28.
Desrription.-Shell small, thick, oval, longer than high, inflated, slightly inequilateral. Antero-dorsal margin concave, postero-dorsal slightly convex. Anterior margin well rounded. Ventral and posterior margins forming a regular curve. Umbones prominent, close together, nearly median, curved greatly inwards and slightly forwards. Lunule large, ovate, with sharp cdges. Escutcheon lanceolate, smooth, distinctly limited.

Ornamentation consists of strong, narrow, concentric ribs, separated by broad, deep furrows. Left valve with two stout cardinal teeth and a tooth at the margin of the lunule. Margins of valves coarsely crenulate.

Measurements :

	(1)		(2)		(3)		(4)		(5)
Length	12		11	.	10	.	9		8 mm.
Height	105	.	10	.	9	.	8.25	.	7

(1-3,5) Claxby Iroustone, Benniworth Haven.
(4) Spilsby Sandstone, Spilsby.

Affinitios.-Asturte cluxhiensis shows considerable resemblance to certain species found in the Jurassic rocks; thus Asturtr rolusta, Lycett, ${ }^{\text { }}$ from the Cornbrash, seems to differ only in having the valves more elongate and the umbonal parts narrower.
' 'Verstein. norddeutsch. Kreidegeb.' (1841), p. 71, pl. ix, fig. 9. Wollemann, 'Die Bivalven u. Gasterop. d. deutsch. u. hollïnd. Neocoms' (1900), p. 98, pl. v, fig. 2.

2 'Suppl. Mon. Mollusca Great Ool.,' etc. (1863), p. 74, pl. xxxv, fig. 6.
A. cordata, Trautschold, ${ }^{1}$ is another example of the same type. A. sianmyri, de Loriol,' from the Sequanian, is also similar to A. cludiensix, hut appears to be less elongate.

Distribution.-Spilsby Sandstone (zone of Belemnites luteralis) of Spilshy. Claxby Ironstone (zone of D. luterulis) of Bemniworth Haven.

Astarte subcostata, d'O ${ }^{\prime}$ ligmy, 1850. Plate XIV, figs. 29-36.

	Astarte laticosta, Deshayes. In A. Leymerie, Móm. Soc. géol. de Franee, ser. 2, vol. v, p. 4, pl. iv, figs. 4, 5 (non A. laticnsta, Deshayes, 1839).
1844.	striato-costata, a. dorbigny. Pal. Fianç. Terr. Crét., vol. iii, 1. 64, pl. celxii, figs. 7-9 (non A. striato-costata, Rïmer, 1836).
1845.	wus (?) [striato-costata], E. Forbes. Quart. Journ. Geol. Soc., vol. i, p. 241.
1850.	Astarte subcostata, dorbigny. Prodr. de Pal, vol. ii, p. 77.
1854.	-
1855.	- subcostata, G. Cotteau. Moll. Foss. de l'Youne, p. 70.
1856.	laticosta, F. J. Pictet and E. Renevier. Fuss. Terr. Aptien (Matér. Pal. Suisse, ser. 1), P. 88 , pl. x, fig. 2.
1865	Leymerit, K. A. Zittel. Die', Bivaly. d. Gosaugel. (Denkschr d. k. Akad. Wien, Math.-nat. Classe, vol. sxiv), p. 156.
1865.	micosta, H. Coquand. Mou. Aptieu de l'Espagne, p. 126.
1866.	subcostata, F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 307
? 1868.	Eichuald. Lethea Rossica, vol. ii, p. 624.
? 18	laticosta, Eichwald. Ibid., p. 628.
? 1900 .	Leymerit, G. Miller. Deutsch-Ost-Afrika, vol. vii, p. 552,
190	subcostata, E. Harbort. Die Fauna der Schaumberg-Lippe's.hen Kreidemulde, p. 60, pl. iv, fig. 6 .

Description.-Shell small, usually rather convex, subquadrate or subtriangular, moderately or very inequilateral. Antero-dorsal margin concave. Anterior and ventral margins rounded. Postero-dorsal margin long, nearly straight, forming an
 pt. 1 (1848), pp. 274, 275. Trautschold, Ibid., vol. xxxiii (1860), 1. 347.
${ }^{2}$ De Loriol and Pellat, ' Mon. Palćont. ct Géol. ćtages sup. Jurass. Je Doulogne-sur-Mer' (187.t), p. 96, pl. xv, figs. 33, 34.
angle with the posterior margin, which is more or less truncated. Umbones inconspicuous. Lumule smooth, ovate, rather hroad, with a sharpedge. Escutcheon smooth, deep, long.

Ornamentation consists of 7 to 9 sharp, prominent, concentric ribs, with steep dorsal and gentle ventral slopes. Interspaces broad. Between the ribs there are three or four very small concentric ribs and numerous fine radial strix.

Measurements:

	(1)	(2)	(3)	(4)
Length	7	${ }^{6}$	5%	\% mm.
Height	5	5	15	15

(1) Atberfield Beds, Sevenoaks.
(2) Atherfield Beds, Peasmarsh. (3, 4) Perua-bed, East Shalford.

Affinitiss.-This species resembles Astarte formosn (sce p. 112) but is larger, less triangular in outline, with a larger apical angle and fewer ribs. A. similis, Goldfuss, ${ }^{\text {b }}$ belongs to the same group, but is more rounded in outline, and has more numerous ribs than A. sulbecostutu.

Forbes states that English examples of this species were identified by d'Orbigny as A. "mmismulis, d'Orbigny," but adds that they resemble much more nearly d'Orbigny's A. striuturerstatu. They differ from the figures of A. unmismulis given by d'Orbigny in being less triangular, and in having the posterior end more truncated; also the ribs are less numerous but more prominent, and form a larger angle with the postero-dorsal margin. English examples were also seen by Pictet and Renevier, and were identified by them with Asturte luticostu, Deshayes ($=$ striutocostatu and subenstutu, d'Orbigny). The specimen figured by d'Orbigny is more elongate than most of the English examples, but agrees in this respect with some found in the Atherfield Clay of Sevenoaks. The specimens figured by Leymerie are much larger than the English examples, and the ribs are more numerous and less prominent. Some of the differences seen in the figures of the authors quoted in the synonymy are probably due to the differences in the age of the specimens. In the young specimens the posterior end is more rounded, in old specimens it is more truncated.

Remarks.-Specimens which occur in the Crackers of Atherfield (Plate XV, figs. 1,2) differ slightly from those described above, but probably constitute only a local varicty; the valves are not duite so convex, the ribs are rather more numerous and

[^21]less prominent, and the posterior end of the shell is mather more pointed. This form resembles A. "nymlitif, (anéranger.' ${ }^{1}$

T!!pes.-The types of A. Intiersta came from the Neocomian of chaource and Jully (Aube). D'Orbigny's specimens of A. striutonerstater were obtained from the Neocomian of Marolles (Aube), Attancourt (Haute-Marne), and Saint-Sauseur (Yonne). The specimens described by Forbes are in the Muscum of the Geological Society (No. 2181).

Distribution. - Atherfied Beds of Peasmarsh and Sevenoaks. Prom-bed of East Shalford, and probably Atherfield. Recorded by Topley from the Atherfield Beds of Haslemere, and the Hythe Beds of Lympne.

Astarte, sp. Plate XV, figs. 3, 4.
Some specimens from the Folkestone Beds of Folkestone are very similar to A. sulucostutn, d'Orbiguy, but are larger, less elongate, and have a smaller apical augle.

Astame Omalomes, sp. nov. [ex Gineluri MS.]. Plate NV, figs. i-i.
Deseription.-Shell small, triangular or sulb-quatrate, compressed, slightly inequilateral, height and length nearly equal. Dorsal half of valves pointed. Antero-dorsal margin slightly concave; postero-dorsal margin rather longer and nearly straight, the remaining margin forming a regular curve. L'mbones pointed. Margins of valves finely crenulate.

Ornamentation consists of a few (usually (6 or $\overline{\text { }}$) prominent, sharp, concentric ribs, with steep dorsal slopes and more gentle ventral sloper. Interspaces very broad. The ribs become more distant from one another in passing from the umbo to the ventral margin. A few very faint concentric ribs are sometimes present also.

Menswrements :
Length
Height

(1)	(2)	(3)
50		1.01 mm
1.75	4%	$1 \cdot 1$

A!finities.-This species is closely allied to .I. sulnerstath (see p. las!), but is relatively shorter and less convex, and has a smaller apical angle and mather fewer ribs.

Remurks.-Since the name Omulinill's has been used in stratigraphical lists, ${ }^{1}$ it seems desirable to retain it, although its construction is not in accordance with the recommendations of the International Congress of Zoology.

Instrilution.-Gault (zones vii, x , and xi) of Folkestone.

Aspare fomos., souerly, 18:36. Plate XV, figs. 8-13.

Desirription.-Shell small, rather convex, sub-triangular, moderately inequilateral. Antero-dorsal margin slightly concave. Anterior and ventral margins forming a regular curve. Posterior margin less curved, often truncated, and forming an obtuse angle with the long and slightly convex postero-dorsal margin. Umbones pointed. Jumule large, ovate, depressed, smooth, with a sharp border. Escutcheon long, lanceolate, depressed, smooth, with a sharp border. Margins of valves smooth.

Ornamentation consists of strong concentric ribs with sharp summits, separated by broad concave interspaces. The ribsend alnuptly at the margins of the lumule and escutcheon. On the ribs and interspaces fine concentric ridges may be seen.

Measitrements:

	(1)	(2)	(3)	(t)	(5)	(6)
Length	$5 \cdot 0$	$1 \cdot 75$	45	+0	3.25	3.0 mm .
Height	45	4.5	4.0	375	$3 \cdot 0$	2.5

L!finition.-A. formosen is smaller and has more numerous ribs than A. sulformosu,

[^22]d'Orbigny. ${ }^{1}$ A. acuta, Reuss, ${ }^{\text { }}$ is another allied form, but possesses fewer ribs than A. formosa. See also A. subcostata (p. 109).

Type.-From Blackdown, in the Bristol Museum.
Distribution.-Upper Greensand (zone of Schlanturdin rostruta) of Blackdown and Haldon.

Astarte impolita, Solerly, 1836. Plate XV, fig. 14.
1836. Astarte impolita, J, de C. Solerby. Trans. Guol. Soc., ser. Q, vol. ir, pp. 239, 341, pl. xvi, fig. 18.
1854. - - J. Morris. Cat. Brit. Foss., ed. 2, p. 187.

The only example of this which I have seen is the type specimen from the Greensand of Blackdown. ${ }^{3}$ Both valves are present, but the parts near the umbo and lunule are missing. The specimen is in the Bristol Museum.

Sub-genus-Eriphyla, IV. M. Gahl, 1864.
(‘ Geol. Surv. California, Palæont.,' vol. i, p. 180. Stoliczka, ‘ Palæout. Ivdica, Cret. Fauna, S. India.' vol. iii, 1870, p. 156.)

Astarte (Eriphyla) obovata, Sulecrly, 1822. Plate XV, figs. 15-18. Plate XVI, figs. 1-3.
1822. Astarte obovata, J. de C. Souerby. Min. Couch., vol. iv. p. 73, pl. cecliii.
1842. - - F. Rimer. De Astartarum Genere, p. W.
1845. - - E. Furbes. Quart. Juurn. Geol. Suc., vol. i, p. $\because 41$.
1850. Corbis obovata, A. dOrbigny. Prodr. de Pal.. vol. ii, p. ǐ.
1852. Astarte Brunneri, F'. J. Piefet and W. Rum. Moll. Fows. (iris vetts de Genc̀ve. p. 435 , pl. xxxii, fig. 3.

- - gurgitis, Pictet and Rour. Ibid., p. $\mathbf{4 3 6}$, pl. xaxiii, fits. 1 .

1854. - obovata, J. Morris. Cat. Brit. Foss., ed. 2. p. 187.
1855. - - F.J. Pitetand E. Renerier. Foss. Terr. Aptien Matior.

1 'Prodr. de Pal.,' vol. ii (1850), p. 77.

 According to Nötling, A. pheucusir, Geinitz, is a symonym of A. cocuta.
${ }^{3}$ Astarte multistriata was also described hy J. de ('. Suwerhy from IBhekhwn, but I hase nut
 'Cat. Brit. Fuss.,' ed. 2 (1854), p. 187.

Duscription.-Shell large, oval, transverse, moderately inflated, very inerguilateral. Anterior margin rounded, concave in front of the umbo. Behind the umbo the dorsal margin has a gentle and regular curve. Posterior margin rom ded or sub-truncate. Umbones prominent, curving forward. Lunule deep. Escutcheon narrow, deep.

Ornamentation consists of numerous, strong, close, somewhat irregular concentric ribs, on which fine, concentric, lincar ribs occur.

Measurements:

	(1)	(2)	(3)	(4)	(5)	(6)
Length	75	74	73	70	72	71 mm .
Height	62	58	60	59	63	59
		Perna-ved, Atherfield.				

Alfinities-Asturt, Benumonti, Leymerie, ${ }^{1}$ and A. trensressu, Leymerie, are closely allied to A. clocotu, and were regarded by Forbes as merely varietics of the latter. Pictet and Renevier (18:57) were inclined to regard the differences as not of specific importance. Pictet and Campiche (1866), however, kept the three forms distinct, but were uncertain whether they should be regarded as species or varicties. They state that in A. Beaumunti the margin is smooth, whilst in A. wherotu and A. transerwa it is crenulated. In the first two forms the posterior margin is more roundel, but in the last it is more truncate. It is very doubtful whether the crenulation of the margin is a feature of specific importance in Astarte; indeed, one writer ${ }^{3}$ thinks that it is a characteristic of sex. Whether the other differences are of specific value can be determined only by the comparison of a number of examples of A. Brommenti and A. troustersa with specimens of A. whorathe.

1 'Mem. Soc. géol. de France,' vol. v (l842), pp. 4, 24, pl. iv. fig. 1. D'Orbigny, 'Terr. Crét,' vol. iii (1844), p. 60, pl. celx. Pictet and Campiche. 'Terr. Crét. Ste. Croix' (1866), p. 300, pl. ‘xxiv, fig. 1. Wollemann, 'Biv. u. Gastrop. d. deutsch. u. holliand. Neocoms' (1900), p. 9.5.
${ }^{2}$ Op.cit. (1842), pp.4, 24, pl. v, fig. 5. D'Orbigny, op. cit., p. 6l, pl. celxi. Pictet and C.mpiche, op. cit., p. 301, pl. exxiv, fig. 2. De Loriol, 'Auim. Iuvert. Foss. Mt. Salive' (1861), p. 68, pl. viii, fig. 9.
${ }^{3}$ A. Ostrooumoff, 'Zool. Anzeiger,' vol. xxiii (1900), p. 499.

The shallow pallial sinus shown in internal casts, and the characters of the hinge seem to warrant the reference of this species to the sul)-gemus Liriphyla.

Remarks.-Some of the specimens found in the Isle of Wight have the posterior end rounded, but in the larger number it is more or less distinctly truncated. The former approach A. Brammomti ; the latter resemble A. transerisu. I have not seen any examples from the Isle of Wight which show the internal margin of the valve sufficiently clearly to determine whether it is crenulate or not, but in an internal cast from the Hythe Beds of Hythe (Museum of the Geological Society, No. 2187) the crenulation is distinct.

The specimens of A. oloruta show a fairly large amount of variation. In some the anterior part of the valve is quite short, as in Leymerie's figure of A. trintsversa; in others it is much longer. The relative height and length, the amount of rounding or truncation of the posterior margin, and the coarseness of the ornamentation also vary.

The specimens from the Hythe Beds of Hythe are very poorly preserved. Those from the Greensand of Blackdown and Haldon appear, so far as one can tell from the few perfect specimens available, to be rather shorter than most of the Lower Greensand examples.

Types.-The type cannot be found ; it came from the Perma-bed of Sandown.
Distribution.-Lower Greensand (Permu-bed) of Atherfield and Sandorn. Recorded by Topley from the Atherfield Beds of Peasemarsh and shalford, and from the Hythe Beds of Hythe and Lympne.

Upper Greensand (zone of Schlombuchier rostiuta) of Blackdown and Haldon.

Astarte (Eripirla) lefts (Phillips), 1899. Plate XVI, figs. 5-7. Plate XVII, fig. 1.
1829. Crassina levis, J. Phillips. Geol. Yorks., p. 122, pl. ii, fig. 19 (: fig. 18). 1835. Astarte lafis, Phillips. Ihid, ed. 2, pt. 1, p. 158 (ed. 3, 1879, p. 2.9). 1854. - - J. Morris. Cat. Brit. Foss., ed. 2, j. 187.

Desrription.-Shell large, thick, convex, ovate, usually considerally inequilateral; height and length nearly equal, or the height may be rather greater tham the length or cice rersit. Antero-dorsal margin rather long and slightly concate; pesterodorsal margin very long and moderately convex. Anterior and ventral margins well rounded. Posterior extremity rounded or sometimes subangular. C'mbones large. Lunule large, ovate, deep, nearly smooth, with a sharp border. Escutcheon narrow, deep.

Ornamentation consists of numerous, rather strong, narrow, concentric ribs which are somewhat irregular.

Hinge-plate broul, triangular. In the left valve two strong cardinal teeth and one lateral at the margin of the lunule. Teeth of right valve not seen. Margins of valves strongly crenulate.

Measurements:

	(1)	${ }^{(2)}$	(3)	(4)
Length	57	51	51	44 mm .
Height	59	56	47	39

A!finitios.-This species is allied to Astarte Samami, de Loriol,' of which good specimens are found in the Portland Sands of Swindon. In some cases the resemhance is very close, but generally the umbones are more prominent, the anterodorsal margin relatively longer, and the valves more convex in A. laris than in A. Sxmenni.
A. Buchi, Römer, ${ }^{2}$ is apparently allied to A. levir, but is distinguished by the greater anterior curvature of its umbones. A. „igantea, Leymeric, ${ }^{3}$ is less inequilateral and more elongate than A. levis.

Remmilis.-Most of the examples of this species have been obtained from the Claxby Ironstone. Only two have been scen from the Speeton Clay, one being in the Leckenby Collection (Sedgwick Museum), the other in Mr. Lamplugh's Collection; these appear to agree with the larger example of Astarte leris figured by Phillips (fig. 19).

Tlyprs.-The type, from the Speeton Clay, appears to be missing.
Distribution.-Claxby Ironstone (zone of Brlemuites lateralis) of Benniworth Haven. Speeton Clay of Speeton.

Astarte (Erimifa) sthata, Sowerby, 1826. Plate XVII, figs. 2-7.
1826. Astarte striata, J. de C. Sowerby. Min. Conch., vol. vi., p. 35, pl. dxx, fig. 1.
1836. -- concinna, J. de C. Sowerby. Trans. Geol. Soc., ser. 2, vol. ir, pp. 239, 341, pl. xvi, fig. 15.
1842. - - F. Rimer. De Astartarum Genere, p. 21.

[^23]| 1850. | Astarte | sthiata, A. d'Orbigny. Prodr. de Pal., vol, ii, p. 160 (partim) concinna, dOrbigny. Ibil., p. 160. |
| :---: | :---: | :---: |
| 1854. | - | striata, J. Morvis. Cat. Brit. Foss., ed. 2, p. 187. |
| | \cdots | concinna, Morris. Ibid., p. 186. |
| 1866. | | striata, F^{\prime}. J. Pietet and G. Campiche. Foss. Terr. Cret. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 230. |
| 1871. | - | - (Eryphila), F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 285. |
| | - | concinna (Eriphfla), Stoliczka. Ibid., p. 285. |
| ? 1873. | Eriphy | striata, H. B. Guinitz. Das Elbthalgeb. in Sachsen (Paleontographica, rol. xx, pt. 1), p. 228 , pl. li, figs. 1-3. |

Deseription.-Shell with rounded outline, sometimes nearly orbicular, usually only moderately inequilateral, moderately convex. Length usually a little greater than height, but occasionally less. The margin in front of the umbo is concave for a short distance; behind the umbo it is convex; the anterior, the ventral, and posterior margins form a more or less regular curve. Umbones rather small, placed a little in front of the median line. Lunule small, deep, with a sharp erlge. Escutcheon narrow.

Ornamentation consists of numerous small concentric ribs, which are slightly irregular and are separated by linear grooves; at intervals somewhat deeper groores may occur.

Hinge-plate wide. Tro cardinal teeth in each valve, and one lateral tooth next the lunule in the left valve. Adductor impressions deep, the anterior somewhat elongated. Pallial sinus shallow, rounded. Margins of valves smooth.

Measurements :

		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Length	46	45	44	42	39	37	35	.	28	mm.	
Height	45	.	42	41	43	.	37	34	$3+5$	$27 \cdot 5$	

(1-8) Blackdown.
A!fıities.-This species is closely allied to A. (Wriphylu) lmutirnlerin (Goldfuss), but the outline of the valve is less regularly orbicular.

Astarte Kouincli, d'Archiac, ${ }^{2}$ from the Tourtia of Tournay, was regarded by d'Orbigny, Pictet and Campiche, Stoliczka, and Geinitz as a synonym of A. striut,. I have not seen any example of the former, hut it appears to differ from .t. strinth in having less prominent umbones, more inflated valves, a more regularly whicular

1 'Petref. Germ.,' vol. ii (1840), p. 228, pl. cxlvi, fis. 1ti. Holzapicl. Zeitselir. d. deutsch. woul.
 p. 195, pl. xiv, figs. 5-7.

2 'Mím. Soc. géol. de France.' ser 2. rol. ii (1847), p. 302, pl. xir, fis. 4 .
outline, and apparently also fewer ribs. Two imperfect specimens from the Cenomanian (Bed 11) of Dunscombe were referred to A. Kumiucli by the late C. J. A. Meÿer, but they are less convex than that species and seem to agree more nearly with A. strintu.

Astrite courimu, Sowerby, was regarded by Stoliczka as probahly identical with A. striutu. It is known by the type specimen only, and agrees with A. strintu, except that it is rather higher and more inequilateral. I believe that it is merely an individual variation of A. strintu.

Types.-From Blackdown, in the British Museum. The type of A. concinn is from Blackdown and is now in the Bristol Museum.

Distrilution.—Upper Greensand (zone of S'rhlunhachin rostratu) of Blackdown.

Gienus-Opis, M. J. L. Defiraner, 1825.
(' Dict. Sci. nat.' vol. xxxxi, p. 219.)
Opis neocomensis, d'Orligny, 1844. Plate XVJI, figs. 8-12.

1842.	Opis		A. Leymerif. M	Mém. Soc. géol. de France, ser. 2, vol. v. p. 25, pl. vii, fig. 4.
1844.	-	neocomiensis,	A. doorbigny. P	Pal. France. Terr. Crćt., vol. iii, p. 51, pl. celiii, figs. 1-5.
1850.		-	d'Orbigny. Proir	rodr. de Pal., vol. ii, p. 76.
1855.		-	G. Cotteau. Moll	Ioll. Foss. de l'Youne, p. 67.
1857.	-	-	F. J. Pictet and E	lE. Renevier. Foss. Terr. Aptien (Matér. Pal. Suisse, ser. 1), p. 83, pl. ix, fig. 7.
1861.		$\text { sori, } P \text {. }$	Lorinl. Anim. In figs.	Invert. Foss. Mt. Salìve, p. 66, pl. viii, 4-7.
1866.	-	neocomiensis,	F. J. Pictet and	d G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 324, pl. cxxv, figs 3, 4.
1868.		-	P. de Lorinl. V	Valangien d'Arzier, p. 31.
? 1871.	-	-	W. A. Ouster.	Protozoe Helvet., vol. ii, p. 101, pl. xv, fig. 17.
1883.	-	-	W. Keeping. F	Foss. etc., Neoc. Upware and Brickhill, p. 121, pl. vi, fig. 8.
1900.	-	-	A. Wollemann.	Die Biv. u. Gastrop. d. deutsch. u. holliand. Neocoms (Abhandl. d. k. preussisch. geol. Land., N. F., pt. 31), p. 102.

Description.-Shell trigonal or sub-quadrilateral, much higher than long, inequilateral, greatly inflated, but with flattened sides. Anterior margin rounded.

Posterior margin truncated, slightly concave, forming an angle with the erently curved ventral margin and also with the postero-dorsal margin. Vmbones; prominent, slender, greatly incurved, almost touching in the young, but separated in older specimens. A prominent carina extemds from the mubo to the posteroventral angle, cutting off an area which is divided into two parts by a prominent but rounded carina which ends at the postero-dorsal angle ; the outer part only of the area is seen in a side view, and is concave ; the inner part is depressed, and its dorsal portion is flattened and resembles a lumule. Lunule very large, cordate, flattened.

Ornamentation consists of many small concentric ribs separated by narrow grooves. Behind and in front of the fattened part of the valve this ormanentation becomes less distinct or may disappear altogether. Margin of valve entire.

Mensurcmeuts:

	(1)	(2)	(3)	(t)	(5)	
Length	23	22	20	14		
Height ${ }^{1}$	35	33	29	905	$1!$	
Thickness	26	26	2.1	16	15	

Affinities.-This species shows some resemblance to O. Inım, from the Gault.

Remarks.-The shell is relatively higher in large than in small specimens. In all the examples obtained from Upware the shell is preserved. Specimens from Seend are in the Museum of Practical Geology.

T'ypes.-Leymerie's specimen came from the Lower Neocomian of Bernon (Aube). D'Orbiguy's specimens were obtained from Saint Saureur (Yome), Bernon, and Marolles. The specimen figured ly Keeping is in the Sedewick Museum.

Distribution.-Lower Greensand of Upware and Seend. Internal casts, probably belonging to this species, are found in the Lower Greensand of Coleshill near Faringdon.

Opis haldonessis, sp. nov. Plate XVIII, fig. 1 ،- $/$.
Deseripion.-Shell trigonal, higher than long, molerately ine puilat cal, comvex, with flattened sides. Anterior margin slightly comvex, pasimy gralually intu the
${ }^{1}$ Measured from the umbo to the posteroventral angle.

slightly curved ventral margin. Posterior margin somewhat obligue, slightly concave. l'ostero-ventral angle romded. L'mbones high, prominent, not much incurved. A prominent, rounded carina extends from the umbo to the posteroventral angle, and cuts off a posterior area which is divided into two parts by a strong, rounded carina ending at the postero-dorsal angle. The part of the area between the carine is concave; the part behind the median carina is decply depressed. Lumule large, very deep, flattened. Surface of shell apparently smooth. Length, 43 mm . Height, 58 mm .

Iffinitio.-It is possible that this species may be related to 0 . Gallirmuri, d'Orbigny, ${ }^{\text {' }}$ which seems to be known by casts only, but the height of the shell appears to be relatively less. O. (Gullirmui has been ilentified by some authors with O. liroruiv (Geinit\%)" from the C'enomanian of Planen. The latter differs from the species described above in possessing strong concentric ribs and in the absence of a carina between the umbo and the postero-ventral angle.
lirmulis.-The only undoulted example of this species which I have seen is a right valve collected by the late W. Vicary, and now in the British Muscum. The surface of the shell is not well preserved, but appears to have been nearly smooth.

An imperfect specimen of a large $O_{p} i$ is (length about 63 mm .) from the Chloritic Marl of Eggerdon Hill (Dorset) is in the Sedgwick Museum, Cambridge, and may belong to this species.

Distribution.-Upper Greensand (zone of Schlenducthin rostreta) of Haldon.

Olis, sp. Pl. XVII, figs. 13"-c, 14"tc.
Inestrifion.-Shell small, sub-triangular, rather oblique; greatest convexity along the carina. Anterior margin rounded ; posterior margin slightly convex. Unbones prominent, sharp, considerably curved anteriorly. Carina sharp, prominent, cutting off a steeply sloping prosterior area, which is not divided by a median carina. Sides of shell Hattened, sloping slightly in front of the carina, and passing gradually into the anterior part of the shell. Lunule very deep, with a sharp border.

Ornamentation consists of regular, concentric ribs. Posterior area nearly smooth.
' P'al. Franç. 'Terr. Crét.' vol. iii (184t), pl. celviibie, fig. 5 (not described in the text); Gutranger, 'Alhum Paheont de lat Sarthe' (1867), p. 17, pl. xaii, fig. 13.

2 " Jas Elhthalgell. in Sachsen " ('Paleontorraphica,' vol. xx, pt. 1, 1873), p. 297, pl. 1, figrs. 1-3. Internal casts of O_{p} is from the base of the Chalk at Maiden Newton and Chat have been recorded as 0 . bicormis! ((Gein.) ly Jukes-Browne, 'Cret. Rocks of Britain,' vol. ii (1903), pp, 113, 122. 'Two of the specimens on which the determination was based are in the Oxford Museum.

Measurements:

	(1)	(2)
Length	8	75 mm .
Umbo to postero-ventral angle	12	11.0

Afjinities.-This species may perhaps be related to O. cenomancusis, Gućranger, ${ }^{1}$ but the figure of the latter is too indistinct for recognition.

Remarks.-There are four examples of this species in the Vicary Collection, British Museum.

Distribution.—Upper Greensand (zone of Schlanluchia rostruta) of Haldon.

Family-CARDITIDÆ, Gill.

> Genus-Cardi'A, J. G. Bruguière, 1792.²
> ('Encyc. méth., Vers,' vol. i, p. 401.)

Cardita? fenestrata (Forbes), 1845. Plate XVIII, figs. 2-4.

1845.	Venus?		E. Forbes. Quart. Journ. Geol. Suc., vol. i, p. 240 , pl. ii, fig. 6.
1850.	Cardita	-	A. d'Orligny. Prodr. de Pal., vol. ii, p. 77.
1854.	Vends	-	J. Morris. Cat. Brit. Foss., ed. 2, p. 230.
1856.	Cardita	-	F. J. Pictet and E. Renevier. Foss. Terr. Aptien (Matér. Pal. Suisse, ser. 1), p. 82. pl. ix, tig. 4.
1866.	-	-	F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 333.
1871.	-	-	F. Stoliczlia. Palxont. Indica, Cret. Fauna S. India, vol. iii, p. 287.

Description.-Shell oval or somewhat rhomboidal, much longer than high, very inequilateral, moderately inflated, but with flattened sides. Anterior margin rounded; ventral margin slightly curved or almost straight, and nearly paralled with the dorsal margin; posterior margin obliquely truncated, forming an acute angle

1 'Allbum Palćont. de la Sarthe' (1867), p. 13, pl. xvi, fig. 3.
${ }^{2}$ Owing to the diffeulty of distinguishing the fossil forms of Curdifu from Vomerardin when ats in the case of nearly all the examples found in the Cretaceous rocts of England, the hinge is unbnown. all the species are, for the present, referred to Cardita.
with the ventral margin, and an oltuse angle with the dorsal margin. Umbones moderately prominent, curving forwards, bearing a carima which extends to the postero-ventral angle and cuts off a flattened or concave area. Lunule ovate, rather large, nearly smooth. Escutcheon with a sharp edge.

Ornamentation consists of narrow, rounded, radial ribs, separated by broad, Hat interspaces, and crossed at rather distant intervals by strong, narrow, concentric, lamellar rils, which give rise to a scale-like projection where they join the radial ribs. The postero-dorsal area has similar concentric ribs, and a strong radial rib near the dorsal margin, and another near the middle of the area with smaller ribs between.

Measwioments:

	(1)	${ }^{(2)}$	(3)	(4)	(5)	(6)	
Length	20	19	19	19	18	16	mm.
Height	14	13	12	$11 \cdot 5$	12	11	,
	(1-6)	Perna-bed, Atherfield.					

Affinities.-C. fenestratu appears to be quite distinct from other Cretaceous species of Carlita, but shows some resemblance in form to C. tricarimuta, d'Orbigny,' from the Cenomanian of Le Mans. The hinge and interior are unknown, and the generic position of the species is not free from doubt. Stoliczka remarks that ' C. fenestrater is not unlike a Venernpis.'

I'!pe.-From Peasmarsh, in the Museum of the Geological Society, Nos. 2182, 2183.

Distrihution.-Perme-bed and Atherfield Clay of Atherfield. Atherfichd Beds of Peasmarsh and East Shalford.

Cardith upwarensis, sp. nov. Plate XVIII, fig. 5.
1883. Cardita rotundata: : W. Keeping. Foss., etc. Neoc. Upware aud Brickliill, p. 121, pl. vi, tig. 7.

Description.-Shell subtriangular, inflated, height and length nearly equal, inequilateral. Anterior margin rounded, passing. gradually into the convex ventral margin. Posterior margin truncated, oblique, not sharply limited from the posterodorsal margin. Umbones prominent, strongly curved anteriorly, with a rounded

[^24]carina extending to the postero-ventral angle, and cutting off a stecply-sloping postero-dorsal part of the valve. Lumule rather small, cordate, broader than long.,

Ornamentation consists of about twenty-five radial ribs on the part of the valve in front of the carina; the ribs are strong and rounded, but are narrower than the interspaces. Both are crossed by regular concentric lamella, which become prominent on the ribs. On the postero-dorsal area the ribs are smaller, more numerous, and closer together; two of these ribs are rather stronger than the others, and divide the area into three parts. Length 21 mm . ; height $20: 5 \mathrm{~mm}$.; thickness 17 mm .

Affinities.-This species was doubtfully referred by W. Keeping to C. rotundata, Pictet and Roux, but it differs from that form by its fewer and stronger ribs and more triangular outline (see p. 125).

In form it resembles C. D"pinicin", d'Orbigny, ${ }^{1}$ but the ribs on the posterodorsal area are smaller and more numerous. In this respect, and in its shorter and less quadrate outline, it differs from C. mocomirmsis, d'Orbigny.*

Remarks.-I have seen only three examples of this species, two of which are in the Sedgwick Museum, and one is in the collection of Mr. J. F. Walker.

Distribution.-Lower Greensand of U^{p} ware and Potton.

Cardita, sp. Plate XVIII, fig. 6.

A specimen consisting of the mited valves from which the ventral parts are missing was obtained by Leckenby from the Pritu-bed of Atherfield, and is now in the Sedgwick Museum. It shows some resemblance to (\therefore. "urarousin (see above), but is more elongate and more distinctly carinate.

Cardita, sp.

Two specimens of Cardita from the Hythe Beds of Maidstone are in the Muscum of the Geological Society. They were examined by Edward Forbes,' who identified
 The specimens are similar in form to those species, but their state of preservation is too imperfect for satisfactory determination.

[^25]Cardita tenitcosta (Somerly), 1836. Plate XVIII, figs. 7-14.
1836. Venericardia tenuicosta. J. de C. Soucrby. Trans. Geol. Soc., ser. 2, vol. iv, pp. 114, 259, 356, pl. xi, fig. ${ }^{*}$.
1838. Cardium tetragonum, H. Michelin. Mém. Soc. géol. de France, vol. iii, p. 102, pl. xii, fig. 3.
1842. Venericardia tenuicosta, A. Leymerif. Mém. Soc. géol. de France, ser. 2, vol. v, p. 25, pl. iii, fig. 9.
1844. Cardita tenuicosta, A. dOrbigny. Pal. Franç. Terr. Crét., vol. iii, p. 87, pl. celxviii, figs. 1-5.
1846. Venericardia tendicosta, A. Leymerie. Statist. géol. et min. de l'Aube, pl. v, fig. 7.
1850. Cardita - d'Orbigny. Prodr. de Pal., vol. ii, p. 137.
1854. - - J. Morris. Cat. Brit. Foss., ed. 2, p. 191.
1855. - -- G. Cotteau. Moll. Foss. de l'Yonne, p. 72.
1866. - - F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 335, pl. cxxvi, figs. 6-9.
1871. - \quad F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 287.

Nou 1842. Venericardia - H. B. Geinitz. Char. d. Schicht. u. Petref. des sächs.-böhm. Kreidegeb., pt. 3, p. 76, pl. xx, fig. 9 (C. Geinitzi, d'Orbigny).

- 184.6. Cardita (Venericardia) tenuicosta, A. E. Rcuss. Die Verstein. der bühm. Kreideformat., pt. 2, p. 4, pl. xxxiii, fig. 16 (C. corrugata, Reuss).
- 1873. Cardita tenuicosta, H. B. Geinitz. Das Elbthalgel). in Sachsen (Palæontographica, vol. xx, pt. 2), p. 60, pl. xvii, figs. 11-13.
- 1885. - (Venericardia) tendicosta, F. Nütling. Die Fauna d. baltisch. Cenoman. (Palæont. Abhandl., vol. ii), p. 29, pl. v, fig. 4.
- 1889. - tenuicosta, A. Fritsch. Stud. im Gebiete der böhm. Kreideformat., iv. Teplitz. Schicht., p. 78, fig. 62.
- 1893. - \quad Fritsch. Ibid v. Priesener Schicht., p. 91.
$\because-1900$ - \quad A. Wollemann. Die Biv. u. Gastrop. d. deutsch. u. holliad. Neocoms (Abhandl. d. k. preussisch. geol. Land., N. F., pt. 31), p. 94, pl. iv, fig. 9.

Description.-Shell more or less sub-quadrate, rounded, moderately convex, with the postero-dorsal portion compressed; length greater than height ; morlerately inequilateral. Postero-dorsal margin only slightly curved; posterior margin more or less truncated, passing by a regular curve into the ventral margin, which is only slightly convex and nearly parallel with the postero-dorsal margin. Anterior margin rounded. Antero-dorsal margin concave. Umbones curver anteriorly. Lunule ovate, nearly smooth. Escutcheon lanceolate, with a sharp edge.

Ornamentation consists of 47 to 57 rounded radial ribs, which are separated by furrows of greater breadth than themselves; near the postero-dorsal margin these ribs are rather closer together than elsewhere. In some cases the posterodorsal part of the valve is divided into two parts by two ribs, which are more prominent than the others. At regular intervals concentric lamellx occur and form marked projections where they cross the ribs. Near the umbo these lamellw are more widely separated, and near the margin, especially in large specimens, they are closer together than elsewhere. Sometimes faintly marked concentric ridges may be seen on the ribs between the lamellæ. Margins of valves crenulate.

Measurements :

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	4)	
Length	30	27	25	24	24	23:5	23	23	22	22	20	16	15		5 mm .
Height .	26.5	23	22	22	20	21	21	19:5		19	17				

Affinities.-This species has more numerous ribs and is less inflated than C. neocomiensis, d'Orbigny and C. D"ıimimn, d'Orbigny.' It possesses about the same number of ribs as Constanti, d'Orbigny,? but is less elongate and less inflated. C. rotundutu, Pictet and Roux, ${ }^{3}$ differs from C. truuicost, in being more inflated, and can be regarded as only an individual variation. Some examples found at Folkestone, which in other respects agree with C. trmuicostn, are as much inflated as the type of C. rotumelata. C. clathrata, Buvignier, ${ }^{4}$ is a small form, but has the concentric laminæ more widely separated than in even the young of C. tenuicosta. C. argonnensis, Buvignier, ${ }^{5}$ is more compressed and has more slender ribs than C. temicosta. C. cenommensis, d'Orbigny, ${ }^{6}$ is distinguished from C. tenuicosta by its broader ribs and more closely placed concentric lamelle.
C. tenuicosta has narrower ribs and broader furrows than the forms from the Chalk
${ }^{1}$ For references to figures of these species see p. 123, footnotes $1,2$.
2 'Pal. Franç. Terr. Crét.,' vol. iii (1844), p. 89, pl. celxix, tigs. 1-5; Pictet anl Campiche. • Fuss Terr. Crét. Ste. Croix' ('Matér. Pal. Suisse,' ser. 4, 1866), p. 337. pl. exxvi. tig. 110.

3 'Moll. Foss. Grès verts de Genìve' (1852), p. 4 43 , pl. xxxiii, tir. ti.

* 'Statist. géol, etc., de la Meuse,' Atlas (1852), p. 19, pl. xv, figs. 1(i, 17 .
${ }^{5}$ Ibid., p. 19, pl. xxxii, figs. 1-3.
${ }^{6}$ D'Orbiguy, op. cit., p. 94, pl. celsxxiii bis., figs. 1-4.
of Saxony and Bohemia which have been referred to that species by Geinitz and by Renss. (!. temuirostn of Reuss is the type of O. (Veneriradin) buhemicu, Griepenkerl. ${ }^{1}$

Remutis.-Numerous specimens of C.tenuirost," from Folkestone have been examined, and they are found to show a considerable amount of variation in conrexity and in relative height and length.

T'ypr. Whe trpe came from the Gault of Folkestone, but cannot now he found.
Distrilution.-Gault (zones i, v, vii, viii, ix, xi) of Folkestonc. Recorded by Jukes-Browne from the Cambridge Greensand, and by Barrois from the Upper Greensand (zone of Schlernluctlia rostruta) of the Isle of Wight.
C.mma Compamea, momimy, 18t-t. Plate XVIII, figs. 15, 16.
1844. Cardita Cotraldina, A. dOrbigny. Pal. Franc̣. Terr. Crít., vol. iii, p. 91, ${ }^{11}$. celxis, figs. 6-8.
1871. -- \quad F. Stoliczka. Palæont. Iudica, Cret. Fiuma S. Iudia, vol. iii, p. 287.
?1895. - cf. Cottaldina, E. Tiessen. Zeitschr. der deutsch. geol. Gesellsch., vol. xlvii, p. 485.

Remarks.-Examples of a species of Cardita, which is not uncommon in the Chloritic Marl of Dorset, appear to belong to C. Cottalima, but their state of prescrvation is very unsatisfactory. Most of the specimens are internal casts, and in cases where parts of the shell are present the surface is very imperfect, so that the characters of the ornamentation cannot be clearly distinguished. M. Raoul Fortin informs me that the preservation is equally unsatisfactory in the Cenomanian of Rouen, from whence d'Orbigny's specimens were obtained.
'llie shell is quadrate in outline, very convex, carinate, and somewhat longer than high. The ornamentation appears to consist of about 40 ribs, separated by interspaces of great width.
C. Cuftallimu may be distinguished from C. tenmicosta (p. 12-4) by its fewer ribs, by the length and height being more nearly equal, and by the greater convexity of the valves.

Mrasurements:

Distribution.-Chloritic Marl of Balcombe, Cerne, Chaldon, Chalmington, Chand, Maiden Bradley, and Maiden Newton. Recorded by Jukes-Browne from the Chloritic Marl and the zone of Schlenbachin curians of the Isle of Wight.
Cambita, sp.

Specimens of Carclit, from which the shell has disappeared, but showing traces of the ribs, are found in the Chalk Marl of Ventnor, Folkestone, etc. These are too imperfect for specific determination. A specimen from Ringmer was figured by Sowerby, ${ }^{1}$ and was subsequently regarded by d'Orbigny: as an example of his c. dubia.

Somewhat similar specimens also occur in the Upper Greensand of Devizes.

Cardita cancellata, Woods, 1897. Plate XVIII, figs. 17, 18.
1897. Cardita cancellata, H. Woods. Quart. Journ. Geol. Suc., vol. liii, p. 39w pl. xxviii, figs. 2-5.

Description.-Shell oval, slightly inecuilateral, inflated, postero-lorsal part compressed, faintly carinate; length rather greater than height; margins rounded. Umbones moderately prominent, curved anteriorly.

Ornamentation consists of a large number of radial ribs separated by natrow furrows, and crossed by numerous concentric ribs, giving a notular apparance at the points of intersection. The concentric rilss are more distinct on the anterior part and the radial ribs more distinct on the median and posterior parts of the shell. Margin of valves finely crenulate.

Measurements :

	(1)	(2)	(3)
Length	18	16	$1: 3 \mathrm{~mm}$
Height	16	145	

Alfinitie.-This species is more inflated and more rounded than ('. 1rumions/, (p. 124), and possesses more numerous radial ribs with narrow furnws and strong concentric ribs instead of laminar.

The concentric ribs distinguish 1'. ramerlluth from the finms deroritned by
 Vencricardia ? Mantell, 'Fuss. S. Downs' (18:2), p. 12
 Paléout. de la Sarthe' (1867), p. 13, pl. xvi, figs. 14-1s.

Geinitz ${ }^{1}$ and by Reuss ${ }^{2}$ as C. temuicosta. The concentric ribs and the nodular character which they give to the radial ribs separate C. cancellatu from Venericardia sentonensis, Müller.3
hemurks.-The specimens of ('. concellete are chiefly in the form of internal and external moulds; wax casts of the latter show the character of the ornamentation. In a few cases small portions of the shell are still preserved.

T'ypr.-From the Chalk Rock of Cuckhamsley, in the Sedgwick Museum.
Listrilution.-Chalk Rock of Cuckhamsley, Aston Hill, Chimnor Hill, Thickthorn Hill (Bledlow), Boxmour, Luton, and Wood Ditton.

Fumily-CRASSATELLITIDA, Dall.

Genus-Crassatellites, J. F. Krüger, 1823.
('Geschichte d. Urwelt.,' ii, p. 466.)
Crassatellites mivisiensis, sp. hov. Plate XIX, fig. 1.
Description.-Shell subquadrate, very inequilateral, moderately long, convex, but with flattened sides, carinate. Anterior margin regularly rounded; ventral margin nearly straight, oblique to the postero-dorsal margin; posterior margin convex, oblique, forming an obtuse angle with the postero-dorsal margin, which is nearly straight. Umbones rather prominent, curved anteriorly. Carina rounded, forming a gentle curve between the umbo and the postero-ventral angle. Posterior area moderately large, apparently not divided by a median rib. Lunule deep.

Ornamentation consists of numerous, strong, regular, concentric ribs, separated by shallow furrows. On the posterior area the ribs appear to be narrower. Length 45 mm . ; height 37 mm .

Affinities.-This species shows some resemblance to C. Guerangeri, d'Orbigny, ${ }^{*}$
${ }^{1}$ C. Geinitzii, d'Orbigny, ' Prodr. de Pal.,' vol. ii (1850), p. 239. For references to Geinitz's figures see above ($\mathrm{p}, 1 \geqslant 4$).

2 ' Die Verstein. der bühm. Kreideformat.,' pt. 2 (1846), p. 4, pl. xxxiii, fig. 16. C. corrugata, Renss, 'Geogn. Skizzen aus Bühmen,' vol. ii (1844), p. 190; Giimbel, 'Alhandl. d. k. bayerisch. Akad.' (München), vol. x (1868), p. 568. Cardita (Venericardia) bohemica, Griepenkerl, ‘Senon. Künigslutter' ('Palæont. Abhaudl.,' vol. iv, 1889), p. 58. See also C. Cottaldina, d'Orbigny, 'Prodr. de Pal.,' vol. ii (1850), p. 161.

3'Mollusk. Untersen. v. Braunschweig u. Ilsede' (1898), p. 55, pl. vii, figs. 10-12.
4 ' Pal. Franç. Terr. Crét.,' vol. iii (1844), p. 76, pl. cclav, figs. 1,2; Guérayger, 'Album Paléont. de la Sarthe' (1867), p. 13, pl. xvi, fig. 11.
but is more inequilateral, the rentral margin is nearly straight, the posterior margin is more oblique, and the posterior area is relatively smaller. It is much more inequilateral than (?. mularix, d'Orbigny. ${ }^{1}$. Arisimsis also resembles some of the varieties of (murrulonta (Sowerby) from Gosau.

Distribution.-Upper Greensand (zone of Schlanlurhin rostrinta) of Devizes. An imperfect specimen from Warminster (zone of I'ertru (asper) probably belongs to this species.

1844.	Crassa	indinnensis, A. dortigmy.	Pal. Frauc. Terr. Crít., vol. iii, p. 79, pl. wlxui, figs. 1-3.
1850.	-	vendinnensis, dorbigny. P	Prodr. de Pal., voll ii, p. 160 .
1867.	-	vindinnensis, E. Guiranger.	Allum Pahiont. de la Sarthe p. 13, pl. xvi, firs. 9, 10 .
¢1868.	-	C. W. Gïmbel	1. Geogn. Beschreil., Künigreichs Bayern, vol. ii, p. 766 .
1871.	--	F. Stuliczku.	Paleont. Iudica, Cret. Fauna S. India, vol. iii, p. 294.

Inexcription.-Shell subquadrate, but trigonal without the posterior area, very inequilateral, convex, with rounded carina. Anterior margin rounded, passing gradually into the slightly curved ventral margin; posterior margin oblique, somewhat sinuous; postero-dorsal margin nearly straight, forming an obtuse angle with the posterior margin. Lumule elongate, deep. Umbones prominent, incurved. Posterior area of moderate size, divided by a median rib into two parts, of which the anterior is concare.

Ornamentation consists of strong, regular, concentric ribs, separated hy narrow furrows. On the posterior area the ribs become very narrow and more or less lamellar, and the interspaces are broad and flat.

Merswrements:

${ }^{1} O_{p}$. cit., p. ${ }^{80}$, ple 1 celxvi, figs. 4-7.
 1866). p. 150, pl. viii, figs. 2, 3.
 de la Sarthe (1867), p. 13, pl. xui, fif. 1?.
arri, d'ornigns,' but the posterion margin is more obligue and the posterior area relatively smaller.

Romutis.-The lamellar ribs on the posterior area are not mentioned by d'Orbigny, but attention is called to them ly Gućranger.

I have seen only five specimens, which were collected by the late (..J. A. Meÿer, and are now in the Solgwick Musem, ('ambridge.

F'!n'm. From the Cenomanian of Ronen and Le Mans.
Jistrilution.-Cenomanian (Meÿer's Beds 10 and 19) of Dunscombe, Devon.

$$
\begin{aligned}
& \text { Cirmin-Mxthony., II. M. Cialle, } 1861 . \\
& \text { (• Gend. Surv. Califurnia, Palieont.,' vol. i, p. 181, pl. xxx, fis. E33.) }
\end{aligned}
$$

Itrecriptim. - Shell elongate, tapering posteriorly, very inergulateral, much compersed. Anterior margin slightly convex. Ventral margin long, moderately convex. Pusterior margin short, truncate, forming angles with the ventral and dorsal margins. Postero-lorsal margin concave. Umbones acute, near the anterior cond. A faint carina passes from the umbo to the postero-ventral angle and cuts off a flattened or slightly concave postero-dorsal area.

Ornamentation consists of numerous narow, regular, concentric ribs over the whole surface of the shell. The ribs are separated ly furrows of greater width than themselves.

Merasurciments:

	(1)	(2)
Length	3.	$\because 7 \mathrm{mmm}$.
lleight	97	14

(1, 2) Folkestune Beds, near Coph Doint.
 the shorter anterior part of the shell, the smaller apieal angle, and by the ribs, which are of equal or nearly equal strength over the whole surface. It is less clongate and hats a smaller apical angle than the type species A. cull riformis, Gablo.

- Amer. Journ. Conclı., vol. v (1869). p. 47.
: ' Pal. Frame. Terr. Cr't., vol. iii (184t), p. 74, pl. celxir, fiss. 7-9; referred to Ptychomya by Pietet and Gampiche, 'Lerr. Crit. Ste. Croix’ ('Matér. Pal. Suisse', ser. 4, 1866), p. 357; E. G. Sleat
 No. 8, 18:88), p. 178, pl. vi, tig. 13.

Rematiss-Only two specimens have heen seen, hoth of which were colleded by Mr. H. Keeping, and are now in the Sedgwick Museum, C:mbridge. Distribution-Folkestone Beds, near Copt Point, Folkestone.

Anthony, sp. llate XIX, fig. 6.
Description. Whell elongate, tapering posterionly, very inequilateral, gratly compressed. Anterior margin convex, rounded, passing gradually into the slightly curved ventral margin. Posterior margin short, truncate, forming angles with the ventral and dorsal margins. Postero-dorsal margin long, slightly concave. ['mbones sharp, anterior. Carina indistinct. Posterodersal area narrow. Surface of shell smooth, except for growth-lines, which are rather more distinct near the anterior margin than elsewhere.

Length, 38 mm . Height, 15 mm .
 but does not possess the concentric ribs near the anterior margin. It differs from A. cantinn, sp. nov., in the greater length of the anterior part of the shell, the greater curvature of the anterior margin, the larger apical angle, and the absence of concentric ribs.

Remarlis.-A left valve is the only specimen seen.
Distribution.-Lower (Greensand (Crackers) of Atherfield.

> P'umily-CYPRINID. E , Lemencti.
> Gemin-Crmani, Lemench, 1s1s.
> ('Anim, sums Vert.,' vol. v, p. 555)

 (follfuss, 1sfor).

 (Matior Pal Suiner.
 , iii. tixw $1 \geq$

1atis). Cyprina saussuri, F. J. Pidet and (i. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisst, ser. 4), ${ }^{1}$. 30.

II. Conmand. Mon. Aptien de I'Espugne, p. 113.

 often crreniform, convex, more or less considerably ine guilateral. Jamular margin of moderate length, concave. Anterior margin regularly rounded, pasing gradually into the convex ventral margin. Posterior margin short, often more or less rommen, sometimes truncate, forming an angle with the ventral margin, and not sharply limited from the long postero-lonsal margin. L'mbenes promincont, broad. Carina romuled, sometimes rather indistinct. Postero-dorsal area narrow. Lamular region deep, indistinctly limited. Escutcheon dongate, bounded by an incomspicuons carima. Hinge not seen. Ormamentation comsists of growth-lines and numerons minute radial ribs.

Mertsurrement: :

	(1)	(2)	(3)	(1)	(5)	(6)	(i)	(s)	(!)	
Length	52	$4!$	4.1	385	38	: $: 3$	$\underline{9}$	Q\%\%		1111
Height.	1.0	40	31	3:)	31	27	$\bigcirc 1$	21\%	$1!$	"
Thickness	: 4	$\begin{array}{rr} 31 & 97 \\ (1,2) \end{array}$		${ }^{2} 6$ Pernu-l Crawb					1%	

 the shell is less distinctly trimgular, the sides are less flattened, the ventral margin is more convex, the umbones are broader and not so high, the lunular margin is not so long, and the carina is less distinct.

Remernis.- I'lue relative height and length of the shell, and conseguently the outline, vary considerathy.

Much larger and more globose specinems (1'ate XIN, fig. 1:3) in which the carima is indistinct, are associated with the momal forms of (${ }^{\text {. Sumsump }}$, but are less almalant. At first sight, especially when the shell is not quite perfect, these appar to be distinct from ('. Nomssuri, but after comparing a number of epecimens I an led to the conclusion that they are only old individuals which have attained a large size.

Examples of $\left(\begin{array}{l}\text {. Sumsuri from Atherfied were identified by Pictet and }\end{array}\right.$ ('mapiche, but, hitherto, no record of the species appears to have been mate by any English writer.

T'!ne.-From the Aptian of the l'erte-lu-Rhonne.
 Athertiedd Beds of Haskemere and Redliall.

Palxontoguphical $\mathfrak{F o c i c t e} 1907$.

A MoNo(iRAPII

WF TUE:

CRETACEOUS LANIELLIDBRANCHI

ENGLAND).
13%
Henry woods, I.a.
UNIVERSITY LECTURER IN IALEOZOOLGO;

VOL. II. PAR'I IV.
 TELLINIDE, MA(TRIDE, ANJ VEAKRILIE.

Pages 1:3B-1sin: Phatis XX-XXYil.

1866. Sphara Sedgwickif, J. F. Wralher. Amn. Mag. Nat. Hist., ser. 3, wh.
xviii, p. 386, pl. xiii, figs. 1, 2.

Description.-Shell more or less oval, sometimes sul)-triangular, rounded, inflated, slightly or moderately inequilateral ; length as a rule not greatly excecting the height. Lunular margin of moderate length, concare. Anterior margin rounden, passing gradually into the convex ventral margin. Postero-dorsal margin moderately. convex. Umbones prominent, broad, curved inward and forward. ('arina absent or indistinct. Postero-dorsal region convex, rounded. Lmmule large, ovate, bounded by a faint groove. Escutcheon long, bounded by a more or less distinct carina. Ornamentation consists of growth-lines.

Measurements:

Affinities.-This species is closely related to, and may perhaps be only a local variety of C. Suussuri (see above). The chief points in which it differs from the latter are (1) the carina is absent or indistinct, (2) the posterior margin is relatively higher, (3) the valves are usually more inflated, (\cdot) the shell is usually. less triangular in outline and less inequilateral.

Remarks.-The examples of C. Nolguichi vary in relative height and length. and consequently in outline. The longer forms approach ('. Sunswis more menty. than the shorter forms.

This species was placed in the genus sphata hy Mr. I. F. Walker, but was subsequently referred to Cuprimu by Seeley and low. Keeping.

Type.-From Potton, in Mr. J. F. Walker's collection.
Distribution.-Lower Greensand of Lpware and Potton.

Chrmanatrea, Kerpin!, 188:3. Plate XX, fig. 1i.

Remulis.-C. whtusin, of which I have seen two specimens only, closely resembles some forms of 1 . Smussuli, but differs in having narrower and less curved umbones. It also resembles the more elongate forms of C. Nerlymirki.
$T!y p^{2}$.-In the Sedgwich Museum.
Distrilution.--Lower Greensand of Upware.

Chmina rexfata, Sommp, 1836. Plate XX, figs. 7-12.
1836. Cyprina cuneata, J. de C. Somerby. Trans. Geol. Soc., ser. 2. vol. iv, pp. $240,341, \mathrm{pl}$. svi, fig. 19.
1849. -- triangularis, T. Brome. Foss. Conch., p. 207, pl. 1xsxy, fig. 2.
1850. - cuneata, A. dOrbigmy. Prodr. de Pal., vol. ii, p. 161.
1854. - - J. Morris. Cat. Brit. Foss., ed. 2, p. 199.
1805. - F. J. Pictet and G. Campiche. Fuss. Terr. Crít. Ste. Crois (Matér. Pal. Suisse, ser. 4) ${ }^{1}$ 230.
1870. -- F. Stoliczla. Palmont. Indica, Cret. Fauma S. India, vol. iii, p. 193 [Anisocarlia (Jeniella)].

Deseriptiou.-Shell of small or moderate size, triangular, convex with flattened sides, carinate, considerally inequilateral. Lumular margin long, concave. Anterior margin regularly rounded. Ventral margin only slightly curred, sometimes with the posterior part concave. Posterior margin short, trumeated, almost straight, nearly parallel to the height of the shell, forming a right angle with the ventral margin and an obtuse angle with the long postero-dorsal margin. Umbones prominent, high, curved considerably inward and forward. A distinct, but rounded, carina extends in a gentle curve from the umbo to the postero-ventral angle. In front of the carina the shell is sometimes slightly concave. Posterodorsal area narrow, sloping stecply except near the posterior margin. Lumular region deep, indistinctly limited. Escutcheon clongate, bounded by a small carina. Ornamentation consists of very fine growth-lines at regular intervals.

Mrastrements:

	(1)	(2)	(3)	(1)	(5)	(6)	(7)	(s)	(9)	(ii)
Length	48	36	35	31	29	26.5	26	26	23	20 mm .
Height	40	29		26	24	$\underline{205}$	21	19:5	20	

Affinities.-The differences between C. Nomssuri and this species are given alove (p .132).

The form from the Menle de Bracquegnies which was referred to C. "ugulatu,

Sowerby, by Briart and Cornet, ${ }^{1}$ appears to be more nearly related to ('. ramenta than to C. amgmlerte.
C. securiformis, Sharpe, ${ }^{2}$ is similar to (. chmente, but its ventral margin hats a much greater curvature.
C. cumeata is mentioned by Stolicaka as a typical example of the sub-genus Temiclla, Stoliczka. ${ }^{3}$ The anterior right cardinal tooth, however, does not aprar to be so strongly developed as in the type of Vrinirlli.

I'yprs.-The types came from Blackelown, but cannot now be found.
Distrilution.—Upper Greensand (zone of Srhlerubrthin rastrath) of Blackelown and Haldon. Upper Greensand (Meÿer's Bed 2) of Weston Mouth (Devon).

Cyprina ('laxblensts, sp. nov. Plate XXI, fig. ©; Plate XXIV, fig. 1.
Description.-Shell large, stout, oval, rather elongate, considerably inequilateral, molerately convex. Antero-dorsal margin short, straight or slightly concave. Anterior margin well rounded, passing gradually into the convex ventral margin. Posterior margin oblique, sub-truncate, more or less rounded. Postero-dorsal margin rather long, slightly convex. Umbones broad, curved anteriorly, with a rounded carina extending to the postero-ventral extremity, and liniting a flattemed or somewhat convex postero-clorsal area which slopes rapidly to the posterodorsal margin, but more gradually to the posterior margin. Lunular region excavated, not limited. Ornamentation consists of small concentric ribs.

Hinge: in the right valve the anterior cardinal is conical, larger than the median cardinal, and placed below and separated from the latter ; the posterion cardinal is oblique, laminar, and divided by a furrow. In the left valve the anterior and median cardinals are stout, the posterior cardinal is obliguc and laminar.

Mensurements ("ipmorimate):

	(1)	(2)	(3)
Length	99	80	
Height	75	(i)	

! ! fimilies.—'This species resembles C'. Constanti, Dollfus,' from the Kimerilerian,
 viii, figs. 26-28.
 p. 182, pl. xv, fig. 1) is recorded by Morris from Blackituwn. hat I have sex no catmple if it.
 and Tert. Foss. U. Missouri' (1876), pp. $14 \bar{i}-1: 2$.

but is much larger and stouter, and the lunular region is more deeply excavated ; also the umbones appear to have a greater anterior curvature.

F'ypr.-From Bemniworth Haven, in the Sedgwick Museum.
Disticution.-('laxby Ironstone (zone of Lelemuites laterelis) of Benniworth IIaven and Domington.

Cyment tealimesis, sp. nov. Plate XX, fig. 13", 1 .
Desrription.-Shell very thick, large, clongate, oval, regularly convex, very incepuiateral. Antero-dorsal margin concave. Anterior margin rounded, curving rapidly, passing gradually into the ventral margin. l'osterior margin rounded, forming an obtuse angle with the long, slightly convex postero-dorsal margin. L'mbones broad, anterior, curved inward. A faint carina extends from the umbo to the posterior end. Lumular region deep. Escutcheon large, deep, limited by a strong carina. Ornamentation consists of growth-ridges.

Mensurements:

		(1)	(2)
Length .	105		69 mm.
Height		89	.

(1,2) 'Tealby Limestone.
Lifinities.-In its clongate form, and deep, carinate escutcheon this species resembles C. b, blomirmsis, de Loriol, ${ }^{1}$ from the Portlandian.

Remerlis.-There are two specimens in the Sedgwick Museum and one in the British Musemm. The hinge has not been seen.

Distribution.-'Teally Limestone of Walesby and Clasby, Lincolnshire.

Cymina, sp. Phate XXI, fig. 3.
A large Cuprium from the Tealby Limestone of Claxby is known ly a right and a left valve, now in the Sedgwick Museum, and appears to belong to a distinct species. It shows some resemblance to (.. "myulntu, Sowerby (see page 141), but differs from that species in the greater ventral slope of the postero-dorsal margin; the greater obliguity of the posterior margin; the smaller curvature of the umbones; the longer and less concave anterodorsal margin; and in the absence of a carina cutting off a postero-dorsal area. The surface of the shell is imperfectly preserved, but in places there is evidence of well-marked growthridges. Length, 92 mm . Height, 80 mm .

[^26]Cyphisa, sp. Plate XX , fig. 1 I.
A few specimens of a small C!ymime, with the shell imperfectly preserven, have been found in the Speeton Clay (D, 1).

Chirin. anghich, sp. nov. Plate XX, figs. 15, 16. Plate XXI, fig. 1", 1.
Description.-Shell of moderate size, oval, inflated, very inerpuilateral. Anterior margin rounded, forming a continuous curve with the convex ventral margin. Posterior margin less convex than the anterior, sometimes slightly truncated, more or less oblique, usually curving gradually to join the ventral margin. Posterodorsal margin long, slightly convex. Antero-dorsal margin short, nearly straight. Umbones broad, anterior, curving inward and forward. Posterodorsal part of shell slightly compressed; carina alsent or indistinct. Lamule ovate, depressed, more or less distinctly limited. Ornamentation consists of growth-lines.

Mensurements:

	(1)	(2)	(3)	(1)	(i)	(6)
Length	42	41	:38	32	$\because 7$	$\bigcirc 1 \mathrm{~mm}$.
Height	35	33	31	$\underline{2}$	20	14\%,
Thickness	28	26%	$2+$	16.5	1%	!\% ,

Iffinities.- ('. "nylien does not appear to be closely related to any other English species. Extemally it shows some resemblance to ('. "n!mlntu, sowerhy (see below), but is of much smaller size, more clongate, with a more or less distinctly limited lunule, and cither without a carina or with an indistinct canima near the umbones.
hemarks.-Nearly all the specimens show the two valses united, so that the hinge and pallial line do not appear to have been seen by previous workers; this probably accounts for the fact that in sereral collections the species has been referred to the genus lrum.. A left valve, from which I have removed the matrix, shows that the hinge agrees with ' 'yprime, and that there is no pallial simus.

T'yne-In the Solgwick Musemn, ('ambridge.
Distribution-Dower Greemsind (C'rackers) of Atherfield. Atherfich Beds of Peasemarsh.
 $\because 0, \because 1$.
 (1 ".irtim).

Ineseriptim. Whell large, oval, convex, moderately inequilateral, anterior part produced. Antero-dursal margin concave. Anterior margin rounded, passing gradually into the convex ventral margin which curves upward to join the posterior margin. Posterior margin rounded, sometimes forming a large and rounded angle with the ventral margin, but sometimes passing into it gradually. Postero-dorsal margin convex. Postero-dorsal part of valves compressed, sometimes limited by an indistinct carina. Umbones prominent, curving forward and inward. Lunule indistinctly limited. Escutcheon narrow, deep, with a sharp elge. Ornamentation consists of growth-lines.

 Sedgnick Musenm. Right valve. $\times \mathrm{s}$.

Mensurements:

I!finities.-The characters which distinguish this species from e. angmluth, Sowerby, are: the umbones are less anterior and the shell is less inequilateral; the umbonal part of the shell is relatively smaller; the carima is less distinct; the anterior part of the shell is more produced ; the posterior part is more rounded; the ventral margin has a greater curvature; the shell is less inflated, so that the marginal parts of the valves meet at a smaller angle. The anterior part of the shell resembles that of C. l'unculu, but the posterior part is more rounded, and
the postero-dorsal margin has a greater ventral slope. U. protrusu belongs to the sub-genus Venilicurdiu, Stoliczka. ${ }^{1}$

Type.-In the Sedgivick Museum; from the l'erm-bed of Atherfield.
Distribution.-Lower Greensand: l'rinn-bed of Atherfield and Sandown.

Fia. 21.-Cyprina (Fenilicardia) protensi, sp. nov. Lower (ireensand (Perna-hed), Atherfield. Sedgwick Museum. Right ralve. \times :

Crackers of Atherfield. Ferruginous Sands of Shanklin (Mẹ̈er Collection). Atherfield Beds of Peasemarsh.

Cyprina Sumerber, d'Orbighy, 1850. Plate XXI, figs. S, 9. Text-fig. 29.
1836. Cyprina angutata, J. ale C. Somerby. Trams. Geol. Sue., ser. Q, wol. iv, p. 128.
1845. -- E. Forbes. Quart. Journ. Geol. Suc., vol. i, p. 3.41 (prartim).
1850. Sowerbit. A. dObigmy. Prulr. de Pal., vol. ii. p. As.

Mrasurements:

	(1)	(2)	(3)	(1)
Length	71	(i)	5!	\%) mmm
Height	60	:1	\therefore	

(1, 2, 4) Hythe Pets. Mythe.
(3) Lower Gremazal, near Atherfiend

Remmpris.-Internal casts of '!!prime are found commonly in the Hythe Beds of Hythe, etc. Those from the "rag" have their original form well preserved, hut the specimens found in the softer greensand beds are more or less crushed. One example of the same species with the shell preserved has been obtained from the Lower Greensand between Atherfield and Blackgang. The form of the shell

Fia. 22.-C'yprina Sowerbyi, d'Orb. Lower Greensand, Parham Park. British Museum, No. 5933. Internal cast. Left valve, and dorsal view of both valves. $\times \therefore$.
resembles that of σ. limeolut" (see below), but the anterior currature of the umbones is considerably less, and the postero-dorsal margin of the shell is less convex. It is difficult to determine satisfactorily the affinities of this species until more specimens with the shell have been obtained. It may be identical with the form from the Upper Aptian of Ste. Croix and the Perte-du-Rhône referred by

Pictet and Roux ${ }^{1}$ to ('. ercmernsis, Leymerie, and by Pictet and ('ampiclue to 1 . angulata, Sowerby. English examples were identified with ''. "nymluta by J. de ('. Sowerby, Forbes, and Morris, but were regarded by d'Orbigny as belonging to a distinct species which he named C. Sorerbyi, and mentioned as types the specimens collected by Fitton from the Hythe Beds near Folkestone. (C. Sonerrigi also resembles C. neocomiensis, d'Orbigny. ${ }^{3}$

Distribution.-Hythe Beds of Hythe. Sandgate Beds of Parham Park. Lower Greensand between Atherfield and Blackgang.

 'lext-figs. 2:3, 24 .| $\begin{aligned} & 1814 . \\ & 1828 . \end{aligned}$ | Venus angulata, J. Sunerly. Min. Conch., wol. i, p. 1.t\%, pl. lx . | | |
| :---: | :---: | :---: | :---: |
| 1836. | - | | J. de C. Suecerly. Trans. Geol. Soc., ser. 2, wol. iv $\text { p. } 240 .$ |
| 1850. | - | - | A. d'Orbigny. Prodr. de Pal., vol. ii, p. 161. |
| 1854. | - | - | J. Morris. Cat. Brit. Foss., ed. 2, p. 199 (purtim). |
| 1870. | - | - | F. Stoliczke. Paleont. Indica, Cret. Fauna S. India vol. iii, p. 193. |
| Non 1868. | - | - | A. Briart and F. L. Cornet. Meule de Bracpuegnies (Mém. cour. et Mém. des Sav. étranters. vol. xaxiv), p. 68, pl. viii, fys. $26-28$. |

Deseription.-Shell large, sub-cpuadrate, rounded, very inerpuilateral, moderately inflated. Anterior margin rounded, passing quickly into the ventral margin, with which it forms a regular and continuous curve. Posterior margin more or less truncated, slightly or moderately convex, usually oblique, and forming an obtuse angle with the postero-dorsal margin. Umbones large, broad, anterior. A more or less distinct carina passes from the umbo to the postero-ventral angle, cutting off a postero-dorsal area, which slopes rather rapidly to the posterionmargin. Lunular region more or less depressed, not limited. Escutcheon narrow, decp, limited by a sharp carina.

Ornamentation consists of growth-lines.
In the right valve the posterior cardinal tooth is large ame divided; the median cardinal is smaller than the anterior cardinal, and in most forms adjoins

2 "Terr. Crét. de Ste. Croix (1865), p. 291 .
 bernensis, Leymerie, see dorbiruy, ' Prodr. de Pal.,' vol. ii (l85(1). p. 7 .
the posterodorsill side of the latter, but in examples in which the umbones are more anterior in position the median cardinal is dorsal to the anterior cardinal, and is almost continuous dorsally with the posterior cardinal tooth.

Mecusuraments:

	(1)	(2)	(3)	(4)	(i)	(6)	(7)	(8)	
Length	10:3	104	99	98	916	89	87		mm.
Height	! 1	¢0	86	86	86	79	79	70	$)$
(1-8) Blackdown.									

Abinities.-Specimens of Cyprinu from the Aptian and Gault of the Perte du Rhonce and Ste. Croix were referred by Pictet, Roux, and Renevier, to C. ertyrnsis, Leymerice, but were subseguently identified with (.. cumbluta by Pictet, Renevier,

Fig. 23.-C'yprina (Venilicurdia) antulata (Sow.). Upper (ireensand, Bhackawn. Muscum of Practical (ieology, No. 1860ts. Right valve, and anterior view of both valves. $\times:$.
and Campiche. ${ }^{1}$ lictet and Campiche, after an examination of specimens from the Gault of Nievre and Yome, came to the conclusion that e. erryensis, as described and figured by Leymeric: and d'Orbigny, ${ }^{3}$ must be regarded as a synonym of (\therefore. remylutin. I have had no opportunity of comparing lirench specimens with examples from Blackdown, but so far as I can judge from the figures of C. ereyensis there appear to be some differences, consecquently I do not at present feel justified in including C. coryensis as a synonym of C. angulutu.

[^27]C. angulata of Briart and Cornet appears to be closely related to r'. rument, Sowerby (see p. 134).
C. (Venilicardia) Juliesi, de Loriol, ${ }^{1}$ from the Gault of Cosne, resembles some forms of C. angulata. ${ }^{2}$

Remarks.-C. angulata varies in its relative height and length, and in the position of the umbones. The shell is usually stout, but occasionally rather thin. Sowerby gives a good figure of C. angulnt", except that the teeth, as pointed out by Stoliczka, are not correctly drawn."

Fia. 24.-Cyprina (Venilicardia) angulate (Sow). Upper (ireensand, Blackdown. Solrowick Museum. Right valve $\times \frac{4}{3}$. The hinge of this specimen is shown on Plate XXII, fig. 2.

Types.-From the Upper Greensand of Blacklown, in the British Muscum.
Distribution.-Upper Greensand (zone of Sichlwulurlhin rastratr) of Blackilown and Haldon. Recorded by Jukes-Browne from the Lower Galult of Wiltshire, and from the Upper Greensand of the Isle of Wight.

Cyprima (Venilicardia) mineonata (Somerly), 1813. Plate XXII, figrs i-s. Plate XXIII, figs. 1. . .
1811. Venes castrensis, J. Parkinson. Organic Romains, wil. iii. p 1-7 (an I. .r.stronsis, I. . .

[^28]181:3. Vends ineolata, J. Souerby. Min. Conch., vol. i, p. 57, pl. xx (upper figure).
18.28. - - J. Fluming. Hist. Brit. Auimals, p. 449.

18:36. Cfprina rostrata, J. de C. Soureby. Trans. Geol. Soc., ser. 2, vol. ir, pp. 240,341 , pl. xvii, fig. 1 .
1836. Ctherea lineolata, Sowerby. Ibil., p. 240.
1850. Cpprina rostrata, A. d'Orbigmy. Prodr. de Pal., vol. ii, p. 161.
1854. - - J. Morris. Cat. Brit. Foss., ed. 2, p. 199.
1854. Cytherea lineolata, Monvis. Ibid., p. 200.
1865. Cyprina rostrata, F. J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 4), pp. 222, 229.
1870. - - F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 193 (Venilicardia).
1907. - lineolata, R. B. Neutom. Proc. Malacol. Soc., vol. vii, p. 284, pl. xxiv, fig. 14.

Non 184t. - \quad A. lrorbigny. Pal. Franẹ. Terr. Crít., vol. iii, p. 98 , pl. celxxi (Cyprina nencomiensis, d'Orhigny, Ibid., p. 759).

Measurements:

Affinitios.-This species differs from C. rugulat, in its more prominent and more strongly curved mbones, in the shorter posterior margin and the greater slope of the postero-dorsal margin, and in the more deeply depressed lunular region. The hinge also differs: in the right valve the median cardinal tooth is distinctly separated from the anterior cardinal and is dorsal to the latter and continuous with the posterior cardinal tooth; the latter is either undivided or the division is indistinctly shown.

Remmels.-C. limeolutn varies considerably in the prominence and curvature of the umbones, and, as a result, in the outline of the shell. An extreme form was figured by .J. de ('. Sowerly as the type of ('. rostruta; in specimens in which the umbones are less prominent and their anterior curvature less pronounced the outline of the shell becomes less triangular, and in some cases approaches that of C. "n!g"latu, but the differences in the hinge of the riglit valve and the greater depth of the lumular region appear to be present in all specimens. The average size of this species is considerably less than that of 1 '. am!ulutu.
'The type of lemus limelnta, Sowerly (l'. castiensis, Parkinson), from Blackdown, agrees with the nomal forms of C restiota, except for the presence of
numerous W-shaped markings on the surface. These appear to be due to the structure of the shell (possibly comnected with colour markings), since they are seen only in specimens which are somewhat decorticated, and are in some cases present on one valve but not on the other, or are seen on the dorsal but not on the ventral part of a valve.

Stoliczka ${ }^{1}$ thought that Venus liupolutu was probably identical with rintheren plana, Sowerby, but the hinge and pallial line of the former prove conclusively that it belongs to the genus Cyprinn.

Types.-From Blackdown ; Venus lineolatia in the British Museum ; '. rostrat," in the Bristol Museum.

Distribution.—Upper Greensand (zone of Sichlanhochia rostrata) of Blackilown.

Cyprina (Venilicardia) truncata (Somerby), 18:36. Plate XXIII, fig. :3.

Affinities.-C. truncata is closely allicd to, and probably only a variety of C. angulata. The shell is thinner, the posterior margin higher, and the anterior part more produced than in C. anguluta.

This species, or variety, has hitherto been referred to lenm: or ' 'y/thrien, but a specimen showing the hinge and pallial line proves that it is a ''! $!\|^{\prime \prime \prime}, \ldots$, The hinge agrees with that of C augulatu.

An example collected by the late Rev. W. Downes (Plate XXIII, fig. f) is more elongated and more inflated than the type of C. truncata, but asrees in other respects, and is probably only an individual variation.

T!ype.-From Blackilown ; in the Bristol Museum.
Distribution.-UPper Greensand (zone of Schlurumechia rostrath) of Blackilown.

Cyphina ligeriensis, d'Ordign!, 18t+.
Internal casts of a large Cupring have been foume in the (remmani:m Sandstone of Wilmington, Devon, and in the cherty Wocks in the Exerow (iancel
(derived from the Upper Greensand) of Aller Vale near Torquay. They have been identified with ('. ligmiensis, d'Orbigny, ${ }^{1}$ by Mr. Jukes-Browne, who has compared them with examples of that species from the Cenomanian of Vimoutiers and Orbiquet, and states that the agreement is very close. The English specimens also resemble ('. Nourliant, d'Orbigny,? of which a cast only is figured by dorbigny, and was at first regarded as C. ligmimsis. An example from Wilmington is in the Sedgwick Museum. Others from Sller Vale are in the Torguay Muscum and in the Sedgwiek Muscum.

Chpina (Vendmama !) qbamata, dorligm, 184. Plate XXIII, figs. 6-9.

Jirscription.-Shell sulb-riomboidal, much inflated, rather strongly carinate, very inequilateral; length somewhat greater than height. Anterior margin rounded, passing gradually into the slightly curved ventral margin. Posterior

[^29]
$\because n_{p}$, cit. (1844), p. cellxw, figs. 3, 4: ip. cit. (1850), p. 195.
margin truncated, high. Posterodorsal region fattened. C'mbones prominem, anterior, curved inwards. Lunular region excavated. Ormamentation consists of concentric strix.

Measurements:

	(1)	(2)	(3)	(${ }^{\text {) }}$	(5)	(9)	(7)	(s)	(1)	(10)	(11)
Length	54	46	37	:3)	915	23	416	41)	90	1.5	\% 1 mm.
Height	46	41	34	31	$\underline{2}$	19	:3)	:3:3	1.5	:38	
			$\begin{gathered} (1-6) \\ (7-9) \\ (10) \\ (11) \end{gathered}$	G:ult, Rye H Chlori			ster Bral				

Affinities.-In C. ligeriensis, d'Orbigny, ${ }^{1}$ the umbones are less anterior in prosition, and the angle between the posterior and the dorsal margins is larger than in C. quadrata.
C. regularis, d'Orbigny, ${ }^{2}$ is distinguished from ('. quentate by its less inerguilateral and more regularly globose shell, by its less incurvel umbones, and the smaller truncation of the posterior end.
C. crassicomis (Agassiz) ${ }^{3}$ possesses a relatively higher and less inceruilateral shell, with more prominent umbones, which are not so much curved anteriorly as in C. quadrutu.

Remarks. -The specimens from the Gatult have the shell more or less perfectly preserved, but most of the examples from higher beds are, like the type, in the form of internal casts. The specimens found in the Chalk Rock are rather imperfect, but do not appear to differ specifically from those fomed at lower horizons.

Type.-The locality of the type is not given by d'Orbigny, but he records specimens from the Cenomanian of Villers (Calvados), Rumen, S't. Calais (Sarthe), etc.

Distribution.-Upper Gault of Folkestone. Upper Greensand (\%one of Nchlw... buchia rostrete) of Devizes (fide Jukes-Browne). Rye Itill Sand of Wiaminster. Base of the Chalk of Chard. Chloritic Marl of Maiden Bradley and the Bske of Wight. Chalk Rock of Morgan's Hill near Devizes, C'uckhamsley, and Lutun.

[^30]
(• Naturf. Freunde zu Berlin Mas.,' vol. v. p. 68.)

'Tramam: aicapmone (Kerping), 1883. Plate XXIII, figs. 10, 11.
1883. Cypricardia arcadiformis, W. Keeping. Fuss. etc., Neoe. Upware and Brickhill, p. 120, pl. vi, fir. 6 .

Insiripetion.-Shell trapezoidal, inflated; length much greater than height. Dorsal and ventral margins nearly straight and nearly parallel. Posterior margin obli,que, straight or slightly curved, forming an olotuse angle with the dorsal margin and an acute but rounded angle with the ventral margin. Anterior margin rounded. Umbones near the anterior end, much curved, with a strong, rounded keel extending to the postero-ventral angle. The part in front of the keel is slightly concave, giving a faint sinuosity to the ventral margin of the valve. The triangular part dorsal to the keel is compressed and flattened, and slopes steeply to the margin. Lunule cordate. Hinge not seen.

Ornamentation consists of small, rounded radial ribs, and, at intervals, strong concentric laminar ridges; both ribs and ridges are indistinct on the part dorsal to the keel. Length 21 mm .; height 12.5 mm . ; thickness, 13 mm .

Affinities.-This species is more elongate, and the carina is more angular than in 'I'. squemosum (see below).
lirmults.-The only examples seen are the type and a specimen in Mr. J. F. Walker's collection.

T'ym'.-The type is in the Sedgwick Museum.
Instribution.-Lower Greensand, U_{p} ware.
'Tentanm? seumosum (Kepiny), 1883. l'late XXIII, figs. 12-15.
1883. Cypricardia squamosa, W. Kerping. Foss., ete., Neoc. Upware amd Brickhill. p. 120, pl. vi, fif. 5 .

Drseriphim. -Shell rounded-oblong, much intated, highest near the posterior end. Dorsal margin nearly straight; the posterior forms a regular curve, which passes into the slightly concave ventral margin. Dorsal part of anterior margin concave, ventral part rounded. Umbones prominent, anterior, much curved. A hroad, rounded ridge extends from the umbo to the postero-ventral extremity and divides the shell into two parts. The part in front of the ridge is slightly concave, the part ahove is larger and convex. Lamule cordate.

Ormamentation consists of small radial ribs, and, at rather distant intervals,
strong concentric lamelles. The ornamentation is indistince on the par athove the rounded ridge. Margin of valve crenulate.

Measwrements :

 to which it shows some resemblance in general form. But the faint radial rils, and strong concentric lamella, as well as the chanacter of the hinge, so far ats it can be made out, seem to commect this species with T'rime:inm rather tham with Curlitu.

T'ype.-In the Sedgwick Museum.
Distrilution.-Lower Greensand, L-wware.

Tramzelem: sp. Plate XXIII, fig. 16.

 p. $11!$.

An imperfect left valve from the Lower Greensimd of Upware, in the Sederwick
 the Cenomanian of Saxony. The ribs are fereer in number than in the examples of C. striate figured by Geinitz.

1841. Crassatella trapezomalis, F^{\prime}. A. Rimim. Die Verstein. Il. wordeleutsed. Kreiderelo. p . it, p . ix. fig. .

 Kreidershe in butwly.

[^31]1873. Cyprina trapezuidalis, 1I. b. Geinitz. Das Elbthalgeb. in Sachsen (Palwontugraphica, vol. xs, pt. 1), p. 299, pl. l, fig. 6 (:5).
188!. Cmpicarda - E. Holzolyd. Die Mollusk. Aachen. Kreide (Palæuntographica, vol. xxxv), p. 179.

18:7. Trapezium trapezoidale, II. Woeds. Quart. Journ. Geol. Soc., vol. hiii, p. 391, pl. xxviii, figs. 9, $\mathbf{1 0}$.
1901. Cyplicarida trapezoidalis, F. Sturm. Jahrb. d. k. preussisch. geol. Landesanst. für 1900, vol. xxi, p. 80, pl. vii, fir. 5.
1902. - \quad - Wollemann. Lïneburg. Kreide (Abhandl.
d. k. preussisch. geol.

Landesanst. N. F., Heft. 37), p. 78, pl. ii, fig. 3; pl. iii, fig. 1 .

Desrription.-Shell trapezoidal, rounded, inflated. Ventral margin slightly curved, roughly parallel to the dorsal margin, and passing gradually into the rounded anterior margin. Posterior margin obligue, forming an obtuse angle with the dorsal margin and an acute angle with the ventral margin. Umbones near the anterior end, much curved. A sharp, gently curving carina extends from the umbo to the posterior angle and cuts off a triangular and slightly concave area.

Ornamentation consists of fine concentric lines. Mewsurements:

	(1)	(2)	(3)
Length	95	93	
Height	17	14	11
Thickness	16	15	15

(1-3) Cbalk Ruck, Cuckhamsley.
L!fiuitirs.-Wollemann considers that T'rope:iunn yalicienum (Favre)' is not distinct from this species, but is founded on an older eximple than the type of I'. Henperemiduln. According to Wollemann, varions changes in the form of the shell take place during growth. Thus, in the older specimens the valves become more convex, the length relatively less, the posterior margin less oblifue, the ventral margin more curved, the outline less trapezoidal, and the unbones less curved. This view is probably correct, but none of the English examples which I have seen pass beyond the stage represented by Romer's type.

In I'r"win!m tricurinutum (Römer): the umbones are less anterior in position than in T'. tromeraidule.

[^32]Remarks.-This species occurs in the Chalk Rock, but is not common. All the specimens seen are casts, but one shows a fragment of shell.

Type.-The type is stated by Römer to have come from the Pliner-kalk of Strehlen (Dresden), but Geinitz says that he has never found the species at that locality.

Distrilution.-Chalk Rock of Dover, Cuckhamsley, Aston Rowant, Princes Risborongh, Thickthorn Hill (Bledlow), and Luton railway cutting.

> Family-ISOCARDIIDAE, (iraly.
> Gimus-Isocatida, Lamurll, 1799.
> ('Múm. Soc. Hist. Nat. Paris, p. 8ti.)

Isocardia simlis, Soucrly, 1826. Text-fig. 25.

1826. Isocardia simides, J, de C. Sourerby. Min. Comeh., vol. vi. p. 27, pl. dxvi. fis. 1.
1827. - - A. dorbigny. Prodr. de Pal., vol. ii, p. 16:3.
1828. - - J. Morris, Catt. Brit. Foss., ed. 2, p. 204.
1829. - - F.J. Pirtet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 41. p. 240 .
1830. - - F. Stolicika. Palæont. Indica, Cret. Fauna S. India, vol. iii. pp. 188. 19.4.

Deseriptim. Whell convex, oval, longer than high. Antero-dorsal margin short. Anterior margin produced, somewhat pointed, rounded, curving rapidly to join the slightly convex ventral margin. Posterior margin short, somewhat truncated. Postero-lorsal margin long, convex, with a considerable ventral slope. I^{\top} mbo prominent, recurved. Sumular region deep. A faint carina extends from the umbo to the postero-ventral extremity. Ornamentation consists of growthlines. Length 78 mm . Height 70 mm .

Remurks.-The type, a right valve, now in the British Museum, is the only undoubted example of this species which I have seen. From the nature of the matrix there seems no doubt that this specimen comes from the mammilatum zone. The linge cannot be made out satisfactorily, but the form of the shell agrees closely with that typical of Isormidim.

Instrilmtion.-Lower Greensand (zone of Dourillivirices mummilntum) near Sandgate. ${ }^{1}$

Fumily-LUCINIDA, Fleming.

Girmu:-Lecena, J. Fi. Brufuiere, 1797.
(' Fneye. Metlo., Vers,' pl. celvxxiv. Lamarek, ' Móm. Suc. Hist. Nat. Paris.' 1799, p. 84.)

Lecina, sp. Plate XXIV, figs. 2, 3.
Internal casts of a Lmimu have been obtained from the Spilsby Sandstone (zone of Belemintes literulis) of Domington and Claxhy. Λ right valve with the shell preserved was found hy Mr. Lamplugh in the Spilisy Sandstone at Iolton and probably belongs to the same species as the casts. The shell bears numerous small concentric ridges.

Lucisi, sp. Plate XXIV, figs. 4, \%.
Some internal casts and a portion of an external cast of Lucimu have been
${ }^{1}$ Isnrardia? armata, Forbes, 'Quart. Journ. Geol. Soc.,' vol. i (1845), p. 242, pl. ii, fig. 10, is known only by the imperfect type specimen which is now in the Museum of the Greological Society (No. 2150), and was whained from the Lower Greensamd of Atherfield. It was referred to Opis ly dOrhigny, ' Prome de Pal.,' vol. ii (1850), p. 118.

found in the Lower Grecnsand ${ }^{1}$ of Blackgang, Shanklin, and Parlam Park. 'The outline is nearly circular and the convexity small or moderate. The ornamentation consists of concentric ribs and flat interspaces.

Lucina, sp. Plate XXIV, fig. 6.
A specimen with the two valves mited was obtained by the late ('. J. A. Meÿer from the Lower Greensand (Ferrugimous Sands) of Shanklin, and apears to belong to a distinct species. The shell is regularly convex, slightly higher than long, and the lunule is deeply depressed. The ormamentation consists of numerons, small, regular, concentric ribs.

Luciva? sculpta, Phillips, 1899. Plate XXIV, figs. i-9.

Deseription.-Shell very convex, higher than long, with :mgular outline. Antero-dorsal margin long, concave. Postero-dorsal margin long, convex. Aneldes occur at the ventral limit of the lumule, at the junction of the anterior and rentral margins, near the posterior part of the ventral margin, and at the ventral limit and the middle of the escutcheon. Umbones high, prominent, sharp, curvel

 with those species. Two imperfect left values from the Lawe dirensamd of dhertion, new int the

 (18.42), p. 4, pl. iii, fis. 8.
anteriorly. Ridges extend from the umbo to the angles at the margin of the valve; the parts between the ridges are flattened. Lumule large, ovate, divided into an imer and an outer part ly a ridge. Escutchoon very large, consisting of a median lanceolate part which is much depressed and separated by a sharp edge from a large concave outer portion.

Ornamentation consists of broad concentric ridges which run parallel to the margin of the valve and end abruptly at the lumule and escutcheon. Very fine, sometimes indistinct, ribs occur on the ridges and interspaces.

A!linitios.-Luminn srul $l^{\prime \prime \prime}$ is quite unlike any other Cretacoous species. Its angular outline and large concare escutcheon give it an umusual appearance. Externally it shows some resemblance to some species of Ihlywirm, ${ }^{1}$ but the hinge and adductor impressions are at present unknown. Stolicaka regarded it as probably a true Lurinu.

Remutis.-I have seen only four specimens, of which three are in the British Museum and one is in the Museum of Practical Gcology.

T!ye.-The type cannot be found. It is stated to liave come from the Speeton ('lay (: zone of Brelrmintos minimus).

Instrilution.-Lower Gault (Bed vi) of Folkestone.

Lemena tenera (Surmer!), 1836. Plate XXIV, figs. 10-14.

1) tserifition. Whell oval, moderately convex, longer tlian high, inequilateral, the anterior part longer and higher than the posterior part. Anterior margin regularly rounded, passing gradually into the curved ventral margin. Posterior margin somewhat truncated, forming an oltuse angle with the postcro-dorsal margin. Umbones of moderate size with a slight forward curvature. Lumule dongate, depressed, limited ly a carina. Escutelicon large, not distinctly limited.
[^33]Ornamentation consists of numerous, regular, strong, concentric rils which lsecons smaller near the antero-dorsal and posterodorsal margins.

Measwements:

Alfinities.-In form and ornamentation this species resembles L. Sanctic-t'reris, Pictet and Campiche, ${ }^{1}$ but is much smaller and relatively longer.

Type.-The type came from the Gault of Folkestone, but camut now be found. The specimens figured by Jukes-Browne are in the Sedgwick Museum, Cambridge.

Distribution.-Gault of Folkestone and Black Ven. ('ambridge (ireensand. Upper Greensand (zone of Schlanbachia rostrata) of Devizes.

Description.-Shell oval or nearly orbicular, moderately convex, slightly inerpuilateral, longer than high, postero-dorsal part compressed. Anterior and ventral margins rounded. Posterior margin less convex than the anterior, forming an obtuse angle with the convex postero-dorsal margin. L'mbones of moderate size. Lumule elongate. Ornamentation consists of numerous regular, concentric, lamellar ribs separated by broad, flat interspaces with tine concentrice ribs.

Mectustrements:

		(1)	(2)	
Length		32		mm.
Height		285	$\because 1$	
Thickness	.	14	-	:
	$(1,2)$	Blackd		

 Neocomian, but the umbones are less prominent and the shell is lese inepuilateral. It is also similar to I. sulmemismedis, d'Orbigny,' from the Lathen diremanm, but the ribs are more numerous and the anterodorsal margin hat a srater

 fis. 11.
ventral slope. 'The ribs are more mumerons than in Letim Nercis, d'Orbigny,' from the Cenomanian.
 ${ }^{4}$ pper Greensand near lyme Regis.

Inseription.-Shell small, very convex, with nearly circular outline, slightly inceruilateral; length and height nearly equal. Anterior and ventral margins forming a regular curve posterior margin slightly truncated, forming an obtuse angle with the postero-lomal margin. Umbones rather large. Lamule ovate, broal, depressed. Eiscutcheon indistinctly limited. Ormamentation consists of concentric ribs, with growth-rings at intervals.

Mensurcments:

	(1)	(2)	(3)
Length	5	1%	4. 111 m .
Height	$4 \cdot 9$	$4 \because 3$	1.
Thickness	$3 \cdot 5$	3	$\cdots \cdots$
	(1-3)	wn.	

Liemerlis.--'The form refered to l. pisum by Briant and Cornet is much larger than the English examples of that species, and also differs in its relatively longer and more compressed shell.

I'!! $1^{\prime \prime}$. From Blackdown ; in the Bristol Muscum.

[^34]F'mily_CORBIDe, Intl.

$$
\begin{aligned}
& \text { ('Moll. Great Ool.,' pt. ii, p. 94.) }
\end{aligned}
$$

Corbicelia claxbiensis, sp. nov. Plate XXIV, figs. 20-29.
Description.-Shell oval, regularly conrex, slightly inernilateral, anterior part rather larger than the posterior part, length equal to nearly $1 \underline{2}$ times the height. Anterior margin rounded. Ventral margin convex, curving rapidly to join the posterior margin which forms an angle with the nearly straight postero-lorsal margin. Umbones broad, inconspicuous, scarcely curred, close together. Surface of shell smooth except for growth-lines.

Measurements:

	(1)	(2)	(3)	(1)	
Length	38	37	: ${ }^{1}$	27	mm .
Height	26	25	21	19	,

Remarks.-The genus Corbicella does not appear to have heen recognisel in deposits of Cretaceous age, but since it is present in the Portlandian its accurrence in the lower part of the Speeton Series of Lincolnshire causes no surprise.
C. claviensis is similar in outline to some forms of r'. P'rluti, de Loriol, ${ }^{1}$ from the Portlandian.

Type.-In the Sedgwick Muscum, Cambridge.
Distrilution.-Spilsby Sandstone (zone of Penrmiters leterntis) of Claxhy aml Donnington. Claxby Ironstone (zone of B. Iatratix) of Bemiworth Itaven.

$$
\begin{aligned}
& \text { ('Min. Conch.,' wol. iv, I' 4.1.) }
\end{aligned}
$$

Spimra corrygata, Sowerly, 182g. Plate XXIV, fig. olt Plate XXT, figs. 1. I: text-fig. ${ }^{2}$ (i.

[^35]1842. Cardium galioprovinclale, P. Matherm. Catal. Foss. du Départ. des Bouches-du-Rhone, p. 155, pl. xvii, figs. 1, 2.
1844. Cormis cordiformis, A. dOrbigny. Pal. Franc. Terr. Crét., vol. iii, p. 111, pl. cclxxix.
1845. - correciata, E. Forbes. Quart. Journ. Geol. Soc., wol. i, p. 239.
1850. - - dorligmy. Prodr de Pal., vol. ii, p. 78.
1854. Splema - J. Morris. Cat. Brit. Foss., ed. 2, p. 294.

185:5. Corbis - G. Cotteau. Moll. Foss. de l'Yonne, p. 80.
18nti. - - F.J. Pictet and E. Renevier. Foss. Terr. Aptien (Matór. Pal. Suisse, ser. 1), p. 76, pl. viii, fig. 3.
1859. - cordiformis, J. Vilanova-y-Piera. Mem. geog.-agric. de Castellon, pl. iii, fig. 13.
186r. - corrdgata, H. Coquand. Mon. Aptien de l'Espagne, p. 116.
1866. Fimbria - F. J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pial. Suisse, ser. 4), p. 279.
1869. Paleocorbis cordiformis, T. A. Courad. Amer. Journ. Couch., vol. v, p. 101.
1871. Spimara corrumata, F. Stoliczkt. Palmont. Indica, Cret. Fauna S. India, vol. iii, pp. 247, 252.
! 1877. Corbis cf. corrugata, G. Bäm. Zeitschr. d. deutsch. geol. Gesellsch., vol. xxix, p. 240.
1897. - corrugata, K. Grohardt. Neues Jahrl. für Min., etc., Beil.-Bd. xi, p. 186.
1899. Fimbria - A. Wollemann. Zeitschr. der deutsch. geol. Gesellsch., vol. li, p. 592.

Description.-Shell large, stout, inflated, subglobular, slightly inequilateral, height and lengtle nearly equal. Anterior margin rounded, forming an angle with the linge-margin, and passing gradually into the ventral margin with which it forms a regular curve. The ventral margin curves rapidly towards the posterior margin, which makes an obtuse angle with the hinge-margin. Lumule flattened or depressed, with a swollen lower margin which is separated from the rest of the valve by a furrow. Escutcheon triangular, limited by a furrow which passes from the umbo to the posterior margin. Umbones large, prominent, curved anteriorly. Ornamentation consists of broad, strong, unequal, concentric ridges which are more numerous on the middle than on the anterior and posterior parts of the shell. The concentric rilges are crossed by numerous, small, radial rils.

Mraswirmmets:

Remerks.-This species is the type of the genus Syliatio. It is fairly common in the l'erna-bed of the Isle of Wight. A young example is figured by d'orbigns.

I'ype.-The type was oltained by Professor Sedgwiek from the I'ernut-l)ed of Sandown, but cannot now be found.

 No. 19716. Dursal view. \times.

Distribution.-Lower Greensand (Lernm-bed and ('rackers) of Atherfied ; alsw recorded by Fitton from Beds viii and xiv. Hythe Beds of IIythe and Maidstone. Recorded by Topley from the Atherfield Beds of l'easmatrsh and shalfurd; the Hythe Beds of Lympe; and the Sandgate Beds of Sandgate.'

Shime, sp. Plate XXV, fig. 3.
A small specimen from the Chalk Marl of Chard appears to belong to a distinct species. It is much smaller than S. corrughtu, also relatively longer, more oval in outline, and less inflated. The escutcheon is not defined, the lumule is small on absent, and the antero-dorsal margins are thick and prominent. The concemtric ridges resemble those of s . corrumptu, but the radial ribs are more distinct. Lengeth 16.5 mm . ; height 14 mm . ; thickness 12.5 mm .

1 The type of Corbis? fibrose, Forbes, from Peasmarsh, is in the Musemm of the (ienlurinal
 (1845), p. 239 .

Ciculs-MUTIELLA, Stulic:-:ke, 1871.
(\cdot Palwount. Indica, Cret. Fiuna S. India,' p. 247.)

18:36. Petricula canaliculata, J. de C. Sumerby. $\begin{gathered}\text { Trams. Geol. Suc., ser. 2, vol. } \\ \text { iv, pp. } 241,341, ~ p . ~ x v i, ~\end{gathered}$
fig. 11. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 270.
1565-66. Petricola nuctrormis, Pictet and Campiche. Ibid., pp. 163, 276.
1870. - canaliculata (Camdidm), Fituliczke. Palwont. Iulica, Cret. Fauna S. India, vol. iii, p. 141.

- - nuciformis (: Corbis), Stoliczka. Ibid., p. 141.

Itseriptim.-Shell inflated, outline more or less orbicular, inequilateral, length and height equal. Margins rounded. Anterior margin less convex than the posterior margin. The latter makes an obtuse angle with postero-dorsal margin and curves rapidly to join the ventral margin. The margin in front of the umbo expands. Umbones large, contiguous, curving inward and forward. No humbe.

Ornamentation consists of numerous, regular, radial ribs, separated by narrow furrows, and crossed by narrow concentric ridges which are more prominent on the posterior part of the shell than elsewhere. Imer margins of the valves cremulate.

There are two cardinal teeth in the left valve and one in the right. Behind the umbo a long, nearly straght, sharp ridge forms the imer margin of the lig:ment groove.

Mectasuremertis:

	(1)	(2)	(3)	(4)	
Length	20%	19	17	145	10 mm .
Height	20.5	$1!$	17	145	

(1-4) Blackdown.
I!jinities.-The generic position of this species has been for a long time a matter of doubt, but no one appears to have aceepted Sowerby's view. The
species is rare, and the opinions expressed by various authors appear to have been based entirely on the figures given by Sowerby.

The hinge is similar to that of Muticllu conretute (Zittel),' but shows some points of difference: this the transverse corrugations or teeth on the expmided anterior wargin appear to be absent, and the terminal posterior lateral tooth camot be recognised with certainty. The points of resemblance, however, and the similarity in the form of the shell and the character of the ornamentation seem sufficient to justify the assignment of this species either to Mutiella or to a closely allied genus.

From the figures given by Sowerby, Petricole nuciformis appears to differ considerably from P^{\prime}. cenaliculatu, but after an examination of the typ of the former I am led to the conclusion that it is not specifically distinct from the latter; it differs only in being more inequilateral, and the apparent difference in the ormamentation is due to the imperfect preservation of the surface of the shell in l'. nucifurmis.

Types.-From Blackdown. The type of I'etricolu canaliculate camnot be found. The type of P. nuciformis is in the Bristol Musemu.

Distribution.-Upper Greensand (zone of S'chlarnuechia rostrata) of Blackdown, and Peak Hill, near Sidmouth.

Metheli kotuxd.ata (dorbiguy), 184.
1844. Corbls rotundara, A. dOrbigny. Pal. Frame. 'Terr. Crét. vol. iii, p 11:3, pl. celkxx, figs. 1-4.
1850. - \quad - Prodr. de Pal., vol, ii, p. 16:
1867. - - E. Gucranger. Album Paléont. de lit Sarthe, I. 15, p^{pl} xix, figs. 10, 11.
1870. - \quad F Rimer. Geol. v. Oterschles., pi340.
1871. Mutiella motundata, F'. Sholicaka. Palamat. Indica, Cret Fauais. India, vol. iii, pp. $247,252$.
1890. Combis rotundata, A. J. Jukes-Brome amel W. Hill. Quart. Journ. Gerol. Sue., vol. lii, p. 153.

A portion of a right valve of Metiella rotundata from the Cemomanian (Bed 11) of Dunscombe, South Devon, was found and determined by the late ('. .J. . 1. Meÿer. An internal cast was collected from Bed 10 of Beer Head by Mr. JukesBrowne, who also records the species from the Chloritic Marl of Maiden Bradley,
 Stoliczka, and subserguently by Zittel and ly G. Mäller, to the penus Mutiella. Compate athe the hinge of Mutiella rotundata figured by Guéranger, Album Paléont. de la sarthe (lobī). ph six, fig. 11.
and the Chalk Marl of Chard. The specimens seen are not sufficiently perfect for figuring.
M. rotumbtur is the type of the gerns Mntirlli. In France this species is found in the Cenomanian of Le Mims, Sirthe, Rouen, etc. ${ }^{1}$

$$
\begin{aligned}
& \text { Pimily-UNICARDIIDE, liseher. } \\
& \text { (irmis-Unicambich, I. dorbign!, 1849. } \\
& \text { (•Prodr. de Pal.,' vol. i, p. 2l8.) }
\end{aligned}
$$

Desrription.—Shell large, oval, inflated, with somewhat flattened sides, very incepuilateral; anterior part much longer than posterior part. Anterior margin well rounded, passing gradually into the antero-dorsal margin, and into the ventral margin, which is only slightly curved. Posterior margin truncated. Umbones broad, curved inward and slightly forward. In front of the umbones the shell is depressed.

Ornamentation consists of narrow, sharp, prominent, somewhat irregular concentric ribs separated by relatively broad, concave interspaces.

Menstricmernts:

	(1)	(2)
Length	52	40 mm.
Height	52	$34 \quad$,

($1, \underset{\sim}{\boldsymbol{2}})$ Benniworth Hatven.
I!finities.-In this species the umbones are not so high and the posterior part of the shell is longer than in U. heterorlitem (d'Orbigny)"; also the ribs appear to be narrow aud sharper.

T'ype--In the Sedgwick Musemm, Cambridge.
Instribution.-('laxby Ironstone (zone of liclemuites litiomlis) of Bemniworth Itaven, Lincolnshire.

[^36]Unicardiem vectense, sp. nov. Plate. XXV, figs. 8-11.
Description.-Shell thin, much inflated, oval or slightly subpuadrate, inerguilateral, the anterior part rather larger than the posterior part; length a little greater than height. Antero-dorsal margin short, nearly straight. Anterior margin rounded, making an obtuse angle with the anterodorsal margin, and curving rapidly to join the moderately convex ventral margin. Posterior margin rounded, slightly truncated. Postero-dorsal margin slightly convex. C'mbones prominent, contiguous, curving inward and forwarl. Ornamentation consists of numerous, strong, somemlat irregular, concentric ribs. Ligament in a long, narrow groove. Teeth absent or poorly developed.

Measurements:

	(1)	(2)	(3)	(${ }^{(4)}$
Length	20	18	16	12
Height	19	17	15	11.

Affinities.-The shell is relatively higher, the umbones more prominent, and the ribs rather stronger than in U. Eliritif, de Loriol. ${ }^{1}$

Distribution.-Lower Greensand: Crackers of Atherfield, Prommed of Sandown, and Ferruginous Sands of Shanklin.

Unicardicm, sp. Plate XXV, fig. 12.
A specimen of C'incardium from the Upper Greensand of South Devon* was collected by Sir H. T. De la Beche and is now in the Musemm of the Geological Society, No. 1580. It resembles U. rectense, lut the umbones are not so prominent and the ribs are smaller, more numerous, and more regular.

Two internal casts from the C'ambridge Greensand (derived from the Gault) were identified hy Mr. Jukes-Browne as Corlis !fultina, Pictet and Roux. The specimens are in the Setgwick Muscum, and no other examples appear to hare been found. The type of r . gaultina came from the Gault of Saxonet. In external form this species agrees elosely with Concordinm, but the hinge is manown, so that the generic position cannot be determined with eertainty.

I'nicardum rincmphense (Mthatell), 1822. Plate XXV, figs. 13, 14.

> 1850. Panopan --- A. dorbigmy. Prodr. de Pal., vol. ii, p. 157.
> 1854. Unicardium ringmeriense, J. Marris. Cat. Brit. Foss., el. e. p. 2e9.
> 19i5. Cardium - F.J. Pirtetand fi. Campiche. Foss. Terr. Crít.
> Ste. Croix (Matér. Pal. Suisse. scr. 4), p. 195.
> Non 1850. Arca ringmerensis, II. B. Geimitz. Das Quadersamlst. oder Kreidegeb. in Deutschland, p. 162.
> 18i2. Mutiflife ringmerensis, I. B. Geinita. Das Elbthalgeh. in Sachsen (Palxontographica, vol. xx, pt. 2), p. 61, pl. xvi, figs. 11-13.
> 187. -- A. Fritsch. Stud. im Gebiete der bïhm. Kreideformat. II Weissenberg. u. Malnit\%. Schicht., p. 115, fig. 75.
> - 1883. - Fritsch. Ibid. III Iserschicht., p. 100, fig. 64.
> - 1889. - \quad Fritsch. Ihid. IV Teplitz. Schicht., p. 78.
> - 1897. - \quad Fritsch. Ibid. VI Chlomek. Schicht., p. 54, fig. 59.

Descrip,ion.-Shell subquadrate, rounded, inflated, antero-dorsal part compressed, length rather greater than height, inequilateral, anterior part larger than the posterior part. Antero-lorsal margin nearly straight. Anterior margin moderately convex, making an obtuse angle with the antero-dorsal margin and curving rapidly near the ventral margin. The latter is moderately convex and curves upward to join the posterior margin, which is slightly curved, and forms, an obtuse angle with the postero-dorsal margin. Umbones large, prominent, contiguous, curving forward. Ornamentation consists of strong, narrow, concentric ridges.

Merswements:

Length	
Meight	(1)
	(1) Chalk Marl, Titherleigh.
	(2) Chall Marl, Chardstuck.

Remarks.-The specimens from the Pläner-kalk of Strehlen which werc referred to this species by Geinitz appear to be related to Mutiolla roarctuta (Zittel). ${ }^{1}$

Type.-The type came from the Chalk Marl of Middleham, but cannot now be found.

Distribution.-Upper Greensand (zone of Schlnenbarlion rostrata) of Devizes. Base of Chalk Marl of Titherleigh and Chardstock. Chalk Marl of Middleham and Ringmer.
[Systematic position not determinel.]
Gemus-Tiftironia, F. Stolic:lia, 1870.
(' Palæont. Indica, Cret. Fauma S. India,' vol. iii, p. 158. Thetis, J. de C. Sowerly, ' Min. Conch.,' vol. ri, 1826, p. 19. Non Thetis, Oken, 1815. Syn. Fimbriella, Stoliczka, op. cit., p. 246.)

The genus Thetironia [Thetis] has been placed in the family Venerida by Deshayes, d'Orbigny, Chenu, Stoliczka, Zittel, Fischer, Dall, and other authors, on account of the presence of the acutcly angular line which has often been regarded as a pallial sinus. This angular line appears as a deep groove on internal casts, and must consequently have been a prominent rib on the interior of the shell. In its position and rib-like form it is quite unlike the pallial sinus of any lamellibranch," and it seems to be a structure of an entirely different nature, probably scrving, as was suggested by S. P. Woodward ${ }^{3}$ merely to strengthen the thin shell. Thetironi, is further distinguished from the Veneridæ by its hinge, which is of quite a different type (see Plate XXVI, figs. 101 l, 14). Stoliczka, in referring this genus to the Veneridæ and sub-family Dosiniine, says: "There can be little doubt that all the external characters indicate a close appproach to the recent Clementia"; the hinge, however, which seems to have been unknown to Stolic\%ka, shows that this view of the relationship of I'lietironia cannot be maintained.

A concentric ridge seen near the ventral margin on some internal casts of Thetironia has been regarded by some authors as evidence of a simple pallial line; but the presence in some specimens of several similar ridges at different distances from the margin suggests that they are really of the nature of growth-rings (swe Plate XXVI, fig. 6).

Thetiromin was identified with Pormya by S. P. Woodward (18.)t) and ly II.

${ }^{2}$ De Loriol compared it with Lurimpmix, hut the differences hetwind the pallial sims of that sums and the angular rib of Thetironia are considerable.
 " umbones strengthenel inside lex a posterior limina."
and A. Adams (1858). Deshayes (18:8), and Pictet and Campiche (1865), though considering them allied forms, did not regard them as generically irlentical. The latter authors had little confidence in the suggested relationship of Thetiromin to lemus, but in the absence of specimens furnishing decisive evidence they deft the former genus in the family Veneridæ. In its external form and thin shell Thetiromin shows some resemblance to l'oromy/a, but the conspicuous internal ligament found in the latter is absent in the former.

In a systematic list of Mollusea, J. E. Gray ${ }^{1}$ placed Thetivoni" in the Lucinidx, but gave no reasons for assigning it to that family. Although elongate markings do occur in the interior of some species of I arina, they show but little resemblance to the angular rib of Thetiromiu. Further, the linge is unlike that typical of Luriua; for although in some few species (\cdot !. L. Liblu, L. permsylumien) in which the umbones have a considerable anterior curvature, the positions of the cardinal teeth become somewhat similar to those in Thetioni", yet this is clearly a secondary character due to torsion and camot be taken as evidence of any affinity between Lurina and Thetironia.

The hinge in some of the Corbila, such as Spharioln, Gomodon, and Mutielln resembles that of Thritioniu, but is far stouter, and the shell is much thicker. The hinge in Ituicnidium also is somewhat similar to that of Ihetiromin, since lateral tecth are absent, but the cardinals are less developed. I'uicardium, however, differs from Thetioni" in the character of its ornamentation and in the form of the shell.

In both form and position the teeth of Thetironia show a striking resemblance to the cardinal tecth of the Cardiada (especially to Protocardia), and the hingemargin in front of the umbo expands in a similar way; some further resemblance is seen in the position and prominence of the external ligament, and in the general form of the shell, which is similar to that of the nearly smooth Cerdium (Servipes) firminnulirmm, Chemmitz.? The greater development of ormamentation on the posterior part than on the remainder of the shell in Thetironi", is also suggestive of some forms of Protorerlia. The position of the cardinal teeth in the Cardiide is practically constant and is a character of systematic importance; so that the close resemblance between these teeth in Ihetirmin and in the Cardidae seems to indicate a real relationship. Opposed to this, however, is the absence of lateral teeth ${ }^{3}$ in Thetiomia; but although these teeth are usually found in the Cardiide,

[^37]yet they are occasionally absent. Other differences are seen in the very thin and punctate shell, and in the internal rib.

Nothing closely resembling the internal rib of Thetironiu seems to be known in any other lamellibranch. But in some Jurassic and Cretaccous ${ }^{1}$ species of l'rothcardia a rib, either single or Λ-shaped, is found at the inner boundary of the posterior area; this, however, differs from the rib of Thectiromin, in that it reaches the margin of the valve and is not continued anteriorly to the neighbourhood of the anterior adductor.

It seems, therefore, that although Thetironie resembles the Cardiide in several respects, yet the points of difference are too great to allow of its being included in that family.

Thetimona minol (Soucerly), 1826. Plate XXV, figs. 1.5t-c; I'late XXVI, figs. 1—8.
1822. Venos, G. Mantell. Foss. S. Downs, p. 73.
1826. Thetis minor, J. de C. Suecely. Min. Conch., vol. vi, p. ㄹ. pl. dxiii, fiss. 6 (: 5).
1899. - - M. J. L. Dejrance. Dict. Sci. Nat., vol. liv, p. 975.
1841. -- Sowerbir, F. A. Romer. Die Verstein. d. nurd-deutsch. Kreidegeh. p. 72 (partim).
1845. - - var. a minor, var. b. major. L' Forbes. Quart. Journ. Geol. Suc., vol. i, p. $\because 24$.
184t. - Levigata, A. d'Orbigny. Pal. Franc. 'Ierr. Crit., vol. iii, p. 453, pl. ceclsmavii, fiss. 1-- 3 .
 pl. xxii, fisss. 3, 4.
1854. - J. Morris. Cat. Brit. Fuss., d. \because, p. 2.27.
 p. 318).

186\% - - F.J. Pictet and G. Campiche. Foss. Terr. Crit. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. $202, \mathrm{pl}$. exii, tio. 4.

- Thembonia minor, F^{\prime}. Stoliczhe. Pabeont. Indiat, Cret. Fama S. India, vol. iii, 1. 15s.

1884. Thetis minor, O. Weerth. Die Famat des Neocom. im Teutohnere. Walle (Palavont. Abhamel., vol. ii). p. H1, pl. ix, figs, 5, ti.
1885. - havigata, E. G. Skeet und V. Malsth. Jur. Neore and Gault Iboblders in Demmark.

[^38]

Uescription.-Shell oval, rounded, convex, slightly (sometimes moderately) inerguilateral; length rather greater than height. Margins forming nearly regular curves; anterior margin less convex than the posterior, making a rounded angle where it meets the nearly straight antero-dorsal margin. Umbones prominent, rather broad, close together, more or less curved forward. Lunular region depressed, not limited. l'ostero-dorsal region sometimes slightly compressed.

Ornamentation consists of slightly-raised concentric lines at regular intervals with less distinct lines between ; and of regular rows of radial pits, which on the posterior part of the shell are replaced by rows of short spiny projections or minute tubercles.

A long, acutely angular ribe extends from the level of the posterior adductor to near the umbo. 'The front part of this ribl is continued to near the anterior adductor, but is less prominent than the angular part ; at first it curves ventrally, and afterwards dorsally, the last part being somewhat angular.

Mensurements:

	(1)	(2)	(3)	(t)	(i)	(i)	(7)	(*)	(9)	(10)	(11)
Length	31	30	27	265	95	2:3	30	9	90	17.5	
Height	285	29	2.5	9.5	24	21\%	27	235	18	16%	16
(1-6) Crackers, Atherfield.											

A!jinities.-Pictet and Campiche separated, but with considerable hesitation, the examples of Thetironice found in the Crackers of Atherfield from those found in the Ferruginous Rock of Shanklin. The former they referred to T'. laciyntu, d'Orbigny (non Sowerby); whilst the latter are typical of 'I'. minor. 'lhere is, as stated by those authors, considerable dificulty in comparing specimens from the two localities owing to their different states of preservation. Those from Atherfield have the shell well preserved in nearly all cases, although not uncommonly the original form has been somewhat modified by erushing. The specimens from Shamklin, on the other hand, are nearly always casts, but owing to the hardness of the rock they retain their original form more perfectly.

Pictet and Campiche thought that the Atherfield form was less convex and
more inequilateral than the Shanklin form. After comparing a considerable number of specimens I find that those from Atherfield are, as a rule, slightly less convex; but the more inequilateral character is not constant; specimens of the same si:\% are commonly quite as nearly equilateral, but the inequilateral character becomes more marked with age. Since larger forms are more common at Atherfield than at Shanklin, one may at first sight get the impression that there is a real difference in the inequilateral character. I have not seen any specimen from Atherfich so inequilateral as the form figured by Pictet and Campiche appears to be, and I think it is probable that their specimen was somewhat distorted by crushing.

I'. genevensis, Pictet and Roux, ${ }^{1}$ is distinguished from I'. minor by the height and length being equal, by its more nearly equilateral form, and by a difference in the curvature of the rib in front of the angular part.

Remarks.-Thetironia has been recorded by Phillips and Judn from the Speeton Clay, but I have not seen any examples from that deposit. In some collections from Speeton specimens of Cymina have been identified as Thrtiomia.

T'ype.-Fig. 6, Lower Greensand of Shanklin; in the British Museum. The original of fig. 5 from near Lyme Regis has not been seen.

Distribution.-Lower Greensand: Crackers of Atherfield; also recorded by Fitton from the Pernc-bed and Beds vi, viii, ix, x, xiii, and xiv between Atherfield and Blackgang Chine. Ferruginous Sands of Shanklin. Atherfield Beds of East Shalford. Hythe Beds of Hythe. Sandgate Beds of Sandgate, ete. Fulkestone Beds of Folkestone.

1818.	Corbula lefvigata, J. Suecoly. Min. Conch., vol. iii, p. If, pl. cif. fiss. 1, \because.
1826.	
1829.	- - M. J. L. Defreence. Diet. Sci. Nat., wol. liv, p. 2 ab
1850.	Unicardium laevigatum, A. dorbigny. Prudr. de Pal., vol. ii. p. laij.
1854.	
1862.	
1865.	F. J. Pictet und (í. Compiche. Foss. Teme Crít. Ste. C'ruin 210, ple exii, tis.

 Campiche, ‘Terr. Crét. de Ste. Croix’ (1865), p. 206, pl. exii, fig. 7. Barrois recorls T', genemenix frim the Upper Greensand of Lulworth, but I have not sech any serimens ; see Barrois, ' Ferr C'rit Supir. de l'Augleterre,' etc. (1876), p. ! 0 .
\therefore 1stio. Theris major, A. Briat and F. L. Cornet. Meule de Bracquegnies (Mém.
cour. et Mém. des Sav. étrangers, vol.
xxxiv), p. $8: 3$, pl. vii, firs. $1+15$.
1571. Fimbuella levigata, F. Stuliczie, Palaont. Indica, Cret. Fauna S.
Iudia, vol. iii, p. .446 .
1s8:2. 'Thetis major, l' de Loriol. Ganlt de Cosine, p. 61, pl. viii, figs. 6-8.
\%1874. - - W. Dames. Zeitschr, d. deutsch. geol. Gesellsch., vol xxvi,
p. 766, pl. sxi, fig. 4.
1885. - - $\quad F^{\text {. Nitling. Die Fauna d. Maltisch. Cenoman. (Palicont. }}$
Abhamdl., vol. ii), p. ${ }^{29}$, ph. v, fis. 6 .

Mernsmieme'uts:

	(1)	(2)	(3)	(1)	(5)	(i)	(7)	(${ }^{\text {) }}$	(4)	
Length	47	4	4	8!	$80 \cdot 5$	995	29\%	93		117 I .
Ineight	$1: 3$	40	$3!$	37	の\%	28	¢1	$\underline{(1)}$	13	

A!!imiliss-This species is closely allied to ' I'. mimor, with which it was mited by Rämer under the name T ' Somernii, but it possesses relatively higher and narrower mabones than T^{\prime}. minor. I'. larighte is commonly of larger size than I'. minm, and as in the case of the latter, the large forms are more inerguilateral than the small forms. A rather small example was figured by Suwerby as ('orbula laciluth, and was taken by Stolicaka as the type of a new genns limbrielle, but it proves to be, as was suggested by l'ictet and Campiche, an example of I'. mojor.

The linge can be seen in some specimens from Blackelown (Plate XXVI, figs. lot, 1\%). It consists of two small conical or tubercular teeth just below the umbo of each valve. In the right valve the tecth are placed one above the other, lout the dorsal tooth is slightly in front of the ventral and rather smaller than the latter. In the left valve the tecth are side by side, nearly on the same level, and the anterior tooth is rather larger than the posterior. Lateral teeth are absent. The extermal ligament is short and prominent.

I'ypers.-The type of Corbula larignth, from Blackdown, and the types of Thetis mujon, from Blackelown and Devizes, are in the British Museum. 'I' mijor. is the type of the genus Thetis, Sowerby.

Distributiou.-Gault of Black Ven. Upper Greensand (zone of Schlwulurchiu rostratu) of Blackdown, Potterne, Devizes, and near Lyme Regis. Recorded by Price from the Gault of Folkestone.

Famil! !-TELLINIDA, Deshayes.

Genus-Telana, Limarus.
('Syst. Nat.,' ed. 10, 1758, p. 674; el. 12, 1767, p. 1116.)

Tellina Carteront, l'Orligm!, 184.5. Plate XXVI, figs. 1.5, 16.

			geol. de France, vol. v, pu. 3, 2t. pl. iii, fiy. (i (non T. angmlath, L.)
1845.		ula	E. Forbes. Quart. Journ. (ienl. Suc., rul. i, p. $\mathbf{2}$ 399.
	Teluina	Cartero	A. TOrligny. Pal. Franc. Terr. Crét, , pol iii, p. 420 pl. cecluxs. figs. 1,2 .
1850.	-	-	
1861.			P. de Leriol. Anim. Invert. Fuss. Mt. Salive, p. 59. pl. vii, fig. 2 .
1865.		--	F. J. Pictet and G. Compiche. Foss. Terr. Crít. Sto Croix (Matctr. Pal. Suisse, ser 4), p. 134.
1870.	-		F. Stoliczka. Paleont. Indica, Cret. Fiuma S. India, vol. iii, $\mathrm{p} .1 \geqslant 3$.
1884.	-	-	O. Weerth. Die Fuuma des Neocom. im Teutohure. Walle (Paleomt. Abhamil., vill ii), p. 41.
1895.	--	-	G. Maas. Zeitschr. d. deutsch. geol. Gesellsch., whl. xlvii, p. $25 \overline{2}$.
1900.		-	A. Wollmann. Die Biv, u. Giastrop. A. deutsch. n. hollinul. Neocoms, p. 1:1.

Discription.-Shell elongate, much compressed, inequilateral, length erpual th more than twice the height. Anterior margin rounded, curving rapidly to join the slightly curved ventral margin. Posterior margin ohlique, forming an angld with the ventral margin. A shallow furrow passes from the umbo to the midill. of the ventral margin. Umbones small, curved forward. A sharp carina extemes in a curve from the umbo to the postero-ventral angle, and cuts off a narrow. flattened, postero-dorsal area. Ormamentation comsists of fine radial ribs an the anterior and posterior parts of the values, especially just in fromt of the carina: growth-lines distinct.

Measurements:

	(1)		(2)	(3)	(4)	
Length	$39 \cdot 2$		39	38	36	mm.
Height	17	.	16	.	$16 \cdot 5$	$15 \cdot 2$

A!finities.-The English specimens differ from the figure of T. C'arteroni given by d'Ornigny in the greater curvature of the carina, the narrower postero-dorsal area, and the greater upward hend of the anterior end of the shell. Professor Boule has kindly examined the specimen figured by d'Orbigny, and states that the carina is more curved and the postero-dorsal area narrower than represented in the figure; also the anterior part has been restored. Professor Boule has also compared a photograph of a specimen from Atherfield with d'Orbigny's specimen and considers that they do not differ specifically. Pictet and ('ampiche were able to compare English with French specimens, and the principal difference which they notel was the occurrence of fine radial ribs on the posterior part of the shell in English specimens; but I find that those ribs are indistinct or absent in specimens which are not quite perfectly preserved.

The figure of 'T'. anfuluth given by Deshayes appears to differ from 'I' C'artromi in its more elongate form and the greater length of the anterior region, but these differences are probably due to the imperfection of the specimen. Previous writers have not regarded it as distinct from d'Orbigny's T'. Carteroni.

Stoliczka regarded T'. Carteroni as a typical Tellina. It resembles closely the sub-genus Phyllonlu, Schumacher.

One specimen from Atherficld (Plate XXVI, fig. 17) differs from the other examples of this species in the occurrence of strong radial ribs on the posterior part of the shell. It may be only a variety of I'. Carteroni.

T'Ine.-From the Neocomian of Vendeuve ; the original cannot be found. The specimen figured ly d'Orbigny eame from Marolles.

Instrihution.-Lower Greensand (Crackers) of Atherfield. Atherfield Beds of East Shalford.

Thama sthationmes, stolizza, 1870. Plate XXVI, figs. 18, 19; Plate XXVII, fig. 1.
180.4. Telmina stilathla, J. de C. Somemby. Min. Conch., vol. p, p. 79, pl. cocelvi, fig. 1 (non T, striatula, Olivi. Bolten, Lamarek).

1sin. - J. Morris. Cat. Brit. Foss., ed. 2. p. 2et.

> 1865. Trllina striatula, F. J. Pietet and G. Campiche. Fuss. 'Temr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 133.
> 1870. -- (Tellinella) stmatuloides, F'. Stulicza. Palaont. Indica, Cret. Fituna S. India, vol. iii, p. 123.

Description.-Shell elongate-oval, compressed, inequilateral; length equal to about twice the height; the anterior part longer than the posterior part. Anterior margin rounded. Ventral margin slightly curved, making an angle with the posterior margin. Posterior margin oblique, curved near the postero-ventral angle, and forming an obtuse angle with the postero-dorsal margin. Umbones inconspicuous, only slightly curved. A rounded carina extends in a nearly straight line from the umbo to the postero-ventral angle, and cuts off a flattened pesterodorsal area. Ornamentation consists of small radial ribs on the postero-dorsal area and on the part just in front of the carina; also on a small part of the shell near the anterior margin. Fine concentric lines are also present, and are more distinct on the anterior and posterior parts of the shell than elsewhere. Pallial sinus relatively small, somewhat angular.

Measurements :

	(1)	(2)
Length	30	97 mm .
Height	14%	13:2

Affinities.-Stoliczka placed this species in the sub-genus I',llinella, with which it agrees closely in external form, but the oblifue cardinal teeth resemble more closely those of the sub-genus Palizomara.

Type.-From Blacklown; in the British Museum.
Distribution.-Upper Greensand (zone of Schluruluchiu rostratu) of Blacklown and Haldon. Recorded by Jukes-Browne from the higher part of the zone of Pecten asper in North Dorset.

$$
\begin{aligned}
& \text { (} \cdot \text { Palaont. Indica, Cret. Fauma S. India,' vol. iii, p. 116.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1850. Arcopagia - A.dorligmy. Promr le Pal., will ii. pilim (fartim). }
\end{aligned}
$$

> : 1seis. Teldina in.equalis, A. Briart and F. L. Cornet. Meule de Bracquegmies (Mém. cour. et Mém. dess Sits. (thaugers, vol. axxiv), p. 77, pl. viii, figs. 24,25 .
> 1870. Arcoldaia - (Linembia). F^{\prime}. Stoliczke. Palæont. Indica, Cret. Fituna S. Iudia, vol. iii, p. 124.

Inerription.-Shell oval, moderately inequilateral; length rather more than $1 \frac{1}{2}$ times the height; left valve less convex than the right. Anterior part of valves rounded. Posterior margin convex, subtruncate, more or less oblique, forming a blunt angle with the ventral margin. A slight carina extends from the unbo to the postero-ventral angle and cuts off a flattened postero-dorsal area. Umbones moderately prominent. l'allial sinus large, rounded. Postero-dorsal area ornamented with small radial ribs; the remander of the shell smooth except for growth-lines.

Measurements:

	(1)	(2)	(3)	(1)	(3)	(1)	
Length	$\underline{9}$	28	27	20	20\%		mm.
Height	18:5	18	17	165	14.5	11	
Thickness	9	$7 \cdot 5$	8	7-3	165	-	

Alfinitios.-I'. striynte Goldfuss, ${ }^{1}$ from the Aachen Greensand, is similar in form to I'. inieyn"lix, but possesses fine radial ormanentation over the entire surface of the shell. T'. lio!'m, nearly equilateral and without radial ribs.

A species of T'ellime found in the Meule de Bracquegnies was referred to I'. inarumlis by Briart and Cornct, but it appears to differ in some respects from the latter. The specimens which I have seen from Bracqueguies are not sufficiently well preserved to conable me to express a definite opinion as to their relationship to T' inaruculis.

T'ym.-From the Upper Greensand of Blackdown ; in the British Musem.
Distrithetion.-Upper Greensand (zone of sichlentuchin irstirdin) of Blackdown and Haddon. Recorded by Jukes-Browne from the Upper Greensand of Devizes and the Isle of Wight.

1 'Petref. Germ.', vol, ii (1840), p. 234, pl. exlvii, fig. 18. Hulzapfel, 'Die Mollusk. Aachen. Kreide' (Pabeontographicia, vol. xxav, 1889), p. 159, pl. xi, fiss. 6-10. This species is the type of the sub-genus or section Palamara, Stolicaka, 1870 .
a 'Pal. Framẹ. 'Ierr. Crít.,' vul. iii (1845), p. 42:, pl. ceclaxx, figs. 9-11.

Sul-genus—Linearia, T. A. Comionl, 1860.
('Journ. Acal. Nat. Sci. Philad.,' ser. 2, vol. ir, p. 279, and • Amer. Journ. C'onch.,' vol. vi [1870], p. 73.)

Telima (Linearia), sp. Plate XXVII, fig. 9.
Description.-Shell oval, moderately convex with flattened sides, nearly equilateral. Anterior margin rounded. Ventral margin slightly convex. Posterior margin slightly truncated, rounded. Umbones inconspicuous. Postero-dorsal region slightly compressed, but not limited by a carina.

Ornamentation consists of numerous, strong, regular, concentric rilhs separated by narrow grooves; and a few small radial ribs on the anterior and posterior parts, those on the latter sometimes not reaching the margin. Length $16 \% \mathrm{~mm}$; height 10.5 mm .

Affinities.-This species, of which only a few examples have been seen, is closely allied to, if not identical with, T'. Ramliniman (d'Orbigny), but the posterior ribs are less prominent. The shell is less elongate than is d'Orbigny's type, but scarcely differs in this respect from the example figured by Pictet and Campiche. It is more elongate and has the postero-dorsal region less flattened than in T. subconcentrien (d'Orbigny). ${ }^{2}$ T. sublerempirn, Maas, is another similar form.

Distrilution.-Lower Greensand (Crackers) of Atherfield. Atherfield Beds of East Shalford. ${ }^{3}$

Teidina (Linearia) scbtenctspriata, d’ormigm, 18:0. Plate XXVII, figs. 10-1:3.
1836. Ampideesma? tenuistriatom, J. de C. Sonerly. Trams. Geol. Soc., ser. e, wol. iv, pp 23:, 34, p^{1}. xui, firs 7.
1850. Tellina subtenuistriata, A. dorliguy. Prolr. de Pal., vol. ii, p. 150 (non T.temuistriata, Deshayes, 18\%.4.
1854. Amphidesma? tentistriatem, J. Morris. Ciat. Mrit. Foms., el. e. p. 183.
${ }^{1}$ For references see p. 176, footuotes 1 and 2.
2 Some specimens from the Folkestone Bels of Folkestone agrer in form with T. sulu, inciutrion. lout owing to the imperfect preservation of the surface the character of the cramentation cammet the mule out satisfactorily.

1865. Tellina subtendistriata, F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), pp. 132, 138.
1870. Amphidesma tenuistriatum, F. Steliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 111 (? Thracia or Tellina).

Description.-Shell oval, of moderate convexity, nearly equilateral. Anterior margin rounded ; ventral margin moderately convex; posterior margin truncated, more or less oblique, forming a blunt angle with the ventral margin, and an obtuse angle with the postero-dorsal margin. Umbones rather broad, scarcely curved. lostero-dorsal part of shell compressed and flattened.

Ornamentation consists of numerous strong, regular, concentric ribs, and of a few small radial ribs on the anterior part, and of a larger number on the posterodorsal region and the part just in front of it.

Measurements:

	(1)		(2)	(3)	(4)
Length	19	18		17	$1: 3 \mathrm{~mm}$.
Height	135	.	13	.	11%

(1-4) Blackdorn.
A!jinities.-This species resembles Tellina Ruuliniana (d'Orbigny), ${ }^{1}$ but possesses a relatively shorter and higher shell, with a more convex ventral margin and more numerous radial ribs. In form it approaches more nearly the examples from the Gault of the Perte du Rhône figured by Pictet and Campiche, ${ }^{2}$ but in the latter the posterior extremity is more angular and the posterior ribs more prominent and limited to the postero-dorsal region.

I'. subtenuistriutu also resembles T. subconcentrica (d'Orligny), ${ }^{3}$ but is more nearly equilateral and the ventral border is more convex.

It differs from the species from the Lower Greensand described above in the flattened postero-dorsal region, the more angular posterior extremity, the smaller apical angle, the larger curvature of the ventral margin, and greater relative height. T'. subhercynica, Maas, ${ }^{4}$ is another similar form.

Remarks.-The type is somewhat imperfectly preserved, but the radial ribs on the anterior and posterior parts, which are not shown in Sowerby's figure, can be made out satisfactorily. The size of the apical angle and the outline of the shell vary in different examples.

[^39]Type.-From Blackdown; in the Bristol Musemu.
Distribution.-Upper Greensand (zone of Schlu'ubachia rostrata) of Blackdown.

Tellina (Linearia) sp. Plate XXVII, figs. $1+$ - 16.
Description.-Shell oval, moderately convex, with flattened sides, nearly erfuilateral. Anterior and posterior margins rounded. Ventral margin only slightly curved, and nearly parallel with the dorsal margin. Umbones broad, nearly median. Postero-dorsal part of valve flattened, rather large, limited by a faint carina.

Ornamentation consists of numerous small, regular, concentric ribs, and numerous small radial ribs on the postero-dorsal area and near the anterior end.

Measurements :

	(1)	(2)	(3)	
Length	17	15	14	mm.
Height	12	.	10	$9 \% 5$

Affinities.-This species resembles T'. R'mlinimue (d'Ontigny), but the radial ribs are much more numerous. It is also similar to the form from the Lower Greensand described above, and to 'T. sulhercemuicu, Mas.

Distribution.-Upper Greensand (zone of Schlurnhuchia rostrat.1) of Blackiown.

$$
\begin{aligned}
& \text { Family-MACTRID.£, (iriy. } \\
& \text { Genus-MarmRa, Limua'ms, } 1767 . \\
& \text { (' Syst. Nat., el. 12, vol. i, p. } 1125 . \text {. }
\end{aligned}
$$

Mactra, sp. Plate XXVII, figs. 17, is.
A few specimens which resemble Muthot externally, but of which the hinge has not been seen, were found in the Lower Greensand (Ferruginous Sands) of Shanklin by the late C. J. A. Meÿer. They are rather larger and relatively higher tham M. anyulutn, and the carina is less distinct. The surface of the shell is ornamentent with small concentric ribs.

Mactra angetata, Somedry, 18:36. Plate NXVII, fige. 19-2:3.

1854. Mactia anoulata, J. Morris. Cat. Brit. Foss., ed. 2, p. 209.
 Croix (Mater. Pal. Suisse, ser. 4), p. 199.
18. -a. -. F. Stoliczhe. Palmont. Indiea, Cret. Filma S. India, vol. iii, pp. 55, 56.

Deseription.-Shell small, convex, subtriangular, slightly inequilateral, with the antero- and posterodorsal parts bending rapidly to the margins. Anterodorsal margin long. Anterior margin rounded. Ventral margin convex, forming an angle with the posterior margin, which is truncated, ohligue, and slightly convex. Tmbones prominent, pointed, curved inwards, with a carina which extends in a gentle curve to the postero-rentral angle. Ornamentation consists of fine concentric fibs, which become fewer and stronger near the antero-dorsal and posterodorsal margin.

Mrosurmonts:

	(1)		(2)	(3)	(1)
Length	11.		1:3	10	
IIcight	12		10\%	8	7

Afinities.-In form and ornamentation M. anguluta resembles M. Witrenana, Meek and Inayden, ${ }^{1}$ but the latter is of larger size and the umbones show a distinct anterior curvature.

A species found in the Aachen Greensand, now known as MF. Bospuctiann, Stoliczka, was identified with M. ongmlita by Mäller, but is distinguished from the latter, as Stoliczka pointed out, by its greater length, smaller convexity, rounded posterior margin, and other characters.

T'ype-From Blackiown ; in the Bristol Museum.
Distribution.-Upper Greensand (zone of S'ellwnluchia restrata) of Blackdown and Haldon. Recorded by Barrois from the Upper Greensand of Lalworth and by Jukes-Browne from the equivalent of the Blackdown Beds at Sidmouth.
${ }^{1}$ Meek, 'Invert. Cret. and 'Iert. Foss. U. Missouri’ (1876), p. 208. pl. xxx, fir. 7. Whiteaves,

$$
\begin{aligned}
& \text { Prmily-VENERIDAE, Lark. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (• Etudes crit. Mull. l'uss.'; Mycs, p. xviii, pl. xi, figs. :;, t.) }
\end{aligned}
$$

Description.-Shell oval-oblong, elongate, convex, but with flattened sides, very inequilateral, anterior part rather higher than the posterior part. Anterior margin regularly rounded. Ventral margin only slightly curved, nearly parallel to the dorsal margin. Posterior margin ollique, ferming an acute angle with the ventral margin and an obtuse angle with the slightly curved postero-lursal margin. Umbones inconspicuous. On the postero-dorsal side of a line from the umbone to the posterior extremity the shell is Hattened. Lumbe narrow, clongate.

Ornamentation consists of strong radial ribs, which are sometimes more or hess nodose. Those on the posterior part of the shell are stronger and sepanated by broader furrows than those on the anterior part. 'llae ribs which ratach the posterior margin start from the umbo; the others start from a line between the umbo and a point on the opposite margin which is ahout a ghanter of the distance from the anterior to the posterior end. In frome of this line the ribs form a considerable curve; behind it they are only slightly curved; the rils mect at an acute angle at the line mentioned furming cither a Λ throughom or a chevroun M, on the ventral part. The posteru-dursal margin is ornamented with strong nodere ridges.

Mecturnemts:

	(1)	(2)	(3)
Length	80	70	69 mm .
Height	4	39	
	(1-3), Perna-bel, Atherfield.		

L!!iwities.-Forhes states that English examples of this species were identified by comparison with French specimens. I have not seen any foreign examples of 1'. Re,linulitin, but the English specimens appear to differ from those figured by dorhigny and by lictet and Campiche in their greater convexity and larger size, in the more acute angle which the ribs make at the dorso-ventral line, and in the somewhat less anterior position of that line. In all these respects the English examples approach more nearly to I '. nemomiensis (de Loriol),' but differ from that species in their more elongate form. It seems, however, not mulikely that a large number of specimens might show that I '. Robinaldina and I '. wroermiensis are not specifically distinct. In comnection with this, attention may be called to Nuculu (Acilı) licirgat", Sowerhy, in which the ornamentation is somewhat similar and shows considerable variation.

The genus Itychomya was placed in the Crassatellitida by lictet and Campiche and by Stoliczka. Its resemblance to (irece (Cristu) was pointed out and fully discussed by Dames, ${ }^{2}$ whose view of its systematic position is accepted by Fischer.

Remurlis.-The date of the plate on which Agassiz figured I'tyrhomy/u plame is earlier, but the text relating to it is later than d'Orbigny's figure and description of Crassatella Robintlina. Since the specimen figured by Agassiz is rather unsatisfactory and d'Orbigny's name has been used by nearly all writer's it seems clesirable to retain the latter.

Distrilution.-Lower Greensand (Terna-bed) of Atherfichd. Ferruginous Sands of Shanklin. Hythe Beds of Hythe, Lympne, and Maidstone.
${ }^{1}$ Pictet and Campiche, "Terr. Crít. Ste. Croix" (Matér. Pal. Suisse,' ser. 4, 1866), p. 355, pl. cexvii, figs. 9-12.

2 ' Zeitschr. d. deutsch. geol. Gesellsch.,' vol. xxv (1873), p. 374, pl. xii, fiss. 1--4.

『alrontograpbical $\mathfrak{F o c i c t e , ~} 1908$.

A MoNOOMAIII

CRETACEOUS LANIELLIBBAN＇C＇HIA

ENGLAND.
$13:$
HENRY WOOISS，M．A．

VOL．II．PAR＇I ${ }^{\prime}$ ．
 CORBLLIDE．

Pages 1Sl－2lt；Plates XXVIII－XXXIN．

に（Nロロハ：
 1910゙。

('Proc. Acaul. Nat. Sci. Philalelphia,' p. 213.)

Dosiniorsis sumbernda (Nomerly), 18:36. Plate XNVIII, tigs. I-ti.

> 1850. Venus - A. dOrbigny. Prolr. de Pal., vol. ii, p. 159.
> 1854. Cythfrea - J. Murris. Cat. Bit. Foss., ed. E. p. ᄅ01.
India, vol. iii, p. 161 (C'eryutis).

Description.-Shell rather thick, rounded, oval or somewhat orbicular, of small or moderate convexity ; length rather greater than height ; moderately, sometimes considerably, inequilateral. Antero-dorsal margin long, concave. Anterior margin rounded, passing gradually into the considerably curved ventral margin. Postero-dorsal margin very long, convex, with a considerable ventral slope. Posterior margin rounded. Umbones small, pointed, close together, slightly curved anteriorly. Lunule elongate, depressed, distinctly limited. Escutcheon narrow, depressed, with a sharp border. Pallial sinus rather large, sub-angular. Ornamentation consists of fine concentric stria, and growth-lines.

Hinge: In the right valve three strong, nearly straight, diverging cardinal teeth, of which the anterior and median are closer together and diverge at a smaller angle than the median and posterior, the hast being divided by a shallow longitudinal groove; there is a small posterior lateral tooth and an elongate anterior pit. In the left valve the anterior of the three diverging cardinal teeth is nearly vertical, the median is the stoutest, and the posterion is oblique and slender; the anterior lateral tooth is clongate and parallel to the lumbar margin; the posterior lateral is very small.

Mensurements:

	(1)	(2)	(3)	(11	\therefore
Length	34	31	-9	-	21
Height	32	28	26	$\because 6$	\cdots

I'ypr.-From Blackdown; in the Bristol Musemm.

Inscriphim.-.shell wal, convex, moderately or considerably ine puilateral; length rather greater than height. Antero-doral margin concave. Anterior margin rounded, passing gradually into the comex ventral margin. Posterior less convex than the anterior margin, sometimes subtruncate. Postero-dorsal margin long, slightly convex. I'mbones prominent, curved anteriorly. Lumule ovate. Pallial sinus rather large, sub-angular. Ornamentation consists of strong, regular, concentric ribs.

Hinge: In the right valve three stout cardinals sepanated dorsally, the anterior and median being closie together and nearly vertical, the posterior obligue and divided by a longitudinal groove ; there is an anterior elongate pit and a strong posterior lateral tooth. In the left valve the median is the stoutest of the three cardinals and is sometimes joined dorsally to the nearly vertical anterior cardinal; the posterion candinal is slemer and very obligue; the anterior lateral is strong, clongate and paralled to the lumular margin.

Mersthroments:

	(1)	(2)	(3)	(1)	(i)	(6)	(1)	(4)
Length	: 4	31	310	-8	96	9\%)	21	15
Height	30:	?!	26	04%	$\underline{2}$	23	18:5	14

(1 8) Blackdown.
lirmurtis.-Snternal castr from the Folkestone Beds of l'ulborough were referred to this species by Forles. I have not seen any specimens which would enable me to record the occurrence of I. caperete in the Lower Greensand.

T!!pe.-From Blackdown; in the British Miuseum.
Distribution.-Upper Greensand (\%one of schlumbuchia rustritu) of Blackdown and Haldon. Recorded by Barrois from the Upper Greensand of Lalworth, and by Jukes-Browne from the Upper Greensand of the Isle of Wight.

> Genus-Cyprmerla, T. A. Combent, 186;t.
('Proc. Acad. Nat. Sci. Philad.' 1864, [. 212, and 'Amer. Journ. Conch.,' vol. ii, 186it, p. 102. Stolicaka, 'l'ulaeont. Indica, Cret. Fauna S. India,' 187口, p. 157.)'
Suleqenu:-Cyclorisma, IV. II. Dtell, 19003.
(' Proc. U.S. Nat. Mus.,' vol. xxvi, 1903, p. 357. Syu. Cyclothyris, T'. A. Conrad in W. C. Kerr's 'Geol. Rep. N. Carolina,' vol. i, Appendix 1 (1875), p. 8. Non Cycloflyris, M'Coy, 18tt.)

 fig. 4. 1850. - - A. dOrbigmy. Prolr de Pal., wil. ii, p. 118.
 1865. - - F'J. Pidf and (i. Cumpiche. Foss. Torr. C'rit. Ste. Croix (Mater. Pal. Suisse, sert. \boldsymbol{f}). p. 18 .
1870. - F. Stoliczza. Paleont. Indica, Cret. Fauna S. India, vol. iii, p. 160.
? 1883. - \quad - Kerping. Foss., etc. Neoc. Upware and Brickhill. p. 125.

Description.-Shell oval, or nearly orbicular, a little lomger than high, reqularly convex, slightly or moderately inequilateral. Margin rombled. C'mbones small, pointed, somewhat curved forwards. Lamule indistinct, not impressed, limited ly a faint line. Pallial simus angular, directed upwards. Margins of valses smowth. Surface of shell smooth except for small, inconspicuous, concentric ridges, and occasional growth-rings.

Hinge: In the right valve an anterior and a median cardinal and two posterior laminar teeth (which together represent the posterion cardinal) diveres from under the umbo; the anterior is directed forwards, the median i.s nealy sertionl,
${ }^{1}$ The following Europen species are reforred by Cunad and by stolickat the thens

 Holz., from the Aachen Greensand.
and the two posterior slope obliquely backwards. In the left valve a long, oblique laminar, posterior cardinal; a median cardinal (which is divided); and an anterior cardinal, diverge under the umbo, from which they are separated by a narrow space or chamel. In front of the anterior cardinal the anterior part of the hinge-plate is concave.

Mrusurirments:

	(1)	(2)	(3)	(4)	(5)	
Length	38	32	31	28	24	mm .
Height	34	29.5	29	26	22\%	,
		5) C	Ather			

Aflinitios.-This species shows some resemblance to V'mus rendoperana (Leymerie), especially to the example figured by Pictet and Renevier,' but the umbones are less prominent and the lumule is less distinct.

T'ypre-The type came from the (rackers of Atherfield, but cannot now be found.

Ihstrilmtion.-Lower Greensand ((rackers) of Atherfield. Recorded from the Atherfield (lay and Bed wii of Atherfield by Fitton. Recorded hy Topley from the Atherfied Beds of Peasmarsh and Shalfores.
 Plate XXIX, figs. 1—3.

182G Venus parva, J. d, C. Somerly. Min. Conclı., vol. vi, p. 32, pl. dxviii, figs. 4-6.
1845. Luelna: solidula, F. Forbes. Quart. Journ. Geol. Soc., vol. i, f. 239, pl. ii, fig. 7.
1850. Venus parva, A. dOrbigny. Prodr. de Pal., vol. ii, p. 159 (not Blackdown). Lleina solidela, dOrbigm!. Thid., vol. ii, p. 118.
1854. Cytherea parya, J. Mmris. Cilt. Brit. Foss., e.!. 2, p. 201 (partim). Lucina nobidula, Morris Ihid., ad. 2, p. 208.
18if. Venus parva, F. J. I'iftet amd ti. Campiche. Foss. Terr. Crút. Ste. Croix
(Matér. Pal. Suissc, ser. 4), p. 188.
1870. - F. Stoliczka. Palæont. Indica, Cret. F'auna S. India, vol. iii, p. 160 (Caryatis).
-- Lucina! solidula (: Mysia), Stoliczka. Ibid., vol. iii, ip. 252. 262.
: 1805. Venus rif parva, E. Tiessen. Zeitsehr.d. deutsch. geol. Gesellsch., vol. xlvii, p. 484.

[^40]| | 40. | Venus | parva, | A. Gollfuss. | Petref. Germ., wol. ii, p. 244 , pl. cli, fis. 4 (I. Goldfussi, Geinit\%, 1850) ; V. sulparra, d'Orbigny. 1850). |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1841. | - | | F. A. Rramer. | Die Verstein. d. nort-beutsch. Kreidegel., 1. 72 (V'mus suhiuftexa, Römer, 1836). |
| | 1846. | - | - | A. F. Reuss. | Die Verstein. der bohm. Kreideformat., pt. 2. p. 20, $\mathrm{p}^{\mathrm{l}} . \mathrm{xli}$, figs. 16; 17. |
| | 1863. | - | | A. r. Strombert | erk. Zeitschr. iler deutsch. grol. Gesellish., vol. xr. p. 146. |
| - | 1868. | - | | A. Briant and | F. L. Cormf. Menle de Bracquegnies (Mím. cour. it Mém. des Satr. étrangers. vol. xxxiv), p. 75, pl. viii, figs. 1,2 |
| | 1877. | Crthe | Pa | , G. Biohm. | Zeitschr. der dentseh. geol. Gesellsch., vol. xxix, p. 241 . |
| | 1883. | Venus | par | A. Fritarh. | Stud. im Gebiete der böhm. Kreideformat., iii. Iserschicht., p. 109, fig. $\overline{77}$. |
| | 1885. | Vents | RTA | F. Nitling. D | Die Fauma d. baltisch. Cenoman. (Palteont. Ahandl.. vol. ii). p. 32. pl. r. fis. 11. |
| | 1893. | - | - | Fritsrh. Op. | |

Description.-Shell small, oval, convex, moderately inequilateral. Auterodorsal margin slightly concave, or nearly straight, forming a romuded angle with the anterior margin which curves rapidly to join the convex rentral margin. Posterior margin rounded or subtruncate. P'ostero-dorsal margin slightly convex. Umbones rather prominent, curved inwards and forwards. limule broad, ovate, more or less projecting, limited by a groove. Pallial sinus large, angular. Ornamentation consists of small, somewhat irregular, concentric ribs, and occasional growth-rings.

Hinge: In the right valve the anterior and median cardinals are stout and nearly parallel, and the two posterior teeth (which represent the posterior cardinal) are oblique and diverging; in front of the anterior carlinal is a groove, bounded by a ridge above and below, parallel to the imner margin of the hinge-plate. In the left valve the anterior and median cardinal teeth diverge widely under the umbo and the posterior cardinal is obligue; the anterior cardinal is continued forward into a ridge along the imer margin of the hinge-plate.

Measuremruts:

	(1)	(2)	(3)	(1)	(\%)	(1)	i)	(a)
Length	$20 \cdot 5$	21	20	20	19	$11 ;$	11.	11 mm .
Height	17	17\%	17\%	17	16	14	12	-

(1) Perme-hed, East shallind.
(2-8) Cramers, Atherfiehl.
 are given below.
 Cornet, is less elongate.

The hinge differs from that of other species of r'yrlorismu in that the anterior tooth in the left valve is continued forwards into a ridge at the inner margin of the hinge-plate.

Lurinu? suliduln, Forbes, appears to be identical with Irmus purve, Sowerby; the type is missing, but other specimens which are in the Museum of the Geological Society and were probably identified by Forbes, are undoubtedly examples of I. purver. The type of Lurina? solidulu, so far as one can judge from the figure, seems to have been rather shorter than most examples of Temus parra.

Tenus Orbi!m!an", Forhes,' from the Crackers of Atherfield, is stated to be allied to V. parra. The type is missing, but a specimen named I. Orrigmyma in the Museum of the (ieological Society appears to be a small example of Cuprinu Stens:"ri (p. 1:31).
liomork.-Examples of this species vary somewhat in convexity, in relative height and length, in the prominence and position of the umbones, and in the projection of the lunule at the margin where the valves meet. The types are intermal casts from Parham, and they agree, except in being slightly more convex, with casts from Gast Shalford, where specimens with the shell preserved are also foumd. The latter do not differ from the perfectly preserved specimens found in the Crackers of Atherfied.

I! ! fin.-From the Sandgate Beds of Paham lark, in the British Museum.
Dist, ihmian--Lower Greemsand: I'rmothed, (rackers, and Bed fir of Atherficld. P'ermehed of Sambow. Wherliold Beds of Peasmarsh and Shalford. Sandgate Beds of Parham Park.

 443, ple corlxxxy, figs. 1-5.

 Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 190.
1870. \quad ' Stalicliza. Paleont. Indica, Cret. Fanna S. India, vol. iii. ן. 161 (? Caryatis).

Femmblis.-The English examples of this species are internal casts oceasionally with small portions of the shell preserved. D'(Orhigny's specimens were ohtained

from the Cenomanian of Ronen. English specimens agree with those found at Rouen, except that in many cases the shell is somewhat shorter relatively. 'The
 shell is more convex, more inequilateral, and the posterodorsal margin hats a greater slope than in C. (6 ! frorismu) purco. The hinge appears to be unkinwn.

Distribution-Base of the Chalk Marl of Maiden Newton and Chard. (Chboritie Marl of Melbury, Woolcombe, Maiden Bradley and the Isle of Wight.'

1827.	Venus	y.
18.50.		
1854.		
1868.	-	A. Briart and F. L. Corraed. Mente de Bracquegnices (Mám. cour. et Mím. des Sav. étramgers, rol. xxxiv), 1. 73, fly viii, fiss. (1, 110.
1880.		p. 160.
1873		II. B. (Geinita. Das Ellothalgell. in Sachsen (Palawnto- figs. 9,10 .
\% 188%		J. Kirsion. Schrift , hat. (insellsch in Damzis, N.F., vol. v, 1. 239.
\% 1885.	-	Abhandl., wol. ii), p. 32. pl. wi, tis. 1.
Nun 1810.	-	suljialue, dorbigny).
1843.	-	H. B. Geinit:. Die Verstein, von Kieslingswalda, p. 13, pl. ii, figs. 7 - 9
\%-1845.	-	cerlexse, figes. ti-8.
1546		$\mathrm{p} \cdot 21, \mathrm{pl}, \mathrm{xli}$, fis. 12.
1847.		- J. Miller. Petref. der Aachen Kroidet., pt, 1, p. 24.
1859.		ersa, Millme Mid. Suplement. pr 13.
1863.	-	x. .1. 1.ti.

${ }^{1}$ An iurperfect left valve from the Cenomamian (Ben 12) of Whiteclity, South Devon, was

 xx, pt. 2, 1873), p. 67, pl. xviii, figs. 16. 17. There is nut sutficient evidence to comitrut this inentifiat-
 Geimitz.

> Nom 186;3. Venus faba, h. Diescher. Ibid., vol. av, p. 343. format., vi, Chlomek. Schicht, p. 63, fig. 80.
> 1901. - $\quad-\quad$. sturm. Jahrb. d. k. preussisch. geol. Landesanst. für 1900, vol. xni, p. 8.

Hesiriphiw.-Shell oval, of moderate convexity, with flattened sides, considerably inequilateral. Anterodersal margin short, slightly concare. Anterior margin romuled, passing gradually into the slightly convex ventral margin. lostero-lorsal margin long, slightly convex, with a moderate or considerable ventral slope. Porterior margin short, rounded or subtruncate. Umbones small. Lunule elongate, not impressed, faintly limited. Ornamentation consists of small, regular, concentric rils.

Hinge: In the right valve the anterior and median cardinals are stont, diverge slightly, and are directed forwards, and reach the lower margin of the hingeplate; the two posterior teeth (which represent the posterior carlinal) are laminar, obligue and diverging. In the left valve the anterior and median cardinals are rather stout and diverge; the posterior cardinal is slender and obligue. In fromt of the anterior cardinal there is a concave space on the hingeplate in both valves.

Mrusincomurnts:

	(1)	(2)	(3)	(4)	(3)
length	30	?!	99	28	27 mm
Height	05	$\because 4$	29	$\bigcirc 1$	

 Inferiemre, is somewhat similar in form to $'^{\prime}$. (Cydorisma) filur, but the surface of the shell is smootl.

A species found in the Aachen Greensand has been identified by Goldfuss, Holzapfel, and others with Sowerby's l'm". fillu, hut was regarded as distinct by d'Orhigny and (G. Müller. It differs from Sowerby's species in the greater curvature of the ventral margin and the more pointed posterior extremity; also the posterior teeth in the right valve are less widely separated and are more oblique.

In d'Orbigny's figure of I'ruws futer the ornamentation is coarser than in English examples, but a specimen from the Cenomanian of Rouen (one of the localities cited by d'(orbigny) differs but little in this respect from Blackdown specimens.

Rimutis.-The principal variation consists in the amount of the ventral slope 1 • Pal. Franç. 'Terr. Crét., vul. iii (1845), p. 449, pl. ceclaxavi, tigs. 6, 7.
of the postero-dorsal margin. In the type specimen that slope is small, so that the outline of the shell is distinctly oval. The position of the umbones also varies, so that some specimens are more inequilateral than others.

Specimens found in the Gault of Black Ven are usually somewhat crushed and often larger than Blackdown examples; some are more elongate and agree closely with Vemus sullavis, Sowerby (see below).

Type.-From Blackdown; in the British Museum.
Distrilution.-Upper Greensand (zone of Schluadurchin rostrate) of Blackdown and (?) Devizes. Gault of Black Ven.

Cyphmeria (Cyclohisma) sublevis (Somerly), 1836. Plate NXIX, fig. 14.

$$
\begin{array}{lll}
\text { 1836. Venus? sublevis, J. de C. Sowerly. Trans. Geol. Soc., ser. 2, vol. iv, pp. } \\
\text { 242, 342, pl. xvii, fig. } 5 . \\
\text { 1850. } & \text { Venus sublevis, A. dorligny. Prodr. de Pal., vol. ii, p. } 159 . \\
\text { 1854. } & - & - \\
\text { 1870. } & - & - \\
& \text { J. Mcrris. Cat. Brit. Foss., el. 2, p. 231. }
\end{array}
$$

Remurks.-The only specimen which I have seen is the type. It differs from O. (Oyclurisma) filla only in being more elongate, and seems to be merely an individual variation. Temus immerst, Sowerby, ${ }^{1}$ also known by the type only (Plate XXIX, fig. 15), does not appear to differ from V^{\prime}. subliccis. The types of both are in the Bristol Museum and come from the Upper Greensand of Blackdown.

Gehus-Clementia, J. E. Giray, 1840.
('Synopsis Brit. Mus.' p. 149.)

Sul-yenus-Flaventa, A. J. Jukes-Brourur, 1908.
(' Proc. Malacol. Soc.,' vol. viii, p. 167.)

Clementla (Flaventha) Ricorieana (d'Orbigmy), 1845. Plate XXIX, figs. 16-18.
1845. Venus Ricordeana, A. d'Orligny. Pal. Franc̣. Terr. Crít, vol. iii, p. 431. pl. ceclaxxii, firs. 1. $\xrightarrow{2}$.
${ }^{1}$ Surerby, 'Trans. Geol. Soc.,' ser. 2 , vol. iv (1836), l'p. $2+2,34: 2$, prii, tis. $\mathbf{6}$; d'Orbisny, - Prodr. de Pal,' vol. ii (1850), p. 159; Morris, 'Cat. Brit. Foss.'’ ed. 2 (1854), 1. 231 ; Stoliczka, - Palæont. Indica, Cret. Fauna S. India, vol. nii (1870), p. l61. Non Ven"s immerst. Müller, 'Petref. der Aachen. Kreidef.,' Suppleuent (1859), 1. 13: Kellss, 'Die Vetstein. der bühm. Kreideformat.,' pt. 2 (1846), p. 20 , pl. xli, fig. 11 ; Kuer, • Dewhschr. d. K. Abad. Wisseusch. Wien, Math.-Nat. Cl.,' vol. iii (1852), p. 311, pl. xvi, fig. 20.

Description.-Shell oval, convex with flattened sides, considerably inequilateral, anterior part higher than the posterior part. Anterior margin regularly rounded, passing gradually into the slightly curved ventral margin. Postero-dorsal margin long, convex, with a considerable ventral slope. Posterior margin short, oblique, forming a rounded angle with the ventral margin. Umbones broad, curved forwards. The part of the shell behind a line between the umbones and the postero-ventral angle slopes rapidly from the flattened sides. Lumule elongate, limited by a groove. Escutcheon clongate, deep, limited by a sharp edge.

Oruamentation consists of sharp concentric ridges. Pallial sinus augular, somewhat ascending.

Mersurements:

	(1)	(2)	(3)	(4)	(5)
Length	56	52	52	50	$4: 3 \mathrm{~mm}$.
Height	1.7	$40)$	39	35	: 1

(1) Atherfield Beds, Peasmarsh.
(2,5) Pernu-bed, Atherfield.
(3) Hythe Beds, Lympne.
(4) Hythe Beds, Pulborough.

A!finitirs.-English specimens differ from d'Orbigny's figure in the more ralpid ventral slope of the posterodorsal margin. I am indebted to Professor Boule for comparing photographs of specimens from the Lower Greensand with the examples in the d'Orbigny collection which appear to be the types, and he states that in the latter the shell is less elongate and the postero-dorsal border has a greater slope than in d'Orbigny's figure, consequently the photographs agree much more closely with the types than with the figure. M. A. de Grossouvre has been good enough to lend me a specimen of (!. (l'lucrntia) liandenme from the Lower Aptian of Seignelay, Yonne, one of the lucalities mentioned by d'Orbigny, and a comparison of that with English examples leaves no doubt as to their specific identity.

The generic position of Clmentia (l'lurentin) Ricordean is at present somewhat uncertain since none of the specimens shows the hinge; but on account of the resemblance in the form of the shell to that of ($\%$. (Fluerntia) oculis it is probable that this species belongs to the sub-genus Plaventia. U. (Flaventia)

Ricordeann is less elongate and its postero-dorsal margin is more convex and slopes more rapidly than in Venus sub-Brongniartiana d'Orbigny. ${ }^{1}$

Remarks.-This is probably the species which has been recorded by some authors from the Lower Greensand as Venus nealis and Astarte sulistriata, Leymeric. The proportions of length and height vary considerably in different specimens.

Distribution.--Lower Greensand (l'rma-hed) of Atherfield. Atherfield Beds of East Shalford, Redhill, and Peasmarsh. Hythe Berds of Hythe, Lympne, and Pulborough.
(hementia (Flatentia) ovalis (Konerly), 1827. Plate XXIX, figs. 19-26. 1827. Venves oralis. J. de C. Somerby. Min. Conch., vol. vi. p. 129, pl. dixvii, fig. 1 (not fig. 2). 1850. - - A. TOrhigmy. Prodr de Pal., vol. ii, p. 159. 1854. -- - J. Morris. Cat. Brit. Foss., ed. 2, p. 231 (not from the lucalities given).
1870. -- - F. Sthiczike Palxont. Indica, Cret. Fauna S. Iudia, vol. iii, p. 160 .

Non 1841. -.. A. Gollfuse. Petref. Germ., rol. ii, p. 247, pl. cli, fig. 5 (Venns suboralis, d'Orligns, 1850).

- 1846. --. - A.E. Rerns. Die Verstein. der böhm. Kreideformat., pit. 2. p. $21, \rho^{1}$. xxxir, fis. 22.
- 1847. - \quad J. Millher. Petref. der Aachen. Kreidef., pt. l, p. 24
- 1870. - - H. Creduer. Zeitschr. d. deutsch. geol. Gesellsch., vol. xx, p. 191.
- 1884. Cftherea ovalis, E. Holzapfel. Ibid., vol. xxxvi, p. 464, pl. vii, figs. 2-4.
- $1888 . \quad-\quad$ - G. Müller. Jahrb. d. k. preussisch. geol. Landesanst. für 1887, p. 427.
- 1889. - - F. Holzayfel. Die Mollusk. Aachen. Kreide (Palæontographica, vol. xxxp), p. 169, pl. xiii, figs. 11-15.
- - Veniss - A. Friterh. Stur. im Gebiete der böhm. Kreideformat., iv, Teplitz. Schicht., p. 80, fig. 69.
- 1898. Cytherea - G. Mïlpr. Mollusk. d. Untersen. v. Braunschweig u. Ilsede, p. 66. pl. ix, fig. 15)
- 1901. -. - F. Sturm. Jahrb. d. K. preussisch. geol. Lamlesaust. für 1900 , wol xxi, p. 83.

Dparriftion. - Shell elongate-oval, of moderate convexity, considerably inequilateral. Antero-dorsal margin rather long, concave. Anterior margin rounded,
 - Pal. Franç. Terr. Crít.,' vol. iii (1845), p. 4:32, pl. cerlxxxii, tiss. 3-6; Pictet aml Campiche, 'Terr. Crét. Ste. Croix (1865), p. $168, \mathrm{pl}$. $\cdot x i$, fis. 1.
passing gradually into the considerably curved ventral margin. Postero-dorsal margin long, convex. Posterior margin short, rounded. Umbones prominent, pointed, with a considerable anterior curvature. Lunule ovate, faintly limited.

Ornamentation consists of growth-rings and (in well-preserved specimens) of numerous small, regular, concentric ribs. Pallial sinus deep, ascending, with rounded end.

Hinge: In the right valve the anterior and median cardinals are strong, and diverge below the umbo ; the posterior cardinal is long, oblique, curved, and divided into two parts of which the anterior is shorter than the posterior. In the left valve the anterior and median cardinals are strong and diverge below the umbo; the posterior cardinal is laminar and very oblique.

Measurements:

	(1)	(2)	(3)	(4)	(5)	${ }^{(6)}$	
Length	44	40	37	34	32	30	mm.
Height	33	31	32	.26	27	23	,

(1-6) Blackdown.
Affinitios.-The form from the Aachen Greensand which was referred to this species by Goldfuss and others possesses an anterior lateral tooth.

Remarlis.-In Sowerby's figure the lumule projects more than in any specimen which I have seen, but in other respects the examples from Blackdown agree with that figure.

T'ype. -The type came from Blackdown, but cannot now be found.
Distrihutiom.-Upper Greensand (zone of S.hlmuluchion rostrata) of Blackdown. ${ }^{1}$ Recorded by Jukes-Browne from the Upper Greensand of Devizes.

> (irm":-Cabusta, O. A. L. Mörch, 185:3.
> ('Catalog. Conchyl de Yoldi.' ii, p. 27.)

1813. Venus pianus, J. Shimerly. Min. Conch., vol. i, p. 58, pl. xx, lower figures.

1854 Cytherta plana, J. Marris. Cat. Brit. Foss., ed. 2, p. 201.
? 1845. Yenus plana, A. TOrbigny. Pal. Franç. Terr. Crét., vol. iii, p. 447, pl. ceclexxvi, figs. 1-3 (? partim).
${ }^{1}$ The type of Venus sulmersa, Sowerby, from the Upper Greensand of Pinhay, cannot be found. I have seen mo specimen which could be referred to that species. Barrois, however, records it from the Upler Greensimd of Lalworth. J. de C. Sowerby, 'Trans. Geol. Soc.,' ser. 2, vol. iv (1836), 111. 242, 342. pl. xvii, fig. f: d'Orhigny, 'Prolr. de Pal.,' vol. ii (1850), p. 159; Morris, 'Cat. Brit. Foss.,' ed. 2 (1854), p. $2: 31$; Stoliezka, • Palieont. Indicia, Cret. Fatuna S. India,' vol. iii (1870), p. 161 (Caryat/s) Barrois, 'Terr. Crít. Supér. de l'Anglet et de l'Ireliande' (1876), p' 90.
1850. Venus plana, A. d'Ortigny. Prodr. de Pal., vol. ii, p. 159.
1865. -- - F.J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 190.
1867. - - E. Guiranger. Album Paléont de la Sarthe, p. 13, pl. x vii, fig. 11.
18is. - - A. Briart and F. L. Carnet. Meule de Bracquegnies (Mém. cour. et Mém. des Sav. ćtrangers, vol. xxxiv), p. 72, pl. viii, figs. 3-5.
? Non 1846. Venus flana, A. E'. Reuss. Die Verstein. der höhm. Kreileformat., pt. 2, p. 21, pl. xli, fig. 14.
? - 1879. Cytherea (Carfatis) plana, J. F. Whiteaves. Mesoz. Foss., vol. i (Geol. Surv. Canada), p. 149, pl. xvii, fig. 14.

Description.-Shell oval, sometimes more or less triangular, rounded, moderately convex, considerably inequilateral; length greater than height. Antero-dorsal margin long, concave. Anterior part of valve more or less produced, with rounded margin. Ventral margin forming a considerable curve. Posterior margin short, rounded or slightly truncate. Postero-lorsal margin convex, much longer than the antero-dorsal margin. Umbones rather prominent, pointed, close together, curved anteriorly. Lunule long, cordiform, distinctly limited. Escutcheon not defined. Ornamentation consists of small concentric ridges, with stronger growth-ridges at intervals. Fine radial ribbing is occasionally seen in the posterior part of well-preserved specimens. Pallial sinus fairly large, angular or sub-angular, slightly ascending.

Hinge: In the right valve the anterior and median cardinals are nearly vertical, slightly diverging, and separated dorsally, the posterior cardinal is oblique, long and divided, its posterior part is much longer than the anterior part, and the latter nearly meets the anterior cardinal under the umb; in front of the cardinal teeth there is a shallow, clongate pit with slightly raised upper and lower margins. In the left valve the stont anterior and median cardinals diverge from under the umbo, the anterior tooth being nearly vertical; there is a long slender, obligue posterior cardinal, and an elongate, ridge-like anterior lateral tooth, which is grooved or corrugated.

Mrasincoments:

	(1)	(2)	(3)	(1)	(i)	(1)	(1)	(a)	(9)	
Lerigth	7-	$6!$	(i.)	(i)	it.	-	心	1.1		mm
Height	1i3)	if	5:	51	41	1.3	4	$: 7$	$2!$,

A!finitios.-Specimens from Senonian deposits of Burope have heren referred to

Temus plamus, Sowerhy, by several authors; ${ }^{1}$ and so far as I can judge from the few figures which have been published, they seem to differ but little from Sowerby's species. The example from Aachen figured by Goldfuss agrees closely with specimens from Blacklown except that the lumule projects more at the margin. Holzapfel has compared Aachen with Blackdown specimens, and confirms Goldfuss's identification. The example figured by d'Orbigny: differs in having a large and deep escutcheon.

Specimens from the Trichinopoli Group (near the base of the Ariyalir Group) were identified ly Stoliczka ${ }^{3}$ with Vruns phams.

The absence of a chamel under the anterior right cardinal, and the necurrence of fine radial ornamentation comnect this species with callis/a. The pallial simus, however, resembles that of fitarin. The anterior lateral tooth in the left valve is much less prominent, and the corresponding pit in the right valve much smaller and shallower than in either Cullista or l'itarite. This species is the type of the section or sub-gemus Cullistinn, Jukes-Browne.4
limaths.-'lhis is a common fossil at Blackdown. The variations seen consist in the proportion of height to length, the more or less triangular or oval outline, and the more or less protuced anterior part of the shell.

T'/12 m .-From Blackdown; in the British Musemm.
Inistribution.-Upper Greensand (zone of Schlomburlini rosticata) of Blackilown and Haldon. Recorled by Jukes-Browne from the Upler Greensand of Devizes, the Isle of Wight, ete.

Primily—CARDIIDA, Lamarli.

(irmus-Promocarta, E. Begrirh, 18 tis.
(' Menke's Zeitschr. f. Malakozool.,' p. 17.)

Protocarma antilica, sp. nov. Plate XXX, figs. 7 ", l; Plate XXXI, fig. 1.
Description. Whell large, convex, with flattened sides, subquadrate, moderately
${ }^{1}$ Gollfuss, • Petref. Germ.; vol. ii (1840), p. 2:8, pl. ©xlviii, fig. 4 : Mäller. ' Petref. der Aathen Kreilef.,' (18.47), pt. 1. p. 25: Drescher, 'Zeitschr. d. deutsch. geol. Gesellsch..' vol. xr (1863), p. 344 ; Brauns, 'Zeitschr. f. d. gesammt. Naturwiss.,' vol. xlvi (1876), p. 3t8; H. Schröder. 'Zeitschr. d. deutsch. geol. Gesellsch.,' vol. xxiv (1882), p. 27 云; Holzapfel, Die Mollusk. Aatchen. Kreide' ('Paleontographica,' vol. xxxy, 1889), p. 171, pl. xiii, figs. 16-18; Vogel, 'Holliandiselh. Kreidu' (1895), p. 42.
${ }^{2}$ D'Orhigny subsequently separated the Senonian form under the name lowas sulphan, • Prolr. de Pal.,' vol. ii (1850), 1. 237. See also T. Remanxiana, d'Orbigny, ibid., p. 194.
${ }^{*}$ Stoliczka, ' Palmont. Indica, Cret. Filmas' India,' vol. iii (187(1). pp. 151, 1601, 169, pl. rii, figs. 1-4.
' Proc. Malacel. Soc., vol. viii (1908), p. 156.
inequilateral, length and height nearly equal. Antero-dorsal margin nearly straight. Anterior margin convex, curving rapidly to join the ventral margin, which is moderately or slightly convex. Posterior margin truncated, forming angles with the ventral and postero-dorsal margins. Umbones large, curved forwards, with a sharp carina extending in a curve to the postero-ventral angle and limiting the flattened, steeply-sloping posterior area, the dorsal portion of which is concave. Shell depressed in front of the umbones.

Ornamentation : Sides of shell nearly smooth except for numerous, very small, concentric ribs which are separated by flat interspaces. The posterior area is covered, except near the postero-dorsal margin, by 12 strong radial ribs.

Metwarments:

	(1)	(2)	(3)
Length	80	76	46
Height	78	79	46
	$(1-3)$ Crackers, Atherfield.		

Llfinitien.-This species resembles I^{\prime}. Forbesi (Pictet and Kenevier), ${ }^{1}$ from the Lower Aptian of Ste. Croix, but the umbones are less prominent, and the ribs on the posterior area are less numerous.

It is also similar to P. impressa (Deshayes), but is distinguished by the smaller curvature of the ventral margin, the greater flattening of the sides of the shell, and the more considerable curvature of the umbones.

Distribution.-Lower Greensand (Crackers) of Atherfield. ${ }^{3}$

Protucarma sphmemea (Furless), 18to. Plate XXXI, figs. 2, 3.
1845. Camdium spheiroidium, E. Forbes. Quart. Journ. Geol. Sue., vol. i, p. 243. pl. ii, tis. 8. 1850. - - A. dOrbiyny. Prodr. de Pal., vol. ii, p. 79.
 verts de Genève, pp. 424, $4: 5, \mathrm{pl}$. xxy fig. 3.
-.. -.- spheroideum, Pictet athed Roue. Ibid., p. 546. 1854. - \quad J. Morrio. Cat. Brit. Foss., ed. 巳, p. 193.

1 • Foss. 'Terr. Aptien' ('Matér. Pal. Suisse,' ser 1, 1856), p. 79, pl. viii, fig. 4 ; Pictet and Campiche, ' 'Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 1, 18600), 1' 261.
${ }^{2}$ D'Orhiguy, Pal. Franç. 'Terr. Crét.,' vol. iii (184t), p, 20, pl. ccxl; Pictet and Campiche, op. cit., p. $2+!$.
${ }^{3}$ Some specmuens of Protocardia from the Lower Greensiand of Athertield were referred by Forbes to Cardium pereyrinorsum, dorbigny, but that identitication was doubted by Pictet and Campiche. The specimens at present available are insufticient for exact determination. Ser Forlers, Quart. Juurn. Geol. Suc.,' vol. i (1845), p. 243 .

Inescriphion.-Shell stout, large, much inflated, higher than long, slightly inequilateral. Anterior and ventral margins rounded. Posterior margins truncated, forming angles with the postero-dorsal and ventral margins. Umbones prominent, with a small forward curvature, and an inconspicuous carina extending to the postero-ventral angle and limiting the flattened postero-dorsal area.

Ornamentation consists of regular, broad, flat, concentric ribs separated by narrow grooves. On the posterior area strong growth-ridges are present.

Messurements:

	(1)	(2)	(3)	(4)	${ }^{(5)}$
Length	79	76	73	69	47 mm.
Height	84	91	87	87	$48 \quad "$

Affinitios.- lictet and Campiche state that this species is very near to C. imbricutarium (Deshayes), ${ }^{1}$ but that the posterior area is more flattened and forms an angle with the sides of the shell; also the truncated posterior margin is relatively longer.

Remarks.-In this species the radial ornamentation of the posterior area is either very indistinct or quite obsolete. There is considerable variation in relative height and length of the shell.

Type-From the Lower Greensand (I'rmu-l)ed) of Sandown; in the Museum of the Geological Society.

Distribution.-Lower Greensand (I'rime-bed) of Atherfield and Sandown. Recorded by 'Lopley from the Hythe Beds of Hythe.

Protocarina, sp. Plate XXXI, fig. 4.

The collection of U_{pp} er Greensand fossils made by the late W. Vicary, which is now in the British Musem, contains two imperfect right valves (No. L 17041)
${ }^{1}$ D’Orbiguy, ' Pal. Franç. Terr. Crét.' (1844), vol. iii, p. 18, pl. cexxxix, figs. 4-6; Leymerie, ' Mém. Soc. géol. de France,' ser. 2, vol. v (1842), p. 4, pl. v, tig. 2; Pictet and Campiche, 'Terr. Crét. Ste. Croix' ('Mater. Pal. Suisse,' ser. 4, 1866), p. 958, pl. cxxi, figs. 6, 7. The specimens referred to C. imbricatarinm by Forbes are examples of Unicardinm vectense (p. 163) ; see Forbes, 'Quart. Journ. Geol. Suc.,' vol. i (J845), p. 243 .
from Haldon, which resemble in shape the higher forms of I's spharoiden, but the umbones are narrower and more curved, and the carina is more distinct. Better specimens are needed before a satisfactory comparison can be made. The occurrence of I '. spharoidet in the Upper Greensand (\%one of I'ecten (asper) of Wiltshire has been recorded by Mr. Jukes-Browne.

Protocarda, sp. Plate XXXI, fig. 5a, 1.
Description.-Shell globose, with rounded outline, slightly ineguilateral, height and length nearly equal. Umbones low, curved anteriorly. The posterior part of the shell (except near the postero-lorsal margin) is ornamented with from ten to twelve strong radial ribs; the remainder of the shell bears numerous, small concentric ribs.

Affinities.-This species resembles P. pereminursh (d'Orbigny), ${ }^{1}$ but the area with radial ribs is relatively larger, and the concentric ribs are finer.

Remurlis.-The only specimens seen are two in the Museum of Practical Geology and two in Mr. Lamplugh's collection.

Distribution.-Speeton Clay (zone of Delemnites luteralis, I), t) of Speeton.*
 fig. 1-6.
1813. Cabdium Hillanum, J. Somerly. Min. Conch., vol. i, p. 41, pl. xiv (upher figure).
1819. - \quad Lamerrk. Hist. nat. Anim. sams Vert., vol. vi. p. 20. 18:37. -- - A. Coldjuss. Petref. Germ., vol. ii, p. 220, pl. caliv, fig. 4.
$-\quad$ F. Dajurdiu. Mém. Soc. réol. de France, vol ii

1. 2 2 4. 16.40. -- - IV. B. Geinitz. Char. d. Schicht. u. Petref. des s:ichs. Kreidagel., pt. $2, ~ p .53$.
2. - \quad. A. Rämer. Die Vurstein. d. nord-deutsch. Kreidegel., p. 71.
18\&2. - Requenianun, P. Mutherom. Catal. Foss. du Départ. des Buuches-lu-Rhône, 1. 157, pl. xviii, fig. 6 .

1 'Pal. Franc. 'Terr. Cret.,' vol. iii (1844), p. 16, pl. exxxix, fiss. 1-3; Pictet and Campiche,

* Internal casts of a globose and nearly epuilatemal "Cardiam" (perhaps Proturardia), from the" Spilsby Sandstone of Dounington, are in the Sedgwick Museum.

1843. Cardium Hillanum, M. B. Geinitz. Die Verstein. von Kieslingswalda, p. 13, pl. ii, figs. 10, 11.

1844 - - A. dOrbigny. P'ul. Franç. 'Terr. Crét, vol. iii, p. 27, pl. cexliii.
1845. Protocardia Hillana, E. Beyrich. Meuke's Zeitschr. f. Malakuzool., p. 18. $1844 . \quad-\quad$ - \quad E. Keuss. Die Verstein. der bühm. Kreideformat., $\mathrm{p}^{\text {t. }} 2, \mathrm{p} .22, \mathrm{pl}$. slv, fig. 2.
H. B. Geinitz. Grundr. d. Verstein., p. 421, pl. xix, fig. 4.
!- Cardium Hillanum, E. Forlés. 'Trans. Geol. Suc., ser. 2, vol. vii, p. 146.
1850. - \quad - A. Orbigny. Prodr. de Pal., vol. ii, p. 162.

Protocardia Hillana, H. B. Geinitz. Das Quadersindst. oder Kreidegeb. in Deutschland, p. 154.
? 1852. Cardium Hillanum, f. Rïmer. Kreidebild. v. Texas, p. 49, pl. vi, fig. 12. Protocaidia Hillana, H. G. Bromi. Lethæil Geogu., vol. ii, p. 302, pl. xxx, fig. 12.
1854. Cardiom bifrons, A. E. Ke"ss. Kreideschicht. i. d. Ostalpen, 1. 145, pl. xariii, fis. 19.

- Hillanum, J. Morrix. Cat. Brit. Foss., cd. 2, p. 19!.

1863. Photucardia Hillana, R. Drescher. Zeitschr d. deutsch. geol. Gesellsch., vol. xv, p. 346,
186t. Caledium (Prutucardia) Hillana, K. A. Zittel. Dic Bivalv. d. Gosaugeb., I, p. $42\left[146^{\circ}\right]$, $\mathrm{p}^{\mathrm{l} .}$ vii, figs. $1,2$.
1864. ... Hillanum, F. J. Pictel and G. Camipiche. Terr. Cr'́t. Ste. Cruis (Matér. Pal. Suisse, ser. 4), ph. 268, 273.

Description.-Shell convex, with flattened posterior slope, nearly equilateral; outline more or less sulb-guarlate, rounded, sometimes nearly oval; usually a little ligher than long, but rarely with the height and length equal Anterior margin either fairly convex and forming a rounded angle with the antero-dorsal margin, or very convex and passing almost gradually into the antero-dorsal margin. Anterior margin passes gradually into the ventral margin, which may he considerably convex, but is usually only slightly convex, with its posterior part nearly straight and forming a more or less well-marked angle with the posterior margin. The latter is truncated, slightly convex, and forms an obtuse angle with the postero-dorsal margin. U'mbones of moderate size.

Ornamentation consists (except on the posterior part of the shell) of mumerous, very regular, rounded, concentric ribs separated by narrow furrows; these ribs become smaller or nearly obsolete near the antero-dorsal margin. On the posterior
slope of the shell, and sometimes for a short distance in front of it, are from 10 to 15 (usually 12 or $1: 3$) strong, mote or less angular ribs, separated by hroad furrows, both being crossed by well-marked growth-ridges. Sometimes some of these ribs are divided at their summits by a narrow, longitulinal groove. The ribs become rather smaller dorsally and are absent near the postero-dorsal margin. Internal margins of valves smooth, except the posterior part with radial ribs, which is serrate.

Measurements:

	(1)	(2)	(3)	(4)	(5)	(i)	(7)	(*)	(9)	(11)	(11)	(12)
Length	51	48	4.	41	43	41	38	36	$: 6$: 2	97	
Height	47	47	14	12	41	39	:36	36	34	29.5	26	18
	(1-12) Blackdown.											

Affinities.-Although this species has a very wide geographical distribution and a long range in time, yet the principal variations seen in specimens found at different horizons and in different kinds of sediment consist in the number and coarseness of the concentric ribs. The modifications do not appear to be more than varietal, and such as would be found at the present day in examples of a widely distributed species.

In the example from the Cenomanian figured by d'Orligny the shell is rather higher and the ornamentation coarser than in specimens from Blackelown, but in the latter respect it agrees with examples foumd by the late C. J. A. Meyer in the Cenomanian of South Devon. One specimen from the Cemomanian of Sarthe, shown in Guéranger's photographic illustrations, agrees in its ornamentation with Blackdown examples.

The Cenomanian form figured by Römer (1870), and the examples from higher horizons figured by Geinitz (18+:3) and by (ioldfuss agree closely with Blackdown specimens. Coarser ribbing is found in specimens from the Gault of Cosne, showing that that character is not limited to examples from horizons above the Blackilown Greensand.

Irotorardiu lifioms: (Reuss) is more rounded tham I'. Ifillmm, but does not seem to be specifically distinct.

Cordium marticemse, Matheron, and ('. Rerpuimiamum, Matheron, were regarded by d'Orbigny and by Kittel as synonyms of I'. IIillanm.

Specimens from the Trichinopoli Group of Southern India were identified with I '. Millam, by Forbes and by Stoliczka, who stated that they were unable to draw any line of separation between the Indian and European examples. 'The concentrie ribbing is coarser in most of the Indian forms, and in some the smooth inner portion of the posterior area is relatively larger tham in specimens from Blackewn.

[^41]P. delicatulu, Stoliczka, ${ }^{1}$ and P. pmadicherionse (d'Orbigny), ${ }^{2}$ are allied to P. Hillana.
P. biseriat" (Conrad), ${ }^{3}$ from Syria, possesses coarse concentric ribs, and is regarded by Blanckenhorn as a varicty of I^{\prime}. Hillomi.

Romars.-Examples of this species are common at Blackdown, but probably on account of the uniformity of the conditions under which they lived, do not show any very striking variations.

There are some differences in the proportion of length and height; usually the former exceeds the latter slightly, but occasionally the two are equal. The outline of the shell is sometimes oval, but more usually subpuadrate. The radial ribs vary in number from 10 to 15 , and sometimes the area with these ribs is continued for a short distance in front of the posterior slope.

The number of concentric ribs in 10 mm . (measured between 34 mm . and 44 mm . from the umbo) varies from 15 to 19 .
l'ypr.-From Blackdown, in the British Museum.
Distrilution.-Upper Greensand (zone of Schlumburhin rostrata) of Blackiown, Haldon, Whitecliff (South Devon), Peak Hill near Sidmouth, Devizes, and Ventnor. Cenomanian of Dunscomle. Recorded by Jukes-Browne from the Chloritic Marl of the Isle of Wight.

Cicmus-Cammen, Limuarn.
('Syst. Nat.,' ed. 10, 1758. 1. 678; ed. 12, 1766, p. 1121.)

Camiun Ibretsoni, Finlues, 18+5. Plate XXXII, figs. $\overline{\text { G }}$ - 10 .
1845. Cardium Ibbetsoni, E. Forlers. Quart. Journ. Geol. Soc., vol. i, p. 243, pl. ii, fig. 9.
1854. - J. Morris. Ciat. Brit. Foss., ed. 2, p. 192.
 (Matór. Pal. Suisse, ser. 1) , 1. 78, pl. ix, figs. 1, 2.
18isi. - - F.J. Piatat amd a. Campuche. Terr. Crát. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 262.
1871. - - (Laxicardicm), F. Stoliczke Palenat. Indica, Cret. Famar S. India, vol. iii, p. 213.

a Stolicaka, ibid., p. 220. pl. xii. firs. ±-7.

 M. Blanekenhorn, 'Beitr. zur (ieol. Syriens: Kreidesst. in Mittel u. Nombericns ' (1890), p. K! .

Inseription.-Shell small, inflated, oval, a little higher than long, slightly inequilateral. Anterior margin rounded, passing gradually into the convex ventral margin. Posterior margin subtruncate, higher than the anterior margin. Umbones prominent, with a faint carina extending to the postero-ventral extremity and forming the limit of the flattened postero-dorsal area. Margins of valves serrate.

Ornamentation consists of numerous small, slightly-raised radial rihs separated hy narrow grooves; anteriorly the ribs become gradually smaller and are absent or indistinct near the antero-dorsal margin; on the posterodorsal area the ribs are stronger and the grooves broaler than elsowhere, and the anterior margins of these ribs are sometimes serrate. In well-preserved specimens faint concentric linear ridges are seen.

Mersuremputs:

	(1)	(2)	(3)	(4)	(5)
Length	17	15\%	$1+2$	14	10.5 mm .
Height	18	16\%	1.5	145	11
		(1-5)	A the		

Affinitirs.—See (:. Cettaldinum (p. 203).
In form (!. Iblotsoni resembles C. Rrmliniamm, d'Orhigny, but the latter is distinguished by its broader grooves which hear pointed projections. ${ }^{2}$

In the specimens figured by Pictet and Renevier from the Aptian of the Perte du Rhône the umbones are more prominent than in English examples of C. Ildutsomi, but Pictet and Campiche, who were able to compare examples from Atherfield with those obtained from the Perte du Rhône, felt no doult as to their specific identity.

T! $!$ pe.-From Atherfield, in the Museum of the Geological Society.
Distrilution.-Lower Greensand (Crackers) of Atherfield.
1 • Pal. Frauc. 'Terr. Crét.,' vol. iii (1844), p. 25), pl. cexlii, figs. 7--11.
2 C. Runliniamm is recorded by Morris from the Lower Greensand of the Isle of Wight, and by 'Topley from the Athertied Beds of Peasmarsh and Shalford. Specimens from the Atherfedd Clay were referred to C. subhillanm, Leymerie, by Forbes, hut that identification wats regarded as doubtiful by Pictet and Campiche; the form of the shell camot be made out satisfactorily, hot the ornamentation resembles that of C. Ilbetsomi. An interual cast from the Lower Greensand of Upware was referred with doubt to C. suhhllonnm by W. Keeping (•Foss. Neoc. Upware and Brichihill,' 188:3, p. 119) ; the specimen is now in the Sedgwick Museum, Cambridge, and seems to me insufficieut for determination. A specimen with radial ribs, from the Lower Greensand of Maidstone, was named Cardium Bensteti by Forbes, but was ton imperfect for figuring; the type is in the Museum of the Geological Socidy (No. 2124) ; no other specimen has been seen. Forbes, 'Quart. Journ. Geol. Soce,' vol. i (1845), p. 2.44 ; Pictet and Cimpiche, 'Foss. 'Ierr. Crít. Ste. Croix ' ('Matér. Pal. Suisse,' ser 4, 186i), p. 267.

Camdum Comparinum, dorbighy, 18-4. Plate XXXiI, fig. 11 a-e.

				Pal. Friuç. 'Terr. Crít., vol. iii, p. 22, pl. cexlii, figs. l--4.
1850			dorbigny. Prota	Prodr. de Pial., vol. ii, p. 7
1866.		-	F. J. Pictet	and G. Campiche. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 246, pl. exviii, figs. l, 2.
1871.		-	F. Stuliczike.	Paleont. Indica, Cret. Faunia S. India, vol. iii, p. 212.
1883			W. Kerping.	Foss., etc., Neoc. Upware and Brickhill, p. 118, pl. vi, fig. 4.
1884.	-	-	0. Weerth. D	Die Finuat des Neocom. im Teutoburg. Walde (Palæont. Abhandl., vol. ii), p. 44, pl. ix, fig. 3.
		Uerlinghusan	nom, Weerth.	Ibid., p. 44, pl. is, fig. 4.
1895.	-	Cotraldinum,	G. Muas. Zeitele	Zeitschr. der deutsch. geol. Gesellsch., vol. xlvii, p. 263 , pl. vii, figs. 2, 3 .
1900.	-	--	A. Wollemann	n. Die Biv. u. Gastrop, d. deutselh. u holliand. Neoroms (Abhandl. d k. preussisch. geol. Land., N. F., pt. 31), p. 107.

Descriptim.-Shell oval, inflated, slightly inequilateral, rather higher than long. Anterior and ventral margins rounded. l'osterior margin more or less truncated. Umbones rather high, sharp, curved inward and forward, with an indistinct carina.

Ormamentation consists of mumerous, small, regular, radial ribs, which are rather more prominent on the posterior area than on the sides of the shell.

Measurements:

Length
Height
$2+\mathrm{mm}$. 25\% "

Upware.

Affinities.-This species closely resembles C. Iblintsoni, but differs in having the posterior area less flattened and the outline of the shell more roumed. The English specimens of C. Cottellinitm are larger than those of C. Ibletsomi, but are not sutticiently numerous or well-preserved for exact comparison.

In C. Cottchldinum the shell is relatively higher than in (1. I'olt:i, Leymeric.'
Q. lemderonense, de Loriol, appears to be closely related to C. cottuldinum.

T'ype-D'Orbigny's specimens came from the Neocomian of Wassy (Haute-
${ }^{1}$ For references see Pictet and Campiche, 'Terr. Crét. Ste. Croix ' ('Matér. Pal. Suisse,' ser. 4, 1866), p. 247.

Marne), Brillon (Mense), St. Sanveur and Auxerre (Yome). The specimens figured by Keeping are in the Serlgwick Musemm.

Distribution.-Lower Greensand of [1]ware.

Camom, sp. Plate XXXII, fig. 12 (1, 1 .
Internal casts of a globose form of Cadium occur in the Lower Greensand of Seend and Faringlon. On one specimen (Nu. @1972, Museum of Practical (acology) a portion of the shell is preserved, and its ormatmentation resembles that of ($!$. Ibletsimi and C . 'ottaldian'm. The form of the shell seems to be rather more like that of $\%$. Ibletsoni than of C. Uotheldim!".

Cardium, spp.

Specimens of C'mdinm from the C'enomanian of Dunscombe, South Devon, were referred by C. J. A. Meÿer to ('. ultrounns, Reuss, and O. "hutureum, Goldfuss. Better preserved specimens are needed before these determinations can be confirmed.

Cardum thennense, Wouds, 1s:97. Plate XXXII, figs. 1:3-15.
1897. Cardium turoniense, II. Woeds. Quart. Juum. (reul. Suc., vol. liii, p. 389 , pl. xxvii, figs. $20-22$.

Dristription. -Shell small, oval, higher than long, inerguilateral, much inflated, postero-dorsal part compressed. Umbones prominent, with a considerable anterior curvature. Ornamentation consists of many strong radial ribs. Length, 6 mm .; height, 7 mm .

A/finitirs.-This species shows some resemblance to ('. cememenemse, d'Orbigny, ${ }^{\text {a }}$ but is more incequilateral owing to the much greater curvature of the umbones; also the ribs are less numerous, and tubereles appear to be absent from the grooves.

T'ype.-In the Sedgwick Musemm, Cambridge.
Distributiom.-Chalk Rock of Cuckhamsley.

[^42]Carmum, sp. Plate XXXII, fig. $1 ; \ldots, b$.
1897. Cardium, sp. cf. cenomanense, I. Words. Quart. Juurn. Geol Soc., vol. liii, p. 389, pl. xxvii, tirs. 23, 24.

Interual casts, similar in form to C. cenemanmse, d'Orbigny, are found in the Chalk Rock of Cuckhamsley. A part of the shell is imperfectly preserved on one specimen and is ornamented with fine rudial ribs. A cast measures: height, 8 mm .; length, 8 mm .; thickness, 75 mm .

Campu, sp. Plate XXXII, fig. 17 a-c.
'I'wo internal casts from the Chalk of Norwich (one of which was found by the late T'. G. Bayfield) are in the British Museum (Nos. L 19443, L2010:3). The shell is much inflated, so that the height and thickness are approximately equal ; the height is considerably greater than the length. The umbones are prominent. 'The postero-dorsal part of the shell is flattened and shows indications of fine radial ribs.

This species shows some resemblance to (\%. rentricusum, d'Orbigny, but is relatively higher.
("Geol. survey Cialifornia,"' l'alient.,' vol. ii, p. 2bib.)
 Plate XXXIII, figs. 1-3.
1816. Cardita tuberculata, J. Sowerhy. Min. Conch., vol. ii, p. 97, pl. exliii.
(Non Ciecdium tuberculutum, Lianaems).
1817. Cardium ploboscheum, J. Sumerby. Min. Cunch., vol. ii, p. 127, pl. clvi. tig. 1.
16:35. - Gentmen, J. de ('. Simerlig. Ibicl. (Systematical Index), vol. vi, 1. 24.
1854. - pmbuscideum, J. Morris. Cat. Brit. Fuss., ed. 2, p. 193. - Gentianum, Merris. Ibid., p. 192.
1866. - proboscheum, F. J. Pictet and G. C'tmpiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), 1 2 2 (6).

[^43]> 1871. - probuscideum, F^{\prime}. Stoliczak. Palwont. Iudica, Cret. Faunat S. India, vol. iii, p. 213 (Acunthocardium).
> 1900. - Gentianum, E. T. Newtun and A. J. Jukes-Browne. In JukesBrowne, Cret. Rocks of Britain, vol. i, p. 448.

Desrriptim. Whell stout, very convex, oval, higher than long, slightly inequilateral. Anterior margin rounded; posterior margin truncated, forming an angle with the postero-dorsal margin. Umbones prominent.

Ornamentation consists of radial ribs separated by narrow grooves; the stronger ribs bear prominent, angular, laterally compressed tooth-like projections, which may be rather larger near the posterior margin than elsewhere; in the spaces between the stronger rilss are two (sometimes one or three) smaller ribs with similar but smaller tooth-like projections. Margins of valves toothed.

Measurements:

	(1)	(2)	(3)	(-1)	(5)
Length	6:3	59	58	37	47 mm .
Height	74	711	(i8	(6)	54, "

Affinities.-A form from the Cenomanian was referred by d'Orbigny to C. productum, Sowerly, the type of which comes from the Senonian of Gosau. 'I'his identification has been accepted by Zittel, Holzapfel and others, but not by Pictet and Campiche, and de Loriol. The specimen figured by d'Orbigny ${ }^{2}$ is probably an example of C. probuscidenm, Sowerby, and differs from C. protuctum in the distinct differentiation of the ribs into a larger series separated by smaller series.

The differences between C. Gentianum and ('. proluseidrom seem to be due entirely to their different modes of preservation. The former is found in the Upper Greensand of Devizes and Ventnor; the shell is absent, but the sand which filled the interior of the shell now forms a matural cast of the exterior, showing more or less imperfectly the character of the ormamentation; usially the spines are represented by stumps only or are almost completely olliterated. In these specimens the original form of the shell has been more or less considerably
: 'Trans. Geol. Soc.,' ser. 2, vol. iii (1832), p. 417, pl. xxxix, fig. 15; Goldfuss, ' Petref. Germ.,' vol. ii (1837), p. 291, pl. cxliv, fig. 7 ; Zittel, ' Bivalv. d. Gosaureb.,' pt. i (1864), p. 37, pl. vi, fig. 1 ; Holzapfel, "Die Mollusk. Aachen. Kreile" (Palwontographica,' rol. xxxv), p. 179, pl. xvii, figs. 1-5; G. Müller, 'Mollusk. d. Untersen. v. Braunschweig u. Ilsede' (1898), p. 63, pl. ix, figs. 13, 14.
a 'Pal. Franc. 'Turr. Crét..' vol. iii (18t4), p. 31, pl cexpii ; Gućranger, 'Album Paléont. de la Sarthe' (1867), p. 15, pl. xx, figs. 8-l0.
modified by pressure. On the other hand the shell in (1. problusitidrum, from Blackdown, is replaced by silica, so that loth its ornamentation and original shape are perfectly preserved.

French examples were identified by d'Orbigny ${ }^{1}$ with this species, for which he proposed the name Cardium Montominnm since the specific name (tuherenlita) under which Sowerby originally described the species had already been used. Sowerby, however, in the index at the end of vol. vi of the 'Mineral Conchology,' had already substituted dientionnm for the name which he originally used. I have not seen any specimen of C. Montominnum, and am mable to say whether or not it is really identical with C. Gentimum, but in d'Orbigny's figures the difference in the sizes of the ribs and tubercles is seen on the anterior and posterior parts of the shell only.
C. Carolimm, d'Orbigny, ${ }^{2}$ and C. inxquirostutmm, Matheron, ${ }^{3}$ are closely related to, and perhaps identical with, C. perlmsiderm.

T'ypes.-C. probosedeum, from the Upper Greensand of Blacklown, and Cardita tuberculuta (Cardium Gentianm), from the Upper Greensand of Devizes, are in the British Museum.

Distrilution.-Upper Greensand (zone of Schlmuluclioia rostiatin) of Blackiown, Haldon, Devizes, and Ventnor.

> Fromily-DICERATIDA, Thell.

Ciemus-Toucasa, E. Mnimer-Chrlmas, 1873.
(‘Journ. de Conchyl.,' ser. 3, vol. xxi, p. 74. Douvillé, ‘Bull. Suc. sféml. de France,’ ser. 3, vol. xr, 1887, p. 762.)

Toucasia Lonspalei (Sorrerby), 1836. Plate XXXIII, figs. 1-6.
1836. Diceras Lonsmalif, J. de C. Surerby. Trans. Geol. Soc., ser. 2, vol. iv, pp. 268,338 , pl. xiii, fis. 4.
1850. Caprotina Lonsdalif, A. dOrbigmy. Prodr. de Pal., vol. ii, p. 109 (partim).
1854. Diceras Lonsdatit, J. Morris. Cat. Brit. Fuss., et. 2, p. 201.
1855. Requienia Lonsdalei, S. P. Womelwarl. Quart. Journ. Geol. Suc., rol. xi, p. 53, fis. 39.
1871. - Lonsdalif, F. Stoliczzin. Palaont. Indica, Crut. Famal S. Intia, whl. iii. p. 233 .

[^44]Remorlis.-The examples of 'lourasin Loustulei are in the condition of internal casts in a ferruginous sandstone, so that it is difficult to compare this with other species. The casts show a considerable amount of variation in form. D'Orbigny, de Loriol, and Pictet and ('ampiche included Requienia carinata, Matheron, ${ }^{1}$ from the Urgonian of Orgon, as a synonym of Sowerly's Diereas Lomsidelei; but Prof. Douville ${ }^{*}$ and M. Paquier ${ }^{3}$ think that the identity of the two forms is doubtful and can only be determined by a careful comparison of English specimens with internal casts of T'. carimnta. Prof. Douvillé ${ }^{4}$ suggests that there is a resemblance between T. Seanesi and T '. Lonsidalei.

Type.-The type, which is stated to have come from near Calne, cannot now be found. The specimen from which Woodward's outline figure was drawn is in the British Museum, No. 88825.

Distritution.-Lower Greensand of Stock Orchard, south of Calne. Recorded by Morris from Lockswell Heath, south-west of Calne.

$$
\begin{aligned}
& \text { Frımily-MONOPLEURID.E, Fisehrir. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ('Bull. Soc. gewl. de France,' ser. 3, vol. xv, p. 76e.) }
\end{aligned}
$$

1847. Chama cornucopie, A. dorbigny. Pal. Frame. Terr. Crét., vol. iii, p. 689, pl. cecclxir, figs. 3-7.
1850. - - rorligmy. Prodr. de Pal., vol. ii, p. 170. 1818. - - F'.J. Pictet and G. Campiche. Terr. Crét. de Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 7.
1871. - F. Stoliczkn. Paleeont. Iudica, Cret. Fauma S. Iudia, vol. iii, p. 234.
 xy. p. 771, fig. 3.

Remarks.-Two specimens from the Chboritic Marl of Dorset agree in form with examples of ti. cormuropiat from the (emomanian of Rouen (the locality

1 'Catal. Foss. des Bouches-lu-Rhône’ (18.42) p. 104, pl. ii, fiss. 1, 2 ; Capmotina Lonsdalii, d'Orbigny, 'Aun. Sci. Nat. Zool.,' ser. 2, vol. xvii (1842), p. 180; R'ryuienin Lamsdalii, d'Orbigny,
 Favre, 'Rech. grol. dans Savoic', vol. i (1867), p. 3sti, pl. C. fig. 2e; Requitnia Lomsdulii, l'ictet and Campiche, 'Terr. Crít. Ste. Croix' ('Mater. Pal. Suisse,' str. 5, 1868), p. 14, pl. clxi.
a • Bull. Suce prol. de France', sere :3, vol. xvii (18s?), p. (630.

4 Op, rit.. p. 6:32.
of the type) and with d'Orbigny's figs. 4 and $\mathbf{5}$. The ornamentation in this species is imperfectly known; most of the examples from Rouen are either internal casts or have only portions of the shell present, on which the ornamentation is rather indistinct. In one specimen from Dorset part of the shell of the fixed valve is preserved; the radial ribs are not so prominent as in G. inequirestrata, but concentric lamellæ are distinct.

Distribution.-Chloritic Marl of Melbury Park and Chaldon, Dorset. Recorded by Jukes-Browne from the hase of the Lower Chalk of Chard and Maiden Newton.

Giromemba ingequmostrata (Wundumpr), 18:33. Plate XXXIII, figs. 8-13.
1833. Diceras inequirostratus, S. Whoductiol. Geol. Norfolk, p. 47, pl.v, fig. 22. 1854. Chama inaquirostrata, J. Mmris. Ciat. Brit. Foss., el. 2, p. 194.

Drseription.-Shell much inflated. Right valve large, oval, attached by a considerable portion of the anterior side; umbo prominent, pointed, incurved anteriorly. Left valve capuliform, with the umbo near the linge-margin.

Ornamentation consists of strong, lamellar radial ribs, which are undulose where they cross growth-rings. The ribs have strongly serrate summits and are separated by rather broal, flat, smooth interspaces; sometimes the serrations are replaced by numerons transverse, scale-like structures. Near the fixed part of the right valve the ribs are more numerons than on the flank.

Mresintrments af disord rellu:

 in having the riks more widely separated and in the presence of small ribs in the interspaces and on the sides of the main ribs. (i. russiensis (d'Onigny) ${ }^{2}$ resembles closely $(i$. imernirostroth and was regarded by Morris as a symonym of the latter, but it possesses small riths on the sides of the main ribs. ${ }^{3}$

I'yne.-From Norwich; in the British Museum.

Grmomara, sp. Pate XXXIV, fig. 1 "—d.
Hescription.-Right valve inflated, attached by a large portion of the dorsal surface. Left valve conves, subyuadrate, with a pointed and incurved umbo. Right valve ornamented with numerous, small radial ribs which hear transerse nodes or scales. Left ralve with relatively few, stout ribs bearing strong, somewhat irregular, transverse scales or lappet-like projections.

Affimities.- The ornamentation on the right valve is finer and that on the left valve coarser than in G. cenomonemsis ($d^{\prime} \mathrm{O}^{3}$ higny ${ }^{-1}$) ; also the transverse ornamentation of the ribs is much coarser and less regular:?

Remoths.-The portion of the right valve which was attached includes the umbo and the neighbouring parts, whereas in most cxamples of Gyropleur, only the part in front of the umbo is attached. The size of the area which was attached is larger than usual, but in other species it is seen that that area varies considerably in size in different examples. ${ }^{3}$

The only specimen seen was collected hy Mr. Francis R. B. Williams.
Distrihution.-Upper Chalk (zone of Artimerommer qumitutus) near the groyne at Scaford.

F'mily—CORBULIDA, F'leming.

Girmus-Corbula, J. G. Bruguirre, 1797.
('Eneye. Méth.,' Tabl. Vers., pl. 230.)

1829. Isocardia angulata, J. Phillips. Geol. Yorks., p. 94, pl. ii, Gigs. 20, 21 (ed. 3, 1875, p. 252).
1841. - \quad F. A. Rïmer. Die Verstein. d. nord-deutsch. Kreidegeh., p. 70.
1854. - \quad - J. Morris. Cat. Brit. Foss., ed. e, p. 904.

1 ' Pal. Frame. Terr. Crít.,' vol. iv (1850), p. 261, pl. dxev, figs. 1-4.
${ }^{2}$ Douvilh', 'Bull. Soc. g'ol. de France,' ser. 3, vol. xv (1887), p. 771, pl. xxviii, fig. 7.
${ }^{3}$ In a specimen figured by Grieponken the surface of attachment is unnsually large; 'Senon v. Königslutter' ('Palieont. Abhandl.,' v, 1889), pl. vii, fig. 3.
1865. Isocardia? angulata, F. J. Pichet and G. Cempiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 240.
1871. Isocardia angulata, I. Stolicziel. Paleont. Iudica, Cret. Fauna S. Iudia, vol. iii, p. 194.
1877. Isocardia? nngulata, G. Bühm. Zeitschr. d. deutsch. geol. Gesellsch., vol. sxix, p. 241.
1889. Isocardia angulata, G. W. Lemplugh. Quart. Journ. Geol. Soc., vol. xlv, 1. 616.
1900. - \quad. Wollemenn. Die Biv. u. Gastrop. d. deutsch. u. holliand. Neocoms (Abhaudl. d. k. preussisch. geol. Land., N. F., pt. 31), p. 114 .
1905. Corbula (Isucardia) angulata, E. Harbart. Fauna d. Schaumberg-Lippeschen Kreidemulde (Ibid., pt. 45), p. 81.
1906. Isocardia angulata, A. Wollemann. Die Biv. u. Gastrop. nord-deutsch. Gaults (Jahrb). d. k. preussisch. geol. Lamd., für 1906, vol. xxvii), p. 277.

Description.-Shell with sub-quadrate outline, rounded, occasionally subtriangular, very convex, equivalve, more or less considerably inequilateral; length greater than height. Anterior part produced, rounded; ventral margin slightly curved; posterior margin truncate, slightly convex, somewhat oblique, forming angles with the ventral and dorsal margins. Postero-dorsal margin sloping ventrally. Umbones moderately large, curved inward and more or less considerally forward, with a carina extending to the postero-ventral angle, cutting off a large, flattened postero-dorsal area. The part of the valve in front of the carina is regularly convex. Lunular region depressed.

Oruamentation consists of fine concentric striæ.
Measidrements:

. Iffinities.-This species shows some resemblance to (6 . is more nearly quadrate in outline, relatively longer, of larger size, and without distinct ribs.
C. anguluta is fairly common in the Speeton Clay, but no specimen showing the hinge appears to have been found, so that the generic position assigned to this species by Phillips was presumably based on the external chamacter of the shell. Pictet and Campiche thought that it probably belonged to r'!prian'. Wollemamn states that it is most likely a Corbuln, and Harbort, who has seen the hinge,
definitely refers it to that genus; if this view of its position is confirmed it will be necessary to substitute a new name, since angulata had been previously used by Lamarck for a species of Corbula from the Eocente.

Distribution.-Speeton Clay (zones of Belemuites juculum and b. brunsricensis) of Specton. ${ }^{1}$

Corbula stramula, Somerly, 1827. Plate XXXIV, figs. 6-12.
1827. Corbula striatula, J. de C. Sowerby. Min. Cunch., vol. vi, p. 139, pl. dlaxii, figs. 2, 3.
1846. - \quad A. lorbigny. Pal. Frauç. Terr. Crét., vol. iii, p. 459, pl. ceclaxxviii, figs. 9—13.
1850. - - A. WOrligny. Prodr. de Pal., vol. ii, p. 118. 1854. - -- J. Murris. Cat. Brit. Fuss., ed. 2, p. 196.
1858. - $\quad-\quad$ F. J. Pictetand E. Renteier. Fuss. Terr. Aptien (Matír. Pal. Suisse, ser. 1), p. 176 .
1864. - \quad F. J. Pictet aud G. Campelhe. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 36.
1870. - - I'. Stoliczka. Pabout. Indica, Cret. Fauna S. Judia, vol. iii, p. 10.
1895. - G. Mads. Zeitschr. der deutsch. geol. Gesellsch., vol. xlvii, p. 257.

- - Levis, Mans. Ibjid., p. 257.

1900. - striatula, A. Wollemum. Die Biv. u. Gastrop. d. deutsch. u. holliand. Neocoms (Ablandl. d. k. preussisch. geol. Land., N. F., pt. 31), p. 144.

Nou	1840.	-	-	A. Goldjuss. Petref. Germ., vol. ii, p. 251 , pl. cli, tig. 16 (C. substriatula, d’Ortiguy, 1850).
-	1847.	\cdots	-	J. Miller. Petref. der Aachen. Kreidef., pt. i, p. $\mathbf{2 5}$, pl. ii, firs. 8.
-	1854.	-	-	A. d'Archiuc. Bull. Soc. géol. de France, ser. 2, vol. si, p. 209, pl. iv, figs. 14, 15.
-	1858.	-	-	J. Vilanova-y-Piera. Mem. geos.-agric. de Castellon, pl. iii, tis. 14.
-	1867.	-	-	O. Frats. Aus dem Orient, p. 92.
	1870.	-	-	II. Credner. Zeitschr. der deutsch. greol. Gesellsch., vol. xxii, p. 236 .

${ }^{1}$ The type of Corbula punctum, Phillips, from Speeton, cannot be found, and I have aut seeu any specimen which could be satisfactorily identified with that species. Phillips, 'Geol. Yorks.' (1829). p. $122, \mathrm{pl}$. ii, fig. 6 .

Description.-Shell ovate, usually much inflated, produced and pointed posteriorly, inequilateral, slightly inequivalve. Anterior and ventral margins rounded. Posterior margin short, obliquely truncated. Umbones broad, strongly incurved, with a carina extending to the postero-ventral angle and cutting off a flattened postero-dorsal area. Ornamentation consists of numerous concentric ribs which extend on to the postero-dorsal area, where they are narrower and more distinct.

Meusurements:

	(1)	(2)	(3)
Length	$6 \cdot 7$	$6 \cdot 0$	$5 \cdot 5 \mathrm{~mm}$ 。
Height	$5 \cdot 0$	$4 \stackrel{\square}{2}$	$4 \cdot 1$

(1) Atherfield Bels, East Shalford; $(2,3)$ Crackers, Atherfielı.

Affinities.-This species is distinguished from C. neocomiensi., d'Orbigny, ${ }^{1}$ by the smaller and more pointed posterior end. It differs from C.substriutula in being less inequivalve and in possessing a distinct carina. Wollemann considers that C. lavis, Maas, is identical with C. striatula. Another form which appears to be closely allied is C. neverisensis, de Loriol, ${ }^{2}$ from the Gault of Cosne.

Remaris.-This species varies considerably in convexity and in relative length and height. The shorter, more globose, and more distinctly rostrate forms agree with the type. The more elongate and less convex forms are not so numerous, and although differing considerably in shape from the globose forms, yet they agree with them in other respects and do not appear to be specifically distinct.

Specimens from the Lower Greensand of Punfield resemble C. striatula, but possess stronger concentric ribs-in some cases, as in the example figured (Plate XXXIV, fig. 13), the ribs are considerally stronger, but in others the difference is not so great.
 rol. ii (1850), p. 76.

2 'Gault de Cosue ' (1882), p. 43, pl. r, fiys. 23-25.

T!pe.-Internal casts from the Hythe Beds of Pulborough, in the British Museum.

Distribution.-Lower Greensand: Crackers of Atherfield. Recorded by Fitton from the Perno-bed, Atherfield Clay, and Beds VI-IX, XIII, XIV near Atherfield. Ferruginous Sands of Shanklin. Atherfield Beds of Peasmarsh, East Shalford and Sevenoaks. Hythe Beds of Pulborough. Folkestone Beds of Folkestone.

Corbula gaulitina, Pictet and Campiche, 1864. Plate XXXIV, figs. 14-16.

Descriptiou.-Shell subtriangular, rounded, inflated, slightly inequivalve, a little longer than high, moderately inequilateral. Anterior margin rounded. Posterior margin subtruncate, oblique. Umbones prominent, rather high, curved forward, with an inconspicuous carina cutting off a concave postero-dorsal area. Ornamentation consists of small, concentric ribs.

Measurements:

	(1)	(2)	(3)	(t)
Length	$5 \cdot 5$	$5 \cdot 0$	$4 \cdot 6$	4.0 mm .
Height	$5 \cdot 0$	4.5	$4 \cdot 0$	$3 \cdot 6$

(1-4) Giault, Folkestone.
Atfinities.-In this species the shell is relatively shorter and more inflated than in C. elegrantula, d'Orbigny. ${ }^{1}$
C. !rultinu may perhaps be, as was pointed out by Pictet and Campiche, identical with C. socialis, d'Orbigny, ${ }^{3}$ of which no sufficient diagnosis has been given.

Remark:-Numerous individuals of this species are found close together in groups. When the surface of the shell is not perfectly preserved the ribs become indistinct.

T!!
Distrilution.-Lower Gault (Bed 2) of Folkestone.

[^45]Corbula troncata, Sowerby, 1836. Plate XXXIV, figs. 17-22.
1836. Corbula truncata, J. de C. Sowerby. Trans. Geol. Soc., ser. 2, vol. iv. pp. 240, 341, pl. xvi, fig. 8.

1850.	-		A. dorbigny. Prodr. de Pal., vol. ii, p. 160.
1854.	-		J. Mf, Catis. Brit. Foss., ed. 2, p. 196.
1868.	-	-	A. Briart and F. L. Cornet. Meule de Bracquegnies (Mém. cour. et Mém. des Sav. étrangers, vol. sxxiv), p. 81, pl. vi, figs. 13-15.
1870.	-	-	F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, rol. iii, p. 40.
(4) 1895.	-	cf. --	E. Tiessen. Zeitschr. d. deutsch. greol. Gesellsch., vol. xlvii, p. 485.
Non 1846.	-	-	A. d'Orbigny. Pal. Franç. Terr. Crét., vol. iii, p. 461, pl. ccelsuxviii, figs. 18-20 (? C Goldjussianc, Matheron).

Description.-Shell subquadrate or subtriangular, elongate, rounder, moderately convex, inequilateral, slightly inequivalve, considerably longer than high. Anterior margin well rounded. Ventral margin slightly convex, its posterior part bending upwards. Posterior margin obliquely truncated, forming an acute angle with the ventral margin and an obtuse angle with the dorsal margin. Umbones broad, with a carina extending to the postero-ventral angle and cutting off a flattened or concave postero-dorsal area. Ornamentation consists of numerous fine, concentric ribs which are continued on to the postero-dorsal area.

Measurements:

	(1)	(2)	(3)	(4)	
Length .	9	$8 \cdot 5$	8	7.5 mm.	
Height .	65	6	$5 \cdot 75$	5	,$"$
	$(1-4)$	Blackdown.			

Ạ̣nities.-This species is less elongate than (!. truncutu, d'Orbigny, and is also distinguished by its concentric ornamentation. It differs from (. limeatu, Müller, ${ }^{1}$ in the greater obliquity of the posterior margin and in the more numerous concentric ribs.

Typr.-From Blackdown, in the Bristol Museum.
Distribution.-Upper Greensand (zone of Nchlruluchin rostreta) of Blackdown.
${ }^{1}$ Holzapfel, "Die Mollusk. Aachen. Kreide " (Palæontorraphica.' vol. xxxv. 188!) p. 14i, pl. x. figs. 16-19.

Corbla blegars, simerly, 1827. Plate XXXIV, figs. 2:3-28.
1827. Corblla elegans, J. If. C. Somerhy. Min. Conch., vol. ri, p. 139, pl. Mlixii, fig. 1.

1850.	-	-	A. dOrligny. Prodr. de Pal., vol. ii, p. 160.
18.54.	-	-	J. Morris. Cat. Brit. Foss., ed. 2, p. 195.
? 1867 .	-	-	?, \boldsymbol{E}. Gurranger. Album Pal'ont. de la Sarthe, p. 12, pl. xvi, fig. 1.
1870.	--	-	F. Stoticzka. Palæont. Indica, Cret. Fituna S. India, vol. iii, p. 40.
Non 1846.	-	-	A. d'Orbigny. Pal. Franc̣. Terr. Crét., vol. iii, p. 4b0, pl. ceclxxxviii, figs. 14-17 (C. elegantula, d'Orbiguy, 1850).
?-1847.		-	P, A. d'Archiac. Mém. Suc. géol. de France, ser. 2, vol. ii, p. 302.

Description.-Shell sultrigonal, rounded, very convex, inequivalve, inequilateral, a little longer than high.

Right valve with the anterior part sloping rapidly to the margin; anterior margin rounded; ventral margin convex, its posterior part curving upwards. Posterior part produced, compressed, separated from the sides by a groove passing from the umbo to the postero-ventral angle; on the dorsal side of the groove is a small carina. Posterior margin truncated, forming approximately a right angle with the straight postero-dorsal margin. Umbo prominent, sharp, curved considerably inward and somewhat forward. Ornamentation consists of strong, broad, concentric ribs separated by narrow grooves, except on the postero-dorsal area, which is nearly smooth.

Left valve smaller, less convex, and with smaller ribs than the right valve. Postero-dorsal area scparated from the side of the valve by a groore or sharp carina.

Merturements:

	(1)	(2)	(3)	(4)	
Length	6	$5 \cdot 5$	5	$4 \cdot 5 \mathrm{~mm}$.	
Height	$4 \cdot 75$	$4 \cdot 5$	4	$3 \cdot 6 \quad$,	
	$(1-4)$	Blackdown.			

Affinities.-This species is distinguished from e. elefantula, d'Orbigny, by its broader concentric ribs and rostrate posterior end. It is less globose, less pointed posteriorly, and has stronger ribs than C. sulstriatulu, d'Orbigny.

I! !pe.-From Blackdown, in the British Museum.
Jistrilution.-Upper Greensand (zone of Schlanlachia rostrutu) of Blackdown and Haldon. Recorded by Price from the Upper and Lower Gault of Folkestone.

A MoNo(ilRAPH

(1)F THE

CRETACEOUS LANLELLIBRANCHIA

"F
ENGLAND.

HF
HENRY WOODS, M.A.

VOL. II. PAR'T VI.
S(OLENIDE, SAXIC'AIIDE. PHOLADIDE, TEREDINIDE, ANATINIDF, PHOLADOMYIDE, PLELROMYIDE, POROMYACHDE, AND CUSPIDARIID.E.

$$
1.0 N \mathrm{~N}) \mathrm{N}:
$$

Fomily-SOLENID.E, Lamaris.
Gemus-Phares, Leach in J. E. (rray, $18+7$.
('Synops. Brit. Mus.,' ed 42, 1840, p. 154; 'Ann. Mag. Nat. Hist.,' vol. xx, 1847, p. 272 ; and 'Proc. Zool. Soc.,' 1847, p. 189.)

Pharus Warburtony (Forles), 1845. Plate XXXV, figs. 1-3.
1845. Solecurtus Warburtoni, E. Forles. Quart. Journ. Geol. Soc., vol. i, p. $\mathbf{2 3 7},{ }^{1}$. ii, fis. 1.
1850. - \quad A. Orbigny. Prodr. de Pal., vol. ii, p. 117.
1854. - - J. Morris. Cat. Brit. Foss., ed. 2, p. 224.
1864. - - F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 30.
1870. - \quad. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 99.

Description.-Shell elongate-oblong, compressed, slightly inequilateral, gaping at the ends, the posterior higher than the anterior part. Dorsal margin almost straight. Ventral margin slightly flexuous, and slightly oblique to the dorsal margin. Anterior margin rounded. Posterior margin slightly truncate, rounded. Umbones small, inconspicuous, sub)-median. Ornamentation consists of growth-rings, and on the anterior part of the shell, of numerous, very small, rather irregular, radial ribs.

Measwrments:

	(1)		(2)	(3)	(4)
Length	67		$60 \cdot 5$	5.5	$4+\mathrm{mm}$.
Height	17	.	16	15	19

Affinitios.-This species, as was pointed out by Stoliczka, closely resembles in form living examples of the genus Plurim; but the hinge appears to be manown, for although the species is well represented in collections, and the specimens are in an excellent state of preservation, none of them shows the interior of the shell. A single valve resembling P. Whimitomi, but relatively higher, has been described by Dr. Kitchin' from the Uitenhage Series. Dr. Harbort ${ }^{\text {s }}$ states that his s, whentus lomgoratus is similar to our species, but is relatively higher and shorter.

1 • Ann. S. African Mus,' vol. vii (1908) p. 155, fig. 1.

- Die Fauna d. Schamburg-Lippe'schen Kreilemulde’ (1905), p. il, pl. viii, tis. ti. An imperfect internal cast foum in the $\mathrm{U}^{\mathrm{p} p e r}$ Greensame of Devizes slaws some resemblance to this species.

T'y $/ 1^{\prime \prime}$.-Wrom Atherfield, in the Musem of the (geological Society.
Jist, ilntion.-Lower Greemsand (Crackers) of Atherfield. Atherfield Beds of East Shalford and Sevenoaks. Sandgate Beds of Parham Park.

$$
\begin{aligned}
& \text { (• Dict. Soi. mat., vol xaxii. p. 3Fl.) }
\end{aligned}
$$

(In Gray, 'Amn. Mag. Natt. Hist.,' vol. xx, p. 272 ; and Proc. Zool. Sice., 1847, p. 189.)

Drscription. Whell elongate, considerably inequilateral, moderately conrex, but slightly concave at the middle of the sides. Postero-dorsal area flattened or slightly concave, limited by an indistinct carina. Antero-dorsal margin curved; anterior margin rounded; postero-dorsal margin straight, nearly parallel to the ventral margin; posterior margin curved, slightly oblique. Omamentation consists of small concentric ribs near the umbo, and of growth-rings elsewhere. Length 30 mm. ; height 12 mm .

A!finities.-The identification of the English specimens with d'Orbigny's species is not quite free from doubt, since only two valves, both somewhat imperfect, have yet been seen. In the specimen figured by Gucranger the postero-dorsal area seems relatively higher than in our specimens; also the postero-dorsal margin is less nearly straight, but this difference may be due to imperfect preservation.
S. P'oluyi seems to be closely allied to si. Gineranfori, d'Orbigny, ${ }^{1}$ but the carina is less distinct, and the postero-ventral angle appears to be more rounded.

Until specimens showing the hinge satisfactorily have been found, the generic position of this species must be regarded as doubtful.

I'ype.-From the Cenomanian of Le Mans.
Distrilution.-Upper Greensand (zone of sidhlumuchian rostrita) of Blackdown.

- Pal. Frane. Terr. Crét.,' vol. iii (1845). p. 321, pl. cecli, figs. 1, 2. Gúrauger, 'Albun Paleont. de la Sarthe' ($\mathbf{1 8 6 7}$), p. 12, pl. xr, fir. 4. An internal cast of a left valve from the Upper Greensand of Waminster resembles s. Guerungeri.

Somechitus? (Azon:-) Acreon, d’Orlign!, 18:0. Plate XXXV, figs. :5, is.
1850. Solecurtus Acteon, A. dOrbigny. Prodr. de Pal., vol. ii, p. 158.
1867. - \quad - Gurranger. Album Palćont. de la Sarthe, p. 12, pl. av. figs. 1, e.
1870. - - F. Stolicaka. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 99.

Description.-Shell somewhat oblong, moderately inequilateral, morlerately convex, with flattened sides and flattened postero-dorsal area. Anterior margin rounded; postero-dorsal margin nearly straight, sloping ventrally from the umbo; posterior margin slightly convex, somewhat oblique ; ventral margin nearly parallel to the dorsal margin and forming a rounded angle with the posterior margin. C'mbones broad, inconspicuous. Ornamentation consists of strong, regular, concentric ribs, separated by furrows of greater breadth.

Mensurements (approutinatr):
Length
Height

(1)	(2)
$4(j$	$\underline{0} \mathrm{~mm}$.
-4	$10 \quad$,

(1) Haldon, (2) Dunscombe.

Iffinities.-Only two specimens have been seen; they resemble closely Gućranger's figures of S. Acteon. The hinge is unknown, so that the generic position cannot be determined at present.

Type.-From the Cenomanian of Le Mans.
Distribution-UPper Greensand (zone of Midhumbichia rostrita) of Haldon. ('enomanian (Meyer's Bed 10) of Dunscombe, South Devon. ${ }^{1}$

Genu:-Lermoneex, T. A. Comart, 1867.
('Amer. Journ. Conch..' vol. iii, pp. 15, 188; F. B. Meek, • Iuvert. Cret. aml Tert. Fuss. U. Missomi, 1876, p. 252.)

Lemposome Depmants (d^{\prime} Orliymy), 1845. Plate NXXV, figs. 7, 8.
1845. Solen Dupinianus, A. dorbigny. Pal. Frame. Tem. Crit., vol. iii. p. 330, pl. cecl, firs. 3. 4. 1850. - - A. dOrbigny. Prodr. le Pal., vol. ii. pr 135.
${ }^{1}$ An internal cast from the Cenomanian (Bed 11) of Dumscombe, South Devon, resemble's Solecutus arqualis, d'Orhigny, hut is not sufficiently well-preserved for identitication. S. armalis has

 p. 321, pl. ced, firs. 5-7, and Prodr. de Pal..' sol, ii (1850), p. 158; (iucranger, 'Alhum Pakent. de la Sarthe' (1867), p. lㄹ, pl. xr. fig. 3.
1864. Solen duplnianus, F.J. Pictet and (r. Campiche. Terr. C'rét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 29. 1897. -- - R. B. Nectou. Proc. Dorset Nat. Hist. and Antiy. Field Clul, vol. xviii, p. 93.

Jescription. Whell elongate, more or less oblong, slightly convex, compressed near the antero-dorsal margin, considerably inequilateral. Dorsal margin neal! straight. Anterior end rounded, not so ligh as the posterior part of the shell. Tentral margin nearly straight and nearly parallel to the dorsal margin, curving upwards anteriorly. l'osterior margin convex, forming a rounded angle with the ventral margin. L'mbones small, inconspicuous, situated at less than a third of the length of the shell from the anterior margin.

Ornamentation consists of small concentric ridges; in some cases the ridges cut the posterior part of the ventral margin obliguely. A strong internal rib, extends from the umbo ventrally, but does not reach the ventral margin.

Mecasirrements:

		(1)	(2)	(3)
Length	31	39	$2(5 \mathrm{~mm}$.	
Height		10	.	10

(1-3) Gault, Black Ven.

A!finitios.-The occurrence of this species in the (iault of England has been recorded by De Rance and R. B. Newton-hy the former from Black Ven, and by the latter from Okeford Fitapaine. Although the example figured by d'Orbigny is imperfect, consisting of the posterior part of a left valve only, yet the English specimens agree sufficiently closely with d'Orbigny's figure to make it probable that they have been correctly identificd with L. Inninionns. In most of the English examples, however, the posterior margin is more convex and the posterodorsal angle more rounded than in d'Orbigny's figure; but in a few specimens, which have been slightly crushed, these differences are not noticeable.

 (N'tolic\%ka").

I'! $/ \mu^{\prime \prime}$-From the Albian of Erry (Aube).
Jistillution.-Lower Gault of Black Ven and Okeford Fitapaine. L'prer Greensand of Devizes. Recorled by Jukes-Browne from the Gault of the Isle of Wight.

a 'Kreideschicht. i. d. Ostalpen' (1854), p. 145, pl. xxviii, fig. lu. Zittel. • Die Bivalv. d. Gosaugel),' I (1865), p. 5 [109], pl. i, fig. 3.

' • Pal. Framẹ. Terr. Crét.,' vol. iii (1845), p. 324, pl. cecl, figs. 8-10. 'This species hats beren recorded by Barrois from the Upper Gretnsant of Lulworth and Devizes; I have not seen any examples from those localities.
\therefore I'alwont. Indiea, Cret. Fauna S. India ' (1870), p. 101, pl. i, figs. 12, 13.

r'amily—SAXICAVIDÆ, diruy.
Giemus-Panomea, Mémerd de le (iverle, 1807.
('Amn. Mus. Hist. nat., Paris,' vol. ix, p. 131, pl. xii.)

Panorea, sp. Text-fig. 27.
Internal casts of a large, convex Pampea occur in the Teally Limestone of

Hainton, ('laxby, and North Willingham, Lincolnshire. In form they resemble some varieties of I^{\prime} ! $!$ uryitis, but the posterior part of the shell is more clongated. One specimen shows a large external ligament, and on a small portion of shell indications of radial rows of fine gramules are seen. The pallial sinus is large and rounded.

Mescription.-Shell elongate-oval, convex, not very inerfuilateral. Posterior part more compressed and not so high as the median and anterior parts. Anterior margin rounded; ventral margin slightly curved, not quite parallel to the long dorsal margin. Umbones broad, incurved, at about six-fifteentlis of the entire length from the anterior end. Pallial simus large, deep, and rounded. Surface of shell nearly smooth.
liemoth:-Only a few internal casts with small portions of the shell preserved have been obtained, but they seem to differ considerably from other species and are provisionally referred to the genus l'enopera.

Jistribution.-Spilsby Sandstone (zone of Belemuites lutrrulis) of Domnington.

Pasopa quratis (Bromyniart), 1822. Plate XXXV, figs. !—14; Plate XXXVI, figs. 1-8.
1822. Lutrarla gurgitis, A. Bromgniart, in Cucier. Ossemens Fuss., vol.ii, pt. 2, P' 3:33, 615, pl. ix, fis. 15.
1823. Mya plicata, J. de C. Surerby. Min. Conch., vol. v, p. 20, pl. cecexix, fig. 3. 1835. Panopea plicata, Somerby. Ibid., vol. vi, Systemat. Index, p. $2+1$.
1841. - - F. A. Rimer. Die Verstein. d. nord-deutsch. Kreilegeb., p. 75 , pl. ix, fig. 25.
1842. Pholadomya neocomiensis, A. Leymerie. Móm. Suc. géol. de France, ser. e, vol. v. . . 3. 11. iii, fig. 4.
Prevosti, Deshayes in Leymerie. Hiil., p. 3. pl. ii, fig. 7.
1845. Panopea neocomensis, A. dOrbigny. Pal. Frace. Terr. Cret., vol. iii, p. 329 , ph. cerliii, firs. 3-8.

Prevosti, 1 Orbigny. Ihid., p. 334, pl. ecelvi, figs. 3, 4.
neocomensis, E. Forbes. Quart. Journ. Geol. Suc., vol. i. p. 238. plicata, Findes. Ibid., p. 238 .

- Myopsis neocomiensis, L. Ayassiz. Etudes crit. Moll. Foss., Myes, p. 257, $\mathrm{p}^{\prime l}$ xxxi, figs. $5-10$.
- - unioldes, Ayussiz. Ibid., p. 258, pl. xxxi, firs. 11, l2.

1850. Panop.ea neocomiensis, A. dOrbigny. Prodr. de Pal., vol. ii, pp. 73, 117. Prevostif, d'Orliguy. Ilid., pp. 105, 117.
1851. plicata, F.J. Pietetand W. Rome. Moll. Foss. Grès verts de Genive, p. 399, pl. xxviii, fig. ${ }^{2}$.

- --. Rhodani, Pietet ated Rome. Ibid., p. 400, pl. xxviii, fis. 3.

1854. Myacites neocomiensis, J. Murris. Cat. Brit. Fosis., ed. 2, p. 213.
1855. Panop.ja - F. J. Pictet and E. Renerier. Foss. Terr. Aptieu (Matér. Pal. Suisse, ser. 1), pp. 56, 175, pl. vi, figs. 2, 3.
plicata, Pictet and Renecier. Ilid., p. 5̄̆, pl. vi, figs. 4, 5.

Non 1827. Lutraria gergitis, S. Nilsime. Petrif. Suecama, p. 18. pl. v, fis. 9 (filyrimerin Hulzulieli, Henniz).

- 1837. -- - W. Hisimger. Lethaxa Suecica, p. 67. pl. xx, tis. 1 .

Descriftion. -Shell more or less oblong, rounded, convex; posterior part somewhat compressed, anterior part sloping more or less rapidly to the margin; moderately or considerahly inequilateral; posterior gape large. Anterior margin more or less convex, sometimes subtruncate; antero-ventral margin rounded; ventral margin slightly or moderately convex, nearly parallel to the dorsal margin; posterior margin convex, or sultruncate and rounded; postero-dorsal margin nearly straight. Umbones incurved, often broad, sometimes narrow and pointed; the dorsal part of the shell in front of the umbones is moderately or considerably depressed; sometimes a more or less distinct carina extends from the mono towards the antero-ventral extremity; another carina, usually faint, may extend from the mono posteriorly. Pallial sinus large, romded.

Ornamentation consists of concentric folds, which may be conspicuous or only faintly indicated, and of numerous radial rows of minute granules.

Measurements:

	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(8)	(9)	
Length	93	80	69	(6)	61	56	\%)	$4: 3$	3:3	mm.
Height	49	46	36	38	35	99	39	24	19	"
			$\begin{array}{r} (1 \\ 4,6 \end{array}$			Sha				

Panopra, but by some to llmiomym. There seems now to be sulficient evidence to show that it belongs to the former rather than the latter, since the hinge-margins of the two valves are alike and there is no overlap of left hy the right margin;
 XXXVI, fig. 6); and a well-developed, broad, external ligament is present (Plate XXXV, figs. $9 b, 11 b$). The fine radial ormamentation (Plate XXXV, figs. $9 \cdot(1:, 1$) agrees perfectly with that found in Tertiary species of I^{\prime} anopra.: I have not seen the linge in any specimen from the Lower Greensand, but it is well preserved in a left valve from Blackdown. P'ictet and Campiche's state that casts from the Aptian show clearly the presence of the teeth of I^{\prime} 'rinnuen.

Pictet and Renevier thought that l^{\prime}. plicuth (Sowerby) and l^{\prime}. nenomiensis (Leymerie) should be united as one species; Pictet and C'ampiche, however, in a later work regarded them as distinct, and stated that the former differs from the latter by the possession of strong concentric folds and by the absence of fine radial ornamentation. But when numerous specimens are examined all stages in the strength of the folds can be seen; and those with well-developed folds show, when the surface is well-preserved, the same kind of radial ornamentation that occurs on specimens with indistinct folds. The presence of a carina in front of the umbones and the somewhat smaller height of the posterior part of the shell have also been mentioned as characteristic of P. noromiensis, but these features are now known to be inconstant. It appears, therefore, that there is no character by which P. plicatu can be separated from l^{\prime}. neoromiensis.

It is evident from Brongniart's remarks that his specimens of Lutrariu gurgitis came from the Perte-du-Rhone. Pictet and Renevier, ${ }^{\text {t }}$ who had seen the type of that species in the collection of M. Deluc, recognised it as a specimen from the Aptian of the Perte-du-Rhone, and state that it is certainly an example of either I^{\prime}. noromiensi: or I^{\prime}. plicatn. Since these two forms are now united it follows that the earlier name given by Brongniart should be used for this species. Later writers have unfortunately used the name !urigitis for a species from the Chalk.

I', ucutisulcatu (Deshayes ${ }^{5}$) and P. Shambri (Wollemam ${ }^{6}$) appear to be closely: allied to P. !migitis.
${ }^{1}$ For an ateount of the characters of this genus see Teriuem, ' Bull. Soe géol. de France, ser. 3, vol. x (1853) , p. 534 , and "Observations sur les Eftudes critigues des Mollusinues Fossiless comprenant

a See, for instance, P. intermedien (Sow.) from the London Clay, de., and P. fhridenn. Heilprin,

- Foss. Terr. Aptien’ ('Matér. Pal. Suisse, ser. 1, 1855), pp. 5ti (funtnote), 175.
 - Pal. Franc. Terr. Crét., vol. iii (1845). p. 336, pl. ceclvii, fiss. 1-3; Pictet and Campiche, 'Turr. Crét. Ste. Croix (${ }^{\prime}$ Matér. Pal. Suisse, ser. 4. 1865), p. 6\%
 N. F. pt. 31, 1900), p. 126, pl. v, fis. 7 .
I. lacinsrula (Sowerby'), from the Upper Greensand of Blackdown, closely resembles the small forms of the nocomiensis variety of l^{\prime}. guryitis and does not appear to be specifically distinct. The type consists of an imperfect right valve; a specimen similar to the type, but with both valves preserved, is in the Museum of Practical Geology (No. 2:3,823).

Remark.-Previous writers have remarked on the great amount of rariation shown by this species. At first sight some of the varieties appear to be distinct, but, as Wollemamn has pointed out, when a large number of specimens are studied, transitions can be traced between the different forms. The varieties do not appear to be confined to definite horizons, and nearly all of them are found together in the Perma-bed and Crackers of Atherfield.

Considerable differences are seen in the position of the umbones, so that some specimens are much more inequilateral than others; in those in which the anterior part is relatively short the anterior slope is rapid. The size and depth of the depression in the lunular region show considerable variation; when large and deep the umbones are usually narrower and more pointed than when the depression is small and shallow, and in the former case the carina extending from the umbo to the antero-ventral margin is usually distinct. The relative length and height of the shell, the rounded or truncate character of the anterior margin, the curvature of the ventral margin, the height of the posterior end, and the convexity of the anterior compared with that of the posterior part of the shell also show more or less considerable differences. The concentric folds may be conspicuous, but are sometimes indistinct; sometimes they appear to be better marked on internal casts than on the shell itself; in some cases their prominence is due to the state of preservation of the shell; thus Wollemann mentions a specimen in which one valve is weathered and shows strong folds, whilst the other valve is well preserved and nearly smooth.

Some forms of this species are represented hy a larger number of individuals than others. One common form (Plate XXXVI, figs. 3, 4), agrees more or less closely with the trpe of P. plirata (Sowerby), and it may perhaps be convenient to refer to this as P. !umpitis var. plicuta. In this the concentric folds are usually prominent, the ventral margin is only slightly curved, the posterior part of the shell is of nearly the same height as the anterior part, and the lumular depression is distinct and usually large.

Another form (Plate XXXV, figs. 9, 13) resembles I^{\prime}. uroromiensis (Leymerie) and may be referred to as l^{\prime}. gurgitis var. neocomiensis. The concentric folds are
${ }^{1}$ Mya lieviuscula, J. de C'. Sowerhy, 'Trans. Geol. Soce,' ser. 2 (1836), vol. iv, pp. 241, 340, pl. xvi, fig. 6; Morris, 'Cat. Brit. Foss.,' ed. 2 (1854), p. 212. Panoma lieviuscula, d'Orbigny, 'Prodr. de Pal.,' vol. ii (1850), p. 157 ; Pictet and Campiche, 'Terr. Crét. Ste. Croix' ('Matér. Pal. Suisse,' ser. 4. 1865), p. 70.
usually less distinct than in the variety plicatu, the lunular depression is smaller and shallower, the umbones broader, and the ventral margin usually more distinctly curved. The smaller specimens of the var. neocomirnsis resemble the example figured by d'Orbigny, in which the anterior margin is obliquely truncated, and a carina extends from the umbo antero-ventrally.

In one form (Plate XXXV, fig. 10), which in other respects resembles the variety nencomiensis, the anterior half of the shell is relatively more inflated, and the posterior part is not so high as the anterior part ; this form may be known as P. guryifis var. a. In addition to these forms of l^{\prime}. gurgitis numerous other modifications occur.

Specimens from the Speeton Clay have been recorded by previous writers as r. neocomiensis; the examples seen are few in number and not well preserved, but resemble closely the smaller form of I^{\prime}.guryitis var. urecomirnsis (Plate XXXV, fig. 13). In one case the fine, radial ornamentation is shown.

Specimens from Blackdown (Plate XXXVI, figs. 6, 7) resemble the variety plicutu from the Lower Greensand, but are somewhat less convex; these probably constitute only a local variety, since examples from the Epper Greensand of Dorset agree in convexity and in other characters with typical forms of the var. plicut, from the Lower Greensand. The examples from Blackdown, although few in number, show considerable variation; one specimen (Plate XXXYI, fig. s), is much shorter than usual, and resembles d'Orligny's figure of I'. plicutn, but is less convex.

Crushed internal casts of l'anopea have been found in the Chalk Marl of Folkestone ; they resemble l^{\prime}. !uc!itis var. plicat.", but their imperfect preservation renders determination difficult.

Types.-The type of I^{\prime}. $g^{\prime \prime}$ yific came from the Aptian of the Perte-du-Rhone; that of I. neoromiensis from the Neocomian of Aube. The type of I. plicut, was obtained from the Lower Greensand of Sandgate, but camot now be foumd. The trpe of l'. ixcinscula, from the Vpper Greensand of Blackdown, is in the Bristol Museum.
 xiii, and xir of Atherfeld. P'ern-bed of Nandown. Ferruginous Sands of Shanklin. Atherfield Beds of East Shalford and Sevenoaks. Hythe Beds of Hythe and Court-at-Street. Sandgate Bels of Parham Park. Mammillatm: Bed of Folkestone. Recorded by Topley from the Atherfield Clay of Haslemere, Peasmarsh, Redhill, and Hythe; from the Hythe Beds of Pulborough; from the Sandgate Beds of Folkestone and Sandgate; and from the Folkestone Beds of Folkestone. : Lower Greensand of Lpware. : Specton Clay of Speeton. Gault of Black Ven and Folkestone. Upper Greensand of Blacklown and Black Ven.

Pavopan manmacta (Sourerly), 1813. Plate XXXVII, figs. 1-5.
1813. Mya mandibela, J. Sowerby. Min. Conch., vol. i, p. 93, pl. xliii.
? 1840. Panopea Badmontir, A. Goldfuss. Petref. Germ., vol. ii, p. 274, pl. clriii, fig. 4.
: 1841. - Jugleri, F. A. Rimer. Die Verstein. d. nord-deutsch. Kreidegeb., p. $75, \mathrm{pl}$. x, fig. 4.
1845. - mandibula, A. d Orbigny. Pal. Franc̣. Terr. Crít., vol. iii, p. 344, pl. ceclx, tiss. 3, 4.
1850. - - H. B. Geinitz. Das Quadersandst. oder Kreidegeb. in Deutschland, p. 146.
1854. Mfacites mandibila, J. Morris. Cat. Brit. Fuss., ed. 2, p. 213.
1865. Panop.ea - F. J. Piclet and G. Campiche. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 70.
1870. - \quad. Stoliczka. Palæont. Indica. Cret. Fauna S. India, vol. iii, p. 87.
1873. - - H. B. Geinitz. Das Elbthalgeb. in Sachsen (Palæoutographica, rol. xx, pt. 2), p. 70, pl. xviii, figs. 20, 21.
$\begin{array}{lllll}? 1883 . & - & - & \text { A. Fritsch. Stud. im Gebiete der böhm. Kreide- } \\ \text { format., iii, Iserschicht., p. } 108 .\end{array}$ p. 470.

Description. - Shell oblong or rhomboidal in outline, very inequilateral, convex, anterior part sloping rapidly to the anterior margin, with a wide posterior gape. Anterior margin somewhat convex; antero-ventral extremity rounded; ventral margin straight or slightly curred and nearly parallel to the dorsal margin; postero-ventral extremity rounded; posterior margin truncated, nearly straight, either perpendicular or slightly oblique to the nearly straight posterodorsal margin. Umbones prominent, narrow, pointed, considerably incurved, with a broad, shallow furrow extending from their posterior side to the posteroventral part of the valves. In front of the umbones the shell is considerably depressed.

Ornamentation consists of strong, rounded, concentric folds, which become less distinct in and posterior to the dorso-ventral furrow; and of radial rows of minute granules.

Mensitioments:

	(1)	(2)	(3)	(4)	(5)	(6)	
Length	72	70	53	53	49	36 mm .	
Height	57	46	41	38	35	3:)	"
Thickness.	41	39		28	$\underline{9}$	27	:
	(1, 4-6) Upper Greensand, Ventnor. $(2,3)$ Upper Greensand, Derizes.						

Affinities.-The more elongate forms of this species resemble some specimens of I^{\prime}. guryitis var. Ilicuta, but are more inequilateral, more convex, usually. relatively longer, with narrower and more pointed mmbones, and with a distinct furrow extending from the umbo to the postero-ventral margin.

Remarks.-Many of the specimens are more or less crushed, and nearly all are internal casts, but the shell is preserved in some specimens from the Gault, and shows radial rows of fine granules. The hinge is not seen in any instance. l '. mandilula is common in the Upper Greensand of Ventnor and Devizes, and is less abundant at other horizons. The principal variation seen is in the relative length and height of the shell.

T'ype.-From the Lepper Greensand of Devizes, in the British Museum.
Distrilution.-Lower Greensand of Atherfield. Atherfield Beds of Sevenoaks. Sandgate Beds of Nutfield. Folkestone Beds of Folkestone. Cpper Greensand (zone of sirhlombuchia rostratio) of Devizes and Ventnor. (iault and Lpper Greensand of Black Ven. Chalk Marl of Folkestone.

Pavopen oralis, Smerly, 18:36. Plate XXXVII, fig. 6 (1, 1 .

Drscription.-Shell oval, convex, moderately inequilateral. Antero-lorsal margin slightly convex; anterior margin rounded, passing gradually into the slightly conrex ventral margin. L'mbones broad, incurved. The parts of the shell in the front of and behind the umbones are considerably depressed. The surface is ornamented with growth-rings.

Remurts.-The only specimen seen is the type, in which the posterior part of the shell is not preserved.

T! $!p$. - In the British Museum.
Distrilution.-L'pper Greensand (zone of sidhernhuchin rostruta) of Blackdown.

Pavorea Meyeri, sp. nov. Plate NXXVIII, fig. 1 ,, ,
Iterifition.-Shell oval, moderately convex, with flattened sides, slightly inequilateral, with a wide posterior gape. Antero-dorsal margin convex. Anterior
margin rounded. Ventral margin straight or slightly convex. Posterior margin truncated, slightly convex. Postero-dorsal margin slightly concave, nearly parallel to the ventral margin. Umbones broad, curved inwards and backwards. The part of the shell in front of the umbones is slightly depressed; the part behind the umbones is more deeply depressed. Surface with well-marked growth-rings. Length 87 mm . ; height 59 mm .

Affinities.-In this species the sides of the shell are more flattened, the anterodorsal margin is more convex, and the part of the shell in front of the umbones is less depressed than in l^{\prime} ' woulis. 'The hinge has not been seen, but the form of the shell agrees closely with that of typical species of Punupen.

 Museum. Internal cast of right valve. Natural size.

Recumtis.-In addition to the specimen figured, which was collected by (. J. A. Meÿer, an internal cast and the posterior part of a left valve only have been seen.

Ihistrilntion.-Upper Greensand (zone of sidlumhthein ruritus) of Blackdown.

Pavoren, sp. 'Text-fig. ©8.
Internal casts resembling I'. Mryeri, but with the posterior border obliquely truncated, occur in the Lower Greensand ("Scaphites" Beds) of Whale Chine, Atherfield.

Family-PHOLADID.E, Leach.

$$
\begin{gathered}
\text { Gemus-Martesta, Leach in II. M. D. de Blainuille, 1825. } \\
\text { (' Manuel de Malacol.', p. 632.) }
\end{gathered}
$$

Martesla constricta (Phillips), 1829. Plate XXXVIII, figs. 3-10.
1829. Pholas constricta, J. Phillips. Geol. Yorks., p. 169 (p. 256, ed. 3), pl. ii, fig. 17.
1850. - - A. dorbigmy. Prodr. de Pal., vol. ii, p. 117.
1854. - - J. Morris. Cat. Brit. Foss., ed. 2, 1. 221.
1864. - - F. J. Pictet and G. Campiche. Foss. Terr. Crit. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 26.
1870. - \quad F. Stoliczke. Palæout. Indica, Cret. Fauna S. India, p. 23 (: Martesia).
1900. Pholadidea constricta, A. J. Jukes-Browne. Cret. Rocks of Britain, vol. i, p. 470.

Description.-Shell small, more or less elongate; anterior part short, convex, rounded; posterior part wedge-shaped. Umbones prominent, close together, curved inwards and forwards. Ventral margin nearly straight. Posterior margin sub-truncate, more or less rounded, somewhat oblique. Postero-dorsal margin sloping ventrally. Two narrow furrows, with corresponding internal ribs, extend from the umbo to the ventral margin; the anterior furrow is rather broader and less oblique than the posterior, but is sometimes short or absent. An internal ridge, near the postero-dorsal margin, extends from the umbo to near the posterior adductor. Anterior callus shield-shaped. Ventral margin of valves diverging posteriorly, joined by a hypoplax. Metaplax elongated, divided.

Ornamentation: on the larger part of the shell distinct, regular, concentric ribs with minute transserse serrations. In front of the anterior furrow the ribs become smaller and closer together; they bend dorsally and mite at an angle with similar ribs on the dorsal part of the anterior end of the valve. On the postero-dorsal part of the shell the ribs are less regular and less distinct.

Measurements:

	(1)	(2)	(3)	(1)	(5)	(6)	(i)	
Length	18	17	16	18	15	14	10	mm.
Height	9	9	9	10	$!$	7	6%	
Thickness	9	9	9	$10 \cdot 5$	9	7.5	6.5	

Affinities.-This species is less elongate than M. wherylimbich (dOrbignvi. 1 ' Pal. Franc. Terr. C'rit.,' vol. iii (1845), p. 306, pl. cecelix, fiys. 5—8.

The height of the anterior part of the shell is less and the length of the ventral

licumbis.-Chhis species varies somewhat in relative length and breadth, and in the extent of the development of the anterior furrow. Many of the specimens are found in burrows in wool. The protoplax is not preserved in any example seen.

I!ner.-The type came from Speeton, but camot now be fouml.
Jhistribution.-Specton Clay of Speeton. Lower and Upper Gault of Folkestone. Probably also in the Upper Greensand of Blackdown. Specimens which belong to either this or a closely allied species occur in the Spilshy Sandstone of Bemniworth Haven. Borings in wool found in the Tealby Limestone of Claxhy may be due to this species but the valves are concealed.

Mamema linca (Sommin), 1828. Plate XXXVIII, fig. 11.

> 1828. Pholas priscus, J. de C. Somerby. Min. Conch., vol. vi, p. 157, pl. dlxxxi.
> 1845. Pholas priscus, E. Forbes. Quart. Journ. Geol. Soc., vol. i, p. 237.
> 1850. Pholas prisca, A. dorbigny. Prodr. de Pal., vol. ii, p. 72.
> 1854. - - J. Morris. Cat. Brit. Foss., el. 2, p. 321.
> 1864. - - F. J. Pictet and G. Campuche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 26.
> 1870. - - (Martesta), F. Stoliczka. Palæont. Iudica, Cret. Faumia S. Judia, vol. iii, p. 2 ?
1875. Pholadidea prisca, R. Etheridye in W. Topley. Geul. Wealld, p. 419.

This species appears to be closely related to M. constricta, but no satisfactory description can be given until better specimens have been obtained. The type, in which the shell was well preservel, cannot now be traced ; in other examples the shell is concealed by a coating of hard matrix, and in the few cases in which it has been possible to remove the matrix only internal casts of the valves have been exposel. The type came from the Lower Greensand (S Sandgate Beds) near Sandgate. Other specimens have been obtained from the Hythe Beds of Hythe and Maidstone. ${ }^{\text {a }}$
${ }^{1}$ 'Foss. Terr. Crét. Ste. Croix' (1864), p. 24, pl. c, fig. 1. This species has been recorded by Price from the Gault of Folkestone: I have not seen any examples of it.

* Fistulana $p^{\prime y}$ riformis, Mantell, is perhaps a Martesia, but no specimens showing the valves have been seen. No figure or specific description was given ly Mantell. The "type" came from Willinglon near Eastbourne, apparently from the top of the Lower Greensand. Mantell, 'Foss. S. Downs' (1822), p. 76 ; Gastrochiena pyriformis, Morris, 'Cat. Brit. Foss.,' ed. 2 (1854), p. 203; Pictet and C'ampiche, 'Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse,' ser. 4, 1864), p. 18; Stoliczka, - Palaont. Indica, Cret. Fama S. India,' vol. iii (1870), p. 29.

Gastrochena dilatate, Deshayes, has been recorded by Forbes and other writers from the Lower Greensand; I have not seen any specimens in which the valves are exposed. Deshayes, in Leymerie, - Mém. Soc. géol. de France,' vol. v (1842), p. ㄹ, pl. iii, fig. 1; Forbes, 'Quart. Journ. Geol. Soc.,' vol. i (1845), p. $2: 37$; Pictet aml Campiche, 'Foss. Terr. Crét. Ste. Crois ' (1864), p. 11, pl. xcix, figs. 4, 5.

1850. Teredo rotundus, J. de C. Somerly in F. Dixom. Geol. Sussex, p. 34 (i) (p. 382, ed. 2), pl. xxviii, fiss. 27, 28.
1854. - \quad - J. Morris. Cat. Brit. Foss., ed. 2 , p. 2:27.
1897. Martesla? rotunda, H. W'ouds. Quart. Journ. Geol. Soc., vol. liii, p. 393, pl. xxviii, tigs. 15-18.

Description.-Shell small, oroid, inflated, with rounded outline. Anterior gape large, apparently closed by callus. Umbones sub-median, curved inwards and forwards. A strong groove and a corresponding internal rib pass from the umbo to the ventral margin. Near the corsal margin a strong, narrow internal ril) passes backward from the mblo but does not reach the posterior margin. Ornamentation posterior to the groove consists of concentric ribs and of two radial ribs immediately behind the groove; anterior to the groove are a few regular radial ribs, and concentric ribs parallel to the margin of the anterior gape. Length, 7 mm ; height, 5.5 mm .; thickness, 5 mm .

Remarks.-I have seen only three casts of the interior and two of part of the exterior of this species, so that at present it is difficult to determine satisfactorily its generic position.

T!upe.-The type came from the Chalk of Kent, but cannot now be found.
Distrilution.-Chalk Rock of Cuchhamsley (Berkshire), and of Whyteleafe (Surrey).

Gemus-Tunves, IV. M. Gahb, 1864.
('Geol. Surv. Califurnia,' Palæontology, vol. i, p. 145.)

Tunts Damasi (Willere), 1866. Plate XXXVIII, figs. itu, リ, 15.
1866. Pholas Dallast, J. F. Wullier. Amn. Mag. Nat. Hist.. ser. 3. vol. xviii, p. 386, pl. xiii, figs. 3, 4.

Description.-Shell orate, short, inflated in front, wedge-like behind. Margin of the anterior gape obligue, gently curved. Posterior margin rounded. C'mbones prominent, curved inwards and forwards. A narrow furrow, and a corresponding internal rib, extend from the mabo to the rentral margin in a somewhat ohligue direction, and the furrow is crossed by small ribs. A broad and strong internal rib,
passes from the mmon to near the postero-ventral margin. The shell is ornamented with small concentric rils, which bend dorsally in front of the furrow and become parallel to the anterior margin.

Mensmorments:

A \ddagger finitirs.-I The very slight curvature of the anterior margin and of the anterior ribs distinguishes this species from the one described below.

Remarls.-'T'. Dallasi occurs commonly boring in woor.
T! ! pre-From Potton; in the Sedgwick Museum.
Listribution.-Lower Greensand of Potton.
'lumes, sp. Plate XXXVIII, figs. 16, 17.
Dracription. Shell oval, inflated, posterior end wedge-like. Ventral margin curved; posterior margin rounded. Antero-rentral excavation angular. U'mbones prominent, anterior, incurved, close together. An external furrow and a corresponding internal ribe extend from the umbo to the rentral margin. A strong internal rib passes from the umbo to near the postero-ventral edge.

Posterior to the dorso-ventral groove the shell is ornamented with narrow, regular concentric ribs; for a short distance in front of the groove the ribs bend sharply upwards, and soon become smaller and close together; on the dorsal part of the anterior end the ribs bend forwards.

Mensuremurnts:

		1)
Length	14	$1: 3 \mathrm{~mm}$.
Height		11
Thickness		$95,$,
		12
	(1-2) Gault, Folkestone.	

Atpinitios-This species resembles 'T'. argomensis (Buvignier), ${ }^{1}$ but exact comparison is difficult since only a small internal cast is figured by Burignier. The English form appears to differ from T'. "roonnensis in the larger size and more angular character of the anterior gape, and in the smaller and closer ribs, especially on the anterior part of the shell.

Distrilution.-Lower Gault of Folkestone.
1 'Statist. géol. min. et palcont. de la Meuse,' Atlas (1852), p. 6, pl. vi, figs. 33-39.

Tunvos, sp. Plate XXXVIII, fig. 18.

A specimen from the Upper Greensand of Blackdown resembles the species from the Gault, described above, but the concentric ribs are finer and more mumerous, and the dorso-ventral furrow is narrower. The exterior of a left valve only is preserved and is associated with large and rather inregular tubes.

Tures: amphisima (Goldfinss), 1831. Plate XXXVIII, figs. 19, 20.
1829. Teredo, G. Mantell. Foss. S. Dowhs, p. 207, pl. xwiii, fig. 23.
1831. Serpola amphisb.ena, A. Goldfuss. Petref. Germ., vol. i, p. 2399, pl. lxs, fig. 16.
:1839. Cerambicites, sp., H. B. Geimitz. Char. d. Schicht. u. Petref. des siachs. Kreidegel., pt. 1, p. 13, pls. iii-vi.
1840. Teredo amphisbena, J. de C. Sowerby. Min. Conch., vol. vii, p. 17, pl. dexviii, firss. 1-5 (Teredo articulata on the plate).
1841. Serpula amphisbena, F. A. Rimer. Die Verstein. d. nurd-deutsch. Kreidegel., p. 100.
1842. - - H. B. Geinitz. Char. d. Schicht. u. Petref. des siichs.-bühmisch Kreidegreh., p $^{\text {t. 3. }}$, p. 6.5.
1843. Fistulana amphisbefa, H. B. Geinitz. Die Verstein. von Kieslingswalda. p. 11, pl. iv, figs. $11-14$.
1845. Serpula amphisbexa, A. E. Reuss. Die Verstein. der bühm. Kreideformat., pt. 1, p. 19, pl. v, figs. 29—32.
1846. Gastrochena? (Teredo:) amphisbena, H. B. Geinifz. Grundr. d. Verstein., p. 396.
:1850. Fistulana amphisb.ena, P. de Ryckholt. Mélanges Paléont. i (Mém. cour. et Mém. des sav. étrang., vol. xxiv), p. 117, pl. v, fiss. 19-0.2.
1850. Teredo amphisbena, J. di C. Smerlyy, in F'. Diron. Geol. Sussex, p. 354 (p. 385, ed. 2), pl. xaviii, fis. 35.
1851. Gastrochena amphisbma, J. Mifler. Petref. der Aachen Kreidef., pt.. p. 63.
 Wien. Matla-mat. Cl., rol. iii, 1. 310 , pi. xri, tics. 18.

1863. Gastrochena amphisbeana, R. Imercher. Zeitedir. d. deutseh. weol. Gesellseh., vill. xs. 1. 341 .
1864.
F.J. Pictet and Gi. C'empiche. Foss. Terr. C'ret. Ste. Croix (Mater. Pal. Suisse, ser. 4). p. 14.
1870. Teredo amphisbifna, F. Rimer. Geol. v. Oberschles., pp. 317, 340, pl. xxxir, figs. 14, 15.

- Gastrochfana amphisbefa, F. St, liczlia. Palæont. Indica, Cret. Fauma S. India, pp. 14, 29.

1873. - - H. B. Geinitz. Das Ellthalgel. in Sachsen pt. 1), p. 235, pl. lii, figs. 8-12.

1876.	-	-	I). Brauns. Zeitschr. f. d. gesammt. Naturwiss., vol. xlvi, p. 358.
1877.	--	---	A. Fritach. Stud. im Gebiete der bölm. Kreileformat. ii, Weissenberg. u. Malnitz. Schicht., p. 122, fig. 93.
1888.	-	-	G. Mïller. Jahrl. d. k. preussisch. geol. Landesanst. fïr 1887, p. 436.
1889.	-	-	A. Fritsch. Stud. im Geljiete der bühm. Kreideformat. iv, Teplitz. Schicht., p. 79, fig. 67.
--	-	-	O. Griepenkerl. Senon. v. Künigslutter (Palront. Abhandl., vol. iv), p. 69, (\% pl. vii, fig. 1).
\% 1889. ?	-		E. Holzalfel. Die Mollusk. Aachen. Kreide (Palæontegraphica, vol. xxxv), p. 143 .
: 1893.	-	-	Fritsch. Op. cit. v. Priesen. Schicht., p. 96, firg. 113.
? 1895. ?	-	-	F. Togel. Hollandisch. Kreide, p. 49, pl. iii, fig. 13.
1897.	--	--	R. Leonherd. Kreideformat. in Oberschles. (Palæontographica, xliv), p. 53 , fist. 8.

1898. Turnus amphisbena, G. Miiller. Mollusk. d. Untersenon v. Braunsehweig u. Ilsede (Abhandl. d. k. preuss. geol. Landesanst., N. F., Heft 25), p. 79, pl. x, fig. l2.
1899. - A. Wollemann. Fauna der Lüneburg. Kreide (Abhandl. d. k. preuss. geol. Landesanst. N. F., Heft 35), p. 81.

Inescription.-Tubes long, conical, tapering gradually, sometimes nearly straight, but usually bemling or curving irregularly, circular in section, but often compressed, and then showing a median longitudinal furrow on one side. Diameter sometimes reaches 15 mm . and the length 910 mm . Surface with narrow transverse ridges at more or less regular intervals giving a segmented appearance; sometimes also with smaller growth-rings between the ridges.

Remmitis.-This species ranges almost throughout the Chalk and is widely distributed. It has been referred by various authors to five different genera, but
its sustematic position must still be regarded as mertain, for although the thbes are common the valves have not been fonnd in association with them. Fritsch (1893) and Mïller (1898) have found the valves of T'minns in the same deposit as the tubes, and think it probable that the former belong to the same species as the latter. Some authors have referred these tubes to the genus dinstrofliem, but Stoliczkia points out that they resemble more nearly the tubes of Teradn.

Types.-From the Senonian of Maestricht and Bochum. The specimens figured by Sowerly (except fig. 2, which is in the British Museum), by Mautell, and by Dixon cannot be found.

Distrilution.- Chloritic Marl of Easthourne. Cambridge (ireensand. Chalk Marl of Chard and Ventnor. Zone of Ihlustrur sulydulensws of Holborough near Rochester, Totternhoe, Cherry Hinton, and Burwell. Zone of Rhymelumelln ('urieri of the Deron coast, Winchester, the Isle of Wight, and Lewes. Zone of Trormorntuliun of Winchester, the Isle of Wight, Croydon, and Devon. Zone of Iolaste, plumus of the Dorset coast, the Isle of Wight, Dover, and Luton. Zone of Miriuster ror-testudinurimm of Mitcheldever, Dover, the Sussex coast, and Coulsdon (Surrey). Zone of M. cor-tu!minum of the Sussex const, St. Margaret's, Thanet, and Gravesend. Zone of Whestpitos testudimerius of Highfield, near Salishury, the Sussex coast, and Thanet. Zone of Antinoctmone $y^{\prime \prime}$ motrintus of the Sussex coast.

> F'amily-TEREDINID.E, ricacti.
> (iemu-Trmem, Linntu;, 1758.

Themo gatmina, sp. nov. Plate XXXVIII, fig. ${ }^{2}$.
Drsoriptim, -Shell convex, inequilateral. Anterior gape large, angular. Postero-ventral gape small. Postero-dorsal margin produced upwards and outwards. L'mbones large, incurved. A shallow furrow extends from the umbo to the ventral margin. Posterior to the furrow the shell is ornamented with ribs and narrow furrows, which soon bend dorsally, and disappear or become indistinct on the postero-dorsal part; in front of the furrow the ribs are much smatler, and are parallel to the margin of the anterior gape at first they are directed dorsally, but soon bend forwards. Length, 9 mm .; breadth, sis mm.

Lffinities.-In T. coremernis, Burignier,' the anterior ribs are coarser and the posterior end of the shell is more produced than in this species.

Jistrilution.-Gault of Folkestone.

Prmily-ANATINIDE, Gray.
Cientis-l'lememya, l'. de Loriol, 1868. (De Loriol and Cottean, 'Mon. Pakiont. Geol. Portlandien de l'Yonue,' p. 89.)

Plectomya angluca, sp. not. Plate XXXIX, fig. $1 /$, l.
Description.-Shell elongate-oval, slightly inequilateral, compressed ; anterior and posterior ends rounded; ventral margin slightly convex. Umbones broad, with a slight posterior curvature.

The part of the shell in front of a line drawn from the umbo to the opposite rentral margin is ornamented with strong concentric ribs separated by broad furrows; these ribs become nearly or quite obsolete on the posterior middle part of the shell (except near the umbo), but re-appear on the postero-dorsal part. The entire surface of the shell is ormamented with numerous radial rows of granules. Length 49 mm ; height 27 mm .

Atfinities.-This species is similar in general character to Plectomye Agussi:i (d° Orbigny ${ }^{1}$), but the shell is less elongate, the ribs on the anterior part of the shell cut the margin and the growth-lines obliguely, and on the posterior median part the ribs are almost olsolete. It also shows some resemblance to I'. Fihormi (l'ictet and Roux*).

Remuths.-Of this species I have seen only two examples, neither of which shows the interior, so that I am mable to express an opinion as to affinities of the genus I'lectom!

Instrilution. - Lower Greensand (C'rackers) of Atherfield."

Gemis-Avitiva, Lamarch, 1809.
(\cdot Plilusoph. Zowl.,' vol. i. p. 319 ; • Hist. nat. Anim. sams Yert., 'vol. v, 1818. p. 462.)

$$
\begin{aligned}
& \text { (}{ }^{(E t u l e s} \text { crit. Moll. Foss.,' Myes, p. 143.) }
\end{aligned}
$$

[^46]

> 1855. Anatina Robinaldina, F. J. Pirtet and E' Remerier. Foss. Terr. Aptien (Mat'́r. Pal. Suisse, ser. 1), p. 63, pl. vii, fis. 1. (Non A. Robinaldinc, dOrlisny, 1845.)
> 1865. GUrgitis, F. J. Pictet and G. C'ampichr. Foss. Terr. Crít. Ste. Croin (Matér. Pal. Suisse, ser. 4), p. 105, pl. crii, fige 6-K.
> 1870. - (Cercomya) gurgitis, F. stolicke. Palæont. Indica. Cret. Fama S. Inelia, vol. iii, p. it.

Description.-Shell elongate, compressed, inequilateral, highest in front of the umbones, tapering posteriorly. Anterior margin rounded. Umbones inconspicuous, with a carina extending to the posterior extremity. A very shallow sulcus passes from the umbo obliquely forwards across the valve. In front of this sulcus the ornamentation consists of narrow, sharp, concentric ribs separated h. broad interspaces ; both ribs and interspaces are crossed by numerous radial rows of very small pointed projections. Behind the sulcus the concentric ribs become less distinct or represented by growth-rings only.

Affinities.-This species is allied to A. (Cercomyn) Rolinuldina, d'Orhigny, ${ }^{1}$ hut the posterior part of the shell is more elongate.

Remarks.-I have seen only three examples of this species. Pictet and Campiche state that the part of the shell just in front of the carina is ormamenter with radial rows of punctate stria; these are not seen on the English specimens, prohably on account of their somewhat imperfect preservation. One of our specimens (Plate XXXIX, fig. 3) agrees very closely, both in the form of the shell and in the character of the ornamentation, with the figure given by Pictet and Renevier; the others (figs. 2, 4) approach more nearly the examples figured by lictet and Campiche, but the anterior part of the shell is rather higher.

Type.-From the Aptian of the Perte-du-Rhone.
Distribution.-Lower Greensand (Crackers) of Atherfield.

Axatian (Cercomya), sp. Plate XXXIX, fig. in, ll.
Ihescription.-Shell very long, compressed, considerably inequilateral, highest in front of the umbones; posterior part tapering, and curved upwards. Anterior margin rounded; ventral margin convex; posterodorsal margin concave. limbones curved posteriorly, with a carina and a shallow furrow extending to the

posterion extremity. On the anterior part of the shell the ormamentation consists of narrow, sharp, concentric ribs, which become less distinct on the median and posterior parts.
limmalis.-Only one specimen-an internal cast-has been seen. It resembles A. (romomyin) !neyitix, but is more inequilateral and more elongate.

Instril,mtim.-Upper Greensand of the Isle of Wight.

Axama (('ercomba), sp. Plate XXXIX, fig. 6.
Imperfect specimens of a species of Anatinu (Cercomy/n) have been found in the Upper Greensand of Warminster and in the Cenomanian (Bed 10) of Dunscombe, South Devon. In shape they resemble A. (Cercomya) prorlurtr, Zittel. ${ }^{1}$

> Gicmu-Thbacia, Leuch in II. M. I). de Blainvill', 1824. ('Dict. Sci. mat.,' vol. xxsii, p. 347.)

Thracia Puiditsi, Rümer, 1841. Plate XXXIX, figs. 7-9.
18:9. Mya depressa, J. Phillips. Geol. Yorks., p. 121, pl. ii, fig. 8 (nou M. depresa,
1841. Thracia Philifsii, F.A. Rïmer. Die Verstein. d. nord-deutsch. Kreidegeb., p. 74, pl. x, fig. 1 .
1850. - recurva, A. dOrbigny. Prodr. de Pal., vol. ii. p. 117. (: T. sub. depressa, p. 74.)
1854. - Phillipsi, J. Morris. Cat. Brit. Foss., ed. 2, p. 227.
1865. - -- F.J. Pictet and G. Campiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 120.
$\begin{array}{ccccc}\text { - } & - & \text { recurva, Pictet and Campiche. Ibid., p. 120. } \\ \text { 1870. } & - & - & \text { F. Stoliczha. Pilæont. Indica, Cret. Fauna S. India, }\end{array}$ vol. iii, p. 72 (Corimya !).
1875. - Phillipsir, Phillips. Op.cit., ed. 3, p. 254, pl. ii, fig 8.
1900. - Phillipsi, A. Wellemamn. Die Biv. u. Gistrop. d. deutsch. u. hollind. Neocoms (Abhandl. d. k. preussisch. geol. Lamd., n. f., pt. 31), p. 139, pl. vi, fig. 6.

| 1905. | - | - | E. Harbort. Die Fiuma d. Schaumburg-Lippe' schen |
| :--- | :--- | :--- | :--- | :--- |
| Kreidemulde (ibid., pt. 45), p. 77. | | | |

Drscription.-Shell thin, more or less ovate in outline, moderately convex, the right valve a little more convex than the left, slightly inequilateral. Antero-dorsal

[^47]margin nearly st might, with a considerahle ventral slope; anterior margin rounded, passing gratually into the convex ventral margin; posterior margin rather short, oblique, more or less truncated, forming a rounded angle with the nearly straight and ventrally sloping postero-dorsal margin. Umbones rather prominent, curved inwards and slightly backwards. Postero-dorsal part of valves compressed, sometimes with a small carina. Surface with numerons small concentric growth-ridges.

Mensuriments:

	(1)	(2)	(3)
Length	188	64	+9 mm.
Height	?	41	:
Thickness	30	99	

(1-3) Speeton.
L!finitirs.-It is probable, as maintained by Harbort,' that Thercin striuth, Weerth, ${ }^{2}$ is not specifically distinct from T'. I'hillipsi.

Remurls.-The greater part of the shell has disappeared from most of the examples found at Speeton, and usually some part of the margin of the cast has also been lost. I have not seen sufficient examples to cuable me to determine whether the variation of this species in England is as great as in the case of the specimens found in Schaumburg-Lippe and described by Harbort.

Type-From Speeton, in the York Museum.
Distribution.—Speeton Clay (zone of Belmuitrs jurnlum) of Speetom.

Theacha rotcndata (Somerly), 18:36. Plate XXXIX, fig. 10., b.
1836. Panopea rotundata, J. de C. Smeroly. Trams. Geol. Soc... ser. Y. vol. iv. 1'p. 129.337, pl. xiii, fiy. $\mathbf{2}$.
1850. Lronsia subrotundata, A. dorbigmy. Proilr. de Pal., vol. ii, pi. 74 .
1854. Myacites rotundata, J. Marris. Cat. Brit. Fuss., el. Y. p. ․․4.
1865. Thracla subrotundata, F. J. Pictet and (G. Campiche. Fons. Tetr. Creit. Ste. Croix (Mater. Pal. Suisse, ser. 4). p. 120.
1870. Comimy rotundata, F. Stulezzit. Palmont. Indica, Cret. Fauma s. Imdia, vol. iii. p^{1}. 7.

Desmiption.-Shell regularly convex, oral, slighty inequivalve and inerpuilateral. Anterior and ventral margins convex, forming a regular coure. Dorsal part of posterior margin oblifue, forming an angle with the ventral part. Cmbones hoad. in contact, with a narrow, sharp, curved carina extembing to the posterine anghe and limiting a triangular, concare, posterodorsal area, which is onamented with fine ribs ruming parallel to the posterior margin. Nides of valves with similar ribs extending in a radial direction.

Meuswroment:

	(1)	(2)
Length	40	$321 m m$.
Height	32	$\underline{2} \quad$.
Thickness	$\underline{2}$	$17 .$.

(1.0) Lympue.

A!finitios.-'This species is allied to 'I'. ritmult, Pictet and Roux, ${ }^{1}$ from the Gault of the Perte-du-Rhone and Sainte ('roix, but is distinguished ly its more rombed outline, smaller postero-dorsal area, and less distinct concentric omament. It is also allied to T'. curiniferen (p. 24t).
liomurlis.--Two internal casts of this species from Strmpe are in the Musemm of Practical Geology ($2: 3+70,03471$) ; the larger agrees closely with Sowerby figure, and may perhaps be the type, but the locality given by Sowerhy is Court-at-Street, 1_{4}^{1} miles west of lympue. A small, somewhat crushed example from the Atherfield Clay at Dover colliery probahly helongs to this species. No other specimens have heen seen. The specimens recorded by Topley as 't'. rarimior, probably belong to I'. rotmudutio.

Distrilution.-Hythe Beds of Lympue and Court-at-Street."

Dessripion.-Shell oval, nearly equilateral; right valve more convex than the left ; posterior part not quite so high as the anterior part ; posterodorsal part compressed. Anterior margin rounded; rentral margin moderately convex; posterior margin slightly curved; postero-dorsal margin nearly straight. Umbones rather prominent, curved posteriorly. Surface smooth, except for growth-lines.

Mersintements:

	(1)	(2)	(3)
Length	36	26	15 mm .
Height	23	17	$!$,
Breadth	1:3	10	

(1) Perma-hed, (2, 3) Criackers, Atherfiehl.

Liemadis.-In the English specimens, which are here provisionally referred to T'. Robimalifin, the shell is preserved, but the examples of that species figured by d^{\prime} Orhigny ${ }^{3}$ and by Pictet and Campiche ${ }^{4}$ are internal casts, and it is conseguently
 'Terr. Crét. Ste. Croix' ('Matér. Pal. Suisse,' ser. 4, 1865), p. 117.
a Thratia Nicoleti (Agassiz) has been recorded by Morris and by Topley from the Hythe Beds of Hythe, but I have not seen any British examples of that species.

3 'Pal. Franç. 'Ierr. Crit.,' vol. iii (1845), p. 381, pl. ceclxxii, figs. 1, o.
4 Foss. 'Terr. Crít. Ste. Croix' ('Matér. Pal. Suisse,' ser. 4, 1865), p. 114, pl. cviii, figs. 5, 6.
difficult, especially without the opportunity of comparing specimens, to establish the identification. Professor Boule informs me that the type is a peorly preserved specimen, but that its outline is satisfactorily represented in d'Orbign's figure; the specimen is now in the Natural History Masemm, Paris. I'. Robinaldiun is allied to 'T'. neocomionsis (d'Orbigu), ${ }^{1}$ but is said to differ from the latter bey the greater curvature of the ventral margin and by its relatively shorter shell.

Mistrilution.--Lower Greensand (I'rim-hed and ('rackers) of Atherfied. Atherfield Berls of Redlhill, Reigate.

1865. Thracia Sanctap-Crucis, F. J. Pictet amd (i. Campicher. Fuss. Terr. C'rét. Ste. Croix (Matirr. Pal. Suisse, ser. \&), p. 117. pl. eviii. fig. 8 .
1870. F. Stoliczizt. Palleomt. Indica, Cred, Fambia S. Imlia, vil. iii, p. 7.2.
Iescription. - Shell oblong, compressed, inequilateral. Anterior margin rounded; ventral margin slightly curved; posterior margin truncated, slighty convex, forming an angle with the postero-dorsal margin. A carina extends in a curve from the umbo to the postero-ventral angle and cuts off a concave posterodorsal area. The surface of the shell is ormamented with growth-rings.

Mrensurements:
Lengeth
Height

43
20
(2)
:3! min.
1; :
(1) (iault, Folkestone.
(2) Gault, Black Ven.

I!finitios.-It seems doultful whether this species is distinct from T' simplece (d'Orbigny), of which casts only are figured by d’orbigny and by Pictet and Campiche"; but the latter anthors state that it differs from 'I' simples bey the absence of an internal rib, the presence of a carina, and by the more acminate anterior end.

T'ype.-From the Ipper Gault of Ne. Croix.
Distrilution.-Gault of Folkestone and Black Ven.

Some examples of Theme usually of rather large si\%e, appar at first sight th be distinct from ' T '. S'uctarofreris on account of their relativel! greater height and
 "p. cit. p. 115, ph. eviii, figs, 3. 4.

less distinct carina. When, however, a considerable number of specimens are compared it is difficult to draw any line of separation between these forms and T. ranter-ciricis. But since, in most caser, the original shape of the shell has been more or less considerably modified by pressure, it is not easy to come to a definite conclusion in this matter; moreover, in both T'. Sancta-Crucis and the larger forms there is clearly some variation in relative height and length of the shells, and in the distinctness of the carina. ${ }^{1}$

Mistribution.-Gault of Black Yen and Folkestone. Upper Greemsand of Blackdown and Devizes.

Theacha campran (surerly), 1826. Plate NL, figw. 10-13.
1826. Lutraria : carinifera, J. de C. Somerby. Min. Conch., vol. vi, p. 66, pl. dexxiv, fir. 2.
18:32. - . A. Passy. Descript. siol. de la Seine-Iufír., Atlas, p. 6, ph. xiii, figs. 6, 7.
1842. Corimpa carinifera, L. Agoeniz. Etules crit. Moll. Foss., Myes, p. 264.
1845. Lyonsia carinifera, A. dorbigmy. Pal. Frame. Terr. Crét., vol. iii, p. 385 , pl. ecelxxiii, fiss. $1,2$.
1850. - - A. dOrbigny. Prodr. de Pal., vol. ii, p. 158.
1852. - \quad - K. Kuer. Denkschr. d. l. Akad. d. Wissensel. Wien, Math.-nat. Cl., vol. iii, p. 311.
1854. Lutraria carinifera, J. Murtis. Cat. Brit. Fuss., ell. - , p. 20d (: Thracia). 1865. Thracia carinifera, F. J. Pictet and G. Campiche. Fuss. Terr. Cret. Ste. Croix (Matér. Pal. Suisse, ser. 4) p. 121.
180. - F. Stoliczki, Palæont. Indica, Cret. Fauna S. India, rol iii, p. 72.
1893. Lyonsia carinifera, A. Fritech. Stud. im Gebiete der bühm. Kreidefomat. v. Priesen. Schicht., p. 97, fig. 115.

Inscription. Whell thin, oval, of moderate convexity, slightly inequivalve and incruilateral. Anterior margin rounded, passing gradually into the regularly convex ventral margin. l'osterior margin truncated, straight or slightly concave. Postero-doral margin nearly straight. Umhones hroal, incurved close together, with a sharp carina passing to the postero-ventral angle and limiting a flattened or slightly concave posterodorsal area, which is divided in the middle hy a shallow, longitudinal furrow. Just in front of the carina is a broad, shallow, concave lepression.

Ornamentation consists of broad, slightly raised, concentric folds which are more distinct on the anterior part than elsewhere. On the postero-dorsal area are
${ }^{1}$ A similar case of distortion and variation is furnished by Thoria semiphamen, Whiteaves,

numerous，fine，regular ribs parallel with the posterior margin；on the remainder of the shell similar ribs，but ruming in a radial direction，occur．

Measurements：

右	（1）	（2）	（3）	（ ${ }^{\text {）}}$	
Length	37	：3：3	30	20 mm	
Height	23	29	$\underline{21}$	14	．
Thickness	15	14	－－	10	，
	（1）Chalk Marl，Chard． （2，4）Chloritic Marl，Devizes． （3）Chalk Marl，Ventnor．				

Alfinities．－In this species the shell is more elongate and less convex，the carina more prominent，and the postero－dorsal area larger than in＇I＇．roturuluta（p．2＋1）． T＇．carinifira is closely allied to＇T＇．elegans（d＇Orbigny），from the Cenomanian of St．Sauveur，but is less elongate．T．Grmari（Geinitz）from the Semonian，is regarded by Brauns as a synonym of T＇cariniferce；but without seeing specimens of the former it is difficult to express an opinion of its relationship．
hemorlis．－The specimens vary considerably in the proportion of length to height，but in some cases the differences are probably due partly to crushing． The shell itself is seldom preserved．

Type－The type came from the Cenomanian of Dowlands（South Deron）and was originally in the collection of Sir H．T．De la Beche，but camot now be found．

Distribution．－Chloritic Marl of Devizes and Maiden Bradley．（halk Marl of Ventnor，Evershot，and Chard．

$$
\begin{aligned}
& \text { F'umil!-PHOLADOMYID.む, (irtul. } \\
& \text { (ienm-Phomamia, G. li. Sonerly, 18.25. } \\
& \text { ('Genera Rec. aul Foss. Shells.' no. xix. pl. xxwsii.) }
\end{aligned}
$$

 p． 23 ，platri，fiss． $1 . \geq$ ．
 1850．Phuladumya Curnceltana，A．dUriigny．Prohlr．le Pal．，vol．ii．p． 117.

[^48]

Inscription.-Shell small, short, oval, inflated, compressed posteriorly, moderately inequilateral with a small gape at the posterior end. Margins rounded. Limbones prominent, incurved.

Omamentation consists of strong, rounded, radial ribs. The grooves between the ribs are shallow, and broater than the ribs. Concentric ribs cross the grooves and ribs, giving to the latter a gramulate or tuberculate apparance. Near the posterior and anterior margins radial ribs are absent.

	(1)	(2)
lungth	20	$1: 3 \mathrm{~mm}$.
Height	16	10,

(1.2) Atherfiell.
 I'. lïnmesi, Lartet,: from Palestine, Syria, and Znluland, and l'. sulumemsis (d'Orhiguy), ${ }^{3}$ from the C'emmanian of Le Mans.

T'y, - From the Aptian of Wrassy (Haute-Marne).
Instrilntion.—lower (ireensand (C'rackers) of Atherfiedd. Recorded ly 'lopley from the Atherfed Beds of Peasemarsh and Shalford.

1708. C. N. Lang, Hist. lapidum figuratormm, p. 146, pl. sliv, fis. 1.
1718. J. J. Schetchzer, Helvetix list. nat., 1t. 3, p. 307. fis. 11:3.
1742. L. Bourymet. Traite des Petrific. pl. xxiv, fig. 145.

 hats shown that Gohlfuss' species lelongs to the gemus Liopistho. Holzapiel, Die Mollusk. Awhen.
 v. Braunseliweis u. Insede (1898). p. $\mathbf{7 6}$, pl. x, fis. 9 .
 Suriens' (1890), p. (4, pl. v, figs. 14-17; Kussmat, 'Deukschr. 1. k. Akad. Wiss., Wien,' vol. Ixxi (1902). p 55, pl. iv, fis. 9: Newton, 'Trams. Rus. Soc. S. Africa, vol. i (1909), p 79, pl. vi, figs.3-6.
: Pal. Franc. Terr. Crét., vol. iii (1844), p. 38 , pl. cel. figs. l-3. An internal cast resembling P. sulntinemsis has been foumd ly Mr. J. Scames in the Choritic Marl of Maden Bralley.

18:36. Pholas gigantele, J. de C. Suwerby. Trams. Geol. Suc., ser. e, vol. iv, fl 130, 338, pl. xvi, fig. 1.
1840. Pholadomya elongata, A. Goldfuse. Petref. Germ., vol. ii, p. 27!, ph. clvii, fig. 3.

1842.	-
-	-
-	-

1845. - elongata, A. dOrbigmy. Pal. Franc. Terr. Crót., vol. iii, p. 350 , pl. ceclxii.

-	-
1850.	-
185.	-
1854.	-
1855.	-
-	-
1858.	-

1861. - \quad P. de Loriml. Anim. Invert. Foss. Mt. Salive, p. 56. 1864-65. - - F.J. Pictet and G. Campiche. Foss. Terr. Crit. Ste. Croix (Matér. Pal. Suisse, ser. 4). p. 74, pl. civ, figs. 1-4.
1862. - gigantea et elongata, F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii. p. 74.
gigantea, C. Moesch. Mon. Pholadomyen, p. 82, plaxx, fis. 6 ; pl. xxxi, figs. $2-4$.
cf. gigantea, O. Weerth. Die Fauna des Neocom. im Teutoburg. Walde (Palæont. Abhandl., vol. ii). p. 34, pl. viii, figs. 2. 3.
1863. -- Weerthin, F. Vogel. Hollindisch. Kreide, p. 54.

-	-		G. Maas. Zeitschr. d. deutsch. grol. (iesellsch.
1896.	-	-	A. Wollemann. Ilid., vol. xlviii, p. 850.
1900.	-	-	A. Wollemamu. Die Biv. u. Gastrop. d. deutsch u. hollind. Neocoms (Abhamdl d. k. prousisch. geol. Lamd. N. F.. p^{1}. 31). p. 1:3:3
-	-	-	pl. xxi, fis. 1.
1903.	-	-	C. Burckhard. Paleontegraphica, vol. I, pr ib. pl. xr, fiss. 1. 2.
1908.	--	-	A. Stajanali: Ann. peol et min. de la Kussie, wol. x, p. 11ti.

Insiciption.-Shell large, elongate, somewhat arched, convex, but with the sides of the posterior part more or less flattened, very inequilateral, with a large gape at the posterior emt. Anterior part short, with a rounded margin. Ventral margin curved. Posterior margin subtruncate, rounded. Postero-dorsal margin long, slightly concare or almost straight. Umbones hroad. Near the umbones the antero-donsal and postero-dorsal marginal parts of the shell are depressed.

Ornamentation consists of mumerous narrow, sharp, prominent and sometimes *lightly serrate radial rils, which are straight or slightly curved. Near the anterior and the postero-dorsal margins ribs are absent ; on the postero-dorsal part of the shell they are rather more widely separated and rather more prominent than on the median part. Between the ribs are hroal, concave furrows which are crossed by numerons growth-lines.

Mrasurrouruts:

	(1)	(2)
Length	$1 \because 6$	192 mm.
Height	.	$1: 3$

(1, थ) Crackers, Atherfield.
L!finitios.-The elongate form and numerous sharp ribs distinguish this from other Cretaceous species of $1 / h / l_{1} l_{1} m!/ m$.
limatis.-The foreign examples of this species show considemble variation in length, in the curvature of the shell, and in the number of ribs. Some of the varieties have been described as distinct species, but Pictet and C'amp iche have shown that there are mumerons transitions leetween the different varieties. The English examples agree in most cases with the type of the species, hut some approach the variety described by Agassiz as 1 . Nehrom:eni. A specimen figured by Moesch shows the large pallial simus.

T!pr.-Whe trye came from the Hythe Beds of Court-at-Street, lut camot now the fomed.

Mistrilution.-Lower Greensand (Crackers) of Atherfield. Atherfield Beds of East shalford. Hythe Beds of Court-at-Street and Lympme.

Dtscription.-Shell large, oval, short, inflated, very inequilateral. Anterior margin rounded; ventral margin convex. Umbones broal, incurved.

Ornamentation consists of mumerous (usually about twenty-one) strong, ratial ribs, separated by broal, slightly concave interspaces. Secondary ribs are introduced at a short distance from the umbo, and usually soon become as large as the pimary ribs. The rils are more or less nodular. ('oncentric growth-lines are present. Two or threc of the anterior ribs are more widely separated than the others. On the postero-lorsal and the anterior parts of the shell ribs are absent.

Affinities.-By some authors this species has been identified with P. Mertini, Forbes. With the material at present available it is difficult to make a satisfactory comparison ; but the specimens from Speeton are of considerably larger size, with broader and less prominent umbones, and with the posterior part of the shell less compressed than in P. Murtini.

In form this species resembles P. altorume, Römer, ${ }^{1}$ but the umbones are relatively higher, and the ralial ribs more numerous. The ribs are not so numerous as in P. Eberti, Wollemann. ${ }^{-}$

Remorls.-The specimens from the clays are consilerably crushed, whilst in those from the hard nodular beds a more or less considerable portion of the marginal part of the shell is missing.

Distribution.-Speeton Clay (zones of Belemuites lutriculis, B. juculm, and D. lrunsticensis) of Speeton.

Phomdomya Mamini, Pormes, 184.5. Plate XLI, fig. .s.

Description.-Shell rather small, oval, very inequilateral, anterior part inflated, posterior part compressed. Uimbones prominent. Escutcheon deep. Ornamentation consists of numerous radial rib)s, which are more or less tuberculate, and are more widely separated anteriorly than on the median part; on the anterior and postero-dorsal parts ribs are indistinct or absent. Concentric ribs and growth-lines are present.

Remurlis.-It is difficult to give a satisfactory description of this species, since the specimens seen are few in number, imperfectly preserved, and usually crushed. P. Mrrtini appears to be closely allied to P. Fulninu, d'Orbigny (see below). It also resembles P. hispmenich, Corguand. ${ }^{3}$

1 Wollemann, 'Die Biv. u. Gastrop. d. deutsch. u. holliadisch. Neocoms' (1900), p. 1:34, pl. v, fists. 9. 10 ; pl.vi. fig. 3. Specimens with fewer ribs from the Spilshy Simistone and the Chashy Ironstone of Lincolnshire approash P. alternan more nearly than do the specimens from Speeton
a Ibid., p. 136, pl. vi, fig. 4.
3 ' Mon. Aptieu de l'Espagne ' (18605), p. 92, pl. vii, fiss. 5, is.

Type.-From the Hythe Beds of Pulborough. A specimen which is believed to be the type, but which is more crushed dorso-ventrally than is indicated by the figure, is in the Museum of the Geological Society (No. 2197).

Distrinutiom.-Lower Greensand (Perma-bed and Crackers) of Atherfield. Hythe Beds of Pulborough.

Pholadomya Fabrina, d'Orligmy, 1845. Plate XLI, fig. 6.
1845. Pholadomya Fabrina, A. dOrbigny. Pal. Franç. Tert. Crít., vol. iii, p. 354, pl. ceclxiii, figs. 6, 7. (Non P. Furrina, Ayassiz, Pictet and Roux.)
1850. - TOrbigmy. Prodr. de Pal., vol. ii, p. 135.
1865. - - F.J. Pictet and G. Campiche. Foss. Terr. Cr'́t. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 92.
1897. - Favrina?, R. B. Neuton. Proc. Dorset Nat. Hist. and Autig. Field Club, vol. xviii, p. 92.
? Non 1874. - Fabrina, C. Moesch. Mon. Pholadomyen, p. 94, pl. xxxii, fig. 1.
Remark.-Some crushed specimens found in the Gault are probably examples of P. Fubrina, d'Orbigny. They resemble P. Murtini, but have coarser and more distinctly tuberculate ribs, and the concentric rings appear to be more conspicuous.

Distribution.-Gault of Black Ven, Okeford Fitzpaine, and Folkestone.

Pholadomy dectssata (Mintell), 1822. Plate XLI, figs. 7-9; Plate XLII, fig. 1. 1822. Cardium ! decossatum, G. Mantell. Foss. S. Downs, p. 126, pl. xnv, fig. 3. 1827. -- - J. de C. Sowerly. Min. Conch., vol. vi, p. 99, pl. diii, fis. 1 .
1837. - $-\quad$ A. Goldfuss. Petref. Germ., vol. ii, p. M2, pl. cxlv, fig. 2.

- Pholadomya decussata, G. G. Pusch. Polens Paliant., p. 87.

1841. Cardidm decossatum, F. A. Rïmer. Die Verstein. d. nord-deutsch. Kreidegeb., p. 71.
1842. Pholadomya decussata, A. E. Reuse. Die Verstein. der böhm. Kreideformat., pt. 2, p. 17. 1850. - - J. de C. Sowerby, in F. Dirom. Geol. Sussex, p. 355 (p. 385, ed. ©), pl. xxix, fig. 6.

- H. B. Geinitz. Das Quadersandst. oder Kreidegeb. in Deutschland, p. 146 .
- R. Kner. Verstein. d. Kreidemersels v. Lemberg (Haidinger's Naturwiss. Abhandl., vol. iii, pt. 2), p. $\mathbf{Q u}^{\mathbf{4}}$.

Distribution.-Shell large, inflated, with the greatest diameter at the anterior end, outline semi-ovate (sometimes sub-trigonal), wedge-shaped behind, extremely inequilateral, with a small posterior gape; height and length often nearly equal. Ventral margin slightly curved. Posterior margin rounded. Anterior part of the shell very short, flattened, with cordate outline, nearly perpendicular to the plane between the valves, and forming almost a right angle with the sides of the valves; the margin of the anterior part is more or less angular, and just within is a shallow concave part parallel to the margin, whilst the median part is convex, and
that near the umbones is depressed. Lmbones curved considerably inwards and more or less forwards. Escutcheon depressed.

Ornamentation consists of narrow radial ribs separated by broad, shallow depressions. Ribs are absent from the posterior part of the shell, and from the anterior flattened part, except near its margin; they become smaller or disappear altogether near the ventral margin. Well-marked growth-rings occur over the entire surface of the shell, but are more distinct near the umbones than ventrally, and give a gramular or nodular appearance to the radial ribs, especially on the dorsal part of the shell.

Mrasurements:

	(1)	(2)	(3)	
Length	98	60		nim
Height	74	$5!$	52	,
Thickness	65	51	$4!$:

(1. 2) Chalk Marl, Veutuor.
(3) Chalk Marl, Eastbourne.

Affinities.-The smaller forms of this species show some resemblance to l^{\prime}. gencrensis, Pictet and Roux, ${ }^{1}$ from the Gault, but the concentric rings are less prominent, and the valves more inflated and less distinctly triangular. Another similar form is l^{\prime}. Mollowi, l'ictet. ${ }^{\text {. }}$ See also l^{\prime}. corduta (below).

The specimens from the Cambridge Greensand were regarded by Seeley as constituting a variety (l^{\prime}. dermserta var. trimumleris), but, as was pointed out by Jukes-Browne, they agree in all essential characters with P^{\prime}. dectussintu, differing only in their smaller size. Specimens of l^{\prime}. decussutfu found in the Gault of Folkestone are larger than those found in the Cambridge Greensand, but not so large as the examples in the Chalk.
liemulks.-In England this species has not been found above the Cenomanian (zone of II. sulylubosus), but on the Continent it appears to range up into the Senonian. In many of the English specimens the original shape las been modified by crushing, and that also appears to be the case with some of the examples figured by foreigu authors.

T!pe.-The type from the Lower Chalk near Brighton, and the specimen figured ly Sowerly from the Chalk Marl of Hamsey, and the one figured by Dixon, camot now be found.

Distribution.-Gault of Folkestone. Cambridge Greensand. Chalk Marl of Ventnor, C'ulver Cliff, Easthourne, Hamsey, Middleham, Offham, Glynde and Folkestone. Totternhoe Stone (zone of Iholustro sulughumsus) of Arlesey and Burwell.

1 'Moll. Fuss. Gris verts de Genive' (1852), p. 405, pl. xxix, fig. 2. Moesch, 'Mon. Pholadomyen' (1575), p. 97, pl. xxxii, figs. 2-4.

2'Mćlanges Paliont.' (1868), p. 92, pl. xix, fig. 3. Muesch, op. cit., p. 88, pl. xxx, fig. 5, pl. xxxv, fig. 1.

Pholamoma cordita, I'atr, 1865. Plate XLII, fig. 2 a-r.
1865. Pholadomya cordata, R. Tute. Quart. Journ. Geul. Soc., vol. xxi, p. 4\%, pl. iv, fig. 1 .

Remarks.-A specimen found in the Lpper (halk (zone of Belrmuitella mumomutu), now in the Norwich Museum (No. 3:3:3), is probably an example of l'. cordetn, but unfortunately the anterior part of the shell is imperfect. In this species the anterior curvature of the umbones is greater and the depression in front of them deeper than in P^{\prime}. decussata; also the anterior flattened part is relatively smaller, since the greatest diameter of the shell occurs at about one third of the length from the anterior end. The types of l^{\prime}. cordutu from the Epper Chalk of Ireland are in the Musem of Practical Geology (Nos. 2:3,62s; 23,629).

Gputs-Myophoss, II. Dourillé, 190 à.
(‘ Bull. Soc. g'ol. de France,' ser. 4, vol. vii, p. 107.)

Iescription. -Shell oval, short, considerably inequilateral, anterior part convex, posterior part compressed; anterior and posterior margins romudel. Cmbones curved inwards and forwards. Rather more than half of the shell-the anterior part-is ornamented with thirteen narrow, sharp, radial ribs, which are separated by broad, flat, or slightly concave interspaces; posteriorly these ribs become smaller and less widely separated; on the middle part of the shell a few indistinct concentric ribs are seen. The posterior part of the shell is ncarly smooth, and is separated from the ribbed area by a slight depression; a curved carina extends from the posterior side of the umbo towards the postero-ventalal extremity.

Affinities.-Only one specimen has been seen; it resembles closely M. srimicostata (Agassiz ${ }^{1}$), but is rather shorter, and the posterior limit of the ribbed area is more sharply defined than in most examples of M. srmicostata. Judging from

1 •tudes crit. Moll. Foss., Myes (1842), p. 51, pl. ii, figs. 1, 2. pl. iii'. fitr. 11. Pictet aml
 Moesch, 'Mon. Pholadomyen' (1874). p. 85. pl. xax, fig. 4, pl. xxxiii, figs. 3, 4. pl. xxavi. fiy. 1.

 figs. $21,2 \boldsymbol{2}$.
the figures given by several authors, that species varies considerably, so that it seems probable that when more English specimens have been obtained it will be possible to refer them definitely to M. semicostata.

Distrilutiou.—Lower Greensand of Furze Hill, Faringdon.

Gemus-Goniony., L. Agassiz, 1842.
(${ }^{\text {Etudes crit. Moll. Foss.,' Myes, pp. xii, 1.) }}$

Goniomya Archaci (l'ictet and Remetion), 1855. Plate XLII, figs. 4, 5.

> 1855-6. Thracia Archiact, F. J. Pictet and $\begin{gathered}\text { E. Renevier. Fuss. Terr. Aptien } \\ \text { (Mitér. Pal. Suisse, ser. 1). p. 67. }\end{gathered}$ pl. vii, fis. 5.

Irscription. Shell oblong, convex, nearly equilateral. Anterior margin rounded. Ventral margin slightly convex or nearly straight, nearly parallel with the dorsal margin. Posterior margin truncated, oblique, slightly convex, forming a rouncled angle with the ventral margin and an obtuse angle with the posterodorsal margin. Umbones of moderate size, with a faint rounded carina extending postero-ventrally, above which the shell is compressed; lunule and escutcheon elongate, depressed, limited by carine.

Ornamentation: Anteriorly to the umbones there is a ribbed area in which the ribs extend obliquely backwards; posteriorly to the umbones is another riblbed area in which the ribs are nearly perpendicular to the postero-dorsal margin, but slightly curved ventrally. The anterior, ventral, and postero-dorsal parts of the shell are without ribs, and show growth-lines only. Near the umbo the ribs of the two areas are comected by horizontal ribs, but ventrally these horizontal ribs are absent or indistinct. Some parts of the shell are marked by rows of small pits.

Mrasurements:

	(1)	(2)	(3)
Length	33	28	19 mm .
Height	19	16	11 ,

Affinities.-This species is less inequilateral, and the ribs are less extensively developed than in C. cauduta, Agassiz. ${ }^{1}$

Remarks.-English examples of this species were identified by lictet and Renevier, who state that the forms referred by Forbess to Pholndomyn Ay"ssi:i are really specimens of G. Archiari.

Type.-From the Aptian of the Perte-du-Rhône.
Distribution.-Lower Greensand (Crackers) of Atherfield. ${ }^{3}$

Goniomya Maileman (d'Orligmy), 1845. Plate XLII, figs. 6, 7.

	mpa Mailleana, A. d'Orbigny. Pal. Franç. Terr. Crít., vol. iii, p. 355 , pl. ceclxiv, figs. 1, , 2 .
1845.	es. crit. Moll. Foss., Myes, p. xiv.
1850.	Pholadoma Mailleana, A. dorbigny. Prodr. de Pal., vol. ii, p. 157.
1854.	Pholadoma Malleana, J. Morris. Cat. Brit. Foss., el. 2, pr 220.
1865.	F. J. Pictet and G. Campiche. Terr. Crít. Ste. Crois (Mater. Pal. Suisse, ser. 4), p. 93 (Goniomya).
? 1868.	a Mailleana, A. Briart and F. L. Cornet. Meule de Bracquegries (M'́m. cour. et Móm. des Sav. ćtraugers, vol. xxxiv), p. 8:3, pl. vi, fig. 12.
1870.	niomya Maileeana, F. Stuliczka. Paleont. Indica, Cret. Fauma S. India, vol. iii, p. 75.
885.	omya (Goniomya) Mailleana, F. Niitling. Die Fauna d. haltisech. Cebonan. (Paleout. Ablamill., vol. ii), p. 36, pl. vi, fig. 9.

Description.-Shell elongate, subquadrate, convex, very inequilateral. Anterior part not so high as the posterior part, compressed, with rounded margin. Antero-dorsal margin concave. Postero-dorsal margin long, nearly straight, and nearly parallel to the slightly convex ventral margin. losterior margin truncated, oblique, forming a rounded angle with the ventral margin, and an obtuse angle with the postero-dorsal margin. Cmbones pointed, directed anteriorly. Lumule concave, elongate-ovate, limited by a carina. Escutcheon long, decp near the umbones, limited by a carina. Between the carina of the escutcheon and a rounded ridge extending from the umbo towards the postero-ventral margin the shell is concave.

1 'Etudes crit. Mohl. Foss.; Myes (1842), p. 22, pl. 1h, figs. 1-3, pl. i, fisr. 1. I'hememme Agassizi, dorbiguy, 'Pal. Frauç. Terr. Cret.,' vol. iii, p. 35?, pl. ceclxiii. tigs. 1, ! : Pictet and Campiche, 'Foss. Terr. Crét. Ste. Croix ('Matér. Pall. Suisse, ser. 4. 1nits) p. St, ple evi, tiss \& is

${ }^{3}$ An imperfect specimen of Gomiomye from the Teally Limestone of Clanly is in the sondewich Museum, Cambridge.

Ornamentation consists of rommel ribs; those in front of the umbones are nearly straight and slope obliguely backwards and downwards; those behind the umbones are curved and more or less nearly parallel to the posterior and posterodorsal margins; near the rentral margin the ribs become more nearly concentric and are often less distinct (especially on the median part) than on the dorsal portion of the shell.

Atifinties.-This species differs from (i. desigmentu (Goldfuss)' in the smaller curvature of the ventral margin, and in the truncated form of the posterior margin. It is closely allied to (i. consigmuta, Römer, ${ }^{2}$ hut the anterior curvature of the umbones is more marked.

Ramulis.-This species has been identified by comparison with a specimen given me by MI. Raoul Fortin from the same locality as the type.

I! $/$ pee.-From the C'enomanian of Mte. Ste. Catherine, Ronen.
Distribution.-Upper Greensand (\%one of Shllmulurhin rostrinta) of Blackilown, Devizes, and near Maiden Bradley. Base of Chalk Marl of Chard. ${ }^{3}$

Family-PLEUROMYIDA, Zittel.

(' Etudes crit. Moll. Foss.,' My.es, p. 231.)

> 1847. Panopfa Orbigniana, C. Rumillier. Bull. Suc. Lmp. Nat. Moscou, wol. xx. p. 407 ; rol. xai (1848), p. 281. pl. G, fiç. 24.

Inseription.-Shell oval, convex, inequilateral, with a small posterior gape. Auterior and posterior margins rounded. Ventral margin considerably convex. Umbones moderately prominent, incurved. Shell depressed in front of and behind the umbones. Surface nearly smooth, but ornamented with linear, radial ribs, which are sometimes parallel, sometimes irregular; in some places the rihs are replaced by rows of minute tubercles.

L!finitio. The English specimens agree closely with examples from the Lower
1 • Petref. Germ.,' vol. ii (1840), p. 264, pl. cliv, fis. 13. Holzapfel, 'Mollusk. Aachen. Kreide' (Paleontographica, vol. xxxv, 1889), p. 153.
a 'Die Verstein. i. norl-deutsch. Kreidegeb)' (1841), p. 75, pl. x. fig. 3. Mäller, 'Mollusk. Untersen. v. Braunscliweig u. Ilsele' (1898), p. 71, pl. x, fig. 7.
${ }^{3}$ A small specimen of Goniomya has been found in the Chalk of Trimiugham by Mr. R. M. Brydone.

Volgian of Moscow, which were identified by Prof. Pavlow, but their resemblance to Rouillier's figure is not ruite so close. Some of the smaller specimens approach P. peregrine (d'Orbigny'), which is said to differ from P. Oithiguinm by smaller curvature of the ventral margin, the presence of a shallow depression extending to the ventral margin below the umbones, and by the ornamentation consisting of radial rows of minnte tubercles instead of linear rils. One specimen from Spilshy, however, shows both types of ornamentation, suggesting that the two species are not really distinct. The linge is not seen in any of the English specimens of l '. Orligninna, but the figure given by Ronillier, although not quite satisfactory, is suggestive of I'rnop,rt; the form of the shell, however, resembles that of some Jurassic species of Plenromy'.

Distribution.-Spilshy Sandstone (zone of Bolemuites lutroulis) of Domuington.
Family-POROMYACIDE, Dılll.

Gemus-Liopistha, F. B. Meel; 1864.
('Check List Invert. Foss. N. America,' pp. 12, 32: T. A. Courad in Kerr's • Report Geol. Survey N. Carolina,' vol. i, 1875, Appentix A, p. 28 ; Meek, 'Invert. Cret. and Tert. Foss. U. Missouri,' 1876, p. 227.)

$$
\text { Sertion-Pshomya, Meek, } 1876 .
$$

(Ibid., p. 229.)

Liopistia (Psilomya) aifantea (Somerty), 1818. Plate XLIII, figs. :3, 4 ; Plate XLIV, figs. 1, 2.
1811. Corbula ?, J. Parkinson. Organic Remains, vol. iii, p. ㅂ.26.
1818. - Gigantea, J. Surerby. Min. Concli., vol. iii, p. li:, pl. cix. figs. 5—7.
18:0). Pholadomya - A. dorbigny. Prudr. de Pal., vol. ii. p. lai.

1865. - : - F.J. Pirtet and G. Campiche. Terr. Crít. Ste. Croix (Matér. Pal. suisse, ser. 4) pp. 199. 210.
 wol. iii, p. 4 .

 and 'Grundzüge d. Paliont.;' ed. 2 (1903). p. 330, fis. 732.

Description.-Shell large, rather thick, oval, elongate, inflated, the posterior part compressed, very inequilateral. Anterior part rery short, with rounded margin, but its dorsal part only slightly curved. Ventral margin forming a consideralle curve. Posterior margin obliquely truncated, more or less rounded. Posterodorsal margin nearly straight. Umbones large, prominent, pointed, inrolled, and with a more or less considerable forward curvature. A rounded carina extends from the front of the umbones to the middle of the anterior margin and forms the boundary of a deeply excavated area in front of the umbones.

Ornamentation consists of broad, rounded, concentric ribs on the dorsal part of the valves except on the anterior excavated area. In passing ventrally these ribs become less prominent and are soon represented by concentric lines. Rather widely separated radial rows of minute tubercles are present and leave small pits when broken off. Near the umbo small ratial ribs are present.

Meusurements:

	(1)	(2)	(3)
Length	128	110	90 min.
Height	89	82	

(1-3) Blackdown.
A!finities.-This species resembles L. (P'silomya) surprlat (Stoliczka²), but differs in outline, in the concentric ribs being confined to the dorsal part of the shell, and in the less inflated form of the valves.
limarris.-In the small examples of this species the shell is relatively shorter and more nearly orlicular in outline and the concentric ribs cover the whole or nearly the whole of the valves. The radial ribs near the umbo are seen in only a few specimens.

I'!pe.-From Blackdown, in the British Museum.
Distributiun.-Upper Greensand (zone of Schlenbuchiar rostratu) of Blackdown.

Dexription.-Shell oval, slightly inequilateral, inflated, posterior part compressed, with a shallow furrow near the postero-dorsal margin, concave in front of the umbones. Anterior and posterior margins rounded; ventral margin considerably convex. Umbones prominent, curved inwards and forwards.

Ornamentation consists of mumerous (about twenty-nine), narrow radial ribs bearing small tubercles, and separated by concave interspaces of greater breath tham the ribs. On the postero-dorsal part of the shell ribs are absent. The ribs are crossed by faintly marked concentric rings.

Rommilis.-The only example of this species which has been seen does not 1 ' Palmont. Indici, Cret. Finua S. India ' (1870), p. 4s, pl, iii, figs. 2-4.
show the hinge, but it is provisionally referred to Liopisisthin on account of its external resemblance to some species of that genus. ${ }^{1}$ It should be noted, however, that it is also similar to some species which are believed to belong to the genus Pholadom!/a.?

Distribution.-Red Limestone of Hunstanton.

$$
\begin{aligned}
& \text { F'emily-CUSPIDARIID.E, Dall. } \\
& \text { Genus-C'uspimani, G. D). Nando, } 1840 \text {. } \\
& \text { (‘Ann. Sci. Lombario-Veneto,' vol. x, p. 49.) }
\end{aligned}
$$

Cuspidaria Sabmutiana (Pietet and Cumpiche), 1864. Plate XLIII, fig. 6n, l; Plate XLIV, fig. 3a, l.
1864. Neera Sabatdiana, F. J. Pictet and G. Cempiche. Foss. Terr. Crít. Ste. Croix (Matír. Pal. Suisse, ser. 4), p. 40, pl. c, figs. 5-7.

Description. -Shell inflated, oval, oblique, slightly inequivalve, anterior part sloping rapidly to the margin, posterior part compressed and produced into a pointed beak. Anterior margin rounded; ventral margin convex, curving upwards and passing gradually into the posterior margin. Umbones curved inwards and slightly backwards. A narrow postero-dorsal area is bent at an angle with the sides of the shell, and is limited by a carina.

Ornamentation consists of strong, concentric ribs, most of which are contimued on to the posterior beak, where they become rather smaller and closer together; on the sides of the ribs and in the furrows are a few faint concentric lines. Length $1+\mathrm{mm}$. ; height 11 mm .

Affinties.-This species is more inflated, the anterior part is more rounded, and the concentric ribs are stronger than in \because. $p^{\prime \prime}$ lehin (Sowerby).

T! ! 1 re-From the Gault of the Perte-rlu-Rhone.
Distrilution.-Lower Gault of Folkestone.
${ }^{1}$ See, for example, Stolic\%ka, 'Cret. Fanna S. India,' vol. iii (le70). pl. ii, fizs. 10, 11 : Mresch. 'Mon. Pholadomyen' (1874), pl. xxxy, fig. 5; Geinit/, Dats Elhthalgel, in Sachsen' (Pal:eontographica,' vol. xx, pt. 2, 1873), pl. xix, figs. B, 7: Weller. 'Cret. Pal. New Jerner.' vol. iv (1907, pl. lviii, figs. 3-9.
 1-3, and 'Prodr. de Pal.,' vol. ii (185(1), p. 157.

Cuspidilia evdeata (Mumerly), 1827. Plate XLIV, fig. 4.

	Noctla		c. Sir	rby. Min. Conch., vol. vi, p. 104, pl. dliv, fig. 3.
1854.	Nefra	-	J. Murrix.	Cat. Brit. Foss., ed. 2, p. 216.
1866.			F. J. Pictet	and G. Campiche. Foss. Terr. Crít. Ste. Croix (Mater. Pal. Suisse, ser. 4), p. 421.
1871.	-	-	F. Stolichza.	Paleont. Iudica, Cret. Fauna S. India, rol. iii, p. 32.2 .

Remarls.-A few specimens resembling Sowerhy's figure of C. undulith have been found. They appear to differ from C. Selamdimu only in the less oblique form of the shell and the more convex postero-ventral margin. More specimens are needed in order to determine whether C. Snlumitima and C. mblulnter are really distinct or only varieties of one species.

Typ.-'The type was preserved in pyrites, and came from Folkestone; it was formerly in the British Museum, but has now perished.

Distribution.-Gault of Folkestone.

Cuspidarla pulchra (Soucery), 1850. Plate XLIV, figs. 5, 6.
1850. Leda pulchra, J. de C'. Sourerby in F. Dixon. Geol. Sussex. p. 346 (p. 382, ed. 2), pl. xxriii, fig. 10 .
1854. - ? - J. Morris. Cat. Brit. Foss., ed. 2, p. 205.
1897. Cuspidaria caudata, H. Woods. Quart. Jouru. Geol. Soc., vol. liii, p. 393, pl. xxviii, figs. 19, 20 .

Description.-Shell convex, with the posterior and antero-dorsal parts compressed; sub-triangular, oblique, somewhat inequilateral, highest in front of the umbones. Dorsal margin nearly straight. Anterior margin slightly convex. Antero-ventral margin rounded. Ventral margin curving upwards and passing gradually into the posterior margin, which forms an acute angle with the posterodorsal margin. Umbones pointed, curver inwards and slightly backwards. Ornamentation consists of regular, concentric ribs which become indistinct on the antero-dorsal and postero-dorsal parts.

Measwroments:

		(1)	(2)
Length		27	90 mm.
Height	.		19
Thickness	.	.	14

(1,2) Upper Chalk, Norwich.

Palcontograpbical $\mathfrak{F o c i c t y , ~} 1910$.

A MoNomRAPH

15 1 11 :
CRETACEOUS IAMIELLIBRANCHIA
ENGLAND.

1i)
hantiy woods, Ma.

VOL. II. PAR'T V'II.
 LNOCERAME"S.

JMIItiY. 1!111.

Affinities.-When describing the Mollusea of the Chalk Rock in 1 s97 only an imperfect specimen of C. puldrim was availahle for study, and I identified it with 6. coulutu (Nilsson). T'wo better specimens from Norwich have now been seen, and a new figure of Nilsson's type has been published by Hemig. ${ }^{1}$ The English form-figured by Sowerby as I mita puldira-differs from the type of r^{\prime}. crumluth in the relatively greater height of the anterior part of the shell, the more nearly posterior position of the umbones, and in the posterior rostrum proceding from the level of the hinge-line instead of below it. $\quad 1$. puldhwapproaches closely the specimen figured hy Goldfuss ${ }^{2}$ as C. coulutu, and it was chictly on account of this resemblance that I identified the English form with Nilsson's species. Stolic\%ka ${ }^{3}$ and Hemig, however, consider that Goldfuss' specimen is not an example of ''. cambluth. If all the specimens figured by foreign writers as C. condath really belong to that species then it is obvionsly extremely variable and might well include (\therefore. puldiru. Without an opportunity of studying a series of foreign specimens and a larger number of English examples it seems, at present, preferable to regard r^{\prime}. pulthri as distinct from C.crmintu. None of the English specimens shows evidence of the existence of such a long posterior beak as is present in the type of C'. cumlute.

A specimen of Cuspiduria from the Lpper Greensand of Devizes (Plate XLIV, fig. 7) resembles some specimens of C. pulchew and may be provisionally referred to that species.

T!! 1 ee.-The type, from the "Chalk of Kent," camot now be found.
Distrilution.-Chalk Rock of Cuckhamsley, Berkshire, and Henley Park. Upper Chalk (zone of Lelemuitelle murromutu) of St. Giles' (iate and IIorstead, near Norwich.

[^49]
P'mil! -PERNLD.E, Kiltm.
 (Cuntiunel from 1mige !5.)

(irmen-Incminmes, J. Somery, 1819.
(J. Parkinson [re Sowerby MS.], 'Trans. Geol. S.n.,' ser. 1, vol. v, 1819, p. 55. J. Suwerby, 'Trians. Limn. Soc.,' vol. xiii, 1822, p. 45\%.)

1846. Inoceramus neqcomiexsis, A. dOrbigny. Pal. Frane Terr. Crit., vol. iii, p. 503 , pl. cecciii, figs. 1, 2 .
1850. - TOMinmy. Prodr. de Pal., vol. ii, p. 83. 18:4. J. Marris. Cut. Brit. F.ss., el. 2, p. 170. 1855. G. Cotteat. Moll. Fusid de l'Yonve, p. 107. 1869. F. J. Pictetand G. Cempirhe. Fuss. Terr. Crét. Ste. Croix (Matir. Pal. Suisse, ser. 5), p. 104.
1900.
A. Whilemonn. Die Bivalv. u. Gastrop. d. deutsch. u. holliand. Neocoms, 1. 60.
E. Herbort. Die Fama d. SchaumburgLippesschen Kircidemulde, p. 44, pl. is, firs. 4-6.
$D_{\text {serrip }}$,ion. - Shell inequivalve, very inequilateral, a little higher than long. Valves convex, with Hattened sides, and the posterior part compressed. Anterior margin nearly straight; posterior and rentral margins rommed. Posterior margin forming an obtuse angle with the hinge-line. Anterior part nearly perpendicular to the plane of the valves and excavated near the umbones. Umbones terminal, curved inwards and forwards. Linge-line efual to more than half the height of the shell, and making an angle of about 100° with the anterior margin.

Ormamentation consists of narrow, regular, concentric rills with an misymmetrical curvature ; the interspaces are broad and regularly concave.
${ }^{1}$ In rearranging the collection of Inereremi in the British Musemm, Mr. R. B. Newton and Mr. C. D. Sherborn have formd several typespecine os, the existence of which had not been previously recognised; this discowery has greatly facilitated my work. I am also indebtel to Mr. Newton and Mr. Sherhorn for assistance in selecting specimens for figuting. I wish to thank Mr. C. P. Chat win for iaformation respecting the zonal distribution of the species of Inoceromens in the Chatk and for ofloer assistance Dr. Blackmore, Dr. Ruwe and Mr. G. E. Dibley have helped by the loan of mamerous sperimens from their collections.

Affinitios.—See I. "m!licus (1. 2(fr).
I. neocomionsis appears to be allied to l. B'araldi, schlüter, ${ }^{\text {b }}$ of which only one figure has yet been published. The differenees seen are in the greater relative height, the more inequilateral form, and the greater convexity of the curve of the ribs of J. ncocomiansis.?

Remarks.-This species was first recorded in England by Fittom. Only a few specimens have been seen; they agree fairly well with dorbigny's figure, but the ribs appear to be better defined, and usually the posterior car-like part is less distinctly limited. The English specimens are not sufficient to show whether the inequality of the ralves is as great as in d'orhigny's figure.

I'yme. - Prof. Boule informs me that d'Orhigny's figures are restorations hased on two specimens from the Barremian of Bettancourt. The types are in the Natural History Musemm, Paris.

Distrilution.-Lower Greensand (Fittons Bed 13) of Atherfieht. Iyythe Beds of Lympne. Lower Greensand of Nutfield.

Inocerames, sp.
A few specimens of Inocromus, not sufficiently perfect for description, have been found in the Speeton Clay (zone of Birtemnitrs litcretlis) and in the Spilshy Sandstone of Holton and Acre House.

Inoceramus Samona, dobigm, 1850. Plate XLY, figs. 3-7.

Deseription. - Left valve inflated, subquadrate, very inequilateral. Length and height nearly equal. Anterior half of valve very convex ; posterior half compressed. Anterior end of valve more or less nearly perpendicular to the phane between the valves, and concave near the umbo. C'mbo anterior, prominent, pointed, incurved.

[^50]A broad, usually shallow suleus extemels from below the umbo to the ventral margin, where it produces a slight simosity ; usually the suleus starts at some distance from the umbo, and may consequently be absent in small specimens. Ornamentation consists of small, narrow, somewhat irregular concentric ribs, separated by broad, shallow, concave interspaces.

Affinilios.-This species is related to I. romerutrirns, larkinson, but is distinguished by its suloquadrate outline, by the length and height being nearly efual, and by the presence of the sulcus.
liemarlis.-All the specimens seen are internal casts of left valves. The examples figured by Pietet and Roux and by Pictet and Campiche are also left values.

I'! $1 p^{\prime \prime}$-D'Orbign's specimens came from the Albian of Novion, Clar, Géraudot, and Saint Florentin.

Iistribution.-Mtmmillutus bed of Copt Point, Folkestone.

1820. Inoceramus, sp., G. Mentell. Foss. S. Dowas.]. 96, pl. xix, fig. 90.
1859. - Crispir, T. Wiltshire. The Red Chalk of England (Geol.
Assoc.), p. 16, pl. i, fig. 4.
1875. concentricus, A. J. Jukes-Broune. Quart. Journ. Geol. Soc.,
vol. xxxi, p. 299.

Description. -Shell equivalve or nearly equivalve, very inequilateral. Anterior part of shell convex, the convexity decreasing with age; posterior part compressed, flattened. Anterior slope of valves steep. Anterior margin moderately convex; ventral margin very convex; posterior margin curved, and forming an obtuse angle with the hinge-line. Length of hinge equal to rather more than a third of the height of the shell. Umbones nearly terminal, with a small anterior curvature.

Ornamentation consists of strong, regular, concentric ribs, which have a subsymmetrical curvature, and become less distinct on the posterior flattened part of the shell. The ribs have rounded summits, and are separated by broad rounded furrows with symmetrical slopes. Some of the ribs bifurcate, some may be discontinuous, or new ribs may be intercalated.

Alfinities.-The equal size of the valves, the greater convexity of the curve of the ribs, the convex form of the anterior margin, and the outward slope of the anterior part of the valves distinguish this species from I. nencomiensis, d'Orbigny (1. 2102).
I. anylicus also resembles I. A'ruldi, schliter, ${ }^{1}$ but is relatively higher, more inequilateral, and the ribs are more strongly curved.

Remarlis.-This species has been usually identified as I. comemtri:"n, Parkinson, but the equal size of the valves and other characters realily distinguish it from

Fig. 29.-Inoceramus anglicus, sp. nov. Rad Limestone, Hunstanton. Sedgwick Museum, Cambridge. Part of right valve. Niatural size.
that species. An example from Hunstanton was figured ly Wiltshire as 1 . 'rivpii ($=$ Oripmsi), Mantell.

Distrilution.-Red Limestone of Hunstanton. (Gault of Folkestonc. ('ambridge Greensand (derived from the Gault). Marl in the Gault of Roydon, West Norfolk. Upper Greensand of Haldon, the Isle of Wight, and Devizes.

Inoremames coscenthets, Parkinsm, 1819. Plate XLV, fig. 11 ; Plate XLNT, figs. 1-10; Plate XLVII, figs. 1, ㄹ.
1819. Inoceramus concentricus, J. Parkinzon. Tratis. Geol. Soc., ser. 1, vol. v, p. $58, \mathrm{pl}$ i, fig. 4.

1821.	-	-	j. Sowerly.	Min. Conch., rol. iii, 1. 183, 1 . cecv, figs. 1-6.
182.	--		G. Mantrll.	Foss. S. Downs, 1. 95, pl. xix. figs. 15. 19.
-	--	-	A. Bromgnier	ot in C'urier. Ossemens Fons.. Gol! ${ }^{1}$ pl. vi, tiz. 11.
1828.	-	grypheo	J. dre C. Smerromy	hy. Min. Comels, wol vi, p. 16il. pl. Alxuxir, tis. 1 .

1 See footarte on p. 26π.

183:3. Catilies pyriformis, M. Miche?in. Magasin de Zoologic, iii, Classe 5, pl. xxxii.
1836. Inoceramus concentricus, A. Goldjuss. Petref. Germ., vol. ii, p. 111, ph. cix, figs. 8r, b, c, (non $8 . l, e, f)$.

Non 18:37. - - G. Fischer de Waldheim. Oryctogr. de Mos-
1897.
1906.
1841.
1845.
1846.
1847.
R. B. Neveton. Proc. Dorset Nat. Hist. and Antiq. Field Club, vol. xviii, p. 88 , pl. iii, fig. 1 .
A. Wollem.mn. Jahrb. d. k. preuss. geol. Landesaust. für 1906, vol. xxvii, p. 271. cou, p. 177, pl. xx. fiys. 1-3. ($=$ Aucella Keyserlingiaua, Triuutschold).
F. A. Rimer. Die Verstein d, unrd-deutsch. Kridergel., p. 61.
E. Frbes. Quart. Journ Geol. Soc., vol. i, p. 247 (I. mocomiensis, d'Orn.)
A. E. Reuss. Die Verstein. der höhm. Kreideformat., p.t. 2, p. $\mathbf{U S}_{4}$
J. Mriller. Petref. der Aachen. Kreidef., pt. 1, p. 30.

Nou 1875. Inoceranus concentricus, A. J. Jukes-Brmene. Quart. Juarn. Geol. Soc., vol. axxi, p. 299.

Jriscription.-Shell more or less ovate, much higher than long, very ineguilateral and inerquivalve. Anterior part of valves flattened or concave, often more or less nearly perpendicular to the plane between the valves. Posterior part of the valves somewhat expanded and less convex than the part below the umbones. l'osterodorsal part forming a small wing. Left valve very convex, with a high, narrow, pointed, terminal umbo which is considerably incurved and bends forwards. Right valve considerably less convex than the left valve, with a small, terminal umbo curved forwards but only slightly inwards. Hinge-line less than half the height of the shell.

When the shell is perfect the surface is nearly smooth except for numerons regular growth-rings. When the outer layer of the shell is wanting concentric molulations or ribs having an meymmetrical curvature are seen, and are separated by concare furrows.

I!finities.-I concentricus has been compared by Wollemam with J. linaldi, Schliater, ${ }^{1}$ lout the prominent umbo and other characters readily distinguish it from that species. See also I. concentricus var. sulsuldeatus, and I. sulcotus (below).

Remarlis. - Whilst the left valve in the specimens from the Blackdown Greensand agrees closely with that of specimens found in the Gault, the right valve in many (but not all) cases is relatively more convex, espectially between the monbo and the postero-ventral extremity, and the ribs are more sharply curved. A similar modification is seen in the examples from the Red Limestone of Iunstanton. There seems no reason for regarding the specimens with these characters as forming more than a local variety dependent on the fact that they lived under conditions different from those which prevailed where the Gault was deposited.
I. griphavites, Sowerby, was fommed on an internal cast of I. comerntrichs from the $\mathrm{L}^{\mathrm{l}} \mathrm{per}$ Greensand ; in such casts the ribs are more frominent than on the surface of the shell itself.

All the examples from the ('ambridge (ireensame which hate been recorded as I. concentricus appear to belong to I. "uylicu: (p). o6t).
 fomad. The specimens from the same locality figured hestowerby and ly Mantell, and the type of l. gryphemites from the loper (ireensand near hane Regis, are in the British Musemm.

Distrilution.-In all zones of the Gault of Folkestome. (iault of Iylesford,

Dunton Green (Kent), Black Yen, and Okeford Fitzpaine. Ypper Greensand (zone of Schlwnhuchin rostrutif) of Blackilown, Sidmouth, Lyme Regis, and Potterne near Devizes. Limestone in the Gault of West Bihey, Roydon, and Grimston (West Norfolk). Red Limestone of Itunstanton.
 $3-1+$.

In the lowest zone of the $\mathrm{E}_{\mathrm{pl}} \mathrm{mer}$ Ganlt there oceur forms of Inuceram, which differ from l. comerntricus only in the fact that radial plications are more or less extensively developed. In these forms every stage can be traced between I. conrrutricus without plications into forms in which the plications are almost as complete as in I. sulcutus. A specimen, which differs from I. concentricus only in the occurrence of one shallow plication, is shown in fig. 3 (Plate XLVII); others are similar, hut possess two or three plications (Plate XLVII, figs. 4, 5). In most cases the carly part of the shell agrees entirely with I. concentricus; but the duration of this stage varies considerably in different iudividuals, and sooner or later either a few or many plications are developed. When the plications are numerous and start from near the umbo the shell closely resembles I. sulcutus, but may usually be distinguished by the rounded (instead of angular) form of the plications, and by the presence of concentric ribs. For these forms, which characterise a definite horizon in the Gault, it will be convenient to adopt as a varietal designation the name sulnsulcatus, given by Wiltshire in 1869.

From a study of many forms of this variety it seems evident that J. sulatus has been derived from I. concrutrirns by the gradual development of plications, and this view is in accordance with stratigraphical distribution, since 1 . concerutrichs is the earlier of the two species, being found throughout the Gault, whilst I. sulcatns occurs in the upper part of the Gault only.

If I. suldeatus has been derived from I. roncenticus, then it is clearly more nearly related to that than to any other species of Inocercimes, and camot therefore be placed in a separate gemus or sub-genus (Actineceremus), as was proposed by Meek. ${ }^{1}$ Further, in the carly stages of the varicty sulsulcetus the shell is a typical

1 'Cherk Tist Cret. Fuss. N. Amer.' ('Smithson. Miscell. Coll.,' No. 177, 1864), 1. 32. Stolic\%ka, 'Cret. Famais. India,' vol. iii (1871), p. 393. Meek and Hayden, 'Invert. Cret. ' Cer. Foss. U. Missomri' (1876), p. 39 .

Inoceramus, but subsequently it possesses the characters of Actinmermmen. Aso it appears that a somewhat similar plication has originated indepemently in I. Salomoni (p. 26:3), and probably too in I. wadians, Schliater, ${ }^{1}$ and I. fasciutus, Müller. ${ }^{2}$ Pictet and Roux regarded sulbsulcatus as a variety of J. sulrutus in which the number of plications had decreased; the stratigraphical distribution and also the evidence of the extensive series of specimens of suldsulcutus which has now been obtained are opposed to this view.

Distribution.-Lowest zone of the Upper Gault of Folkestone. Upper Greensand of Blackdown. Red Limestone of Hunstanton.

Inocerames sulcates, Parkimson, 1819. Plate XLVII, figs. 15-30.

1864. Actinoceramus sulcatus, F'. B. Meek. Check List Cret. Fusi. N. Amer. (Smithson. Miscell. Coll., No. 17i). p. 3?.
1869. Inoceramus solcates, F. J. Pictet and G. Cempiche. Foss. Terr. Crit. Ste. Croix (Matér. Pal. Suisse, ser. 5), 1. 105.
1875. -- .-- A. J. Jukes-Broune. Quart. Journ. Geol. Soc., rul. xxxi. $\mathrm{p}^{1.498 .}$

1884. - (Actinoceramus) sulcates, J. F. Whiteure. Memenic Fousils, vol. i (Gwol. Surv. Cauala), p. 241, pl. xsxii. fise 3.

[^51] fig. 10 .
$$
\text { Non } 1827 . \quad-\quad-\quad \text { S. Nilsson. Petrif. Suecana, p. } 18 .
$$

Deseription. Whell more or less ovate, much higher than long, very inequilateral, more or less considerably inequivalve. Anterior part of valves flattened

Fig. 30.-Inoceramus, sp. Gault, Folkestone. Sedgwick Museum, Cambridge. Internal cast of right valve. \times :
or concave. Posterior part somewhat expanded and less convex than the part below the umbones. Left valve very convex, with a high, narrow, pointed anterior umbo which is considerably incurved and bends forwards. Right valve rather less convex than the left valve, with a smaller umbo which bends forwards and slightly inwards.

Ornamentation consists of strong angular radial ridges (plications), usually from eight to ten on each valre, which are often unequal in size and are separated
by deep furrows. The ridges are often at unequal distances from one another; some of them start from the umbo, others may be intercalated or may arise by bifurcation. Fine concentric lines cover the shell and are folded where they cross the ridges and furrows.

Affinities.-Although the radial plications give a distinctive appearance to this species, yet the form of the shell closely resembles that of I. comerntirus, the main difference being that in the former the difference in the convexity of the two valves is usually less marked than in the latter.

T'ypes.-The type, from the Gault of Folkestone, is in the British Museum. The specimens from near Lewes, Folkestone (except figs. 1 and 2), and ('lophill figured by Sowerby, and the specimens figured by Mantell are in the British Museum.

Distribution.-Gault of Folkestone, Aylesford, Ringmer, Easthoume, the Isle of Wight, and Leighton Buzzard. Upper Greensand (zone of Schlanhuchiu rostrate) of Blackdown, Sidmouth, Black Ven, and Lulworth. Red Limestone of Hunstanton, South Willingham (Lincolnshire), and Speeton.

Inoceramus, sp. Text-fig. 30.
Specimens of a large, slightly convex Inocromus are found in the Gault of Folkestone and the Upper Greensand of Potterne (Devizes) and the Isle of Wight, but are not sufficiently perfect for determination. The umbones are terminal, and the hinge-line is nearly at right angles to the anterior margin. The anterior parts of the valves slope stecply to the margin. Small and rather distant concentric ribs are present. This form shows some resemblance to I. pictus (p. 279), but is less convex, and possesses fewer ribs.

Inocrrames terils, Mantell, 1822. Plate XLVIII, fig. 1. Text-figs. 31, 32.

$$
\begin{array}{rcccc}
\text { 1822. } & \text { Inoceramus tentis, G. Mantell. Foss. S. Downs, p. } 132 . \\
1854 . & - & - & \text { J. Morris. Cat. Brit. Foss., ed. 2, p. } 170 . \\
? 1859 . & - & - & \text { T. Wiltshire. Red Chalk of Eugland (Geol. Assoc.), } \\
& & & & \text { p. I6, pl. i, fig. } 5 .
\end{array}
$$

1866. Perna lissa, H. G. Seeley. Ann. Mag. Nat. Hist., ser. 3. vol. xvii. 1. 1/×.
 Kreidegel), p. 6i: , pl. viii. fis. 11 .

Description.-Shell inequivalve, very inequilateral, convex; posterodorsal part compressed; antero-dorsal part excavated and more or hess nearly perpern-
dicular to the plane of the valves; height greater than length. Hinge-line equal to about two-thirds of the height of the shell. Ventral margin very convex; posterior margin forming an obtuse angle with the hinge-line. Umbones terminal, curved inwards and forwarls, the left umbo larger and more prominent than the right. Surface smooth, except for growth-rings.

I!finitios.-I. temuis resembles I. roncentrirns, but the left umbo is less

Fia. 31.-Inorertmus temis, Mantell. Chalk Marl, Hamsey. The typer, No. Esto, British Museum (Nat. Hist.). 'Ihe sperimen is somewhat compressed from front to back. Left valve and anterior view of both valves. Right valve shown in the mext figure.
prominent, the length of the shell is relatively greater, and the concentric rings are less prominent.

The fragmentary specimens described by Seeley as Pram lissu appear to belong to this species. ${ }^{1}$

T'y 1 es. - In the British Musemm (No. 5890) from the Chalk Marl of Hamsey. A fragment, from the Red Limestone of Hunstanton, which appears to be one of
${ }^{1}$ The form from the Red Limestone of Hunstanton which was named Perna transversa by Sceley is at present lnown only ly an imperfect left valve. It is perhaps allied to I. tennis, but is remarkable in being much longer than high. The $t y_{\text {ge }}$ is in the Sedgwick Museum, Cambridge. Seeley, 'Anu. Mar. Nat. Hist.,' ser. 3, vol. xvii (1e6i6), p. 179.
the specimens on which Secley's description of lerrut lissit was based, is in the Sedgwick Museum, Cambridge.

Fig. 32.-Inoceramts temuis, Mintell. Right v:ilve. Ser Fig. 31.
Distribution.—Red Limestone of Hunstanton, Louth, and Speeton. Vpper Greensand of Ventnor and Potterne. Chalk Mirl of Iamsey.

Inocermus Crippsi, Mrentell, 1892 Plate XLVIII, figs. 2, :3. 'Text-figs. 3:3-:3.).
1822. Inoceramus Cripsif, G. Mantell. Foss. S. Downs, p. 133. pl. xavii, fig. 11. 1836. Latus, A. Golljuss. Petref. Germ., vol. ii, p. 117, p. exii, fis. 5 (n m Mantell).
1846. A. dOrbigny. Pal. Franc. Trur. Crit, vol. iii, p. \$13, pl. ceeviii, firs. 1. 2

1904. - Latus, E. T. Newtom "" | A. J. Julis-Bruwne In Jukes. Browne, Cret. Rocks of Britain, wol. iii. p. $+4!$.
1909. Crippis, J. Bihm. Subherey. Vieidmalde (Ahh:mill. d. k. preuss. geol. Lambesanst.. N.f.. Biti). 1. th, Il. ix. tif. 1.

Non 1829. Inoceramus latus, G. Mantell. Foss S. Downs, p. 216, pl. xxvii, fig. 10. - 1828. -. - J. de C. Sowerby. Min. Conch., vol. vi, p. 159, pl. dixxxii, fis 1.
1836.
$184^{\prime \prime}$.
1841. -
1847. 1852. $-$ 1863. 1866 $\stackrel{-}{-}$ 1869. 1870
1871.

1872
--
1873.

- --

1875.

1876.-

Crispir, A. Goldfuss. Petref. Germ, vol. ii, p. 116, pl.cxii, fig. 4.
-- H. B. Geinitz. Char. d. Schicht. u. Petref. des sächs. Kreidegeb., pt. 1, p. 27.
latus, F. A. Rümer. Die Verstein. d. nord-deutsch. Kreidegel., p. 61.

Cripsif, Rümer. Ibid., p. 63.

- H. B. Geinitz. Grundr. d. Verstein., p. 464.
latus, Geinitz. Ibid., p. 463.
- A. E. Renss. Die Verstein. der böhm. Kreideformat., $\mathrm{p}^{\text {t. }} 2, \mathrm{p} .25$.
Cripsit, Reuss. Ibid., p. 25, plaxavii, figs. 10, 12.
- J. Mïller. Petref. der Aachen. Kreidef., pt. 1, p. 30.
-- F. Rümer. Kreidebild. v. Texas, 1. 56, pl. vii, fig. $\boldsymbol{\text { . }}$ latus, R"mer. Ibid., p. 60.
Crispir, T. Wiltshire. Red Chalk of England (Geol. Assoc.), p. 16, pl. i, fig. 4.

Cripsi, A. r. Strombeck. Zeitschr. d. deutsch. geol. Gesellsch., rol. xr, p. 152.
K. A. Zittel. Bivalv. d. Gosaugeb., ii (Denkschr. d.k. Akad. Wissensch, Wien, Math.rnat. Cl., vol. xxv), p. 95, pl. xiv, figs. 1-5, pl. xp, figs. 1-5.
latus, Zittel. Ibid., p. 100, pl. xiii, fig. 7.
Cripsi, E. Farre. Moll. Foss. de la Craie de Lembers. p. 132. latus, F. Rimer. Geol. Oberschles., p. 316, pl. xxxiv, fig. 12. Cripsif, Rümer. Ibid., p. 356, pl. xxxix, fig. 9.
Chispianus, F. Stoliczici. Palæont. Indica, Cret. Fauna S. India, p. 405, pl. xxvii, figs. 1-3, pl. xxviii, fig. 2 (not pl. xxvii, fig. 3, I. Heberti, Fallot).
Cripsi, H. B. Geinitz. Das Elbthalgeb. in Sachsen (Palæontographica, vol. xx, pt. 2), p. 49, pl. siii, figs. 11-15.
latus, Geinitz. Ibid., p. 45, pl. xiii, figs. 4, 5.

- Geinitz. Neues Jahrb. für Min., etc., p. 11.

Cripsi, Geinitz. Ibid., p. 16.
latus, C'. Dícocq. Assoc. Franç. Avanc. Sci. (Lille), p. 369.
Cripsir, D. Brauns. Zeitschr. f. d. gesammt. Naturwissensch., vol. xlvi, p. 378.
! var. Barabini, F. B. Meek. Invert. Cret. Tert. Foss. U. Missouri, p. 49, pl. xii, fig. 3, pl. xiii, fig. 1. ? val. subundatus, F.B. Meel. Bull. U.S. Geol. and Geogr. Surv. Territories, vol. ii, p. 358. 11. iii, figs. l, 3.

Non 1905. Inoceramus Cripst, T. Weyner. Zeitschr. d. deutsch. geul. Gesellsch., vol. Ivii, p. 161.

19116.	-	Crisplants, J. Pethio.	Paleontographica, vol. lii, p. 232.
1908.	--	Crirsir, A. Stojanaff.	Ann. g'ol. miu. Russie, vol. x, 1. 121.

Insertition. Whell thin, erguivalve, moderately inequilateral, convex between the umbo and the ventral margin; postero-dorsal part compressed and flattened; antero-torsal marginal part nearly perpendicular to the plane of the valves and Flif. :3:3.

Fig. 33-Innceramus Cripusi, Mantrll. The type, British Museum (Nat. Hist.) No. 5893. Chalk Marl,
()ffham. Internal cast. Natural size.

Fra. 3.t-Inoceromus Crimpi, Mantell. (halk Marl. Internal cast of a loft valve similar to the type. British Museum (Nat. Hist.) No. 5sat. Natural size.
nearly straight. Ventral margin convex; posterior margin only slightly convex, and forming more than a right angle with the hinge-line. Hinge-line forms an angle of about 140° with the antero-lorsal margin. Unbones inconspicuous, pointed, not curvel, at alout a third of the length of the hinge from the anterior end ; in front of the umbones is a small, obtusely triangular ear.

Ormamentation consists of broad, rounded, rather irregular concentric rils, which are strong anteriorly, and become weaker posteriorly. The curvature of the ribs is unsymmetrical; the anterior part curves rapidly, the postero-dorsal purt is only slightly comen.

Adinities.-A species from the Fenomian was figured and described by Guldfuss
as I. Crippsi, Mantell, and that identification has been accepted by many later writers. The type of I. Criphsi came from the Chalk Marl (zone of Schlenhurchin varians). From a study of a cast of the type, Petrascheck and J. Bühm ${ }^{1}$ came to the conclusion that the Senonian species is quite distinct from I. Crimpi, and Böhm has named the former I. lurlticus. Böhm also supports the view first suggested by Messrs. E. T. Newton and A. J. Jukes-Browne, and confirmed by

Fig. 35.-Inoceramus Crippsi, Mantell. Upper (ireonsand, Haldon. Light valve British Musemm (Nat. Hist.), No. L17201. Natmal size.

Petrascheck, that I. lutus of Goldfuss and of d'Orhighe (hut mot of Mantell) is identical with I. Crippsi, Mantell. After a careful sturly of the type and other similar specimens of 1 . Crinpsi, and of specimens of I. letus, I can fully support these conclusions.
I. cuneiformis, d'Orbigny,' is alliced to I. Urinsi, but is relatively higher. One specimen found in the Cpper Greensand of Wiaminster (Plate XlNOIJ, fig. : $:$),
 d. k. k. geol. Reichsanst.,' vol. Ivi (1946), p. 105.

shows some resemblance to I. cuncifirmis, but is probably only a rather high form of I. Crippsi, with which species it is found associated.
I. orlirulurin, Goldfuss, ${ }^{1}$ is regarded by Böhm as a small form of I. Crippsi, Mantell.

I'!! $1^{\prime \prime}$. - In the British Museum (fig. 3:3) from the Chalk Marl (zone of Schle'ulurthit rarimes) of Offham.

Distritution.-Upper Greensand of Haldon. Upper Greensand (zone of Pectern (sperr) of Warminster and Devizes. Chalk Marl (zone of S'hlunhechiat reriuns) of Ringmer, Hamsey, Offham, Maiden Newton, Eggardon Hill, Pyrton, Chalton, Arlesey, Hmstanton, and Domington (Lincolnshire). Cenomanian of Wilmington (Devon). Lower (halk (zone of Ihwhiter subylolusins) of Totternhoe, Burham, and Cherry Minton.
 Plate XLIX, fig. 1.
1881. Inoceramus latus var. reachensis, R. Etheridye. In Peuning and JukesBrowne, Geol. Cambridge, p. 142, pl. i, fig. 3.

Remurlis.- In this form, which is mainly characteristic of the zone of Ifolester. suly/ubusins, the ribs are more sharply defined, their ventral curvature is greater, and their posterior part is less nearly straight than in I. Crippsi.

Type.-From the Totternhoe Stone of Burwell, in the Sedgwick Museum, C'ambrilge.

Instrilution. - Chalk Marl of Blue Bell Hill, Burham. Zone of ILolnster sult)!ld, besus of Merstham and Blue Bell Hill, Burham. 'Iotternhoe Stone (zone of II. suly, $/$ h, w, sus) of Burwell. Recorled by Etheridge from the (halk Marl of Reach.

1881. Inoceramus convexus, R. Etheridge' In Peming and Jukes-Browne, Geol. Cambridge, 1. 143, $\mathrm{p}^{1,}$ ii, fig. 6.

- - \quad - var. quadratus, Etheridye. Ibid., p. 143, pi. ii, fig. 7.
striatus var. convexus, A. J. Jukes-Browne. Cret. Rucbs of Britain, vol. iii, 1. 776.
 p. 46 , pl. xi, tig. 1.

Non 1855. Inocerames convexus, J. Halland F. B. Mrofh. Foss. Cret. Nelmaska (Mem. Amer. Acind. Arts and Sci, vol. v). p. 38f, pl. ii, fig 2.

Description.-Valves nearly equal, considerably inequilateral, tumid, compressed near the postero-dorsal margin; lecight greater than length. Antero-dorsal margin nearly straight; ventral nargin usually very convex; posterior margin slightly or moderately convex, forming an ohtuse angle with the hinge-line. Anterior marginal parts more or less nearly perpendicular to the phane of the valves, sometimes concare near the umbo. Umbones terminal, curved inwards and forwards. Angle between the hinge-line and the anterior margin is about 115\%. The height of the shell is nearly twice the length of the hinge.

Ornamentation consists of faintly marked concentric undulations and numerous growth-lines.

Affinities.-In this species the antero-dorsal margin is relatively longer and more nearly straight, and the postero-dorsal part of the shell less compressed than in I. temicix, Mantell.

1. concexus var. quadrutns, Etheridge, was founded on a specimen in which the anterior part of the shell is pressed in, giving rise to the appeatance of a carina at the upper margin of the antero-clorsal slope.

T!upes.-From the Totternhoe Stone of Burwell, in the Sedgwick Musemm, Cambridge.
 Cenomanian of Wilmington, Devon. Chalk Marl of Branscombe, Beer Hearl, Titherleigh (near Chard) and Hunstanton. 'Totternhoe Stome (\%one of Ioldster suluylohosins) of Burwell.

9.		ic"us, J. de C. Sowerly.	Min. Conch., wol vi, p. 2 lit, pl. deiv, fig. 1.
1854.	--	pictes, J. Muris. Cat. Br	it. Fuss., ed. $2, \mathrm{p}$. 170.
1867.	-	angliates, E. Guirmger.	Album Paliont de la Sarthe, p. dObligny, let(i).
1904.	-	pictes. R. T. Nent,namd A.	J. Juker-Browne. In Jukis-Browne. Cret. Ricks of Britain, vol. iii. 1. F .

Inecriphen- Shell equivalve, very inerpilaterah, slighty or moderately comsex with flatened sides; the posterodorsal part compressed. Antero-dursal marginal
part flattened or concave, and more or less nearly perpendicular to the plane of the valves. Ventral margin very convex; posterior margin moderately convex. Umbones terminal, incurved. Hinge-line nearly at right angles to the anterior margin. Ornamentation consists of numerous strong, somewhat irregular concentric ribs, separated by concave interspaces. The curvature of the ribs is unsymmetrical, and the ribs become less distinct on the antero-dorsal and posterodorsal parts of the valves.

Affnitirs.-This species shows some resemblance to I. anglicus, but possesses more numerous ribs, and also differs in the anterior part of the shell being flat or

Fig. 3fi.—Inoceramus pirtus. Sow. Chalk Marl, Guildford. British Museum No. 432t: The Type. Nitural size.
concave. The type and some other specimens (f. !. No. 73339, British Museum) show traces of the original colouring of the shell. An example of this species was figured by Guéranger as I. cmufulatus, d'Orbigny, ${ }^{1}$ but appears to be quite distinct from that form.

T! ! me . From the Chalk Marl of Guildford, in the British Museum (Natural History).

Ihstrilution.-Lower Chalk (\%one of Itolustre subglubosus) of Beachy Head, Burham, Rochester, and the (Gog-ma-gogs, near Cambridge. Chalk Marl of Burham and Guildford.
${ }^{1}$ 'Pal. Franc. Terr. Crét.,' vol. iii (1816), p. 515, pl. ceceviii, figs. 3, 4. In the text the spelling is angulosus.

Inoceramus lablatus (Schlotheim), 181:3. Plate L. 'Text-fig. 37.
1768. Ostracites, J. E. I. Walch. Die Naturgesch. Verstein z. Erliat. d. Knorrischen Samml. v. Merkwärdigk. d. Nittur., II, p. 8.t, pl. B II l^{*}, fig. $\mathbf{2}$; p. 15: pl. dx, figs. 1, 2.
1813. -- Labiatus, E. F. e. Schotheim. In Leonhard's 'Tascheubuch fiir Min., vol. vii, p. 93.

- Pinnites dituvianus, Schlutheim. Ibid., p. 93.

1820. --. -- Schlitheim. Petrefactenk., [. 303.
1821. Mytiloides labiatus, A. Bromyuiart. Iu Cuvier, Ossemens Fussil s, vol. ii, $\mathrm{p}^{\mathrm{t} .2,1 p \mathrm{p} .320,597, \mathrm{pl} \text { iii, tig. } 4 .}$
1822. Inoceramus mytilloides, (f. Mantell. Foss. S. Downs, p. 215, pl. xxvii, fig. 3 ; pl. xxriii, fig. 2.
1823. - mytiloides, J. de C. Sowerby. Min. Conch., vol. v, p. 62, Pl. cecexlii (not the two smaller figures).
1824. Catillom Schlotheimi, S. Nilsson. Petrif. Suecama, p. 19.
1825. Inoceramos mytiloides, A. Goldfuss. Petref. Germ., vol. ii, [. 118, pl. cxiii, tig. 4.
? 18:37. Catillus mytiloides, G. G. Pusch. Poleus Paliont., p. 45.
1826. Inoceramus mytiloides, F. A. Rimer. Die Verstein. d. nord-deutseh. Kreidegel)., p. (i3.
1827. -- Problematicus, A. dOrbiyny. Pal. Frauç. T'err. Crét., vol. iii, p. 510, pl, cccevi, fiss. 1-7(Non. I. nroblematicus, v. Schlotheim).

		mytiloides, A. E. Reuss. Die Verstein. der böhm. Kiveileformat, pt. 2, p. $2(\mathrm{i}, \mathrm{pl}$. xxxvii, fig. 16.
-	-	H. B. Geinita. Grundr. d. Verstein., p. 463.
\% 1847.		A. d'Archiac. Mém. Suc. géol, de France, ser. 2, vol. ii, p. 307 .
1850.		problematicus, A. d'Orbigny. Prodr. de Pal., vol. ii, p. 197. mytholdes, I. B. Geinitz. Das Qualersaulst. oder Kreile. geb. in Deutschlimil, p. 176 .
¢1852.	-	fis. 5 .
1854.	-	
1863.	-	A. r. strombeck. Zeitschr. d. deutscl. gool. (iesellsell., wol. xr. pr 119.
? 1870.	-	latus, F^{\prime}. Riomer. Geol. V. Oherschles., b: :3li, pl axxiv, fig. 1:.
1871.	-	India, wol. iii. p. Hus, pl. wix. tir. 1.

1872. Inoceramis labiatus, H. B. Geinitz. Das Elbthalgebl. in Sachsen (Palreontorraphica, rol. xs, pt. 2), p. 46, nl. xii, firs. 1-3.

1873
1877
-

1888.

$\begin{array}{ll}1888 . & - \\ 1893 . & -\end{array}$
? Non 1868.
1881.

Geinitz. Neues Jahrb. fïr Min, etc., p. 13.
C. Schliter. Palaontographica, vol. xxiv, p. 26i3.
A. Fritsch. Stud im Gebiete der bühm. Krreide. format. ii, Weissenberg. u. Milnitz. Schicht., p. 130, fig. 112.
s. Nikilin. Les Vestiges Crit. Russ, centrale (Mém. Comitá grool. Russ., vol. v, no. 2), p. 34, pl. 5, figs. 10, 11.

- A. Peron. Hist. Terr. de Crato dans le S.E. dn Bassin Anglo-Parision, 1. 1:8.
R. Michael. Zeitschr. der dentsch. geol. (Gesellseh., vol. xlr, p. 241.
T. W. Stantom. The Colorado Formation (Bull. U.S. Geol. Surv., No. 106), p. $\overline{7}$, pl. x, fis. 4 ; pl. xiv, fig. ${ }^{\text {P. }}$
? 1897. - \quad R. Leomhard. Kreideformat. in Olmrschles. (Palmontographica, vol. xliv), p. 48.

1903. - W. Petrascheck. Jahrl. d. k. k. geol. Reichsanst., vol. liii, p. 156.
mytiloides, E. Fichurald. Lethea Rossici, vol ii, p. 492, pl. xxi, fig. 6.
(Mytilites) problematicus, R. Etheridye. In Pemuing ami Jukes-Brownc, Geol. Cambrilge, p. 143, pl. iii, figs. 9-11.

Description.-Shell mytiliform, nearly equivalve, extremely inequilateral, oblicque, much elongated between the umbo and the postero-ventral extremity, convex, with a small posterior ear; antero-dorsal part sloping steeply and sometimes concave. Angle formed by the hinge with the antero-dorsal margin aboui 90°. U'mbones terminal, with a slight anterior curvature. Anterior margin gently curved; postero-ventral extremity very convex; posterior margin nearly straight.

Ornamentation consists of small, fairly regular concentric undulations, which have an unsymmetrical curvature in the young, but become more nearly symmetrical in older specimens. On the old parts of the shell the undulations become less distinct.

Affinities.-It seems probable that this species is related to I. ('ripusi var. remelensis (p .278), but the height of the shell is relatively greater, the length of the hinge-line is less, and the direction of growth is obligue to the hinge-line.
I. prop inimus, Goldfuss, ${ }^{1}$ from the Quader-sandstone of Schandau, was regarded by Geinitz as a synonym of I. lutintlus.

D'Orbigny identified this species with I. prollemntions, von Schlotheim, which comes from the Senonian, and has been shown by Bölm to be distinct from the Turonian form. ${ }^{1}$

Remarlis.-This species is mainly characteristic of the zone of Rhynclumella Cucieri. In the zone of Terefurtulime lutu it is not common, and the shell is usually relatively longer than in typical forms of the species.

Types. -The type came from the Turonian of Pirna. The specimens figured by Mantell from the zone of Rhanchomellu Curinti of Plumpton are in the British Museum. The large specimen figured by Sowerby from Warminster cannot be found.

Distribution.-Zone of Rhymehonellu Curieri of the Devon and Dorset coasts, the Isle of Wight, Winchester, Eastbourne, Lewes, Plumpton, Dover, Blue Bell Hill (Burham), Betchworth, Watlington (Berkshire), Hitchin, Cherry Hinton, South Thoresby, South Ferrily (Lincolnshire), and the Yorkshire coast. Zone of Terehratulinu lata of the Devon and Dorset coasts, Winchester, Eastloourne, and Dover.

Recorded by Jukes-Browne from the zone of IIoluster subylulowits of Cambridge-

Fig. 37.

Fig. 3s.

 Muscum, Nu. Liellgr. Niturat siac.

1 J. Bühm, 'Monatsher. d. deutsch. geol. Gesellseh.' (1!9:9), p. 117.
shire and West Norfolk; and hy Rowe from the \%one of Molaster phans of Dover and the Sussex coast, and from the zone of Mirraster cor-testudinerium of Dover.

Fia. 39.

Fig. 40.

Fig. 39.-Inoceramus heliatus var latus, Sow. Zone of Holuster phanus, Swaffham, Norfolk. Norwich Musemm, No. $32!\%$. Right valse and anterior view. Natural size.
Fig, 10.-Inoreromus lubiates var. lutus. Sow. One of the types of Inoceramus latus, Sowerby, 'Min. Conch.;' vol. vi, 1 . 15!, pl. dlxxxii, fig. 1 (lower figure). Swatfham. British Museum, No. $\mathbf{4 3 2 6 6}$. Natural size.

> 18:8. Inoceramus latus, J. de C. Somerly. $\begin{array}{r}\text { Min. Conch., vol. vi, p. 159, pl. } \\ \text { dlxxxii, fig. 1. (Non I. Lutus, } \\ \text { Mantell). }\end{array}$ 185% ($-\quad-\quad$ J. Murris. Cat. Brit. Fuss., ed. 2,170 (partim).

Remurtis.-This varicty differs from I. lubiatus in the much greater length of the hinge-line in proportion to the height of the shell, in the greater convexity of the anterior margin, the smaller convexity of the ventral margin, and the less obligue form of the shell. On account of the greater length of the linge-line the curvature of the ribs and growth-lines is broader than in I. labiutus.

This variety appears to be confined to the zone of Moluster planus, and is common in the neighbourhood of Swaffham, Norfolk. The larger specimens which I have seen are not sufficiently perfect for figuring, but a characteristic example is figured by Sowerly.

Typis.-From the zone of Iolustro plumus of Swaffham. The smaller specimen figured by Sowerty is in the British Museum (Fig. f0), but the larger specimen camot be found.

Distrilution.-Zone of Molnster plenus of Purley Junction Station, Surrey, and Swaffham, Norfolk.

Palæontographical $\mathfrak{I o c i e t v , ~} 1911$.

A MONOGRAPH

OF THE

CRETACEOUS LAMELLIBRANCHIA

OF

ENGLAND.

$B Y$
HENRY WOODS, M.A.
CNIVERSITS LECTURER IN PALEOZOOLOGT, CAMBRIDGE.

VOL. II. PAR'T VIII.
INOCERAMUS (romtinued).

Pages 28.j-3f"; Plates LI—LIV.

LONDON:

PRINTED FOR the paleontographical society

Fig. 41.-Inoceramus laliatus var. latus, Sow. Zone of Holister phans, Coombe Bissett. Dr. Blackmore's Collection. Right valve. Natmal size.

> 182. Inoceramus Brongniarti, var., (r. Muitell. Foss. S. Downs, p. 215, pi. axviii, fig. 3.

Description.-Shell extremely inequilateral, moderately or slightly inequivalve; the early part of the shell slightly convex or nearly flat, the later part much more convex and sometimes growing nearly perpendicularly to or forming a large angle with the early part, so that in old individuals the shell becomes more inflated; in other cases the convexity increases more gradually from the carlier to the later stages of growth and a nearly globose shell results. Height of the shell often rather greater than the length. Hinge-line long, forming rather more than a right angle with the anterior margin, which is usually more or less nearly straight. Ventral and posterior margins rounded. Umbones terminal, small, pointed, only. slightly curved. Anterior marginal part of the valve usually flattened, hut not definitely limited from the sides of the shell. Posterior ear developed but not distinctly limited.

Concentric folds are usually well developed, but become indistinct on the anterior flattened area, on the posterior ear, and on the later part of the valve of old individuals. The concentric folds have a very unsymetrical curvature.

Remarks.-The forms included in this species vary considerahly, owing mainly to the length of duration of the flattened stage, which in some individuals forms a
small part (Figs. $43,48,49$) but in others a large part (Plate LI, fig. 9 , Text-figs. t.), 4 (i) of the entive shell. ${ }^{1}$ Also the passage from one stage to the other is sometimes grallul, so that the section of the shell forms a fairly unform curve (Fig. 48), but generally the change is abrupt, so that the later part of the valve is

 Natural in:

 Left valve, and pesterior and dorsil views of the same. Natural size.
bent at an angle with the earlier part (Figs. H2, tia). The length of the hinge-line in propertion to the height of the shell shows some variation and conserfuently the
${ }^{1}$ The larger specimen of I. lutur, Sowerly (Min. Conch.,' rol. vi, pl. dlxaxii. upper figure), which cannot now be found, is probalily an example of this.
lini. 4i,

Fig. 44.

Fıg. 44.-Inoceramus inronstens, sp. nov. The original of I. Diongmiarti, var., Mantell. 'Foss S. Downs,' p. 215, pl. xxviii, fir. 3. Upper Chalk (prohably zone of Mirraster cor-anjuinum), Suntheram. British Museum, No. $\mathbf{8 8 7 8}$. Right valve. Natural size.
Fig. 4. - Inoceramus inconstans, sp, nov. Upper Chalk, Sussex. British Musemm, No. isbit. Left valve and anterior view. Natumal size.

 Kight valve. Natural size.
curvature of the ribs varies. In some specimens (often of large size) the shell is thimer than usual and has sharp and ridge-like folds similar to those of 1. Lamarhi var. Webstri, Mant. (p. :318). Further work may show that it is desirable to give names to some of the varieties of I incunstuns.

Affiutios.-This species is closely allied to I. lutiutus var. latus, Sowerby; ${ }^{1}$ but the hinge is relatively longer and the lieight of the shell less, the anterior Hattened area is larger, the later part of the shell is more convex, the umbones are less prominent and the posterior ear more distinct.

Fus. fi.-Inorectmas inconstens, sp. nov. Upper Chalk (zone of Actinocomax quadratus), Brighton. Brighton Museum, No. 336. Kight valve and anterior view. Natural size.
I. incomstons is distinguished from 1.Lamarcli, Parkinson (p. 307), by the relatively longer hinge-line, the more unsymmetrical curvature of the folds, the flattened form of the early part of the shell, the less prominent umbones, and the smaller difference in the size of the valves. C. Curiori of Andert "appears to he a flat form of l. inconstums. Another specimen figured by Audert ${ }^{3}$ is allied to 1. incomstuns, but its axis of growth is more oblique and its hinge longer than usual.

[^52]

Fig. 48.-Inoceram:s inconstans, sp, nov. Upper Chalk. Locality unknown. British Museum, No. 308s2. Left valve and dorsal view. $\times \frac{2}{2}$.

Fig. 49.-Inoceramus inconstans, sp, nov. Zone of Actinocamax quadratus, East Harnham, Salishury. Ir. Blackmore's Collcetion. Left valve and dorsal view. Natural size.

T'ypes.-The specimen figured by Mantellas I. Bomquiarti var', from the Upper Chalk (probably zone of Micraster cor-onuminmm) of Southeram (Lewes), and the one figured as Inorpromms sp. By the same anthor from Lewes, and I. Lammirli, Sowerly (in Dixon), from the (halk, Sussex (probahly zone of trombratuliun lutu of Malling), are in the British Musemm, Nos, isis, fatio, Lionoi, respectively.

Jistribution.-Zone of Itwister phents of Twy ford, Swaflam (Norfolk), and Strood. Zone of Mirowser cor-trostulimsinm of Chatham, (iuilford ('olliery
 of Southeram (Lewes). Zone of Arfinoremmer quadrat"s of East Hamham (Salishury) and Brighton. Zone of Dirlemitella mucomatio of Shide (Iske of Wight). Probally also in the gone of terebratulima leta.
 fig. 1.
182.2. Inocerames striatos, G. Mantell. Foss. S. Downs, p. 217, pl. xxvii, figs. 5. 1828. - \quad - J. de C. Sowerby. Min. Cunch., vol. vi, p. 160, pl. dlexxii, fig. . ${ }^{\text {. }}$
1854. - \quad - J. Morris. Cat. Brit. Foss., (d. 2, p. 170 (partim).

Non	1836.	-		A. Gollfuss. Petref. Germ, vol. ii, p. 11\%, pl. cxii, fig. 2.
-	1841.			F. A. Ramer. Dic Verstein, d. nord-deutsch. Kreidegeb, p. 62.
\div -	1846.	-	-	A. E. Reuss. Die Verstein. der bohm. Kreidefor-
-	1846.	-	--	A. dorbiyny. Pal. Frauç. 'Terr. Crót., vol. iii, p. 508 , pl. cecer.
-	1850.	-	-	dOrbigny. Prodr. de Pal., vol. ii, p. 168.
	1853.	-	--	F. Rrimer. Kreidebild. v. Texas, p. 60.
-	1863.	-	-	A. r. Strombeck. Zeitschr. d. deutsch. geol. Gesellsch., vol xv, p. 108.
-	1863.	-	--	A. Kunth. Ilid., vol. xv, p. 727.
-	1870.	-	-	F. R̈̈mer. Geol. v. Oberschlesien, p. 340, pl. xxix, fig. 6.
-	1872-73.	-	-	H. B. Geinitz. Das Elbthalgeb. in Sachsen (Palæontographica, vol. xx, pt. 1). p. 210, pl. xlvi, figs. 9-13; (ibid., pt. 2), p. 41, pl. xiii, figs. l, 2, 9,10 .
-	1873.	-	-	Geinitz. Neues Jahrls. für Min., etc., p. 7.
-	1877.	-	-	A. Fritsch. Stud. im Gebiete der bühm. Kreideformat. ii, Weissenberg. u. Maluitz. Schicht., p. 129.
! -	1881.	-	-	J. Kiesow. Schrift. nat. Gesellsch. Dautzig, vol. v, p. 413 .
-	1885.	-	-	F. Nötling. Die Fauna d. baltisch. Cenoman. (Palæont. Abhandl., vol. ii), p. 23, pl. iii, figs. 11, 12.
-	1893.	-	---	R. Michael. Zeitschr. d. deutsch. geol. Gesellsch., vol. xlr, p. 233.
-	1895.	-	-	E. Tiessen. Ibid., vol. x1vii, p. 480.
-	1897.	-	-	H. Woods. Quart. Journ. Geol. Soc., vol. liii, p. 381, pl. xxvii, fig. 13.
-	1911.	-	-	A. Fritsch. Stud. im Gebiete bühm. Kreideformat. (Ergiazzung zu Bd. I, Korycaner Schicht.), p. 42, fig. 190.

Remertis.-This variety, which is uncommon and of small size, is distinguished by the strongly inflated valves, the large angle between the hinge-line and the anterior border, the absence of folds, and the absence or indistinct character of the anterior flattened area and of the posterior ear.

T'ypes.--The type, from the zone of Micerster cor-conguinum of Southeram, Lewes, is in the British Museum, No. trig8 (Plate LI, fig. 5). The specimen figured by Sowerby from the Upper (halk (probably zone of Holaster planus) of Heytesbury is also in the British Museum, No. 4:3267.

Distribution.-Zone of Holaster plenus of Stonehall siding near Dover, and Swaffham, Norfolk. Zone of Micrastri cor-anguimm of Sontheram. Upper Chalk (probably zone of IIoluster phenus), Heytesbury.

A rariety found in the zone of . Ietinorramur qumbictus of East Harnham (Salishury), Mottisfont, and West Meon (Hamphive), is distinguished by the mmones being more prominent and not terminal, by the regular convexity and equal size of the valves, the absence of the anterior flattened area, and the absence or indistinct character of the concentric folls. This variety is connected with typical forms of the species by some examples (Fig. 44) in which the early part of the shell is less convex and possesses distinct folds, hut the umbones are not quite terminal and the anterior flattened area is not present. I. inconstans var. serumensis appears to resemble I. Brancoi, Wegner,' of which good figures have not yet been published.

Inocerames bumers, biahim, 1907. 'Text-figs. 51-5:3.

Description. Whell equivalve, very inequilateral, slightly or moderately convex, hecoming very convex in old specimens, in which the later part of the shell grows either perpendicularly to or at an obtuse angle with the carlier part; posterior

 Flint cast. Kight valve and anterior view. Natural size.

F1a. 52. Inoceramus bulticus, Bohm. Anterior view of specimen shown in Fig. 53. $\times 3$.
and postero-dorsal parts compressed; length greater than height, the difference increasing with age. Anterior and ventral margins rounded; posterior margin forming an obtuse angle with the hinge. Hinge-line long. Umbones rather small, nearly terminal.

Concentric ribs strong, sharp, narrow, with a very unsymmetrical curvature; a few ribs may come off from the sides of other ribs; between the ribs are broad concare interspaces. On the marginal parts of old specimens ribs are absent.

Affiutitiss.-I. lulticus is closely allied to I. inconstons, from which it has

Fig. 33.-Inoceramus bulticus, Bohm. Upper Chalk (prohably zone of Marsupites testudinurins), Brighton. Museum of Practical Genhngy, No. 25xM, Left valve and dorsal view. $\times \mathbf{i}$.
probably been derived; it differs from that species by its longer hinge and the longer shell, with the umbones not quite terminal. The length of duration of the slightly consex stage varies in the same way as in I. incomstans. The specimen of I. imronstums shown in Fig. 4.; makes, on account of its longer hinge, some approach to I. lulticus.'.
${ }^{1}$ Ster also Böhm, luc. cit., pl. xii, fyg. la.
I. remmbin, d'Orbigny, differs from I. lultirns in the outline of the shell, in its uniform convexity, and in the broaler and less sharp ribs.

Some of the forms from Gusan referrel by Zittel to I. Cripmi resemble closely 1. luiticus. ${ }^{\text {² }}$

T'un".-From the Lower Q Qumbratu: beds of Dülmen, in the Palaeontological Institute of the University of Bomn.

Histrilntion.—Senonian of Haldon, and Worbarrow Bay (Dorset), and Brighton
 Muttisfont, Ropley (Hants), East Hanham (Salisbmy), Mount lleasant near Andover, Driffied, amd Sewerby (Yorkshire). Zone of Brlmonitella muromuth of Clarendon and Fareham (Hants), Alum Bay and Shide (Isle of Wight), and Norwich.

Inochamis mobite, tioldfuss, 18:36. Text-figs. $54,55$.

1836.	Inocer	batus, A	Petref. Germ., rol. ii, p. 113, pl. © x. fig. 3.
1877.	--	c. sthliter.	Palrontographica, rol. xxiv, p. 9 2in pl. xxxix, figs. $1, \underline{\text {. }}$
1882.		H. Scheriler.	Zeitschr. d. deutsch. seeol. (tesellsch., vol. xxxiv, p. 272.
: 1888		:ffi. hobates, S. Nikitin.	Les Vestiges Crict dians lia Russie Ceutrale (Mém. Comite Gécol., vol. v. no. 2), p. 3t, pl. v, fig. 12.
		lobatts, g. Miller. Jab	Jahrl. d. k. preuss. geol. Lamdesanst. fur. 1887, p. 415.
1889.	-.	F. Hularyit.	Die Mollusk. Aachen. Kreide (Palarontographica, vol. axxv), 1. ≥ 23.
\% 1894.		aff. Lobatus, K. Jimbō	\bar{o}. Kireideformat. r. Hokkaido (Palwont. Alhandl., vol. vi), p. 4t, pl. viii, fis. 11.
189\%.	--	h.obatcs, (i. Muller. M	[ollusk. Untersen. v. Braunschweig. 11. Ilsede (Albhandl. d. b. preuss. seol. Landesanst., n.f., 25), f. 43, fig. 10 .
:1901.	-	cf. iobates, F', Sturim.	Jahrb. d. k. preuss. geol. Landesianst. für 1900 , vol. xxi, p. 93, pl. x, fig. 3 .
190.	-	lubatcs, A. W'ollemenn,	n, Lünchurg. Kreide (Ahhambl. d. k. preuss. geol. Lanlesillist., w.F., 37). p. 71 .

${ }^{1}$ ' Pal. Franç. 'Terr. Cret.,' rol. iii (1846), p. 516, pl. ceces.
a Compare also I. Cripsi var. sulcutu, Rëmer, ‘Kreidetild. r. Texas’ (1852), p. 56, pl. vii, fig. 2, and I. Cripsianus, Stoliczkia. 'Palæont. Indica, Cret. Fauna S. Iudis,' vol. iii (1871), p. 405. pl. xxvii, figs. 1-3; pl. xxviii, fg. .2, and I. crassus, Petrascheck, 'Jahrl. d. k. k. geol. Reichsanst..' vol. liii (1903), p. 164, pl. viii, fig. 4, and Andert, ' Inoceramen d. Kreibitz-Zittauer Sandsteingeb.' (1911), p. 46, pl. iii, fig. 4, pl. vi, fiys. $1,2$.
1902. Inoceramus mobatus J. P. J. Kum. Mollusk. i Danmarks Kridtafl. I. Lamellihr., p. 103.

1905	-	-	T. Weymer. Zeis	Zeitschr. d. deutsch. geol. Gesellsch., vol. 1vii, p. 164, fig. 7, pl. x, figs. 1, 2, and text-fig. 7.
1906.	-	--	G. Smolénati.	Bull. Internat. Acad. Sci. Cracovis. p. 722, pl. xxpii, figs. 16-18.
1909.	-	--	J. Nurak. Jbir	bid (1909).p. 875.

Descriptian.-Shell very inepuilateral, obligue, compressed, slightly consexthe anterior part more convex than the posterior part; much higher than long. Anterodorsal marginal part sloping steeply. Ventral margin convex, with a
shallow sinus near the postero-ventral angle. Posterior margin nearly straight, somewhat oblifue, forming an angle with the ventral margin. A broad shallow depression extends from behind the umbo to the postero-ventral sinuosity; posteriorly this depression is limited by an angular ridge. Behind the ridge is a

 left valve. $\times 7$.

Hattened or sightly concave wing-like part which, owing to the thimness of the shell, is often not preserved. Umbones acute, near the anterior end.

Ormamentation consists of concentric rils with an unsymmetrical curvature; in the posterior depression the ribs bend upwards, forming a sinnosity, and on the wing the ribs bend upwards and are less distinct than elsewhere. The concentric ribs are of two sizes; large ribs occur at intervals and between these are several smaller ribs.

Affinities.-Inoceramus nasmms, Wegner, ${ }^{1}$ from the Senonian of Bossendorf and Dülmen, is allied to I. lubutus. See also I. lingun, I. cardissoides, and I. tulimoulatns: (below).

Remarks.-Only imperfect casts of this species have been seen, but it is abundant in Yorkshire. In North Germany this species occurs also in the zone of Marsupites testudiumrius.

Type.-From the Lower Senonian of Quedlinburg.
Distribution.-Zone of Actiumcturn'r quadrutus of Sewerl)y, Bessingly and other localities in Yorkshire.

Inocerames ingi'a, Goldfuss, 18:36. 'Text-fig. 36.

Remurlis.-This species is closely allied to I. lobutus, Goldfuss, but the specimens at present available are not sufficiently perfect to enable me to make a close comparison. I. liu!!u"t appears to differ from I. lubatus in the absence of the ridge between the umbo and the postero-ventral angle, in the absence or indistinct character of the radial depression in front of the ridge, in the greater relative length of the shell, and in the ribs being either of uniform size or of two sizes less distinctly marked than in I. loluthes.

T'yie. - From the Senonian of Diilmen.
Listribution.-L'pler Chalk of Birdsall, Yorkshire. Zone of Belemnitrlla

[^53]minrounthe of Norwich. Recorled by Barrois from the zone of Mrisnuites: testminurin: of Rottingdean.

Fra. sti-Inoceramus lingua, roldf. Zone of Belemuitelle mucronata, Norwich. British Museum, No. Li20956. Part of right valve. Natural size.

Inombames carmssombs, Gohlfuss, 1836. Text-figs. 57, 58.
1836. Inoceramis cardissoldes, A. Guldfius. Petref. Germ., vol. ii, p. 11?, pl. cx, fig. 2 .
1841. -- lobatus var. is. cardissoides, F. A. Rïmer. Die Verstein. d. norldeutsch. Kreidegeh., [. 6:3.
1876. - cardissoides, D. Brauns. Zeitschr. f. d. qesammt. Natur-
187. - C. Schliter. Palæontographica, vol. xxiv, p. 274.
188\%. - - G. Miller. Jahrb. d. k. preuss. geol. Lan- desanst. für 1887, p. 415.
189\%. - \quad - Mifler. Mollusk. Untersen. r. Braunschweig u. Ilserle (Abhandl. d.k. preuss. geol. Landesaust., N.f., 25), p. 44, fig. 11 .

19い2. - A. Wollemann. Lünelurg. Kreide (Ib d., 37), p. 71.
1905. - \quad T. ${ }^{2}$ egner. Zeitschr. d. deutsch. geol. Gesellsch., vol. lvii, p. 169.

Non 1882. Inoceramus cardissoides, II. Schrijder. Zeitschr. d. deutsch. geol. Gesellsch., vol. xxxiv, p. 271, pl. xvi, fig. 1.

Descripion.-Shell very inequilateral, oblique, moderately convex, with the anterior marginal part sloping rapidly. Height considerably greater than length.

[^54]

Fia. is.

Fig. 5ī.-Inoceramus cardissmides. Goldf. Upper Chalk (probably zone of Actinocamax quadralus), near Specton. Serlinwick Museum. Left valve. Posterior wing missing. Natural size.
Fig. $\mathbf{8 8}$.-Inoccramus cardissoides, Guldf. Upper Chalk, probably Kent. British Museum, No. 98:09. Part of left valve. Natural size.

Ventral margin convex; anterior margin slightly curved. A broad concave depression extends from behind the umbo to the postero-ventral extremity, and is limited posteriorly by a straight, sharp ridge, behind which is a wing-like part of the shell.

Ornamentation consists of strong, widely separated concentric ribs, with a steep ventral slope and a more gentle dorsal slope; in the interspaces are small concentric ribs, which are crossed by small radial ribs giving a more or less distinctly
tubereulate character to the larger concentric rilks. On the posterior part of the shell the concentric ribs bend sharply upwards.
liomuris.-Only two imperfect specimens of this species have been seen; it is closely allied to 1 . lumtu: ($\mathrm{p} . \Omega(\underline{9}$), but differs in the presence of radial ribs, the greater development of the larger concentric rils, and in the greater convexity of the valves.

T'y $f^{\prime \prime}$.-From the Semonian of Quedlinhburg.
 Speeton, and the south of England (probably Kent).

1892. Inoceramus cardissoides, H. Sehtimler. Zeitechr. d. deutsch. geol. Gevellsch., vol. xxxiv, 1. 271. pl. xvi, fig. 1 (Non Goldfuss).

Drscription. Whell very inequilateral, oblique, much higher than long; dorsal part moderately convex, ventral part only slightly convex. Umbones relatively small, nearly terminal. Antero-dorsal area flattened, nearly smooth. A rounded depression, separated from the posterior wing-like part, passes from the umbo to the postero-ventral extremity. Hinge-line forms less than a right angle with the anterior margin.

Ormamentation consists of mmerous concentric ribs which, at a short distance from the umbo, are crossed by radial furrows, so that the ribs appear then to consist of rows of tubercles; on the sides of the shell the radial furrows, and consequently also the tubercles, are less distinct than on the middle of the shell.

A!finities.-Whis species is allied to I. lobuths and I. cardissoides, but differs in the greater development of the radial ribs, which give rise to a tuberculate type of ornamentation ; also the stronger concentric ribs which occur in I. cardissoides: are small or altogether wanting. The English specimens agree fairly closely with the example figured by Schröder as I. cardissoides.

T'! $!\mu^{\prime \prime}$-In Dr. Rowe's ('ollection.
Distrilutivin-Dpper Chalk (zone of Artinoctanure quadratus) of Brighton, and Sewerby (Yorkshire).

Fio. 50.-Inoceramus tubereulitus, sp. nov. Zone of Actinocamax qualratus of Sewerby, Yorkshire. Dr. A. W. Kowe's Collection. Part of right valve. Natural size.

Description.- Shell ovate, much higher than long, very inequilateral; the carly part of the shell of small or moderate convexity, the later part only slightly convex or nearly flat. Hinge-line forming more than a right angle with the anterior margin. Umbones terminal, small, curved anteriorly.

Ornamentation consists of concentric and radial ribs; the former are more distinct on the early part of the shell, the latter on the later part. The radial ribs curve outwards from a line between the umbo and the postero-ventral extremity; they have rounded summits, and are separated by broad shallow interspaces; a tubercle or romnded elevation may be developed where the concentric ribs cross the radial ribs.

Affinitiex.-This species is closely allied to I. diyitatur, Schlüter (non Sowerby).

The fact that in some specimens the early part of the shell is ornamented with concentric folds only, and the radial ribs appear on the later parts, suggests that this species has been derived from one with concentric folds only, in a manner similar to that in which I. sulcutus has arisen from I. coureutricus (see p. 268) ; the specimens at present available, however, do not enable us to trace the origin of I. unduluto-plicutus, but it seems probable that it has descended from a flat variety of I. incoustons.

Forms from Vancouver Island with a similar type of ornamentation have been
referred to I. mudulato-plicatus by Whiteaves, ${ }^{1}$ but White ${ }^{2}$ doubts the correctness of the identification. I. diversus, Stoliczka, ${ }^{3}$ is another allied form.

Michael does not accept Schmidt's and Schliuter's identification of the specimens from Saghalien and North Germany with Rümer's I. mululuto-plicatus, but regards them as belonging to a distinct species for which he proposes the name I. Schmidti. He, however, regards I. dicersus, Stolic\%ka, as an example of

Fin. 15.).

 cast of part of right valve. Natmal si\%e.

this species, consequently it was monecessary to introduce a new mame. The English specimens show a gool deal of variation, and after comprang them with Römer's and other figures I do not feel able to accept Michacl's view.

TyIP.-From the Chalk of Texas.
Instrilmtion. Senomian of Maldon.
 1903), p. 395 ; also 'Trans. Rus. Soc. Canada,' ser. 2, vol. i (1895), p. 121.

2 'Bull. U. S. Geol. Surv.,' mo. 51 (1889). 1' 37 .
3 'Palæont. Indica, Cret. Fanna S. India,' vol. iii (l871), p. 407, pl. xrvii, fis. 6.

 Colliery Shaft, Nonington, near Duver. British Museum, No. Lizostt (diseovered and presented by Dre. Malcolm Burr). Cast of part of left valve. $\times \frac{3}{4}$.

1873.	Inocera	trat	, F. Schmidt.	
1877.	--	-	c. Schlitior.	Pala
1878.	-	-	C. Barrais.	$\begin{gathered} \text { An11 } \\ \text { p. } \end{gathered}$
1909.	--	-	A. Wrlloman	

Remarlis.-As was pointed out by Schliuter, this form is very closely allied to, and perhaps not separable from, I. mhluluto-plicetus; it differs from the latter mainly in that the posterior ribs are stronger and fewer in mumber than the anterior ribs, but the early parts of the shell are very similar in the two forms. Until more specimens have been obtained the exact relationships of the two forms cannot be determined, and for the present it seems best to regarl I. digitutus of schliter (non Sowerby) as a variety of I. mudulnto-plicutus.

Distribution.-Zone of Mirraster cor-unguinum of (Chalton, Snowdown Colliery Shaft, Nonington near Dover, Preston near Faversham, amd Salisbury. Zone of Actinucamax quadratus of Salisbury.

Inocemames Limakeki, Parkinson, 1819. Plate LII, figs. f-6; Plate LIII, figs. 1-7. T'ext-figs. 6:3-85.
1768. Ostreopinnites, J. E. I. Walch. Naturgeschichte d. Verstein., vol. ii, p. 142, pl. di ${ }^{* *}$, figs. $1-5$.
1819. Inoceramts Lamarckit, J. Parkinkom. Traus. Geol. Soc., ser. 1, vol. v, p. 55, pli. i, fig. 3.
182.2. - Cuvieri, J. Suererby. Trans. Linn. Suc., vol. xiii, p. 453, pl. xxy.

- - Lamarceit, G. Mentell. Foss. S. Downs, p. 214, pl. xxvii, fis. 1.
- - Cuvieri, Mantell. Ibid., p. 213, pl. xxvii, fig. 4, pl. xxviii, figs. 1.4.
- - Hrongmiarti, Mantell. Ibid, p. 2ly, pl. xxvii, fig. 8.
- - Websteri, Memtell. Ibid., p 2l6, pl. xxvii, Gig. 2.
- - undulatus, Muntell. Ihid., p. 217, pl. xxvii, fy. (6.
- - latus, Mant.ll. Ibil., p. $2 l$ (i. pl. xxvii, fig. 10.
- Catilles Covieri, A. Brongmint. In Cuvier's Ossemens Foss, vol. ii, p. 601 , j. is.. fis. 10 .

102:3. Inocreamus Cuvieri, J. de C. Soverby. Min. Conch., vol. v, p. 59, 1'l. cecexli, fig. 1.

-	-	Brongniarti, Suerly. Ibid., vol. v, p. 60, pl. cecexli, figs. 2, 3.
10:36.	-	Lamarckit, A. Golifues. Petref. Germ., vol. ii., p. 114, pl. (xi. fig. \boldsymbol{e}.
-	-	Cuvieri, Gohljuss. Ibid., vol. ii, p. 114, pl. exi, fig. 1.
-	-	Brongniarti, Goldjusi. Ibid., vol. ii, p. 115, pl. cxi, fig. 3.
-	-	striatus, Goldjues. Ibid., [1. 115, pl. exii, fig. . 2.
183\%.	Catiletes ma	lamarcki, F'. Dujardin. Mém. Soc. g'ol. de Frauce, rol. ii, p. 225 .
$18: 37$.		Cuvieri, Dujurdio. Ihid., vol. ii, p. 225.
	Inuceramus	es Brongniarti, W. Hisiuger. Lethæa Suecica, p. 56, pl. xrii, fig. 11.
	-	Cuvieri, Hisinger. Ibi l., p. 56, pl. xvii, fig. 10.
1841.	-	Lamarckit, f. A. Rimer. Die Versteiu. d. nord-deutsch. Kreidegeb., p. 6\%.
---		Cuviehi, Rëmer. Ihid., p. 62.
-	-	Brongniarti, Rummer. Ibid., p. 61.
: -	-	undulatus, Rïmer. Ibid., p. 63, pl. viii, fig. 12.
1846.		Cuvieri, A. E. Rensi. Die Verstein. der bühm. Kreideformat., $p^{\prime \prime} .2, p^{2} .2$.
-	--	Brongniarti, Relus. Ibil., pt. 2, p. 24.
: -	-	Cuvieri, A. Leymerie. Statist. grol. min. de l'Aube, Atlas, ${ }^{1 l}$. iv, fig. 7.
-	-	annulatus, Leymerie. Ibid., pl. iv, fig. 4.
	--	C'vieri, A. dorbigny. Pal. Franç. Terr. Crét., vol. iii, p. 520 .
18.00.	-	Brongniarti, H. B. Geinitz. Das Quadersaudst.oder Kreidegeb. in Deutschlaud, p. 172.
! -	-	Cuvieri, A. d'Orligmy. Prodr. de Pal., rol. ii, p. 250.
1850.	-	$\begin{gathered} \text { - K. Kner. Kreidemerg. v. Lemberg (Haidinger's } \\ \text { Naturwiss. Abhandl., vol. iii, pt. 2), } \\ \text { p. } 28 . \end{gathered}$
18.4.	-	Lamarckit, J. Morris. Cat. Brit. Foss., ed. 2, p. 169.
-	-.	Cuvieri, Morris. Ibid., p. 169 (partiom).
-	-	Brongniartio, Morris. Ibid., p. 169.
-	-	undulatus, Morris. Ibid., p. 170.
	-	Websterit, Morris. Ibid., p. 170.
186:3.	-	Cuvieri, A. v. Strombeck. Zeitschr. d. deutsch. geol. Gesellsch., vol. xv, p. 124.
-	-	Bronqniarti, Strombeck. Ibid., vol. xv, p. 121.
-	-	- \quad. Drescher. Ibid., vol. xv, p. 352.
$\because 1869$.	--	Lamarit, E. Farre. Moll. Foss. de la Craie de Lemberg, $\text { 1. } 134 .$
1870	Inoceramus	us Brongniarti, F. Rïmer. Geol. v. Oberschles., p. 316, pl. xxxiv, fig. 13.

187.2. Inoceramus Brongniarti, H. B. Geinitz. Das Elbthalgel. in Sachsen (Palæontographica, vol. xx, pt. 2), p. 43, pl. xi, figs. $3-10$, pl. xiii, fig. 3.

? -	-	Ceviert, Geinitz. Ibid., 1. 48 (partim), pl. xiii, fig. 8.
1873.	-	Brongniarti, Geimita. Neues Jahrb, für Min., ete., p. 10.
¢ -	-	Covieri, Geinitz. Ibid., p. 15.
\% -	-	Lamarcei, Geinitz. Ibid., p. 18.
\%1875.	-	latus, C. Dícorq. Assoc. Frauç. Avauc. Sci. (Lille, 1874), p. 369.
187%	-	Cuvieri, C. Schliter. Palmontographica, vol. xxip, p. 266.
-	-	Brongniarti, C. Schliter. Ibid., vol. xxiv, p. 263.
-	-	A. Fritsch. Stud. in Gebiete der böhm. Kreile. format., ii, Weissenberg. u. Malnitz. Schicht., p. 130, fig. 111.
1878.	-	G. Behrens. Zeitschr. d. deutsch. geol. Gesellsch., vol. xxx, p. 256.

:- - undulatus, C. Bumois. Anu. Soc. géol. du Nord, vol. v, p. 407.
1881. - (Mytilites) problematicus, R. Etheridy', in Penning and Jukes-Browne, Geol. Cambridge, p. 143, pl. iii, figs. $9,10,11$.

\%1883.	-	Brongniarti, A. Fritsch. Stud. im Gebiete der bühm. Kreideformat., iii Iserschicht., p. 110, fig. 80.
1888.	-	Cuvieri, A. Peron. Hist. Terr. Craie S.E. Bassin AngloParisien, p. 156.
-	-	Brongniarti, Peron. Ibid., p. 157.
	-	undulatus, Peron. Ibid., p. 157.
? 1889.	-	Cuvieri, A. Fritzch. Stud. im Gebirte der bühm. Kreideformat., iv, Teplitz. Schicht., p. 82, fig. 74.
?	-	Brongniarti, Fritsch. Ibid., p. 81, fig. 72.
189.2	-	Cuvieri, E. Stolley. Die Kreide Schleswig-Holsteins (Mittheil. a.d. min. Institut Kiel, vol. i.), p. 241.
1893.	-	Brongniarti, R. Michael. Zeitschr. d. deutscb. geol. Gesellsch., vol. xlv, p. 242.
1897.	-	striatus, H. Woods. Quart. Journ. Geol. Soc., rol. liii, p. 381, pl. xxvii, fis. 13.
-	-	Cuvieri, R. Leouhard. Palæontographica, vol. xlit, p. 49.
-	-	Brongmiarti, Leonhard. Ibid., vol. sliv, p. 47.
1899.	-	$\begin{gathered} \text { - Simionescu. Fauna Cret. Super. Urmüs. } \\ \text { p. } 97 . \end{gathered}$
? -	-	Cuvieri, Simionescu. Ibid., p. 27, pl. ii, figs. 8, 9.
? 1901.	-	aff. Cuvieri, H. Imkeller. Pakroutographica, vol. xlviii,

1901. Inoceramus Cuvieri, F. Sturm. Jahrb. d. k. preuss. geol. Landesanst., fiir 1900 , vol. xxi, p. 92 , pl. x, fig. 1.

Description.-Shell inequivalve, very inequilateral, of slight, moderate or considerable convexity, sometimes inflated. Height greater than length. Hingeline of variable length in proportion to the height of the shell, forming more than a right-angle with the anterior margin. Umbones terminal, curved inwards and more or less forwards; the left umbo more prominent than the right. Anterior marginal part of valyes flattened, more or less nearly perpendicular to the plane of the valves, either limited by a sharp edge from the flanks or without a definite boundary. Anterior ear developed in some flat varieties.

The concentric folds may be absent, indistinct, or moderately or strongly developed, with the dorsal and ventral slopes similar or with the ventral slope steeper than the dorsal. Usually the folds are regular, but are not continued on to the posterior ear. The curvature of the folds is often nearly symmetrical; its convexity on the convex and on some of the flat forms is small, but is greater on the flat forms with a relatively short hinge. The growth-lines are distinct and variable in number, and are sinuous where they pass on to the posterior ear.
limarlis.-The forms included in this species show a great amount of variation, and seem in that respect comparable with some species of Micrester and Echinurori!/s. Several of the rarieties have been described as distinct species, but the study of a large series of specimens has shown so many intermediate forms that one can only regard the varieties as modifications of a very plastic species. The features in which variation is most marked are the convexity of the valves, the number, strength, and curvature of the concentric folds, the distance between the growth-lines, the size and distinctness of the posterior ear, and the height of the shell.

Some forms of this species are only slightly convex (Plate LIII, fig. 7 , Textfigs. 73-83), so that in large specimens considerable portions of the shell approach flatness. In other forms the valves are moderately or considerably convex, and sometimes inflated (Plate LII, figs. 4, 5, Text figs. 63-68). The amount of convexity may remain nearly miform throughout the growth of the shell, or the earlier part may be only slightly convex and the later part very convex-in such cases the early part resembles the adult shell of the large flat varieties (Figs. 6f, 6:5). The two valves may be of nearly equal convexity (Plate bII, fig. 5), or the left valve may be very convex whilst the right valve is only slightly convex (Plate JII, figr. (i).

The concentric folds ray in strength, number, form, curvature and regularity. In the majority of cases the folds are prominent and form strong ridges (Figs. (i8, (69, "is, 82, 84), but they may become only gentle mululations (Figs. it, i-7, 81), and are sometimes imdistinct or absent (Figs. 73, 7i, 76,79$)$. The dorsal and ventral surfaces of the folds may slope equally, or the ventral slope may be steeper than the dorsal, giving a step-like appearance. 'The crest of the fold is

Fig. 63.-Inoceramus Lamarchi, Park. The type. Upper Chalk (prohatly zone of Micraster cor-anguinum), near Dover. British Museum, No. Losol. Left valve and dorsal view. Part of the posterior ear is concealed by flint. Natural size.

Fig. 64.-Inoceramus Lamarcki, Park. Anterior view of specimen shown in Fig. 65. $\times \frac{7}{8}$.

Fig. (is.

Fig. 60.-Inocerames Lamarcki, Park. Upper Chalk (probably zone of Holester phanex), Swaffhan, Norfolk. Norwich Musemu, No. 3354. Right valve. x ?
Fig. 64.-Inoceramus Lomarki, Park. Upper Chalk (zone of Hohester plenuw), Newmarket. Sedywick Museum, Cambrilye. Kight valve. Natural size.

Fia. C6-Inoreramps Lamareki, Park. 'The oripinal of I. Lamarcki, Mantell. 'Foss, S. Downs,' P, 2lt, ph. xxvii, fig. 1. Miblle Chalk (prohaldy zone of Terebralulime lata), new Lawes (probably Malling). British Museum, No. 4753 . Kipht valve. Natural size.

Fig. 68.-Inoceramus Liemarcki, l'ark. The type of I. Brongniarti, Mantell, 'Foss. S. Downs, p. 2ly, pl. xxvii, fig. 8. From Lewes or Brighton, prohahly zone of Micraster cor-anguinum. British Museum, No. 4751. Left valve and dorsal view, Natmal size.

Fig. 69.-Inoceramus Lamarcki, Park. The original of I. Cuvieri, Mantell, 'Foss. S. Downs,' p. 213, pl. xxviii, fig. 4. Zone of Micraster cor-anguinum, Southeram. British Museum, No. L22094. $\times \frac{7}{8}$.

Fig. 70.
Fig. il.

Fig. 70.-Inoceramus Lamarcki, Park. The original of I. Brongniarti, Sowerby, 'Min. Conch.;' vol. v, p. 60, pl. ccecxli, fig. 2. Chalk. Locality and horizon unknown. lbritish Museum, No. 43 ± 6. Right valve. Natural size.
Fig. 71.-Inoceramus Lamarchi var. Websteri, Mant. The type of I. W"ebsteri, Mantell, "Foss. S. Downs, p. 216, pl. xxvii, fig. 2. Upper Chalk (probably zone of Micraster cor-testudinarium), South Street, Lewes. British Museum, No. 4759 . Left valve. Natural size.

Fig. 73.

Fig. 72.

Fig. 72.-Inoceramus Lamarcki var. Websteri, Mant. Upper Chalk, Swafham, Norfolk, Norwich Museum, No. 3298. Left valve and anterior view. Natural size.
Fig. 73.-Inoceramus Lamarcki var. Cuvieri. Sow. The type of Inoceramus Cuvieri, Sowerby, "Trans, Lina. Soc.' vol. xiii (1822), p. 453, pl. xxv, figs. 2, 3, and 'Min. Conch.', vol. v (1823), p. 5! , pl. ccecxli, fig. 1. Middle Chalk (zone of Terebralulina lata), Royston. British Muscum, No. 43ebt. Left valve. Natural size.
usually rounded, but in one varicty (Wrbsteri, Mantell, Plate LIII. figs. 1, 气, Text-figs. 71, 72) it possesses a sharp elge. When the folds are absent the growth-rings become more regular. The curvature of the folds is usually small in the more convex specimens, but often greater in the less convex forms. The curvature is often nearly symmetrical, but when the posterior ear is indistinctly limited it tends to become unsymmetrical.
'The degree of development of the posterior ear varies considerably. In some forms it is only indistinctly limited (Plate LIII, fig. 7, Text-fig. 68), and then the

Fıg. 7t-Inoceramus Lamarchi var. Curieri, Sow. Upper Chalk (zone of Micraster cor-anguinum), Camp Hill, near Salisbury. Dr. Blackmore's Collection. Portion of a large left valve; posterior and ventral parts missing. $\times 2$.
folds and growth-lines are continued with but little alteration in curvature on to the ear. In other cases the ear is larger and more or less distinctly limited from the rest of the valve (Plate LII, fig. 4, Text-figs. 63, 65, 66, 79, 81, 82) ; in such cases the folds and growth-lines bend inwards at the limit, and the umbonal part of the valve is often narrower and more acute. In a few large, flat forms, an anterior ear is developed (Fig. 74).

The anterior flattened area raries in size and in the distinctness of its boundary. It may be nearly perpendicular to the plane between the valves (Fig. 81), or may be slightly concave (Figs. 63, 66, 79), or slope outwards (Figs.

74,79). In some varieties the area forms a sharp edge with the sides of the valve (Fig. 81), in others the bommbly is curved and the limit of the area is indistinct (Fig. 85).

In the type of I. Lumurcki, Parkinson (Fig. (i:3), the shell is inflated, and the posterior ear well developed and sharply limited. In forms like I. Brongniati Sowerby (Fig. 70, Pl. 1/II, fig. 4), the posterior ear is also well developed, but

Fig. 7 .-Dnoceramus Lamarrki var. C'urieri, Sow. Upper Chalk, Southeram, Lawes. Brighton Museum, No. $3 \% 0$. Portion of a left value resembling the type of I. lutus, Mant. $\times 3$.
not so sharply limited as in the type of I. Lamarchi. Mantell's I. Lamarchi (Fig. 66) is similar to I. Bromgninti, Sowerby, but has less prominent folds and a more concave anterior border. I. Brongniarti, Sowerby, passes gradually into forms like the type of I. Brongmiati, Mantell (Fig. 68), in which the limit of the posterior ear is somewhat indistinct. Other rarieties possess similar strong folds but have less convex ${ }^{1}$ valves (as in I. Curieri, Mantell, Figs. 69, 84), and these

[^55]pass into forms with imistinct folds like the type of I. Curiont, Sowerly (Fig 73), and in some cases the folds disappear altogether.

Fig. T6.-Inoceramus Lamarcki var. Curieri, Sow. The type of Inoceramus latus, Mantell. 'Foss. S. Iowns,' p. 216, pl. xxvit, fig. 10. Upper Chalk, near brighton. British Musemm, No. 581 s . Left ralve. Natural size.
7. Welsteri, Mantell (Figs. 71, 72), has the posterior ear fairly well developed, but not distinctly limited, and resembles I. Brongniarti of Mantell; it is characterised hy the thimess of the shell and the sharp ridge-like folds, hut forms
mermerliate between this type and those with rounded folds occur. It may be conrenient to adopt for this rariety the name I. Lamarchi var. Wehsteri. It appears to occur mainly in the zone of Mirvester cor-lestulimarium.

1. undulatus, Mantell (Pl. LIII, fig. B), resembles small forms of I. lironguinti, Sowerly, but the folds are much smaller, more numerous, and less conspicuons, and the shel! is thicker tham nsmal.

 Nortolk. Norwich Musemm. Left valve. $\times 7$.

Some small forms (Pl. LIII, figs. L-(i), found in the Midlle Chalk aml in
 nearly erpal valves, more prominent and more distinctly incurved umbones, with the folds indistinct or ahsent, hut these forms pass into others with distinct folds. In some of these simall forms the umbo is curved anteriorly (Plate LIII, fig. f).
${ }^{1}$ An example of this from the Chailk livek was figured in the 'Quart. Journ. Geol. Soc.,' vol. liii (1897), p. 381, phexvii, fig. 1:3.

1. lutus, Mantell (Fig. 76) is a large, slightly convex form in which the folds have almost disappeared. In the type (Fig. 76) the postero-dorsal part of the valve is missing, so that in Mantell's figure the umbonal part of the valve appears to be more acute than it really is (compare Fig. 70).
I. Cucieri, Sowerhy (Fig. -3) is only slightly convex, with indistinct folds, and is often of large size. The angle formed ly the anterior margin and the hingeline is rather larger than usual, and an anterior ear may be developed; other forms

Fıg. 78.-Inoceramus Lamarcki vas. Cuvieri, Sow. Upper Chalk, Lewes. Sedgwick Musemm, Cambridge. Right valve. Natural size.
are similar (Fig. r9), but have a smaller angle between the anterior margin and the hinge, and these pass into forms with more distinct and eventually with strong folds (Figs. 75, 78, 82). The varieties similar in form to Sowerhy's type, but with or without folls, may be termed I. Lamarchi var. Curieri (Plate LIII, fig. 7, Text-figs. 73-84). The hinge in large specimens of this variety (Fig. 80) is of great thickness, and portions of it are often found separately. It is thickest near the umbo, and becomes thimer towards the posterior end. 'The ligament pits are numerous, shallow, and two, three, or more times higher than long,

Fig. 79.-Inoceramus Lumarcki var. Cuvieri, Sow. Zone of Holaster planus, Borstal. Mr. Dibley's Collec. tion. Right valve and anterior view. x?

Fig. 80. - Inoceramus Letmareki van. Cuvieri, Sow. Zone of Terderatnlima lutn, Royston. Sedewick Museum, Cambridge. lortion of left hinge. Natural size.
reaching their maximum height not far from the momb. The variety Curieri ranges from the zone of T'relratulimal leta to the zone of Miciaster cor-angumum.
I. Montelli, de Mercey, ${ }^{1}$ from the zone of Micraster cor-ongninum, appears to be a large form of I. Lemmeli var. C'ucieri, in which an anterior ear is developed: it is similar to a specimen (Fig. it) obtained by Dr. Blackmore from the zone of Mirouster con-ctumuinm of ('amp) Hill near Salishury.

 Mr. loihloy"s C'ullection. Ieft valve with pesterior part missing; anterior view of the same valve. x ?

1. protonatus, Maller (especially the example figured by letrascheck ${ }^{3}$), seems to be closely allied to I. lamerchi vall. Websteri.

T'!pes.-I. Cammerli, Parkinson (Fig. (i3), from near Dover (prolably \%one of
 grobl. Nort,' vol. vi (18-9), 1, fost, [1] iv.
a 'Jahrh, 1. k. prenss. genl. Lamdesanst. u. Bergakad. fir 1888^{\prime} (1888), pr, 413, pl. xvii, fig. 3.

Wiernster cor-anyminum) ; in the British Museum, No. L9801. 'This specimen was first recognised as the original of Parkinson's figure by Mr. ('. D. Sherborn.

Fig. se.-Inocertmus Letmarki van. C'urieri, Saw. Chalk; Bomalty ant horizon unknown. British Museum, So. Lezs!me9. Liyht walve, $\times \frac{1}{2}$.
I. Cuxieri, Sowerby (lig. -i3), from the Midale (halk of Royston (\%one of Terebratulima lutu); in the British Musemm, No. finelit.
I. Lanmelir, Mantell (Fig. 6if), from the Middle Chalk near Lewes (probahly from Malling, zone of Terebratulinn latu); in the British Museum, No. 175:3.
I. Cuvieri, Mantell (Figs. 69, 84), both from the zone of Mieraster cor-anguinum of Southeram; in the British Museum, Nos. 5845, L20094.
I. Brougnimiti, Mantell (Fig. (;8), from Lewes or Brighton (probably zone of Mieraster cor-anquinum) ; in the British Museum, No. 17.th.

1. Welsteri, Mantell (Fig. 71), from South Street [= Southeram], Lewes (probably zone of Micraster cor-testudinarium) ; in the British Museum, No. tro9.
I. undulatus, Mantell (Plate LIII, fig. 3), from Southeram, Lewes (probably zone of Holaster phenus) ; in the British Museum, No. 4-67.

Fig. 8t.-Inoceramus Lamarcki var, Curieri, Sow. Theoriginal of I. Cuvieri, Mantell, "Foss. S. Downs,'p. 213, pl. xxviii, fig. 1. Zone of Micraster coranguinum of Southcram. British Museum, No. 584.5 . $\times 1$.

Fig. S̄̄.-Inoceramus Lamarcki, Park. Upper Chalk (? zone of Holuster planus), locality unknown. Museum of Practical Geolory, So. 을⒊ Variety with concave anterior area. Right valve and anterior view. \times;

Fig. 86. -Inocertmus. A variety comnecting I. Lamurki with I. imrolutus. Lipper Chalk, probably Kent. Sedgwick Musenm Right valve displaced. Posterior view. \times.

Fig. 87.-Anterior view of specimen shown in Fig. 86. Natural size.
I. letus, Mantell (Fig. (6), from the L'pler (halk near Brighton ; in the British Musemm, No. 8848.
I. Brongmati, Sowerls, 182:; (Fig. 70). Locality and hori\%on unknown; in the British Museum, No. $4: 32(6)$.
 figured by Etheridge as $I n$ merernm: prollemutions, are in the Musemm of Practical Geology (Nos. 21230-2193:).
 zone of Micionstro concomquimum.'

Zone of Rhynchon'lln C'miori: St. C'atherine's Ifill (Winchester), the Iske of Wight, Custon, Burham, Dunton Gireen, the Sussex coast, Dover, Hitchin, Foulbourn near Cambidge, the Yorkshire coast.

Zone of Terelmentime litn: Hooken (South Devon), the Isle of Wight, ('uxton, Bhe Bell Hill (Burham), Dunton Green, Kenley, Westerham, Lewes, the Sussex coast, Holborough near Rochester, Dover, Guilford Colliery (Coldred near Dover), Hitchin, Royston, the Yorkshire coast.

Zone of Ithlistop plounes: The South Devon and Dorset coasts, the Isle of Wight, Winchester, Homington (Salisbury), ('uxton, Borstal, Whyteleaf (Warlingham), the Sussex coast, Dover, Newmarket, Swaffham (Norfolk), Westacre, Aarborough, the Yorkshire coast. Chalk Rock of Cuckhamsley.

Zone of Micrustor cor-trstulintrium: The Gouth Devon and Dorset coasts, the Isle of Wight, Borstal Fort, Borstal Manor pit, Chatham, Lewes, the Sussex coast, Dover, Wharram Perey, the Yorkshire coast.

Zone of Mirustriv ror-myuinum: The Dorset coast, the lile of Wight, Camp Hill (Salisbury), Micheldever, Harefield, Southeram, the sussex coast, St. Margaret's, Thanet, the Yorkshire coast.

Senonian of Hatdon.

[^56]
 or semi-oval in outline ; wailly slighty eonvex, but sometimes either more convex or nearly flat, with the marginal part in old seecimens forming an obtuse angle with the earlier part. Length greater tham height. Anterior and ventral marains rombled; posterior margin forming usmally an obtuse angle but sometimes nealy. a right angle with the hinge Gmbo usually inconspicuous, at or near the anterior end of the linge-line. Hinge-line equals about threerguarters of the length of the value. Posterodorsal marginal part convex near the hinge and separated be a sharp furow from the remainder of the valre. Ornamentation consists of strong, somewhat irregular concentric folds, with an masmmetrical curvature; the folds are separated by hroad, concave interspaces. In casts of this valve, and sometimes in the shell itself, malial mathings are seen in the concave interspaces.

Left valve much larger than the right, inthated, more or less considerably

Fig. S8.-Inoceramus involutus, Sow. Tpper Chalk, locality manown. The type, British Museum, No. 432is. Left valve. Natural si\%.

F'm. 90. - Inoceramus incolutas, suw. Lpper Chalk, probably Kent. British Musemm, No. L4917. Pusterior view. Umbonal part of left valve missing. Natural size.

Fia. ©1.-Anterior view of specimen shown in Fig. Mo. Natural size.
spiral; with a very large umbo near the anterior end, curved inwards and forwards. Surface nearly smooth, except for the presence of growth-lines.

The hinge (Fig. 94) curves at either end ; it is thimest near the umbo and becomes thicker towards the posterior end. The liganent-pits are deep, almost square, but sometimes ollong, and increase in height from the umbo posterionly.

Fia. 92. - Right valve and part of left ralve of specimen shown in Figs © © 1 , 1 .
Affinities.-I. incolutus is the type of the genus or sub-genus Tolciceram": of Stoliczka. In general appearance this differs considerably from other species of Inorromus, so that its separation as a distinct genus or sub-genus seems at first
 and I. Lamarchi shows that these two species are very closely allied, and that the former has almost certainly descended from the latter. Such being the case it follows that these two species are more nearly related to one another than are
several species which are placed by all writers in the genus Inmeromme. In this

A fairly complete passage can be traced from I. Lamarcli to I. incolutus. In some forms of I. L, mumblit the valses become more unedual than ustal, the left

 Anterin view of left valve. \times :
valve being relatively larger and with less distinct folds, and the right relatively less convex and its anterior area slightly concave (Fig. 85). These are comected with some varicties of I. incolutns by intermediate forms (Figs. 86, 87) in which the left valve possesses nealy all the characters of I. incolutus but is less curved and possesses a concave anterior area, whilst on the right valve the folds are almost as prominent as in I. incolutus, but the flattened or concave anterior area
and a relatively short hinge are still retained, and the right valve is still convex and has a concave anterior area. A variety of I. involutus links such intermediate forms with typical examples of involutus; in that variety the right valve is rather more convex than in typical forms, the left valve is not so distinctly spiral, some trace of the anterior flattened or concave area is still retained, and the hinge-line is rather shorter relatively.

Fig. 9r.-Inoceramus incolutus, Sow. Uppre figure: Zone of Micraster or-anguinam, Gravesend. Sedgwick Museum, Cambridge. Right valve with marginal growth round the hinge. $\times 3$
Lower figure: Hinge of right valve: Upprer Chalk. Norfolk. Norwich Museum, No. 335.\%. 'The anterior part of the hinge is partly concealed by the marsinal growth of the shell. $\times 3$.
I. umbonatus, Meek and Hayden,' from Fort Beuton, Missouri, is, as stated by Meek, very closely allied to, and perhaps identical with, I. incolutus. Another related form is I. exogyroides, Meek and Hayden.' Both are regarded as synonyms

${ }^{2}$ Ibid., p. 46, pl. v, fig. 3.
of I. involutus by Barrois. I. Kopneni, Müller, is probably a variety of I. incolutus in which the right valve is more conves and its umbo more prominent than usual.

The right valve of the specimen figured by d'Orbigny (1846, pl. ceccexii, figs. 1, 2) as I. Lamarchi is an example of I. incolutus; but the left valve (fig. :3), if it belongs to the same individual, is probably incorrectly drawn.

Remarks.-Examples of this species often reach a large size, and in such cases the hinge (Fig. 94) may attain a considerable thickness, but portions of it are not often found separately. In old specimens the marginal part of the right valve grows obliquely or almost at right angles to the earlier part, and the folds become indistinct or disappear altogether; and in the right valve this marginal growth sometimes occurs along the hinge, owing no doubt to the increase in size of the left valve in which it then fits like an operculum (Fig. 94). The length varies in proportion to the height, so that in some forms the right valve becomes nearly circular.

Types.—The type (Fig. 88) is in the British Museum, No. 43268 ; its locality is unknown. The specimen figured in Dixon's 'Geology of Sussex ' (Fig. 89) is also in the British Museum, No. L83; it is a flint cast and came from the Upper Chalk of Charing.

Distribution.-I. intolutus is found in the zone of Micraster cor-testhdinarimm and the lorer part of the zone of M. cor-cunguinum, being particularly common at the latter horizon. ${ }^{2}$

Zone of M. cor-testulinarium: Chatham, Dover, and Seaford, Sussex.
Zone of M. cor-anguinum: Winchester, Quidhampton, Mapledurham, Thanet, St. Margaret's, Guilford Colliery (Coldred near Dover), the Sussex coast, Lewes, Haling pit, (South Croydon), Strood, New Brompton (Chatham), Gravesend, Harefield near Rickmansworth, Bury St. Edmunds, Saham Toney, Thetford, Brancaster, and other places in Norfolk. Between the zones of M. cortestudinarium and M. cor-anguinum near Beverley, Yorkshire. Senonian of Haldon.

Twocermes cormmamis, Somery, 1823. Plate LIII, fig. 8. Plate LIV, figs. 2-4. 1823. Inoceramus cordiformis, J. de: C. Sowerby. Min. Conch., vol. v, p. 61 . pl. ceccxl. 18:36. - \quad A. Guldjus. Petref. Germ., vol. ii, p. 113, pl. cx, fig. $6 b$ (not $6 a$).
'Jahrb. d. k. preuss. geol. Landesanst.' für 1887 (1888), p. 412, pl. xvii, fig. 1.
2 This species hats been recorled by Griffith and Brydone from the Uintacrinus band of the Marsupites zone of Rophey, Hampshire : and by Barrois from the zone of Actinocamax quadratus of Newhaven.
1854. Inoceramus cordiformis, J. Morris, Cat. Brit. Fuss., ed. 2, p. 169.
1897. - R. Leonhard. Palieontographica, vol. xliv, p. 48.

189×. Haenleini, G. Mïller. Mollusk. Untersen. v. Braunschweig u. Ilsede (Abhandl. d. k. preuss. geol. Landesanst., N.F., 25), p. 41. pl. v, fig. 7 ; pl. vi, figs. 1, 2.
: 1911. -- cordiformis, W. Rogala. Bull. Internat. Acad. Sci. Clacovie, p. 170, pl. iv, fig. 2.

Nou 1904. - C. Airaghi. Boll. Soc. geul. Italiana, vol. xxiii, p. 189, pl. iv, figs. 6-9.

Description.-Shell inflated, equivalve, very inequilateral, rounded. Anterior margin more or less nearly straight or undulating, but rounded in large specimens. Ventral and posterior margins more or less sinuons. Anterior part of valves more or less flattened and often nearly perpendicular to the plane between the valves. Postero-dorsal part of valves much compressed and usually wing-like. Hinge equal to more than half the height of the shell. L'mbones terminal, large, prominent, curved inwards and forwards. A broad, shallow sulcus extends from behind the umbo to the postero-ventral extremity and separates two broad, rounded ridges. A similar sulcus may extend from the front of the umbo to the opposite ventral margin.

Ornamentation consists of broad, rounded, concentric folds, which bend upwards where they cross the two radial sulci. The folds become less distinct on the anterior and postero-dorsal parts than on the sides of the shell. Numerous close-set growth-lines are present.

Atjinities. - I. Haenteini, Mailler, ${ }^{1}$ from the lower part of the Lower Senonian of Brunswick and Ilsede, seems to be hardly distinct from I. cordiformis. The smaller English specimens agree very closely with one of the examples figured by Mïller (pl. v, fig. $\overline{\text { I }}$).
I. cordiformis resembles some of the more convex forms of I. Lamardit, Parkinson, from which it is distinguished by the equal size of the valves and the presence of radial sulci. The specimen, figured (Pl. LIV, fig. 1), comects this species with I. Lamarcki.

Remarks.-Goldfuss' fig. 16 is a copy of Sowerby's figure ; lis fig. (i, is the type of I. strumirus, Petrascheck.

Type.-In the British Museum, No. 43277, from the Upper Chalk (zone of Micraster cor-anguinum) of Gravesend (Pll LIII, fig. 九).

Distribution.-Zone of Micraster cor-testulimarium of (lanfield (Hampshire), and Wharram Percy (Yorkshire). Zone of Micrustor cor-an!uinm of Gravesend, Micheldever, and Porton. Lintarrinus band of Salisbury. Senonian of Maldon.

Inocrames contelatis, sp. nov. Plate LIV, figs. 5-7.
1897. Inocerames, sp., H. Woods. Quart. Journ. Geol. Soc., vol. liii, p. 381, pl. xxrii, figs. 14-17.

Description.-Shell small, very inequilateral, rather higher than long, of moderate convexity-the greatest convexity being between the umbones and the postero-ventral extremity. Umbones terminal. Hinge equal to about threequarters of the length of the shell, and forming more than a right angle with the anterior margin. Anterior margin moderately convex, ventral margin very convex, posterior margin slightly convex.

Right valve with a small, pointed, slightly curved umbo. Posterior and posterodorsal parts of the valve flattened. A small, flattened antero-dorsal area is nearly perpendicular to the plane of the valves.

Left valve more convex than the right ; postero-dorsal part compressed, but not forming a definite ear. Umbo narrow, pointed, curved inwards, larger and more prominent than the mmo of the right valve. Anterodorsal area larger than on the right valve.

Concentric ribs narrow, sharp, usually widely separated; interspaces broad and shallow. The curvature of the ribs is ver unsymmetrical; the ventral part is very convex, the posterior part only slighty convex.

Remarks.-This species is fairly common in the Chalk Rock. All the specimens seen are casts. Some examples, which appear to be a varicty of this species, have small rils, of uniform size.

Affinities.-This species appears to be related to some forms of I. Lamarrlit, Parkinson, but the left umbo is narrower, more pointed, and less curved; the line of greatest comsexity is more ollique to the hinge-line, and the posterior and postero-dorsal parts of the valves are more compressed. ${ }^{\text {. }}$

Type.-From the Chalk Rock of Cuckhamsley, in the Sedgwick Museum, Cambridge.

Distribution.-('halk Rock of Dover, Guilford Colliery (Coldred near Dover), the Sussex Coast, south-east of ('alstone Willington, Cuckhamsley, Blount's Farm near Marlow, Luton, Wallington near Baldock, Barley near Royston, and Underwood Hall near Dullingham. Zone of Ifoluster plenus of South Devon, the Dorset Coast, the Isle of Wight, Lichfield (Hants), Winchester, etc.?

[^57]Inoceramus digitatcs, Sowerby, 1829. Text-fig. 95.
1829. Inoceramis digitatus, J. de C. Sowerby. Min. Conch., vol. vi, p. 215, pl. deiv, fig. 2.
1854. J. Morris. Cat. Brit. Foss., ed. 2, p. 169.
? 1875. C. D.e'req. Assoc. Franc. Avanc. Sci. (Lille, 1874), p. 368.

Remarks.-This species attains a large size, but is known only by small

 Muselm, No. 43:-3. \times i.
portions of the shell of which the exact horizon cannot be determined. The ornamentation consists of broad, rounded, radial folds, which diverge very gradually and are separated by broad rounded interspaces. Small concentric ribs occur, and at distant intervals, broad, gentle, concentric folds can be traced. The form referred to I. digitutus by Schliter differs from that species in having
diverging and distinctly curver ribs. I. digitutus appears to be closely allied to I. subcadissoider, Schliiter.

Type.-From the Drift (derived from the Chalk); locality unknown. In the British Museum, No. 4.3,273.

Distribution.-No undoubted specimens oltained directly from the Chalk have been seen.

Inoceramus pinnifurmis, Willett, 1871. Text-fig. 96.
1871. Inocerames pinniformis, M. Willeft. Cat. Cret. Fons., Brighton Mus., p. 40, nu. 342.

Description.-Shell very large, much higher than long, of moderate convexity, with a posterior wing-like part.

Ornamentation consists of broad, strong, widely separated concentric folds which have a nearly symmetrical curvature; the ventral slopes of the folds are rather steeper than the dorsal; in the interspaces are small (sometimes indistinct) concentric folds, which give a more or less marked tuberculate character to the radial rils. The latter are rounded, rather numerons, sometimes partly or completely divided by a median furrow, and are continued on to the dorsal surfaces of the strong concentric folds, but are absent or indistinct on the ventral surfaces.

Remorls.-A portion of a large Inoceramus named I. pimuiformis by Willett resembles I. sulnemedissoides, Schlïter, ${ }^{1}$ but differs from that species by the more numerous radial ribs and the absence of a broad furrow extending from the umbo in a postero-ventral direction.

T!ype-In the Brighton Museum.
 three miles east of Sledmere, lorkshire.

[^58]

Fia. פh.-Inoceramus pinnifomis, Willent. V"per Chalk (zone of Actinocamaz qualratus), Brighton Brighton Museum, No. 342. Purtion of sight valre, $\times 3$

Inocerames corrugatce, sp. nov. Text-fig. 97.
Remarts.-This species is at present known only hy a small portion of one valve. It is of the same general type as I. digitutus, Sowerby, I. pinniformis, Willett, and I. subrembissuides, Schliiter, hut owing to the presence of broad, strong radial folls the radial ribs are arranged in groups of four or five. The

Fia. 97.-Inoceramus rorrugatus, sp. nov. Tpper Chalk. Wouldham Cement Quarry, Grays. British Museum, No. Iasiss (discovered and prenter ly Col. C. E. Slupherd). Natural size.
concentric folds are strong and have a steep ventral, and a gentle dorsal slope. The growth-lines are distinct and regular. I. corrugutus and the other species mentioned may be compared with I. Inernnensis, Décocq, which is of the same type as I. Lamarchi but possesses two radial folds due to the presence of a medial sulcus.

Distribution--Upper ('halk, Wouldham Cement Company's Quarry, Grays, Essex.

[^59]
Palæontograpbical $\mathfrak{F o c i e t v , ~} 1912$.

A MONOGRAPH

11. THE:

CRETACEOUS LANIELLIBRANCHIA

©F

ENGLAND.

BY

HENRY WOODS, M.A.

VOL. II. PAR'T LN.
OSTREIDE, RADIOLITIDE, ADDITIONS, DISTRIBC'IION, BIBLIOGRAPHY, INDEX.

Paifes 3H-q:i; Plates LV-LXII.

Family-OSTREIDÆ, Lamarck.

[Omitted from Vol. I, p. 223.]

The great difficulties in the systematic study of the Ostreidæ have been felt by nearly all writers, ${ }^{1}$ and are due mainly to the extraordinary variation in. the form of the shell. This variation has been brought about by changes in the physical conditions of habitat, and particularly by differences in the character of the surface to which the left valve is fixed; it is found that the mode of growth and ultimate shape of the shell are determined mainly by the size, shape, and position of the attached surface, so that commonly any one species shows an amazing variety of forms which can, however, be linked together by large series of specimens. A further difficulty in the systematic study of oysters is due to the fact that the shell usually possesses little or no ornamentation.

Various generic or sub-generic divisions have been proposed for the Ostreidæ, e. g. Ostrea, Lopha (= Alectryonia), Aictostrea, Exogyra, Amphidonta, Gryphæa, Pycnodonta, Gryphrostrea; but it appears to me that the phylogenetic relationship of the species of oysters is more complex than is represented by these divisions, and that a natural grouping can only be established when more is known of the evolution of the species. The forms with radial folds have usually been grouped together under the name Alectryonia; but there can be no doubt that such folds have originated independently in more than one line of descent, and their presence does not necessarily indicate close relationship. Thus, for example, Ostrea semiplana, which has been commonly referred to Alectryonia, appears to be more closely allied to Ostrea vesicularis than to any species of Alectryonia. The Cretaceous forms which have been referred to Gruphea clearly owe their grypheate character to the small size of the attached surface, ${ }^{2}$ and can be traced into forms having the characters of Ostrea. In studying the Upper Cretaceous oysters of Tunis, Peron ${ }^{3}$ has already noticed that some individuals of a species may present the characters of Ostrea, whilst others are exogyriform or grypheate. In the Chalk of England Ostrea semiplann is usually ostreiform, but occasionally, when the attached surface is behind the umbo, the shell is at first exogyriform, but afterwards becomes ostreiform.

[^60]In this work Exogyra is retained as a genus since the species dealt with seem to be genetically related, but it is probable that the exogyriform type has originated independently in some carlier deposits. It is even possible that a few species referred to Ostrea may have arisen from an exogyriform type by the increase in the size of the attached surface, and the gradual loss of the spiral character of the umbo.

In the Ostreidæ, perhaps even more than in the case of Inoceramus, the number of figures which can be given is altogether insufficient to convey an adequate idea of the great variability of the species. It is only by the study of very extensive collections of specimens that one can hope to arrive at satisfactory conclusions.

Genus-Ostien, Linnæus, 1758.
('Syst. Nat.,' ed. 10, p. 696.)

Ostrea mildviana, L. Text-figures 98-138.
1767. Ostrea dilutiana, Limarus. Syst. Nat., ed. 12, p. 1148.
1768. G. W. Knorr and J. E. M. Walch. Recueil. Mon. Catastr. Pétrificat., vol. ii, p. 123, pl. D ii, figs. 5, 6.
1779. "Grfphite," B. Faujas-St.-Fond. Hist. nat. Mout. St. Pierre de Maestricht, p. 151, pl. xxiv, figs. 1, 2.
1806. Ostrea pectinata, Lamarck. Anu. du Musćum, vol. viii, p. 165; vol. xiv, 1809, pl. xxiii, f. l.
-- - carinata, Lamarck. Ibid., vol. viii, p. l66.
1811. - frons, J. Parkinson. Organic Remains, vol. iii, p. 217, pl. xv, fig. 4.
1813. Ostracites plicatissimus, E. T. v. Schlotheim. In Leonhard's Taschenb. für Min., vol. vii, p. 112.
1819. Ostrea colubrina, Lamarck. Auim. sans Vert., vol. vi, p. 216 (non Goldfuss).

- - carinata, Lamarck. Ibid., p. 216.
- - diluviana, Lamarck. Ibid., p. 214.

1821. Ostracites diluviands, G. Wahlenberg. Petrific. Tellur. Suecanæ, p. 58. 1822. Ostrea carinata, J. Sowerby. Min. Couch., vol. iv, p. 89, pl. ceclav.

	-	G. P. Deshayes. Hist. nat. Vers et Mollusques (Encycl. méthod.), vol. iv, pl. clexxvii, figs. 1,2 ; pl. clexxviii, figs. $1,2$.
1832.	-	carinata, Deshayes. Ibid., vol. ii, p. 301 ; Planches, vol. iv, pl. clexxvii, figs. 3-5.
1833.	-	A. Goldfuss. Petref. Germ., vol. ii, p. 9, pl. lxxiv, fig. 6.
	-	pectinata, Goldfuss. Ibid., p. 9, pl. Ixxiv, fig. 7.
	-	prionota, Goldjuss. Ibid., p. 10, pl. lxxiv, fig. 8.
		serrata, Goldfuss. Ibid., p. 10, pl. lxxiv, fig. 9.
		diluviana, Goldfuss. Ibid., p. 11, pl. lxxp, fig. 4.
1835.	LECTRY	yonia Defrancir, G. Fischer de Waldheim. Bull. Soc. Impúr. Nat. Moscou, vol. viii, p. 113, pl. iii.
-	-	erussaci, Fischer de Waldheim. Ibid., p. 111, pl. iv.
1836.	Ostrea	retusa, J. de C. Sowerby. Trans. Geol. Soc., ser. 2, vol. iv, p!. 338, 361, pl. xiv, fig. 4.
1837.	-	diluviana, W. Hisinger. Lethæa Suecica, p. 49, pl. xiv, fig. 5. - F. Dujardin. Mém. Soc. géol. de France, vol. ii, p. 230.
-	-	gregaria, F. C. L. Koch and W. Dunker. Beitr. nord-deutsch. Oolithgebild., p. 50, pl. vi, fig. 2.
1839.	-	rectangularis, F. A. Römer. Verstein. nord-deutsch. Oolithengeb., Nachtrag, p. 24, pl. xviii, fig. 15.
	-	diluvlana?, H. B. Geinitz. Char. d. Schicht. u. Petref. des sächs. Kreidegeb., pt. 1, p. 19.
1841.	-	macroptera, F. A. Rümer. Die Verstein. d. nord-deutsch. Kreidegeb., p. 45.
-		arinata, Rümer. Ibid., p. 45.
		serrata, Rümer. Ibid., p. 45.
1845.	-	carinata et O. prionota, E. Forbes. Quart. Journ. Geol. Soc., vol. i, p. 250.
1845-6.		dildviana, H. B. Geinitz. Grundr. d. Verstein., p. 478.
1846.	-	carinata, A. E. Reuss. Die Verstein. der bühm. Kreideformat., pt. 2, p. 38.
	-	dilutiana, Reuse. Ibid., p. 38, pl. sxx, figs. 16, 17 ; pl. xli, fig. 1 ; pl. xlv, fig. 1. ${ }^{-}$
-	-	Carinata, A. Leymerie. Statist. géol. min. de l'Aube, Atlas, pl. v. fig. 19.
	-	pes-leonis, E. Forbes. Trans. Geol. Soc., ser. 2, vol. vii, p. 156, pl. xviii, fig. 5.
1847.	-	macroptera, A. d'Orbigny. Pal. Franç. Terr. Crét., vol. iii, p. 695. pl. cecelvr.
	-	carinata, d'Orbigny. Ibid., rol. iii, p. 714 , pl. cecelssif, figs. $1-5 .$

1847. Ostrea frons, d'Orbigny. Ibid., vol. iii, p. 733, pl. cceclexxiii.

		Millettana, d’Orbigny. Ibid., p. 712, pl. cccelxxii, figs. 5-7. diloviana, d'Orbigny. Ibid., p. 728, pl. cccelxxx.
1849.	-	macroptera, T. Brown. Illustr. Foss. Conch. Gt. Brit. and Ireland, p. 146, pl. lviii, figs. 1, 2.
-	-	carinata, Brown. Ibid., p. 146, pl. lix, fig. 6.
1850.		- A.d'Orbigny. Prodr. de Pal., vol. ii, p. 170.
-	-	frons, d'Orbigny. Ibid., p. 255.
-	-	macroptera, d'Orbigny. Ibid., pp. 84, 120.
-	-	Ricordeana, d'Orbigny. Ibid., p. 171.
-	-	Milletiana, d'Orbigny. Ibid., p. 139.
-	-	diluviana, d'Orbigny. Ibid., pp. 171, 198.
-	-	$\begin{aligned} & \text { frons et carinata, H. B. Geinitz. Das Quadersandst. oder } \\ & \text { Kreidegeb.in Deutsch- } \\ & \text { land, p. } 196 . \end{aligned}$
-	-	dildviana, Geinitz. Ibid., p. 198.
1852.	-	carinata, F. Römer. Kreidebild. v. Texas, p. 75, pl. ix, fig. 5.
1851-2.	-	- H. G. Bronn. Lethæa Geogn., ed. 3, vol. ii, p. 262, pl.xxxii, fig. 2.
1853.	-	$\begin{gathered} \text { Milletiana, F. J. Pictet and W. Roux. Moll. Foss. Grès verts } \\ \text { de Genève, p. 525, } \\ \text { pl. xlix, fig. } 3 . \end{gathered}$
1854.	-	macroptera, J. Morris. Cat. Brit. Foss., ed. 2, p. 173.
-	-	frons, Morris. Ibid., ed. 2, p. 173.
1855.	-	macroptera, G. Cotteau. Moll. Foss. de l'Yonne, p. 122.
? 1859.	-	frons, T. Wiltzhire. Red Chalk of England (Geol. Assoc.), p. 16, pl. ii, fig. 4.
1863.	-	diluviana, A. Kunth. Zeitschr. d. deutsch. geol. Gesellsch., vol. sv, p. 724.

1868. - - E. Eichwald. Lethæa Rossica, vol. ii, p. 365.

- - frons, Eichwald. Ibid., p. 366.
- - carinata, Eichwald. Ibid., p. 367.
- - rectangularis, F.J. Pictet. Mélanges paléont., p. 263, pl. xl, fig. 9. pl. lxxii, figs. 1-4.
- - rectangularis, Coquand. Ibid., p. 187, pl. lxxii, figs. 5-12.

| - | pectinata, Coquand. Ibid., p. 76, pl. sxix, figs. $1-7$ (0 . colu- |
| :---: | :---: | :---: | :---: |
| brina). | |

?1870. - carinata, F. Rümer. Geol. v. Oberschlesien, p. 333.
1871. Ostrea [Alectryonia] carinata, F. Stoliczka. Palæont. Iudica, Cret. Fauna S. India, vol. iii, p. 468, pl. slviii, fig. 5 ; pl. xlix, figs. 1-2.

-	-
-	-
-	-

lbid., p. 469, pl. xlviii, figs. 1, 2.
diluviana, Stoliczka. Ibid., p. 466, pl. xlvi, figs. 1,2 ; pl. xlrii, figs. 1, 2.

- - macroptera, F.J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 300, pl. clxxxiv, fig. 5.
- - rectangularis, Pictet and Campiche. Ibid., p. 275, pl. clixxiv, figs. 1-4.
- - Milletiana, Pictet and Campiche. Ibid., p. 309, pl. exciv, figs. 7-9.
- - pectinata, Pictet and Campiche. Ibid., p. 321.

1872. - carinata, H. B. Geinitz. Das Elbthalgeb. in Sachsen (Palæontographica, vol. xx, pt. 1), p. 174, pl. xxxix, figs. 6-11.

- - diluviana, Geinitz. Ibid., pt. 1, p. 176, pl. xxxix, figs. 1-5.
? - - frons, Geinitz. Ibid., pt. 2, p. 30, pl. viii, fig. 12.

1875. - diluviana, E. Hébert and E. Munier-Chalmas. Annal. Sci. géol., rol. vi, p. 119.

- - frons, A.J. Jukes-Broune. Quart. Journ. Geol. Soc., vol. xxxi, p. 295.

1876. - (Alectryonia) dildviana, D. Brauns. Zeitschr. f. d. gesammt. Naturwiss., vol. xlvi, p. 392.
1877. Alectryonia Zeilleri, E. Bayle. Explicat. Carte géol. France, vol. iv. Atlas, pt. 1, pl. clxvi, figs. 1-4.

- - carinata, Bayle. Ibid., pl. exlvii, figs. 1-7.

1881. Ostrea carinata, J. Gosselet. Esquisse géol. du Nord, iii, pl. xfii, fig. 4.
? 1882. Alectrionia frons, H. Schröder. Zeitschr. d. deutsch. geul. Gesellsch., rol. $\mathbf{x x x i v}$, p. 261.
1882. Ostrea dilotiana, A. Fritsch. Stud. im Gebiete der böhm. Kreideformat., iii, Iserschicht., p. 120, fig. 95.

- - frons rat. macroptera, W. Keeping. Fuss., etc., Neoc. Upware and Brickhill, p. 102.
- - - var. carinata, Keeping. Ibid., p. 103.

1884. - macroptera, O. Weerth. Neocomsandst. im Teutoburg.-Walde (Palæont. Abhandl., vol. ii), p. 55.

- - rectangolaris, Weerth. Ibid., p. 54.
- - carinata, C. A. White. Foss. Ostreidæ N. America (4th Ann. Rep. U. S. Geol. Surv.), p. 993, pl. sliii, figs. 1-4.

1886. Alectrfonta macroptera, H. Trautschold. Neocom. Sably (Nour. Mém. Soc. Imp. Nat. Moscou, vol.xv), p. 133.
1887. Ostrea (Alectryonia) diluviana, G. Mïller. Jahrb. d. k. preuss. geol. Landesanst. für 1887. p. 400 .
? 1889. - frons, A. Fritsch. Stud. im Gebiete der böhm. Kreideformat., iv, Teplitz. SeLicht., p. 87, fig. 86.

- - (Alectryonia) frons, O. Griepenkerl. Senon. r. Königslutter (Palæont. Ablandl., vol. iv), p. 33.
? 1890. Allectryonia cf. carinata, M. Yokoyama. Palæontographica, vol. sxxti. p. 198.

1893. Ostrea frons, S. Meunier. Le Naturaliste, p. 175, fig. 1.

- - carinata, R. Michael. Zeitschr. d. deutsch. geol. Gesellsch., rol. xlv, p. 238.
- - sp. cf. diluviana, Michael. Ibid., p. 239.

1894. - diluviana, B. Lundgren. Mollusk. i Mammillatus och mucronatu zonerna, p. 36.
1895. - (Alectryonia) carinata, E. Tiessen. Zeitschr. d. deutsch. geol. Gesellsch., rol. xlvii, p. 462.

- - - cf. diluviana, Tiessen. Ibid., p. 463.
- - macroptera, G. Máas. Ibid., vol. slvii, p. 271.
- - - A. Wollemann. Ibid., vol. slviii, p. 834.

1897. - carinata, U. Sïhle. Geognost. Jahresh. (1896), p. 40.

- - - R. Leonhard. Palæontographica, rol. sliv, p. 27.
- - diluviana, A. Hennig. Revis. Lamellibr. i Nilssons's 'Petrif. Suecana,' p. 16, pl. ii, figs. 1, 2, 5.
- - (Alectryonia) pectinata, F. Nöfling. U. Cret. (Maestrichtian) Mari Hills (Palæont. Indica, ser. xvi, vol. i). p. 38, pl. ix, figs. 2, 3.

1904. Alectryonia Zeilleri, \boldsymbol{H}. Douvillí. Mission Scient. Perse (J. de Morgan), vol. iii, pt. vi, Paléont., p. 277, pl. xxxvi, fig. 16.
1905. Ostrea dilutiana, T. Wegner. Zeitschr. d. deutsch. geol. Gesellsch., rol. lvii, p. 182.

Nou 1847. Ostrea carinata, J. Mïller. Petref. der Aachen. Kreidef., pt. 1, p. 38, ($=O$. Goldjussi, Holzapfel).

- 1850. - - J. de C. Sowerby, in F. Dixon. Geol. Sussex, p. 357 (O. frons, p. 386, ed. 2), pl. sxvii, fig. 2.
- 1852. - frons? R. Kner. Denkschr. k. Aliah. Wissensch. Wien, Math.-Nat. Cl., vol. iii, p. 319, pl. xvii, fig. 10.
- 1883. - - A. Fritsch. Stud. im Gebiete der bühm. Kreideformat., iii, Iserschicht., p. 121, fig. 96.

Description.-Shell nearly equivalve; the valves similar except for the attached surface of the left valve. The proportion of height to length varies, but usually the height is much greater than the length, the difference becoming greater with age. Valves usually more or less tapering towards the postero-ventral extremity, but occasionally expanding at the end; slightly, moderately, or considerably curved, occasionally forming a nearly complete volution; sides flattened, so that in the elongate forms each valve is roof-like in section. The thickness (or depth) of the valves increases with age, and in old individuals the shell becomes very thick and possesses a vesicular structure. Umbones small, with a slight or moderate posterior curvature. A posterior wing or ear is usually present, and is of small or moderate size when the attached surface is small, but of large size when the attached surface is large and mainly posterior to the umbo. A small anterior wing is often present, and is best developed in specimens which have a small attached surface. When the attached surface is small or narrow the shell becomes elongate, but when the attached surface is large and broad the shell becomes rounded or oval instead of elongate, and then the posterior car is usually not distinctly defined.

Valves with strong, usually angular folds which, in the elongate forms, extem from the median line to the margin; the folds are usually somewhat curved, but may be almost straight; the amount of their curvature decreases in passing from the earlier to the later part of the shell. The margins of the two valves interlock by means of sharply pointed tooth-like projections formed by the interspaces between the folds. On the median ridge of the valves the folds are usually irregular, and may bear on each side of the ridge short spines; near the margins of the valves long tubular outgrowths occur in some specimens. The number and size of the folds vary considerably in different individuals; often the later folds are stronger than the earlier ones, and those on the convex side stronger than those on the concave side. The part of the right valve near the umbo is smooth and without folds so long as the corresponding part of the left valve is attached; this portion is commonly small, but becomes extensive when the attached surface of the left valve is large, and then the folds are limited to the relatively small marginal part of the valves. The triangular ligament-pit may be slightly or considerably curved. The adductor impression is oral, and usually not far from the hinge-line.

Affinities.-The examples of this species found in the Lower Cretaceous have been named O. vectangularis, Römer, and O. macroptera, Römer. Pictet and Campiche, de Loriol, and Weerth regard O. mucropterce as distinct from O. rectangularis, and state that the former differs from the latter principally in the relatively smaller height of the shell, the larger posterior wing, and the larger ribs. D'Orbigny, Maas and Wollemann, on the other hand, consider that the two forms cannot be separated. The last author, after studying a large collection of specimens, states that the height of the shell depends mainly on the age of the individual; that the size of the posterior wing varies greatly, being in some cases quite small, in others very large, and between the two extremes every gradation may be found. The size of the ribs likewise varies. The study of numerous English specimens leads me to endorse Wollemann's. view. Pictet and Campiche figured as 0 . mucroptera a small example from the Lower Greensand of Atherfield, but larger specimens from the same horizon possess a higher shell like O. rectangularis, and cannot be separated from 0 . macroptera.

The examples found in the Lower Cretaceous deposits have been generally regarded as distinct from those in the Upper Cretaceous, which in this country have been usually named 0 .frons or O. carinatu. The principal distinction is said to be the larger posterior wing in the Lower Cretaccous form. But the study of a large series of specimens shows that in both the Upper and the Lower Cretaceous the size of the wing varies greatly, as well as the height and currature of the shell, and the number and coarseness of the ribs. As a rule, however, the posterior wing is better developed in the Lower than in the Lpper Cretaceous examples,

Fıgs, 110-122.-Ostrea diluviana, L. Sedgwick Museum, except 120, 121. 110, 111, Lower Greeusand, Upware. Left and right valves, 112-119, Lower Greensand, Faringdon. Left valves. 112-114, anterior, interior and exterior of a left valve. 116, 117, interior and exterior of a left valve. 118, 110, interior and exterion of a left valve. 120, 121, zone of Pecten asper, Devizes. Museum of Practical Geology, Nos. $25814,25812.120$, right valve. 121, left valve. 122, Chalk Marl, Folkestone. Left valve. $111 \times \frac{5}{6}$
but in some of the former it is small, ${ }^{1}$ while in some of the latter it attains a large size (fig. 123), and such specimens are indistinguishable from O. mucropter'u. It seems, therefore, that no line can be drawn between 0 . macroptorio and the Upper Cretaceous forms, especially since it is found that the size of the wing is directly related to that of the attached surface of the left valve which was almost certainly determined by external conditions. When the attached surface is large and mainly posterior to the umbo, then the macropteru type with a large wing arises.

The examples of this species (here known as O. diluriona, L.), found in the Upper Cretaceous deposits, have received numerous names, of which the principal are O. pertinutn, Lamarck, O. curinutn, Lamarck, O. colnlwinn, Lamarck, O. fions, Parkinson, O. serratu, Brongniart, O. prionotu, Goldfuss, O. Mill,timu, d'Orhigne, O. Rirmedeann, d'Orbigny, O. Zeilleri (Bayle). In the Upper Cretaccous of England this species is not known to occur above the zone of IIoldster sululdubusus and has been usually named O. firms or O. cmimuta, but on the continent of Europe and in other parts of the world it is represented in the higher parts of the ('halk. D'Orbigny and Corpuand, believing in the principle that specimens found at different horizons belong to different species, have regarded as distinct forms the following amongst others: O. Milletian from the Gault, O. cminuty from the Cenomanian, O. pertinnta (O. froms) from the Lower Senonian, O. smrutw from the Epper Senonian. But later authors have found the greatest difficulty in distinguishing these "species." An examination of a large number of specimens, even when collected from one locality and one horizon only, shows that the shell is extraordinarily variable, and that every gradation is found between the different types; apart from variation in the number and size of the ribs, the curvature of the shell, etc., there are differences which are obviously due to the size, shape and position of the attached surface. Similar modifications occur at all horizons, and it seems. impossible to separate as distinct species the forms found at different levels. Sometimes at one locality or in one kind of deposit a particular form of the shell may be more common than others, and may, if only a small number of specimens are arailable, give the impression of being a distinct species, but whenever a large collection is made other varieties are found which make it impossible to regard as a species the form which at first sight appeared to be distinct. The difficulty of separating these supposed species is shown by the fact that although d'Orliging states that O. fions is characteristic of the Senonian, yet he includes in his synonymy the specimens figured by Sowerby from the L'pper Greensand and Chalk Marl. Similarly, in quoting forcign examples of a "species," authors have sometimes unconsciously cited them from horizons in which they believed the species did not occur.

[^61]Peron (1908) has already recognised that these "species" camnot be accepted. He states that the detailed analysis of the characters attributed to each of the species and the study of their synonymy shows that the enchanement of these diverse forms is complete, and that usually the difference of names corresponds only to difference of stratigraphical horizon.

The form found in the Gault, which was named O. Milletiana by d'Orbigny, is considered by Pictet and Campiche to be identical with O. carinata of Sowerby from the Upper Greensand and Chalk Marl, which, as already mentioned, is included by d'Orbigny in O. froms of the Senonian. Pictet and Campiche quote O. Milletianu from the Cambridge Greensand, but this is included by JukesBrowne in O. frons.
O. dilutimu, Linnæus, from the Upper Chalk of Sweden, was figured first by Nilsson, and more recently other figures of Swedish specimens have been given by Hemnig (1897). D'Orbigny and Coquand recognised that the specimens figured by Nilsson as O. diluciana could not be separated from O. frons, and the same view is held by Brauns, Lundgren, and Hennig. The two last-named authors state that Nilsson's figures certainly represent Linnæus' species, and Branns also takes them as types of O. diluciann, but excludes the figures given by d'Orbigny, Coquand, Goldfuss and Geinitz. D'Orbigny, on the other hand, takes Hisinger's figure of a specimen from the Upper Chalk of Sweden as the type of Linnæus' O. diluciana, and excludes from that species the forms figured by Nilsson, which he regards as belonging to O. fioms. The examples of O. diluciana figured by d'Orbigny, Coquand and Geinitz come from the Cenomanian. In O. diluriana, as understood by those authors, the shell is oval or rounded in form instead of being elongate as in the common forms of O. froms; at first sight it appears to be quite distinct, and being easily recognisable it has been commonly regarded as a separate species, ${ }^{1}$ but Lundgren and Hennig have found in the Swedish Chalk a large number of intermediate forms which link together O. diluviana as interpreted by d'Orbigny and O. diluciamu as figured by Nilsson and Hennig, consequently these two types cannot be any longer regarded as distinct species. Geinitz, although keeping the forms distinct, nevertheless recognises in the Cenomanian of Saxony the existence of intermediate forms, and the same fact is shown by Goldfuss' figures. An oval or rounded form, closely resembling O. diluciuna as understood by d'Orbigny, is found in the Lower Greensand of Faringdon (figs. 115, 118, 119), and is certainly inseparable from the common elongate form which has been usually named O. mucroptera ; similar remarks apply to a rounded form found occasionally in the Upper Greensand and Chalk Marl of England (figs. 124, 125).

[^62]

Figs, 123-134--Ostrea dilutiana, Li23, zone of Schlonbarhia rostrata, Desizes. Museum of Practical Geology, No. 25820 . Right Valve. 124, 125, Upper (ireensand, Sidmouth. British Museum, L3326. Left Falve. 126-130, Chalk Marl, Folkestone. Sedgwick Museum. 126, anterior view. 125-130, right valres. $12 \overline{7}$, anterior view of 128,131 133, Base of Chalk Marl, Maslingfeld. Sedgwick Museum. Right valves. 134, Cenomanian Sandstone, Wilmington. Sedgwick Museum. Vertical section of left valve. All $\times 3$.

So that this type occurs at three horizons: Aptian, Cenomanian, and Senomian, and its features are obviously due to the large size and rounded form of the attached surface; the shell was attached for such a long period that when it erentually grew free it was unable to develop its usual elongate form, and its ultimate outline was only a little different from that of its attached surface. The coarseness of the ribs varies in the same way as in the elongate forms. In some places, as, for instance, in the Cenomanian of Gamighügel in Saxony, the shell attains a great thickness, but the elongate forms likewise sometimes hecome very thick.

Figs. 135-138.-Ostra dilmiana, L135, zone of Molaster sulglobosus, Chery Hinton. Rirht valre. 136-13s, Base of Chalk Marl, Haslingfidd, Cambs. 136, 137, Right valves. 138, anterior view of 137 . Sedgwick Museum. All $\times \frac{5}{5}$.
O. santonemsis, d'Orbigny, and O. carantonensis, d'Orbigny, are similar to d'Orbigny's O. dilutiana, and are included by Geinitz in that species.

Remarls.-The shell varies greatly in its curvature, some examples being only slightly bent, while others form almost a complete volution (fig. 193), and between these extremes every gradation is found. The variation in the coarseness of the ribs seems, in some cases at any rate, to be connected with the nature and depth of the sea-floor on which the individuals lived; for example, most of the specimens found in the Chalk Marl have coarse ribs, but those found in the Cenomanian sandstone of Wilmington in Devon have smaller and more numerous ribs. Occasionally folds or ribs are developed on the posterior ear (fig. 135). The long regular outgrowths from the margin of the valves (fig. 122) occur in specimens
from the Chalk Marl, and were no doubt developed for the purpose of fixation in the soft sediment of the sea floor.

In all cases the right valve starts with a smooth stage, and folds are developed later. The smooth stage corresponds with the attached surface of the left valve, since folding does not begin until the margin of that valve grows free from the rock or body to which the shell is fixed. Occasionally, after folding has gone on for some time, a second smooth stage appears on the right valve; this is due to the left valve becoming again attached to a foreign body (fig. 1:37).

I'ypes.-O. diluciana, L., from the Senonian of Sweden. O. pectinuta, Lamarck, is said to have come from near Dreux (Eure-et-Loire). O. carinata, Lamarck, from Carry (Seine-Inférièure). O. frons, Parkinson, from France; the locality and horizon are unknown, and the specimen camnot now be found. O. carinnta, Sowerby, from the Upper Greensand of Chute Farm, near Longleat Park, and from the Chalk Marl of Folkestone, are in the British Museum. O. serrata, Curier and Brongniart, came from Dreux. O. macroptera, Sowerby, from the Lower Greensand of Folkestone, is in the British Museum. O. retust, Sowerby, from the Lower Greensand of Atherfield, cannot be traced.

Distributiou.-Claxby Ironstone (zone of Belemnites luteralis) of South Willingham. Tealby Limestone (zone of lielemmites Irunsciconsis) of North Willingham, Lincolnshire. l'erut-bed of Atherfield. Ferruginous Sands of Atherfield and Shanklin. Recorded by Topley from the Sandgate Beds and Folkestone Beds of Folkestone. Lower Greensand of Faringdon, Brickhill, Potton and Upware.

Upper Gault of Folkestone. Cambridge Greensand. Upper Greensand (zone of Schlanbachia rostrata) of Blackdown, Devizes, Warminster and Ventnor. Lpper Greensand (zone of Pertell ("peri) of Devizes. Chalk Marl (zone of Schlunlmechia rarians) of Ventnor, Folkestone, Haslingfield, Burwell, etc. Cenomanian Sandstone of Wilmington. Cenomanian (Meÿer's Bed 12) of Dunscombe. Zone of Molastrix subglubosus of Cherry Hinton and Burwell.

Ontran Lemprit, Lummerir [ex Deshayes], 18t2. Text-figs. 139, 140.

1855. Ostrea Leymerit, G. Cutteau. Moll. Foss de l'Yonne, p. 123.
1860. - - A. Giaudry.

Bull. Soc. guol. de France, ser. 2, vol. xwii, 1. 30.
?1861. - - P. de Loriol. Anim. Invert. Foss. Mt. Saleve, p. 112.

Fig. 139.-Ostrea Leymerii, Leym. Mammillatus-bed, Okeford Fitzanine. British Museum, No. L11097. Right valre. \times \&
1869. - - H. Coquand. Mon. Ostrea, Terr. Crót., p. 179, pl. Ixx, figs. 14-17; pll luxi, figs. 6, 7.

- Leemeriei, P. de Loriol and V. Gillieron. Urgon. Infér. du Lau. derou, p. 27.

1873. Leymerir, F. J. Pictet and G. Campiche. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), 1, 296, pl. ce, figs. 1, 2 .
1874. Ostreum Lefmeriei, E. Buyle. Explicat. Carte ǵcol. de France, vol. iv, Atlas, pt. 1. pl. cxxx, figs. l, 2.
1875. Ostrea Leymeriei, R. B. Newton. Proc. Dorset Nat. Hist. and Antiq. Field Club, vol. xviii, p. 73, pl. i, fig. 3.

Description.-Shell large, very thick in old specimens, higher than long; usually slightly or only moderately inequilateral; outline ovate, oval, subtrigonal or subquadrate. Left valve slightly or moderately convex; right valve often flattened. Umbonal part sometimes narrow, sometimes broarl. Umbo straight or

Fig. 140.-Ostrea Leymerii, Leym. Mammillatas-bed, Okeford Fitzpaine. Britisi Museum, No. L. 11591. Interior of part of right valve. $\times \frac{2}{3}$.
slightly curved; area large, high. Surface of valves sometimes smooth, except for growth-lamelle, sometimes with radial folds. Attached surface of variable size.

Atpinities.-This species seems to be related to O. Cirrmuini, Coquand. It also, as de Loriol pointed out, shows some resemblance to some forms of Excu!!rat simuata in which the umbo is only slightly curved; but whether it has any real relationship to that species cannot at present be determined. See also (\%. rumbulu (below).

T! !pe.-From the Barremian of Aube.

Distribution.-Hythe Beds of Aylesford, Kent. Mrammillatus-bed of Okeford Fitzpaine, Dorset. Recorded by Fitton from the I'rna-bed and Ferruginous Sands of Atherfield. Recorled by Topley from the Atherfield Beds of Peasmarsh and Sevenoaks.

Ostrea cunalich, Nomley, 1861. Text-figs. 141, 142.
1861. Ostrea cunabula, H. G. Seeley. Ann. Mag. Nat. Hist., set. 3, vol. rii, p. 117, pl. v, fig. 1.

- - lagena, Seeley. Ibid., p. 117, pl. v, fig. ${ }^{2}$.

Descriptim. Whell higher than long, either nearly equilateral or slightly or

Fig. 141.-Ostrea cunabula, Seel. Cambridge Greensand (base of Chalk Marl). Sedgwick Musetum. Cambridge. The type of 0 . lagena, Seel. Interior and exterior of left valve. \times a.
moderately inequilateral; when nearly equilateral the outline is often ovate or oval.

Left valve with the attached surface either small and near the umbo only, or large-sometimes extending to the greater part of the valve; in the former case the valve is very convex, in the latter slightly convex or flattened. Umbonal part usually narrow and pointed. Area large, usually higher than long; sometimes in the plane of the valves and nearly symmetrical; in other cases curving inwards, outwards or backwards. Surface usually with numerons, rounded, radiating ribs crossed by gronth-ridges. Adductor impression deep, near the posterior margin, oval or more or less quadrate. Right valve nearly flat, with growth-lines only. Afjinitios.-O. cumbulu is closely allied to and may be only a rariety of

Fig. 142.-Ostrea muabula, Seel. Cambridge Greensand (base of Chalk Marl). A, b, British Museum, No, fi7th). C-I, Sedigwick Museum. A, b, left valve. C, left; D. right valve; e, auterior view of c, d. F, right ralre with other oysters on the surface. a, left ralve. 1,1 , exterior and interior of a left valve. All \times a.
O. Lramerii, from which it appears to differ in its somewhat smaller ribs. The forms with a small surface of attachment resemble O. luifis:unensis, Bölm, ${ }^{1}$ but have coarser and less regular ribs. O. lagenu, Seeley (fig. 141), is a form of 0. cumbinlı with a very large attached surface, and consequently a less convex left valve.

I'!/fes.-From the Cambridge Greensand (indigenous). The type of 0 . ln!! ${ }^{\prime \prime \prime \prime \prime}$ is in the Sedgwick Museum, Cambridge; the type of (1. cunalmla cannot be found, but other specimens named by Seeley are in the Sedgwick Museum.

Jistrilution.-Cambridge Greensand (base of Chalk Marl), Cambridge. ('halk Marl of Burwell.

Ostrea Wameal, Kéquin!, 188:3. Plate LV, figs. 1-3.
1883. Ostrea Walkeri, W. Keepiuy. Fuss., etc., Neoc. U1, ware aud Briclihill. p. 103, pl. ir, fig. 4.

Remulis.-This form is similar to O. Cermatini and O. Lermerii; the chief difference mentioned by Keeping-the inequality of the ralves-is not constant, and is determined by the size of the attached surface. Harbort regards O. Wirlkeri as a synonym of O. Germuini, Coquand, but the material available is hardly sufficient for definite determination. Some of the specimens with a large attached surface resemble O. Ormana, Wollemann. ${ }^{3}$

T' $!/ i^{\prime \prime}$.-In the Sedgwick Museum, Cambridge.
Distrilintion.-Lower Greensand of Upware.

Osthen resictanis, Jummicl; 1806. Plate LV, figs. 4-9. Text-figures. 14:3-182.

1789.		B. Faujus-St.-Foud.	Hist. nat. Mte. St. Pierre de Maestricht, pl. xxii, fig. 4; pl. xxv, figs. 2, 5.
18106.	Ostr	esicularis, Lamarel.	Ann. Mus. Hist. nat., vol. viii, p. 160 , anc vol. xiv (1809), p. 375 , pl. xxii, fiy. 3.
		Ltoidea, Lamarck.	Ibid., p. 160 ; vol. xiv (1809), p. 374 , pl xxi, fig. 3 (nou deltoidea, Sowerby).
1816.		Smith. Strata	Organisel Fossils, p. 7, pl. iii, figs. $\mathbf{j}-7$.
1819.	-	aris,	im
1820.		nvexa, T. Say. Amer	Jouru. Sci., vol. ii, p. 42.

1 'Zeitschr. d. deutsch. geol. Gesellsch.,' vol. li (1899), p. 466, pl. xxix, figs. 1-3.
2 Coquand, 'Mon. Ostrea, Terr. Crét.' (1869), p. 191, pl. lxvi, figs. 14-16. Pictet and Campiche, 'Terr. Cr'́t. Ste. Croix' ('Matér. Pal. Suisse,' ser. 5, 1871), p. 295, pl. claxxix, figs. 1-6. Wollemann, ‘Bivaly, u. Gastrop. deutsch. u. hollindisch. Neocoms' (1900), p. 18, pl. i, fig. 4. Harbort, ' Fauna Schaumburg-Lippe'schen Kreidemulde' (1905), p. 28.
${ }^{3}$ Op. cit. (1900), p. 19, pl. i, fig. 5, pl. ii, fig. 1.
182.2. Ostrea vesicularis, A. Brongniart. In Cuvier, Ossemens Fuss., vol. ii. p. 598, pl. iii, fie. 5.
1823. Gryphea globosa, J. de C. Sowerby. Min. Couch., vol iv, p. 1.27. pl. ecexcii.
18.27. Ostrea vesicularis, S. Nilisom. Petrific. Suecana, p. 29, pl. vii, figs. :3-i; p^{l}. viii, figs. 5, 6.

- - hippopodium, Nilssom. Ibid., p. 30, pl. vii, fig. l.
- - clavata, Nilsson. Ibid., p. 30, pl. vii, fig. 2.

1828. Gryphea convexa, S. G. Morton. Journ. Acad. Nat. Sci. Philid., vol. vi, p. 79, pl. iv, figs. 1, 2.

- -- mutabilis, Morton. Ibid., p. 81, pl. iv, fig. 3.

183:. - Expansa, J. de C. Soverby. In Sedgwick and Murchison, Trans. Geol. Soc., ser. 2, vol. iii, pp. 849, 418, pl. xxxviii, fig. 5.

- Ostrea vesicclaris, G. P. Deshayes. Hist. nat. Vers et Mollusqucs (Encyel. méthod.), vol. ii, p. 291. 1833. - - A. Goldfuss. Petref. Germ., vol. ii, p. 23, ph. hxxi, fig. 2.
- - hippopodium, Goldfuss. Ibid., p. 23, pl. lxaxi, fig. 1.

1834. Gryphea convexa, S. G. Mortun. Synopsis Org. Remains Cret. U. State's, p. $53, \mathrm{pl}$. iv, figs. $1,2$.

- - mutabilis, Monton. Ibid., p. 53, pl. iv, fig. 3.
: 1835. Pycnodonte radiata, G. Fischer de Wuldheim. Bull. Soc. Imp. Nat. Moscou, vol. viii, $\mathrm{p}^{\text {. }} 119$, $\mathrm{p}^{1 .}$ i.

1837. Ostrea vesicularis, W. Hisinget. Letbæa Suecica, p. 46, pl. xii, fig. 2 .

- - mippopoditm, Hisinger. Ibid., p. 47, pl. xiii, fig. 4.
- - clavata, Hisinger. Ibid., p. 47, pl. xiii, fig. 3.
- Gryphea similis, G. G. Pusch. Polens Paliont., p. 34, pl. iv, fig. 12.
- Ostrea vesicularis, A. d'Avchiac. Mém. Soc. géol. de France, vol. ii, p. 183.
\div - - proboscidea, d'Archiac. Ibid., p. 184, pl. xi, fig. 9.
$\vdots \quad-\quad$ vesicularis, F. Dujardiu. Ibid., vol. ii, p. 229.

1838. Gryphea resictlaris, H. G. Bromn. Lethæa Geogn., sul. ii, p. 26.4, pl. xxxii, fig. 1 .
1839. - (Ostrea) vesicularis, F. \boldsymbol{v}. Hagenou. Neues Jahrb. für Min, etc., p. 548.
1840. Gryphea vesicularis, H. B. Geinitz. Grundr. d. Versteju., p. 483, pl. xx , figs. 17,18 .
1841. Ostrea resicularis, A. dOrbigny. In Murchison, de Verneuil and de Kerserling, Gíol. Russier de l'Europe, vol. ii, p. 4.9].
1842. - - A. Leymerie. Statist. géol. min. de l'Aube, Atlits, pl. iv, fig. 1.

- - \quad A. \boldsymbol{E}. Reuss. Die Verstein der bühm. Kreideformat.,
 xxs, figs. 1-8.
hippopodiem, Reuss. Ibid., p. 39, pl. xxviii, fiys. 10-15, 17, 1s p^{l}. xxix, figs. $1-18$; pl. xax, figs. 13, 14 (\% partim).

1847. Ostrea hippopodiem, A. dOrbigny. Pal. Franç. Terr. Crét., vol. iii, p. 731, pl. cecclxxxi, figs. 4-6; pl. ceeclxxxii.
vesicularis, d'Orbigny. Ibid., p. 742, pl. cceclenxvii.
-- \quad J. Mïller. Petref. der Aachen. Kreidef., pt. 1, p. 37. hippopodium, Miller. Ibid., p. 39.
1s49. Gryphea globosa, J. Brown. Illustr. Foss. Couch. Great Britain and Ireland, p. 148, pl. lxi, fig. 2.
1848. - - var. depressa, J. de C. Sowerby, in F. Dixon. Geol. Sussex, p. 357, pl. xxvii, fig. 3.

- Ostrea sp., Sowerby. Ibid., p. 357, pl. xxviii, figs. $\mathbf{2 2}, \underline{2}$.
- Gryphea vesicularis, R. Kner. Kreidemerg. v. Lemberg (Haidinger's Naturwiss. Abhandl., vol. iii, pt. 2), p. 30.
- Ostrea vesicularis, A. Alth. Geogn.-palæont. Beschreib. r. Lemberg (ibid., vol. iii, pt. 2), p. 25 .
? - - hippopodidm, Alth. Ibid., p. 253, pl. xiii, fig. 3.
- - vesicularis, A. dOrbigny. Prodr. de Pal., vol. ii, p. 256.
- - Lesueuri, dOrbigny. Ibid., p. 171.

1851. - Nilssoni, J. Miller. Petrefact. Aachen. Kreideformat., pt. Q, p. 70.

- vesicularis, A. Leymerie. Mém. Soc. géol. de Frince, ser. e, vol. iv, p. 202, pl. x, figs. 2, 3.

1851-2. Gryphea vesicularis, H. G. Brom and F. Rïmer. Lethæa Geogu., ed. 3, vol. ii, pt. 5, p. 264, pl. xxxii, fig. 1.
1852. - \quad R. Kner. Denkschr. Akad. Wissensch. Wien, Math.-nat. Cl., vol. iii, p. 319.
? - Ostrea vesicularis var. aucella, F. Rimer. Kreidebild. v. Texas, p. 74, pl. ix, fig. 4.
1854. - hippopodium, J. Morris. Cat. Brit. Foss., ed. 2, p. 173.

- vesicularis, Morris. Ibid., p. 174.

1863. Gryphea vesicolaris, K. E. Schafhüutl. Süd-Bayerns Lethæa Geogn., p. 143, pl. xli, figs. 5, 6 .

- Ostrea vesicularis, A.r. Strombeck. Zeitschr.cl. deutsch. geol. Gesellsch., vol. xv, pp. 127, 157.

1864. - vesiculosa, S. P. Wooduard. Geol. Mag., vol. i, p. 112, pl. v, fig. 6.
1865. - uncinella, A. Leymerie. Bull. Soc.géol. de France, ser. 2,vol. xxii, p. 367 .
1866. - (Gryphfa) vesictlaris, K. A. Zittel. Bivalv. d. Gosaugeb. (Denkschr. Akad. Wissensch. Wien, Math.-nat. Cl., vol. xxv, pt. ii), p. 123 [47], pl. xix, fig. 6 (? partim).
1867. - vesicularis, B. Lundgren. Palæout. Iakttag. Fäxekalk. Limhamn, p. 23.
? - \quad - \quad. Fraas. Aus dem Orient, i, p. 88.
: 1863. - hippopodium, E. Eichwald. Lethæa Rossica, vol. ii, p. 387, pl. xix, fig. 5.

- Gryphea vesicularis, Eichuald. Ibid., p. 394.

1869. Ostrea vesicularis, H. Coquand. Mon. Ostrea, 'Terr. Cr'́t., p. 35, pl. xiii, figs. 2-10.

-	-	hippopodium, Coquand. Ibil., p. 100, pl. xviii, figs. 1, 4, 5; pl. xix pl. xx , figs. 1-8.
-		Lesuevri, Coquand. Ibid., p. 146, pl. xli, figs. 1-4.
-	-	proboscidea, Coquand. Ibid., 1. 72 , pl. xv, fig. 10 ; pl. xvi, fig $1-12$; pl. xviii, figs. $1-5$.
-	-	vesicularis, E. Farre. Moll. Foss. de Lemberg, p. 160.
-	--	hippopodiom, Favre. Ibid., p. 161.
1870.	-	F. Remer. Geol. v. Oherschles., p. 315, pl. xxxvi fig. 7.
-	-	vesicularis, F. Credner. Zeitschr. d. deutsch. geol. Gesellich vol. xxii, p. 225.
-	-	C. Schliter. Neues Jahrb. für Min., etc., p. 95?

1871. Gryphea vesicularis, F. Stoliczka. Palæout. Indica, Cret. Fauna S. India, vol. iii, p. 465, pl. xlii, figs. 2-4; pl. xliii, fig. 1; pl. xlv, figs. 7-12.
1872. Ostrea hippopodium, H. B. Geinitz. Das Elbthalgeb. in Sachsen (Palæontographica, vol. xx, pt.1), p. 177, pl.xxxix, figs. 12-27; pl. xl, figs. 1-3; pt. 2, pl. viii, figs. 5-7.
1873. - vesicularis, J. I. Lahusen. Foss. White Chalt of Simbirsk (Imp. Russ. Min. Corps Instit.), pt. $\underbrace{\text {, }}$ p. 249.

- - - var. judaica, L. Lartet. Aunal. Sci. géol., rul. iii, p. $69, \mathrm{pl}$. xi, figs. 8-10.

1875. - - A. J. Jukes-Brome. Quart. Journ. Geol. Soc., vol. xxxi, p. 295 (partim).
? 1876. Gryphea vesicularis (\%), F. B. Meek. Iuvert. Cret. and Tert. Foss. U. Missouri, p. 20, pl. xi, fig. 2; pl. xvi, fig. 8.

- Ostrea hippopoditm, D. Brame. Zeitschr. f. d. gesammt. Naturwiss., vol. xlvi, p. 394.

1877. - - A. F'ritsch. Stud. im Geb. böhmisch. Kreideformat., ii, Weissenberg. u. Malnitz. Schicht., p. 140, fig. 137.
? 1878. - vesicularis, O. Fraas. Aus dem Orient, ii, p. 86.

- - \quad - J. de C. Sowerby, in F. Dixon. Geol. Sussex, ed. 〕, p. 386, pl. xxvii, fig. :3,
- Pycnodonta vesicularis, E. Bayle. Explic. Carte gíol. France, vol. iv, Atlas, pt. 1, pl. cexxp, figs. 1-7. - proboscidea, Bayle. Ibid., pl. exxyi, figs. 1, 2.
- Ostrea hippopodiom, C. Barrois. Ann. Soc. géol. Nord, rol. r. p. 407.
- - - G. Behrens. Zeitschr. d. deutsch. geol. Gesellsch., vol. xxx, p. ${ }^{2} 60$.

1881. Avictla filata, R. Etheridge, in Pemning and Jukes-Brome. Geol. Cambridge, p. 14t, pl. ii. fis. : B .
188.2. Ostrea ff. hippopoditm, R. Windmioller. Jahrb.d.k. preuss. feol. Landesanst.. für 1881. p. 2!

1nx:. Giryphfa vesicularis, H. Schrioder. Zeitschr. d. deutsch.geol. Gesellsch., vol. xxxir, p. 259.

- Ostrea hippopodium, Schrüder. Ibid., p. 259.

1xn:3. - \quad A. Fritwch. Stud. im Geb. bühmisch. Kreideformat., iii, Iserschicht., p. 122, fig. 98.
lsty. Gryphea vesicularis, C. A. White. th Aun. Rep. U. S. Geol. Survey, p. 303, pl. xlviii, figs. 1-5.
1085. - \quad R. P. Whitfield. Brach. and Lamellibr. Raritan Clays (Mon. U. S. Geol. Surv., vol. ix), p. 36, pl. iii, figs. 15, 16; pl. ir, figs. 1-3; pl. v.
1883. - $-\quad$ G. Mïller. Jahrb. d. k. preuss. geol. Landesanst., für 1887, p. 401.

- Ostrea vesicularis, A. Peron. Hist. Terr. Craie S.E. Bassin AngloParisien, p. 179.

1889. - (Gryphea) vesicularis, O. Griepenkerl. Palæont. Abhandl., vol. iv, p. 37.

- - hippopodidm, E. Holzapel. Die Mollusk. Aachen Kreide (Palæontographica, vol. xxxv), p. 252, pl. xxix, figs. 3-7.
- Gryphea vesicularis, Holzajfel. Ibid., p. 253, pl. xxix, figs. $1,2$. 1890. - - M. Blanckenhorn. Beitr. Geol. Syriens, p. 75. 1890-91. Ostrea hippopodium, A. Peron. Brachiopodes etc., Terr. Crít. HautsPlateaux de la Tunisie, p. 152.
:1891. Gryphea vesicdlaris, J. Böhm. Palæoutographica, vul. xxxviii, p. 91. pl. iv, fig. 3.
- Ostrea hippopodium, Bülm. Ibid., p. 92, pl. iv, fig. 12.

1892. - \quad E. Stolley. Mittheil. a. d. Min. Institut. Univ. Kiel, vol. i, p. 235.

- Gryphea vesicularis, Stolley. Ibid., p. 236.
- Ostrea vesicularis, F. Vogel. Verhaudl. nat. Vercins preuss. Rheinl., vol. xlix, p. 51.

1894. -- - A. Hennig. Geol. Föreu. i Stockholm Förhandl., vol. xvi, p. 513.
hippopodium, Hennig. Ibil., p. 514.
vesicularis, B. Lundgren. Mollusk. i Mammillatus och Mucromata zonerna, p. 35.

- - hippopodiom, Lundyren. Ibid., p. 36.

1895. - (Gryphea) vesicdlaris, F. Vogel. Hollaindisch. Kreide, p. 7.

- - hippopoditm, Vogel. Ibid., 1. 7.
(Gryphea) hippopodium, E. Tiessen. Zeitschr. d. deutsch. geol. Gesellsch., vol. xlvii, p. 464.
? - Gryphea vesicularis, J. F. Whiteaves. Trans. Roy. Soc. Camadi, ser. 2, vol. i, p. 120.

1897. Ostrea hippopodium, A. Hennig. Revis. Lamellibr. Nilsson's " Petrif. Suecana," p. 6, pl. i, figs. 1-6, 8, 9.

- - vesicularis, Hemig. Ibid., p. 18.
- - mppopodium, h. Leomard. Palmontographica, vol. xliv, p. 51.

1897. Gryphea vesicularis, F. Nïtling. U. Cret. (Mæstrichtian) Mari Hills (Palæont. Indica, ser. xvi, vol. i), p. 39, pl. x, figs. 1, 2.

- Ostrea vesicularis, A. Rutot. Bull. Soc. Belge Géol. Pal. et Hydrol., vol. x, p. 26.
- - hippopodidm, Rutot. Ibid., p. 26.

1898. - - G. Mïller. Molluskenfauna Untersen. v. Braunschweig u. Ilsede, p. 14, pl. iii, figs. $10-15$; pl. iv, figs. 1, 2.
1899. - \quad. de Alessandri. Palæontogr. Italica, vol. iv, p. 200.

- Ostrea hippopodium, Alessandri. Ibid., p. 199.

1900. Ostrea (Gryphea) vesicularis, C. Mayer-Eymar. Eclogat Geol. Helvet., vol. vi, p. 121.
1901. Gryphea vesicularis, A. Wollemann. Jahrb. d. k. preuss. geol. Landesanst., vol. xxi, p. 14 .
1902. Gryphea vesicularis, H. Imkeller. Palæontographica, vol. xlviii, p. 40, pl. ii, figs. 2-4; pl. iii, figs. 7-9.
1901-02. Ostrea (Prcnodonta) vesicularis, P. Cloffjat. Faun. Crét. Portugal, rol. i, ser. 3, p. 103, pl. ii, fig. 18.
1903. Gryphea vesicularis, A. Wollemamn. Lineburg. Kreide (Abhandl. d. k. preuss. geol. Laudesanst., N.f., 37), p. 52.

- Ostrea hippopodiom, J. P. J. Racm. Mollusk. i Dammarks Kridtaf. I. Lamellibr., p. 114.
- Gryphea vesicularis, Rack. Ibid., p. 116.
- - J. Wanner. Palæontographica, vol. xxx (2), p. 119, pl. xuii, figs. 10-12.
- - \quad E. Dacqui. Ibid., p. 188, pl. xxii, figs. 1, 2.
- - - J. A. Taff. Chalk of S. W. Arkansas (22nd Aun.

Rep. U.S. Geol. Surv., pt. iii), pls. 1-lii.
1903. Ostrea vesicularis, R. Fortau. Bull. Inst. Égyptien, ser. 4, rol. iv, p. 308.
? - Gryphea vesicllaris, J. F. Whiteaves. Mesoz. Foss. (Geol. Surt. Canada), vol. i, p. 401.
1904. Picnodonta vesicularis, H. Domillé. Mission Scient. en Perse par J. de Morgan, vol. iii, pt. 4, Palćont., p. 278 , pl. xxxri, fig. 23.
1905. Gryphea vesicularis, T. Wpyner. Zeitschr. d. deutsch. geol. Gesellsch., vol. 1sii, p. 184.

- Ostrea vesicularis, A. D. Arkhengelahy. Amm. s'ol. min. Russie, rol. vii, pp. 190, 205, pl. is, figs. $1,2$.

1906. Gryphea vesicularis, E. Bö;p. Fauma Senon. Cárdenas (Bul. Instit. geol. Mixico, No. 24), p. 49, pl. iv, figs. 1-3; pl. vii, fis. 2; pl. ix, fig. 4 ; pl. xii, fis. 6 .

906.	Ostrea (Gryphfa) vesicularis, M. Boule and A. Thevenin. Annal. Palcont., vol. i, p. 49 [7], pl. ii, fis. 3.
	Gryphea vesicularis, J. Pethii. Palæontographica, vol. lii, p. 188, pl. xii, figs. 2, 3.
190\%.	mrexa, S. Weller. Cret. Pal. Nem Jersey, p. 451, pl. xlv.
1:10.	claris, F. Frech. Neues Jahrb. für Min., etc., i, p. 6, pl. ii, fig. 1.
?	Ostrea vesicularis, H. Br:̈ygen. Ibid., Beil.-Band xxx, p. 744.
1911.	hippopodium, A. Fritsch. Stud. im Geb. bühmisch. Kreideformat., Korycaner Schicht., p. 48, fig. 217.
$\div-$	ryphea vesicularis, M. E. Tudísz. Mitteil. Jahrb. ungarisch. geol. Reichsanst., vol. xix, 1. 110, pl. iii, fig. 3.
-	trea hippopodium, \boldsymbol{W}. Rogala. Bull. Intemat. Acad. Sci. Cracovie, p. 167 .
	K. Vogel ron Falckenstein. Zeitschr. d. deutseh. geol. Gesellsch., vol. lxii, p. 558.
	mphea vesicularis, r. Falckemstein. Ibid., p. 560.
n 1859.	rea vesicularis, T. Wiltshive. Red Chalk of England (Geol. Assoc.), p. 16, pl. ii, fis. \bar{s}.

Description.-The left valve, when attached by only a very small part of the umbo, has a grrpheate form, being usually very convex, and with the umbo prominent and incurved; the outline of the valve is rounded, but the posterior part is more or less produced; the postero-dorsal part is often convex and sometimes distinctly limited from the remainder of the valve; this convex part when strongly developed may be produced backwards in a wing-like form. In large specimens of the grypheate form this valve becomes very thick.

When the left valve is attached to a larger surface of more or less rounded outline it is still grypheate in form, but with the umbonal region truncated owing to the attached surface being flat or concave. When the attached surface is still larger, relatively to the entire shell, the free marginal part possesses the same character as the corresponding part of the grypheate form, and this free part grows upwards from the attached surface. When nearly all the valse is attached then only a narrow rim grows upwards at the margin; lastly, in some cases the entire valve is attached so that the whole of it is flat or concave; in the interior of such forms a few distinct concentric ridges are often found at intervals, and from the outermost of these the marginal part of the valve becomes gradually thimer and usually shows a porous structure.

When the left valve is attached to a cylindrical or other elongate object, the form of the shell depends on the direction of the long axis of the attached surface. If the axis is nearly perpendicular to or forms a considerable angle with the plane

Fios. $1+3$ - 1533 -Ostrea vesicularis, Lam. $143-145$. Uppur Greensand (zone of P. asper), Warminster. Museum of Practical Geology, Nos, $25948,05950,143$, left walve. 144 , right valve, 145 , anterior wiew of 144 showing buth valves. 146. Zone of Micrater cor-anguintm, Witherington, Dr. Blackmore's Collection. Interior of left valre. 1.47. Wone of Actinocamax quadratus, East Harnham. Same Cullection. light valve. The left valve is entirely attached to the convex surface of an echinoid. 14*, 14!. Zone of Micraster cor-anguinum, Gravesend. British Museum, No. L. 20991 . Exterior and interior of a left valve. 150-153. Zone of Belemnitella mucronata, Norwich. 150, right valve, British Muselm, No. L. 20616. 151, Dorsal view of 150 showing both valves; the left valve entirely attached to a nearly flat surface. 152, 153. Sedgwick Museum. Left and right ralres. 146,147 , natural size. Other figures x.
of the valves the left valve becomes convex; if the axis is more or less parallel to the phane of the valves and to the linge-line the left valve is less conrex; and if in such cases the attached surface is mainly in front of the umbo then the anterior part of the shell becomes elongated, whereas, when the attached surface is mainly posterior to the umbo the posterior part of the shell become elongated and the whell more inequilateral; if the long axis of the attached surface extends from the umbo in a postero-ventral direction the shell becomes oblique and very inequilateral. Occasionally the left valve shows two surfaces of attachment, one at the mubo, the other at some distance from it. Since the direction of growth depends mainly on the position of the attached surface, it is obvious that the relative length and height will be determined in the same way.

The surface of the free part of the left valve is smooth except for growthlines. The form and direction of the umbo, area and ligament-pit depend on the mode of attachment. The area is either nearly parallel to the attached surface or slopes gently from the hinge-line to the umbo, and consequently in the grypheate forms it eventually becomes more or less neally perpendicular to the plane of the valves of the adult shell, but in completely attached forms the area and ligamentpit remain nearly parallel to the plane of the valves; between these two extremes every gradation can be traced. The ligament-pit and the umbo may curve forwards or backwards, or be perpendicular to the linge-line. Small, irregular, rounded ridges or crenulations, more or less nearly at right angles to the margin of the valve, are seen on the inside of the shell on each side of the area, but are most developed on the posterior side. The adductor impression is rounded or *lightly oval.

The right valve in the grypheate form with a very small attached surface is almost entirely concave or sometimes nearly flat. The part of the right valve which corresponds to the attached part of the left valve is more or less convex, and reproduces the detailed markings as well as the general form of the attacherd surface; when the latter is flat the corresponding part of the right valve is only slightly convex, and its convexity increases with that of the attached surface. As soon the the left valve grows free from the attached body the corresponding part of the right valve becomes concave and grows upwards at a considerable angle with the earlier convex part. When the entire left valve is attached the whole of the right valve is slightly convex and there is no upward growth of the marginal part. When the outer layer of the right valve is well preserved fine thread-like radial ribs are seen; they are widely separated and either straight or slighty irregular. The inner margin near the area has small ridges like those of the left valve.
. Ififinties. - The study of a large series of specimens shows clearly that Ostren hijpiepmitum, Nilsson, is only a form of (1. crsiculntis in which the entire or almost the cutire surface of the left valve is attached, and conseguently that valve is

Fras. $15 \pm 16 i$. -Ostrea vesicularis, Lam. Wone of Belemnitella mucronatu, Norwich. Sedgwick Museum, Cambridge; except 156, 157, in Dr. Rowe's collection. 154, $156,159,161,163,164,166$, left values. $15 \overline{5}$, right valve of 15%. 157 , right valve of $156.15 x$, interior of a right valve similar to 157. 160, right valve of 159 . 162, right valve of 161 . 165, right valve of 164 . 167, dorsal riew of 166 . 166 and 167, natural size. Other figures $\times 5$
either nearly flat (fig. 1:5) or grows upward near the margin only (fig. 1+5), and the right valve is either slightly convex throughout (figs. 147, 150) or with a narrow marginal part growing upwards (fig. 155). Although this type differs greatly in appearance from the grypheate form (fig. 182), yet every stage between the two extremes can be seen since there is a complete gradation from forms in which the entire surface is attached to forms in which only a very small part of the umbo is fixed. But whatever the form of the shell the part, if any, which grows free shows similar characters. This view of the relationship of o. hip, popmitim and O. crsiculntis has already been maintained by Peron (1890) and by Miuller ($18!8$).

In the chalk of this country numerons examples of the left valve of an oyster attached completely to flat or convex objects are found and have been commonly referred to O. Normmiana, d'Orbigny (fig. 146). The right valve is nearly always missing. The marginal part of the left valve thins away rapidly to a sharp edge and this part usually shows a porous structure, whilst on the inner part of the valve a few distinct concentric ridges are seen; some of these specimens are young individuals and many are probably immature; the concentric ridges probably indicate the beginning of an upward growth of the margin which was soon discontinued and the attached growth resumed. Similar concentric ridges are present in some undoubted examples of O. resicularis (figs. $1-18,149$), and the identity of this form with O. cesirularis is proved by the occasional preservation in its original position of the right valve (Plate LV, fig. 4 ; text-fig. 147) showing the characteristic radial ornamentation of O. resicularis. A left valve of this form is figured by Geinitz ${ }^{2}$ as 0 . hippoportimm.

Arimiln filut,", Etheridge, from the Totternhoe Stone (zone of Itoluster sull!llolosus: of Burwell, is founded on a right valve of a small specimen of 0 . resicnlaris, and shows clearly the fine radial ribs. It agrees with small specimens attached throughout or with only the margin free, found in the Upper and Lower Chalk as well as in the Gault ${ }^{3}$ (Plate LV, figs. 4, 5, 7 ; text-fig. 147).
O. clurata, Nilsson, is a form in which the posterior part is more produced than usual owing to the position of the attached surface.
'The hipmporinm form of O. vesicultris found in the Cenomanian was named O. Lesurui by d'Orbigny on account of its lower horizon. But Hennig, who has studied a series of Cenomanian specimens, sees no reason for separating it from the Senonian cxamples, and Müller (1898) likewise includes it in O. resicnleris.

[^63] fig. 19.

Figs, 16s-1sl.-Ostrea vesicu/aris, Lam. Zone of Belemnitella mucronata, Norwich. 168, 169, left amd right valves. Norwich Museum, No. 2133.3. 170, 171, left and right valves. Dr. Kowe's Collection. $17 \ddot{2}, 173$, left and rirht valves, Selowick Museum. 17., 17., left and right valves. Norwich Museum. 176-179, left valves. Sedywick Museum. 1\%8, posterior view of $177.180,141$, left valve. Dr. Rowe's Collection. 181 , anterior view of 180. All $\times 5$.
O. piolnsilita, d'Archiac, is included by Zittel and by G. Müller in O. vesicularis, and the latter points out its probable close connection with O. biauriculate, Lamarck. The type of O. prolnsciliea from the Santonian of Saintes, Dordogne, is not cquite satisfactory, but most of the specimens figured by Coguand seem to he inseparable from O. vesicularis.

The grypheate forms of O. resicularis have been usually placed in the "genus" diryphica, and the hippopulinm forms in Ostren; in the case of this species, at any rate, " (rryphica" cannot be accepted as a genus. ${ }^{1}$

In the Lower Chalk (Plate LV, figs. 8, 9) a small grypheate formº varying only to a small extent in dimensions is common and is not usually associated with larger forms; the uniformity in size and character of this form at first give the impression that it may be a distinct variety, but comparison with the small forms of O. cesicularis from the Upper Chalk (figs. 166, 167) shows that they cannot be separated; their small size was probably due to local conditions. Further, it may be noted that in earlier beds (the Upper Greensand) large forms of both the grypheate and hiphoporlium types occur (figs. 143-145), and are indistinguishable from those found in the Upper Chalk. Some rather small grypheate forms are also found in the Gault and Cambridge Greensand, and also forms with all or the larger part of the left valve attached, but they are not common in the Gault.

A few specimens of a small oyster have been found in the Lower Greensand of Atherfield and Shanklin, and show the fine radial ribs on the right valve ${ }^{3}$; some of these, and probably all, are examples of O. cesiculuris, but the left valves are not, in all cases, well preserved. ${ }^{+}$

Remaks.-O. rosirularis attains its greatest development in the zones of Bolemnitella mucromata and Ostica lunuta in this country, where the grypheate forms are abundant and reach a large size. The form with the posterior winglike projection (figs. 174-179) occurs mainly in the zone of B. mucronatu. O. resicularis has been observed attached to sponges, corals, echinoids, oysters, Inureramus,
 and the wide geographical distribution of this species have already been noted by Hennig and other authors.

T!!pes.-O. vesicularis, Lamarck, and O. deltoider, Lamarck, from the Upper Chalk of Meudon. Gryphera globosa, Sowerby, from the zone of Brleminitrla

[^64]mucrumetce of Norwich, is in the British Musemm. O. hipropodimm, Nilsson, from the Upper Chalk of Kopinge, is in the Lund Museum. The specimens of O.hipp, pertium figured by Goldfuss from the Cenomanian of Essen, are in the Munich Museum. The examples of O. resiculuris figured by William Smith came from Norwich and are in the British Museum. The original of (iriphixed !luhosi var. depressu, Sowerby (in Dixon), cannot be found; the specimens of Ostien figured by the same author (Dixon, pl. xxviii, figs. 22, 23), from the zone of Ioldster suluighlowsin: near Warminster, are in the British Museum. The specimen figured by S. P. Woodward as O. vesicmlusur from the Upper Chalk of Sussex, is also in that Museum. Ariculn filuth, Etheridge, from the 'lotternhoe Stone of Bu'well, is in the Sedgwick Musemm.

Fig. 182.-Ostren vesicularis, Lam. Zone of Ostrea lumata, 'Trimingham. Dr. Rowe's Collection. Left value. $\times \underset{i}{ }$.

Dist, ibution.-Lower Greensand (Ferruginous Sands) of Shanklin. Gault of Folkestone. Cambridge Greensand. Epper Greensand (zone of Shllwmberliut rostruta) of the Isle of Wight. Upper Greensand (zone of I'retron "sper) of Warminster.
('halk Marl (zone of Shhlwhmehin rurians) of Folkestone, Offham, and Burwell. ('enomanian (Meÿer's bed 11) of Beer Head. Cenomanian Sandstone of Wilmington.

Kone of Itolaster sulylulosis; of (hilcomb) (Hants), Glynde (Lewes), Burham, Arlesey, Ickleford (near Hitchin), Cherry IInton, Burwell, and Isleham.

Zone of Rhyuchonelln ('urimi of the South Devon coast and Dover. Melbourn Rock, Melbourn.

Zone of 'I'rimbintulinu luth of the South Devon coast, Dover, C'uxton, Charing, and Beachy Head.

Zone of Holtstr, phtum: of Mupe Bay, Borstal, West Wratting, Chereley, and swafflam (Norfolk).

Zone of Miernstor ror-trstudinurimu of Borstal Manor, Chatham, and Stevenage.
Zone of Mirrester con-ctufuiumm of Witherington, Quidhampton, (amp Hill (near Salishury), Northfleet, Gravesend, and the Thanet coast.

Zone of Morsunitess testudinurius of the Thanet const. Tiuturvinns band of Devizes Road (Salisbury).

Zone of Arfinurmure quadratus of Whaddon, East and West Harnham, Fareham, Shawford, and Bishops Waltham.

Zone of limemuitrille murromita of the Dorset coast and Norwich.
Zone of Ostiert liunta of Trimingham.

Osmea vesicuosa (Smerly), 1892. Plate LX', figs. 10-14; Plate LVI, fig. 1.

> 182.2. Gryphea vesiculosa, J. Sourerly, Min. Conch., vol. iv, p. 93, pl. ceclxix. : 1847. Ostrea tasculum, A. d’Archiac. Mém. Soc. gréol. de France, ser. 2, vol. ii, 1. 312, pl. xvi, figs. 5, 6.
> 1849. Gryphea vesiculosa, T. Brom. Illustr. Foss. Conch. Gt. Brit. and Ireland, p. 149, pl. lxi, figs. 8, 9
> 18:0. Ostrea vesiculosa, E. Guívanger. Bull. Soc. góol. de France, ser. 2. vol. vii, p. 802.
> 1854. Gryphea vesiculosa, J. Momis. Cat. Brit. Foss., ed. 2, p. 168.
> : 1868. Ostrea columba, A. Briart and F. L. Cornet. Meule de Bracyucguies (Mím. cour. et Mím. des Sar. ćtrangers, vol. axxiv), p. 46, pl. iv, figs. 13-15.
> 1869. - vesiculosa, H. Coquand. Mon. Ostrea, Terr. Crét., p. 152, pl. lix, figs. 4-7.
> 1871. - - F. J. Pictet and G. Cumpiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 311, pl. excir, figs. 1-6.
> - (fryphea vesiculosa, F. Stoliczlia. Paleont. Indica, Cret. Fauma S. India, vol. iii, p. 4t66, pl. xxxix, firs. 1, …
> 1882. - - G. Seguenza. Atti R. Accaul. Lincei, ser. 3, Cl. Sci. Fis. Math., vol. xii, p. 182, pl. xix, fis. 2.
> 1890-31. Ostrea vesictlosa, A. Perm. Descript. Brach., ete., Terr. Cr'́t. T'unisie, p. 126 .
> 1! (1:3. - - R. Fortan. Bull. Iust. Fryptien, ser. 4, vol. iv, p. 릉.
xxy, p. 609.

Descriphion.-Left valve usually thick, very convex, grypheate, more or less oval, height usially considerably greater than the length; slightly or moderately inequilateral, sometimes with a rounded ridge extending from the umbo to the postero-ventral extremity. l'osterior part often convex and separated from the remainder of the valve by a furrow. Umbo sharp, prominent, more or less incurved, and usually with a small posterior curvature; surface of attachment generally small. Area and ligament-pit high, straight or with a small backward curvature. Adductor impression oval or rounded. Right valve thin, concave. Surface of both valves smooth, except for growth-lines.

Itfintios.-This species is closely allied to 0 . resicmlaris, but the umbo is more pointed, usually less incurved and with a smaller attached surface; the area is higher, and usually the height of the shell is relatively greater in proportion to its length. Most of these differences are probably to be accounted for by the small size of the attached surface.

T'!pe-From the Upper Greensand of Warminster, in the British Musemm.
Distribution.-Upper Greensand: common in the zone of Schlombuchich matirtin of Ventnor, Warminster, Dinton and Potterne; rare in the zone of l'ecten "sper, of Ventnor, Warminster, and Ballard Down (Swanage). Chloritic Marl of C'ompton Bay, Isle of Wight.

Onthen ravalecata (Nomerby), 1s13. Plate LVI, figs. 2-16.
1813. Chama canaliculata, J. Sumerby. Min. Cunch., vol. i, p. 68, pl. xxvi, tig. 1 (non Ostrea canaliculata, Suwerby.)
18:1. Ostrea canaliculata, M. J. L. Defrunce. Dict. Sci. nat., vol. xxii, p. 26.
1827. Ostrea lateralis, S. Nilssm. Petrific. Suecana, p. 29, pl. vii, figs. 7-10.

- Chama conica, Nilsson. lliel., p. 28 , pl. viii, tig. 4.

1829. Gryphfa canaliculata, J. de C. Somerby. Min. Conch., vol. vi, p. 르․

- Exogyra undata, Somerby. Ibid., vol. vi, 1. 220, pl. dev, figs. 5-7.

18:33. Ostrea lateralis, A. Goldfuss. Petref. Germ., vol. ii, p. 24, jl. Ixxxii, fir. 1.
1834. Gryph.fa vomer, S. G. Morton. Synopsis Orgauic Remains Cret. U. States. p. 54 , pl. in, fig. 5.

18:37. Ostrea lateralis, W. Hisimger. Lethea Suecica, p. 46, pl. xiii, fig. l.

- Amphidonte undata, G. G. Pusch. Polens Paliiont., p. 39.

184… Exogra parvula, A. Legmerie. M'm. Soe geol de France, set. : , vol. v. 1. 17, pl. xii, tiss. 8, 9 .

1E45-6. Ostrea lateralis, H. B. Geinitz. Grundriss il. Verstein., p. 480, p. xa, fig. 2.
18th. Exuiyba lateralis, A. E. Rorme. Die Verstem. der bühm. Kreideformat., pt. 2, p. 42, pl. xxvii, firs. 38-47.
1847. Ohtrea canaliculata, A. TOdigny. Pal. Frame. Terr. Crit., vol. iii. p. 709, ple ceclexi, tigs. 4-8.
1847. Exogyra lateralis, J. Mifler. Petref. der Aachen. Kreidef., pt. 1, p. 40. 1849. Gryphfa undata, T. Brown. Illustr. Fuss. Conch., Gt. Britain and Ireland, p. 149, pl lx, figs. 14. 15.

- - canalicllata, Brown. Lbid, p. 149, pl. Ixi, fir. 18.

1850. Ostrea canaliculata, A. OORligmy. Prodr. de Pal., vol. ii, pp. 139, 17い. 255.
: 185\%. - cyrtoma, K. Kıer. Denkschr. Akal. Wissensch. Wien, Math. nat. Cl.. vol. iii, p. 320, pl. xvii, fis. 11
1851. - canaliculata, F. J. Pietet and W. Ronx. Moll. Foss. Gres verts de Genere, pres. pl. l, fig. ${ }^{2}$.
1852. - - J. Marris. Cat. Brit. Fuss., ed. 2, p. 173.

- Exogyra lateralis, Morvis. Ibid., p. 167.

1863. Ostrea lateralis, A. c. Strombeck. Zeitschr. d. deutsch. geol. Gesellsch., vol. xr, p. 110.

- Exogrra lateralis, M. Drescher. Ibd., vol. xp, p. 357.

1867. Ostrea lateralis, B. Lundgren. Palwont. Iakttig. Fiixekalk. Limhamu. p. 3.3
1868. Exogyra lateralis, E. Eichuchld. Lethea Rossica, vol. ii, p. 398.
1869. Ostrea canalicllata, II. Comuand. Mon. Ostrea, Teit. Crét., p. 1:8. pl. xlv, figs. 13, 14 ; μ l. xlrii. fiss. $7-10 ; 1^{l}$. lii, fig. 1:3; pl. 1x. figs. 13-15.

- -- lateralis, C'omend. Ibid.. p. 96, pl. xxiii, fig. 10; pl. xax. fiss. $10-14$.
187.. Exogyra lateralis, F. R"̈mer. Geol. v. Oberschles., p. 341, pl. xxix. figs, 4, 5 .
? - Ostrea lateralis, H. C'reduer. Zeitschr. d. deutsch. geol. Gesellsch.. rol. xxii, p. 228 .
1s71. - canaliculata, F'. J. Pictet aml G. C'mmiche. Foss. Terr. Crít. Ste. Croix (Matér. Pal. Suisse, ser. 5). p. 305 , pl. cxciii. firs. 4-14.
- Exogyra canaliculata, F. S'fliczke. l'alieont. Indica, Cret. Fauna S. India, vol. iii, p. 463, pl. xlviii, figs. 6-8.

1872. Ostrea (Fxogra) hateralis, H. B. Geinita. Das Elbthalgeb. in Sachsen (Palæontographica, vol. xx, pt. i), p. 179, pl. sli. figs. 28-35: pt. ii, pl. viii, figs. $15-17$.
1873. Exogyra laterahis, A. Fritsch. Stud. im Geb, bühmisch. Kreideformat., ii, Weissenberg. u. Malnitz. Schicht.. p. 140, fig. 136.
1874. Ostrea lateralis, J. Gusselet. Esquisse géol. du Nord, pl. xvii, fig. 14.
1875. Exogyra lateralis, H. Schröder. Zeitschr. d. deutsch. geol. Gesellsch.. vol. xxxir, p. 261.
1876. Exogyra canaliculata, G. Seguenze. Atti R. Accad. Lincei, ser. 3, Cl. Sci. Fis. Math., vol. xii, p. 1 i6.
1877. - Lateralis, Frifgeh. Op. cit., iii, Iserschicht., p. 118.
? 1887. - cf. lateralis, F. Frech. Zeitschr. d. deutsch. geol. Gesellseh.. vol. xxxix, p. 153.
1878. Ostrea canaliculata, A. Peron. Hist. Tery. de Craie S.E. Bansin Auglo-Parisien, p. 175.

- Exogrra canaliculata, G. Miller. Jahrb. d. I. preuss. geol. Landesanst. fïr 1887, p. 401.

1889. Exogyra latelalis, Fritsch. Op. cit., iv, Teplit\%. Schicht., p. 86.

- Ostrea (Exogyra) lateralis, O. Grippenkerl. Senon r. Künigslutter (Palæont. Ablandl.. vol. iv), p. 36.
- Exogyra lateralis, E. Helzapfel. Die Mollusk. Aachen. Kreide (Palæontographica, vol. xxxv), p 256.
1890-91. Ostrea canalictlata, A. Peron. Descript. Brachiop., etc., Terv. Crít. Tunisie, p. 163.

1893. Exogyra lateralis, Fritsch. Op. cit., Priesen. Schicht., p. 102.
1894. Ostrea lateralis, A. Hemig. Geol. Fören. i Stuckholm, Forlamadl., vol. xvi, p. 513.
189a. - (Exogira) laterafis, F. Voyel. Holliandisch. Kreide, p. 13.
:- Exograa of. canaliculata. E. Tiessen. Zeitschr. d deutsch. qeul. Gesellsch., vol. xlrii, p. 465.
1895. Ostrea canalicllata, A. J. Jukes-Brourne and IV. Hill. Quart. Juurn. Geol. Soc., vol. lii, p. 149.
1896. - lateralis, A. Hemuig. Kevision Lamellitr: i Nilssun's 'Petrit. Suecana,' p. 23.

- Exogyra lateralis, Fitech. Op. cit., vi, Chlomek. Schicht., p. 6is.
- - \quad - Leomhard. Palæoutographica, vol. sliv, p. 0 0.
- - - A. Rutot. Bull. Soc. Belge Géol. Pal. et Hydrol., vol. x, p. 27.
- - canalictlata, R. B. Nertom. Proc. Dorset Nat. Hist. aul Antic. Field Club, vol. xviii. p. 91, pl. iii, figs. 7, 8.

1896. Ostrea canabicllata, R. Fortan. Bull. Inst. Fgyptien, ser. 4. sol ir. p. 29.2 .

- Exogyra lateralis, G. Mifler. Mollusk. Untersen. v. Braunchweig u. Ilsede (Ablandl. d. k. preuss. geol. Landesanst., N.f., 25), p. $1^{5}, \mathrm{p}^{11}$. iii, fig.. .

-	-	-	O. M. Reis. (ienguost. Jahresh. (189\%). p. 108.
1001	-	-	A. Wollemann. Jahrb, d. k. preuss. geol. Landesanst. vol. xxi, p. 14.
-	-	-	H. Imkeller. Palæontographica, vol. xtriii, $\mathrm{p}^{\text {, } 38 .}$
1902.	-	-	J P.J. Rorn. Mollusk. i. I anmarks Kidtaflej. I. Lamellibr., p. 11 .

Instription.-Shell generally rather small, usually higher than long, very inequivalve.

Left valve very convex or inflated; the greatest convexity is between the monlo and the postero-ventral extremity, and grives in some cases the appearance of a much rounded carina, behind which the valve is either flattened or slightly concave; sometimes there is a posterior wing-like expansion. The rentral margin is rounded; the lower part of the posterior margin is often slightly concave, ending above in a point. C'mbo ustally much incurved, and directed posteriorly. The ligament pit usually curves posteriorly. This valve is attacherd posteriorly to the umbo; the size, shape, and direction of the attached surface rary in different individuals, and affect the form of the shell in the usual way. 'The surface of the shell shows growth-lines, and in some specimens there are numerous, fine, somewhat irregular ridges ruming parallel to the margin of the valve. In the interior of the valve a few widely separated growthritges occur.

Right valve operculiform, nearly flat, or concave or undulating. U'mbo very small, curving spirally forwards. Surface with widely separated ridges ruming parallel to the margin of the valve.

Affinities.-'The Albian and Cenomanian examples of this species were regarded by Coquand as distinct from those found in the Upper Chalk and named O. literoulis by Nilsson; but d'Orbigny, Geinitz, Peron, Jukes-Browne, and Hemig have shown that the forms named luternlin camot be separated from those which occur in earlier beds (rumbliculata). Peron states that on the ('ontinent this species ranges without interruption through all the stages of the Cretaceous, from the Aptian to the Damian; he also notes its wide geographical distribution. 'This species belongs to Comrad's "genus" Girypheostrea; it has been referred to "iryphew by some writers, but more usually to brogyra; the left valve, except for the attached surface, is often grypheate in form, while the right valve shows some resemblance to Vicuy!rit. Pictet and Campiche consider that O. canaliculatin is closely related to Kirng!ra conica; but it seems more probable that it is allied to
O. resimblaris, the differences being accounted for by the attached surface in the former being on the posterior side of the shell.

The form with well-developed concentric ridges (Plate LVI, fig. 10), which is abmant in the zone of Arfimertamer quadratus, but ranges from the zone of
 lutu var. strinta. ${ }^{1}$

T!y me-Chama romulimhtu, Sowerby, from the Upper Greensand of Shute, near Warminster, is in the British Museum. O. Intorilis, Nilsson, is from the Upper Chalk of Sweden. Chrmu conica, Nilsson, from the Upper Chalk of Kopinge, Sweden. Eirou!!ren unlitu, Sowerby, from the Upper Greensami, Blackdown, cannot be found.

Sistribution.-Hythe Beds (Bargate Stone) of Godalming. Lower Greensand of Faringdon and Brickhill.

Gault of Folkestone and Okeford Fitzpaine. Lpper Greensand (zones of Schtombachia rostrata and Pectr" "sper) of the Isle of Wight (Ventnor, Niton, Compton Bay). Upper Greensand (zone of Schlmburchim rostrinta) of Blackdown. Upper Greensand (Rye Hill Sands) of Warminster.

Chalk Marl (zone of Schlumbuchin rarians) of Chiseldon. Cenomanian of Wilmington, Devon. Zone of Holuster suliglolessus of Fulbourn and Burwell.

Zone of Rhymchonellu E'ucieri of Harvet (Kent). Melhourn Rock of Hitchin.
Zone of Treblratmlina latr of Hampshire, the South Devon coast, and Dover.
Zone of Holaster plamus of Culver Cliff and Dorer.
Zone of Microster ror-testulinarimm of Pinhay, Borstal, Seaford and Dover.
Zone of Mirraster cor-an!"inm". of Quidhamptom and Northfield.
Zone of Marsupites testulinariuns of Taplow. Tiuturrinus band of Devizes Road (Salisbury), Holmwood Park (Keston), and the Thanet Coast.

Zone of Actimormmire qumdratn: of East and West Harnham, Whaddon, Marwell (Hants), Compton, Shawford, Fareham, West Meon, Mottisfont, Taplow and Brighton.

Zone of Belcmintrelln minroumtu of the Dorset Coast, Rogers Whiting Pit (Fareham) and Alderbury well.

Zone of Ostiren lumatio of Trimingliam.
 Plate LXIII, figs. 1-5. 'Text-figures 18:)—10:3).
 fige. : (Nom. Ostran ambitio. Burn. 175:

[^65]| 18\%\% | - | semiplana, J. de C. Souerby. Min. Couch., vol. v, p. 144. pl. cecelxyxix, fig. 3. |
| :---: | :---: | :---: |
| 1-20. | | flabelliformis, S. Nilsom. Petrific. Suecada, p. 31, pl. vi, fig. 4. |
| | - | plicata, Nilsom. Ibid., p. 31, pl. vii, fig. l2. |
| -- | - | pusilla, Nilsoon. Ibid., p. 32, pl. vii, fig. 11. (Nou pusilla, Brocchi, 1814.) |
| 18:3:3. | - | alaformis, S. Wooduard. Geol. Norfolk, p. 48, pl. vi, figs. 1-3. |
| - | | inequicostata, Wooderard. Ibid., p. 48, pl. vi, fig. 4. |
| - | - | flabelliformis, A. Goldjuss. Petref. Germ., vol. ii, p. 12, pl. lxavi, fig. 1. |
| -- | - | sulcata, Goldfuss. Ibid., p. 13, pl. lxxvi, fig. 2. |
| | - | armata, Goldfuss. Ibid., p. 13, pl. lexvi, fig. 3. |
| 18:37. | -- | flabelliformis, W. Hisinger. Lethea Suecica, p. 48, pl. xiv, fig. 1. |
| | -: | plicata, Hisinger. Ibid., p. 48, pl. xiv, fig. 2. |
| 18:37. | | inconstans, F. Dujumlin. M'em. Soc. géol. de France, vol. ii, p. 229. |
| 18.39 | | flabelliformis, H. B. Geinitz. Char. d. Schicht. u. Petref. des sächs. Kreidegeb., pt. 1. p. 19. |
| 184. | - | F. A. Rïmer. Die Verstein. d. nord-deutsch. Kreidegeb., p. 45. |
| - | - | lcata, Rimer. Ibid., p. |
| | - | armata, R"̈mer. Ibid., p. 46. |
| 1843. | - | macroptera? H. B. Geinitz. Die Verstein. von Kieslingswalda, p. 17, pl. iii, figs. 22-24. |
| | - | selcata, Geinitz. Ibid., p. 17. |
| $18+6$. | - | - A. E. Reuss. Die Verstein. der böhm. Kreidefurmat., pt. 2, p. 39, pl. xaviii, figs. 2-4, 8. |
| -- | - | ftabelliformis, Reuss. Ibid., p. 39, pl. xuriii, figs. 5-7, 16, pl. xxix, figs. 19, 20. |
| $1 \times 4 \%$ | - | semplana, A. dOrbigny. Pal. Franc. Terr. Crét., vol. iii, p. 747, pl. cecelxxxviii, figs. 4, 5. |
| - | - | flabelliformis, J. Mïller. Petref. der Aachen. Kreidef., pt. 1, p. 39. |
| | | armata, Meller. Ibid., p. 39. |
| 1849. | - | semiplana, T. Brorm. Illustr. Foss. Concl. Gt. Britain aud Ireland, p. 145, pl. lix, fig. 7. |
| | - | in.fequicostata, Brown. Ibid., p. 147, pl. lxi,*, fig. 13. |
| 18.50. | - | semiplana, H. B. Geinitz. Das Quadersindst. oder Kreidegeb. in Deutschland, p. 198. |
| - | - | carinata, J. de C. Solerby, in F. Dirm. Geol. Susses, p. 357 (O. frons, p. 386, ed. 2), pl. xxvii, fig. 9. |

[^66]| $\because 1850$. | Ostrea | semiplana, A. Alth. Geoga.-palaiont. Beschreib. v. Lembers (Haidinger's Naturwiss. Abhandl., vol. iii, pt. 6), p. 254 , pl. xiii, fig. 2. |
| :---: | :---: | :---: |
| 1851. | - B | Bronni, J. Miller. Petref. der Auchen. Kreidef., pt. 2, p. 69, pl. vi, fig. 20. |
| 18.54. | - | semplana, J. Morris. Cat. Brit. Foss., ed. 2, p. 174. |
| | - | in.equicostata, Morris. Ibid., p. 173. |
| 1859. | --- | semiplana, J. Mïller. Petref. der Aachen. Kreidef., Supplement, p. 7. |
| 1863. | - | R. Drescher. Zeitschr. der deutsch. geol. Gesellsch., rol. xv, p. 356. |
| -. | - | sulcata, A. Kunth. lbid., vol. xv, p. 732. |
| 1868. | - | flabelliformis, E. Eichuedld. Lethæa Rossica, vol. ii, p. 368. |
| 1869. | - | semiplana, H. Coquand. Mon. Ostrea, Teir. Cret., p. 74, pl. xxriii, figs. l--15; pl. xxxy, figs. 1, 2 ; pl. xxxviii, figs. 10-12. |
| - | - | cuculus, Coquand. Ibid., p. 52, pl. xrii, figs. 19-21. |
| | - | licheniformis, Coquand. Ibid., p. 91, pl. xxxvii, figs. 17-19. |
| - | - | Merceyt, Coquand. Ibid., p. 93, pl. xxviii, tig. 23; pl. xxix, figs. $8-14$. |
| -. | - | Peroni, Coquamd. Ibid., p. 95, pl. xxxv, figs. 3-5; plaxxviii, figs. 5-9. |
| - | - | acanthonota, Coquand. Ibid., p. 103, pl. xxxviii, figs. 1-4. |
| 1870. | - | sulcata, F. R̈̈mer. Geol. v. Oberschles.. p. 343, pl. xxix, fig. 3. cuculus, C. Schlifter. Neues Jahrb. für Min., ete., p. 951. |
| 1871. | - | $\begin{array}{cc} \text { semplana, F. J. Pirtet and G. Campiche. Foss. Terr. Cr'́t. Ste. } \\ & \text { Croix (Matér. Pal. } \\ & \text { Suisse, ser. } 5 \text {), p. } 321 . \end{array}$ |
| 1872 | - | H. B. Grinitz. Das Elbthalgeb. in Sachsen (Palæontographica, vol. xx, $\mathrm{p}^{\text {t. }} \mathbf{2}$) , p. $\mathbf{2 9}$, pl. viii figs. 8-11, 13. |
| 18:3. | - | flabelliformis, J. I. Lahusen. Foss. White Clialk of Simbirsk (Imper. Russ. Min. Corps Instit.), pt. 2, p. 250, pl. v. fig. 3. |
| 1876 | - | (Aiectryonia) sulcata, D. Brauns. Zeitschr. f. d. gesammt. Naturwiss., vol. xlvi, p. 393. |
| 1877. | - | semplana, A. Fritsch. Siud. im Gebiete der bühm. Kireideformat. ii, Weissenberg. u. Malnitz. schicht., p. 141, fig. 138 . |
| 18\% | -- | sulcata, C. Berrois. Amn. Soc. geol Nord, vol, v, p. 418. |
| 188. | Anectr | yosia sulcata, M. Schrider. Zeitschr. d. deutseh. geol. Gesellsch., vol. xxxir. p. 261. |
| $\because 188: 3$. | Ostrea | semmplasa, Frituch. Op. sit., iii, Iserschicht.. p. 191, fis. 97. |
| | -- | fross, Fritsch. Ihid., p. 121, fig. 96. |
| 1>8.5. | | armata, J. Buhm. Verhamdl. nat. Vereines preuss. Rheinl., vol. xlii, p. 76. |

Jas. Amectryonta crista unollata, Böhm. Ibl., p. 75, pl. i, fig. 1.
1-xn. Ostrea semplana, A. Peram. Hist. Terr. de Craie Bassin Anglu-Parisiem. p. 17%

- Pemosi, Peron. Ibid., I' 180.

	-	sulcata, G. Minler. Jahrb. d. k. preuss. geol. Landesamst. für 1887, p. 400.
1んく!	-	semplana, E. Hulaffel. Die Mollusk. Aachen. Kedide (Palienn- xxviii, figs. 5, 6.
	-	Goldzussi, Holzapfel. Ibil., p. 249, pl. axviii, figs. 8-18.
-	-	Bronni, Holzapfel. Ibid., p. $\mathbf{2} 50$, pl. xaviii, figs. 3-7.
	-	armata, Hulzajpfel. Ibid., p. 253, pl. xxriii, figs. 1, 2.
	-	Merceyi, Holzapfel. Ibid., p. 251, pl. xxviii, fig. 4.
185\%.	-	semiplana, Fritsch. Op. cit., iv, I'eplitz. Schicht., p. 87.
1859.	-	(Alectryonia) sulcata, O. Griepenkerl. Senon r. Königslutter (Palæont. Abhandl., vol. iv). 1. 33.

1K! 9 - 1 - semiplana, A. Peron. Descrijut. Brachiop., etc., Terr. Crát. HautsPlateaux de la Tuvisie, p. 154.
$\div 1843$ - Fritsch. Op. cit., r, Priesener Schicht., p. 102.
1894. - \quad - Lundgren. Mollusk. i Mammillatus och Mucromatı zonerva (K. Srenska Vet. Akal. Haudl., n.f., vol. xxvi, No. 6), 1. 37.

- larva, Lundyren. Ilid., p. 37.
- - semiplana, A. Heunig. Geol. Fören. i Stockholm Förhandl., vol. xvi, p. 514.
- - cuculus, Hemmig. Ibid., p. 516.
18.\%. - Bronns, F. Vogel. Hollandisch. Kreide, p. 7.

189\%. - semiplana, R. Leonhard. Palæontographica, vol. xliv, p. 5l.
: - - Fritsch. Op. cit., vi, Chlomek. Schicht., 1. 68.

- - A. Rutot. Bull. Soc. Belge Griol. Pal. et Hydrol., rol. x, p. 25.
- - (Alectryonia) armata, Rutut. Ibid., p. 23.
- semiplana, A. Henmig. Revision Lamellibr. i Nilsson's'Petrific. Suecana.' p. 9, pl. i, figs. 7, 10-14, 16. $18,19$.

1898. - (Alectryonia) semiplana, O. M. Reis. Geognost. Jahresh. (1897). p. 107, pl. iv, fig. 18.
semiplana, G. Miller. Molluskenfauna Untersen. v. Braun. schweig u. Ilsede, p. 8, pl. i, figs. 1-4: 1). iii, figs. 3, 4.
1899. - A. Wollemann. Jahrb. d. k. preuss. geol. Landesanst., vol. xxi (1900), p. 13.

- -- var. armata, H. Imkeller. Palæontographica, vol. xlviii.

$$
\text { p. 37, pl. i, figs. } 3-6
$$

l! ! : - \quad.f. smmiplana, A. Wollemam. Lüneburg. Fieide (Ahhandl. d. k. preuss. gcol. Ifanilesanst., $\mathbf{N} . \mathbf{k}$., 37), 1. 49.

Insictition.-Form of shell extremely rariable, depending on the shape, size and position of the surface to which the left valve is attached. In many specimens the shell was fixed to a cylindrical object (Demmitrillu), but in other cases to a flat or slightly curved surface.

In the larger, fully grown specimens, in which the attached surface is relatively small and mainly in front of the umbones, being either parallel or oblique to the hinge, the shell is more or less triangular, or four-sided, or rounded, and its height is then often greater than its length (Plate LVII, fig. 7; Text-figs. 18:3-192).

When the shell is attached to a cylindrical body the length of which is at right angles to the hinge-line, the height of the shell is, at any rate during the attached stage, much greater than its length, and the front and back margins are more or less nearly parallel (Plate LVII, figs. 8, 12), but subseguently the postero-ventral part may grow in a posterior direction (Plate LVII, fig. 11). When the length of the attached body is parallel or nearly parallel with the hinge-line, and posterior to the umbo, the shell becomes much longer than high and extremely inequilateral (Plate LVII, figs. 1-:3). If the attached surface is directed obliquely backwards from the umbo the shell becomes oblique and inequilateral. In small specimens having a very small attached surface the shell becomes sickle-shaped and the two ralves similar in form (Plate LVI, fig. 18).

During the period in which the left valve is attached to a cylindrical object the corresponding part of the right valve takes a similarly convex form and remains without folds; when the left valve is attached to a flat or slightly curved surface

Figs. 18:3-152-Ostrea semiphana, Sowerhy. 183-190, Zone of Betemitella mucronata, Norwich. 183-185, right valve, and interior and exterior of left valve of one individual; Norwich Museum. 186, 187, left and right valves of one individual; Sedgwick Museum, 188, left valve (the right valve is concare); Sedgwick Museum. 189, 190, left and right falves of one individual; Norwich Muscum, No. 2101. 191, 192. Zone of Actinocamax quadratus, East Harnham. Dr. Blackmore's Collection. Exterior and interior of a right valve. All $\times \mathrm{B}$.
the corresponding part of the other valve is nearly flat and smooth (Plate LVIII, figs. 3-5). In the larger specimens with a relatively small attached surface the left valve (fig. 188) is more convex than the right, the latter becoming in some cases nearly flat or even concare. The free part of the shell develops folds. When the attached surface is relatively small the greater part of both valves possesses strong radial folds which interlock at the margin of the valves. The folds have more or less rounded summits, sometimes with small pointed projections, which occasionally develop into spines. The interspaces are usually broader than the folds. Well-minked growth-lines rum parallel to the folded margin of the valves.

When only the margin of the shell is free no folds are developed, but the edge of the shell becomes toothed (Plate LVII, fig. 12) ; when a narrow strip is free numerons small folds appear on it (Plate LVII, fig. 13; Plate LVIII, figs. 14), forming a corrugated border to the smooth attached part of the shell. Occasionally, even when the greater part of the shell is free the folds are indistinct (figs. 18:3-185, 191). The direction of growth of the umbo, area, and ligamentpit rary according to the position of the attached surface; they may be in the plane of the valves, or curve inwards or outwards, sometimes becoming nearly. perpendicular to the plane of the valves of the adult shell. The ligament-pit, area and umbones may be at right angles to the length of the shell, or may curve obliquely backwards or occasionally forwards. In some cases the area and ligament-pit are higher than long, in others longer than high.

The inner margin of the valses near the umbo often shows crenulations or minute irregular ridges. The form of the adductor impression varies with that of the shell; it is vertically elongated when the shell is high, and more rounded when the shell is longer.

A!finities.-A number of the different forms of this shell have been described as distinct species, since many writers have failed to recognise that the mode of growth of the shell is determined mainly by the character and position of the attached surface. The small sickle-shaped form (Plate LVI, fig. 18), with only a small surface of attachment and the two valves similar, was named O. pusill, ly Nilsson (1827), ${ }^{1}$ O. alatiormis by Woodward (18:3:3, pl. vi, fig. 1), and O. Goldfussi by Holzapfel (1889). Small forms which were attached for a longer period to a cylindrical object directed more or less nearly perpendicularly to the hinge (llate LVII, figs. 8-11, Plate LVIII, figs. 1, 2) and with the margin of the valse folded and sometimes extended postero-ventrally were named 0 . alaformis by Woodward
 A form in which the shell was attached to a cylindrical object throughout except

[^67]at the actual edge, which is toothed (Plate L'II, fig. 12), was named 0. Mroctili hy Connand (1869). ${ }^{1}$ Specimens which were attached to a flat olject for a long period (Plate LVIII, figs. :3-5) were figured as 0. "haformis by Woodward (18:3: , $\mathrm{p}^{\prime \prime}$. vi, fig. :3) and 0 . semiplem by Sowerby (1825 , the smaller figure). Larger forms with a relatively small portion of the anterior part of the shell attached to a crlindrical object and with well-developed folds, were named O. inaruicostuta
 by Nilsson (18:3:3), ${ }^{3}$ and 0 . semiphan by Sowerby (180.5, the larger figure) (Plate LVII, fig. $\overline{7}$; Text-figs. 186, 187, 193). The forms like O. alagiormis and O. Mercer, i are common in the upper zones. O. craiumta, Sowerly (in Dison, 1850), is a young form of 0. srmipltu". O. "rmeth, Goldfuss, is recognised by Coquand and by Miuller as a form of 0 . srmith, mu in which the ribs have become spiny. 0 . lichrmiormis, Coguand, is a form in which the valves have a rounded outline.

Flli. 193.-Ostrea semiplenu, Sowerhy. Zome of Belemaitelle murronala, Hartford Bridge, Norwieh. Dr. Kowes collection. Exterior and interior of a left valve. \times.
O. cranitumotu, Coguand, is a large form in which the ribs tend to become spiny. (1. arcotim", Stoliczka, is closely allied to, and may be, as maintained by leron, identical with O. semiplenu. O. Reboudi, Corpuand ($=$ O. plicutuloides, Coq.) and 1). Junus, Confuand, are regarded by Peron as forms of O. semiphtun.

The close resemblance between the crenulations on the imner margin of the dorsal part of the valves in O. semiplame and in O. cosicularis, and the occasional presence of fine radial ribs on the right valve of 0 . seminhtu", suggest that these two species are rather closely related.
liomulis.-The radial folds are usually stronger in examples from the zone of Bermuitellu mucrouatic tham in those from the lower zones. Occasionally the left umbo is exogyriform (Plate LVII, fig. $1 /$), but this depends merely on the position of the attached surface.
${ }^{1}$ See also Holzapfel (1889) and Wollemann (1902).
2^{2} Henuig (1897), p^{11}. i, fig. 18 .
${ }^{3}$ Hennis (1897), pl. i, fig. 16 .

T!!pes.-Ostucites sulutus, Blumenbach, from the Senoniam of Salzherge near Quedlinburg, is stated by Iemig to be in the Natural Ifistory Museum, Berlin. Ostrea sp. Mantell, from the zone of Mirroster cor-ctu!!"in!"! of Southerham near Lewes, and O. srmiphtum, Sowerby, from the zone of Belrmuitell" murromitn of Norwich, are in the British Museum. (1. "latiomis, Woodward, and O. inequirostutu, Woodward, are from the zone of B. murromitt of Norwich ; the original of fig. :3 of the former is in the Norwich Musem, but the other specimens camot be found. O. carinutu, Sowerly (in Dixon), cannot be found.

Distribution.-Probably zone of Treelwitulinu lata of the South Devon coast.
Zone of IF, lester plamis of the Sonth Devon coast, Froxfield (Hants.), White Hill near Goring, and Hart's Lock Wood.

Zone of Mirroster ror-trstminurimm of Stevenage, Strood, and Chatham.
Zone of Mirvastrir cor-muminm of Micheldever, Witherington, Quidhampton. Foot's Cray, Southerham (Lewes), Northfleet, New Brompton, Gravesend, and Litcham, Norfolk.

Zone of Mrersupites trstuliurrins of Ovinglean (Sussex). Viuturrimus band of Taplow and the Thanet coast.

Zone of Artinocamare guturrutus of East Haruham.
Zone of Belemnitelly murromuta of Ballard Head, Fareham, Clarendon and Norwich.

Zone of Ostiret lumatct of Trimingham.

Ostrei sarcmensis, sp. mor. Plate LVIII, figs. (i-?

Deseription. Whell thick, higher than long; slightly, moderately, or considerable inequilateral.

Left valve very convex, with the attached surface of variable size. Area large, high, curved slightly or considerahly backwards. Free part of ralve with small radial folds, and growth-lamellee. Imer margin with a row of small pits. Right valve slightly convex, with a large area; surface (except of the earlier part) ornamented with numerous small radial ribs separated be linear furrows, and crossed hegronth-lamellae.

Atpinities. -The high area and the malial folds of the left valve sugerest that
 O. Bencheromi. More specimens are needed in onder to determine satisfactorily the affinities of this form.

T'! ! $p^{\prime \prime}$. In. Dr. Blackmores collection.

Ostibi ncurvi, Vilssom, 1897. Plate LVIII, figs. 10-13. Plate LIX.
1897. Ostrea incerva, S' Nilsson. Petrif. Suecana, p. 30, pl. vii, fig. 6.

- - curvirostris, Nilsson. Ibid., p. 30, pl. vi, fig. 5.
- - acutirostris, Nilsson. Ibid., p. 31, pl. vi, fig. 6.

1833. - curvirostris, A. Goldfuss. Petref. Germ., rol. ii, 1. 24, pl. Ixxsii, fig. 2.

- - acutirostis, Goliffuss. Ibid., p. 25, pl. lxxiii. fig. 3.
- - triangularis, S. Wooduard. Geol. Norfolk, 1. t8, jl. vi, figs. $6,7$.
18:37. - acutirostris, W. Hisinger. Lethxa Suecira, p 47, pl. xiii. fig. 6.
- - curvirostris, Hisinger. Ibid., p. 48, pl. xiii. fig. 7.
- - incurva, Hisinger. Ibid., p. 47, pl. xiii, fig. 5.

1847. - acutirostris, A. dOrbigmy. Pal. Franc. Terr. Crét., vol. iii, p. $\mathbf{7} 30$. pl. cecclxxxi, figs. 1-3.
1848. - triangularis, T. Broum. Illust. Foss. Coucl. Gt. Britain and Ireland, p. 148, pl. lxi*, figs. 9. 10.
1849. - curvirostris, A. d'Orbigny. Prodr. de Pal., vol. ii, p. 255.

- - acutirostris, d'Orbigny. Jhid., p. 256.
- - curvirostris, A. Alth. Geogn.-pal. Beschreil. v. Lemberg (Hailinger's Naturwiss. Abhandl., vol. iii, $\mathrm{p}^{\mathrm{t}} .2$), p. 254 , pl. xii, fig. 3x.
- - acutirostris, Alth. Ibid., p. 254.
- - - , Curvirostris, J. Mimris. Ciat. Brit. Fuss., ed. 2, p. 173.

1859. -- curvirostris, J. Miller. Petref. Aachen. Kreileformat., Supplement, p. 7.
1860. - F. Eichuald. Lethæa Rossica, vol. ii, p. 384.
1861. - - H. Coquemd. Mon. Ostrea, Terr. Crét., p. 67, pl. xxxv, figs. 16-20.

- - acutirostris, Compand. Ibid., p. 75, pl, xxxv, tigs.8-15, pl. xxxvi. figs. 1-5.
- - trinacria, Coquend. Ibil., p. 64, pl. xxxp, figs. 23, 24.
\div 1870. - acutirostris, H. Cheduer. Zeitschr. il. deutsch. geol. Gesellsch., vol. xxii, p. 297.

1869. - curvirostris, E. Fucre. Moll. Craie de Lemberg., p. 162.
: 1871. - acutirostris, F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, 1. 471 , pl. xlv, figs. 1-6.
1870. . Curvirosicris, G. Behiens. Zeitschr. deutsch. geol. Gesellsch., vol. $\mathrm{xxx}, \mathrm{p} .260$.
1<81. - acutirostris, R. Efheridgr. In Penning and Jukes-Browne, Geol. Cambridge, p. 146, pl. iii, figs. 5, 6.

81.		acutirostris var. inflexa, Etheridge. Ibid., p. 146, pl. iii, Ggs. $7,8$.
1888.	-	curvirostris, A. Peron. Hist. Terr. de Craie S.E. Bassin AngloParisien, p. 173 (partim).
1889.	-	0. Griepenkerl. Senon. v. Königslutter (Palæont. Abhaudl., vol. iv), p. 34, pl. ii, fig. 1.
1891.		J. Bühm. Palæontographica, vol. xxxviii, p. 92, pl. iv, fig. 5.
		acutirostris, Bülm. Ibid., p. 92, pl. iv, fig. 11.
1894.	-	B. Lundgren. Mollusk. i mammillatus och mucronata zonerna, p. 39.
	-	irostris, Lundgren. Ibid., p. 40.
	-	miensis, Lundgren. Ibid., p. 40.
	-	curvirostris, A. Hennig. Geol. Fören. i Stockholm Förbandl., vol. xri, p. 514.
	-	acutirostris, Hemnig. Ibid., p. 514.
1895.	-	urvirostris, F. Vogel. Hollindisch. Kreide, p. 5.
	-	acutirostris, Fogel. Ibid., p. 5.
		scaniensis, Vogel. Ibid., p. 6.
1897.	-	incurva, A. Hennig. Reris. Lamellibr. i Nilsson's "Petrif. Suecana," p. 11, pl. i, figs. 15, 17, 2123, 25-28.
-	-	acutirostris, F. Nïtling. U. Cret. (Maestrichtian) Mari Hills (Palæont. Indica, ser. xvi, rol. i), p. 37, pl. ix, figs. 1, 9.
1899.	-	G. de Alessandri. Palæont. Italica, vol. iv, p. 198.
1901.	-	eurvirostris, H. Imkeller. Palæontographica, vol. xlviii, p. 37.
-	-	actitrostris, Imkeller. Ibid., p. 37.
? 190\%.	-	A. Quaas. Palæontographica, vol. xxx, 2, p. 184, pl. xxi, fig. 11.
-	-	- E. Dacqui. Ibid., p. 363.
-	-	curva, J. P. J. Raun. Mollusk. i Daumarks Kridtaf., I, Lamellibr. p. 112, pl. iii, fig. 4.
1906.	-	E. Bïse. Senon. Círdenas (Bol. Inst. geol. México, No. 24), p. 42, pl. i, fig. 5.
1908.	-	curvirostris, A. Peron. \quad Compte Rendu Assoc. Franç. Avanc. Sciences, vol. sxxvi (1907), p. 306.
		M. Leriche. Ibid., p. 338 (partim).
19199.	-	incurva, W. Rogala. Bull. Interuat. Acad. Sci. Cracovie (1909), $\because, \text { p. } 691 .$

Destription.-Shell thin, usually higher than long; its form very variable, depending on the character and size of the attached surface.

The left valve is flat when attached throughout to a flat surface; concave when attached to a convex surface; convex when attached to a concave surface or when attached to only a small object near the umbo; irregular when attached to an
irregular surface. When the marginal part is free it grows more or less nearly vertically upwards from the attached surface. When entirely fixed the ralve may be nearly symmetrical, but has usually a posterior curvature; when attached by a small area it usually grows backwards and becomes more or less sickle-shaped. The ligament-pit and umbo are straight in the nearly symmetrical forms; in the curved forms they are bent or arched more or less considerably backwards, but occasionally forwards.
'The right valve is slightly convex when the entire left valve is attached to a flat olject; more convex when it is attached to a convex object; nearly flat when it is attached to a concave object or when attached near the umbo only; irregular and undulating when the attached surface is irregular. The outline of the valve and the curvature of the ligament-pit and umbo vary according to those of the left valve. The surface of the right valve sometimes shows concentric ridges, especially near the umbo, and when well preserved there are numerous, small, irregular, radiating ridges. The imner margin of the valve on each side of the umbo hats small, transverse, somewhat irregular rounded ridges. The form of the adductor impression varies with the shape of the shell.

A!!initios.-Hemnig (1897) has shown clearly that the differences between Nilsson's O. iururre, O. curcirostris and O. arutionstris are due to the mode of growth, which is determined by the character and size of the attached surface; and for this species Hemig selects the name O. incurre.
O. trimumlaris, Woodward, which was named O. trinucria by Coquand, is a form in which the entire left valve is attached to a flat surface; in the type this valve is fixed to a small portion of a large Inoceramu: (Plate LIX, fig. 14). o. drepunon, Wollemann, ${ }^{1}$ closely resembles the forms like O. trianguluris, and should probably be regarded as a synonym of O. incurra. Grimphæa !lobosa, Woodward, ${ }^{2}$ is included in this species by Coquand, but in the absence of the type it is difficult to give a definite opinion. D'Orbigny and Peron also include O. conirostris, Goldfuss. Peron $(1888,1908)$ regards O. Wegmannianu, d'Orbigny, as a form of O. incurcu. O. subuncinella, Böhm, ${ }^{3}$ appears to be closely allied to O. incurtı. O. Rubeluisi, Coquand, ${ }^{+}$from Meudon, resembles closely some forms of 0. inr'ureu (Plate LIX, figs. 12-14), and should probably be included in that species.

Some specimens of O. incura resemble the early parts of O. semiplana before the development of the radial folds.

Types.-Nilsson's types came from the Upper Chalk of Sweden. O. tricumuluris,

[^68]Woodward, from the zone of Belrmuitellu murromth of Norwich, is in the Norwich Museum (Plate LIX, fig. 1f).

Distrilution.-Chalk Marl (zone of Schlaraburluin vurims) of Burham and Dover. ${ }^{1}$
'Totternhoe Stone (zone of Moluster suluglulusitn) of Burwell.
Zone of Rhymelomellu C'miriri of White Nothe (Dorset), Peter's Pit (Burham) and Dover.

Zone of Terebratulinu lutu of Branscombe, Warnford (Hants) and Beachy Head.

Zone of Micicuster cor-nu!uinm of Quidhampton, New Brompton, and Grays.
Zone of MIr*upites testudiumrins of Devizes Road (Salisbury), Taplow and West Wickham. Lintucrinus band of the Thanet coast.
 font, Soberton and Winterbourne (Berks).

Zone of Belemnitelln murromuta of Alderbury, Clarendon and Norwich.

Osirea Boccheroxi, Comuml, 1859. Plate LX, figs. 1-1\%.

18.9.	Ostrea	Bodcheroni,	H. Corua	d. Bull. Soc. grol. de France, ser. 2, vol. xvi, p. 1007.
186.2	-	tevesthensis,	, Coquand.	Geol. Pal. reg. sud. Province Constantine, p. 297 , pl. xix, figs. $7-13$.
1869.	-	Boucheroni,	Coquamel.	Mon. Ostrea, Terr. Crét., p. 85, pl. xxxi, figs. 1-3; pl. sxxvii, figs. 1-16; pl. xxxviii, fis. 20 .
1890-1.	-	-	A. Peron.	Descript. Brach., etc., Terr. Crét. Tunisie, p. 142 .
1898.	-	-	(r. Miller.	Mollusk. Untersen. v. Braunschweig u. Ilsede (Abhandl. d. k. preuss. geol. Landesanst., w.f., 25), p. 11, pl. iii, figs. 5-9.

Drscription.-Shell variable in form, usually considerably higher than long, with the anterior and posterior margins generally diverging gradually from the umbo. Often the shell is more or less nearly symmetrical, but may be irregular, and with the ventral part expanded.

Left valve very convex, with the anterior and posterior parts sloping rapidly from the flank to the margin. 'The flank is flattened or moderately convex. Umbonal region usually narrow and pointed. The attached surface is at the umbo and is usually rather small but sometimes large; when large the height of the shell may be relatively small, and the form of the left valve more or less semi-cylindrical. In
${ }^{1}$ Specimens of Oetrea found in the Upper Greensand of Haldon resemble closely O. incurra.
the larger specimens a posterior wing-like part is developed, and may be separated from the remainder of the valve by a furrow. The surface is marked with growth-rings.

Right valve thin, slightly convex or nearly flat ; umbo small, with the marginal part sometimes growing upwards at a considerable angle with the earlier part. Surface nearly smooth.

I!finitirx.-The English specimens agree closely with the figures given ly Miuller, and fairly well with some of the smaller examples figured by Corquand; but the larger forms, in which the height of the shell is relatively less, have not been found in this country.

Specimens in which the attached surface is larger than usual and the height of the shell relatively less (Plate LX, figs. 14, 15) resemble some forms of 0 . cricnlaris, and there seems to be almost a complete passage between these two species; this resemblance has already been noticed by Peron in specimens found in the Lower Senomian of T'unis.
'The right valve of small specimens is similar to that of the forms of O. incurci" in which the posterior curvature of the umbo is slight.

The form from Tebessa (Constantine), named O. teresthemsis by Coquand, was subsequently identified by that author with O. Bomelleroni, and that identification has been supported by Peron. O. liourilldi, Coquand,' from Algeria, resemble: the forms of (). Boncheromi which have a short and high shell.

Remurk.-In England the specimens now referred to O. Butherioui have been hitherto identified as O. Wegmmmian", d'Orbigny, ${ }^{2}$ but the latter species is regarded by Peron ${ }^{3}$ and by Leriche, as a synonym of 0 . incurr" (p. 388). So far as I have been able to make out the characters of O. We!mannium", from the figures of d'Orligny and Coquand and from the examination of a single right valve, I am inclined to accept the view of Peron and Leriche.
'Ihis species is often gregarious; most of the English examples are of rather small size, and the left valve is much more frequently found than the right valve.

T'yne-From the Lower Senonian of Lavalette (Charente), said to be in the École des Mines, Paris.

Distrilution.-Zone of IIoluster phums of Hitchin. Recorded by Rowe from the Isle of Wight.

Zone of Mirrester cor-rnumuium of Whitway (Hants), Farningham Road, Preston near Faversham, Gravesend, Charlton, and Loam Pit Hill (Lewisham).

[^69]Zone of Marsupites testudiuarius of Farnborough, Ropley, 'Taplow, and Brighton. Recorded by Rowe from the Sussex and Thanet coasts.

Uintacrinus band of Devizes Road (Salisbury) ; Odeham, Alresford, and Itchen Abbas (Hants) ; Margate.

Zone of Atimocamax qutititus of Bullington, Ropley, Wield, Andover, and Rottingdean.

Ostrea lunata, Nilwisou, 1827. Plate LX, figs. 16-19. Plate LXI, figs. 1-6.

16.		$\begin{gathered} \text { canaliculata, } J \text {. Souerby. Min. Conch., vol. ii, p. 81, pl. cxaxr, } \\ \text { fig. } 1 . \text { (Non camaliculata, Sowerby, } \\ 1813 \text {). } \end{gathered}$
18:7.		lonata, S. Nilsson. Petrif. Suecana, p. 31, pl. vi, fig. 3.
1833.		A. Goldituss. Petref. Germ., vol. ii, p. 11, pl. lxsr, fig. ${ }^{\text {2 }}$
1834.		nasuta, S. G. Morton. Syuop. Org. Remains Cret. U. States, p. 5l, pl. ix, fig. 6.
? -		mesenterica, Mortom. Ibid., p. 51, pl. ix, fig. 7.
1837.	-	lunata, W. Hisinger. Lethæi Suecica, p. 49, pl. xiv, fig. 4.
1849.	-	- T. Brourn. Illustr. Foss. Couch. Gt. Britain and Irelaud, p. 147, pl. lxi*, figs. 20, 21.
1854.	-	larva, J. Morris. Cat. Brit. Foss., ed. 2, p. 173.
1869.	-	ungulata, H. Coquand. Mou. Ostrea, Terr. Crét., p. 58 (partim), pl. sxxi, figs. 6-8 (9, 9, 10).
¢1870.	-	lunata, H. C'redner. Zeitschr. d. deutsch. geol. Gesellseh, rol. xxii, p . $2 \boldsymbol{2} \mathbf{2}$.
1884.	-	(Alectrponia) larva, C. A. White. Ostreiday of N. America (th Aun. Rep. U.S. Greol. Surey), p. 296, pl. xlii, figs. 2-5, ? 6 (not 7-9).
1885.	-	larva yar. nasuta, \boldsymbol{K}. P. Whitfeld. Brach. and Lamellibr. Rarit،an Clays (Mon. U.S. Geol. Sure., vol. ix), p. 34, pl. iii, figs. 3, 4.
1894.	-	lunata, A. Hemnig. Geol. Füren. i Stockholun Fürhandl, vol. xu $\text { p. } 515$
1895.	-	(Alectryonia) lenata, F. Toyel. Hollimdisch. Kreile, 1. 111
1897.	-	lunata, A. Hennig. Reris. Latmellibr. i Nilsson's "Petrific. Suecana," p. ly.
1907.	-	nasuta, S. Weller. Cret. Pal. New Jersey, l^{1} 447, pl. xliii, figs 7. mesenterica, Weller. [bil., p. 446, pl. xliii, figs.9-14.

Description. Shell inequivalve, elongated between the umbo and the posterior extremity, curved regularly, usually sickle-shaped.

Left valve moderately or slightly convex, the part near the umbo being more convex than the later part. Embo small, usually curved posteriorly, with, in nearly
all cases, a very minute surface of attachment; on each side of the umbo is a wing-like or car-like extension. The early part of the shell is smooth except for concentric lines or ridges and occasionally fine radial furrows; in the adult the anterior and ventral marginal parts develop broad rounded folds. The stage at which the folding hegins and the size and number of the folds, vary in different individuals. Small folds sometimes occur on the posterior wing-like part. The ligament-pit is sometimes straight but usually curves posteriorly.

Right valve at first smooth and nearly flat, occasionally slightly concave, but afterwards becoming folded like the left valve. Umbo very small.

I!finitim.-Most writers, following the example of Corquand, have united 0. Innut", Nilsson, with O. "uyniut" (Schlotheim), ${ }^{1}$ regarding the former as a young stage of the latter. Hennig (1894,1897) and Vogel (1895), however, do not
! Knorr, ' Recueil. Monum. Castast. Pétrificat.,' rol. ii (1768), p. 130, P. II, pl. Drii, figs. © 6.6. Bruguière, 'Hist. nat. Vers et Mollusques (Euçel. méthod.), Planches,' vol. iv (1827), pl. clxxxsiii, tirs. 4, 5. Faujas-St.Fond, ‘Hist. nat. Mte. Ste. Pierre ' (1799), p. J50, pl. xxiii, fig. 6. Ostracites ""!и"utus, v. Schlotheim, in Leonhard's 'Taschenb. für Min.,' vol. vii, pt. 1 (1813), p. 112; O. crista meleagris, Schlothem, ibid., p.112. O. larva, Lamarck, 'Auimaux sans Vert.,' vol. vi (1819), 1. 216; O. docidella, Lamarck, ibid., p. 210. ? O. falcata, Morton, 'Amer. Journ. Sci.,' vol. xvii (1830), 1. 284 ; vol. xviii (1830), pl. iii, figs. 19,20 . O. larra, Goldfuss, 'Petref. Germ.,' vol. ii (1833), p. 10, pl. lxxv, fig. 1. ? O. falcata, Morton, 'Syuop. Org. Rem. Cret. U. States' (1834), p. 50, pl. iii, fig. 5 Alectryonia acrodonte, Fischer de Waldheim, 'Bull. Soc. Imp. Nat. Moscou,' vol. viii (183+5), p. 116, pl. v, fig. 2. O. larea, d'Orbigny, ' Pal. Franc. Terr. Cr't.,' vol. iii (1847), p. 740, pl. cecclexxvi, figs. 4, 5, $8(? 6,7)$. O. larva, Müller, ' Petref. der Aachen. Kreidef, 'pt. 1 (1847), p. 39. O.tegulane'a, Forbes, ‘Trans. Geol. Soc.,' ser. 2, vol. vii (1846), p. 156, pl. xviii, fis. 6. O. ponticeriana, d'Orbigny, - Voy. Pol. Sud et l'Ocíanie. Atlas Ǵcol.' (1847), , ll. riii, figs. 45, 46. :O. larra?, Kner, ' Kreidemerg. v. Lemberg' (1850), p. 30, pl. v, fig. 4. O. wrogalli, Quenstedt, 'Handb. d. Petrefactenkunde' (1852), 1. 499, pl. xl, fig. 24. O. larva, Beyrich, 'Zeitschr. deutsch. greol. Gesellsch.,' vol. iv (185:2), p. 153, pl. iv, fig. 3. : O. frons, Kuer, ‘Denkschr. Akad. Wiss. Wieu, Math.-nat. Cl.,' vol. iii (1852), p. 319, pl. xvii, fig. 10. ? O. larva, Favre, ' Moll. Foss de la Craie de Lemberg' (1869), p. 160. O. umyulata, Coguand, 'Mon. Ostrea, Terr. Crét.' (1869), p. 58 (partim), pl. xxxi, figs. 4, 5, 12—15. O. (Alectiyouia) unyulata, Stoliczka, 'Cret. Fauna S. India,' vol. iii (1571), p. 470, pl. xlvii, firs. 3, 4. O. larca, Lartet, 'Ann. Sci. griol.,' vol. iii (1873), p. 59. Alectryonia larca, Schröder, 'Zeitschr. d. deutsch. grol. Gesellsch.,' vol. xxxiv (1882), p. 262 . O. (Alectryomia) lara, White, 'Ostreidæ of N. America' (1884), p. 296 , 1^{11}. xlii, figs. 7-9. O. ungmata, Perou, 'Hist. 'I'err. de Craie S.E. Bassin AngloParisien' (1888), p. 178. O. (Alectıyımia) larca, Griepenkerl, ‘Senon. v. Künigslutter' ('Palæont. Abhand.,' vol. iv, 1889), p. 33. O. ungulata, Holzalfel, 'Mollusk. Aachen. Kreide' (Palæonto. sraphica,' vol. xxxv, 18s9), p. 250. Alectrymia unguhata, Newton, 'Quart. Journ. Geol. Soc.,' vol. xlv (1889), p. 333, pl. xiv, tig. 12. O. unyuleta, Peron, 'Descript. Brach., etc., Terr. Cr'́t. 'Iunisie' (1890-91), p. 185. O. ungulatu, Böhm, 'Palæontographica,' vol. xxxviii (1891), p. 91. A. ungulata, Newton, 'Journ. Cunch.,' vol. viii (1896), p. 136. O. (Alectryonia) ungulata, Nütling, 'U. Cret. (Mæstrichtian) Mari Hills' (' Palmont. Indica,' ser. xvi, vol. i, l897), p. 38, pl ix, figs. 4, 5. \% O. cf. larva, Quaas, 'Palæontographica,' vol. sxx, 2 (1902), p. 187, pl. xxi, fig. 12. O. (Alectryonia) ungulata, Boule and Thevenin, 'Annal. Palćont.,' vol. i (1906), p. 48 [6], pl. i, fig. 5. A. larca, Krumbeck, - Palæontographica,' vol. liii (1906), 1. 96, pl. vii, fig. 10. O. (Alectryonia) ungulata, Pethï, ibid., vol. lii (1906), p. 185, pl. xii, fig. 1.
accept this vier, and consider that O. lumte is a distinct species. They hate studied a large series of specimens agreeing with Nilsson's type, and do not find any transitions between O. lumitu and 0. muguluta. After examining a large number of specimens of O. lmatu from Trimingham and comparing them with foreign examples and figures of 0. . m mulirt", I am led to accept the conclusions of Hemig and Vogel. From the character of the margin of the shell these specimens appear to be fully grown individuals and they are not associated with any examples agreeing with Schlotheim's species. In O. wny"latu the early part of the shell resembles the adult of O. lunutu, but subseruently it becomes more elongate and develops much deeper folds on the posterior as well as on the anterior margin, consequently the valves become much deeper and more nearly equal than in O. lunata. Since the folding starts at a later stage in O. lunata than in $O . w_{1} q u-$ lata, it is difficult to see how individuals of the former could ever develop into the latter as has been supposed by some writers.

Some of the small, sickle-shaped forms of O. somiplan show some resemblance to O. lumutu, but their attached surface is usually larger and their folds are smaller. and more numerous and occur on the posterior as well as the anterior margin.

Remarks. - Mr. Brydone has found a few examples of O. lunutu in which the left valve is entirely attached to the surface of echinoids.

T'ypes.-O. cancliculutu, Sowerby, from Trimingham, is in the British Museum. O. Innatu, Nilsson, is from the Ähos-sandstone. Hemnig states that the figure given by Nilsson does not correctly represent the folds.

Distrilution.-Upper Chalk (zone of Ostrea lunatı) of Trimingham, Norfolk.

Gemus-Exogyra, T. Say, 1820.
('Amer. Journ. Sci.,' vol. ii, p. 43).

Exogra sincata (Souerly), 1820. Plate LXI, fig. 13. Text-figs. 194-214.
18:1. Gryphea Cuelont, M. J. L. Defrunce. Dict. Sci. nat., rol. xix, p. 534.

- - aquila, A. Bronguiat. In Cuvier's Ossem. Foss., vol. ii, pp. 332, 614, 1ll $^{\text {lix, fig. } 11 .}$

1829. - sinuata, J. Phillips. (wol. Yorks.. p. l2?. pl. ii, fis. 23.

 fig. 3.

18:36. Ostrea falciformis, F. A. Rümer. Die Verstein. nord-deutsch. Ool.-Geb., p. 59.
1837. Amphidonte aquila, G. G. Pusch. Polens Paläout., p. 38.
1840. Exogyra sinuata, A. Legmerie. Bull. Soc. géol. de France, vol, xi, p. 121 (vars. subsinuata, etc., p. 124).
1841. - \quad F. A. Rimer. Die Verstein.d. nord-deutsch. Kreidegeb., p. 47.
:- - undata, Römer. Ibid., p. 47.
1842. - sinuata et subsinuata A. Leymerie. Mém. Soc. géol. de France, vol. v, pp. 16, 17, 28, pl. xii.
1845. Gryphea sinuata vars. levigata, subsinuata, Couloni, E. Forbes. Quart. Journ. Geol. Soc., vol. i, p. 250.
1846. Exogyra sinuata, A. Leymerie. Statist. géol. et min. de l'Aube, pl. vi, fig. 1.

- - subsinuata, Leymerie. Ibid., pl. vii, fig. 3.
- - - rar. aquilina, Legmerie. Ibid., pl. vii, fig. 4.

1847. Ostrea Couloni, A. d'Orbigny. Pal. Franç. 'Terr. Crét., vol. iii, p. 698, pl. cccclxvi, figs. 1-4; pl. cceclxrii, figs. 1-3.

- - aquila, A. d'Orbigny. Ibid., p. 706, pl. ceclix, figs. 1-4.
? - Exogrra sinuata, A. d'Archiac. Mém. Soc. géol. de France, ser. 2, vol. ii, p. 313.

1849. Gryphea sinuata, T. Brown. Illustr. Foss. Conch. Gt. Brit. and Ireland, p. 149, pl. lx, fig. 5.

- - aquila, Brown. Ibid., p. 150, pl. Ixi*, figs. 17-19.
- - i.evigata, Brown. Ibid., p. 149, pl. lx, fig. 17.

1850. Exogyra aquila, J. Ewald. Zeitschr. d. deutsch. geol. Gesellsch., vol. ii, p. 470 .
1851. Ostrea aquila, F. J. Pictet and W. Roux. Moll. Foss. Grès verts de Genève, p. 520, pl. xlviii, figs. 1, 2.
1852. Exogyra sinuata, J. Morris. Cat. Brit. Foss., ed. 2, p. 167.
1853. Ostrea Couloni, G. Cotteau. Moll. Foss. de l'Yonne, p. 122.

- - aquila, Cotteau, Ibid., p. 122.

1858. - Couloni, F.J. Pictet and E. Renevier. Foss. Terr. Aptien (Matér. Pal. Suisse, ser. 1), p. 138.
1859. - - J. Vilanora-y-Piera. Mem. geog.-agric. de Castellon, pl. iii, fig. 2.4.
1860. -- - P. de Loriol. Anim. Invert. Foss. Mı. Salève, p. 110.
1861. - - de Loriol. Valangin. d'Arzier (Vaud). (Matér. Pal. Suisse, ser. 4), !. 51.

- Exogyra aquila, E. Eichucld. Lethæa Rossica, vol. ii, p. 399.

1869. Ostrea Couloni, P. de Lorioland V. Gilliéron. Urgon. infér. de Landeron, p. 24.

- - aquila, H. Coquand. Mon. Ostrea, Terr. Crét., p. 158, pl. lxi, figs. 4-9.

1869. Ostrea Codloni, Coquand. Ibid., p. 180, pl.lxp, fig. 10 ; pl. lxxi, figs. 8-10; pl. lxxiv, figs. 1-5; pl. lxxv, figs. 1-6, 22.
1870. --. - L. Dieulafait. Bull. Soc. géol. France, ser. 2, vol. xxvii, p. 431.
1871. - - F. J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Mater. Pal. Suisse, ser. 5), p. 287 , pls.clexxvii, clexxriii, excii, fig. 1.
1872. Egogyra ginuata, J. Phillips. Geol. Yorks., Part i, ed. 3, p. 244, pl. ii, fig. 23.

- - subsindata, Phillips. Ibid., p. 244.

1877. Ostrea Couloni, G. Böhm. Zeitschr. d. deutsch. geol. Gesellsch., vol. xxix, p. 231.
1878. Etostreon latissimum, E. Bayle. Explic. Carte géol. France, vol. iv. pt. 2, Atlas, pl. exxxix, figs. 1-3.

- .. consobrinds, Bayle. Ibid., pl. exxxix, fig. 4.
- - Couloni, Bayle. Ibid., pl. cxl, figs. l, 2.
- - aquilinum, Bayle. Ibid., pl. cxl, figs. 3-5.

1883. Ostrea (Exogyra) Couloni, W. Keeping. Foss., etc., Neoc. Upware aud Brickhill, p. 100.
1884. - - \quad. Weerth. Fauna d. Neocom. im Teutoburg. Walde (Palæont. Abhandl., vol. ii), p. 55.
1885. Exogyra aquila, C. A. White. Foss. Ostreidm of N. America (4th Ann. Rep. U.S. Geol. Surv.), p. 304, pl. liii, figs. 1, 2.
1886. - Couloni, I. Trautschold. Nouv. Mém. Soc. Imp. Nat. Moscou, rol. xv, p. 133.
1887. - sindata, G. W. Lamplugh. Quart. Journ. Geol. Soc., vol. xlv, p. 615.
1888. - Couloni, O. Behrenden. Zeitschr. d. deutsch. geol. Gesellsch., vol. xliii, p. 419.
1889. Ostrea (Exogyra) Couloni, G. Maas. Ibid., pol. xlvii, p. 270.
1890. Exogyra Couloni, A. Wollemamn. Ibid., vol. slviii, p. 831.
1891. - binuata, R. B. Neuton. Proc. Dorset Nat. Hist. and Antiq. Field Club, rol. xviii, p. 74, pl. ii, figs. $9,3$.
$: 1897$. - aquila, K. Gerharelt. Neues Jahrl. für Min., etc., Beil.-Bd. xi, p. $175, \mathrm{pl} . \mathrm{iv}$, fig. 10.
1892. - Couloni, A. Wollemamn. Die Bir. u. Gastrop. d. deutsch. u. holliand. Neocoms (Abhandl. d. k. preus.geol. Landesanst. n.f..pt.31), 1. 8, pl. i, fir. 1.
€ 1903. - cf. Codloni, W. Paulcke. Neues Jahrb. für Min., etc., Beil.-Bd. xvii, p. 291.
? 190.4. - Couloni, E. Ducqué. Butr. Paliont. u. Gcol. Österr.-Cugarms u. d. Orients, vol. xvii. 1. 14, pl. ii, tigs. 6-8.

Fig. 194.-Eaogyra sinuata (Sow.) Hythe Beds, Sevenoaks. Sedgwick Museun, Cambridge. Left vilve. $\times \frac{3}{4}$.

Dexrription.-Shell with subtrigonal, subguadrate, oval or rounded outline; often large and massive. The posterior margin is truncated; in the early stages of growth it is either nearly straight or slightly concave; later it becomes more concave, with an angular projection at its dorsal and at its ventral end; in large specimens this margin usually becomes more rounded. The anterior and ventral margins usually form a convex curve. In large specimens the postero-dorsal margin is sometimes nearly straight. In many small, and in some large specimens, the height of the shell is distinctly greater than the length, but in others, particularly large forms, the height and length are nearly equal. In some of the high forms the shell is considerably arched, the posterior part being concave.

Laft valve moderately or very couvex. Umbo often relatively small, usually spiral, with a moderate or large backward curvature. The surface of attachment is

Figs. 195-198.-Erogyia sinuta (Sow.). Left valres. 195, 197, 198, Sedgwiek Museum. 196, Mr. Iamplugh's Collection. 195, Hythe Beds, Hythe, 196 , Speeton Clay (zone of Belemnitcslateralis), Speeton. 197, Tealby Limestone, Claxby. 198. Ferurinous Sands, Atherfeld. All $\times 3$.

Figs. 199-203.-Exogyra sintata (Sow.). Sedgwick Museum. 199, 200, right and left valves of one specimen; Lower Greensand, Atherfield. 201-203, left valves. 201, 202, Tealby Limestone, Claxby. 2013, Claxby Iroustone, Donnington. All $\times 3$.
behind the umbo and is usually of small or moderate size. A carina extends in a curve from the umbo towards the postero-ventral extremity, and sometimes bears coarse tubercles or spiny projections; it is at first strong, and may be continued to the postero-ventral margin of the valve, which is then angular; but in large specimens it often becomes indistinct during the later stages of growth and may ultimately disappear. Usually the carina is angular at first and becomes rounderl later, but it may be angular throughout or rounded throughout; sometimes it divides the valve into two nearly equal parts, but usually the anterior is larger than the posterior part. The former is convex; the latter is flattened or concave or undulating, and its slope to the posterior margin is often gradual, but may be steep or even perpendicular. The surface of the valve bears distinct growthlines, and sometimes shows faint radial folds. The curvature of the ligament-pit varies with that of the umbo.

Right valve usually nearly flat or slightly concave or undulating, but sometimes very concave. Its outline varies as in the left valve. Umbo small, more or les: considerably spiral. Surface with growth-lines and occasionally with faint radial ribs. Adductor impression large, oval, usually sub-median.

Afjinities.-By some anthors, especially Leymerie and Coquand, the forms similar to the types of (rryphza sinuata, Sowerby, and G. aquila, Brongniart, ${ }^{1}$ have been regarded as specifically distinct from those like Exof!!ra subsinuatu, Leymerie ${ }^{2}$; but Pictet and Renevier (1858), after studying a large series of specimens from Switzerland, France, and England, came to the conclusion that it was impossible to separate these as two species; the same view was maintained by Pictet and Campiche in 1871, and has been supported more recently by Wollemann (1900), who has examined a large series of specimens from North Germany. Pictet, Renevier and Campiche showed that the two forms are not, as Leymerie maintained, characteristic of different horizons, but occur together, although varying in abundance at different levels. The study of numerous English and some foreign specimens leads me to endorse the view first expressed by Pictet and Renevier. The variation is found to be extremely great, and the different forms are comected by numerous gradations. It is also noticeable, as Pictet and Renevier pointed out, that the varieties of sultsimutu, some of which were named aquilim, dorsati, and filluifera by Leymerie, may differ from one another more than they do from simutu. The forms of the sinnatu ("muila) type are common in the Atherfied and Hythe Beds, and those of the sulisiunata type occur mainly in the zones of Brlemuites lateralis and B. jur"ulu", but neither is confined to those horizons.

[^70]

Figs 204-2313.-Exogyra sinuata (Sow). 204, 205, left and right valves of one individual : Hythe Beds, Hythe ; Sedywick Museum. 20.6, 207, 210, Claxhy Ironstone, Donningron; Sedgwick Museum ; 206,210 , left valves; 207, right valve of 206 . 208, 209, Hythe Beds, Hythe. Musemm of Practical Geology, No. 20x:2. Left and right valves (lapigata form). 잉, Speeton Clay, (zone of B. lateralis), Speeton. Mr. Lamplugh's Collection. Left valve. 212, 213. Specton Clay, speeton. Sedgwick Museum. Left and right valves of one individual. All $\times \frac{3}{a}$.

Erogyra imbricutu, Krauss, ${ }^{1}$ from the Uitenhage Series, is closely allied to E. Couloni.

Remulis.-The proportion of the height to the length of the shell varies considerably. In some specimens the height is much greater than the length, but in others the two diameters are nearly equal. In the latter case the left valve is usually less convex relatively than in the higher and more strongly carinate forms. In the specimens in which the carina reaches the margin the postero-ventral extremity is more angular than in those in which it becomes indistinct. The slope of the posterior part of the left valve is gentle in the forms in which the height and length are nearly equal, but becomes steeper in the higher and more strongly carinate forms,

Fig. 214.-Exogyra sinuata (Sow). Speeton Clay (probably zone of Belemnites lateralis), Speeton. Sedgwick Museum. Left and right valves. $\times \underset{\downarrow}{\mathbf{3}}$.
and is sometimes, as in the example figured by Phillips (1822), perpendicular to the plane of the valves (fig. 211). In that type, which is an extreme example, the umbo is only slightly curved, but this form passes gradually into others with a strongly curved umbo. Indications of radial folds are seen in some specimens, but they are less distinct than in some foreign examples.

Some specimens show that the stage in which the posterior margin is sinuous is preceded by one in which it is only slightly concave (fig. 199). The type of Gryphæa aquila, Brongniart, is a small example of the sinuata form with the carina continued to the margin. The specimen figured by Pictet and Roux is similar, but larger, and with the carina becoming indistinct towards the margin; the large

[^71]rounded forms (like Sowerby's sinuutu) are older individuals of the same type, and sometimes attain a height of 8 or 9 inches.

A small, oval, very inequilateral form, with a rounded carina, was named Erogyra $l_{a r i g u t a ~ b y ~ S o w e r b y ~(1829), ~ a n d ~ w a s ~ s t a t e d ~ t o ~ h a v e ~ c o m e ~ f r o m ~ t h e ~ I r i s h ~ G r e e n-~}^{\text {S }}$ sand. An examination of the type shows clearly that it was not obtained from that deposit, but from the Hythe Beds; the form of the shell and the character of the matrix agree perfectly with other examples which have been found in the Hythe Beds (figs. 208, 209).

The examples from the Lower Greensand of Upware, which were referred by W. Keeping to Erogyra Couloni, probably belong to this species, but the specimens seem to me too few and not sufficiently perfect to enable the identification to be made with certainty.

In England Sowerby's name (sinuata) has been generally used for this species, but Defrance's name (Couloni) has been adopted by foreign writers; the former is used here since, although Defrance's name has priority, the description was scarcely sufficient for identification and was not accompanied by either a figure or a reference to a figure.

Types.-Gr!phixa Couloni, Defrance, from the neighbourhood of Neuchâtel. fr. simuata, Sowerby, from the Hythe Beds of Ashford, and E. lavigata from the Hythe Beds, in the British Museum. G.aquila, Brongniart, from the Upper Aptian of the Perte du Rhône. G. sinuata, Phillips, from the Speeton Clay, in the York Museum. Erogyra subsinuata, Leymerie, from the Neocomian of the Aube.

Distribution.-Atherfield Beds of Atherfield, Compton Bay and Sevenoaks. Ferruginous Sands of Atherfield and Shanklin. Hythe Beds of Hythe, Lympne and Maidstone. Folkestone Beds of Folkestone. Mammillatus bed of Okeford Fitzpaine (Dorset). Speeton Clay (zones of Belemnites lateralis, B. jaculum and B. brunsvicensis) of Speeton. Claxby Ironstone (zone of B. lateralis) of Donnington. Tealby Limestone (zone of B. Urunsvicensis) of Claxby.

Exogyra tuberculffera, hoch aul Dunker, 1837. Plate LNI, figs. 7-11.

1845. Gryphea harpa vars. subplicata et semiplicata, E. Furbes. Quart. Journ. Geol. Soc., vol. i, p. 250, pl. iii, fig. lㄹ. 1847. Ostrea Boussingaulti, A. d'Orbigny. Pal. Framç. Terr. Crét., vol. iii, p. 702, pl. cceclxviii, figs. 6-9 (non figs. $1-3=0$. Mimas, Coquand).
1853. - harpa, F'J. Pietet and W. Roux. Moll. Foss. Grès verts de Gedève, p. 326, pl. xlix, fig. 2.
1854. Exogyra harpa, J. Morvis. Cat. Brit. Foss., ed. 2, p. 166.
1855. Ostre. Boussingaultir, G. Cotteau. Moll. Foss. de l'Yonue, p. 121.
1858. - Boussingaulti, F. J. Pictet and E. Renevir. Foss. Teır. Aptien (Matér. Pal. Suisse, ser. 1), p. 140, pl. xix, fig. 5.
1868. - \quad P. de Loriol. Valangien d'Arzier (Matér. Pal. Suisse, ser. 4), p. 50, pl. iii, figs. 14-16.
1869. - \quad P. de Loriol and V. Gilliéron. Urgou. infér. Lan. deron, p. 26, pl. i, fig. 23 , pl. ii, figs. 1-4.

- - \quad H. Coquand. Mon. Ostrea, Terr. Crćt., p. 161 (partim), pl. lxiv, figs. 8-13.
- - tuberculifera, Coquand. Ibid., p. 189, pl. lxiii, figs. 8, 9; pl. Ixpi, figs. 12. 13; pl. lxx, figs. 9-13.

1871. - - F.J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 280 , pl. clexxvi, figs. 1-11.
? - - Boussingaultif, W. A. Ooster. Protozoe Helvetica, vol. ii, pp. 106, 127, 141, pl. xvi, figs. 5-7.
? 1884. - (Exogyra) spiralis, 0 . Weerth. Die Fauna des Neocom. im Teutoburg. Walde (Palæont. Abhandl., vol. ii), p. 56, pl. ix. figs. 13, 14 (! 12).
? 1892. Exogrra tubercolifera, O. Behrendsen. Zeitschr. d. deutsch. geol. Gesellsch., vol. xliv, p. ${ }^{2}$. ? - - subplicata, Behrendsen. Ibid., p. 26.
1872. - - G. Maas. Ibid., rol. xlvii, p. 270.

- - spiralis, Maas. Ibid., p. 970.

1896. - - tuberculifera, a. Wollemann. Ibid., vol. xlviii, y. 832.
1897. - Boussingaulti, K. Gerhardt. Neues Jahrb. für Min., etc.. Beil.-Bd. xi, p. 175, pl. i, fig. 6.
1898. - tuberculffera, Wollemann. Die Biv. u. Gastrop. d. deutsch. u. hollial. Neocoms (Abhaudl. d. k. preuss. geol. Landesanst., n.F.. pt. 31), p. 13.
1899. - Wollemann. Jahrb d.k.pretuss. geol. Lande's. anst. In. Bergalianl, vol. xavii. 1. 264.

Nou 1842. Exogyra Boussingaultit, A. d'Orbigny. Voy. dans l'Amérique Mérid., vol. iii, pt. 4, pl. xviii, fig. 20 ; p . xxi, figs. 8 , $9(=0$. Minos, Coquand).
$U_{e s c r i p t i m}$-Left valve very convex, elongated between the umbo and the postero-ventral extremity, more or less considerably arched, with a sharp carina curving from the umbo to the extremity and becoming less prominent on the later part of the valve. Behind the carina the valve is concave or flattened, in front of it regularly convex. Umbo more or less considerably spiral. From the carina a number of rounded radial ribs extend to the margin, but are indistinct or absent on the posterior part of the valve; these give a corrugated margin to the valve; the ribs are crossed by well-marked growth-ridges. Inside the valve, at a short distance from the margin, is a band of transverse crenulations. Adductor impression large, oval, submedian, or rather near the posterior margin. The attached surface may be small or large; when large, the marginal part (except the posterior) grows vertically upwards from the support and bears ribs. Right valve nearly flat, with growth-lines; umbo smali, spiral.

Affinities.-This species is related to E. Minos, Coquand, ${ }^{1}$ but in the latter radial ribs occur on the right valve. It seems probable that E. tuberuliferch has been derived from a small form of E. simuata. A small example (Plate LNI, fig. 13) which agrees with the lærilata type of E. sinuata, except for the presence of radial ribs, seems to connect that species with E. tuberculifere. ${ }^{2}$

T'ypes.-The type of Koch and Dunker is a right valve from the Neocomian of the Elligser Brink; the surface of this specimen has a tuberculate appearance because it is encrusted by another organism. ${ }^{3}$ Later authors have been able to identify it with the forms named E. sulplicata, Römer, and E. Boussinyaulti, d'Orbigny, of which good figures have been published. The specimens figured by Forbes, which have a large surface of attachment, are from Atherfield, and are now in the Museum of Practical Geology (No. 25984).

Distribution.-Lower Greensand:-Perna-bed of Atherfield, Redcliff (Sandown), and East Shalford; Crackers of Atherfield; Ferruginous Sands of Shanklin; Hythe Beds of Lympne.
${ }^{1}$ D'Orbigny, ' Pal. Franç. Terr. Crét.,' vol. iii (1847), pl. cceclnviii, figs. 1-3; Coquand, ' Mon. Ostrea, 'Terr. Crét.' (1869), p. 183, pl. lxiv, figs. 1-3, pl. lxxiii, figs. 4-8, pl. lxxiv, figs. 14, 15 ; Pictet and Campiche, 'Foss. Terr. Crét. Ste. Croix' ('Mater. Pal. Suisse,' ser. 5, 1871), p. 278, pl. 'lxaxv; Wollemann,'Bivalv. u. Gastrop. deutsch. u. holliand. Neocoms' (1900), p. 15 ; Müller, 'Deutsch.-Ost-Afrika,' vol. vii (1900), p. 548, pl. sxiii, fig. 1, text-figs. 46, 47.
\because See also Leymerie (1842), pl. xi, fig. 4.
${ }^{3}$ The name tuberculifera is consequently inappropriate, but has! been retained by several authors.

Exogira conica (Sowerby), 1813. Text-figures 215-242.
1813. Chama conica, J. Sowerby. Min. Conch., vol. i. p. 69, pl. xxvi, fig. 3.

- - recurvata, Sowerby. Ibid., p. 69, pl. xxvi, fig. 2.
- - plicata, Sowerby. Ibid., p. 70, pl. xxvi, fig. 4.
- - haliotoidea, Sowerby. Ibid., p. 67, pl. xxp, figs. 1-5.

1829. Exogrra conica, J. de C. Sowerby. Ibid., vol. vi, p. 219, pl. dev, figs. figs. $1-3$.
? 1833. - conica, A. Goldfuss. Petref. Germ., vol. ii, p. 36, pl. Ixxxvii, fig. 1.

- - subcarinata, Goldfuss. Ibid., p. 37, pl. lexivii, fig. 4.
- - undata, Goldfuse. Ibid., p. 35, lxxxvi, fig. 10.
- - haliotoldea, Goldfubs. Ibid., p. 38, pl. lxxxviii, fig. 1.

1837. Amphidonte conica, G. G. Pusch. Polens Paläont., p. 39.

- - haliotoidea, Pusch. Ibid., p. 38.

1839. Exogtra cornu arietis, E. haliotoidea et E. aquila, H. B. Geinitz. Char. d. Schicht. u. Petref. des saichs. Kreidegeb., pt. 1, p. 20.
1840. - plicatola, Geinitz. Ibid., pt. 2, p. 84.
? 1846. - - A. E. Reuss. Die Verstein. der böhm. Kreideformat.. pt. 2, p. 44, pl. xxxi, figs. 5-7.
1841. Ostrea conica, A. d'Orbigny. Pal. Franç. Terr. Crét., vol. iii, p. 726. pl. cccelxxviii, fige. 5-8; pl. cecelxxix. figs. $1-3$.

- - Radliniana, dorligmy. Ibid., p. 708, pl. cecelyxi, figs. 1-3.
- - haliotidea, d'Orligny. Ibid., p. 724, pl. cccclsxviii, figs. 1-4.

1849. Gryphea conica, T. Brown. Illustr. Foss. Conch. Gt. Brit. and Ireland, p. 149. pl. ls, fig. 3.

- - haliotoidea, Broun. Ibid., p. 149, pl. lx, figs. 6-9.

1850. Ostrea conica, A. d'Orbigny. Prodr. de Pal., vol. ii, p. 171.

- - Radliniana, dOrbigny. Ibid., p. 139.
- - haliotidea, dOrbigny. Ibid., p. 171.
- Exogyra Rauliniana, J. de C. Sowerby, in F. Dixon. Geol. Sussex. p. 357, (E. haliotoidea, p. 386. ed. 2), pl. xxvii, fig. 7.
- - conica, H. B. Geinitz. Das Quadersaudst. oder Kreidegeb. in Deutschland, p. 202.

1853. Ostrea Rauliniana, F. J. Pictet and W. Roux. Moll. Foss. Grès verts de Genève. p. 521. pl. l, 6g. 1.
1854. Exogyra conica, J. Morris. Cat. Brit. Fuss., ed. 2, p. 166.

- - haliotoidea, Morris. Ibid., p. 166.

1859. - \quad - Wiltshir. Red Chalk of England (Geol. Assoc.), p. 16, pl. ii, fig. 6.
-- Ostrea vesicularis, Wiltshire. Ibid., p. 16, pl. ii, fig. 5.
1860. - conica, A. r. Strombeck. Zeitschr. d. deutsch. geol. Gesellsch., vol. 2v. p. 109.
: 18tir. Ostrea conica, A. Briart and F. L. Cornet. Meule de Bracquegnies (Mám. cour. et Mém. des. Sav. étrangers, vol. xxxiv), p. 45. pl. iv, figs. 3, 4.

- - haliotoldea, Briart and Coruet. Ibid., p. 45, pl. iv, figs. 5, 6, 8.
? 1868. Exogira conica, E. Eichwald. Lethæa Rossica, vol. ii, p. 400.

1869. Ostrea conica, H. Coquand. Mon. Ostrea, Terr. Crít., p. 150, pl. liii, figs. 1-7.

- - haliotidea, Coquand. Ibid., p. 144, pl. l, figs. 8-10: pl. lii, figs. $11-17$.
- - Radliniana, Coquand. Ibid., p. 157, pl. lxi, figs. 1-3.
? 1871. Exogyra haliotoidea, F. Stoliczka. Palæont. Indica, Cret. Fauna S. India, vol. iii, p. 458, pl. xxxvi, fig. 7; pl. xxxvii, figs. 1-3.

1871. Ostrea Rauliniana, F. J. Pictet and G. Campiche. Terr. Crét. Ste.

Croix (Matér. Pal. Suisse, ser. 5), p. 307. pl. cxciii, figs. 15, 16.

- - conica, Pictet and Campiche. Ibid., p. 302, pl. cxciii, figs. 1, 2.

1872. - (Exogyra) conica, H. B. Geinitz. Das Elbthalgeb. in Sachsen (Palæontographica, rol. xx, pt. 1),
p. 183, pl. xl, figs. $8-13 ;$ pt. 2 , pl. viii, fig. 14.

1873. Exogyra haliotoidea, A. J. Jukes-Browne. Quart. Journ. Geol. Soc., vol. xxxi, p. 296.
? 1877. - conica, A. Fritsch. Stud. im Gebiete der böhm. Kreideformat. ii.
Weissenberg. u. Malnitz. Schicht., p. 139, fig. 184.
1874. Rhinchostreon conicum, E. Bayle. Explicat. Carte géol. France, rol. iv, Atlas, pt. 1, pl. exxxviii, figs. 6, 7.
1875. Ostrea conica, J. Gosselet. Esquisse géol. du Nord, iii, pl. xvii, fig. 11.
? 1882. Exogyra conica, H. Schrïder. Zeitschr. d. deutsch. geol. Gesellsch., vol. xuxiv, p. 259.

| - | - | - | G. Seguenza. Atti R. Accad. Lincei, ser. 3, Cl. Sci. Fis. |
| :---: | :---: | :---: | :---: | :---: |
| Math., vol. xii, p. 176. | | | |

? 1893. Ostrea sp. of. haliotoidea, R. Michael. Zeitschr. d. deutsch. geol. Gesellsch., vol. xlv, p. 239.
1895. Exogyra conica, E. Tiessen. Ibid., vol. xlvii, p. 466.
? - - of. \quad aliotidea, Tiezben. Ibid., p. 465.
1909. - conica, R. B. Newton. Trans. Roy. Soc. S. Africa, vol. i, p. 51, $\mathrm{j}^{1 .}$ ii, figs. 8-10.

Description.-Left valve very convex, with a more or less subtriangular or semi-oval outline, very inequilateral. Anterior and ventral margins rounded; posterior margin oblique, either straight, slightly concave, convex or simuous, often forming a rounded angle with the ventral margin. Umbo spiral, curved inwards, and considerably backwards; the attached surface usually behind the umbo. A carina, generally distinct but sometimes rounded, extends in a curve from the umbo towards the postero-ventral extremity. The part of the valve behind the carina is more or less flattened, and may be concave near the umbo ; the part in front of the carina is regularly convex. In large specimens the postero-ventral part is more extended and the length of the shell in relation to the height becomes relatively greater, the postero-ventral extremity is more rounded, and the carina becomes less distinct. The surface of the valve is usually smooth, except for growth-lines, but in some specimens (undata form) numerous somewhat irregular radial ridges are present, either in the neighbourhood of the umbo or over the entire valve. On the inside of the valve, at a short distance from the margin, is a band of small transverse ridges and pits which broadens and becomes more irregular near the postero-dorsal margin. Adductor impression rather near the postero-dorsal margin, with its upper boundary straight or slightly convex.

Right valve thin, operculiform, often slightly concave, with a small spiral umbo ; surface nearly smooth; outline varying with that of the left valve.

In the forms described above (conica type), the surface of attachment is small, but it may be very large so that all the left valve with the exception of a narrow marginal part is fixed (haliotoidea and Raulinimu types); between these extremes every gradation is found. The free marginal part, which seldom extends to the posterior border, usually grows nearly vertically upwards from the hody to which the shell is attached. When the attached surface is mainly or entirely behind the position of the carina, then the free marginal part in front is larger, and usually the shell is relatively higher and the spire of the umbo less developed, and in such cases the marginal part sometimes forms an acute angle with the attached surface. ${ }^{1}$ The character of the surface (flat, concave, convex or irregular) to which the left valve is attached also influences the form of the shell.
.lfinities.-The forms of small or moderate size, which are abundant in the

[^72]Upper (ireensand, and of which typical examples were figured by Sowerby in 1829, have a small surface of attachment, and have been known in this country as Erom!re, couicu (figs. 200-00). A similar form, but of larger size, is common in the (halk Marl (figs. 29, 299), and the Glauconitic Sandstone of Antrim; no line can be drawn between this and the smaller form of E. comich, with which it has been mited by most authors ($e . g$. d'Orbigny, Morris, Coquand, Bayle, Peron) ; examples indistinguishable from H . comica of the Upper Greensand are associated with the larger form in Antrim, and on the other hand, some specimens found in the Upper Greensand of the south of England are of larger size than the majority of examples and camnot be separated from the larger form of l . conica; but nevertheless the larger form appears generally to mark a somewhat higher horizon than the smaller (conica, Sowerby) form.
E. Lutiotoidea, Sowerby, from the Upper Greensand (fig. $9+(0)$, is a small form of E. conica with a large surface of attachment, and is connected by intermediate forms with examples having only a small attached surface. Similarly E. Rumliniona, d'Orbigny (fig. 236-239), from the Gault, Upper Greensand, and Lower Chalk, is a large form of E. conira with a large surface of attachment and is linked by a series of gradations (figs. 230-235) to the type with only a small attached surface. Peron ${ }^{1}$ has already shown that the large specimens from the Cenomanian of France figured as E. Lutiotoidea by d'Orbigny and Coquand are only forms of l'. conicu modified by having a large surface of attachment; they occur in the same beds as undoulbted examples of le. conica. In some specimens with a large attached surface the height of the shell is greater than usual, but this, as pointed out above, is due to the shell being fixed mainly or entirely by the posterior slope behind the carina; in such cases the free marginal part forms a sharp angle with the attached surface. Morris and Jukes-Browne united E. haliotoidea and E. Reuliniamu, and Pictet and Campiche recognised the very close relationship, of these two forms.

Examples from horizons above the Cenomanian have been referred to E. hali,twiderl by some authors, ${ }^{1}$ notably Hennig, who has compared the Senonian forms of Sweden with specimens from the Cenomanian and Gault. Without the opportunity of examining the Senonian forms I am unable to express any opinion as to

[^73]
their relationship. Hemig also includes E. amicularis (Wahlenberg) ${ }^{1}$ in E. hatiotoidera.

Pictet and Campiche figure and describe examples of E. conica from the Aptian. Specimens of Lrrogyra from the Lower Greensand of Upware, Brickhill, Faringdon and Shanklin have been referred to E. conica; in these the carina is more rounded

 Greensand (base of Chalk Marl). 23:3, 243., left valves. 232, right valve of 233. 235, right valve of 234 . 236,233 , zone of Holaster subglobosus, Burwell; 236 , right valve : 23 , anterior view of 236 showing the large size of the attached surface of the left valve. 238, 239, Gault, Folkestone ; Museum of Practical Gcology, No. 20873; 238, vight valve; 239, anterior view showing left valve attached to a flat Inoceramus. 240, Upper Greensand, Devizes. Museum of Practical Geology, No. 20999. Is oft valve. 241, 242, Cambridge Greensand; ribbed form with a large surface of attachment; $2 \downarrow 1$, left valve; 242 , anterior view of 241 . All natural size.
than in the common form of the species, but they agree closely with, and seem to be inseparable from some forms of F. comice from the Upper Greensand (figs. 215-218).

Small specimens with radial ribs (fig. 219), such as the one figured by Goldfuss
${ }^{1}$ 'Petrific. tell. Suec.' (1821), p. 58. See also Schröder, ' Zeitschr. d. deutsch. geol. Gesellsch.,' vol. xxxiv (1882), p. 260, pl. xr, fig. 4.
as E. undutu and by d'Orbigny as E. romict, have not usually been regarded as distinct from E. conica.

Pictet and Campiche record E. adumnensis (d'Orbigny) ${ }^{1}$ from the Upper Greensand of Blackdown, but they doubt whether that form is really distinct from E. conica; the chief difference is that in the former the left umbo is less prominent and less curved.
E. subconica, Vogel von Falckenstein, ${ }^{2}$ from the Senonian is allied to E. conica. Types.-The types from the Upper Greensand are in the British Museum. Chama conica from Chute (Warminster) ; C. vecurcutu and ('. plicata from Haldon; C. haliotoidea (figs. 1, 3, 5 are missing) from St. Mary Donhead (Wiltshire). The specimens of E. conica figured by Sowerby in 1829 from the Upper Greensand of Blackdown, and the specimen figured in Dixon as E. Rauliniana from the Lower Chalk (probably zone of Holuster sulglobosus) of Sussex, are in the same Museum. The specimens from the Lower Greensand of Upware, figured by Keeping, and those from the Red Limestone of Hunstanton figured by Wiltshire, are in the Sedgwick Museum.

Distribution.-PProbably Lower Greensand of Upware and Faringdon. Lower and Upper Gault of Folkestone. Lower Gault of the Isle of Wight. Red Limestone of Hunstanton. Upper Greensand (zone of Scllwulbachia rostrata) of Blackdown, Haldon, Dunscombe, Beer Head, Pinhay Cliffs, Niton, Ventnor, etc. Upper Greensand (zone of Pectell asper) of Evershot, Eggardon Hill, Warminster, the Dorset coast, and the Isle of Wight. Cambridge Greensand (indigenous and derived). Chloritic Marl of Compton Bay, Isle of Wight. Chalk Marl (zone of Schlenbachia varians) of Folkestone, Blue Bell Hill (Burham), Reach and Stoke Ferry. Cenomanian of Wilmington, Devon, and the South Devon coast. Zone of Holuster sulglolosus of Burham, Holborough, Dover, Arlesey, Burwell and Fulbourn.

Evogira columba (Lamairli), 1819. Text-figs. 243-248.
1768. G. W. Knorr and J. E. Mr. Walch. Recueil Mou. Catastr. Pétrificat., vol. ii, p. 127, pl. D III, C, firs. 1-3.
1802. Grtphea suborbiculata, Lamatck. Systeme Anim. sans Vert., p. 398.
1813. Gryphites ratisbonensib, E. T. v. Schlotheim. In Leonhard's Taschenbuch für Min., vol. vii, p. 105.

[^74]1819. Griphaid columba, Lamarch. Auim. sans Vert., vol. vi, p. 198.
1890. Gifppites spiratus, E. T. e. Schlotheim. Petrefactenk., p. 28: (purtim). 1821. Griphat colemba, M. J. L. Defrance. Dict. Sci. nat., rol. xix, 1. 5:34.

182:. - \quad - de C. Sourerby. Min. Conch., rol. iv, I. $11: 3$, pl. ceclxxiii, figs. 1, 2.

- Gryphea colvmba, A. Bromyniart. In. Cuvier, Ossemens Fossiles, rol. ii. pp. 320,608, pl. vi, fig. 8.

1832. Ostrea columba, G. P. Deshoyes. Hist. nat. Ters et Mollusques (Encrel. méthod.), vol. ii, p. 302, Planche's. vol. iv, pl. clxxxix, figs. 3, 4.
1833. Exogyra columba, A. Goldfuss. Petref. Germ., rol. ii, p. 34, pl. lexxri, fig.!
1834. - - A. d'Archiar. Mém. Soc. géol. de France, vol. ii, p. 18i).

- Griphea colomba, F. Dujardin. Ibid., p. 2.28.
- Amphidonte columba, G. G. Pusch. Polens Palïont., p. 37, pl. t, figs. 1, ㄹ.

1839. Exogyra columba, H. B. Geinitz. Char. d. Schicht. u. Petref. des sïchs. Kreidegeb., pt. 1, p. 20.
1840. - (Gryphfa) colomba, F. A. Rumer. Die Verstein. d. uorddeutsch. Kreidegel.. p. 46 .
1841. - columba, H. B. Geinitz. Grundr. d. Verstein., 1. 481, pl. xx. figs. 19, 20.
? - - A.E.Renss. Die Verstein. der bühm. Freideformat., pt. 2, p. 43, pl. xxxi, figs. 1-4.
1842. Ostrea columba, A. d'Orbigny. Pal. Franc. Terr. Crút., vol. iii, p. 721, pl. cccelsxvii.
1843. - - d'Orbigny. Prodr. de Pal., vol. ii, p. 171.

Exogrra columba, H. B. Geinitz. Das Quadersandst. oder Kreidegeb. in Deutscbland, 1. 202.
1851-52. Exogrra columba, H. G. Bronn. Lethæa Geogu., vol. ii, pt. 5, p. 27(⿺. pl. sxxi, fig. 10 .
1854. - - J. Morris. Cat. Brit. Foss., ed. 2, p. 166.
1857. - - J.Euald. Zeitschr. d. deutsch. geol. Gesellsch., vol. ix, p. 12.
1859. Ostrea Reaumuri, H. Coquand. Bull. Soc. géol. de France., ser. 2, vol. xvi, p. 960.
? 1866. Ostrfa ofr. columba, K. A. Zittel. Bivalv. d. Gosaugeb. (Denkscher. d. k. Akad. d. Wissensch., Wien, Math.-nat. Classe, vol. xxr, pt. ii), p. 47 [123], pl. xix, fig. 2.
? 1868. Ostrea columba, A. Briart and F. L. Cornet. Meule de Bracquegutes (Mém. cour. et Mém. des. Sav. étrangers, vol. xxsiv), p. 46, pl. iv, figs. 13-15.

- Exogyrd columba, E. Eichuald. Lethea Rossica., vol. ii, p. 404.

1869. Ostrea ratisbonensis, H. Coquand. Mon. Ostrea, Tert. Crét., p. 121, pl. ylv, figs. 8-12.
? 1870. Ostrea columba, W. A. Ooster. Protozoe Helvet., vol. ii, p. 57, pl. x, fig. 18.

- Exogyra columba. F. Rumet. Geol. v. Oberschles., p. 332, pl. xxpi, fig. 1. 1871. Ostrea columba, F. J. Pietet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 319.
- Exogyra soborbiculata, F. Stoliczka. Palæont. Indica, Cret. Foss. S. India, vol. iii, p. 462, pl. xxsv, figs. 1-4.

1872. Ostrea (Exogyra) columba, H. B. Geinitz. Das Elbtbalgeb. iu Sachsen (Palæontographica, vol. xx, pt. 1), p. 181, pl. xl, figs. 4-7.
1873. Exogyra columba, A. Fritsch. Stud. im Gebiete der bühm. Kreideformat., ii. Weissenberg. u. Malnitz. Schicht., p. 139, fig. 135.
1874. Rhynchostreon Chaperi, E. Bayle. Explicat. Carte géol. France, vol. iv, Atlas, pt. 1, pl. exxxviii, figs. 1-5.
1875. Exogyra ratisbonensis, G. Seguenza. Atti R. Accad. Lincei, ser. 3, Cl. Sci. Fis. Math., vol. xii, p. 181, pl. xix, fig. 1.
1890-91. Ostrea suborbiculata, A. Perou. Descript. Brach. etc., Terr. Crít. Tunisie, p. 119. pl. xxiii, figs. 11-13.
1876. Ostrea columba, S. Meunier. Le Naturaliste, p. 176, fig. 3.

- Exogyra columba, R. Michael. Zeitschr. d. deutsch. geol. Gesellsch., vol. xlv, p. 238.
:- - suborbiculata, T. W. Stanton. Colorado Formation (Bull. U.S. Geol. Survey, No. 106), p. 62 , pl. v, fig. 6 ; pl. vi, fige. 1 , 2 ; pl. viii, fig. 1.

1897. - columba, R. Leonharl. Palæontographica, vol. xliv, p. 27.

- - - D. Söhle. Geogn. Jahresh. (1896), p. 41.
: 1900. - \quad - G. Miller. Deutsch-Ost-Afrika, vol. vii, p. 566, pl. xxiv, fig. 2.

1902. - \quad P. Oppenheim. Centralbl. für Min., ete., p. 500.
1903. Ostrea suborbiculata, R. Forfau. Bull. Inst. Egyptien, ser. 4, vol. iv, p. 289.
1904. Exogyra columba, O. Schlagintueit. Neues Jahrb. für Min., ete., Beil.Bl. xxxiii, p. 111.

Drscription. -Shell very inequivalve, moderately or rather considerably inequilateral, usually higher than long and more or less ovate in outline, with, in some cases, the postero-ventral margin somewhat produced.

Left valve inflated, usually with a very small surface of attachment. Unbo usually prominent, spiral, curved more or less considerably backwards. The flank of the valve may be regularly convex, or may show a rounded carina
extending from the umbo postero-ventrally, but this often becomes indistinct in the later stages of growth; the posterior part of the valve (behind the carina) is convex, except the postero-dorsal part near the umbo, which is concare, and here the margin is more or less concave. The surface of the valve is smooth, except

Figs. 243-248. Exomyit columba (Lam.). Zone of Pecten usper. 243-245, Evershot. 246-24s, Eggardon Hill. $243-247$, left valves. 244 , posteriov view of 243 . 248 , right valve and left umbo of 247. Sedgwick Museum, Cambridge. All \times. .
for growth-lines. Right valve flat, or slightly convex or concave, sometimes undulating. Umbo small, spiral.

Affinities.-This species is allied to E. comica, but the carina is less distinct and more rounded, the posterior part of the left valve is less flattened, and the spire of the left umbo is better developed.

Remarks.-Since the name given by Lamarck in 1819 (columba) has been used by the majority of later writers it seems better to retain that, rather than attempt to revive the little-known name given by the same author in 1802 .

In the Cenomanian of France and other regions where this species is very abundant it is found to be much more variable than it is in the South of England. 'Ihis variation is also seen in the specimens found in the Glauconitic Sandstone of Antrim. Variation is particularly noticeable in the size of the left umbo, in the extent of its curvature, the more or less inequilateral character of the shell and in the distinctness of the carina. ${ }^{1}$

In the Cenomanian of Algeria and Tunis, specimens, usually known as Ostren Mermeti, Coquand, ${ }^{2}$ are extremely abundant and very variable; but Peron, after comparison with numerous French specimens from the same horizon, refers these North African forms without doubt to E. columbur.

Types.-From the Cenomanian of Le Mans. The specimens figured by Sowerby are in the British Museum ; fig. 1 (upper figure) and fig. 2 are from the Cenomanian of Le Mans; fig. 1 (lower figure) is probably from the same locality. although labelled " Northampton."

Distribution.-Upper Greensand (zone of Schlonbuchiu rostrictu) of Blackdown, the South Devon and Dorset coasts. Upper Greensand (zone of Pecten asper) of the South Devon and Dorset coasts, Evershot, Askerswell, Eggardon Hill, Littlebredy (Dorset) and Warminster. Chloritic Marl of Compton Bay, Isle of Wight. Cenomanian (Meÿer's beds 11, 12) of Beer Head.

Exogyra digitata (Sourely), 1817. Text-figs. 240-_os?.
1817. Chama digitata, J. Sowerby. Min. Conch., vol. ii, p. 165, pl. Clixiv, figs.

1-4.
1840. Exogyra laciniata, H. B. Geinitz. Char. d. Schicht. u. Petref. des sächs. Kreidegeb., pt. 2, p. 58.
1849. Gryphea digitata, T. Brown. Illustr. Foss. Conch. Gt. Brit. and Ireland, p. 149, pl. 1x, fig. 16.
1850. Exogyra digitata. H. B. Geinitz. Das Quadersandst. oder Kreidegeb. in Deutschland, p. 204.
1854. - - J. Morris. Cat. Brit. Foss., ed. 2, p. 166.
1862. Ostrea Coquandi, Julien, in H. Coquand, Géo. et Pal. Constantine, y. asxiii, figs. 10-12.
${ }^{1}$ It should be noted that the apparently small size of the left umbo in the specimens figured by some authors (e.g. Geinitz) is due to the fact that the specimens are internal casts from which the thick shell has been remored.
${ }^{2}$ O. Mermeti, Coquand, 'Géol. et Pal. Reg. sud Pror. Constantine' (186:2). p. 234, pl. xxiii, figy 3-5 ; Coquand, ' Mon. Ostrea, Terr. Cret.' (1869), p. 131, pl. lii, figs. 10-12 ; Lartet, ' Annal Sci. géol., vol. iii (1873), p. 60, pl. x, figs. 8-16. O. Larteti, Coquand, op, cit. (1869), p. 153, pl. lxii, figs. 15. 16. O. Luynesi, Lartet, (1]. cit. (1873), p. 64, pl. 1, Ggs. 17. 18; Coquand, 'p, cit. (1869), p. 153. pl. 1xii, figs. 17, 18.

Figs. 249-25゙. - Exogyre digitata (Sow.). Upper Greensand (zone of Peten asper). Left valves. 249, near I ymue Regis ; British Museum, No. 52. 250, White Nothe; British Museum, No. L. 4914.251 , Evershot; Musemm of Practical Geology, No. 20956. 252, Weston, South Devon; Sedguick Museum; convex variety. All $\times \frac{?}{3}$.
1868. Ostrea digitata, A. Briart and F. L. Cornet. Meule de Bracquegnies (Mém. cour. et Mém. des Sav. étrangers, vol. xxxiv), p. 47, pl. iv, figs. 1, 2.

1869. - - H. Caquand. Mon. Ostrea, Terr. Crét., p. 142, pl. xli, | figs. 6-8. |
| :---: |
| 1871. - |
| |

188:2. Exogra digitata, G. Sequmzn. Atti R. Accal. Lincei, ser. : B, Cl. Sci. Fis. Math., vol. xii, p. 180.

Descriptim. -Shell inequilateral, with rounded outline; height and length often nearly equal.

Left valve moderately, sometimes considerably convex. Cmbo spiral, curved considerably backwards; the attached surface small, and posterior to the umbo. A carina, sometimes sharp, sometimes rounded, extends in a curve from the umbo tomards the postero-ventral extremity, and becomes less distinct on the later part of the valve; behind the umbo the valve is concave or flattened. A few prominent, widely separated radial folds are present; some start from the carina, other: begin later, and the ventral part of the carina sometimes becomes replacel by a fold. The dorsal folds are curved. On the folds strong spine-like projections are often developed, and form projections at the margin of the valve. Fine growthlines occur, and bend over the folds. Right valve nearly flat.

Afinities.-O. vultur, Coquand, ${ }^{1}$ resembles this species in its strong folds and spines, but the left valve is more inflated and the carina less distinct. li. digitat" shows considerable resemblance to some forms of E. cornu ariotis (Nilsson) ${ }^{2}$ from the Senonian, in which is included E. laciniuta (Nilsson).

Except for the strong radial folds l'. "ligitata resembles some of the less convex forms of E. sinuutr, from which it may have been derived.

T!/pe.-The types, from the Upper Greensand (zone of Pecten asper) near Sidmouth, cannot be found.

Distribution.-Upper Greensand (zone of l'ecte"u asper) of Beer, Weston (Devon), Evershot, and White Nothe (Dorset).

Exogyra shmodea, lieuss, 184. Plate LXI, fig. 12.

[^75]| 1866. | Ostrea (Exogira) bp. cfr. sigmoidea, K. A. Zittel. Bivalv. d. Gosaugeb. (Denkschr. d. k. Akad. Wissensch Wien, Math.-nat. Cl., vol. $\times x \times \mathrm{r}$ pt. 2), p. 123, pl. xix, fig. 5. |
| :---: | :---: |
| 1869. | - sigmodea, H. Coquand. Mon. Ostrea, Terr. Crét., p. 93, pl. xxxiv, $\text { figs. } 5-7 \text { bis. }$ |
| 1872. | $\begin{aligned} & \text { - (Exogyra) sigmoidea, H. B. Geinitz. } \begin{array}{c} \text { Das Elbthalgeb. in Sachsen } \\ \text { (Palæontographica, vol. } \\ \\ \text { xx, pt. 1), p. 186, pl. xli, } \\ \text { figs. 14-27. } \end{array} . \end{aligned}$ |
| ? 1882. | Exogyra ffr. sigmoides, R. Windmëller. Jahrb. d. k. preuss. geol Landesanst. für 1881, p. 30. |
| 1888. | sigmoidea, G. Müller. Ibid. für 1887, p. 401. |
| 1911. | - A. Fritsch. Stud. im Geb. d. bühmisch. Kreidef., Korycaner Schicht., p. 46, fig. 209. |

Remarlis.-The only English specimen I have seen is a right valve collected by Mr. Ll. Treacher. The strong carina, the concentric ribs on the anterior slope, the more sinuous and more oblique posterior margin and growth-lines distinguish this species from the Rauliniana form of E. conica. The inner margin of the valve is finely crenulate. The types came from the Lower Pläner-kalk of Schilling near Bilin.

Distribution.-Zone of Mirraster cor-anguinum of Boxford, Berkshire. ${ }^{1}$

> F!mily—RADIOLITID无, (ria!!.
[Omitted from Vol. II, p. 210.]

Genus-Durania, H. Dourillé, 1908.
‘‘ Bull. Soc. géol. de France,' ser. 4, vol. viii, p. 309, and ' Mém. Soc. géol. de Frauce, Palćont.,' vol. xviii, 1910, p. 23.)

Durania Mortoni (Mantell), 1833.
1833. Hippurites Mortoni, G. Mantell. Geol. S.E. Englaud, p. 130.
1836. Conia, R. Hudson. Loudon's Mag. Nat. Hist., vol. ix, p. 104, fig. 19.

18:38. Sphardlites Mortoni, J. E. Gray. Mag. Zool. Bot., vol. ii, p. 228.
1850. Hippurites Mortoni, J. de C. Souerby, in F. Dixon. Geol. Sussex, p. 354 (p. 385, ed. 2). pl. xxvi, figs. 1, 2, 4.

[^76]

Description.-Lower valve at first conical, afterwards becoming clongate and cylindro-conical, nearly straight or slightly arched. Longitudinal ribs strong, angular, sometimes in groups of two or three, crossed by growth-lines. Bands concave, with fine ribs; the interband convex, usually with strong ribs. Radiating grooves bifurcate once, twice or more in passing from the inner to the outer margin. The cellular structure varies in coarseness in different specimens, and sometimes becomes rather finer towards the outer margin. Upper valve not known.

Affinities.-One of the specimens figured by Sowerby (Dixon, fig. 3) is distinguished from the others by its concave interband with fine ribs and by the narrower siphonal bands; it probably belongs to another species.

Remurks.-Fragments which probably belong to this species are moderately common in the Lower Chalk, and in the Cambridge Greensind, ${ }^{1}$ but good specimens are rare. Some examples are of considerable size, the largest being a specimen from the Cambridge Greensand, in which the lower valve has a depth of 21 inches.

Thpers.-Mantell's specimens camot be traced. The examples figured by Sowerby (in Dixon, figs. 1-4), from the \%one of Holdster subglubosns, near Lewes (probably Glynde), and the specimen figured by Hudson from Lewes, are in the British Museum.

Distribution.-Cambridge Greensand (base of Chalk Marl). Probably Chalk

[^77]Marl (zone of Schlonlurlian rarians) of Ventnor and Folkestone. Zone of Holtistro sulylolosis: of Burham and Lewes. Zone of Rhynchonellu C'ucieri of Dover. Zone of Terehrutulium lutu of Wouldham. Zone of Holuster platus of Morgan's Hill, Wiltshire.

 J. 59, pl. v, tirs. 1. .

19y4. Biradiolites austinensis, Mi. Domcilli: Minsion Scient. Perse. III, Fitudes siol. ir, Palcont. 1. 257.
1909. Sauvagesia austinensis, a Tenocis. Classific. et Evolut. des Radiolitidés (Mém. Sue. rriol. de France, Pial(́out., vol. xvii), p. 96 , fis. 64 .
1912. Durania austinensis, C. F. Purume. Mem. R. Accad. Scienze di Torimo, ser. 2 , vol. lxii, p. 987 , pl. ii, fig. 4.

Remarks.-In the specimen from the Upper Chalk figured by Woodward the siphonal bands are much broader than in Durania Mortoni, and the ribs on the convex interband are finer and more widely separated. The parts recognised by Toucas as siphonal bands were regarded by Woodward as the surfaces to which other individuals had been attached.

This species has been identified with Römer's Hipmuites anstinensis from Texas ${ }^{1}$ by the authors quoted above, but, as Prof. Douville now points out, this identification must be regarded as mucertain since the essential characters of Römer's species are not yet known. ${ }^{2}$ The finer structure of the outer layers of the shell camot be taken as a distinguishing feature of Römer's species.

T'ype. - Woodward's specimens from Rosherville are in the British Museum.
Distrilution.-Zone of Mirrastor com-an!uinum of Rosherville, near Gravesend.
${ }^{1}$ Römer, 'Kreidebild. v. Texas' (1852), p. 77, pl. vi, fisr. 1.
2 A few specimens slow intications of the ligamental ridge and appar to belong to the genus Sancafesia, e. If British Museum No. 33957 from the zone of Holaster subylobosus of Sussex, and No. L. 4842 from the Turonian of Dover.

ADDITIONS AND CORRECTIONS.

Alica, sp. [Vol. I, p. 35.]
Internal casts of a species of Ared have been found in the zone of Bolemmitella mucronatu of Norwich. Two examples are preserved in the Norwich Museum (Nos. 2121, 2122).

Dicranodonta. [Vol. I. p. 53.]
Species of Dicranodmat, have now been recognised by Borissjak ${ }^{1}$ in the Jurassic deposits of Russia. In connection with this genus or sulgenus the papers of Solger ${ }^{2}$ and Schmidt ${ }^{3}$ should be consulted.

Crenelea orbiculames (Solerby), 18:36. Plate LXI, figs. 14-17.

[Omitted from Vol. I, p. 103.]
1836. Lucina? orbicularis, J. de C. Suerlhy. Trans. Geol. Soc., ser. 2, rol. ir, pp. 241, 341, pl. xvi, fig. 13.
1850. Lucina orbicularis, A. d'Orbigmy. Prodr. de Pal., vol. ii, p. 162 (partim). 1854. - \quad J. Morris. Cat. Brit. Fuss., ed. 2, p. 208. 1866. - \quad - J. Pictet and G. Campiche. Foss. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 5), p. 291.
1871. Lucina: orbicularis, F. Stuliczka. Palmont. Indica, Cret. Fauma S. India, vol. iii, p. 252.

Description.-Shell thin, small, oval, higher than long, slightly ineguilateral, regularly convex, with rounded margins. Umbones pointed, with a small anterior curvature. Lunule and escutcheon not defined. Ormamentation consists of numerous, equal, regular, radial ribs which curve outwards from the median line of the valve and are separated by narrow furrows. A few growth-rings occur at intervals.

1 "Pelecypoden Jura-iblager. Europeisch. Russland. II Arciar," 'Mém. Cum. geol.,' n.s., xix (1905), pp. 29-32, 58-60. pl. iv, fiys. 5-13.

2 " Veber Pseudorucull:ea, cinen newen Taxmbontentypus," 'Zeiterhr. d. deutsch. geal. Gesellsch.,' rol. lv (1903), Monatsber., p. 76.
${ }^{3}$ Ibid., vol. Ivi (1904), Monatsher.. p. 120.

Measurements:

	(1)	(2)	(3)	(t)	
Length	7	7	$6 \cdot 1$		mm.
Height	8	$7 \cdot 6$	7	6.75	

Afimitirs.-This species has been placed in the genus Lurim, by previous writers, but Stolic\%ka suggests that it belongs to Limensis. Although numerous specimens have been seen, none of them shows the character of the hinge and the adductor impressions satisfactorily, but I think that the species should be referred to the genus Crentlla. C. infthta (Maller) ${ }^{1}$ from the Semonian of Aachen is a much more inflated form.

T'!pe.-From Blackilown; in the Bristol Muscum.
Distrilution.-Upper Greensand (zone of Schlaruburhin rostrata) of Blackiown, Haldon, Sidmouth.

Shetifer lineates (Sorerly!). [Vol. I, pp. 107, 225.]
A specimen from the ltinturrinus band of Devizes Road, Salisbury, has been found by Dr. Blackmore. The type of Modioln qualbuta, Sowerby (in Dixon) from Sussex is in the British Musemm.

Vol. I, p. 117, footnote. The type of Dianchora? guttata, Sharpe (1853, pl. vi, fig. 4), is in the Museum of Practical Geology (Geological Society Collection).

Dimyomen Bümi, Stolle!!, 1899.
Gromwall ${ }^{2}$ states that this, or a closely allied form, occurs in the Cprer Chalk of Gravesend and Grays.

Vol. I, p. 15 , , footnote. For "Mïller" red " Nilsson." L'or Ramn "p. 9," read "p. 91."

Pecten (Chlamys) bimtannicus, Woorts. Plate LXI, fig. 18.
[Vol. I, p. 167, pl. xxi, figs. 1, 2.]
When this species was described only the left valve was known. A specimen from Bromley with the two valses united has since been found. The right valve
${ }^{1}$ Holzapfel, 'Palarontographica,' vol. xxxv (1889), p. 220, pl. xxy, figs. 17-19.
2 'Geol. Mag.' 1906, p. 203; Stolley, 'Die Kreile Schleswir-Holsteins' (1592), p. 943, pl. vii, fir. 8; Grönwall, 'Medilel. fral Dansk. geol. Foren.,' No. 6 (1900), p 78, pl. ii, fig. 8.
is nearly flat, and the broad radial ribs are much less distinct than on the left valve; numerous fine concentric ribs are present, and are widely spaced on the early part of the valve, but become closer together on the later part.

Pectin (Cimanes) riberosts, Defiraner.
Vol. I, p. 179, line 17, delete " ('larendon and Alderbury (Salishory)."

Pecten (Æquifecten) cmplaniensis, doorligny. [Vol. I, p. 192.]
A specimen of this species has been found by Dr. Rowe in the zone of Micruster ror-teshulinurium of Dover.

Lima (Lmen:) sp. Plate LXI, fig. 19.
[Omitted from Vol. II, p. 52.]
A few examples of a species which resembles Limet frannlatissimu, Wollemann, ${ }^{1}$ have been found in the Speeton Clay (zone of Bclemuites luteralis) of Speeton. Only a young individual is figured by Wollemam, so that exact comparison cannot be made at present.
Suleqemu:-Psectortera, Mreli.

When describing the species of Pseudoptere (pp. 6:3-69) I regarded it as a sub-genus of Ptril. Ligament-pits have not been seen in any English specimens, but their presence was noticed by Guérangere and by Peron ${ }^{3}$ and indicates that Pramioptera cannot be associated with I'toriu, but should probably be regarded as a sub-genus of Gerrilliu.

Gemilala Forbesinsi, dor himy.
Vol. II, p. 85, pl. xi, figs. 26, 27; pl. xii, figs. 1-5.]
This species belongs to the sub-genus Ensigercillein of Dietrich.'
${ }^{1}$ 'Birals. u. Gastrop. d. deutseh. u. hollindisch. Nencoms' (1900), p. 37, ph. ii, figs. 4. 5.
2 "Album Palćont. de la Sarthe' (1867), pp. 17, 90, pl. xxii, figs. 9, 10: pl. xxy, figs. 10, 11 Wools, 'Palæont. U. Cret. N. Nigeria' (1911), p. 279, footnote 1.

3 "Descript. Brach. etc., Terr. Cr'́t. Tunisie" ($1890-31$), p. 238.
' 'Centrulld. für Min., etc.' (1910), p. 235 .

Astame (Eribive.i) concona, Somprly, 1836. Plate XVII, fig. 7 (see p. 116-118).

When describing the species of Astarte the only specimen of A. conciuna known was the type, and I regarded it as probably only an individual variation of A. striath. Dr. Kitchin ${ }^{1}$ has since fomed several specimens in the Sandgate Beds of a pitsinking at Dover which agree with . I. concinna, and he considers that this should be regarded as a distinct species. Inr. Kitchinalion oltained .I. (Lriphylu) stictle, Sowerhy, from the same place.

Crassathelatbes, pp. [Omitted from Vol II, p. 130.]
Internal casts of a short subquadrate shell, probably belonging to the genus Crussuthllites, occur in the Chloritic Marl of Maiden Bradley and Devizes.

Chassatedites: fqusulchtus (Womls), 1897. Plate LAI, figs. 20, 21. Plate LXII, fig. 1.
[Omitted from Vol. II, p. 130.]

1897. Arctica: equisulcata, H. Woods. Quart. Jouru. Geol. Soc, vol liii, p. 391, pl. xxviii, figs. 6-8.

Inscription. Whell convex, subquadrate, oblique, very inequilateral. Umbones anterior, pointed, with slight forward curvature. Greatest convexity between the umbones and the postero-ventral extremity; postero-dorsal part compressed. Adductor impressions distinct, the posterior one decp. Shell rather thick, ornamented with numerous concentric ribs, separated hy narrow grooves.
liemorlis.-The systematic position of this species is uncertain; it appears to be closely allied to the form from the Chloritic Marl mentioned above.

T'y
Distribution.-- ('halk Rock of Cuckhamsley, Berkshire.

Anthonal, sp. [Vol. II, p. 130.]
A portion of a left valse of Authony, closely resembing A. cantiane has been found in the Upper Grecmand (zone of I'feten (asper) of Kingskerswell, Devon (Muscum of Practical Gcology, Jermyn Street, No. 997.)
${ }^{1}$ Lamplugh and Kitchin, 'Mesozoic Rocks in the Coal Explorations in Kent' (1911), p. 103.

Cyprina Meyeri, sp. min. Plate LXII, figs. : : :
[Omitted from V.l. II,]. 141.]
Description.-Shell convex, oval, considerably inecuilateral; anterior margin rounded, passing gradually into the slightly curved ventral margin; posterior margin truncated; postero-dorsal margin convex. Umbones prominent, curved inwards and forwards, with a rounded carima extending to the postero-ventral angle, and limiting a flattened postero-dorsal region. Lamular region depressed. Escutcheon long, deop, limited by a sharp carina. Ornamentation consists of concentric growth-rings. Length, 56 mm . ; height, 42 mm .

Affinities.-This species shows some resemblance to ('. brrurnsis (Leymerie), ${ }^{\text {t }}$ but is less elongate and much less convex.

Type.-In the Sedgwick Museum, Cambridge (C. J. A. Meÿer collection).
Distribution.—Lower Greensand (Peruu-bed), of Sandown.

Crprina? vectina (Forles), 1845. Plate LXII, fig. H.
 [Omitted from Vol. II, p. 141.]

1845. Tellina? vectiana, E. Furbes. Quart. Jouru. Geol. Soce, vol. i, p. 239 , $\mathrm{I}^{1 \mathrm{l} .} \mathrm{ii}$, fig. 2.

1846. "Tellina" vectinya, F'. J. Pict A anl (i. Campiche. Terr. Crét. Ste. Croix (Matér. Pal. Suisse, ser. 4), p. 141.
 Faman S. India, vol. iii, p. 12:3.

Description. - Shell triangular, moderately convex, with Hattened sides, nearly equilateral. Anterior margin rounded ; ventral margin slightly curved; posterodorsal margin slightly convex, forming a rounded angle with the ventral margin. Umbones prominent, sharp, slightly curved. Lumular region depressed. Escutcheon long, limited by a rounded carina extending from the umbones to the posteroventral extremity. Ornamentation consists of mumerous strong concentric ribs, separated by narrow grooves. Length, 2.5 mm. ; height, 17 mm.

Affinitiex.-This species shows some resemblance to ('. 'murntu, suwerly, but the shell is much more compressed, and possesses distinct concentric ribs. I am not able to determine whether a postero-lateral tooth was present or not.

1 'Mem. Soc. géol. de France,' vol. v (1842), p. 5. pl. v, fis. 6. D'Orbiguy, Pal. Frame. Terr. Crét. vol. iii, pp. 98, 759, pl. celxxi, and • Prohr. de Pal.,' vol. ii (1850), p. 77 . Pietet and Campiche, ' Terr.

Rrmarlix.-The type cannot be found, but other specimens named by Forbes are in the Muscum of Practical Geology (Geological Society Collection, No. 2917).

Distribution.-Lower Greensand (Crackers) of Atherfield.

[Omitted from Vol. II, p. 163.]
Inseription.-Shell convex, with flattened or slightly concave flanks, oval or subpuadrate, moderately or slightly inequilateral. Anterior margin rounded; posterior margin subtruncate, slightly oblique, curved; ventral margin nearly straight and nearly parallel to the dorsal margin. Umbones broad, close together. A rounded carina extends from the umbo to the postero-ventral extremity, limiting the compressed postero-dorsal region. External ligament broad. Ornamentation consists of a few coarse somewhat irregular concentric ribs, which are sometimes rugose, with finer ribs in the interspaces.

Mecustrements:

Affinities.-The hinge and interior of this species have not been seen, consequently its generic position cannot at present be definitely determined, but it is provisionally referred to Unicurdium on account of its external resemblance to some Jurassic species of that genus. L.? compressum is similar to some forms of I!yu rigosi, Römer,' which has been referred to the genus Lutinu by de Loriol and Cottean, to Mretrom!u by Agassiz, and to L"ucardium by Zittel.

T! ! m m. From Atherfield, in the Selgwick Museum, Cambridge.
Distrilution.-Lower Greensand (Crackers), of Atherfied. Atherfied Clay of Dover Colliery.

「Omitted from Vol. II, p. 165?.
1844. Cardidm Malleanum, A. Orliguy. Pal. Frame. Terr. Crét., vol. iii, p. 40, pl. celvi, firs. $7-1$.

[^78]1850. Cardium Mailleanum, d'Orbigny. Prodr. de Pal., vol. ii, [' 162.

1871. -- \quad. Stoliczka. Palieont. Indica. Cret. Fama S. India, vol. iii, 1'. 213 (Levirardium).

Description. - Shell inflated, oval or subguadrate, longer than high, moderately inequilateral. Anterior margin roundel, passing gradually into the slightly convex ventral margin. Posterior margin high, subtruncate, forming an angle with the straight postero-dorsal margin. Postero-dorsal part of shell compressed. Umbones broad, curved forward. Ornamentation consists of concentric growth-lines and fine radial ribs.

Measurements:

Base of Chalk of (1) Beaminster, (2) Maiden Newton, (3) Cerne, (4) Titherleigh.
Remarks.-This species was referred to Cardinm by d'Orbigny, but the shell differs in form from that other Cretaceous species of that genus, and resembles more nearly Unicardium. The hinge is not known satisfactorily, but internal casts show indications of two cardinal teeth.

The ornamentation is often imperfectly preserved. I am inciebted to M. de Grossouvre for the opportunity of examining specimens from the Cenomanian of Rouen.

T!ype.-From the Cenomanian of Rouen.
Distribution.-Base of the Chalk (zone of Schlenluchiu corimus) of Beaminster, Cerne, Maiden Newton, 'Titherleigh and Chard.
'I'elina : phaseolina (Phillips), 1829. Plate LAII, fig. 10.
[Omitted from Vol. II, p. 17i.]
1829. Mfa phaseolina, J. Phillipe Geol. Yorks., 1. 121 (p. 254, ed. 3), pl. ii, fig. 13.
1850. Lavignon phaseolina, A. dOrbigny. Prodr. de Pal., vol. ii, p. 117.
1854. Mpa phaseolina, J. Morris. Cat. Brit. Fiss., d. 2, p. 212.
1870. Lavianon phaseolina. F. Stoliczke. Palemut. Indica, Cret. Fauna s. India, p. 111.

Description.-Shell small, bean-shaped, convex, considerably inequilateral; posterior part higher than the anterior part. Anterior and posterior margins rounded. Postero-dorsal margin slightly convex. Ventral margin with a slight sinuosity. A rounded carina extends from the umbo towards the postero-ventral extremity, and limits a compressed postero-dorsal area. Umbones broad, close together.

Measurements :
Length . . . 8.5 mm . Height . . . $4 . \% \mathrm{~mm}$.
Affinities.-'This species is more clongate and more convex than 'I'.? sulyhusechlina (see below). No specimens having the shell preserved have been found.

I'ype-A specimen which is believed to be the type is in the York Museum.
Distribution.-Speeton Clay (zones of Delemnites juculum and D. Lrunscicensis) of Speeton.

Tellina? subphaseolina (l'Orligny), 1850. Plate LXII, figs. 11, 12.
[Omitted from Vol. II, p. 177.]

Drscription.-Shell oval or subquadrate, compressed, considerably inequilateral, posterior part higher than the anterior part. Postero-dorsal margin nearly straight; posterior margin curved; ventral margin with a shallow sinus due to a depression on the sides of the shell; anterior margin rounded. Umbones small, close together; between the umbones and the postero-ventral extremity is the greatest convexity of the shell.

Measurements:

			(1)	(2)	(3)	
Length	.	.	14	14	12 mm.	
Height			\cdot	10	$9 \cdot 5$	$8 \cdot 5$,
Thickness	.	.	.	-	5	$4 \cdot \%$

(1-3) Gault, Folkestoue.
A!finities.-The hinge is not shown in any of the English specimens. Pictet and Campiche saw casts of the teeth, and they refer the species without doubt to
the genus Tellina. Externally, as was pointed out by Stoliczka, it resembles Lepton.

Type.-From the Gault of Gérodot (Aube).
Instrilution.-Gault of Folkestone.

Chprmerla (Cyclorisma) submersa (Komerby), 1830. Plate LXII, fig. 13.
[For references see Vol. II, p. 192, foot-note.]
Description.-Shell oval, inequilateral, convex, with the postero-dorsal part flattened and limited by a rounded carina passing from the umho to the posterorentral angle. Antero-dorsal margin nearly straight. Anterior margin rounded, passing gradually into the moderately convex ventral margin. Posterior margin truncated. Postero-dorsal margin slightly curved. Umbones of moderate size, with a slight forward curvature. Lumule limited by a faint groove. Escutcheon elongate, bordered by a carina. Ormamentation consists of small concentric ribs.

A!finities. - The left valve, which is described above, was found by Mr. JukesBrowne in the Excter Museum, and appears to be referable to Sowerby's Iemus sulimersa, the only apparent difference being in the greater length of the shell.

The hinge agrees closely with that of (C. (Cyclorismu) parta (Sowerby) (p. 185). Externally the shell is similar to C. (Cyclorisma) rotomagensis (d'Orbigny), but is less convex, more elongated, more inequilateral, with the forward curvature of the umbones more marked and the posterior margin more distinctly truncated.

Distribution.-Epper Greensand (zone of Schleubachia rostiata) of Blackdown.

> Gemus-Tares, Meqfole con Mïhlfeld, 1811.
> [Omitted from Vol. II, p. 194.]
> S'ub-genus-Icasoma, F. Stolic:ka, 1870.
(Palæont. Indica, Cret. Fauna S. Iudia, vol. iii, p. 145.)
Tapen (Icanotia) sp. Plate LXII, fig. 14.
Drscription.-Shell elongate-oval, very ineguilateral, compressed, anterior and posterior ends rounded. Ventral margin convex; postero-dorsal margin nearly straight. Umbones inconspicuous. Ornamentation consists of numerous, close, radial ribs which are indistinct on the anterior part of the valve, and become stronger and more widely separated on the posterior part, where a small rib may oceur between two larger ones. Length (approximate) 5 mm., height 06 mm.

Affinitirs.-Only two right valves of this species have been seen. They resemble closely c'apsin olfigus, d'Orbigny,' but the ribs on the posterior part of the shelt are more numerous and less coarse.
 and Italdon.
 Omitted from Vol. II, p. 221.]
1897. Trapezium rectangulare, H. Womele. Quart. Journ. Geol. Soc., vol. liii, p. 392, pl. xxviii, figs. 11, 12.

Description. -Shell more or less oblong, very inequilateral, moderately convex, with flattened or slightly concare sides. Anterior part not so high as the posterior part. Postero-dorsal margin nearly straight and nearly parallel to the ventral margin; anterior margin rounded; posterior margin truncated, slightly convex or nearly straight, and almost at right angles to the postero-dorsal margin. Umbones inconspicuous, with a carina extending in a curve to the postero-ventral angle, and limiting a triangular postero-dorsal area. A strong internal ridge extends from the umbo towards the opposite ventral margin. Length 19 mm ., height 11 mm .

Adfinities.-A similar species has been referred doubtfully by Weller" to Leptusolen. Mudioln tetrugeme, Reuss, ${ }^{3}$ also shows some resemblance to the English species. The hinge is not shown in any of the specimens, and the generic position must be regarded as uncertain.

I'!ye.-In the Sedgwick Museum, C'ambridge.
Distribution.-Chalk Rock of C'uckhamsley, Berkshire.
Vol. II, page 230 , line 5 from the bottom, for "cariuns" read "rostrata."

Thempap (ilacilis (Somerly), 18:36. Plate LXII, figs. 18, 19.
[Omitted from Yol. II, p. 244.]
1836. Psammobia: arachlis, J. de C. Somerby. Trans. Geol. Sue., ser. 2, vol, ir, pp. 242, 341, pl. xvi, fig. 12.
1850. Telifna grachis, A. dOrbigny. Prodr. de Pal., vol. ii, p. 159.
1854. Psammobia gracllis, J. Morris. Cat. Brit. Foss., ed. 2, p.

1 • Pal. Fianç. Terr. Cret.,' vol. iii (1845), p. 423, pl. ceclxxxi, figs. 1, 2.
2 'Cret. Pileont. New Jersey' (1907), p. 626, pl. lxx, fig. 29.
3 'Die Verstein. der böhm. Kreideformat.,' pt. 2 (1846), p. 15, pl. xxxiii, fig. 6.

Description.-Shell elongate-oval, moderately convex, slightly inequivalve and inequilateral. Anterior margin rounded. Ventral margin slightly or moderately convex, and forming an acute angle with obliquely truncated posterior margin. Umbones incurved. A sharp carina extends in a curve from the umbo to the postero-ventral angle, and cuts off a flat or slightly concave postero-dorsal area. Ornamentation consists of concentric ribs, which are less numerous but stronger on the anterior part of the shell and the postero-dorsal area than elsewhere.

Measurements:

(1, 2) Blackdown.
Affinities.-This species resembles T'hracia elrgme: (d'Orbigny) ${ }^{1}$ but possesses stronger concentric ribs. Its generic position camot be determined definitely since only a few specimens have been seen, none of which shows the hinge or interior.

T'ype.-The type from Blackdown cannot be foumd.
Distribution.-Upper Greensand (zone of Schlewhlachiat rustrata) of Blackdown.

Inoceramus 'tuberculatus, Woods. [See Vol. II, p. 302.]
An example of this species has been found in the \%one of Artimortmmix quadratus of East Hamham, Salisbury, by Dr. Blackmore.

Inoceramus intermedius, Solerby.
[Loudon's ‘ Mag. Nat. Hist.,' vol. ii (1839), p. 296, fir. $8: 3$]
The figure given by Sowerby of a specimen from Norfolk appars to have been overlooked by previous writers; it probably represents a large form of I. Lamarchi var. apicalis.

[^79]
I.-IDISTRIBUTION OF I'HE LOWER CRETACEOUS SPECIES IN ENGLAND.

The senera are arranged in the order of the classification followed in this work. The specties of earh gemes or subgenus are in alphathetioul order. 'Ihe stratigraphical divisions ate these alopted in ther ' Memairs of the Geokerical Surver.'

| |
| :--- | :--- | :--- | :--- |

II.-DISTRIBUTION OF THE UPPER CRETACEOUS SPECIES IN FNGLAND.

Geums and Species.	$\begin{aligned} & \text { Volume } \\ & \text { Andl } \\ & \text { I'uge. } \end{aligned}$					1 											
Osticea																	
Boucheroni, Cuq.	II, 391	...	\ldots	\cdots	...	\cdots	\ldots	\ldots		\ldots	\times	\cdots	x	x	x		
canaliculata (Sow.)	II, 375	\ldots	\times	\times	...	\%	\times										
cunabula, Scel.	II, 358		.	\ldots	\ldots	\cdots	\times										
diluviana (L.)	II, 342	\cdots	...	\times	\ldots	\times	x	x			1						
incurva, Nilss.	II, 388	\cdots	...	\ldots	\cdots	\| \ldots	\times	\times	\times	\times			\times	\times	\times	\times	
Leymerii [Desh.] Leym.	II, 355	\times															
lunata, Nilss.	II, 393	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	\cdots		ν
sarumensis, Woods	II, 387	\ldots	\ldots	.	. ${ }^{\text {a }}$	\ldots	.	\cdots	\cdots	\cdots	\ldots	\cdots	\times		
semiplinna, Sow.	II, 379	\ldots	$1 \ldots$	\cdots	...	\cdots	\cdots	\cdots	\cdots	\%	\times	x	x	x	x	x	\times
vesicularis, Lam.	I1, 360	\ldots	?	\times	\times	x	\times									
vesiculosa (Sow.)	II, 374	...	\cdots	\times	\cdots	\times	\times										
Exogrra																	
columba (Lam.)	II, 413	\ldots	\ldots	\times	\ldots	\times	\times										
conica (Sow.)...	II, 407		\times	\times	\times	\times	\times	\times									
digitata (Sow.) .	1I, 417	...	\cdots	- \cdots	\ldots	\times				1							
sigmoidea, Reuss	II, 419	\ldots	\cdots	\cdots		\ldots	\ldots	\ldots	\ldots		\times			$!$	
Lima																	
aspera (Mant.)	II, 8	. \cdot	1 \cdot.	\cdots	\cdots	\| \cdots	\times,	\times							!		
canalifera, Goldf.	II, 1	\ldots	...	\ldots	\ldots	${ }^{\times}$				1						\|	
Galliennei, d'Orb.	II, 3	...	, \cdots	\times	\ldots	. ${ }^{\text {a }}$	\times			,							
scabrissima, Woods	II, 7	\cdots	\cdots	\cdots	\cdots	d x				!							
subovalis, Sow.	II, 5	\times	-	! x	\times			!							
vectensis, Woods	II, 4	\ldots	...	, \cdots	..	$)^{x}$	।		i								
(Plagiostoma) cretacea, Woods	II, 22	\cdots	\cdots	, \cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\times	\times	\times	\times	x	\times	\times	\times
- globosa, Sow.	II, 16	\ldots	\times	- ...	\times	\times	\times	\times									
- Hoperi, Mant.	II, 17	\cdots	\cdots	-	\cdots	,	\cdots ।	\cdots	\cdots	\times	\times	\times	\times	\times	\times	x	\times
- Marrotiana, d'Orb. ..	II, 24	...	\| ...	1	\cdots	,	\ldots		! \times		\cdots	\cdots	\cdots	...	\times	...
- Meyeri, Woods	1I, 15	,	\times	x										
- semiornata, d'Orb. .. ।	II, 14	- ...	\ldots	\times	...	\times	\times		1	1							
(Acesta) clypeiformis, d'Orb.	II, 26	. \cdot		\cdots	\ldots	\times											
(Mantellum) britannica, Woods ... - cantabrigiensis,	II, 38	\ldots	\cdots		\ldots	\ldots	...		\ldots	1		\cdots	\times				
Woods	II, 37	\ldots	\ldots	\cdots	\cdots	\ldots	\times										
- elongata (Sow.)	II, 34	\cdots	\ldots	\cdots	\ldots	...	\times	\times	1								
- - var.echinata,									'								
Eth.	II, 36	\cdots	\ldots	\cdots	\cdots	..	?	\times	:	,							
- gaultina, Woods	II, 31	\ldots	\times	\times					!								
- interlineata, Jukes-									1								
Browne	II, 32	\ldots	\ldots	- \times						1							
- intermedia, d'Orb. ...	II, 33	\cdots	...	\ldots	\ldots	\times				, 1			1				
- Reichenbachi, Gein.	II, 39	\ldots	...	\cdots	\ldots		x										
- sp.	II, 40	...	\cdots	\ldots	...		${ }^{x}$										
(Ctenoides) divaricata, Dujard. ...	II, 44	\ldots	\cdots	\cdots	\ldots	\cdots	, \cdots		\| \cdots	\times			\times	\times	\times	\times	
- rapa, d'Orb...............:	II, 40	\ldots	\cdots		...	\times	$\times 1$										
- teeta, Goldf.	II, 42	...	; ...	\cdots	...	\ldots	\times										
(Limatula) decussata, Goldi.	II, 50	\ldots	...	\cdots	...	\cdots	\cdots	\cdots	'...			-...	...	\times	\times	\times	
- Fittoni, d'Orb.	II, 48	\ldots	\ldots	-	...	\ldots	\times										
- subxquilateralis, d'Orb.	II, 49	...	\cdots	\cdots	...	\times											
- wintonensis, Woods ...	II, 51			\cdots	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	?	...	\times		
- sp.	II, 52	\ldots	...	\ldots	\ldots	\ldots	\cdots		...	\ldots	\ldots	-..	\times	
(Limen?) composita (Sow.)!	II, 53	...	\ldots	.		\times											
- granulata (Nilss.)	II, 54	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\times	\times	x

Conus and species.

[This includes works pulhished since 1903, and some of earlier date which were onitted from the Dibliography given in Vol. I.]

Arbacim, C. Inororami del Vencto. Iohl. Sor. arol. Ithl., vol. xxiii (1904), p. 178.

Anderson, F. M. Cretaceous Deposits of the lacific Coast. l'me. Calif. Actul. Sci., ser. :3, vol. ii, No. 1, 190‥ [Lamellibunchs, pri. 73-75.]
Anuert, H. Die Inoceramen des Kreibitz-Zittaner Sandsteingebirges. (Festseluift d. Humbolittereius.) Ebersbach, 1911 .
Arkinngensky, A. D. Sur quelques Ostrea du Pakóocine et du Crétacé supérieur de la Russie. Ann. géol. min. Russie, vol. vii (1905), p. 189.
Arvaud, H. Mémoire sur le Terrain Crétacé du surl-onest de la France. Mém. Soc. géol. de France, ser. 2, vol. x (187̄). [Spherulites, p. 80.]
Ansom, R. Descriptions of New Cretaccous and 'Tertiary Fossils from the Santa Cruz Mountains, California. Proc. I'.'. Aift. Mus., vol. xxxir (1908), p. 345 . [Lamellibranch, p. 357.]
—— Palæontology of the Coalinga District, (alifornia. Bull. 3:6 T.S. Geol. Surey, 1909. [Lamellibranchs, p. 11, pl. i.]
Aswhe, E. Die Gastropoden, Bivalven und Brachiopoden der Grodischter Schichten. Britr: :. l'al. n. Gool. Ontorr--Cugrus II. d. Orieuts, vol. xix (1906), p. 1:35. [Lamellibranchs, pp. 1:53-i (i6.]
 vol. i (1856), p. :370.
Bemmentsen, O. Zur (Geologie des Ostabhanges der argentinischen Cordillere. II Theil. Zeitschr. d. dentish. geol. riosellsch., vol. xliv (18!2), p. 1. [Lamellibranchs, pp. 19-99.]
Bexime, E. Bericht aber die von Orerweg auf der Reise von Tripoli mach Murzuk mul ron Murzuk nach (ihat gefundenen Verstemermigen. llid., vol. iv (1852), p. 14% [Lamellibranchs, pp. 1:1-15t, pls. iv, w.]
Bönn, G. Leber einige Fossilien ans Buchara. Minl, vol. li (1899), p. Hi:. [Lamellibranchs, pp. 46i6-469.]
Bӥпм, J. L'eber Inocram": Cripsi, Mant. Mid., vol. lix (1907), Monatsh., p. 113 .

Bönм, J. Inoceramıs foollematirus, v. Schloth. sp. Ihid., vol. lxi (1909), Monatsh., p. 117.
——nnerramus Cripsi anct. In Schröder und Böhm, Geologic und Palantologie

 (1910), 1. 7 H.
-- and A. Heam. Neue Untersuchungen über die Senomhildungen der östlichen Schweizeralpen. II, Paliantologischer T'eil, von J. Bülm. Alhumdl. d. selurei:. prelätut. (iesellsch., vol. xxxyi (1909). [Lamellibranchs, 1 p. 26-:31.]
—— Ueber Inoceramus Curieri, Sow. Zeitschi. d. deutsch. geol. Gesellsch., vol. lxiii (1911), Monatsler., p. 569.
Böse, E. La Fauna de Moluscos del Senoniano de Cárdensas, San Luis Potosí. Bol. A. Inst. yeol. de México, No. O-1, 1906. [Lamellibranchs, pp. 35-61.]
——Monografía geológica y Palcontológica del Cerro de Muleros. Ilid., No. Q.i, 1910. [Lamellibranchs, pp. 84-139.]

Boule, M., and A. Thevenin. Paléontologie de Madagascar. I, Fossiles de la Côte Orientale. Amal. l'aléont., vol. i (1906), p. 4.). [Lamellibranchs, pp. 48-52 (=6-10).]
Brantes, T. Gibt es Hippuritiden, welche durch Knospung Kolonien bilden: Nenes Juhrl. für Min., etc. (1909), vol. i, p. 93.
Bıǘ: $\mathfrak{e n}$, H. Die Fauna des unteren Senons von Nord-Perú. Ilid., Beil.-Band $\operatorname{xxx}(1910)$, p. 717. [Lamellibranchs, pp. 742--762.]
Bhtituiven, J. G., etc. Encyclopédie méthodique [see Bibliography, vol. i, p. xiv]. Dates of publication are given by Sherborn and Woodward. Aun. Muy. Nat. Hist., ser. $\overline{\text {, }}$ vol. xvii (1906), p. 577.
BChekinart, C. Profils géologiques transversaux de la Cordillire argentino(hilieme strat. et teet. Limul. d. Mus. de Lat Plutu, Seec. Geol. y Min., vol. ii, 1900 . [Cretaceons Lamellibranchs, pp. 4!-51.]
-- C'oupe géologique de la Cordillère entre las Lajas et Curacautin. Ilid., Sece (Geol. y Min., vol. iii (1900). [Lamellibranchs, pp. 18-23, pls. xxi-xxvi.]
Gmofat, P. Le Cretacigue dams l'Arrabida et dans la Contrée d’Ericeira. Commumi. Cumm. geol. Portugul, vol. vi (1904), p. 1. [Lamellibranchs, pp. 17-51.]

- Nouvelles tomées sur la zone littorale d’Angola. C'outril). Comu. yéel. des Chluies l'ortuguises d'Afrique, 1905, p. 1. [Lamellibranchs, p1. 42-45.]
- Espìes nomvelles on peu commés du Mésozoique portugais. Journ. Conch., Paris, vol. liv (1906), p. 33. [Lamellibranchs, pp. (10-41.]

Clark, W. B., R. S. Ludi, and E. W. Berry. Systematic Palmontology of the Lower Cretaceous Deposits of Maryland. (Marylend Genl. Surery, 1911.) Mollusca by W. B. Clark, p. 211. [Lamellibranchs, p. 213.]
Cossmane, M. Le Barrémien supérieur à facies urgonien de Bronzet-les-Alais (Gard). Déscription des Gastropodes et Pélécypodes. Mín. Sir. !foul. de F'ratire, Paléchtulogie, vol. xv, 1907. [Lamedihnanchs, pp. 2s-41.]
Cragis, F. IV. Descriptions of Invertebrate Fossils from the Comanche sieries in T'exas, Kansas and Indian 'Territory. Colorudo C'oll Studies, 1894, p. +4. [Lamellibranchs, pp. 51-61.]
Dacqué, E. Mittheilungen über den Kreidecomplex von Abu Roash bei Kairo. P'alwontographica, vol. xxx, 2 (190:), 1. :3:37. [Lamellihranchs, pp. 361-378.]
——Beitriige zur Geologie des Somalilandes. I. Untere Kreide. Beitr: Pulüont. u. Geol. Österr--Cnyarns ". d. Orients, vol. xvii (1904), p. 7. [Lamellibranchs, pp. 12-17.]
Danelli, G. Vaccinites (Pironar") polystylus nel cretaceo del Capo di Jenca. Boll. Soc. geol. Ital., vol. xxiv (1905), p. 119.
Décoce, C. Sur les Inocérames de la Craie du Nord. Assoc. Franc. Acanc. Sci., 3me. Session. (Lille, 1874), 1875, p. 366.
Desmayes, G. P. Observations sur le Spharmlites culceoides. Bull. Sirc. yrul. de l'rance, ser. 2, vol. viii (1850), p. 127.
Diemach, W. O. E'nsigercilleia, eine neue Gervilliengruppe aus dem oberen weissen Jura von Schwaben. Centralll. fïir Min., etc. (1910), p. 2:35.
Duuvillé, H. Mission scientifíue en Perse par J. de Morgan, vol. iii. Etudes géologiques. Partic ir. Paléontologie, Mollusques fossiles. Paris, 1901. [Lamellibranchs, pp. $944-2.51,2.56-280$.
_ Etudes sur les Rudistes. Revision des principales espèces d' Hippurites. Ném. Sue. !éol. de l'tume', l'aliont., vol. i [1890] 1s91, pp. 1-:31; ibid., vol. ii (1892), pp. $3: 3-56$; ibid., vol. iii (1893), pp. 57-94; ibil., vol. iv, (1894), pp. 95-185; Distribution régionale, ilid., vol. v (1895), pp. 139 - 186 ; ilid., vol. vii (1897), pp. 187-2336.

Etudes sur les Rudistes. Rudistes de Sicile, d'Algérie, d'Egypte, du Liban et de la Perse. Mrim. S'oc. géol. de France, P'eléont., vol. xviii, 1910.
——Sur les Biradiolitidés primitifs. Bull. Soce géol. de Prence, ser. t, vol. is (1904), p. 17%.

- Etule sur les Vulsellidés. Mid., vol. vi (1906i), pre: ext.
 p. 97.
- Les Lamellibranches cavicoles on Desmodontes. Bull. Sove yind. di Prance, ser. 4 , vol. vii (1907), p. $!(6$.

Docrimá, H. Sur le developpement des IIipurites. Ibid., vol. viii (1908), p. 268.
—— Sur la classification des Radiolitidés. Ibid. (1908), p. :308.
Observations sur les. Ostréidés, Origine et Classification. Ilid., vol. x (1910), p. 634.
——'seulotomectsiu et Bayleiu. Ihid., vol. xi (1911), p. 1:10.
Enmander, R. fil. A Monograph of the (retacoons Invertehnate Fama of New
 [Lamellibranch:, pp. 14-39.]
_Lower Cretaceons Fossils from the sources of the Barcoo, Wiard and Nive Rivers, South Central Queensland. Part I, Annelida, Pelecrpoda and Gasteropoda. Rece Austrelim Mus., vol. vi (1907), p. :317. [Lamellibranchs, pp.: $: 19-327$.
——Cretaceons Fossils of Natal. Part II, The L'msinene River Deposit (Zululamd). Third licp. Gcol. Surv. Katal uml Zululaud (1907), p. (iz. [Lamellibranchs, pp. 69-8:3.]
Fandor, E. Étude géologigue sur les Etages moyens et suncients du Terrain Crétacé dans le S.E. de la France. Aun. S'ci.géol., vol. xviii (1885), p. 1. [Lamellibranchs, pp. 247-254.]
Farar, F. Dic Ammoniten der unteren Kreide Patagoniens. Neues Jahurb, fïr Min., etc., Beil.-Band xxy (1908), p. 601. [Lamelibranchs, pl. $608-$ 612.]

Fatix, J. Ueber Hippmitenhorizonte in den Gosauschichten der nord-istlichen Alpen. Centralll, fïr Min., etc. (1907), p. 417.
——Studien über die Schichten der oberen Kruileformation in den Apen und den Moditerrangebieten. II. Die Kreileschichten bei (iosan. ladaonto-

——Ueher Hippuritenhorizonte in den Gosamschichten der nordiastichen Alpen.
 399.]
 de compuilles du Muséum-Demidoff et en particulier sur quelques copuilles fossiles de la ('rimée. Dull. Sor. Simpert, des Sat. de Mascon, vol. viii (18:3), p. 101. [Lamellibranchs, pp. 10S-118.]

 1:3:-1:7.]
Fonsar, R. Contribution a léétude de la Faune Crétacique d’Egypte Bull. Inst.

Finveke, F. Znsammenstellung der bisher in Nordeuropa bekamen Rudisten. Zeitschr. d. drutsish. geol. Gesellsch., vol. lxiii (1911), Monatsleri., p. 356.
Fabin, F. Geologische Beobachtungen im pontischen Gebirge. Neues Jahurl, füur Min., ete. (1911), vol. 1, p. 1. [Lamellibranch, p. 6.]

Frać, A. Studien im Gebiete der böhmischen Kreideformation. Ergainzung zu Band I. Korycaner Schichten. Archie f. Wht. Aandesdurchiorschung con Böhmen, vol. xv, No. 1, 1911. [Lamellibranchs, pp. 30-9.5]
Friedberga, \mathbb{W}. Drobny prayezynek do famy warstw inoceramowych. ripiter. Akal. C'miej. Jiralion, vol. xlii, pt. :3 (1908), p. 58.
Futrener, C. Ceber Hippuriten von Nabresina. Zeitschr.d.dentsch.grol. Geseflsrh., vol. xlv (1893), p. 47
Gabi, W. M. Descriptions of some new species of Cretaceons Fossils from South America, in the Collection of the Academy. I'ror. Acred. Aist. Sci. l'hiled., 1860 (1861), p. 197, pl. iii. [Lamellibranchs, p. 198.]
Glebri, C. Repertorium zu Goldfuss' Petrefacten Deutschlands. Leiprig, 1866. [Lamellibranchs, pp. 40-84 and 87.]
Grönwall, K. A. On the occurrence of the genus Dimyohen, Mun.-('hal., in the Mesozoic Rocks of Great Britain. (icol. Mag. (1906), p. 202.
Haeniens, C. i. Inorerumen ans der mittleren Kreide des nördlichen Harzrandes. Zeitschr. fü̈r Mat. Hulle, ser. H, vol. viii (1889), p. 16is.
——Ueber die Entwickelungsgeschichte des Inocramn: Urinsi, Mantell, und sein Vorkommen am Nordrande des Harzes. Schrift. Nat. Ver. des ILar:ers (Wernigerode), vol. vii (1892), p. 98.
Habont, E. Die Fauna der Schaumburg-Lippe'schen Kreidemulde. Ahhandl. d. l. preussisch. geol. Lamlesanst. ". Breyutlat., x.f., +5, 190.5. [Lamellibranchs, pp. 98-83.]
Hanns, G. D. The C'retaccons and Lower Eocene Famas of Lomisiana. Rep. Geol. Surc. Louisima, 1900, p. 289. [Lamellibranchs, pp. 2!!-296.]
Hartr, O. Beitraige zur (ieologie und lalkiontologie von Siudamerika, von (i. Strimmanu. xii, Beitriige zur Fama des oberen Malmund der unteren Kreide in der argentinischen Cordillere. Jouss Juhth, fiir, Min., ete. Beil.-Bd. xxiii (1907), p. 187. [Lamellibranchs, pp. 207-202.]
Horzapfel, E. Ueher einige wichtige Mollusken der Aachener Kreide. Zeitschi. d. deutselh. geol. Gesedlsch., vol. xxxvi (1884), p. 4it. [Lamellimanchs, pp. $450-42$.
Inmaxi, H. von. Notes sur quelgues Mollusques fossiles du Chili. liecistin Chilenu, vol. vii (1902), p. 120. [Hipurites, hululitrs.]
_ Les Mollusques des terrains crétaciques supérieurs de l'Argentine orientale. An. Mus. Nar. Buenas Aios, vol. ix (190:3), p. 19:3. [Lamellibranchs, pp. 198-20t, 210-2016.]

- - Nuevas Observaciones sohre moluscos cretíceos y terciarios de Patagonia. lier. d. Mus. de La l'lath, vol. xi (1904), p. 은. [Lamellibranchis, pp. 23.5, 2.36.]
- - Les Mollusques fossiles du Tertiare et du Crétacé supérieur de l.Arrentine. . In. Mus. Liuc. Burnos dives, ser. :3, vol. vii (1907),]. 1. [Lamellibnanchs, pp. 3-27, $35-38,42-48$.

Inkemer, H. Einige Beobachtungen über die Kreideablagerungen im Leitzachtal, am Schlierund Tegernsee. Z,itschi. d. dentsch. !foul. Gewellsch., vol. lii (1900), p. 380. [Lamellibranchs, pp. 384-386.]

Jonsson, D. W. Geology of the Cerillos Hills, New Mexico. Part ii. Palæontology. S'choil of Mines Qmut., vol. xxiv (1903), No. .. [Lamellibranchs, 1p.185-198.]
Juks-Browxe, A. J. On the gencra of Vencridae repenemed in the Cretaceous and older 'Tortiary Deposits. I'ror. Malacol. S'ar, vol. viii (1908), p. 148.

Kitrons, F. L. The Invertehnate Fama and Palaontokgical Relations of the Vitemhage Series. An". S. Liricun D/us, vol. vii (l9os), p. 21. [Lamellibranchs, pp. 6.5-162.]
 dicund st. l'étorstou't, vol. ii (190s), p. 157. [Lamellibranchs, pp. 168-173.]
Kossmat, F. Geologie der Inseln Sokítra, Sémha und Abd el Kâri. Denkeched. li. Himil. Ilisseu. W'ien., Math.-1nat. (l., rol. laxi (1!907), p. 1. [Lamellihranchs, pp. 48-51, 55-56.]
Kuenkri, E. Die Untere Kreide von Dentsch-Ostafrika. Beitr.:. I'mläut. u. Geol. Osterveich-nn!urns u. I. Orients, vol. xxiii, 1910, p. 20]. [Lamellibranchs, pp. ©0:3—218.]
Kaumbek, J. Beitrige zun Geologic mul Palaontologie ron 'Tripolis. Palacou-

Lantiminans, W., and M. Ghindey. Das Kieslingswalder (iestein und seine Versteinerungen. Breslan, 1s!1. [Lamelibranchs, pp. 10-12.]
Lantery, L. Essai sur la Géologie de la Palestine et des contrées aroisinantes telles que l'Egyte et l'Arabie. Deuxieme Partic. D'aléontolugie. Aumul. S'ci. !éul., vol. iii (1873). [Lamellibranchs, pp. 49- 71 .]
Lemonde, P . Sur la présence des fossiles marins dans le Néocomien inférien du lays de Bray. Bull. Sur. Sici. mut. Rom'u, vol. xliii, 1907 (1908), p. 129, pl. i.
Lerichf, M. Contribution à l'étude de la Faune de la Craie d'Epernay à Magus
 334. [Lamellibranchs, 1p. 3:36-338.]
——Sur la limite entre le Turonien et la Sénonien dans le Cambersis et sur quelques fossiles de la C'raic grise. Amul. S'or. grenl. Nurd, vol. xxxviii (1!0!9), p. 53. [Lamellibranchs, pp. 61-69.]
Lempme, A. Synonymie de l'Erog!re simatu. Bull. Soc. géul. F'rance, vol. xi (1840), p. 121.
——These sur les camacteres distinctifs des Huitres, des Gryphées et des Exogyres. Paris, istu.

Longmin, P'. Contribuzione alla comosecmza della Jama del calcare cretaceo de Calloneghe presso il Lago di S. Croce nelle Ahi veneti, II. Riir. itrl. di l'aleont., vol. ix (190:3), p. 24. [Lamellibnanchs, p1. 28-:31.]
Meek, F. B. Palanonogical Report. Gth Amm. Rep. C.S. Geol. Surey of the T'erritories, hy l'. V. Hayden, Wanhington (15-:3), p. He9. [(retaceous Lamellibranclis, p1. 157-497.]
——Report of the Geological Explomation of the foth Pamallel, vol. iv, Part I,
 pl. $140-159$.

Neomann, R. Beitrige zur Geologie und Palaontologie von Südamerika von G. Steimmam. NII. Beitriige zur Kemoniss der Kreideformation in Mittel-Perí. Jemes Jahrl. fïir Min. etc., Eeil.-Bd. xxiv (1907), p. 69. [Lamellibranchs, p1. 88-90, 101-118.]
 Com.l., vol. viii (1896), p. 1:36.
——Fossil Pearl-growths. Prom. Mulnod. sur., wol. viii (1908), 1. 128. [Inocer"mun., etc.]
——Cretaceous Gastropoda and Pelecyporla from Zululand. Trans. Roy. Suc. S. -fficica, vol. i (1.909), p.]. [Lamellihranchs, pp. 31-86.]

Nowak, J. Gliederung der oberen Kreide in der Cmgebung ron Halicz. Butl. Intront. Acter. Sifi. ('rucorie (1909) U, p. Sīl. [Lamellibranchs, p1. $874-876$.]
Orpenmen, P. Neue Beitriage zur Geologie und Palkontologie der Balkanhalhinsel. Zaitsilh: d. deutsch. !eol. Geserlsch., vol. 1viii (1906), p. 109. [Lamellibranchs, pp. 126-1:38.]

Palfy, M. vos. Zwei neun Inmeramus-Riesen aus den oberen Kreideschichten der siehenbürgischen Landestheile. f'̈̈htami Kö:lony, vol. xxxiii (190:3), pr. 45-451, 45-495.

Pakmsis, J. Remarks on the Fousils collected hy Mr. Phillips near Dover and

Parona, C. P', Sopmalene Rudiste de Cretaceo superione del Camsigho nelle
 1:39-1.5

Rudiolites liratns (Comr.) e Apricardie Nëllin!i (Blanck.) nel (retaceo superiore della Siria. Alti li. Arond. S夭i. J'mino. vol. xliv (190日), p. 491.
-- Le Rudiste del Senoniano di Ruda. Ihid., vol. xlvi (1911), p. :3so.

Panow, (. F. Nuovi studii sulle Rudiste dell Apemino (Radiolitidi). Mem.

Panont, G. A. L'Ippuritidi del colle Media nel Frinli. Mem. Instit. cumeto di Scien:r, vol. xiv (18ti!), p. 397.
Parreke, W. Beiträge zur Geologie und Palaentologie von Südamerika von (i. Stemmanm. x, Leber die Kreideformation in Siudamerika mod ihre

Pavan, A. P'. Buchainement des Aucelles et Aucellines du C'rétacérusse. Nome.

 1. $\because 38$.

Prrox, P. A. Suppression d'un certain nombre d'Especes dans la Nomenchature des Ostred crétacés. C. h. Assor. firame. Ar. tei., vol. xxavi, 1907 (1908), pt. $2, ~ p .305$.

Pernö, J. Die Kreide-(Hypersenon-) Fauna des Peterwardeiner (létervirader)
 [Lamellibuanchs, pu. 18t-:316.]
Perfiscubur, W. Über Inoceramen ans der Kreide Böhnens und Sachsens. Tulthe d. li. li. geol. If crichsanst., vol. liii (190:3), p. 1 jis.
——Die Kone des Artinoramux plemus in der Kreide des östlichen Böhmen. llid., vol. lv (1905), p. 399. [Lamellibranchs, pp. +:3-4:34.]
__ Über Inoceramen aus der Gosau mod dem Flysch der Nordalpen. Ibid., vol. lvi (1906), p. 15.5.

Pumarr, R. A. Die 'lertiären und Quartiiren Versteinerungen Chiles. Leiprig, 1887. [Lamellibramehs, pp. 11:-216.]

Rand, J. P. J. On Jurassic and Cretaceous Fossils from North-East Grecnland, Meddelnl. om tirönlime, vol. xlv (1911), p. f:37. [Lamellibranchs, Ple. $4.54-481$.
Reprian, J. Description des fames et des gisements du ('énomanien sammitre ou d'ean donce du Midi de la France. Marseille, l!oz.
Rumaky, J. S. Die geologische Ban von Kaiser Wilhelms-Land nach dem heutigen Stand meres llissens. Nemes Jahol. fïr Min., ete., Beril.-Bd. xxix (1910), 1. H06. [Lamellibranchs, pp. $+76-487$.]

Rosian, W. C̈ber einge Lamellibranchen ans dem Lemberg-Nigorganyer Senon.

- - Dio oberkretazischen Biklungen im galizischen Podolien. I. 'reil, 'Turon. Weisse Krede mit Feuerstemen. Hid. (1911), 1. 159. [Lamellibranchs, 1p. 167-173.]
-_ Bin Beitrag zur Kenntniss der Mukronatenkreide der Gegend von Lemberg. Kosmon, vol. xxxvi (1!11), p. fit.

Romand, G. Sur le Terrain crítacé du Sahara septentrional. Bull. Sur. géel. de

Rönsa, F. De Astartarm Genere ot Speciebus, qua esaxis jurassicis atrque cretaceis proveniunt. Berlin, 18 le.
Roudmara, C. Etudes progressives sur la géologie de Moscon. Bull. Sor. Inpír.

 Armi. Sri. Ormorio, 1!09 (1910), p. I!日。 [Lamellibanchs, pp. 193196.]
—— Prayezynck do zanjomóci famy kredowej w Mialach pod Grodnem
 [Lamellibranchs, pp. su-s.i.]
Scimfü̈mi, K. E. Sül-]3ayems Lethea (ieognostica, 186:3. [Lamellibranchs, pp. 135-179.]
Scmagntwert, O. Die Fama des Vracon und Cemoman in Perí. Beitr. z. Geol. u. Paliont. r. Südamerika ron G. Siteimmann. Somestahtofiil Min., ete., Beil.-Bd. xxxiii (1!11), p. 13. [Lamellibranchs, pp. 90-96, 104-105.]
Scmö̈rer, C. Einige Snoceramen mad Cephalopoden der texanischen Kreide.
 p. 42.

Scminiry, F. Über die neue Gattung Psendocmrulliar. Weitschi: d. deutseh. geol. Gesellsch., vol. 1-i (1901), Momutsh., p. 120.
Shaman, G., and E. T. Newtus. Note on some Cretaceous Fossils from the Drift of Moreseat, Aherdeen. Geol. Lu!. (189\%), p. $24 \overline{\text {. [Lamellibranchs, }}$ pp. $251-253$.
Shampe, D. On the Secomlary District of Portugal which lies to the North of the Thagus. Qumr. Jomin. (icol. N'm., vol. vi (1850), p. 135. [Lamellibranchs, p1. 176-191.]
Suatter, (i. B. The Mollusea of the Bula Limestone, with an appendix on the Corals, hy T'. IV. VMrins. Bull. V.N. Cicol. Surtey, No. 205, 1903. [Lamellibranchs, pp. 1:-:30.]
Smmonact, J. Studii geologice si Paleontolorice din ('arpatii Sudici. I. Studii geologice asupa Basenlui Dimboriciórei. Il. Fama Neocomiana din
 rol. i, No. ㄹ. Bukarest, 1s?s. [Lamellibumehs, pp. 15l-15t.]
——Fama cretaciea superióna de la C̈rmös (Transilvania). Mbid., No. t. Bukarest, 189!. [Lamellihanchs, 1 . 9.9 -:30.]
Surn, W. Stata identilied by Organised Fossik. Lomdon, 1814;19. [Cretaceous Lamellibranchs, phs. iii, ir, r.]

Smorésk, G. Le Rémonien inforieur de Bonarka. I. Les ('éphalopodes et les Inocéramines. I'nll. Intion. Acul. Seri. C'anotic (1906), p. 71 .

 [Inocerimus.]
 frciluig-i-fir., vol. xvi (190(6), pl 1—!.
Sokons, D. Aucelles et Aucellines provenant du Mangrslak. limll. Imp, Aral.

Sokonm, D. N. Ueber die ailtesten Aucellen. Buil. Com. grol. Russir, vol. xavii (1908), p. :8:3.
 $36,1908$.
__ Ueber Aucellen ans dem Norden und osten von Siberien. Mím. Acad. Impér. S'i. St. l'éterstomig, vol. xxi, No. 3, 1908.
 Petrostura, vol. xlvii (1909), p. 49.
 dentsch. !rol. Giesillsch., vol. ly (190:3), Mometsler., p. ї (i.
Suwerby, J. de C. Inocercmis intermedins, n. sp. May. Nat. Hist, vol. ii (182!), p. 296 , fig. 83.
—— In Sedgwick and Murchison. Trans. Geol. Soc., ser. ${ }^{2}$, wol. iii (1846), p. 301. [Gosan Fossils, pp. 417-419, pls. xxxtiii, xxxix.]
Spuski, B. Beitrag zur Kenntniss der baltischen Cenoman-geschicbe Ostpreussens. Schrift. phys.-ïtom. Gesellsch. K"̈nigslet!, vol. li (1! 10), p. 1. [Lamellibranchs, p. Q.]
Stanton, T. W. A new freshwater molluscan famule from the Cretaceous of Montana. J'ooc. Amer. Phil. Sor., vol. xlii (190:3), p. 15s. [Iamellibranchs, pp. 191-195.]

- and J. B. Hatriner Geology and Palaontology of the dulith River Beds. Bull. U.S. Geol. Surce, No. 257, 1945. [Lamellibranchs, [1]. 104-11\%.]
Strpano, G. De. Fossili cretacei nel Bartoniano di Plati (C'alabria). Athi Suc. itrl. Sci.nat. Milan, vol. xliii (1904), p. 3:31. [Lamellibranchs, pp. 3:8-:380.]
Stramann, G., and O. Wherms. Kreide- und Tertiarfossilien aus den Magellanslandern, gesammelt von der Schwerlischen Expedition, 189.5-1897. Ahkiv, fïr Zoolugie, vol. iv, No. 6 (1908).
 Valanginien mul IVaterivien der Kislowolsk-Lmgeqomen. Ann. yéol. et min. de lu linssie, vol. x (1908), p. 113. [Lamellihanchs, 1p. 113121.]

Stonex, E. C̈ber die Kredeformation und ihre Fossilien auf spitabergen. K.
 pl. 20-22].

Tapr, J. A. The (halk of South-Western Arkansas. L'wenty-Secoud Ann. Rep. IS. (ieol. Surcy, pt. : (1902), p. 687. [figures of Lamellibranchs, pls. 1-lii.]
Toceas, A. Sur un nouveau groupe d'Ilippurites. Bull. Soc. géol. de riounce, ser. t, vol. iii (190:3), p. 1:37.
——Etudes sur la Classification et l’Evolution des ILipurites. Mém. Soce géol. de F'race l'eléout., vol. xi (190:3), pl. 1-60; vol. xii (1904), pl. $6.5-$ 128; vol. xvii (1909), p1. 79-1:32.
-_ Obserrations au sujet des criticues formulées par M. Memri Dourillé sur la
 ser. 4 , vol. is (1904), 1. 732.
——Sur la Classification et l'Evolution des Radiolitidér. Hid., vol. v (1905), p. an:3.
—— Relation des Radiolitidés arec les L! Ifin. Jid., vol. vi (1906), p. 1 t 9 .
 de Frituce, I'ulémen, vol. xiv (1907), pp. 1—4; vol. xvi (1908), pp. ti-80.
__Sur la Classification des Hippurites. Bull. Soce grol. de France, ser. t, vol. x (1912), p. 723.

Tousa, F. Grundlinien der Geologie des Westlichen Balken. Demperhr. d. I.: Aliml. d. Wissensich., Math.-utut. C'lusse, Ẅ̈ru, vol. xliv (1882), Abth. ii, p. 1. [Lamellibranchs, pl. iv.]

- (ieologische Beobachtungen auf einer Reise in die Gegend ron Silistria und die Dobrudscha, im Jahre, 1892. Jahit.d.k. li. yeol. Ririchisinst., vol. liv, 1904. (1905), p. 1. [Lamellibranchs, pp. 16-24, 35-40.]

Trautschom, H. Notes on Surassic Fossils collected at Barbeau-le-Mami. I erhumll. d. russisch-kitiserlich mineral. Gésellseh. in I'rterstury., ser. Q, vol. iii (1868), p. $\mathbf{2 5 0}$. [.tucellu Linyserlingima.]
_- Le Néocomien de Sibly en Criméo. Voile. Mím. Sur. Impér. Nut. Moscon, vol. ar (1986). [Lamellibranchs; [p. 1:3:3-1:3.5.]
 ungeriveh. gool. lieirlisunst., vol. xix, 1911. [Lamellibranchs, pp. 109111.]

Vidal, L. M. Nota acerca del Sistema cretíceo de los Pirencos de Cataluña. Bolet. del Jhepe !emb. E'spenu, vol. iv (187i), p. 2.97. [Lamellibranchs, pp. 348-368.]
Vomel yon Fancexten, K. Brachiopoden und Lamellibranchiaten der semonen Kreidegeschiebe aus Westpreussen. Z.itschr. d. deutsch. geel. Cissellsch., vol. lxii (1911), p. ith. [Lamellinanchs, pp. its-abit]
Vhedenioks, E. W. Note on a IIippurite-bearing Limestone in Seistan, and on the (ecology of the adjoining rearion. Lice Gecol. Sitere. India, vol. xxxviii (1909), p. 216. [Lamellihranchs, p. 2.3 -209.]

Wandentr, K. Die wichtigsten Tierverstemerungen aus der Kreide d. K. Sachsen. Jena, $19 \%!$.
$W_{\text {egrer, }}$ T. Die Gramulatenkreide des westlichen Mïnsierlandes. Zaitschis. d. deutseh. Ifool. Gesellsich., vol. Wii (190.5), p. 112. [Lamellibranchs, fp. 154-19\%.]
Weller, S. The Fama of the ('liffwood (N..I.) Clays. .fom'm. Coul., vol. xii
 p. 13:3. [Notes on Lamellihranchs.]
——A Report on the Cretaceons Palatontology of New Aerser, hased upon the stratigraphic studies of (i. N. Knapp. Cicul. Ninery of Nim .fesey, vol.

Whitrend, R. P. Preliminary Report on the Pabenotology of the Back Hills,

——Observations on some Cretaceous Fossils from the Beyrût District of Syia, in the Collection of the American Musem of Natural History, with descriptions of some new species. linll. Amer, Mus. Nut. Hist., vol. iii (1891), p. 381. [Lamellibranchs, pp. 3:\%-11:3.]

Witckens, O. Die Ameliden, Bivalven und Gastroperden der Antarktischen Kreideformation. Wissenschatt. E'igelu. schuculisch. Südpulai-erperd. 1901-3, vol. iii (1911), p. 97.
——Beitriage zur Geologie und Paleontologie von Südamerika von Gi. Strimm,nn. NI, Revision der Fama der Quiríuina-ichichtem. Vimes Juhto fï̈r Mia, etc., Beil.-Band xviii (190-1), p. 181. [Lamellibranchs, pp. 201265.]
_——De Lamellibranchiaten, (Gastropoden, etce, der oberen Kreide siudpatagoniens. lirr. unt. liserlseh. Fuilury-i.-lir, vol. xv (1905), p. 9 (91 of reprint). [Lamellibranchs, pp. 102—106, 1:5-118.]
 dans les Carpathes de la Galicie orientale. Imhl. Intern. Actul. Sed.

Wobemans, A. Die Fauna des mittleren Gaults von Algermissen. Iahil. I. k.
 [Lamellibranchs, pp. 25-26.]
Die Bivalven und Gastropoden dies norddentsehen (ianlts (Aptiens und Albiens). Ilid. für 1906 , vol. xxvii (1906), p. Q.9. [Lamellibrauchs, pp. 264-279.]
——Nachtrag an meinen Abhandlungen aber die Bivalren und Gastropoden der unteren Kreide Nordentschlands. Ibid. fïr 1908, vol. xxix (1908), p. 151. [Lamellibranchs, pp. 154-167.]

Woons, H. 'I'lie Cretaceons Fanna of Pondoland. Amu. s'. Ahicum Mus., vol. iv (1906), p. 275. [Lamellibranchs, pp. 28:-310.]
——Echinoidea, Brachiopoda, and Lamellibranchia from the ${ }^{\top}$ pper Cretaceous Limestone of Need's C'amp, Buffalo River. Llid., vol. vii (1908), p. 13. [Lamellibranchs, pp. 16-18].

Woons, H. The Palæontology of the Upper (retaceons Deposits of Northern Nigeria. (Appendix to .J. I). Halconer's ' (ieography and (icology of Northern Nigeria,' 1911, p. 273.) [Lamellihnanchs, pp. 276-280.]

- The Evolution of Inoceramus in the Cretaceous Period. (Inart. Journ. Gien). Soc., vol. lxviii (1912), pp. 1-19.
Woodward, H. A Fragment of a Fossil in a Chalk-Flint Pebble from the Sheringham Beach (Norfolk). Geel. May. (1910), !. 4s:3. [Ratiolite.]
Zekelı, L. F. Das Genus Inoteramus und seine Verbreitung in den Gosangebilden den ostlichen Alpen. Jahrt. Xint. 「er. Intli (Berlin), vol. is (1852), p. 79.

INDEX TO V(OLUME II.

Syonyms are printed in italics. The Roman numerals refer to the plates. The numbers preceded by "f." refer to the text-figures.

Page \mid					$\begin{array}{r} \text { Page } \\ 421 \end{array}$
Astarte	senecta	106, xiv, 13-20	Biradiolit	ites Mortoni ...	
- sin	sinuata	104, xiv, $7-9$	Buchia		70
-	(Eryphyla) striata	116, xvii, $\mathbf{Q}^{(77}$			
-	striato-costata	109	Callista		192-194
	subacuta	103, xiv, 4-6	- plana.		$192, \times \times x, 1-6$
- s	subcostata	109. xiv, $99-36$	Callistina		194
- s	sululemtata	107	C'aprotina Lonsdalii ...		207
	substriata	191	Cardita		121-128
	upwarensis	105, xiv, 10-12	c	cancellata	197, xviii, 17, 18
-	sp. (Speeton)	107, xiv, el	C	Cottaldina	12 (i, xviii, 15, 16
-	sp. (Folkestone Beds)	111, xv, 3, 4	1	dubia	127
Aucella	69-71	:	\% fenestrata ...	191, xriii, 2-4
-	concentrica var. ruybsa	70	\boldsymbol{r}	neocomiensis	123
-	- var. rugosi	ma 70	q	quadrata	123
-	Coquandi	72	\cdots	rolundata	12:
- 9	gryphaoides ...	72	t	tenuicosta	104, xviii, 7-14
-	Keyserlingiana	$70, x, 3-5$	-- t	tuberculata	205
-	volgensis	$69, x, 1,2$	1	upwarensis	122, xviii, 5
-	- var. radiolata	69	s	sp. (L. Greensund)	123, xviii, 6
Aucellin		72-74	Cardium		$201-207$
-	gryphæoides...	72, x, 6-13	--	alternans	204
Avicula		57-69	-	alutacerem	204
-	Anomala	64	-	Benstedi	202 (foot-note)
-	cenomanensis..	83, 84	-	bifrous	198
-	cerulescens	$\ldots 67,68$	-	canaliculatum	160
-	Cormueliana	57,58	--	Cornueliunum	245
-	cuneata	9.5	-	Cottaldinum	203, xxxii, 11
-	depressa	6.3	--	decusratum	250
-	dubia ...	60	-	galloprovinciale	158
-	ephemera	78	--	Gentianum...	205
-	filata ... 61 (foot-	te), $3603,370,373$	-	Hillanum	197-199
-	gryphieoides ...	72	--	Ibbetsoni	201, xxxii, 7-10
-	inequivalcis ...	58	-	imbricatarium	196 (foot-note)
-	lanceolata	...74, 77	-	Maillearum	428
-	lineata	61	-	Neckerianum	195
-	macroptera	57	-	nucijorme ...	160
-	pectinala	57,59	-	Oevlinghusanum	203
-	Ramlimiana	60 (foot-mote ${ }^{2}$)	-	peregrinorsum	195) (foot-note)
-	Rhodami	80	-	(Granocardium)	oscideum,
-	subdepressa	63		$205, \mathrm{xx}$	8, 19: xxxiii, 1--3
-	sublanceolatu.	74, 77	-	Reulinianum	$\because(12)$ (foot-note)
-	sublineata	61	-.	Requenianum	197
-	tenuicostata	(i)	-	rimgmericnse	16.4
--	? teutoburgrmsis	70	-	sphatroidetem	195
Azor		-18, 219	--	subhillamem	
			-	letregentum	124
Biradio	whers allstinemois	$42: 3$	-	turouieust ...	204, xxaii, 13-15

	page		page
Inoceramus	as Lamarcki var. apicalis	Lavignon phase, lina ...	± 29
	319, liii, 4--6	- snbphaseolime	430
-	var. Cuvieri	Leda pulchra	260
	320, lii, 7. f. 73-84	Leptosolen	
-	car. Websteri	Dupinianus	219, sxxv, 7, 8
	319, f. 71, 72	? rectaugularis ... 4	432, 1xii, 15-17
-	latus $273,274,275,281,286,307$,	Limia	1-57
	309, 310, 320, 327	arcuata .	44
-	var. reachensis 278	- asperar ... 8, ii, 10	10, 11 ; iii, 1-4
-	lingua $\quad 2999$, f. 56	asperae	5
-	lobatus296, f. 54, 5.	Astieritus	34
-	lobatus var. cardissoides $\quad 300$	- (Mantellum) britanuicia	38, vi, 13
-	Mantelli... 322	caualifera	1, i, 1-7
-	mytiloides 281	- (Mantellum) cautabrigiensis	
-	ueocomiensis $\quad \ldots 262, x l v, 1,2$		37, vi, 10-12
-	pictus $\quad . . .279$, slix, 5, 6, f. 36	cenomanemsis	53
-	pinniformis 338, f. 96	- (Acesta) clypeiformis	26, f. 5
-	problematicus ... 281,282	-- (Limea \because) composita	53, vii, 24-26
-	(Mytilites) problematicus	Cottaldina	-28, 29
	282, 309, 327	(Plagiostoma) cretaceir	
-	Salomoni $\quad 263, \mathrm{xlv}, 3-7$	22 , iv, 13-15; v, 1-4	
--	Schmidti 304	(Limatula) decussatar...	50, vii, 18-20
--	striatus ... $29.2,308,309,310$	dentuta	54
-	var. convexus 278	- (Ctenoides) divarica a	H, vii, 4-6
--	subsulcatus $\quad . .668$	- (Limatula) Dupiniaua	47, vii, 11
-	sulcatus... 269, xlvii, 15-20	echinata	36
-	sulcatus 268, 270	clegans ...	28,38
-		- (Mantellum) clungrata	34, vi, 5-7
-	tuberculatus $\quad 302,433$, liv, 8 , f. 59	clonguta	25, 28,31
-	umbonatus 333	-- (Mantelhmm) elungrata var. e	echinata
-	undulato-plicatus $\quad 30 \cdot 4, \mathrm{f} .60,61$		36, vi, 8, ؛
-	var. digitatus	expansil	30
	307 , f. 62	- (Mantellum) farringlunensi	
-	undulatus	- jurringdonensio 28
	307, 308, 309, 310, 319, 324	- (Limatula) Fittoni	48, vii, 12-15
--	venustulus $\quad . .$.	fromdosa	
-	Websteri $307,308,318,324$	Gallienuei	3, ii, 1
-	sp. (Speetou) 263	Gallienniama	
	sp. (Gault, U. Greensamd) 271 , f. 30	... (Matellum) saultima	31, v. 16-00
Isocardia	151	(Plagiostoma) globosa	. li, iv, 4-6
- a	anyulitia 210,211	- Goldjuesi	18
c	cretacea 146	- arremosa	H
c	cryptocerers... 152 (foot-uote)	-- (Limea ?) gramulata	it. vi. $\because 7-39$
- ?	? ornata 152 (foot-note)	-. (Plariostomia) Hoperi	17, iv, 7-12
- s	similis 151, f. 25	- Hopreri :	29
		- injlata ...	
Laevicardiu	(ilm $\quad 201,493$	- (Mantellum) interlineata	:32, vi, 1

		parie		page
Lima	(Mantellam) intermedia	33. vi, ---4	Liopistha	257-259
- 1	lieciuscula	22, 23	(Psilomya) gigantea	
- 1	lamellosit	42		
- 1	laticosta	1	$\begin{array}{r} \text { 257, xlin, } 3,4 ; \text { Xhv, } 1,2 \\ \text { sp. (Red Chalk) } \\ \text {... } \end{array} \text {... } 258 \text {, sliii, } 5$	
1	linguat	30	Lopha	352 (foot-note)
	(Acesta) lunga	23, v, 8-12	Lucina	152-156
,	Mantrlli	18, 29, 23	arduenuensis	153 (foot-note)
	(Plariostoma) Marrotiania	$24, \mathrm{v}, 6,7$	Downesi	.. 155, xxiv, 15
((hutula) Marrolithat		Dupinianu	153 (foot-note)
	(Plagiostoma) Megeri 1	$15, \mathrm{iv}, 2,3$, f. 4	globiformis	153 (foot-note)
m	multicostuta	1	- ? globosa	16
-	muricata	54	- orbicularis	423
	Nilssoni	18	- pisum...	156, xxiv, 16-19
-	(Plagiontoma) Urlignyaua	12. iii, 10	- ? sculpta	153, xxiv, 7-9
0	ornata	.. 5, 37	? solidula	184
	(Mantellum) parallela	28, v, 14, 15	-- tenera.	154, xxiv, 10-14
	parallela	29, 31	- sp. (L. Greeusaud)	... 153, xxiv, 6
	plicua	10	- sp. (Spilsby Sandstone)	152, xxiv, 2, 3
	pseudocardium...		- sp. (L. Greensaud)	..152, xxiv, 4, 5
	(Ctenoides) rapa 40, vi, 1	17 ; vii, 1, f. 6	Lutraria? carinifera	... 244
I	Ranliniana		- gurgitis	222, 223
-	(Mantellum) Reicheubacbi	39, vi, 14, 15	Lyonsia carinifera	244
-	(Plagiostoma) ef. Robinaldina		- subrolundatu	241
s	scabrissima ...	7, ii, 8, 9		
- ((Plagiostoma) semiornata		Mactra	177
	14, ii	iii, 14-16; iv, 1	- angulata	177, xxvii, 19-23
--s	semisulcatu	46, 47, 48, 50	-- Saussuri	131
	simplex 15	- sp. (L. Greensaud)	177, xxvii, 17, 18
	Sowerbyi	18, 19, 21	Mantellum (see Lima)	28-40
-	(Limatula) subrequilateralis	49, vii, 16, 17	Martesia	231-233
sur	subovalis	$5, \mathrm{ii}, 3-7$	- constrictit	231, xxxviii, 3-10
	(Playgiostoma) subrigida		prisca	232, xxxviii, 11
	10, iii	ii, $5-9$, f. 1-3	? rotunda	233, xxxviii, 12, 13
	(Ctenoiles) tectia	42, vii, 2,3	Melina Mulleti	88
	(Limatula) Tombeckiana	45, vii, 7-9	- rostrata	84
v	vectensis	4, ii, 2	Mudiola? alreormis ...	79
- ((Plariostoma) villersensis?		- $1^{\text {marallela }}$	
		13, iii, 11-13	Mulletia	88, 89
-	(Limatula) wintoneusis	51, vii, 21, 29	Mutiella	160-162
-	-- sp. (U. Chalk)	52 , vii, 93	? caualiculita	160, xxv, 4-6
	(Limea!:) sp. 425, 1xi, 19	- ringmerensis,	164
	(Mantellum) sp. (Chluritic M	Marl)	- rotundata	161
		40, vi, 16	Mya depressa	240
Limat	tula (see Lima)	45-53	- laviuscula	226 (fout-note)
Limea	a (see Lima)	53-57, 425	-- mandibula	228
	centimanensis	53	- phaseolina	429
Line:ar	aria (see 'Telliua)	175--177	- plicata 222

				GE
Thracia subrotundata - sp. (Gault, U. Greensan		$\underline{241}$	Venericarlia tenuicosta	124
		nd)	Veniella	134, 135
		243, xl, 7-9	Venilicardia	137, 141-14:
Toucasia		207, 208	Venus angulata	141
	Lonsdalei	207, xxxiii, 4-6	- caperata	182
Trapezium		148-151	castrensis	143
- ?	? arcadiforme	148, xxiii, 10, 11	- cordiformis	157
	rectangulare	432	- faba	187
- t	? squamosum	148, xxiii, 12-15	- ? fenestrata	121
	trapezoidale	149, xxiii, 17-19	Goldfussi	187 (foot-note)
-	? sp. (cf. striata)	149, xxiii, 16	immersa	187, 189, xxix, 15
Turnus		233-237	- lineolata	144
- ? amphisbæna		235, sxxviii, 19, 20	- Orbignyana	186
- Dal	Dallasi	233, xxxviii, 14, 15	- ovalis	191
- sp.	p. (Gault)	234, xxxviii, 16, 17	- parva ...	184
.	p. (Blackdown)	235, xxyviii, 18	- planus...	192
			- rhotomagensis...	186
Unicardium		162-165	- Ricordeana	189
-	claxbiense	162, xxv, 7	- ? ringmeriensis	164
--	? compressum	428, lxii, 5,6	- rotomagensis ...	186
-	? gaultinum	-163	- : striato-costata	109
-	levigatum	169	- sublavis	189
-	Mailleanum	428, lxii, 7-9	submersa	192 (foot-note), 431
--	ringmeriense	164, x×v, 13, 14	subrotunda	181
	vectense	$163, \mathrm{xxv}, 8-11$	subtruncata	145
-	sp. (U. Greensand)	$163, \mathrm{xxp}, 12$? tenera	154
	sp. (J. Greensand)	163, xat, 12	- ? truncata	145
			- vectensis	183
Venericardia		121 (foot-note 2)	Folviceramus...	328, 331

The figures are of natural size unless the amount of enlargement or reduction is stated.

PLATE I.

(irmis-Lina, Bruguicie.

Lima canalijern, Goldfuss. Upper Greensand (zone of Pecten asper), Ventnor. Sedgwick Museum, Cambridge ; except fig. 2, York Museum. (P.1.)

1, 5, $6 a, 7 a$, left ralves; $6 b$, antero-dorsal view ; $7 b$, portion $\times 2$. $2,3,4$, right valves.

PLATEE II.

> Lima (coutinued).

Fias.

1. L. Cirlliemuei, d'Orb. Upper Greensand (zone of Schlonhachin rostrata), Devizes. Museum of Practical Geology, No. 8798. a, right valve; b, antero-dorsal view; 'r, antero-ventral portion $\times 3$. (P. 3.)
2. L. vectensis, Woods. Upper Greensand (zone of Pecten asper), Isle of Wight. Ventnor Institute. ", left valve; l, antero-dorsal view; c, portion $\times 3$. (P. 4.)

3-7. L. suboralis, Sow. (P. 5.)
3. Upper Greensand, probably Warminster. Bristol Museum. Left valve $\times 1 \frac{1}{5}$.
4. Upper Greeusand, Warminster. Museum of Practical Geology, No. 8805 . a, right valve $\times 1 \frac{1}{4} ; b$, anterodorsal view $\times 1 \frac{1}{2}$.
5. Same horizon, etc. No. 8804. Left valve. a, median portion $\times 8 ; b$, posterior portion $\times 8$.
6. Greensand bed at the base of the Chalk, Folkestone. Sedgwick Museum. a, right valve; b, portion $\times 8$.
7. Cambridge Greensand. Sedgwicl Museum. a, right valve $\times 1 \frac{1}{2} ; b$, auteroventral portion $\times 8$.

8, 9. L. sculbis.simu, Woods. Upper Greensand (zone of P. asper), Warminster. Museum of Practical Geology, Nos. 8815, 8816. (P. 7.)
$8 a$, left valve ; b, antero-dorsal view.
$9 a$, right valve ; b, portion $\times 4$.
10, 11. L. aspera (Mant.). Lower Chalk (Totternhoe Stone). Sedgwick Museum. (P. 8.)
10. Cherry Hintou. Right valve.
11. Cherry Hinton. Left valve.

PLATE III.

Lima (continued).

Fios.
1-4. L. asperi (Mant.). Lower Chalk (Totternhoe Stone). 1-3. Sedgwick Museum. 4. York Museum. (P. 8.)

1. Burwell. a, right valve $\times 1 \frac{1}{2} ; b$, median portion $\times 6$.
2. Cherry Hinton. Left valve.
3. Burwell. Anterior area of right valve $\times 1 \frac{1}{2}$.
4. Burwell. Right valve.
j-9. L. (Ilagiostoma) subrigida, Römer. Claxby Ironstone, Benniworth Haven. Sedgwick Museum (P. 10.)
$5 a$. Right valve; b, antero-dorsal view.
5. Left valve.
6. Antero-ventral part of right valve.
7. Portion of right valve $\times 6$.
8. Left valve. Portion of a young individual $\times 8$.
9. L. (Plugiostoma) sp., cf. Orlignyana, Matheron. Lower Greensand (Ferruginous Sands), Shanklin. British Museum, No. L 15754. a, right valve $\times 1 \frac{1}{2} ; l$, anterior view of the same $\times 1 \frac{1}{2} ; c$, portion $\times 6$. (P. 12.)

11-13. L. (Plugiostoma) villersensis? Pict. and Camp. Lower Greensand, Faringdon. Sedgwick Museum. (P. 13.)
$11 a$, left valve $\times 12 ; l$, portion $\times 4$.
$12 a$, left valve $\times 1 \frac{1}{2} ; b$, anterior view, natural size.
13. Left valve.

14—16. L. (Plagiostoma) semiornata, d'Orb. Upper Greensand, Ventnor. (P.14.)
14. York Museum. Left valve.
15. Sedgwick Museum. Right valve.
16. York Museum. Left valve. a, anterior part $\times 3 ; b$, postero-dorsal part $\times 3$.

PLATE IV.

> Lima (continued).

Fios.

1. L. (Plagiostoma) semiornata, d'Orb). Upper Greensand, Ventnor. York Museum. Left valve. Portions of this specimen are enlarged on pl. iii, figs. $16 a, l$. (P. 14.)

2, 3. L. (Plagiostoma) Mryeri, Woods. Upper Greensand, Warminster. (P. 15.)
2. Right valve. useum of Practical Geology, No. 8839.
3. Left valve. Sedgwick Museum, Cambridge.

4-6. L. (Plagiostoma) globosa (Sow). Lower Chalk. 4, 5. Totternhoe Stone, Burwell. 6. Zone of Holaster suliglulosus, Fulbourn. Sedgwick Museum. (P. 16.)
$4 a$, left valve; b, dorsal view $\times 1 \frac{1}{2} ; c$, portion $\times 12$.
$5 a$, right valve; b, mid-ventral portion $\times 12$.
$6 a$, right valve; b, dorsal view ; r, median portion $\times 12$.
7-12. L. (Plufiostımı) Hoperi, Mant. (P. 17.)
7-10. Zone of Actinocamax quadratus, East Harnham. Dr. Blackmore's collection 7. Left valve ; $8 a$, right valve; $8 b$, anterior area of left valve ; $9 a$, left valve $9 b$, dorsal view ; 10 , left valve.
11. Zone of Belemnitella mucronata, Norwich. Norwich Museum. $11 a$, right ralve; $11 b$, anterior area of the same.
12. Zone of Micraster cor-anguinum, Graresend. Mr. Dibley's collection. $12 a$, left valve ; $12 b$, portion $\times 6$.

13-15. L. (Plugiustoma) cretarea, Woods. Dr. Blackmore's collection. (P. 22.)
13, 15. Zone of Actinocamax quadratus, East Harnham. 13. Right valve $\times 1 \frac{1}{2}$. 15. Left valve.
14. Upper part of zone of A. quadratus, Whaddon railway cutting. a, right valve: u, antero-dorsal view $\times 1 \frac{1}{2} ; c$, portion $\times 6$.

PLATE V.

Lima (comtinued).
Fios.
1—4. L. (Plagiontuma) cretacea, Woods. (P. 2.2.)

1. Zone of Actinocamax quadratus, East Harnham. Dr. Blackmore's Collection. a, left valve ; b, portion $\times 6$.
2. Zone of Micraster cor-testudinarium, Borstal. Mr. Dibley's Collection. Left valve.
3. Zone of Holaster planus, Cheveley. Sedgwick Museum. Left valve.
4. Zone of Micraster cor-testudinarium, Cuxton. Mr. Dibley's Collection. a, left valve; b, postero-ventral portion $\times 4$.
5. I. (Plıgiostoma) sp. (? var. of cretacea). Chalk (? zone of Molaster plemus), Burham. Serlgwick Museum. Left valve.

6,7. L. (Plagiastoma) Marotiona, d’Orb. Zone of Belemnitella mucronata, Norwich. Norwich Museum. (P. 24.)
$6 a$, left valve; b, mid-ventral portion $\times 3$.
$7 a$, anterior area of right valve; b, median portion of left valve of same specimen.
8-12. I. (Acesta) longa, Römer. (P. 25.)
8. Lower Greensand, Upware. Mr. J. F. Walker's Collection. a, right valve; b, portion below the middle of the valve $\times 5$.
9, 10. Lower Greensand, Brickhill. Right valves. Sedgwick Museum.
11. Tealby Limestonc (zone of Belemnites brunsvicensis), North Willingham. Right valve. Sedgwick Museum.
12. Speeton Clay, Speeton. Museum of Practical Geology, No. 8781. a, right valve; b, portion $\times 4$.
13. I. (Acestı) sp. Lower Greensand, West Dereham. Sedgwick Museum (collected by Mr. Jukes-Browne). a, right valve; b, antero-dorsal view ; c, portion \times.). (P. 26.)

14, 15. I. (Mantellum) puralleli, Sow. Lower Greensand (Pernu-bed), Atherfield. (P. 28.)
14. Left valve. Sedgwick Museum.
15. British Museum, No. L 5066. a, left valve; b, dorsal view; c, portion at anterior eud $\times 3$; d, mid-ventral portion $\times 6$.

16-20. I. (Mentellum) gaultina, Woods. Gault. 16-19, Black Ven. 20, Folkestone. Sedgwick Museum. (P. 31.)
$16 a$, left valve; b, antero-dorsal view.
17. Right valve.

18a, ., $\quad b$, antero-dorsal view.
19. ," median portion $\times 6$.
20. Left valve

Londoan Stereovespic

PLATE VI.

Lina (contimued).
Filis.

1. L. (Mtutrllum) interlinetu, Jukes-Browne. Cambridge Greensand, Cambridge. u, right valve; l, ventral part of left valre $\times 3$. (P.32.)

2-4. L. (Mrantrllum) intrimerlia, d'Orb. Rye Hill Sands, Warminster. (Р. 3: ;)
2. York Museum. a, right valve; b, antero ventral part $\times 4$.
3. Brighton Museum. Left valve.
4. Sedrwick Museum. a, right ralve; l, autero dorsal view; e, posterior ear of right valve $\times 4$.

5-7. L. (Muntellum) rlumgata, Sow. Chalk Marl, Folkestone. (P. 34.)
5. Mr. J. F. Walker's Collection. Right valve.
6. Sedrwick Museum. a, left valve; b, antero-dorsal riew; c, mid-ventral portion $\times 3$.
7. Sedgwick Museum. a, right valve; b, antero-ventral part $\times 8$.

8, 9. L. (Mıut, llım) !lonyatr, var. echinatı, Eth. Sedgwick Museum. (P. 36.)
8. Totternhoe Stone, Burwell. Left valve. One of the types.
9. H. subglobosus zone, Burwell. a, left valse; b, antero-ventral portion $\times 4$; c, posterior portion $\times 4$.

10-12. L. (Mantrllum) cantalrigiensis, Woods. Scdgwick Museum. (P. 37.)
10. The type. Cambridge Greensand. a, left ralve; b, posterior portion $\times 6$.
11. Antero-rentral portion of left valse $\times 6$.
12. Lıwer Chalk, Burwell. Right valve $\times 1 \frac{1}{2}$.
13. I. (Mrntrllum) Lritrmmira, Woods. Zone of Micraster cor-anguinum, Seaford. Mr. R. M. Brydone's Collection. a, right valve; b, anterodorsal view $\times 1 \frac{1}{2} ; c$, portion at antero-ventral margin $\times 6 ; d$, portion at postero-ventral margin $\times 6$. (P. 38.)

14, 15. L. (Mantellum) Reichenluchi, Geinitz. Sedgwick Museum, Cambridge. (Р. 39.)
14. Cenomanian Sandstone, Wilmington. a, left valve; b, antero-dorsal view.
15. Chloritic Marl, Chard. Right valve.
16. L. (Mftutcllum), sp. Chloritic Marl, Chardstock. Museum of Practical Geology, No. 7896. a, left valve; b, postero-ventral portion $\times 6$. (P. 40.)
17. I. (Ctfmidres) rapra, d'Orb. Upper Greensand, Haldon. British Museum, No. L 15612 . n, right valve ; b, median portion a short distance above the ventral margin $\times 3$; c, portion near the anterior margin $\times 5$. (P. 40.)

 No. L 15til:3. Right valve. (P. 40.)
2, 3. L. (Ctenoides) tertn, Goldf. Chalk Marl (Bed 11), Dunscombe. Sedgwick Museum. 2, left valve. 3, mid-ventral portion of another specimen $\times 2$. (P. 42.)
4-6. L. (Ctemoides) dicaricatu, Duj. (P. 44.)
4. Chalk, Newtimber. Brighton Museum. a, right valve ; b, median portion above the middle of the valve $\times 4$; c, postero-ventral portion $\times 4$; d, median portion near the ventral margin $\times 4$.
5. Belemitella mucronata zone, Norwich. Sedgwick Museum. Left valve.
6. Micraster cor-anyuinum zone, Micheldever. Winchester College. a, portion of left valve; b, portion of the same $\times 8$.
7-9. L. (Limutula) Tombeckiuna, d'Orb. Hythe Beds, Court-at-Street. Museum of Practical Geology. (P. 45.)
7. No. 8821. a, left valve $\times 12 ; b$, ventral portion $\times 5$.
8. No. 8822. a, right valve $\times 1 \frac{1}{2} ; b$, anterior view $\times 1 \frac{1}{2} ; c$, ventral portion $\times 5$.
9. No. 8824. a, right valve $\times 2$; b, anterior view $\times 2$.
10. L. (Limutulu) Tombechicmu ?, d'Orb. Upper Greensand, Charmouth. Museum of Practical Geology, No. 8818. Right valve \times 2. (P. 46.)
11. L. (Limatulu) Dupimiana, d'Orb. Tealby Limestone, North Willingham. Sedywick Museum. a, right valve; l, anterior view ; c, ventral part of ribbed area $\times 8$. (P. 47.)
12—15. L. (Limatula) Fittoni, d'Orb. Upper Greensand, Haldon. (P. 48.)
12. Sedgwick Museum. Left valve $\times 2$.
13. Sedgwick Museum. Right valve $\times 15$.
14. British Museum, No. L 15615. Right valve $\times 1 \frac{1}{2}$.
15. British Museum, No. L 15615. a, left valve ; \bar{b}, posterior view ; c, rentral portion $\times 3$.
16, 17. L. (Limutula) subæquiluteralis, d'Orb. Upper Greensand, Warminster. British Museum, No. 88928. (P. 49.)
$16 a$, left valve $\times 1 \frac{1}{2} ; 16 b$, anterior view $\times 1 \frac{1}{2} . \quad 17$, ventral portion $\times 6$.
18-20. L. (Limatula) decussata, Goldf. Actinocamare quadratus zone, East Harnham. Dr. Blackmore's collection. (P. 50.)
$18 a$, richt valve $\times 2 ; b$, ventral portion $\times 6$.
19. Median portion $\times 9$.
$20 a$, right valve $\times 2 ; b$, anterior view $\times 2$.
21, 22. L. (Limutula) uintonensis, Woods. (P. 51.)
21. Chalk, Clayton. Brighton Museum. a, right valve $\times 2$; b, median portion $\times 6$.
2.2. Actinocamax quadratus zone, Wiuchester. Dr. Rowe's collection. a, right valve $\times 2 ; b$, anterior view $\times 2 ; c$, posterior view $\times 2 ; d$, median portion $\times 8$.
23. L. (Limutulı) sp. Belemuitoll" murromatu zone, Clarendon. Dr. Blackmore's collection. a, right valve $\times 2$; u, ventral portion $\times 9$. (P. 52.) 24-26. L. (Limret?) romposita (Sow). Upper Greensand, Warminster. (P. 53.)
24. Museum of Practical Geology, No. 8786. a, right valve $\times 2$; b, anterior riew $\times 2$.
25. Museum of Practical Geology, No. 8783. a, right valve; b, median part $\times 6$.
26. Museum of Practical Geology, No. 8784. Left valve $\times 1 \frac{1}{2}$.

27-29. L. (Limea ?) gramulata, (Nilss). Belemnitrlla mucronata zone. (P. 54.)
27. Norwich. Norwich Muscum. a, left valve; b, anterior view ; c, portion $\times 6$, with section of a main rib.
28. Norwich. Sedgwick Museum. Left valve $\times 1 \frac{1}{2}$.
29. Alderbury. Dr. Blackmore's collectiou. a, right valve $\times 1 \frac{1}{2} ; b$, median portion $\times 8$.

PLATE VIII.

Gemus-Pterta, Scopoli.

Sul-Genus-Oxyroma, Meek.

Figs.

1-7. P. (Oxytomar) Cormuliana (d'Orb.). 1-6. Speeton Series (D, 1), Speeton. 7. Claxby Ironstone, Claxby. (P. 57.)

1. Sedgwick Museum. Left valve.
2. York Museum. Left ralve.
3. Sedgwick Museum. a, left valve; b, postero-ventral portion $\times 3$.
4. Mr. Lamplugh's Collection. Left valve, portion near ventral margin $\times 3$.
5. Mr. Lamplugh's Collection. Right valve.
6. York Museum. Right ralve.
7. Sedgwick Museum. Right ralve.

8-14. 1'. (Oxytum") pectinat" (Sow.). (P. 59.)
8-10. Folkestone Beds, Folkestone. Sedgwick Museum. Left valres, $8 a, \times 1 \frac{1}{2}$; $8 b$, portion of $8 a \times 6 . \quad 10 a, \times 2 ; 10 b$, portion of $10 a \times 8$.
11, 12. Hythe Beds (Bargate Stone), Busbridge. Sedgwick Museum. Right valves. $\times 1 \frac{1}{2}$.
13, 14. Gault, Folkestoue. British Museum, No. L, 4926. 13, left valre. $14 a$, right valve; $14 b$, portion of $14 a \times 8$.
15. \quad. (Orytrimu) sp. Totternhoe Stone, Hitchin. Left valve. Museum of Practical Geology, No. 2338. $15 a \times 3 ; 15 l$, portion $\times 9 . \quad$ (P. 60.)
16. I'. (Orytom"') dulin (Eth.). Totternhoe Stone, Burwell. Sedgwick Museum. One of the Types. Exterior (i) and interior (b) of right valve. \times の. (P. 60.)

17-23. \quad P. (Oxytımu') trmitiostut", (Römer). Upper Chalk. (P. 61.)
17, 18. A. $\Psi^{\prime \prime a}$ latus zone, West Harnhan. Dr. Blackmore's Collection. $17 a$, left ralve; b, portion near mid-ventral margin $\times 4 ; c$, interior ; d, hinge $\times 3$. 18, left valve $\times 2$.
19, 20. Coddenham. Museum of Practical Geology, Nos. 10788, 12620. 19a, left valve; b, portion near the mid-rentral margin $\times 6$. $20 a$, left ralve; b, posterior car $\times 2$.
21-23. Wells. Norwich Museum. Nos. 3249, 3250, 3251. $21 a$, left valve ; $21 b$, portion near mid-ventral margin $\times 3$. 22 , left valve. 23 , right valve and interior of the margival part of the left ralve.

PLATE IX.

Pteria (continued).
 Sul-Genus-Pseudoptera, Meek.

FIGs.

1. P. (Pseudoptera) subdepressa (d'Orb.). Lower Greensand (Crackers), Atherficld. The Type. Museum of the Geological Society, No. 20:50. a, left valre; l, portion of posterior ear $\times 4$. (P. 63.)

2—4. P. (Psemdopteru) anomalu (Sow). Upper Greensand. 2, 3, Blackdown. 4, Haldon. (P. 64.)
2. The Type. Bristol Museum. u, left valve; b, pustero-dorsal view; c, portion of ridge $\times 4 ; d$, portion of posterior ear $\times 4$.
3. British Museum, No. L, 16876. a, left valve; b, autero-ventral view.
4. British Museum, No. L, 16869. a, left valve $\times 2$; b, portion near the middle of the valve $\times 8$.

5—10. P. (Pseudoptera) haldonensis, Woods. Upper Greensand, Haldon. Left valves. (P. 66.)
5. British Museum, No. L, 16800.

$6 a$.	$"$	$"$	L, $16759 ; b$, ventral portion $\times 3$.
7.	$"$	$"$	$"$ L, 16868.
$8 a$.	$"$	$"$	L, $16868 ; b$, antero-ventral view ; c, middle part of

9. Sedgwick Museum, Cambridge.
10. British Museum, No. L, 16805. $\times 2$.

11, 12. I'. (Pspulupteru) gunltim, Woods. Gault, Black Ven. Left valves. (P. 67.)

11 a. Museum of Practical Geology, No. $10780 ; 11 b$, median portion $\times 6$.
12 a. Sedgwick Museum; $12 b$, median portion $\times 3$.

13-19. I'. (l'seudopteru) carulescens (Nilsson). L'pper Chalk. Left valves. (P. 67.)

13-15. Zone of A. quadratus. East Hamham. Dr. Blackmore's collection. $13 \times 1 \frac{1}{2}$. 15 , median part $\times 4$.
16. Zone of B. mucronata, Clarendon. Dr. Blackmore's collection.

17-19. Zone of B. mucronata, Norwich. Normich Museum. $17 a \times 2 ; 17 b$, median portion $\times 6 . \quad 19 a, \times 1 \frac{1}{2} ; 19 h$, portion with ribs $\times 4$.

PLATE X.
 Genus-Avcella, Keyserling.

figs.
1, 2. A. colyensis, Lahus. Spilsby Sandstone, Domington. Sedgwick Museum. (The specimens figured by Pavlow.) $1 a$, left valve ; $1 b$, anterior view; $l c$, right valve. $2 a$, left valve; $2 l$, right valve; 2 r, posterior view. (P. (69.)

3-5. A. Keyserlingium, Trautsch. Claxhy Ironstone, Claxhy. Sedgwick Museum. 3 ", left valve; $3 l$, right valve; 3 c, posterior view ; $3 d$, anterior car and umbo of right valve $\times 3.4 \prime$, left valve; $4 l$, right valve. 5, left valve. (P. 70.)

Gemus-Aucellina, Pompeclij.
6-13. A. grypharites (Sow.). Cambridge Greensand, except figs. 11, 12, 13. Seldowick Museum. (P 72.)
6. a, left valve; b, posteriur riew; c, right valve ; d, part of right valve $\times 4$.
7. a, left valve ; b, right valve ; c, dorsal view.
8. a, left valve; b, right valve.
9. a, umbo and anterior car of left valve $\times 3$; b, dorsal view showing areas, etc. $\times 3 ; c$, area of right valve $\times 3$.
10. Auterior ear of right valve $\times 3$.
11. Lower Chalk, near Cambridge. Right valve $\times 1 \frac{1}{2}$.
12. Lower Chalk, Reach. Portion near the midlle of the right valve $\times 6$.
13. Red Limestone, Speeton. Left valve.

Gemus-Gervilia, Difrance.
1+—16. G. suldumeolutu (d’Orb.). Lower Greensand (Crackers), Atherfield. Sedgwick Museum. (P. 7t.)
14. Right valve of a young individual.
15. Left vallve of a young indivilual with ouly three liganent pits.
16. Left valve of an immature specimen.

PLATE XI.

Gervillia (romtinued).

Figs.

1. G. sullinceolutin (d'Orb). Upper Greensand, Blackdown. Sedgwick Museum. Interior of part of a right valve. (P. 74.)

2-9. G. linguloides, Forbes. Lower Greensand (Crackers), Atherfield. Figs. 2—4, 6-8, Sedgwick Museum; fig. 5, York Museum. (P.78.)
2. Left ralve $\times 1 \frac{1}{2}$.
3. Hinge of left valve $\times 3$.
4. Right valre $\times 1 \frac{1}{2}$.
5. Left valve $\times 1 \frac{1}{2}$.

6-8. Left valves.

9-11. G. alxformis (Sow.). Lower Greensand (Crackers), Atherfield. Sedgmick Museum. Figs. 9, 10, young specimens. (P. 79.)
$9 a$, left valre; b, portion near umbo $\times 3 ; c$, right valre; d, dorsal view.
$10 a$, left valve $\times 1 \frac{1}{2} ; b$, ribs near the middle of the left valve $\times 3 ; c$, hinge of same valve $\times 3 ; d$, area and ligament pits of right valve of the same specimen $\times 3$.
11. Hinge of adult specimen. Perna-bed, Atherfield.

12—23. G. rostrut" (Sow.). Upper Greensand, Blackdown. 12—19, left valves. 20-22, right valves. Sedgwick Museum, except figs. 13, 15, 22, 23. (P. 83.)
$12 b$, interior of $12 a, \times 1 \frac{1}{2}$.
13. Museum of Practical Geologr, No. 10784.
15. British Museum, No. L, 16872.
19. Hinge $\times 2$.
20. Haldon. Museum of Practical Geclogr, No. 10783.
23. Dursal view of the Type. Bristol Museum.

24, ©.). G., sp. Lower Greensand (Ferruginous Sands), Shanklin. Sedgwick Musemm. Left valves. $24 \times 1 \frac{1}{2}$. (P. 85.)

26. Lomer Greensand (Crackers), Atherfield.
27. Gault, Folliestone.

PLATE XII.

Geryillia (routimued).

Fios.
1-i. (i. Fiminsinm, d'Orb. Gault, Folkestone. (I. Rin.)

1. Solgwick Museum. Left valve, \times :
2. British Muselum, No. L 4918. Left valve.
3. Sedsrick Museum. Right valve.
4. Left valre.
\therefore., , Hinge of right valve, $\times 1$.

Gifulu-Perva, Bruguiore.
(i-9. P. Rumlininnu, d’Orb). Gault, Folkestone. (I. !2.)
6. Sedgwick Museum. Left valve.
7. ., , a, right valve ; b, anterior view.
8. Muscum of Practical Geolngy, No. 160\%. Ideft valve.
9. ., ., .. No. 12639. Tieft valwo.
10. I'. sp. Gault, Folkestone. Sedgwick Museum. Left valve. (P. 94.)

Gemis-Pinna, Limuans.

11-1\%. I'. Rolinaldiun, d'Orh. Lower Greensand. (P. 99.)
11. Isle of Wight. Bristol Museum. Right valve.
12. Crioceras Deds, Atherfield. British Museum, No. 48teg. Portion of dorsal half of loft valve. $\times 3$.
1:3. Permebed, Atherfield. Sellgwick Museum. Ventral part of left valve.
14. Crackers, Atherfield. Musemm of the Geological Societs, No. 2100. Right ralve.

1:. Permelherl, Atherfield. Selowick Museum. Left valse.

PLATTE XIII.

Fisis.

1. I'. Li,himminu, d'Orl). Lower Greensand, Isle of Wight. Musemm of l'ractical Geology, No. 19636. Ventral part of right valve. (l'.96.)
 of l'ractical (geology, No. 12641; portion of dorsal part of left valve, $\times 1$. (P. 99.)

H-ti. I'. dectuswitt, (ioldf. Chalk. (P. 99.)
4. Newtimber (Sussex). Breshton Museum. a, right ralve; b, dorsal view of both valves; c, dorsal part of right valve, $\times 3$.
5. Holuster flunus zone, Balsham. Sedgwick Museum. Left valve.
6. Trimingham. Norwich Museum. Part of right calve.

Ficis.

1. I'. derensenth, (ioldf. Right valve. Zone of Belemmitrill" murownth, Norwich. Norwich Museum. This specimen is the type of l'. suluitu, Woodw. (P' 101.)

Gemu-Astakere, Sumerby.
2,3 . A. dmumetw, d'Orb. Lower Greensind. Seend. Muscum of Practical Geology, Nos. 1:1765, 13181. (P. 102.)

2 a, right valve ; $2 b$, dorsal view.
3. Internal cast of right valve.
t-6. I. subucuta, d'Orb. Lower Greensand (l'ermu-bed), East Shalford. Sedgwick Museum. (P. 103.)
4. Right valve.
5. Internal mould of right valve, $\times 1 \frac{1}{\frac{1}{2}}$.
6. Portion of left valve.

7-9. A. sinnta, d'Or), Lower Greensand (Crackers), Athorfield. Selgwiek Musemm. (P. 10.t.)

7. Left valve, $\times 1$| 1 |
| :--- |
8. Part of left valve.

4 a, risht valve ; b, dorsal view, $\times 1 \frac{1}{2}$.
10-12. .1. "1urar,
10. Sengwick Museum. Specimen figured by W. Keeping. at right valve : b, anterior view ; c, portion near the middle of the valve, $\times 3$.
11. Sedgwick Museum. a, left valve; b, dursal view.
12. Mr. J. F. Walker's Collection. Hinge of right valve, $\times 1$!

1:3-20. A. senecta, Woods. 13-16. Specton Clay, Speeton. 17-20. Claxby Ironstone, Benniworth Haven. Sedgwick Museum, except fig. 16York Museum. (P. 106.)
13. Left valve.
14. Right valve.

15 a, left valve : b, dorsal view.
16-18. Left valves.
19, 20. Interiors of left and right valves.
21. .1. sp. Specton Clay, Speeton. Selgwick Museum. ", right valve; 1, median part, \times). (P. 107.)
 Museum. (P. 107.)
$22 a$, right valve ; l, dorsal view.
$23 a$, right valve ; b, anterior view.
24. Left vilve.
 Ironstone, Bemivorth Haven. Sedgwick Musemm, except fig. 27York Muscum. (P. 108.)

25 a, left valve; b, interior ; r, dorsal view.
26,27 . Left valves, $\times 1 \frac{1}{2}$.
28 a, right valve ; b, dursal view.
29-36. A. suluenstutu, d'Orl). 29-35. Atherfield Beds. (P. 109.)
29. Peasmarsh. Museam of the Geological Society. No. 2181. a, right valve, $\times 2$;

1, , part near the middle of the ventral margin, $\times 6$.
30-35. Severoaks. British Muscum, No. L $9284.30,31,32,35$, right valves, $\times 2$. 34 , right valve, nat. size. 33, left valve, $\times 2$.
36. Perma-bed, East Shalford. Sedgwiek Museum. Left valve, $\times 1 \frac{1}{2}$.

PIATEE XV.

Astante (romtimurt).
Fitis.
1, 2. A. sulneoshitn, d'Orb., var. Lower Greemsand (('rackers). Atherfiehl. Sedgwick Museum. (P. 110.)
$1 a$, right valere, $\times 1 \frac{1}{2} ; b$, anterior riew. $\times 1 \frac{1}{2}$.
$\because a$, right valve, $\times 1 \frac{1}{2} ; b$, dorsal view, $\times 1 \frac{1}{2}$.
3, t. A., sp. Folkestone Beds, Folkestone. 3, right valve; 4, left valve. Sedgwick Muscum. (P. 111.)
in-7. A. Ommliwides, Woods. Gault, Folkestone. British Museum, No. I tians. : , 7 , left valves; (i, right valve. $\times 2$ (P. 111.)

S-13. A. furmusu, Sow. Tpper Greensand, Blacklown. Sedgwick Museum. All \times :3. (P.112.)

8 . Left valve.
9 a, left valse : b, interior.
10 a, right valre; b, dorsil vinw: c. anterior viens.
11. Left valve.
12. Interior of right valve.
13. Right valre.
14. A. impulitn, Sow. Upper Greensand, Blackdown. The Thpe. Bristol Muscum. Right valve. (P. 113.)
 Museum. (P. 113.)
15. Atherfeld. Right valve.
16. Santown. Right value.
17. Atherfield. a. left vilve; b. dorsal view.
18. Sandown. a. right valve: b. hinge.

PLATE XVI.

Astarte (rontimumil).
flas.

1. Perma-bed, Atherfield. Left valve. Selewiek Museum.
2. Porna-bed, Sandown. Left valve. Sedsrwick Muscum.
3. Upper Gicensand, Blackdown. Hinge of left valve. Museum of Practical Geolngy, No. 13184.
4. : Varioty of A. (Eriphyla) olwewta, Sow. Irmmobed, Samdown. York Museum. Left valve.
i-7. A. (Eriphyla) laris (Phill.). Claxhy Ironstone, Bemniworth Haven. Serlgwick Museum. (P. 11\%.)

5a, left valve; b, interior ; c, dorsal riew.
(ia. Jeft valso; b. anterior view.
7 r. right valve: b, part of inner mangin

PLA'IE XVII.

Astante (continural).

Fics.

1. A. (Lidif!y/a) lawis (lhill.). Claxhy Ironstone, Bemiworth Maven. Laft valve. York Museum. (1'. 115.)

2. British Musemm, No. L 587. a, right valve: b, interior of the same; c, dorsal view.
3 Sedgwick Musemen. Iuterior of left valve (the teeth are drawn in part from a specimen in the Museum of Practical Geology. No. 13187).
3. British Museum, No. L 17076. Risht valve.
4. Bristol Museum, No. 536. Right valve.
(i. Museum of Practical Geology, No. 13188. Right valve.
5. Bristol Museum. The Type of Astarte concinna. Suw. Left valve.

> Semms-Orıs, Defirence.

S-1シ. O. acommirnsix, d’Orb. Lower Greensand, Lpware. (P.118.)
8. Sedgwick Muscum. a, right valve: b, anterior view of both valves; ©, posterior view.
9. Selgwick Museum. u, left valve; b, posterior view.
10. Selgwick Museum. a, right valve; b, anterior view.
11. Mr. J. F. Walker's Collection. a, right valve: b, anterior view; r, pesterion view.
12. Mr. Walker's Collection. Interior of right valve.

1:3, 14. (. sp. Upper Greensand, Haldon. British Musemm, No. L 1714. (P. 120.)

13 a, left valve; b, interior : \therefore anterior view.
l.t 1 , left valve ; b, posterior view; c, dorsal view.

CRETACEOUS LAMELLIBRANCHIA

Figs.

 of the same' ; 1 , anterior view. (P .119 .)
(iemis-Camiva, Brumiem.
 (P. 121.)
2. Museum of Practical Geology, No. 14360. a, left valve; b, dorsal view, $\times 1$: ; c, median part of left valve. $\times 4$.
3. Sedgwick Museum. Right valve, $\times 1^{\frac{1}{2}}$.
4. Sedgwiek Museum. n, left valve; 1 , auterior view.
 ", right valve; l, clorsal view; ", anterior view; , fart mear the middle of the right valve, $\times 4$. (P .12 O .)
6. 1'sp. Lower Gremsand (I'erm-hed), Athertichl. Siedgwick Musemm. ", left valve; b, dorsal view ; r, part near the middle of left valve, $\times 5$. (P. 12;3.)

7-11. 1. temuirustu (Sow.). Gault, Folkestone. i-1:3. Solgwick Musimm. 14. British Museum, No. 481:\%) (1'.121.)
7. Left valve, $\times 1!$.

8 a, left valve; b, iunteriur view.
9. Risht valve.

10 c, left valve; u, dursal view ; c, part near the mid-ventral lowider, $\times 6$.
$11 a$, right valve, $\times 1 \frac{1}{2} ; b$, dorsal siew, $\times 1!; c$, part near the middle of the riyht valve, $\times 6$.
12. Left valve. $\times 2$.
13. Inflated variecty. a, right valve; b, dursal view.
14. Short and much inflated variety. ", rishlt valve: b, dorsal view.

1: , 16. ('. 'mathlim, d'Orl). (Shloritic Marl. (P. 1: (i.)
15. Toulle Fratrum. Museum of Practical Geolugy, No. 1434x. Risht valve.
16. Chard. Oxford Museum. ", left valve; b, dorsal view.

17,18. ('. rencellutu, Woods. Chalk Rock, (uckhamsley. Sorlgwick Museum. (P. 127.)

17 a, wax cast of right valve, $\times 1^{\frac{1}{2}} ; b$, ormamentation near the middle of the right valve, $\times 5$.
18. Nattural internal cist. a. left valve; h, anterior view.

PLATE XIX.
 (irmis-Cbiss.tenimtes, Krigger.

Figs.

1. ' '. Mirisiensis, Woods. Uppor Gremsand, Devizes. Musemm of Practical Gcology, No. 167:0. ", left valve; h, dorsal view. (P. 12s.)
$\xrightarrow{2}, 3 . \quad 1$. rimimnensis (l'Orl).). Cemomanian (Meÿer's Bed, 10), Dunscombe. Sedgwick Muscum. (P. 129.)
 $\times 4 ; 1$, ornamentation on the jwsterior area. $\times 4$.
2. Right valve.

 Right ralves. isl, part near the mid-vental horder, \times \%. (1 . 1:30.)
3. A. Ap. Lower (ireensand ('rackers), Atherfield. Serlgwick Musemm. Left valre. (P. 1;1.)
diemus-Cuphana, Intmarel:
7-1:3. 1. Numssmi (Brongn.). Lower (Greensam ('rackers). Atherfich (except

4. Left malve.
$8 a$, left valve; b, dorsal view.
5. 10. Luft valvers
$11 a$, light valve; b, dorsal view.
1. Left valve.
2. British Museum. No. L Ligh. Large form. a. lift valve: h, dorsal riew.
 Saft value. (P. 1:3:3.)

PLATE XX.

Cyprina (rontinurd).

Figs.
1-5. C. Selguiriii (Walker). Lower Greensand. (P. 133.)

1. Potton. The Type. Mr. Walker's Collectiou. a, right ralve; b, dorsal view of both valves.
2-5. Upware. Sedgwick Museum. 2, 4, 5, left valves. 3 a, right valve : 3 b, anterior view of $3 a$.
2. C. olfusa, Keeping. Lower Greensand, Upware. Sedgwick Muscum. The Type. ", left valve; l, dorsal view. (l'. 13:3.)

7-12. C. cuncth, Sow. Upper Greensand, Blackdown. (P. 13\%.)
7. British Museum, L 17066. Right valve.
8. British Museum, L 17066. Left valve.

9,10 . Selgwick Museum. Left valves. $10 b$, dorsal view of 10 a.
11. British Museum, L 17066. Left valve.

12 a. British Museum, L 17066. Right valve. $12 b$, hinge, $\times 1 \frac{1}{2}$.
13. ('. trolliemsis, Woods. Tealby Limestone, Claxhy. British Museum, No. 4998:). ", left valve, $\times \frac{3}{4}$; l, dorsal view of both valves, $\times \frac{3}{4}$. (P. 136).
14. ('. sp. Specton Clay, Speeton. Sedgwick Mascum. Left valve. (I'. 137.)

15, 16. (. anglicn, Woods. Lower Greensand (Crackers), Atherfield. Seelgwick Museum. Left valves. (P'. 1:37.)

l'LA'TE XXI.

Ciplisa (routinued).
Fus.

1. C'. , miflir., Woods. Lower Greensand (Crackers), Atherfield. Sedgwick Museum. ", right valve; l, dorsal view. (P' 1:37).
@. C. rarliensin, Woods. Claxhy Ironstonc, Bemniworth Haven. Sedgwick Museum. Left valve. (P. 135.)
2. ' '. sp. 'Teally Limestone, Clasby. Sedgwick Muscum. Left valve, $\times \frac{3}{1}$ ($\mathrm{P} .1 ; 30$.)

1-7. ('. (Vruilirarlia) protrusa, Woods. Lower Greensand, Atherfield. See also 'I'ext-figures 20, 21. (P. 137.)

5. Permu-lved. Museum of Practical Geology, No. 16744 . Hinge of left valve.
6. Pernuthed. British Museum, L 430. Hinge of right valve, \times ?
7. Crackers. British Museum, L 6304. A small specimen. Right valve.
$\therefore 2$ (. S'vererlyi, d'Orb. See also Text-figure 29. (P. 139.)
8. Hythe Beels, Hythe. Sedrwick Museum. Internal east of right valve.
9. Lower Greeusiml, between Atherfield and Blackgans. York Museum. Left vilve.

PLATE XXII.

Cyrhisa (continued).
Filis.
1-4. © (Venilicartir) ruyntute (Sow.). Upper Greensand, Blackdown. See also 'lext-figures 2:3, 24. (l'. 141.)

1. Selgwick Museum. Left valve, \times.
2. Selgwick Museum. Hinge of right valve, \times.
3. York Museum. Hinge of left valve.
4. Museum of the Geological Society. Hinge of right valve of a specimen with the umbones more anterior than usual. $\times \frac{3}{3}$.

5-8. C. (Venilicurlia) limodatu (Sow.). Upper Greensand, Blackdown. Sedgwick Museum. (P. 143.)

5 a, left valve; $5 l$, anterior view.
$\dot{6} a$, right valve ; $\dot{b} b$, hiage of the same.
7. Hinge of left valve.
8. Right valve.

PLATE XXIII.

(xprisal (comtinued).

Figs.
1, 2. C. (V̈milicarlia) limolata (Sow.). Lpper Greensand, Blacklown. Serlgwick Museum. Right valves. 2 , a short form. (l'. 143.)
8. C. (Temilicarlin) truncuta (Sow.). Upper Greensand, Blacklown. The Type. Bristol Muscum. ", left valve; l, dorsal view of the same. (P. 1.4.)
4. C. (I'milicardia) truncata? (Sow). Upper Greensand, Blackdown. Exeter Museum. Left valve. Probahly an clongate variety of ('. timneatu. (P. 145.)
5. C'. (Trmilicmalia) truncat!? (Sow.). Upper Greensand, Blackdown. Selgwick Museum. a, right valve; b, hinge. Probably a short variety of (. trumeati. (P. 145.)
(6-9. ('. qumlirtu, d'Orb. Gault, Folkestone, exeept fig. 6. (P. 146.)
6. Upper Greensand, Warminster. Selgwick Museum. Internal cast. Right vilve.
7. Sedrwick Muscum. a, left valve ; b, dorsal view.
8. British Museum, L 9183. Richt valve, decorticated.
9. Sellywick Museum. a, left valve ; b, dorsal view.

Gemus-Trapezirm, r. Mïhlimet.
10, 11. T. ? arentifirme (Keep.). Lower Greensand, Upware. (P. 148.)
10. The Type. Sedlywick Museum. a, right valve; b, dorsal view.
11. Mr. Walker's Collection. Anterior view.

12-1\%. T' ? syuamosmm (Keep.). Lower Greensand, Upware. Sedgwick Museum, except fig. 14. (P. 148.)
12. Juft valve.

13 a, right valve ; b, dorsal view.
14. Mr. Wallker's Collection. a, left valve, $\times 1 \frac{1}{2} ; b$, interior of same, $\times 1 \frac{1}{2}$.
$15 a$, right valve ; b, dorsal view.
16. T.? sp. Lower Greensand, Upware. Sedgwick Museum. a, left valve ; 1 , dorsal view. (P. 149.)

17-19. T. trapründate (Röm.). Chalk Rock, Cuckhamsle!. Sedgwick Museum. (1'. 1.19.)
$17 a$, left valve; b, dorsal view.
$18 a$, right valve ; b, anterior view.
19. Right valve.

PLATE XXIV.

Fics.

1. C!ymium rlurbirusix, Woods. Claxby Ironstone, Donnington. Sedgwick

Museum. Hinge of right valve. (P. 135.)
Genus-Lernas, Bruguirte.
2, 3. L. sp. Spilsby Sandstone. 2, internal cast of right valve, Donnington. Sedgwick Museum. 3, right valve, Holton, Mr. Lamplugh's Collection. (P. 152.)
4, 5. L. sp. Lower Greensand. (P. 152.)
4. Near Atherfield. Museum of Practical Geology, No. 19719. Internal cast. a, right valve; b, dorsal view.
5. Sandgate Beds, Parham Park. Museum of the Geological Society, No. 2149. Interual cast of left valve.
6. I. sp. Lower Greensand (Ferruginous Sands), Shanklin. Sedgwick Museum, Cambridge. 1 , left valve; l, dorsal view. (P. 153.)
7-9. L. ? senlptu, Phill. Gault, Folkestone. (P. 153.)
7. Museum of Practical Geology, No. 19761. Right ralve, $\times 1 \frac{1}{2}$.
8. British Musemm, No. L4490. a, part of right valve; b, dorsal view of looth valves.
9. British Museum, No. L 4990. Left valve.

10-14. L. tenera (Sow.). Ganlt, Folkestone. (P. 154.)
10. Selemick Museum. a, left valve, $\times 1^{\frac{1}{2}} ; b$, portion near midille of valve, $\times 8$.
11. Selgwick Museum. Right valve, $\times 1 \frac{1}{8}$.
12. British Museum, No. L 4977. a, left valve; b, dorsal view; c, portion near mildle of valve, $\times 8$.
13. British Museum, No. L 4977. a, left valve, $\times 1 \frac{1}{2} ; b$, anterior view, $\times 1 \frac{1}{2}$.
14. British Museum, No. L 4977. Right valve, $\times 1$! .

1\%. I. Domrmesi, Woods. Upper Greensand, Blackdown. Museum of Practical Geology, No. 19771. a, left valve; ll, dorsal view ; c, portion near middle of valve, $\times 6$. (P. 155.)
1(i-19. L. pisam, Sow. Upper Greensand, Blacklown. Sedgwick Museum, Cambridge. 16-18, right valves; 181 , dorsal view; 19, left valve. All $\times 3 . \quad$ (P. 156.)

Genms-Corbicelan, Morris and Lyjert.
20-23. O. rluxhirmsis, Woods. Claxhy Ironstone, Bemniworth Haven. Sedgwick Museum, Cambridge. (P. 157.)
$20 a$, left valve; b, dorsal view of the same.
21. Right valve.
22. Hinge of right valve, $\times 1$!

23 . Left valve.
Cicmus-Spimera, Sumerly.
24. S' compurtn, Sow. Lower Greensand (Crackers), Atherfield. Sedgwick Musemm. Left valve. See also text-figure 26. (P. 157.)

PLATE XXV.

Slus.in. (routimul).
Fics.
1, 』. S. rmpunth, Sow. Lower Greensand, Atherfield. (P. 157.)

1. Crackers, Atherfield. Sedgwick Museum. Right valve.
2. Pronthed, Atherfield. British Museum, No. 50:349. Hinge of right valve, $\times \frac{3}{4}$.
3. S. sp. Base of Chalk Marl, Chard. Muscum of Practical Gcology, No. 7890. ", right valve; l, dorsal view. (P. 1\%9.)

1-6. M.? ranuliculuta (Sow.). Upper Greensand, Blackdown. Sedgwick
Museum. (P. 160.)
4 , left valve ; l, interior of same; c, dorsal view ; d, portion of anterior part, $\times 4$.
$\therefore a$, left valve, $\times 1 \frac{1}{2} ; b$, anterior view of same, $\times 1 \frac{1}{2} ; c$, hinge, $\times 2$.
($B 4$, right valve ; b, anterior view of same; c, hinge, $\times \cong$.
Giemu:-Unicardiem, d'orliamy.
4. I. elurplirmse, Wools. Claxby Ironstone, Bemiworth Iaven. Sedgwick Muscum. a, left valve; l, dorsal view of the same. (P. 162.)

8-11. I. rectinse, Woods. Lower Greensand (Crackers), Atherfield. Sedgwick Museum. (P. 163.)
8 a, left valve ; l, dorsal view ; c, portion near the mid-ventral margin, $\times 3$.
9. Left valve.
10. Hinge of right valve, $\times 1 \frac{1}{1}$.
$11 a$, right walve ; b, anterior view.
12. I. sp. Upper Greensand, South Devon. Museum of the Geological Society, No. 1580. a, right valve; b, dorsal view ; r, portion near the middle of the anterior half, $\times 8$. (P. 163.)
$13,1 \%$ I'. tingmorimser (Mant.). Base of Chalk Marl. (l'. 16\%.)
1:. 'Tithurloigh. Sellgwiek Musemu. Left valve.
14. Charistock. Museum of Practical Geology, No. 19803. a, right valve; b, dorsal view.
Cienu:s-Tuetinonia, Stulic:lin.
1.). 'I'. minor (Sow.). Lower Greensand (Crackers), Atherfield. Sedgwick Musemm. 15, a, right valve; l, portion near the mid-ventral margin, $\times 6: r$, portion mar the postero-donsal margin, \times (. (P. lif.)

Pla'le XXVI.

'Therriowna (rontinuril).
Ficis.
1-8. ' ''. minn (how.). Lower Greensand. Selgwick Musemm. 1-:), (rackers, Atherfied. (i, near Atherfield. 7, 8, Ferruginous rock, Shanklin. (l'. 167.)

1. Right valve.

24 , right valve; l, interior view.
3. Right valve.
$4 a$. left valve ; b, dorsal view.
5. Left valve.
(6. Internal cast of right valve.
7. Iuternal cast. a, left valve ; b, dursall view.
8. Interual cast of right valve.

9-14. I'. larcightı (Sow.). Upper Greensand, Blackdown. (1'. 169.)
9. Sedrwick Museum. Left valve.
10. Selgwick Museum. $\quad u$, right valve; u, hinge of left valve of the same xpecinen, $\times 1!$.
11. Museum of Practical Geollogy, No. 19783. Dorsal view.
12. Selgwick Museum. Left ralve.
13. Museum of Practical Geology, No. 19780. a, right valve; l, portion uear the posterior margin, $\times 6$.
14. Selgwick Museum. Hinge of right valve, $\times 1$ 1!.

Gemu-'lelimina, Limuens.
15, 16. T'. Cuteroni, d'Orb. Lower Greensand (Crackers), Atherfichd. Sulgwick Musem, Cambridge. (P. 171.)
15 a. right valve ; l, portion near the anterior marsin, $\times 3 ; c$, portion near the posterior marrin, $\times 3$.
$16 a$, left valve; b, dursal view of the same; c, hinge of the same, $\times 1 \frac{1}{2}$.
17. 'T'. sp. Lower Greensand (Crackers), Atherfield. Sedgwick Museum. Right valve. (P. 172.)

18, 19. I'. striutuluides, Stol. Upper (Areensand, Blacklown. (P. 172.)
18. Sedswick Museum. a, left valve; b, posterion part, $\times 3$.
19. Seltgwick Musemm. Interior of right valve.

CRETACEOUS LAMELLIBRANCHIA

PIATIE: XXVII.

Temaxa (romtiuntil).
Figs.

1. I'striatmuides, Stol. Upper Greensaml, Blackdown. British Musemm, No. L 16829. Hinge of right valve, \times ㅇ. (${ }^{\prime}$ '. 172.)

2-8. I'. (I'ılaomara) inaquelis, Sow. Upper Greensand, Blackdown. Sedgwick Museum, except fig. 8. (1'. 173.)
2. Right valve.

3 t. right valve ; l, part of postero-dorsal area, $\times 4$.
4, 5. Left valves.
6. Dorsal view.

7 , interior of left valve: l, hinge of same, $\times \geq$.
8. British Museum, No. L 17129. Hinge of right walve, $\times 2$.
!. 'I'. (Limeriir), sp. Lower Greensand (Crackers), Atherfield. British
Museum, No. 48696. Left valve, $\times 1 \frac{1}{2}$. (${ }^{\prime}$. 175.)
10-13. I'. (Linemiat) sultemuistriutu, d’Orb. Upper Greensand, Blackdown. (P'. 175.)
10. British Museum, No. L 7129 . a, left valve, $\times 1 \frac{1}{!} ; b$, dorsal view, $\times 1 \frac{1}{2}$.
11. Selywick Museum. Left valve, $\times 1 \frac{1}{2}$.
12. British Museum, No. I 17129. Right valve, $\times 1 \frac{1}{2}$.
13. British Museum, No. L 17129. Hinge of right valve, $\times 2$.

1\&-16. 'T'. (Lineuriu), sp. Upper Greensand, Blackdown. British Museum, No.
L17129. (P. 177.)
14. Right valve, $\times 1 \frac{1}{2}$.
15. Left villve.
16. Dorsial view, $\times 1!$.

Genu-Mactra, Limuaus.
17, 18. M. sp. Lower Greensand (Ferruginous Sands), Shanklin. Sedgwick Museum. 17 n, left valve; 17 l , dorsal view. 18, portion near the middle of valve, $\times 6$. (P. 177.)
19-23. M. anyuluta, Sow. Upper (ireensand, Blackdown. (I. 177.)
19. Musemm of Practical Geology, No. 20714. a, right valve, $\times 1 \frac{1}{2} ; b$, dursal view, $\times 1!$.
20. Sedrwick Museum. Left valve, $\times 11$.

2i. Selgwick Museum. Right valve.
23. Museum of Practical Geolegy, No. 20717. Hinge of left valve, $\times 3$.

-24-26. I'. Robinuldint (d'Orl).). Lower Greensand. Sedgwick Museum. (P'. 179.)
24. Perme-leel, Atherfield. a, right valve; b, dursal view.
25. Perut-bed. Atherfiell. Left valve.

26 . Ferruginous Simals, Shanklin. Hinge of right valve.

l'LA'I'E XXVIII.

> Cirmus—Dusinhorsis, Comicul.

Fics.
1—6. I. sulnofumla (Sow.). Upper Greensand, Blackdown. Sedgwick Muscum, ('ambridge; except lig. 9 , British Museum, No. LI7067. (P. 181).

1. 2, 6. Right valves.
2. Interior of right valve $\times 1 \frac{1}{2}$.

4, 5. Left valves. $5 b$, interior of $5 a$.
7-10. I.. c"purula (Sow.). Upper (Areensand, Blackdown. Sedgwick Muscum. (P .189).

7,8. Right valves. $7 b$, hinge $\times 1$.
! 10. Left values. 10%, interion of 10 a; l 0 c. dorsal view.

11-18. (!. (!'yrlorixmet) verlimsis (Forbes). Lower Greemsand (Crackers), Atherfield. Sedgwick Museum. (I. 183.)

11,12 . Right valves. 11 b , dursall view of 11 l .
13,14 . Hinges of right valves. 13 , a small specimen $\times 2$.
15, 16. Left valves.
17. Hinge of left valve $\times 1 \frac{1}{2}$.
18. Internal cast of right valve. Exact horizon not linown.
 Sedgwick Museum. (1'. 184.)
$19 a$, right valve; b, dursal view of buth valves.
20 . Hinge of right valve $\times 3$.
$21-23$. Left valves. $21 b$, part of 21 a near the ventral margin $\times 4$.

CRETACEOUS LAMELLIBRANCHIA

PLATE XXIX.

Cypmanea (romiturit).

Pitis.
 excopt fig. :3. Sodgwick Museum, ('ambridge. (P. 181.)

1 a, left valve; b, anterior view of the same specimen.
2. Hinge of left valle x : .
3. Perma-herl. Eiast Shalford. Internal cast of left valve.

t. Wooleombe. Muselum of Practical Geology, No. 18735. Right valre, with part of the shell preserved.
5. Maiken Prulley. Muscum of Practical Geolory, No. 18746, a, internal cast of right value; h, dorsal view of the same sperimen.
(6. Comomanian, Rouen. M. Fortin's Collection. Left valve with shell preserved.
 Muscom, except figs. 11, 11, 1\%. (1'. 187.)

7-9. Right valves.
10. Hinge of right valve $\times 2$.
11. Left valve. Musemm of Practical Geology, No. 19774.
12. Dersal view of hoth valves.

1 \because. Hinge of laft walve $\times 12$.
14. 'The TYpe of J'enus swharis, Sow. Bristol Musemu. (P. 189.)

Cirmis-Cumentla, Ciru!
 Atherfich. Sedgwick Musemm. 1(i, 17, right valves; 18 a , left valve; b, dorsal view of the same specimen-the lumule is drawn from another specimen. (I'. 189.)
 Muscum, ('ambridge, 心xerpt figs. 20, 6:3, 26. (1). 191.)
14--22. Right valves. 20, Museum of Practical Geology, No. 19778.
23. British Museum, No. L1944. Interior of right valve.
24. Hinge of right valse $\times 1 \frac{1}{2}$.

25 a, lelt valve: b, nowsal view of the same specimen.
26. Musemm of Praction Geology, No. 19814. Hinge of left valve $\times 1$.

PLATE XXX.

Gicmus-Calista, Mürch.

Flis.
1—i. C'. plam! (Sow.). Tpper Greensamel, Blackiduwn. Sedgwick Museum, ('ambridge. (1'.192.)

1 a, right valve; b, ormamentation on the postero-ventral part $\times 6$.
\because Hinge of right valve. 'The part anterion to the middle of the anterior pit is drawn from another specinen.
3-6. Left valves. $3 l$, interior of $3 a ; 3 c$, dorsal view of $3 a ; 4 b$, anterior view of 4 a.
(icmes-l'homocamba, Bremich.
7. I'. "milira, Wrools. Lower Greensand (Crackers), Atherfield. Sedgwiek Musemm. ", left valve $\times \frac{2}{3}$; b, dorsal view $\times 1 . \quad$ (I'. 191.)

PLATE XXXI.

Protocarma (comtimed).
Fins.

1. I'. "mylirn, Woods. Lower (areensand (C'rackers), Atherfield. Sedgwick Museum, Cambridge. Right valve. (P. 194.)

2, 3. I'. spharvidea (Forbes). Lower Greensand (l'rma-bed). (P. 195.)
2. Sauduwn. British Muscim, No. L8247. a, left valve; b, dursial view of the same specimen. \times :
3. Atherfield. York Museum. a, left valve: b, pusterior view of the situe. \times :
4. l'. sp. Upper Greensand, Haldon. British Museum, No. LIzurt. Right valve. (P. 196.)
j. I'. sp. Speeton Clay (zone of Ielemuites luteralis), Specton. Mr. Lamplugh's Collection. a, right valve $\times 9$; b, dorsal view of both valves $\times 2$ (${ }^{\prime}$. 197.)
6. I'. Millmu (Sow.). Lpper Greensand, Blackdown. Sedgwick Musemm. ", left valve; b, posterior view of "; c, part of the posterior area $\times 4$. (l. 197.)

PLATE XXXIT.

Protncarma (entinuri).
Fris.
1-6. P. Ifillun (Sow.). ITpper Greensaml, Blackiown. Sedgwick Musemm, Cambridge. (P.1:7.)

1. Teft valve.
2. :3. Right valves.
3. Interior of loft value.
r. Dinger of rish value.
(i. Dorsal view of both valves.

> (icmus-Cardiem, Limuxus.

7-10. ('. Ithtisoni, Forbes. Lower Greensand (Crackers), Atherfield. Sedgwick Museum, ('ambridge. (P. 201.)
$7 n$, right valse; h, dowal view of hoth valves; r, posterior view; d, anterion view; ${ }^{\circ}$, portion of ornamentation of posterior area $\times 4 ; .8$, omamentation near the middle of the vental borider $\times 4$.
8, 9. Right valves.
10. Left valve.
11. (. C'othllinnm, d'Orl). Lower Greensand, Tpware. Sedgwick Museum. ", right valve; b, dorsal view of both valves; ', posterior view; d, ornamentation of posterior area $\times 4$; ', ornamentation near the mid-ventral horder \times 4. (P. 203.)
12. (. sp. Lower Greensand, Seend. Museum of Practical Geology, No. 2127:3. ", right valve; 1 , dorsal view. (P. Qol.)
1: - - 1\%. ('. tmomirnst, Woods. Chalk Rock, Cuckhamsley. Sedgwick Museum. (P. eot.)
$13 a$, internal east of right valve $\times 1!3$, anterior view of the same $\times 1!$.
14. Internal cast of left valve $\times 1!$.

15 . Ormamentation imawn from a wax mould of an external cast $\times 6$.
16. (!. Ap. Chalk Rock, Cuckhamsley. Sedgwick Museum. Internal cast. ", right value; 1 , dorsall view of hoth valves. (P. 205.)
17. (!. sp. Upper (halk (\%one of Belemuitell", mucrommtu), Norwich. British Musemm, No. L19+13. Internal cast. ", left valve; b, dorsal view of both valves; r, posterior view. (P. 205.)
18. 19. U. ((rirnncardimm) molnseidrtm, Sow. Upper Greensand, Blackdown. Solgwick Museum. (1'. 205.)
18. Right valve. The anterior marginal part is trawn from another specimen.

1!. Latit valve Dorsal part hecorticated.

PLATE XXXIII.

(hromm (eontimued).

Firis.
 Sedgwick Museum, Cambrilge. (P. 20:.)
$1 a$, right falve; b, anterior view of the same.
$2 a$, interior of left valve; b, dorsal view of the same.
3. Hinge of right valve.

+6. T'. Lamsidulri (Sow.). Lower Greensand, Stock Orchard, near Calne. Internal casts. (P. 207.)
4. Both valves. Museum of Practical Geologr, No. 22720.
5. Lower valve. Museum of Practical Genlogy, No. $22721 . \times 5$.
6. Upper valve. British Museum, No. 88825.
(iemus-Gyropletra, Dourille:
7. (1. cormucopiar (l'Orl).). (hloritic Marl, Melbury Park. Museum of Practical Geology, No. $2 \underline{2} 140$. ", right valve; l, posterior view of both valves. (P. 208.)

8-13. (i. ineruirostratu (Woodw.). Upper (halk (zone of Belemnitella mucrountu), Norwich. 8-10, British Museum, No. 21003. 11-13, Norwich Museum. (P. 209.)
$8 a$, right valve; b, posterior view of both valves; c, ornamentation of right valve $\times 8$.
9 , left valve and umbo of right valve; b, posterior vien of both valves.
10. Ormamentation of right valve near the ventral margin $\times 12$.
11. Right valve. Iuternal cast.
12. Anterior view of both valves. Internal cast.
$1: 3$ a, left valve and umbo of right value; b, posterior view of both valves Internal cast.

PLA'TE XXXIV.

Grioplema (cmintinti).
Figs.
 Williams' Collection. \quad, left valve and umbonal part of right valve; l, posterior view of both valves ; c, ornamentation of left valve $\times 3$; d, ornamentation of right valve $\times 3$. (P. 210.)

Geuns-Constin, liruguiere.
 3, 4, Mr. Lamplugh's Collection. (P. 210.)
$2 a$, left valve; b, dorsal view of both valves; c, anterior viem. $\times 5$.
3, 4. Left valves $\times 5$.
5. Right valve $\times 5$.

6—12. (. strintuln, Sow. Lower Greensand (Atherfield Beds), East Shalford ; except 7 and 12, from the Crackers, Atherfield. Sedgwick Museum. \times 5. (P. 212.)
(i-10. Right valves. $9 l$, dursal view of $9 a$.
$11 a$, left valve; b, dorssal view of both valves.
12. Anterior view of buth valves.
13. C. sp. Lower Greensand, Punfield. Museum of Practical Geology, No. 22723. Right valve, the posterior part broken, \times 5. (P. 213.)

1ヶ—16. ('. grultint, Pict. and Camp. Gault, Folkestone. \times j. (P. 214.)
14. Sedgwick Museum. a, right valve; l, dorsal view of both valves ; c, auteriur view.
15, 16. Museum of Practical Geolugy, Nos. 22727,22728 . Left valves.
17-92. (\because trun'th, Sow. Upper Greensand, Blackdown. Sedgwick Museum. $\times 5 . \quad(\mathrm{P} .21 \%)$

17-19. Right valves.
20,21 . Left valves. 20 l , dursal view of 20 a
$\because 2$ a posterior view of left valve $\times 5 ; 1$, ornamentation near the middle of the ventral margin $\times 10$.

23-28. C. flymus, Sow. Upper Greensand, Blackdown. Sedgwick Museum. $\times 5$. (P. 216.)
$23-26$. Right valves.
27. Auteriur view of both valves.
$28 a$, left valve and umbo of right valve; b, dursal view of a.

CRETACEOUS LAMELLIBRANCHIA

PLATE XXXV.
 Gemus-Pharus, Leruch.

Figs.
1—3. $\quad I^{\prime}$. W Wrlmitmini (Forbes). Lower Greensand (Crackers), Atherfield. Sedgwick Museum, Cambridge. 1, 3, right valves; $2 a$, left valve; $2 l$, clorsal view of $2 a ; 2 c$, portion of anterior part $\times 8$. (P. 217.)

Mémis-Solecurtis, de Blaincille.
4. N. (.1zor?) Pelayi, d'Orb. Upper Greensand, Blackdown. Sedgwick Museum. Right valve. (P. 218.)

5, 6. S.? (Azm?) Acteon, d'Orb. Left valves. 5, Upper Greensand, Haldon; British Museum, No. 34801. 6, Cenomanian, Dunscombe ; Sedgwick Museum. (P. 219.)

Genus-Leptosolen, Comrul.
7, 8. L. Iирі"иiчии: (d’Orb.). Gault, Black Ven. Sedgwick Museum. 7, right valve; 8, left valve. (P. 219.)

Genus-Payopea, Ménard de la Groye.
9—14. P. guryitis (Brongn.). Lower Greensand (Crackers), Atherfield. Sedgwick Museum, Cambridge. (P. 222.)
9. var. neocomiensis, Leym. a, left valve; b, dorsal view ; c, ornamentation $\times 8$.
10. var. a. Left valve.
11. var. a. a, right valve; b, dorsal view.
12. Right valve.
13. var. neocomiensis, Leym. a, left valve; b, ornamentation $\times 4$.
14. a, right valve; b, dorsal view.

PLATE XXXVI.

Panopea (contimued).

Figs.
1-8. P. gurgitis (Brongn.). 1-5, Lower Greensand, Atherfield. 6-8, Upper Greensand, Blackdown. (P. 222.)

1. Crackers. Sedgwick Museum. Left valve.
2. Crackers. Sedgwick Museum. Right valve.
3. var. plicata, Sow. Perna-bed. Sedgwick Museum. Internal cast. Right valve.
4. var. plicata, Sow. Probably Perna-bed. York Museum. a, right valve; b, dorsal view.
5. Lobster clay. Sedgwick Museum. Interual cast. Right valve.
(i. var. plicata, Sow. British Museum, No. L577. a, left valve; b, dorsal view; c, linge of same.
6. var. plicata, Sow. British Museum, No. L17122. Right valve.
7. Short form of var. plicata, Sow. British Museum, No. L17120. Left valve.

PLATE XXXVII.

Panopea (continued).

Figs.
1-5. P. muntilnlı (Sow.). Upper Greensand. Sedgwick Museum, Cambridge. Internal casts. (P. 228.)

1. Ventnor. a, right value; b, elorsal view.
2. Devizes. Right valve.
3. Ventnor. Left valve.
4. Devizes. a, right valve: b, anterion view.
5. Ventnor. Right valre.
(6. P. oralin, Sow. Upper Greensand, Blackdown. The Type. Bristol Muscum. a, portion of left valve; 1 , dorsal view. (P . 229.)

PLA'TE XXXVIII.

Panofea (comtinued).
Flis.

1. I'. Mry ${ }^{\prime}$ rit, Woods. I'pper Greensand, Blackdown. Sedgwick Museum, Cambridge. ", right valve; l, dorsal view. (P. 229.)
2. P. spilshirmsis, Woods. Spilsly Sandstone, Donnington. Sedgwick Museum. Internal cast. ", right valve ; l, dorsal view. (P. 222.)

Giemis-Martesia, Leach.
:3—10. M. roustrict" (Plill.). :3-6, Speeton Clay, Speeton. $\mathbf{i}-10$, Gault, Folkestone. Mainly internal casts. (P. 231.)
3. York Museum. Right valve.
4. British Museum, No. L2l607. Right valve. $\times 1!$.
5. Sedgwick Museum. a, right valve; b, dorsal view of both valves. $\times 1 \underset{1}{1}$.
6. Sedgwick Museum. a, left valve, $\times 1 \frac{1}{3} ; b$, anterior view, $\times 1 \frac{1}{2} ; c$, portion of shell near the ventral margin $\times 10$.
7. Museum of Practical Geology, No. 23487. Risht valve. $\times 1 \frac{1}{2}$.
8. British Museum, No. L4997. Left ralve with shell preserved. $\times 2$.
9. British Musem, No. L4997. a, interior view: b, dorsal view. Part of the shell is preserved. $\times 2$.
10. Museum of Practical Geulogy, No. 23436 . Right valve.
11. M. prixer (Sow.). Hythe Beds of Maidstone. Museum of Practical Geology, No. 23474. Internal cast of right valve. (P. 232.)
12, 1:3. M.? rotumle (Sow.). Chalk Rock, Cuckhamsley. Sedgwick Museum. 12, internal cast; ", left valve ; l, dorsal view ; !, anterine view. 13, right valve-drawn from a wax mould of the exterior, partly restored. $\times 2$. (P. 233.)
(ienus-Turves, Giull.
1+, 15. 'I'. Dullıwi (Walker). Lower Greensand, Potton. Sedgwick Museum. Internal casts. 14, the Type; ", right valve; l, dorsal view. 15, right valve. $\times 2 . \quad$ (P. 233.)
16, 17. I'. sp. Gault, Folkestone. $\times 1 \frac{1}{2}$. (P'. 2:34.)
16. British Museum, No. L4996. a, right valve, with part of shell preserved; b, dorsal view.
17. Sedgwick Museum. Interual cast of left valve.
18. 'I'. sp. Upper Greensand, Blackdown. British Museum, No. 24335. Left valve. $\times 1 \frac{1}{2}$. (P. 235.)
19, 20. T'.? amphisbæna (Goldf.). Upper or Middle Chalk, Sussex. Sedgwick Museum. (P. 235.)
(ipmus-Teredo, Limarus.
21. T'. guultinu, Woods. Gault, Folkestone. Museum of Practical Geology, No. 23485 . Right valve. $\times 2$. (P. 237.)

PLA'TE XXXIX.
 Gienus-Plectrompa, de Loriol.

Figs.

1. I'. anglicu, Woods. Lower Greensand (Crackers), Atherfield. Sedgwick Museum, Cambridge. ", right valve; l, ornamentation $\times 16$. (Р. 238.)

Gemus-Anatina, Lamurll:
2-- 1. A. (rercom!") !n!!i/is, Pict. and Camp. Lower Greensand. (P. 239.)
2. Perna-bed, Isle of Wight. British Museum, No. L436. Right valve.
3. Crackers, Atherfield. Selswick Museum. a, part of left valve; b, dorsal view ; c, ormamentation near the antero-ventral margin $\times 12$.
4. Crackers, Atherfield. Sedgwick Museum. a, left valve; b, ornamentation near the antero-ventral margin $\times 10$.
5. A. (Crromya) sp. Upper Greensand, Isle of Wight. British Museum, No. 48626 . Intermal cast. ", right valve; l, dorsal view. (P. 239.)
6. A. (Cerom!/I) sp. Upper Greensand, Warminster. British Museum, No. 88926. Internal cast of part of right valve. (P. 240.)
Giemus-Thracia, Lemol.

7-9. I'. I'lillipsi, Röm. Speeton Clay, Speeton. (P. ©f(1).)
7. Mr. Stather's Collection. a, right valve ; b, dursal view.
8. Selgwick Museum. Right valve.
9. Sedgwick Museum. Left valve.
10. T'. rotumtuta (Sow.). Hythe Beds, Lympne. Museum of Practical Geology, No. 23470 . a, right valve; l, dorsal view. (P. 241.)

CRETACEOUS LAMELLIBRANCHIA

PLATE XL.

Thrarta (rontinued).
Figs.
1—3. T. Rolinaldina? (d'Orb.). Lower Greensand, Atherfield. Sedgwick Museum. (P. 242.)

1. Perna-bed. a, left valve; b, dorsal view.
2. Crackers. Left valve.
3. Crackers. Right valve.

4-6. T. Sanctr-Cruris, Pict. and Camp. Gault. Left valves. 4, Folkestone; Sedgwick Museum. :, Black Ven; Museum of Practical Geology, No. 23484. 6, Folkestone ; Museum of Practical Geology, No. 1662. (P. 243.)

7-9. T'. sp. 7, 8, Gault, Black Ven; Museum of Practical Geology, Nos. 23+82, 23483, left valves. 9, Upper Greensand, Blackdown; Museum of Practical Geology, No. 19813; a, left valve; l, dorsal view. (P. 243.)

10-13. T', curinifer" (Sow.). Chalk Marl. (P. 24+.)
10, 11. Ventnor. Sedgrwick Museum. Right valves.
12. Chard. Museum of Practical Geology, No. 23500, a, right valve; b, densal view.
13. Near Beaminster. Museum of Practical Geology, No. 23499. Ornamentation $\times 12$.
(irmu-Pholaboma, Sowerly.
11. I'.!!!utret (Now.). Lower Greensand (Crackers), Atherfield. Sedgwick Museum. Right valve. (P. Q-46.)

CRETACEOUS LAMELLIBRANCHIA

PLATE XLI.

Pholadomya (continued).

Figs.

1. P. !igantea (Sow.). Lower Greensand (Crackers), Atherfield. Sedgwick Museum. Dorsal view of specimen figured on Plate XL. (P. 246.)

2, 3. P. Cormueliana (d'Orb.). Lower Greensand (Crackers), Atherfield. Sedgwick Museum, Cambridge. $2 a$, right valve; b, dorsal view ; 3, right valve. (P. 245.)
4. I'. specton'msis, Woods. Speeton Clay, Speeton. Museum of Practical Geology, No. 23620. a, left valve; l, dorsal view. (P. 248.)
5. P. Martiui, Forbes. Lower Greensand (Crackers), Atherfield. Sedgwick Museum. Right valve. (P. 249.)
(i. I'. F'rlwint, d'Orb. Gault, Black Ven. Sedgwick Museum. Right valve, compressed dorso-ventrally. (P. 250.)

7-9. P^{\prime}. decusistutu (Mant.). Chalk Marl. (P. 250.)
7. Eastbourne. Selswick Museum. Right valve.
8. Ventnor. Sedgrick Museum. Dorsal view.
9. Ventnor. Sellgwick Muselum. Anterior view.

PLA'TE XLII.

- Firs.

1. I'. decusisitu (Mant.). Chalk Marl, Chertsey. York Museum. Left valve. (P. 250.)
2. I'. corlutu, Tate. Upper Chalk (White Limestone, \%one of Belrmuitrllu mu(rourtu), Tamlacht, co. Derry. Muscum of Practical Geology, No. 23628. ", left valve; l, dorsal view ; c, anterior view. (P. 2.53.)

Gemus-Mropholas, Doucillé.
3. M. sp. cf. semicostutu (Agassiz). Lower Greensand, Furze Hill, Faringdon. Sedgwick Musemm. Internal cast. ", right valve; l, dorsal view. (P. 253.)

Gemus-Goniomya, Alyassiz.
4, 5. (i. Archiaci (Pict. and Ren.) Lower Greensand (Crackers), Atherfield. Sedgwick Museum. Right valves. $4 l$, dorsal view of $4 a$. (P.254.)

6, 7. (i. Muilleanu (d'Orb.). Sedgwick Museum. 6, Base of Chalk Marl, Chard; a, part of left valve; l, dorsal view. 7, Upper Greensand, near Maiden Bradley; right valve. (P. 205.)

PLATE XLIII．

Figs．
1，e．I＇．Ordignitur（Rouillier）．Spilshy Sandstone，Domington．Sedgwick Museum，（＇ambridge． $1 /$ ，right valve； $1 l$ ，dorsal view．\simeq ，orna－ mentation $\times 10$ ；＂，near middle of valve；h ，near the ventral margin ；\cdot ，between＂and 1 ．（P．Q⿹丁口ti．）

Gemus－Liopistha，Miml．
3，4．L．（I＇silony＂n）！！i！μ utre（Sow．）．Upper Greensand，Blackdown．Sedgwick Muscum．3．，left valve；l，hinge of the same．t，umbo of right valve \times 6．（P．2．5．）

क．L．，sp．Red Limestone，Hunstanton．British Museum，No．8：3628． ＂，right valve；l，dorsal view ；r，ormamentation $\times 6$ ．（P．9．98．）

Gemus－C＇isimaria，Neido．
（6．（ S Salrmdionu（l＇ict．and C＇amp．）．Gault，Folkestone．Museum of Practical Geology，No．©3sㅇ．＂，left valve $\times 1 \frac{1}{2} ; b$ ，dorsal view $\times 1 \frac{1}{2}$ ．（P．259．）

PLA'TE XLIV.

Lıersistin (contimuri).
Figs.
1, 2. L. (I'silomy, gi!!mentra (Sow.). Lpper Greensand, Blackdown. Sedgwick Museum, Cambridge. 1 (, right valve; 1 , , dorsal view of the same. 2, left valve. (P. 257.)

3. C'. Sulradianu (Pict. and Camp.). Gault, Folkestone. Sedgwick Museum. (1, right valve; 1 , ornamentation $\times 5$. (P. 2.5!.)
t. ('. "udulutu (Sow.). Gault, Folkestone. Sedgwick Museum. Right valve. (P. 260.)
:) (i. C. pulchr" (Sow.). :), L'pper Chalk, Norwich. Norwich Museum. a, internal cast of right valve ; l, dorsal view. 6, Chalk Rock, Henley Park; Sedgwick Musemm, from Mr. L. Treacher's (ollection; right valve. (P. 260.)
7. ('. pmldrill! (Sow.). Lpper Greemsand, Devizes. British Museum, No. L21785. Internal cast, somewhat crushed. ", right valve; l, dorsal view. (P. 261.)
8. C. ?sp. (halk Marl, Ventnor. British Museum, No. :3xobi. (P. ©61.)

PLA'IE XLV.

Gemu--Ivomerames, Somerly.

Figs.

1, 2. I. neocomimsis, d'Orl). 1, Hythe Beds, Lympne. Museum of Practical Geology, No. 21133. Left valve. 2, Lower Greensand, Atherfield. Sedgwick Museum, Cambridge. Right valve. (P. 26‥)

3-7. I. Salomomi, d'Orb. Mrımmillıtı; bed, Copt Point, Folkestone. Sedgwick Museum. Internal casts of left valves. $t h$, dorsal view of $4 a$. (Р. 263.)

8-10. I. anglicus, Woods. (P. 264.)
8. Red Limestone, Hunstanton. Sedgwick Museum. a, part of right valve; b, dorsal view.
9. Gault, Folkestone. Sedgwick Museum. Left valve.
10. Gault, Folkestone. British Museum, No. L9665. Right valve.
11. I. rourrutrirns, Park. Gault, Folkestone. British Museum, No. L5002. Left valve. (P. 265.)

PLATE XLVI.

Inocerames (routinued).

Figs.
1-10. I. concentricus, Park. 1-7, Gault, Folkestone. 8-10, Upper Greensand, Blackdown. (P. 265.)

1. British Museum, No. L5002. Right valve and umbo of left ralse.
2. Sedgwick Museum, Cambridge. Right valve and umbo of left ralve.
3. Sedgwick Museum. a, left valve; b, dorsal view of the same.
4. Sedgwick Muscum. a, left ralve; b, anterior view of both valves.
5. Sedgwick Museum. a, left valve, b, dorsal view of both valves.
6. Sedgwick Museum. Right valve.
7. Sedgwick Museum. Left valve.
8. Museum of Practical Geology, No. 21183. a, right valve; b, dorsal view of the same.
9. Sedgwick Museum. a, right valve and umbo of left valve; b, dorsal view of both valves.
10. Bristol Museum. a, right valve and part of displaced left valve; b, anterior view of both valves.

PLATE XLVII.

Inoceramis (comtimuer.)

Figs.
1, 2. I. romenticus, Park. 1, Upper Greensand, Blackdown. Bristol Museum. Left valve. 2, Red Limestone, Hunstanton. Sedgwick Museum, Cambridge. Left valve. (P. 265.)
:3-14. I. concoutricus var. sulsulcatus, Wiltsh. Gault, Folkestone. Left valves. (P. 268.)

3, 4. Sedgwick Museum, Cambrilge.
5. Museum of Practical Geology, No. 21154 .
6. British Museum, No. L500:3.

7-9. Sedgwick Museum.
10. British Museum, No. L9664.

11-13. Sedgwick Museum.
14. Museum of Practical Geology, No. 21153.

15-20. I. sulcatus, Park. Gault, Folkestone. 15, British Museum, No. L11797; a, left valve; l, right valve; c, dorsal view. $16-20$, Sedgwick Museum. 16, 18-20, left valves; 17, anterior view. (P. 269.)

PLA'TE XLVIII.

Inoceramis (continued).
Figs.

1. I. tenuis, Mant. Red Limestone, near Louth. Sedgwick Museum, Cambridge. \quad, left valve; l, dorsal view. (P. 271.)

2, 3. I. Orippis Mant. Upper Greensand (zone of Perten "spmr), Warminster. (P. $27: 3$.
2. Museum of Practical Geology, No. 18898. a, right valve; b, dorsal view.
3. High variety. Sedgwick Museum. Right valve.

4, i. I. Crijusi var. reachensis, Eth. Lower Chalk (zone of Holaster sulylolosus), Blue Bell Hill, Burham. 4, British Museum, No. L10386. Left valve. 5, Mr. Dibley's Collection. Right valve. (P. 278.)

PLATE XLIX.

Inockrames (comtimued).
Fios.
 Bhue Bell Hill, Burham. British Museum, No. L10387. Right valve. (P. 978.)
-_4. I. Etheritgei, Woods. Lower Chalk. Sedgwick Museum, Cambridge. (1. 278.)
‥ Chalk Marl, Hunstanton. a, left valve; l, hiuge of the same.
:3.t. Totternhoe Stone (zone of Hohaster subylobosus), Burwell. 3, wne of the types; a, left valve; b, dorsall view of the same. 4, Right valve.
\therefore, 1. I. pitus, Sow. Lower Chalk. (I. 979.)
5. Zone of Holaster subglobosus, Burham. British Museum, Nu. $4+683$. Right valve.
6. Loeality unknown. British Muscum, No. L22:359. Left valve.

PLATE L.

Inoceramis (comtimuel).

Filis.
1-(i. I. Inliatus (Schloth.). Middle Chalk. (1'. 281.)

2, 3. Eastbourne. Selgwick Muscum. 2, Left valve. 3, Right valve.
4. Zone of Khynchonella C'urieri, Blane Nez, Pas de Calais. Sedgwick Museum. Hinge and anterior margin of right valve.
5. Plumpton. British Museum, No. 58til. The specimen figured by Mantell, Foss. S. Downs, pl. xxvii, fir. 3, p. $2 l$. . Risht valve.
(6. Middle Chalk, near Warminster. Dr. Blackmore's Collection. Right valve.

PLATE LI.

Inoceramus (continuer.)

Figs.
1-4. I. inconstans, Woods. Upper Chalk. (P. 285.)

1. Sussex (probably from the zone of Terebratulina lata of Malling). British Museum, No. L20955. The original of I. Lamarcki, Sowerby, in Dixon, ' Geol. Sussex,' pl. xxviii, Gig. 29. Right valve.
2. Zone of Holaster planus, Swaffham, Norfolk. Norwich Museum. a, left valve; b, anterior view of the same.
3. Zone of Actinucamax quadratus, East Harnham, Salisbury. Dr. Blackmore's Collection. a, right valse; b, left ralve ; c, posterior view of both ralves.
4. Same zone, etc. a, left valse ; b, dorsal view ; c, anterior view.
5. 6. inconstans var. striutus, Mant. Zone of Micruster cor-anguinum, Southeram. British Museum, No. 4768. The Type of I. striatus, Mant. a, left valve ; b, dorsal view of the same. (P. 292.)

PLATE LII.

Lnomerames (romtiancel).
Figs.

1. I. inconstans var. striatus, Mant. Upper Chalk, Norfolk (probably zone of Holuster plumus, Swaffham). Norwich Museum. ", right valve; l, posterior view. (P. 292.)

2,3. 1. incomstans var. sumumensis, Woods. Zone of Actinocumur quadiatus, East Harnham. Dr. Blackmore's Collection. 2a, right valve; $2 l$, dorsal view; 3", left valve; 3l, dorsal view. (P. 293.)

4-6. I. Lamarchi, Park. Zone of Ioluster plenus. (P. 307.)
4. Newmarket. Sedgwick Museum, Cambriage. a, left valve; l, right ralve with umbo of left valve; c, anterior view.
5. Stonehall pit, Dover. Collieries' Museum, Dover, No. 2134. a, left valve; b, posterior view.
6. Shakespeare's Cliff, Dover. Collieries' Museum, Dover, No. 2133. a, right ralve with umbo of left valve; b, posterior vier.

PLATE LIII.

Inocerames (continued).
Figs.
1, 2. I. Lamarchi var. Welsteri, Mant. Upper Chalk. (P. 318.)

1. Upper part of zone of Holaster planus, Borstal pit. Mr. Dibley's Collection. Right valve.
2. Zone of Micraster cor-testudinarium, Chelsham, Surrey. British Museum, No. L2176. a, right valve (the anterior part concealed by flint); b, posterior view.
3. I. Lamurli, Park. Southeram, Lewes (probably zone of Holaster plamus). British Museum, No. 4767 . The Type of I. undulatus, Mant. ", left valve; l, dorsal view. (P. 319.)

4-6. 1. Samarcli var. "picralis, Woods. (P. 319.)
4. Zoue of Khynchonella Curieri, Hitchin. Sedgwick Museum. a, right valve; b, anterior view.
5 Zone of Rhynchonella C'ucieri, Peter's pit, Burbam. Mr. Dibley's Collection. Left valve.
6. Zone of Holaster planus, Newmarket. Sedswick Museum. a, left valve; b, anterior view.
7. I. Lamardit var. ('urieri, Sow. Zone of Terebratulina lita, Royston. Sedgwick Museum. Right valve. (P. 320.)
8. I. corliformis, Sow. Zone of Micraster cor-angninum, Gravesend. British Museum, No. 4327̄. The Type. a, left valve; b, dorsal view of both valves. (P. 334.)

PLATE LIV.

Inoceramus (continued).
Fias.

1. I. Lamarcki, Park., var. Swafflam, Norfolk (probably zone of Holaster planus). Variety connecting I. Lamarchi with I. cordiformis. Norwich Museum, No. 3298. a, right valve; l, anterior view. (P. 335.)

2--4. I. cordiformis, Sow. Upper Chalk. (P. 3:34.)
2. Zone of Micraster cor-anyuinum, Gravesend. Sedgwick Museum. Right valve.
3. 4. Same zone, Micheldever. Dr. Blackmore's Collection. 3a, left valve; $3 b$, dorsal view of both ralves ; 4, right valve.

5-7. I. costellatus, Woods. Chalk Rock. (P. 336.)
5. Cuckhamsley. Sedgwick Museum. a, left valve; b, anterior view.

6, 7. Blount's Farm, Marlow. Museum of Practical Geology, Nos. 25510, 25511. $6 a$, right ralve; $6 b$, anterior view ; $6 c$, dorsal view; 7 , right valve.
8. I. tuberculatus, Woods. Upper Chalk (zone of Actinocamax quadratus), Brighton. Brighton Museum. Part of right valve. (P. 302.)

PLATIE LV.
 (ienn:-Ostren, Limnens.

Figs.
1-3. 1. Walkeri, Keep. Lower Greensand, Lpware. Sedgwick Museum, Cambridge. (P. 360.)

1. The Type. «, right valve; l, left valve ; c, anterior view.

2,3 . Interiors of left valves.
1—9. O. vesicularis, Lam. (P. 360.)
4. Probably zone of Holuster planus, Swaffham. Norfolk. Nurwich Museum, No. 3290. Young individual attached to Micruster. Right valve and portion of left valve.
5. Gault, Folkestone. Sedgwick Museum. a, right valve; b, anterior view showing left valve almost entirely attached to a flat portion of Inoceramur.
6. Zone of Belemnitella mucronatu, Norwich. Dr. Rowe's Collection. Attached obliquely to a Belemnitelle. a, right valve; b, anterior view.
7. Zone of Actinocamax quadrutur, East Harnham. Dr. Blackmore's Collection. ", right valve; b, anterior view showing the larger part of the left valve attached to a flat Inocercmus.
8, 9. Zone of Holaster subylubosus, Blue Bell Hill, Burham. British Museum, Nos. L 10408, L 10409. 8, 9a, left ralves; 9b, dursal view of 9a, showing the small surface of attachment.

10—14. O. vesiculosa (Sow.) Upper Greensand. Left valves. (P. 37.)
10. Zone of Pecten asper, Ballard Dorin. Sedywicl Museum. b, posterior view.
11. Zone of Pecten asper, Warminster. Muscum of Practical. Geology, No. 25942.
12. Zone of Schlenbachia rostrata, Isle of Wight. Same museum, No. 25936. l, posterior view.
13. Zone of Schlembachia rostrata, Potternc. Same museum, No. $\mathbf{2 5 9 3 2}$, b, posterior view.
14. Zone of Schlonbachia rustrata, Dinton. Same museum, No. 25938. l, posterior ; c, interior.

PLATE IVI.

Ostrea (continued).
Figs.

1. O. resiculosa (Sow.). Upper Greensand (zone of Schlembarhia rostratı), Dinton. Muscum of Practical Geology, No. 25937. ", left valve; 1 , posterior view. (P. 374.)
2-16. O. camaliculuta (Sow.). (P. 375.)
2. Gault, Folkestone. Museum of Practical Geology, No. 20819. a. left valve; b, right ralre.
3-5. Gault, Folkestone. British Museum, Nos. L 4927, L 23044. 3a, left valve; $3 b$, dorsal view. 4, interior of left valve. 5, interior of right valve.
fi. UPper Greensand (zone of Pecten asper), Warminster. Sedgwick Museum. a, left ; l, right valve.
3. Zone of Holaster subglobosus, Burnell. Sedgwick Museum. Left valve.
4. Melbourn Rock, Hitchin. Sedgwick Museum. a, left valve; ℓ, anterior view.
5. Dintacrinus band, Devizes Road, Salisbury. Dr. Blackmore's Collection. Left valve.
6. 11. Zone of Actinocamax quadratus, East Harnham. Dr. Blackmore's Collection. $10 a$, left valve; $10 b$, portion $\times 5 . \quad 11 a$, right valve and part of left valve; $11 b$, posterior view.
1. Same horizon and collection. West Harnham. a, left ralve; \boldsymbol{b}, posterior view.
2. Zone of Actinocamax quadratus, Marwell, Hants. Sedgwick Museum. Left valve.
3. 15. Zone of Belemnitella mucronata, Norwich. Dr. Rowe's Collection. 14a, $15 a$, lelt valves; $14 b, 15 b$, right ralves and parts of left valves.
1. Zone of Belemnifella mucronata, Alderbury. Well. Dr. Blackmore's Collection. Left valve.

17-19. (). ssmiplam, Sow. Upper ('halk. (P. 379.)
17. Zone of Belemnitella mucronata, Norwich. Norwich Museum, No. 2135. Left valve.
18. Same horizon, locality and museum. No. 2130 . a, right valse; b, left valve.
19. L'inturrinus Land, Thanet coast. Dr. Rome's Collection. a, right valre: b. left valve.

PLATE LVII.

Ostrea (rontimued).
Figs.
1-13. O. semiplana, Sow. Upper Chalk. (P. 379.)
1-4 Zone of Belemmitella mucronata, Norwich. Norwich Museum. 1a, 2a. 3a. $4 a$, right valses. $1 b, 2 b, 3 h, 4 b$, left valies.
5. Uintacrinus band, Thanet Coast. Dr. Rowe's Collection. a, left valve: b, interior of the same; \boldsymbol{c}, right valve of the same specimen.
6. Zone of Belemnitella mucronata. Hartford Bridge, Norwich. Dr. Rowe's Collection. a, right valve; b, left valve.
7. Same zone, Norwich. Norwich Museum. a, left ralve; b, interior of the same.
8.9. Uintacrinus band, Thanet const. Dr. Rowe's Collection. 8. 9a, right valves; $9 b$, left valre.
10-12. Zone of Belemnitella mucronata, Normich. Sedgwick Museum, Cambridge. 10 . $11 a, 12$, right valres ; $11 b$, left valre ; $12 b$, posterior riew of $12 a$.
13. Same zone and locality. Norwich Museum. No. 2130 . Right valve.

PLATE LVIII.

Ostrea (continued).

Ficis.
1-5. O. semiplum, Sow. Zone of Relemnitelle mueronutu, Norwich. (1'. 37!.)

1. Sedgwick Museum. a, right valve; l, anterior viem.
2. Norwich Museum, No. 2129. a, right valve: l, left valve; c, anterior view.
3. Dr. Rowe's Collection. Right valve.
4. Norwich Museum. One of the types of 0 . aleformis, Woodward (pl. vi, fig. 3). a, right valve; b, interior.
5. Norwich Museum, No. 2085. Right valve.

15-9. O. sarumensis, Woods. Zone of Actinocamar quadratus, East Harnham. Dr. Blackmore's Collection. 6, right valve; $\overline{7}(1$, ,, left valves;
76 , posterior view of 7,$1 ; 8$, right valve. (P. 387.)
10-13. O. incuru, Nilss. Right valves. (P. 388.)
10, 11. Totternhoe Stone (zone of Holaster subglobosus), Burwell. Sedgwick Museum.
12. Zone of Terebratulina lata, South Devon Coast. Dr. Rowe's Collection.
13. Zone of Actinocamax quadratus, East Harnham. Dr. Blachmore's Collection.

PLATE LIX.

Ostrea (contimurd).

Figs.
1-16. O. incmre, Nilsson. Upper C'halk. Right valves, except 13r. (P. 388.)

1. Zone of Micraster cor-anyuinum, Croydon. Sedgwick Museum.

2, 3. Uintacrinus band, Devizes Road, Salisbury. $2 b$, posterior view of $2 a$. Dr. Blackmore's Collection.
4, 5. Zone of Actinocamax quadratus, Whaddon. Dr. Blackmore's Collection.
6-11. Zone of Actinocamac quadratus, East Harnham. Dr. Blackmore's Cullection. $6 b$, posterior view of $6 a$.
12-16. Zone of Belemuitella mucronata, Norwich. 12, Museum of Practical Geology, No. 25983; the left valve is entirely attached to a slightly convex surface. 13, Dr. Rowe's Collection; 13b, interior of right valve $13 a ; 13 c$, area and hinge of left valve. 14 , Norwich Museum. Type of O. triangnlaris, Woodward, pl vi, fis. 7; 14b, posterior view showing portion of Inocoramus to which the left valve was eutirely attached. 15, Norwich Muscum ; exterior and interior of a right valve. 16, Sedgwick Museum, Cambridge.

PLATE LX.

Ostrea (continued).
Figs.
1-15. O. Boucheroni, Coq. Upper Chalk. (P. 391.)

1. Zone of Artimocamar quadratus, Wield. Mr. Brydone's Collection. Left valse. $1 b$, posterior riew.
2-4. Zone of Mariupites testudinarius, Brightom. 2, 3, Brighton Museum. 4. British Museum, No. I 11795. Left valves. $3 b$, posterior view of $3 a$.
2. Uintucrinus band, Thavet coast. Dr. Rowe's Collection. a, left valve; l, , right valve; c, anterior view.
3. Zone of Marsupites testudinarius, Brighton. Brighton Museum, a, left valve; l, posterior view ; c, right valve.
4. Zone of Micruster cor-anguinum, Loam Pit Hill, Lewisham. Sedgwick Museum. Left valve.
5. 9. Z ne of Micraster cor-anguinum, Gravesend. 8. Museum of Practical Geolngy, No. 25977. 9, Sedgwicl Museum. Left valves; 8b, posterior view of Sa.
10-13. Uintacrinu: band, Thanet coast. Dr. Rowe's Collection. 10a, right valve and margin of left valve; 106 , posterior view of $10 a$. 11 , left valve with large surface of attachment ; b, posterior view. 12 , left valve. $13 a$, right valve; $13 b$, anterior view of both valves showing large surface of attach. ment.
1. Zone of Microster cor-anyuinum, Loam Pit Hill, Lewisham. Sedgwick Musemm. Left valve.
2. Uintucrinus band, Derizes Road, Salisbury. Dr. Blackmore's Collection. Left ralse. l, posterior view.

16-19. O. Innah, Nilss. Zone of O. lumata, Trimingham. Mr. R. M. Brydone's Collection. Left valves. (P. 393.)

CRETACEOUS LAMELLIBRANCHIA

PLATE LXI.

Ostrea (cmatinurd).

Figs.

1-(i. O. lunata, Nilss. Zone of O. lunatu, Trimingham. 1, 5, 6, Mr. R. M. Brydone's Collection. 2-4, Sedgwick Museum. 1u, 2-5!n, 6n, left valves. $1 l$, right valve of $1 a ; 1 r$, anterior view of $1 \mu .5 l$, right valve of 5\%. 6ib, anterior view of 6u. (P. 393.)

Gemus-Exogyra, Siny.
7-11. E. tuberculiffra, Koch and Dunk. Lower Greensand. (P. 404.)
7. Crackers, Atherfield. British Museum, No. L 6461. a, right valve; b, left value.
8. Perna-bed, East Shalford. Selgwick Museum. Left valve.

9-11. Hythe Beds, Lympue. Museum of Practical Geology, Nos. 25957, 25958. 25968. Left valves. 1la, interior of $11 b$.
12. E. sigmoidet, Reuss. Zone of Micoastar cor-antuinum, Boxford. Mr. Ll. Treacher's Collection. Right valve. (P. 419.)

1:3. L'. sumuta (Sow.). Prom-l)ed, Atherfield. British Musemm, No. L 63006. Left valve. Variety of the levilyate form with ribs. (P. 395.)

Suphlementary figures.

14-17. Crenella mbiculnis (Sow.). Upper Greensand (zone of Schlembachit rustrata), Blackdown. Sedgwick Museum. 14, 16, right valves. $15,17,1$, left valves. 176 , dorsal view of $17 \ldots . \times 2$. (P. 423.)
18. I'aten (Chlamys) britamicus, Woods. Zone of Micraster cor-anmuinum, Bromley. Sedgwick Museum. ", right valve; l, portion above the middle of the valve $\times 5$. (P. 424.)
19. Lima (Limea ?) sp. Speeton Clay, Speeton. Sedgwick Museum. a, right valve ; b, portion $\times 6$. (P. 425.)

20, 21. Crassatellites? erfuisultutus (Woods). Chalk Rock, Cuckhamsley. Sedgwick Museum. 20, left valve; 21, internal cast of right valve. (P. 426.)

PLATE LXIJ.

Supplementur! Pi!ures.

Figs.

1. Crassatelliter? equisulcatus (Woods). ('halk Rock, C'uckhamsley. Sedgwick Musemm. Internal cast. ", right valve; l, dorsal view. (P. +26.)
 2, left valve; l, dorsal view; r, hinge. :3, Musem of Practical Geology, No. 16747. Right valle. (P. $42 \overline{7}$.)
2. Cuprinu ? recticu" (Forl.). Lower Greensand (C'rackers), Atherfield. Sedgwick Museum. ", left valve; l, dorsal view; c, portion $\times 4$. (P. 427.)

5, 6. Unicardium? compressum, Woods. Lower Greensand (C'rackers), Atherfield. Sedgwick Museum. 5ı, 6, left valves. : 30 , dorsal view of 5\%. (P. 428.)
7-9. Tricardinm ? Maillernum (dOrb). Base of Chalk (\%one of Schlenbuchia raians). 7, Beaminster; Oxford Museum; right valve. 8, Cerne Abbas; Oxford Musemm; left valve, internal cast. 9, Maiden Newton. Sedgwick Museum. a, left valve; l, dorsal view. (P. 128.)
10. T'ellinu? phasrolin" (Phill.). Speeton Clay, Speeton. York Museum. P'erhaps the type. Internal cast. ", left valve; l, dorsal view. (P. 429.)

11, 12. T'ellina! sulphasonlinu (d’Orb.). Gault, Folkestone. 11, British Musemm, No. L. H9:2; a, right valve; l, dorsal view. 12, Sedgwick Museum; left valve. $\times 1 \frac{1}{2} . \quad$ (P. +30 .)
13. Cuprimeria (Clychrisma) submersa (Sow.). Upper Greensand (zone of Schlomburlhia rostrata), Blacklown. Excter Musemm. ", left valve; 1 , dorsal view ; r, hinge \times : (I . $4: 31$.)
11. T'apes (Ictuotia) sp. Upper Greensand (\%one of Schlauluctiar rostrutu). Blackdown. British Museum, No. L1729.5. a, right valve; ${ }^{1}$, posterior part $\times 4 . \quad$ (P. +131.)
1:-17. Laptowelen? iretmumluris (Woods). (halk Rock, Cuckhamsley. Sedgwick Musemm. Internal casts. 15, right valve. 16, dorsal view of both valves. 17 , left valve., (l. 4:39.)
1s, 19. Thrucia? grucilis (Suw.). Lpper Greensand (zone of Schranbachia rostratı), Blackdown. Sedgwick Museum. 18a, right valve; 18u, dorsal view. 19, left valve. (P. 439.)

CRETACEOUS LAMELLIBRANCHIA.

[^0]: \div

[^1]: In all species of Lima (unless otherwise stated) this is measured obliquely to the hingre-line so as to give the greatust height.

[^2]: ${ }^{1}$ Dujardin, ‘Mém. Soc. géol. de Frunce,' vol. ii (1837), p. 227. pl. xvi, fig. 3. D'Orhigny, ‘Terr. (rét.,' wol. iii (1847), p. 569, ple cecexvii, figs. 1-4.

[^3]: ${ }^{1}$ Luc. cit., p. 140, pl. cixiv, firs. 1, 2.

[^4]: 1 'Trans. Geol. Suc.,' ser. $\mathbf{2}$, wol. iii (18:35), p. $2(166$.

 3 - Hist. Tarr. Ie Craie (1888), p. 151, ph ii, fis 1.

[^5]: 1 See dUrbigny, p. 528, pl. cecexiv, firs. 9-12; 1'ictet and Cimpiche, p. 133, pl. clxii, fig. 1.

[^6]: 1' Kreidelild. d. Santia Croce in den Venetianer Alpen' (Palæont. Abhandl., vol. vi, 1892), p. 78. fig. 23.
 ${ }^{2}$ • Proc. Somerset Archrol. and Nat. Hist. Soc.,' vol. xlix, 1903.

[^7]: ${ }^{1}$ Measured perpendicular to the hinge-line.
 2 'Moll. Foss. Grès verts de Genève' (1852), p. 484, pl. xl, fir. 5; F'. J. Pictet and G. Campiche, - Fuss. 'Terr. Crét. Ste. Crois ' (Matér. 1’al. Suisse, ser. 5, 1869), p. 156, pl. clavi, figs. 4, 5.

[^8]: - Abhandl. d. k. preussisch. geol. Landesanst., N. F..' Heft 37 (1902), p. 5\%, pl. vii. fig. 9.

[^9]: 1 'Bih. K. Svenska Vet. Akad. Handl.' vol. axiv, No. 7 (18:99), f. 10, fl. i. figs. 1. 2 : Ravu. ' Mollusk. Danmarks Kridtall I. Lamellibr.' (1902), p. 100, pl. ii, fig. 15.

[^10]: ${ }^{1}$ Revis. Lamellibr. i Nilsson's 'Petrific. Sueciana' (1897), p. 29.

[^11]: 1 'Kimmérid. de Montbéliard' (1859), p. 351. pl. xxvii, fis. 9; du I九orinl and Cotteau, ' Portland. de l'Yonne' (1868), p. 20', pl. xiv, figs. 1, 2.

[^12]:

[^13]: !'L’Hist. du Terr. de Craie' (1888), p. 148, pl. i, figs. 91-94.
 2 'Palmont. Indica, Cret. Fauna S. India' (1871), vol. iii, p. 419, pl. xxx, fig. 8.
 3 ' Die Verstein. der böhm. Kreideformat.' (18.46). pt. 2. p. 33, pl. xxxviii, figs. 2. 3; Geinitz, " Das Flbthalgeb, in Sachsen" (' Palantographica.' vol. xx, pt. 1. 1872), p. 204, pl. xlii, figs. 14, 15: see also Brames (1876), Fritsch (1877, 1883), Michael (1893), Leonhard (1897).

[^14]: ${ }^{1}$ Measured obliquely to the hinge-line.
 2 The species recorded from the Ganlt of Folkestone as Avicula Ranliniana, al'Orbigny (see JukesBrowne, 'Cretaceous Rocks of Britain,' vol. i, p. 465), is probably Pteria pectinata.

[^15]: ${ }^{1}$ ' Mollusk. i. Danmarks Kriltaflej,' i. (1902), p. 79, pl. i, figs. 1, 2.
 2 'Prodr. de Pal.,' vol. ii (1850), p. $\mathbf{~} 49$.
 3 ' Syuopsis Org. Remains Cret., C'.S.' (1834), p. 63, pl. xvii, fig. 5.

[^16]:

[^17]: 1 'Mollusk. d. Untersen, v. Braunschweis u. Ilsede' (18:98), p. 39, pl. v, figr. 10.

 :3 Neues Jahrl. für Min.,' etc. (18.42), p. 559.

[^18]: 1 'Terr. Crćt. S'te. Croix ' (1869), p. 88, pl. clvi, tigs. 4, 5.
 \therefore 'Fuss. Neoc. Upware and Brichhill' (1883), p. 109, pl. v. tis. :

[^19]: 1'Ann. Sciences géol., ' vol. vi (1875), p. 118, pl. v, fig. 10.
 2Geinitz, 'Das Elbthalgeb.' (Palæontographica, vol. xx, pt. 2, 1873), p. 54, pl. xiv, figs. 2, 3.
 : Jukes-Browne, 'Cret. Rocks of Britain,' rol. i (1900), p. 470.

[^20]: p. 130 ; Morris, 'Cat. Brit. Foss.,' p. 180.

[^21]: ' For figures and references see Holzapfel, 'Die Mollusk. Aachen. Kreide' (Palæontographica, vol. xxxr, 1889), p. 194, pl. xix, figs. 11-15. A. similis was referred to the genus Gouldia by Stoliczka: Holzapfel discusses this subject, and I am in agreement with his conclusions.
 ? ' Pal. Franç. Terr. Crćt.,' vol. iii (1844), p. 63, pl. celxii, figs. 4-6; Pictet and Campiche, 'Terr. Crét. Ste. Croix' (1866), p. 309.

[^22]: ${ }^{1}$ Price, 'The Gault ' (1879), p. 58; Jukes-Browne, 'Cret. Rocks of Britain,' vol. i (1900), p. 465.

[^23]: ${ }^{1}$ De Loriol and Pellat, 'Portlandien de Boulogne-sur-mer' (1866), p. 68, pl. vi, fig. 9. E. G. Skeat and V. Mausen, 'Jur. Neoc. and Gault Boulders in Demmarl' (1898), p. 123, pl. iii, fig. 2.

 2 ' De Astartarum Genere' (1842), 1. 20, fig. 4. Pictet and Renevier, 'Foss. Terr. Aptien' (1856), p. 85, pl. x, fig. 1.
 ${ }^{3}$ For references sec Pictet and Campiche, 'Terr. Crét. Ste. Croix' (1866), p. 298.

[^24]: 1 'Pal. Franç. Terr. Crét.,' vol. iii (1844), p. 95, pl. celxxxiii bis., figs. 5-7; Gucranger, 'Album Palćont. de la Sarthe' (1867), p. 13, pl. xvi, figs. 19, 20.

[^25]: 1 'Pal. Franç. Terr. Crét.,' vol. iii (1844), p. 88, pl. celxwiii, tiss. 6-10; Pictet aml Campiche. - Foss. Terr. Crét. Ste. Croix ' ('Matér. Pal. Suisse,' ser. 4, 186it), p. 334. pl. cxxvi, tiscs. 4, 5.
 : D'Orbigny, op. cit., p. 85, pl. celsvii, tigs. 1-6.
 ${ }^{3}$ 'Quart. Journ. Geol. Soc.,' vol. i (1845), p. 242.

[^26]: ${ }^{1}$ De Loriol and Pellat, 'Portlandien de Bualogne-sur-Mer' (1866), p. 54, pl. v, fig. 9.

[^27]: ${ }^{1}$ Pictet and Roux, ' Mull. Fuss. Gre's verts de Gencive' (1852), p. 444, pl. xxxiv, fig. 1. Pictet and Renevier, ' Foss. Terr. Aptien ' ('Matér. Pal. Suisse,'ser. 1, 1856-58), pp. 75, 177. Pietet and Campiche, 'Terr. Crét. Ste. Cruix ' ('Matér. Pall. Suisse,' ser. 4, 1865), p. 221 .

 * P Pall. Friuç. Terr. Crít.,' vol. iii (1844), p. 102, pl. celasiv.

[^28]: ${ }^{1}$ 'Gault de Cosne ' (1882), p. 68, pl. ix, fit. 1.
 ${ }^{2}$ Morris records Cyprina globosa, Sharpe, from the (iremsam of Blawkinwn. lut I haw mut sen any specimen from that locality. Morris, (Gat. Prit. Fow.. © Journ. Geol. Soc.,' vol. vi (1850), p. 182, pl. ww. fis. 1.
 that they had not seen specimens of C^{\prime}. alm!"lifle.

[^29]: ${ }^{1}$ • Pal. Frame. Terr. Cr'́t.,' vol. iii (1844), p. 103, pl. celxsw, figs. 1, 2; • Pronkr. de Pal.,' vol. ii

[^30]:
 p. $2 \cdot 4$, pl. exv, figs. $1,2$.

[^31]:
 pl. xlviii, figs. $11-13$; pl. xlix, tigs. 19,20 .

[^32]: 1 ' Moll. Foss. de lia Craie de Lembers' (1869), p. 109, pl. xii, fig. 3.
 ? 'Die Verstein. d. nord-deutsch. Kreidergel." (1841), p. 74, pl. is, tig. 23.

[^33]: 1 Arinus. Sowerly: Criphtondm. Turton.

[^34]: 1. 12, pl. xv, fig. 15 . The hinge figured by Gáranger roes not agree with Lucina. Stoliczha suggests that this species lelongs to ('ymimerit, see 'Pabant. Indica, Cret. Famar S. India' (1871), pr. 16.4, 25:3.

[^35]:

[^36]: 1 Corbis: Morisoni, Woods, from the Chalk Rock of Cuckhamsley, is at present known by two imperfect valves only. The hinge camnot be seen, and the qeneric position of the specits is still uncertain. See Woods, 'Quart. Journ. Geol. Soc., vol. liii, p. 392, pl. xxviii, figs. 13, 14.

 2 In Murchison, de Vernenil and de Keyserling, 'Gíol. Russie de l'Europe,' vol. ii (1845), p. 460, pl. xxxix, figs. 9, 10. D'Orhiguy, 'Prodr. de Pal.,' vol. i (1849), p. 367. Eichwahk, 'Lethata Rossica,' vol. ii (1868), p. 647. Two esimples of U. heteroclitem from the Lower Volgian, near Moscow, are in Mr. Lamplugh's collection.

[^37]: 1 'Synopsis Brit. Mus.,' ed. 44 (1842), p. 91.
 ${ }^{2}$ Although dorbigny placed Thetiromia in the Veneridx, he recognised that in some respects it clearly resembles Cardium. See 'Pal. Franç. Terr. Crét.,' vol. iii (184i), p. 451.
 ${ }^{3}$ In the 'Aditions and Corrections' th his Monograph Stolicaka states that in Thetironia ignobilis there are two cardinals and a minute posterior lateral in the right ralve, and thee cardinals in the

[^38]: ${ }^{1}$ Part of this rib, is seen in a figure given by Pictet amd Campiche, 'Terr. Crit. Ste. ('roix ' (" Mittér. Pal. Suisse," ser. 4. 186ij), pl. cxxi, fig. Tu.

[^39]: 1 ' Pal. Franç. 'Terr. Crét.,' vol. iii (1845), p. 411, pl. ccelxxviii, figs. 7-10.
 2 Pictet and Campiche, 'Terr. Crét. Ste. Croix' (1865), p. 141, pl. cix, figs. 1-3.
 : Op. cit., p. 410, pl. ceclxxviii, figs. 1-6, and 'Prodr. de Pal.,' vol. iii (1850), p. 75. Pictet and Renevier, 'Foss. 'Terr. Aptien' (Matér. Pal. Suisse, ser. 1, 1856), p. 69, pl. vii, fis. 7.

 1 'Zeitschr. der deutsch. geol. Gesellsch.,' vol. xlvii (1895), p. 258, pl. vi, figs. 3, 4.

[^40]: 1 Pictet and Remevier, 'Fuss. Terr. Aptien’ (•Matér. Pal. Suisse,' ser. 1, 1855-56), p. 71, pl. vii, fig 9. Pictet am Campich". 'Torr. Crét. Ste. Croix' ('Mater. Pal. Suisse, ser. 4, 1865), p. 181, pl. cxi, fig. 12 .

 I have not seen the specimen recorled ley kerping from Upare.

[^41]: 1 Som Stolic\%lan's fig. 10%.

[^42]: 1 Some small specimens found in the Ferruginous Sands of shanklin may perhaps be referred to C. Coltaldinum, but they are too inperfectly preserved for exact determination.
 $2 \cdot$ Pal. Frimȩ̧. 'T'err. Crét.,' vol. iii (1844), p. 37, pl. cexlix, firs. 5-9.

[^43]: ${ }^{1}$ C. ventricosum is recorded from the Upper Greensand (ande of Ireten asper) of Lulworth ly
 Euglish example of that species.

[^44]: 1•Pal. Franç. Terr. Crét.,' wol. iii (1s4t), p. 34, pl. cexlviii ; and • Prodr. de Pal.,' vol. ii (1850), p. 162.

[^45]: 1 ' Pal. Framẹ. Terr. Crét.,' vol. iii (1846), p. 460 , pl. ecelnxxviii. figrs. $14-17$.
 ? 'Proilr. de Pal.,' vol. ii (1850), p. 136.

[^46]: ${ }^{1}$ • Pal. Franc. 'Terr, Crít.; vol. iii (1845), p. 371, pl. ceclxix, figs. 1, 9 ; Pictet and Campiche, - Foss. Tem. Crít. Ste. Croix ((Matér. Pal. Suisse, ser. 4, 1865), p. 99, pl. evii, fig. 1.
 a Moll. Fuss. Gris verts de Genève' (185:), p. 410, pl. xxix, fig. 4.
 *An imperfect specimen from the Lower Greensam of Atherfield is probably an example of Plectomyut mucullensis (d`Orbigny), op. cit., p. 376, pl. ceclxxi, figs. 3, 4 ; Pictet and Campiche, op. cit., P. 101. pl. crii, figs. ! 3 , 3.

[^47]: 1 (Die Bivalv. 1. Gosaugel.,' pt. 1 (1864), p. 10 [1]4], pl. i, fir. 6.

[^48]:
 \therefore－Quadersandst．oler Kreidegel．in Deutschland（1850），p．150．pl．x，tiss．！ 11.
 figs． $18,19$.

[^49]: 1 'Revis. Lamellily. i Nilsson's Petrific. Suecama Format. Cret.' (1897), p. 62, pl. iii, fig. 28;

 \& Petref. Germ.,' vol. ii (1840), p. 251, pl. cli, tig. 17. Compare also Wollemam, • Semms r. Biewende' ('Jahrl, d. k. preuss. geol. Landesanst.,' für 1900), p. 23, fiy. 5: Mäller, 'Mallusk. d. Untersen. v. Braunschweig u. Ilsede' (1898), p. 77. pl. x, figs. 10, 11; Wollemam, 'Fama der Läneburg. Kreile' (1902), p. 80.

 3 • Palmont. Indica, Cret. Fanna S. India, vol. iii (1870), p. 41.

[^50]: 1 See foot note on p. 96.
 2 Compare also forms described by Sehmidt as allied lo I. momomirmis, 'Mém. Acat. Imp. Sici.

[^51]:
 ? ' Jahrb. d. k. preuss. geol. Landesanst. fïr' 1888^{\prime} (1888), p. 416. ph. xviii. fiy. 3.

[^52]: ${ }^{1}$ Erratum on p. £84 (fig. 39) : for Inoceramus labiatus rar. lutus, Sow., read Inoceramus inconstros, sp. nov. A specimen figured by Audert ('Inoceramen d. Kreibitz-Zittauer Sandsteingeb.,' 1911, P. 45, pl. i, fig. 5) as I. Cucieri rar. phenus appears to he intermediate bet ween I. labiatus and I. labintus viar. latus.

 - Lue. cit., pl. ii, fig. 2.
 ${ }^{3}$ Luc. cit., pl. i, fig. 2, pl. vii, fig. 8 (I. Cuvieri rar. planus).

[^53]: 1 'Zeitschr. d. deutsch. geol. Gresellsch..' vol. lvii (1905), p. lī, pl. x, fig. 3, text-fig. .

[^54]: Fin. 57.

[^55]: ${ }^{1}$ In some cases the smaller convexity may be due to pressure which gradually changed the shape of the shell. When no fractures are seen, flattening appears to be indicated in some cases by the growth-lines cutting the folds obliquely.

[^56]: qualotus and Belomitella muromah, hut I have mot sufficient evidence to contim these records.

[^57]: ' Compare also I. undulatus, Rogala, 'Bull. Internat. Acad. Sci. Cracovie' (1911), p. 171, pl. iv, fig. 7, and I. Frechi, Andert, 'Inoceramen d. Kreibitz-Zittauer Sandsteingeb.' (1911), p. 51, pl. i, fig. 8.
 ${ }^{2}$ Recorded ly Ruwe from the zones of Terebralulina lata aml Micraster cor-anguinum of Dover.

[^58]: 1 •Pabontorraphica,' vol. xxiv (1875). p. 27, pl. xxxii ; Barois, Anu. Soc. scol. Nord.,' vol. v (1878), p. 474; Wollemann, 'Timeburg. Kreide’ (1902), p. 70; Wegner, 'Zeitschr. il. deutsch. geol. Gesellsch..' vol. Ivii (190\%), p. 169; I. Gosieleti, Décoeq. 'Assoc. Franç. Avame. S'i..' 1874 (1875), p. 371.

[^59]: ${ }^{1}$ Barrois, 'Ann. Soc. géol. du Nord,' vol. vi (1879), p. 455, pl. 5, figs. 1, 2.

[^60]: ${ }^{1}$ See, for example, the remarks of Hill and Vaughan, "Lower Cretaceous Gryphæas of the Texas Kegion" ('Bull. U.S. Geol. Survey,' No. 15l, 1898), p. 24; and Peron, "Descript. Brach., ete. Terr. Crét. Tunisie " (1890-91), pp. 105-109.
 ${ }^{2}$ See R. T. Jackson, "Phylogeny of the Pelecypoda. The Aviculidx and their Allies" ('Mem. Boston Soc. Nat. Hist.,' vol. iv. 1890), p. 317 ;' H. Douville, ' Bull. Soc. géol. France,' ser. 4. vol. s (1910), pp. 635, 642.
 ${ }^{3}$ Op cit., p. 107.

[^61]: 1 See, for example, a specimen from the Lower Greeusand of Faringdon (firs. 106,107), in Which the left ralve was attached to a long narrow object, and the posterior wing is not developed.

[^62]: ${ }^{1} \mathrm{H}$. Douville places this in the "genus" Lopha (=Alectryonia), and refers the elongate forms (frons, carinata, etc.) to the "genus" Arctostrea. See 'Bull. Soc. géol. de France,' ser. 4, vol. x (1910), pp. 636, 637.

[^63]: : 'Pal. Frang. Terr. Crét.,' vol. iii (1847), p. 746, pl. cecelxxsviii, figs. 1-3.
 2 'Palæontographica,' rol. xx, pt. 2, pl. viii, fig. 6.
 ${ }^{3}$ Anomia subraliata, Reuss, is probably a small example of O. cesicularis similar to Avicula filata of Etheridge. Reuss, 'Die Versteiu. der böhm. Kreideformat.,' pt. : (1846), p. 45, pl. xxxi,

[^64]: ${ }^{1}$ This conclusion is in agreement with Peron's views on the "genera" of the Ostreida; see ' Descript. Brach., etc., Terr. Crét. Tunisie' (1890-91), pp. 107-109.

 2 A similar but rather larger form occurs in the Melbourn Rock and plenus-marls.
 ${ }^{3}$ Examples of tins are figured in vol. i, pl. v, figs. 4, 5
 4 Ostrea virgata, Sowerby, possesses mumerous fine radial ribs. The type is the only specimen known ; it was found in the Lower Chalk (probably zone of Holaster subglobosus) of Sussex. The affinities of this form cannot be determined. Dixon, 'Geol. Sussex' (1850), p. 357, pl. xxvii, fig. 1.

[^65]: - Zunes of the Chalk in Hants ' (1911). [: :3.

[^66]: $-\quad-$

 - semplana, A. dObbigny.

 Prodr. de Pal., vol. ii, p. 256.

[^67]: ${ }^{1}$ Hemig (1897), pl. i, fiss. 14, ․ 4.
 2 See also Hemnig (1897), pl. i, figs. 7, 11, 12.

[^68]: ${ }^{1}$ 'Lüneberger Kreide' (1902), p. 49, pl. vii, figs. 6, 7. Rogala, 'Bull. Internat. Acad. Sci. Cracovie' (1909), 2, p. 691, pl. xxviii, fig. 16.
 ${ }^{2}$ 'Geol. Norfolk' (1833), p. 52, pl. vi, fig. 8 (from Marham).
 3 ' Palæontographica,' vol. sxxviii (1891), p. 93, pl. iv, figs. 9, 10.
 4 ' Mon. Ostrea, Terr. Crćt.' (1869), p. 66, pl. xxxvii, figs. 96.27.

[^69]: ${ }^{1}$ 'Geol. Pal. reg. sud. Province Constantine' (1862), p. 232, pl. xxii, figs. 9--10; and 'Mon. Ostrea, 'Terr. Crét.' (1869), p. 89, pl. axi, figs. 3-6, pl. sxiv, figs. 7-11.

 2 'Pal. Franç. Terr. Crét.,' vol. iii (1847), p. 749, pl. cccelxxsviii, figs. 6-8. Coquand, op. cit. (1869) , p. 53, pl. iv, figs. $9-11$, pl. xxiii, figs. 11-14. Alessandri, 'Pal. Italica,' rol. iv (1899), p. 198.

 3 ' Hist. Terr. Craie, S.E. Bassin Anglo-Parisien ' (1888), p. 173.
 ' 'Compte Rendu Assoc. Franc. Av. Sci.,' 1907, pt. 2 (1918), b. 338.

[^70]: ${ }^{1}$ See figs. 194, 195, 199, and the figures of Sowerby (1822). Bronguiart (1822), Pictet and Roux (1853), Leymerie (1846), pl. vi, fig. 1.
 : See figs 202, 203, 206, 212, 214, and Leymerie (1842), pl. xii, figs. 3, 7; (1846), pl. vii, figs. 3, 4.

[^71]: 1 'Nova Acta Acad. Cæs. Leop.-Carol. Nat. Cur.,' vol. xxii (1850), 2, p. 460, pl. 1, fig. 2. Sharpe. - Trans. Geol. Soc.,' ser. 2, vol. vi (1856), p. 197, pl. xxiii, fig. 3. Kitchin, 'Ann. S. Afric:m Mus..' vol. vii (1908), p. 77.

[^72]: ${ }^{1}$ Sue d'Orbiguy, pla cocelsxviii. figs. 1-4.

[^73]: 1 'Compte Rend. Assoc. frauç. Avanc. Sci.,' xaxvi (1908), pt. 2, p. 312.
 ${ }^{2}$ Chama haliotoidea, Nilsson, Petrific. Suecaua (1897), p. 28, pl. viii, fig. 3; Hisinger, 'Lethaea Suecica' (1837), p. 62, pl. six, fig. 3. Exogyra haliotoidea, Reuss, 'Die Verstein. d. bühm. Kreideformat.,' $\mathrm{p}^{\mathrm{t} .} 2$ (1846), p. 44, pl. xxvii, figs. 5, 9, 10, pl. xxxi, figs. 9-10; Müller, 'Petrefact. Aachen. Kreidef., pt. 1 (1847), p. 42 ; Schrüder, 'Zeitschr. d. deutsch. geol. Gesellsch.,' vol. xxxip (1882), p. 260, pl. xv. fis. 5; Griepenkerl, 'Palæont. Abhandl.,' vol. iv (1889), p. 36; Hemnig, 'Revis. Lamellibr. i Nilsson's ' Petrific. Suecana' (1897), p. 19, pl. i, fig. 20, pl. ii, figs. 3, 4; Rutot, 'Bull. Soc. Belge Géol. Pal. et Hedrol.' vol. x (1897), p. 27, fir. 11.

[^74]: 1'Pal. Franç. Terr. Crét.,' vol. iii (1847), p. 711, pl. cecelxii, figs. 1-4. Pictet and Campiche, 'Terr. Crit. Ste. Crois' (1871), 1p. 304, 308, pl. exciii, firs. 3.
 : 'Zeitschr. d. deutsch. geol. Gesellsch.,' vol. lxii (1911), p. 560, fig. 1.

[^75]: 1'Mon. Ostrea, Terr. Crét.' (1869), p. 118, pl. xaxix, figs. 1-4. Rhynchostreon rultur, Bayl.. ‘ Explical. Carte géol. France,' vol. iv (1878), Atlas, pl. cxli.
 ${ }^{2}$ Nilsson, 'Petrific. Suecana ' (1827), p. 28, pl. viii, fir. 1. Griepenkerl, 'Palaont. Abhaudl.,' wh iv (1889), p. 35, pls. r, vi, rii, figs. 6, 7. Hemng, 'Revis. Lamellihr. i Nilsson's Petrific. Suecana' (1897), p. 21. Chama laciniata, Nilssou, op. cit., p. 28 , pl. viii, fis. 2 .

[^76]: ${ }^{1}$ White and Treacher, 'Quart. Journ. Geol. Soc.,' vol. lxii (1906), p. 518.

[^77]: ${ }^{1}$ Another species of Durania is represented in the Cambridge Greensand by a form with broad, slightly concave bamls with fine ribs, and a narrow, stronery concure interbad with coarse ribs. The bands and interband resemble those of some species of Sameajesia ('Loncas, 1909, pl xvii, tigs. 1, 3, 6).

[^78]: 'Ser especially de Loriol and Cotteau, 'Mon. Palíunt. Géol. Portlandien de YYonne ' (1868), p. 135, pl. ix, figs. 10, 11.

[^79]:

