
CLARKSON UNIVERSITY

Automated Theorem Proving Using SAT
A Ph.D. dissertation

by

Ralph Eric McGregor

Department of Computer Science

Submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

(Computer Science)

2011

Accepted by the Graduate School

Date

Dean

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3471671

Copyright 2011 by ProQuest LLC.

UMI Number: 3471671

The undersigned have examined the proposal entitled

Automated Theorem Proving Using SAT

presented by

Ralph Eric McGregor

a candidate for the degree of

Doctor of Philosophy (Computer Science),

and here by certify that it is worthy of acceptance.

Examining Committee:

Date

Date

Date

Date

Date

Christopher Lynch (Advisor)

Daqing Hou

James Lynch

Alexis Maciel

Christino Tamon

ii

Abstract

The first refutationally complete inference systems for first-order logic, called instance-

based systems, were based on Herbrand’s theorem which implies that first-order logic sat-

isfiability can be reduced to propositional logic satisfiability (SAT). Out of this line of

research came the landmark SAT solving DPLL algorithm. Soon after DPLL made its de-

but, Robinson introduced the simple combinatorial resolution rule which detracted interest

in instance-based systems. Recently, with the increase in computational power of the per-

sonal computer, there has been renewed interest in systems for first-order logic theorem

proving that utilize SAT solvers. Here, we present three novel solutions for the first-order

logic validity problem that utilize SAT.

As our first solution, we reduce first-order logic validity to SAT, by encoding a proof

of first-order logic unsatisfiability in propositional logic and use a SAT solver to determine

if the encoding is satisfiable. Specifically we encode a closed connection tableaux proof

of unsatisfiability. A satisfiable propositional encoding implies validity of the first-order

problem. We provide an encoding using SAT, provide soundness and completeness proofs,

and discuss our implementation, called CHEWTPTP-SAT, along with results. We also give

an encoding in SMT, provide soundness and completeness proofs, discuss our implemen-

tation, CHEWTPTP-SMT, and discuss when then encoding in SMT may be better than an

encoding in SAT.

The second solution is an inference system, called SIG-Res, which combines

SInst-Gen (which utilizes SAT) with resolution into a single sound and refutationally com-

iii

plete system. We allow a set of clauses, S, to be distributed among two sets P andR in any

combination so long as S = P ∪ R. SInst-Gen is run on P with conclusions added to P ,

resolution is run on R with conclusions added to R, and resolution is run on P × R with

conclusions added to P . Factoring is also used on all conclusions to resolution inferences.

Since any distribution is allowed, this system permits a spectrum of choices. At the ends

of the spectrum, for instance if P = S, the system is simply a SInst-Gen solver and if

R = S, the solver is a resolution solver. We give the inference rules for SIG-Res, pro-

vide soundness and completeness proofs, and discuss an implementation, called Spectrum,

along with experimental results. We also discuss a newer implementation, called EVC3,

which combines the SMT solver named CVC3 with the equational theorem prover, E.

Our third solution establishes a framework, called Γ + Λ, which allows a wide range

of first-order logic calculi to be combined into a single sound and refutationally complete

system. This framework can be used to combine instance generation methods that use SAT

with other inference systems. In order to combine two systems, Γ and Λ, into a single sys-

tem, we require Γ to be productive and require Λ to have both the lifting and total-saturation

properties. This framework allows a set of clauses to be distributed among two sets, P and

R, like SIG-Res, so that Γ can be used on P and Λ can be used on R. A limited amount

of information is passed between the systems to establish completeness of the combined

system. We give the inference rules for Γ + Λ, establish soundness and completeness, and

show how Inst-Gen-Eq and superposition can be combined in this framework.

iv

Acknowledgments

During these last six years, while working toward the degree of Doctor of Philosophy,
I have been blessed to have the support of many truly great family members, colleagues
and friends. I thank you all! You have taught me perseverance, modesty and compas-
sion. You have provided encouragement, knowledge, respect and love. You have given me
opportunities that few in this world have been given. For all this, I am indebted to you.

Ahmad Almomani
Susan Blanchard
Elmer Deshane

Howard Deshane
Deena & Brian Donnelly

Michael Felland
Claudette Foisy

Dr. Kathleen Fowler
Michael Fowler

Dr.s Illona & Donald Ferguson
Dr. Daqing Hou

Dr. Christopher Lynch
Dr. James Lynch
Dr. Alexis Maciel

Dr. Jeanna Matthews
Judge Earl McBride

Pamula & Ralph McGregor
Gary McGregor
Sara Morrison

The Brothers of Phi Kappa Sigma
Dr. Joseph Skufca
Janice Searleman

Cindy Smith
Dr. Christino Tamon
Elizabeth Thomas
Dean Peter Turner

Thank you!

v

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Techniques for Automated Theorem Proving 2

1.1.1 Instance Generation Based Systems 2

1.1.2 Resolution Based Systems . 6

1.1.3 Tableaux Proofs . 10

1.2 Contributions in Automated Theorem Proving 11

1.2.1 Encoding First-Order Proofs in SAT 11

1.2.2 Encoding First-Order Proofs in SMT 12

1.2.3 Combining Instance Generation and Resolution 14

1.2.4 Γ + Λ . 15

1.3 Outline of this Dissertation . 16

2 First-Order Logic 17

2.1 First-Order Formula . 18

2.2 Normal Forms . 18

2.3 Substitutions . 20

vi

3 Encoding First-Order Proofs in SAT and SMT 22

3.1 Preliminaries . 25

3.1.1 Propositional Logic . 25

3.1.2 Connection Tableaux . 25

3.1.3 Rigid Unsatisfiability . 26

3.2 Encoding in SAT . 27

3.2.1 Encoding for Horn Clauses . 27

3.2.2 Encoding for Non-Horn Clauses 29

3.2.3 Tableau Encoding Algorithms . 32

3.2.4 Completeness and Soundness Theorems for HTE 33

3.2.5 Completeness and Soundness Theorems for NHTE 37

3.2.6 ChewTPTP-SAT . 39

3.3 Encoding in SMT . 42

3.3.1 Encoding for Horn Clauses . 42

3.3.2 Encoding for Non-Horn Clauses 44

3.3.3 ChewTPTP-SMT . 46

3.4 Conclusion . 53

4 Combining Instance Generation and Resolution 55

4.1 Preliminaries . 56

4.1.1 Jeroslow Constant . 56

4.1.2 Term Orderings . 56

4.1.3 Interpretations . 59

4.1.4 Closures . 59

4.2 Semantic Selection Instance Generation and Ordered Resolution 59

4.3 SIG-Res . 61

4.4 Completeness . 62

4.5 Spectrum . 67

vii

4.6 Conclusion . 73

5 The Γ + Λ Framework 74

5.1 Preliminaries . 76

5.2 Transforming Inference Rules to Support Hypothetical Clauses 78

5.3 Γ + Λ Inference Rules . 79

5.4 Soundness and Completeness . 81

5.5 Combining Inst-Gen-Eq and Superposition 83

5.5.1 Γ and Λ Properties . 83

5.5.2 The SIG-Sup Inference System 85

5.5.3 SIG-Sup Saturation Process . 85

5.5.4 SIG-Sup Algorithm . 87

5.5.5 EVC3 . 89

5.6 Conclusion . 92

6 Conclusion 96

viii

List of Figures

1.1 Resolution and Factoring Inference Rules 6

1.2 Equality Congruence Axioms . 7

1.3 Paramodulation Inference Rule . 8

1.4 Ordered Paramodulation Inference Rule 9

1.5 Maximal Paramodulation Inference Rule 9

1.6 Superposition Inference Rule . 10

2.1 Standard Rules for First-Order Formula Construction 18

2.2 Negation Normal Form Transformation Rules 19

2.3 CNF Conversion Steps . 20

4.1 SInst-Gen Inference Rule . 60

4.2 Ordered Resolution and Factoring Inference Rules 61

4.3 SIG-Res Inference Rules . 63

4.4 Proof of GRP006-1 . 72

5.1 λ . 78

5.2 λ′ . 78

5.3 Learn and Delete Inference Rules . 80

5.4 SIG-Sup Inference Rules . 94

5.5 EVC3 System Diagram . 95

ix

List of Tables

3.1 Statistics on Selected Problems . 41

3.2 ChewTPTP Times For Horn Problems . 49

3.3 ChewTPTP Clause and Variable Count For Horn Problems 50

3.4 ChewTPTP Times For Non-Horn Problems 51

3.5 ChewTPTP Clause and Variable Count For Non-Horn Problems 52

x

Chapter 1

Introduction

Reasoning is the act of learning from the use of models and information [83]. We reason

consciously and subconsciously. We use reason to form intuition, to form habit and we

reason to determine causality, a necessity for survival. We also reason to understand rela-

tionships among entities we perceive and conceive to better understand the universe around

us.

Since antiquity we have also sought to understand the nature of valid reasoning itself

in the study of logic. Since Aristotle [1], attempts have been made to model reasoning in

an effort to mechanize reasoning with the goal of eliminating the errors found in human

reasoning. More recently, with the advent of the computer many have sought to automate

certain forms of reasoning.

Many different logics have been developed over time including propositional, temporal,

modal, Hoare, first-order logic and higher-order logics. In 1930, Gödel [19] proved that

there exist complete and sound inference systems for first-order logic and in 1936 and 1937,

Church and Turing [22, 24], respectively, proved independently that first-order validity is

undecidable, thereby establishing that first-order validity is semi-decidable. So the best

that we can do is construct a sound and complete inference system for first-order logic,

that when given a valid formula, will eventually halt and output an indication of validity.

1

However if an invalid formula is given, the system may never halt.

One subset of the automated reasoning (AR) community focus’ on automated theo-

rem proving (ATP), that is, the study of systems that semi-decide the first-order validity

problem.

Since φ is valid iff ¬φ is unsatisfiable, many ATP systems alternatively seek to prove

unsatisfiability rather than validity. A formula is unsatisfiable if no model exists which

makes the formula true. If a system, when given an unsatisfiable problem, will eventually

halt and output unsatisfiable, we call the system refutationally complete.

Today’s refutationally complete ATP systems are based on a wide array of techniques.

Some seek to provide a proof of unsatisfiability (e.g. resolution and tableaux proof en-

coding) while others attempt to prove unsatisfiability by showing no model exists (e.g.

instance generation). These ATP systems can be used as general theorem provers or as

back end provers in larger software systems such as software verification tools.

Below we discuss some common techniques for first-order theorem proving, then dis-

cuss our contributions in ATP and our current work and conclude with an outline of this

dissertation.

1.1 Techniques for Automated Theorem Proving

Most modern automated theorem proving systems are based on superposition, semantic

selection instance generation, or tableaux methods. In this section we describe each of

these methods and provide a brief history of the development of each.

1.1.1 Instance Generation Based Systems

Instance generation techniques seek to find a set of ground (variable free) instances for the

input problem which are unsatisfiable when viewed as a propositional logic formula via

a SAT solver. If the SAT solver returns unsatisfiable, the input problem is unsatisfiable.

2

If the SAT solver returns satisfiable and new instances can be generated (according to the

calculus) they are added and the process is repeated, otherwise the input problem is found

to be satisfiable.

One of the first implemented general first-order logic theorem provers was created in

1960 by Davis and Putnam [29]. Their procedure was based on Herbrand’s Theorem [21]

which shows that first-order logic unsatisfiability can be reduced to propositional logic

unsatisfiability.

We say the Herbrand Universe of a formula φ is the set of all ground terms that can

be constructed using the function symbols and constants in φ (if no constant is defined

we include a distinguished constant). For example, if P is a predicate symbol, f is a

function symbol, a is a constant and x is a variable, the Herbrand Universe for P (f(x), a)

is {a, f(a), f(f(a)), f(f(f(a))), ...}. Herbrand’s Theorem can be stated as follows: a first-

order formula φ is unsatisfiable if and only if there exists a finite set of ground instances

(replacing variables with elements of the Herbrand Universe) of φ is unsatisfiable. Since

all of the instances in the set being checked for satisfiability are ground, the formula in

this set can be viewed as a propositional formula whose satisfiability can be checked by a

propositional logic decision procedure.

Suppose for example

φ = ((p(x) =⇒ q(x)) ∧ p(a)) =⇒ q(a) (1.1)

To prove φ is valid, we first convert ¬φ to conjunctive normal form as shown in Formula

1.2.

¬φ = (¬p(x) ∨ q(x)) ∧ p(a) ∧ ¬q(a) (1.2)

3

Then we seek to show that ¬φ is unsatisfiable. In this trivial problem, to determine the

unsatisfiability of ¬φ using Herbrand’s Theorem we simply need to create a single instance

of ¬φ, namely, ¬φ′ [Formula 1.3].

¬φ′ = (¬p(a) ∨ q(a)) ∧ p(a) ∧ ¬q(a) (1.3)

(¬P ∨Q) ∧ P ∧ ¬Q (1.4)

We derive ¬φ′ from ¬φ by replacing all instances of the variable x by the constant

a. Since ¬φ′
is unsatisfiable when viewed as a propositional formula [Formula 1.4], by

Herbrand’s Theorem ¬φ is unsatisfiable as a first-order formula, thus φ is valid.

Davis and Putnam’s procedure (although naively) incrementally adds all possible

ground instances to the set being checked for propositional satisfiability until unsatisfia-

bility is detected. Although their choice to consider all ground instances was found to

be unnecessary, their choice of using conjunctive normal form (CNF) along with their

procedure for satisfiability testing at the propositional level, and the improved procedure

by Davis, Logeman and Loveland [34], now called the DPLL procedure, was revolution-

ary and is the basis for the most efficient satisfiability (SAT) solvers today. Today’s SAT

solvers based on the DPLL procedure can efficiently handle tens of thousands of variables

and clauses [108].

Since Davis and Putnam’s work, there have been a great many advances in theorem

provers based on Herbrand’s Theorem, which are called instance-based theorem provers.

One line of research has been in saturation-based instance generation methods [106].

These methods, like Davis and Putnam’s method, repeatedly call upon a SAT solver to

determine the satisfiability of the current set of ground instances. If unsatisfiable the solver

halts and indicates such, otherwise the set may be augmented with additional instances and

again checked for satisfiability.

4

Notable in this line of research is the work by Prawitz [30] who showed that not all

elements in the Herbrand Universe need be used. Elements in the Herbrand Universe

were chosen using a matching scheme among complementary literals [53]. This technique

evolved into what is now known as unification. In [35], Davis combined the matching

technique of Prawitz with the techniques in his previous paper.

A lull transpired in this line of research, while the focus was on resolution based sys-

tems, until the late eighties when computational power began to increase significantly and

methods based on DPLL and SAT again attracted appeal. In 1988 Jeroslow [63] published

a new saturation-based instance generation method called Partial Instantiation (PI). In this

work he proved that not all variables in the non-ground instances need be replaced by

terms in the Herbrand Universe. Substitutions can be identified using the matching tech-

nique and those variables that are not involved in the unification can simply be mapped to

a distinguished constant, the Jeroslow constant. Hooker, Rago, Chandru and Shrivastava

are noteworthy for developing the first complete PI method for the full first-order predicate

calculus called Primal PI [99] which is now known as instance generation with seman-

tic selection. Ganzinger and Korovin, among many other contributions, formalized and

proved the completeness of the instance generation inference rule (Inst-Gen) and instance

generation with semantic selection and hyper inferences (SInst-Gen) in [106].

Saturation-based instance generation methods perform especially well on problems that

are near to propositional logic where the efficiency of the SAT solver is exploited. One such

class of first-order logic problems is Effectively Propositional Logic (EPR), also know as

the Bernays-Schönfinkel class [18]. Formulas in this class have the form ∃∀φ where φ is

quantifier-free and function-free. As seen in the results from the annual Conference on Au-

tomated Deduction (CADE) ATP System Competition (CASC) [131], the saturation-based

instance generation theorem prover iProver [142] has won the EPR category since 2008.

It should be noted that the success of iProver, and thus a defense of instance generation

solvers as a viable general first-order theorem proving technique, has not only been in the

5

EPR class, but iProver has also ranked in the top 5 in the FOF (first-order formula) and

CNF (conjunctive normal form) divisions, the classes of general first-order formulas, in

the 3 most recent CASC competitions. This is evidence that techniques in saturation based

instance generation are viable and worthy of continued research.

1.1.2 Resolution Based Systems

Another well known line of research in general first-order logic theorem proving began

with Robinson’s landmark paper [36] which describes his resolution principle and unifica-

tion algorithm which computes the most general unifier (mgu) between two atoms. Here

Robinson developed a refutationally complete inference system using a single combinato-

rial rule (Figure 1.1) without the need for an axillary propositional logic solver like the

instance generation methods that proceeded it required. With resolution (a generalization

of Modus Ponens) the goal is to derive a proof of the empty clause.

L ∨ Γ ¬K ∨Δ (Resolution)
(Γ ∨Δ)σ

where σ = mgu(L,K)

L ∨K ∨ Γ (Factoring)
(L ∨ Γ)σ

where σ = mgu(L,K)

Figure 1.1: Resolution and Factoring Inference Rules

A proof of Formula 1.2 using resolution can be given by

¬p(x) ∨ q(x) p(a)
x �→ a

q(a) ¬q(a)
⊥

where ⊥ denotes the empty clause (or falsum) and x �→ a denotes the replacement of a

for x in the premises.

6

A key refinement of resolution called ordered resolution (formerly A-ordered resolu-

tion) was made in [42, 92] which restricts the search space significantly. With ordered res-

olution, resolution inferences are only made when complementary maximal literals, based

on an ordering of terms, from different clauses are unifiable. Ordered resolution can be

efficient in practice, because it tends to produce literals in the conclusion of an inference

that are smaller than in the premises. This is not always the case however, because the most

general unifier may prevent that, but it often happens in practice. For the simplest exam-

ple, consider a set of clauses consisting of one non-ground clause C = ¬P (x) ∨ P (f(x))
and any number of ground clauses. Any ordered resolution inference among two ground

clauses will produce another ground clause which does not introduce any new literals. Any

ordered resolution inference between a ground clause and C will produce a new ground

clause where an occurrence of the symbol f has disappeared. This will clearly halt. This

reduction property does not hold for instance generation methods. If this set of clauses is

fed to an instantiation-based prover, it may run forever, depending on the model created by

the SAT solver. In our experiments, this does run forever in practice.

→ x � x (reflexivity)
x � y → y � x (symmetry)

x � y ∧ y � z → x � z (transitivity)
x1 � y1 ∧ ... ∧ xn � yn → f(x1, ..., xn) � f(y1, ..., yn) (monotonicity I)
x1 � y1 ∧ ... ∧ xn � yn

∧P (x1, ..., xn) → P (y1, ..., yn) (monotonicity II)

Figure 1.2: Equality Congruence Axioms

Many other refinements have been made to Robinson’s resolution inference system,

e.g. semantic resolution [38] and set of support resolution [48]. As early as 1960 [32],

researchers have also constructed ways to handle equality directly in the calculus. A naive

approach to handling equality would be to include the congruence axioms 1 (Figure 1.2)

for the equality predicate � in the problem and use resolution and factoring inferences.

1One monotonicity I axiom is added for each non-constantn-ary function symbol in the language and one
monotonicity II axiom is added for each predicate symbol in the language

7

This however causes an explosion in the search space.

To avoid this, in 1969, Wos and Robinson in [41] introduced the inference rule called

paramodulation (Figure 1.3) that has been a cornerstone of modern resolution based theo-

rem provers that handle equality. In their work they proved that the paramodulation infer-

ence rule along with resolution, factoring and additional function reflexivity axioms 2form

a refutationally complete system.

L[u]p ∨ Γ l � r ∨Δ
Paramodulation 3

(L[r]p ∨ Γ ∨Δ)σ

where σ = mgu(l, u)

Figure 1.3: Paramodulation Inference Rule

Take for example the problem

(f(x) = x) ∧ P (f(a)) ∧ ¬P (a) (1.5)

A paramodulation proof for Formula 1.5 can be written as

f(x) = x P (f(a))
x �→ a

P (a) ¬P (a)
⊥

Brand showed in [47] (later by Peterson in [54]) that paramodulation, resolution and

factoring alone form a refutationally complete system and that paramodulation into vari-

ables, which is allowable in Wos and Robinson’s work, is not necessary [47].

In 1970, working independently from Wos and Robinson, Knuth and Bendix published

the first ordered paramodulation calculus for systems of equations (the word problem)

called Knuth-Bendix completion [44]. Later, in 1987, Rusinowitch and Hsiang [60] (and

others later) extended Knuth-Bendix completion to unfailing completion.

2A functional reflexivity axiom f(x1, ..., xn) � f(x1, ..., xn) is required for each n-ary function symbol
in the language

3L[u]p denotes the literal L containing the subterm u at position p

8

Peterson, in 1983, combined the works of Wos and Robinson with that of Knuth and

Bendix to produce what is known as ordered paramodulation (Figure 1.4), a refutationally

complete system for first-order logic that uses term orderings to restrict paramodulation

inferences [54].

L[u]p ∨ Γ l � r ∨Δ
(Ordered Paramodulation)

(L[r]p ∨ Γ ∨Δ)σ

where

1. σ = mgu(u, l)
2. u is not a variable
3. rσ � lσ

Figure 1.4: Ordered Paramodulation Inference Rule

In 1991, Pais and Peterson [67] introduced maximal paramodulation (Figure 1.5)

which utilizes term orderings as well as orderings on literals [91].

L[u]p ∨ Γ l � r ∨Δ
(Maximal Paramodulation)

(L[r]p ∨ Γ ∨Δ)σ

where

1. σ = mgu(u, l)
2. u is not a variable
3. rσ � lσ
4. L[u]pσ is maximal w.r.t. � in (L[u]p ∨ Γ)σ
5. (l � r)σ is maximal w.r.t. � in (l � r ∨Δ)σ

Figure 1.5: Maximal Paramodulation Inference Rule

The next refinement called superposition considers all literals as equations. Here the

selected literal from the left premise is of the form s � t or s � t. We include the case for

the former in Figure 1.6. In 1988, Zhang and Kapur were the first to propose this rule [62].

Bachmair and Ganzinger showed in [64] that Zhang and Kapur’s system was incomplete in

the presence of tautology elimination, and provide a complete superposition calculus which

includes the additional equality factoring inference rule.

9

s[u]p � t ∨ Γ l � r ∨Δ
(Superposition)

(s[r]p � t ∨ Γ ∨Δ)σ

where

1. σ = mgu(u, l)
2. u is not a variable
3. tσ � s[u]σ
4. rσ � lσ
5. (s[u]p � t)σ is maximal w.r.t. � in (s[u]p � t ∨ Γ)σ
6. (l � r)σ is maximal w.r.t. � in (l � r ∨Δ)σ

Figure 1.6: Superposition Inference Rule

Most modern implementations of resolution-based theorem provers [102, 145] imple-

ment some form of superposition. These have been shown to be the top performers in

the CASC competition [131]. Although resolution-based methods appear to be generally

more efficient in practice, there are some classes of problems that are suited better for

instantiation-based methods. As stated above, instantiation-based methods work especially

well on problems that are close to propositional problems, because then the key technique

is the DPLL procedure in the SAT solver. On the EPR class of first-order logic problems

resolution methods may in fact run forever.

1.1.3 Tableaux Proofs

A tableau is a finitely branching tree with nodes labeled by formulas. Tableaux have been

studied as far back as 1955 in works by Beth [25] and Hintikka [26] as a way to represent

refutation proofs in first-order predicate calculus theorem proving. For example a proof for

Formula 1.2 can be represented by the following tableau:

p(a)

¬p(x) q(x)

q(a)

10

In standard refutational theorem proving we attempt to prove the unsatisfiability of a

set of clauses and allow an unbounded number of renamed instances of each clause. In

rigid theorem proving, only one instance of each clause is allowed. The tableau above is an

example of a rigid proof (in the form of a rigid tableau). Rigid theorem proving has been

studied as early as [45, 50] and can be used to solve the general theorem proving problem

as described in [88]. To solve the general theorem proving problem we can repeatedly call a

rigid theorem proving solver, each time adding additional renamed instances of the original

clauses, until a proof is found [126].

1.2 Contributions in Automated Theorem Proving

Our work has focused on three novel methods for general first-order theorem proving that

utilize SAT. The first line of research solves the general first-order logic theorem proving

problem by encoding the existence of rigid tableaux proofs in propositional logic and us-

ing an external SAT solver to determine the satisfiability of the encodings. We extended

this work by encoding the existence of rigid tableaux proof in propositional logic modulo

theories with the hopes of reducing the size of the encoding. The second line of research

combined the instance generation and resolution inferences systems into one refutationally

complete inference system. The third line, provides a general framework for combining

inference systems and show that Inst-Gen-Eq and superposition can be combined in this

framework. Below we give a general overview of each of these systems and describe my

personal contributions.

1.2.1 Encoding First-Order Proofs in SAT

Rather than directly computing a first-order logic refutation proof, one can encode the ex-

istence of a first-order logic refutation proof in propositional logic and establish the satisfi-

ability of the encoding using a SAT solver. In this case, if the SAT solver returns satisfiable

11

then a refutation proof exists for the first-order formula. This is an attractive solution to

the general first-order theorem proving problem, especially with the advancement of SAT

solving technology and computing power, since the majority of computational work is done

by the SAT solver.

In [121], Prestwich and Lynce encode a resolution proof, although in that paper proposi-

tional proofs were encoded and not first order proofs. Below and in [126], a joint work with

DeShane, Hu, Jablonski, Lin and Lynch, we proposed encoding rigid connection tableaux

proofs of first-order predicate calculus in propositional logic as an incremental approach to

general first-order theorem proving. We also provide a proof of its completeness, describe

our implementation called ChewTPTP-SAT and give results.

ChewTPTP-SAT is a sound and complete first-order theorem prover. While we are able

to identify problems that ChewTPTP-SAT is able to solve and other theorem provers are

unable to solve, overall, ChewTPTP-SAT is not currently competitive as a general first-

order theorem prover. Below we identify reasons for this and suggest one modification that

we believe will make our implementation much more competitive.

While developing this method I was involved in many aspects of our work. Specifically,

I contributed to the development of the encoding, wrote the Lex/Yacc TPTP parser for the

implementation, ran the experimental tests and compiled the results, wrote the soundness

and completeness proofs and authored the paper that we submitted for publication.

1.2.2 Encoding First-Order Proofs in SMT

In [128], a joint work with Bongio, Katrak, Lin and Lynch, we state that our original

ChewTPTP-SAT implementation [126] performed well on some problems, but some of the

encodings created huge sets of clauses. Some parts of our encoding represented choices

made, such as which clause to extend each literal with, and other parts of our encoding

represented deterministic procedures, such as deciding the consistency of unification con-

straints and deciding the acyclicity of the DAG which verifies that a particular property

12

holds of the DAG. In our solver, ChewTPTP-SAT, we had an eager encoding of unifica-

tion and acyclicity. In experimental results with Horn clauses (clauses containing no more

than one negative literal), approximately 99% of the clauses generated were encoding the

deterministic procedures, and only about 1% represented the choices.

We decided the implementation would be more efficient if unification and acyclicity

were encoded lazily and implemented these changes in ChewTPTP-SMT. It makes sense to

expresses choices involved in building the tableau using SAT, and verification of unification

and acyclicity using underlying theories. Therefore, we chose to encode our problem as

Satisfiability modulo Theories (SMT) [119] and replaced Minisat[108] with the SMT solver

Yices [147].

Below we discuss our encoding for a tableaux proof in propositional logic modulo The-

ories (datatypes and arithmetic). We discuss our implementation called ChewTPTP-SMT,

an extention of ChewTPTP-SAT, which is also a complete and sound first-order theorem

prover. We show that for Horn clauses the encoding is smaller and the implementation is

faster than our previous encoding, but for non-Horn problems the performance was worse

than our previous encoding. We also describe a heuristic for when to use theories when

encoding a problem. Although it can not be considered a competitive theorem prover in

its current state, we believe that improvements can be made in both the encoding and in

the implementation that will make it a viable solution to the first-order theorem proving

problem and discuss these below.

Similar to the work previously discussed, I personally ran the experimental tests and

compiled the results, wrote the soundness and completeness proofs and authored the paper

that we submitted for publication. In addition, using CHEWTPTP-SAT as a code base, I

wrote a significant amount of the new code for CHEWTPTP-SMT.

13

1.2.3 Combining Instance Generation and Resolution

Both instance generation and resolution methods have a long history in the automated rea-

soning community and are the basis for the most advanced modern ATP systems. Both

types of systems have their strengths and weaknesses. As we saw above, instance-based

provers may run forever on the satisfiable problem consisting of a single non-ground clause

¬P (x) ∨ P (f(x)) combined with any number of ground clauses and resolution-based sys-

tems may run forever on problems in EPR.

Below and in [136], a joint work with Lynch, we showed that we can combine both

instance generation and resolution into a single refutationally complete inference system

with the aim of getting the best of both methods. We proposed the inference systems

SIG-Res which combines semantic selection instance generation (SInst-Gen) with ordered

resolution and discuss our implementation called Spectrum.

In SIG-Res, each clause in a given problem is determined to be, by some heuristic, an

instance generation clause and added to the set P or a resolution clause and placed in the

set R. Clauses from P are given to a SAT solver and inferences among them are treated as

in SInst-Gen, while inferences that involve clauses inR are resolution inferences. Unsatis-

fiability is witnessed by the unsatisfiability of P under Inst-Gen or the unsatisfiability of R

under resolution. Satisfiability is witnessed by a saturated system with P being satisfiable

under Inst-Gen and R not containing the empty clause.

Spectrum is a sound and complete implementation of SIG-Res. More work however,

needs to go into its development in order to make it competitive with state-of-the-art the-

orem provers. Specifically, we need to include more redundancy elimination techniques.

Even though our implementation is not as sophisticated as state-of-the-art provers, we iden-

tify a class of problems that when run on Spectrum are solved faster by SIGRes than by

SInstGen or resolution alone. We discuss these results and suggest improvements below.

Personal contributions to this work are the soundness and completeness proofs for

SIG-Res, primary authorship of the published paper and sole developer of Spectrum.

14

1.2.4 Γ + Λ

In joint work, also with Lynch, we have developed a framework called Γ+Λ which allows

two different (or possibly the same) inference systems to be combined into a single system.

The only conditions on Γ and Λ are that they both be sound and refutationally complete, Γ

be productive and Λ have the lifting and total-saturation properties. When these conditions

are met, the resulting system is sound and refutationally complete.

Like SIG-Res clauses are partitioned into two sets, P and R. Here, in a fair way,

Γ inferences are performed on P and, with a candidate set of clauses, M , constructed

from P , we saturate M ∪ R with Λ. Unsatisfiability in this system is witnessed by the

unsatisfiability of P under Γ and satisfiability is witnessed by a saturated system without

witnessing the unsatisfiability of P .

We present the inference system for Γ + Λ, discuss the soundness and provide a proof

of its completeness. We also demonstrate how Inst-Gen-Eq and superposition can be com-

bined into a single inference system, which we call SIG-Sup, when viewed in the Γ + Λ

framework.

We have also begun work on an implementation of SIG-Sup which we call EVC3.

EVC3 is our attempt to combine the strengths of existing software to implement the

SIG-Sup inference system. EVC3 is a coupling of the SMT solver CVC3 [124] and the

purely equational prover E [112]. Here we intend to use E for the superposition inferences

and perform Inst-Gen inferences in a CVC3 quantification theory module that we have

developed. Currently, EVC3 is a sound and complete implementation of SIGRes but does

not yet implement SIGSup.

Contributions to this work include all that is written in Chapter 5. This includes the

formal description of the Γ+Λ framework, the completeness proof, the formal description

of SIG-Sup, and our current work on EVC3. We note that it is our intent to submit a version

of Chapter 5 for publication.

15

1.3 Outline of this Dissertation

In Chapter 2 we present the first-order predicate calculus and definitions for terms used

throughout this dissertation. In Chapter 3 we discuss our method of using propositional

encodings of tableaux proofs for first-order theorem proving and our implementation

CHEWTPTP-SAT as well as our propositional encodings (modulo theories) and our imple-

mentation CHEWTPTP-SMT. In Chapter 4 we discuss our inference system SIG-Res and

our implementation Spectrum and in Chapter 5 we discuss the Γ+Λ framework, SIG-Sup

and our initial work on an implementation called EVC3. A conclusion is given in Chapter

6.

16

Chapter 2

First-Order Logic

The alphabet for first-order logic consists of functions symbols, predicate symbols, vari-

ables, the quantifiers ∀ (universal) and ∃ (existential), the logical connectives ¬ (negation),

∨ (disjunction), ∧ (conjunction), → (implication), ↔ (if and only if), and parentheses.

A signature, Σ, is a triple (F ,P, α), where F is a set of function symbols, P is a set of

predicate symbols, F ∩P = ∅ and α : F ∪P → N which defines the arity of the function

and predicate symbols. We define constants as 0-ary function symbols. If Σ contains an

n-ary function symbol f we say f/n ∈ Σ.

Terms are defined inductively as follows. Variables and constants are terms. If f is any

n-ary function symbol and t1, . . . , tn are terms then f(t1, . . . , tn) is a term. We denote the

(size) number of symbols in term t as |t| and the number of occurrences of the variable x

in term t as |t|x.
If P is any n-ary predicate symbol and t1, . . . , tn are terms then P (t1, . . . , tn) is an

atomic formula (atom). As a special case we allow the infix predicate symbol � and if ti

and tj are terms then ti � tj is an atom. The negation of the equality atom ti � tj is written

ti � tj .

17

2.1 First-Order Formula

Well-formed formulas in first-order logic are constructed using the standard rules of for-

mula construction given in Figure 2.1 [43].

(i) An atomic formula is a formula
(ii) If φ is a formula then ¬φ is a formula
(iii) If φ and ψ are formula then (φ ∨ ψ) is a formula
(iv) If φ and ψ are formula then (φ ∧ ψ) is a formula
(v) If φ and ψ are formula then (φ→ ψ) is a formula
(vi) If φ and ψ are formula then (φ↔ ψ) is a formula
(vii) If φ is a formula and x is a variable then ∃xφ is a formula
(viii) If φ is a formula and x is a variable then ∀xφ is a formula

Figure 2.1: Standard Rules for First-Order Formula Construction

A literal is either an atom (positive literal) or the negation of an atom (negative literal).

Suppose L is a literal. The complement of L is denoted L and is defined as follows: if

L = A for some atom A then L = ¬A else if L = ¬A for some atom A then L = A. If L

and K are literals with the same predicate symbol and opposite signs we say that L and K

are complementary literals.

A clause is a disjunction of literals, however we often view a clause as a multiset of

literals. A ground clause is a clause that contains no variables. We consider a formula to

be a conjunction of clauses in conjunctive normal form and often view a formula as a set

of clauses. We denote by ∅ the empty set and denote the empty clause by ⊥. We define a

Horn clause as a clause which contains at most one positive literal. A clause which contains

only negative literals is called a negative clause.

2.2 Normal Forms

A formula is in negation normal form if it does not contain the logical connectives → and

↔ and if all negations are applied to atoms. Any well-formed formula in the first-order

logic can be transformed into a logically equivalent formula in negation normal form by

18

exhaustively applying the transformation rules in Figure 2.2 (in any order) [89]:

1. (A→ B) � (¬A ∨B)
2. (A↔ B) � ((¬A ∨B) ∧ (¬B ∨A))
3a. ¬(∀v)A � (∃v)¬A
3b. ¬(∃v)A � (∀v)¬A)
4. ¬¬A � A
5a. ¬(A ∧B) � (¬A ∨ ¬B)
5b ¬(A ∨B) � (¬A ∧ ¬B)

Figure 2.2: Negation Normal Form Transformation Rules

When a formula contains two or more variables that have the same name but are under

the scope of different quantifiers we apply a renaming to the formula to give the variables

under the scope of the innermost quantifier fresh variable names. For example we transform

via renaming (∀x)P (x) ∨ (∃x)Q(x) to (∀x)P (x) ∨ (∃y)Q(y).
A formula with existential quantifiers can be transformed into an equisatisfiable formula

without existential quantifiers via Skolemization. To Skolemize a formula we remove the

existential by applying the following rules:

Let Φ be a formula containing a variable v that is under the scope of a existential

quantifier.

• If v is not under the scope of a universal quantifier then Φ is equisatisfiable to

Φv �→a
1where a is a fresh constant.

• If v is under the scope of universal quantifiers (∀x1)...(∀xj) then Φ is equisatisfiable

to Φv �→f(x1,...,xj) where f is a fresh function symbol.

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses such that

negations are applied only to atoms and all variables are universally quantified. A formula

can be converted to an equisatisfiable formula in CNF by following the steps in Figure 2.3

[134].

1If Φ is a first-order formula and l and r are terms then Φl �→r denotes the formula Φ with all occurrences
of l replaced by r

19

1. Convert to negation normal form
2. Rename apart
3. Skolemize
4. Remove universal quantifiers
5. Distribute ∨s over ∧s 2

Figure 2.3: CNF Conversion Steps

2.3 Substitutions

A substitution is a mapping from variables to terms, almost everywhere the identity. We

denote an application of a substitution σ to a clause C as Cσ.

A clause C subsumes another clause D if there exists a substitution σ such that Cσ ⊆
D. A unifier of two atoms L andK is a substitution σ such that Lσ = Kσ. The unification

algorithm used in this work is given in Algorithm 1. In this algorithm,mgu stores the most

general unifier and can be accessed in any number of ways. If such a unifier exists, we say

that L and K are unifiable. A most general unifier of L and K, denoted mgu(L,K), is

a unifier, σ, of L and K such that for every unifier, τ , of L and K, there exists some

substitution ρ such that τ = σρ over the variables of L and K. A renaming is an injective

substitution that maps variables to variables and we say that two literals are variants if there

exists a renaming which unifies them.

A substitution that maps at least one variable of an expression E to a non-variable term

is called a proper instantiator of E. We say that a clause C is a (proper) instance of clause

C ′ if there exists some (proper instantiator) substitution σ such that C = C ′σ. For a set of

clauses S, we denote the set of all ground instances of the clauses in S as Gr(S).

2We distribute ∨s over∧s using A∨(B∧C) � (A∨B)∧(A∨C) and (B∧C)∨A � (B∨A)∧(C∨A)
for all formula A, B and C

20

Algorithm 1: Unify(Term p,Term q)

Let Q be an empty queue of pairs of terms
Let mgu be an empty list of pairs of terms
Push(Q, (p, q))
while Q is not empty do

(s, t) := Pop(Q)
if s is a term of the form f(s1, ..., sn) then

if t is a variable then
Push(Q, (t, s))

else if t is a term with a different top symbol than f then
Return false

else
Check the unifiability of the pairwise arguments of s and t

else if s is a variable then
if t is the same variable as s then

Continue at top of while loop
else if s occurs in t then

Return false
else

Replace all instances of s in U and mgu with t and Push(mgu, (s, t))

Return true

21

Chapter 3

Encoding First-Order Proofs in SAT and

SMT

An impressive success recently in theorem proving has been the efficiency of SAT solving

methods based on the DPLL method [29, 34]. The success of these methods seems to be

based on the fact that the data structures are defined in advance and an exponential number

of possibilities can be explored in polynomial space.

In [126] and [128] we try to take advantage of the efficiencies of SAT technology for

first order theorem proving. The obvious idea is to try to incorporate a SAT solver and

use it in such a way that it is not called often, because calling it too many times loses the

advantages mentioned above.

In [126], we encode a proof of first order unsatisfiability with propositional clauses. We

cannot, however, encode full first order unsatisfiability directly, since given a first-order

formula Φ, a proof of the unsatisfiability of Φ contains an unbounded number of instances

of the clauses in Φ, which cannot be encoded in propositional logic. We therefore chose to

encode rigid first order unsatisfiability, which only requires us to encode that each clause

appears at most a fixed number of times. Rigid unsatisfiability has been studied as early as

[45, 50].

22

In order to encode a rigid proof, we need to decide what kind of proof should be en-

coded. We chose to encode a connection tableau proof because all of the clauses in the

proof are instances of the original clauses whereas resolution proofs introduce clauses not

contained in the original set. A set of first order clauses is rigidly unsatisfiable if and only if

there exists a closed rigid connection tableau for that set of clauses [88]. Our method uses

this fact and solves the unsatisfiability of a set of rigid clauses by encoding the existence of

a rigid connection tableau in SAT.

The idea of the encoding is the following. We encode the existence of a clause as the

root of the connection tableau. We encode the fact that every literal assigned to a non-leaf

node is extended with a clause containing a complementary literal. Those things are easy

to encode, and do not take up much space. There are three things which are more costly to

encode.

First, we must encode the fact that two literals are complementary, in other words that

their corresponding atoms are unifiable. For that, we basically have to encode a unification

algorithm. In our encoding of unification, we leave out the occurs check, because it is

expensive, and because it rarely occurs. We add a check for this after the SAT solver

returns the truth assignment. If there really is an occurs check, we add a propositional

clause and call the SAT solver again.

Second, the above encoding leaves open the possibility that the connection tableau is

infinite. Therefore, we must encode the fact that the connection tableau is finite, i.e., that

the connection tableau contains no cycle.

Third, we must encode the fact that every literal assigned to a leaf node is closed by a

previous literal on its branch. Our encoding is simpler for the Horn case, because it is only

necessary to close a literal with the previous one on the branch. For the non-Horn case, we

must encode the fact that there is a complementary literal higher up in the tree. Since the

same clause may occur on two different branches, and a literal on that clause may close

with different literals on different branches, we may need to add more than one copy of a

23

clause in the rigid non-Horn case, because of the fact that the literal is closed differently.

But we still try to get as much structure sharing in our tree as possible. Note that rigid

Horn clause satisfiability is NP -complete, but Rigid non-Horn clause satisfiability is Σp
2-

complete1[68]. So it is not surprising that a SAT solver cannot solve rigid non-Horn clause

satisfiability directly.

Once we construct a propositional encoding of a rigid connection tableau proof for a

first-order formula, we can utilize a SAT solver to establish the satisfiability of the encod-

ing. Since SAT is a decidable problem, the SAT solver will return rigidly SATISFIABLE if

a rigid connection tableau exits, and rigidly UNSATISFIABLE if a closed rigid connection

tableau does not exist. If satisfiable, we can recover the rigid connection tableau proof from

the truth assignment returned by the SAT solver.

Since we encode rigid proofs, the proof of unsatisfiability of a set of clauses may require

augmenting the encoding using additional fresh variants of each clause. However, there are

also applications which only require rigid proofs [122]. The SAT encodings are given in

Section 3.2 and algorithms follow.

In [128] we encode a rigid connection tableaux proof of first order unsatisfiability in

SMT rather than SAT. We expresses choices involved in building the tableau using propo-

sitional logic, and verification of unification and acyclicity using underlying theories. In

our implementation called ChewTPTP-SMT we utilize the SMT solver called Yices.

Yices has a theory for recursive datatypes, which can be used to represent terms. A

term can be defined by using constructors as function symbols. Each function symbol

of arity n is defined by a constructor with n arguments. Constants are constructors with

no arguments. Predicate symbols are viewed the same as function symbols. Variables

are instances of types. Then unification is represented as equality of types. We represent

acyclicity using linear arithmetic. Consider a graph G = (V,E). If an edge (u, v) exists

in E, then we assert an inequality xu < xv for some real numbers xu and xv . Then G

1Σp
2 := NPΣp

1 := NPNP is the set of decision problems solvable by a Turing machine in NP that is
augmented by an oracle in NP

24

is acyclic if and only if the set of inequalities is consistent. The encodings in SMT can

be found in Section 3.3 with a description of our implementation ChewTPTP-SMT and

experimental results to follow.

3.1 Preliminaries

3.1.1 Propositional Logic

The alphabet for propositional logic formula consists of propositional variables and the

logical connectives∨ (disjunction), ∧ (conjunction), ¬ (negation) and parentheses. As with

first order logic, we will consider propositional logic formulas to be in CNF and conform

to the standard rules for constructing valid propositional logic formulas[43].

3.1.2 Connection Tableaux

We define rigid clausal tableau as follows.

Definition 1 Rigid clausal tableaux are trees with nodes labeled with literals, branches

labeled either open or closed, and edges labeled with zero or more assignments. Rigid

clausal tableaux are inductively defined as follows. Let S = {C1...Cn} be a set of clauses.

If T is a tree consisting of a single unlabeled node (the root node) N then T is a rigid

clausal tableau for S. The branch consisting of only the root nodeN is open. If N is a leaf

node on an open branch B in the rigid clausal tableaux T for S and one of the following

inference rules are applied to T then the resulting tree is a rigid clausal tableaux for S.

(Expansion rule) Let Ck = Lk1 ∨ ... ∨Lki be a clause in S. Construct a new tableaux

T ′ by adding i nodes toN and labeling them Lk1 through Lki. Label each of the i branches

open.

(Closure rule) Suppose Lij is the literal at N and for some predecessor node M with

literal Lpq there exists some most general unifier σ such that Lijσ = ¬Lpqσ and the assign-

25

ments of σ are consistent with the assignments of T . Construct T ′ from T by labeling the

edge from Lpq to Lij with the assignments used in the unification and by closing the branch

of N .

We call the clause which is added to the root node the start clause and we say that a

clause is in a tableau if the clause was used in an application of the expansion rule.

Definition 2 A clausal tableaux is connected if each clause (except the start clause) in the

tableaux contains some literal which is unifiable with the negation of its predecessor [93].

Definition 3 (Extension Rule) Let N be a node in the tableau T and let Ck be a clause in

S such that there exists a literal Lki in Ck which is unifiable with the negation of N . Apply

the expansion rule with Ck and immediately apply the closure rule with Lki.

The calculus for connection tableaux (or model elimination tableau [93]) consists of the

expansion rule (for the start clause only), the closure rule, and the extension rule. We call a

tableau closed if each leaf node has been closed by an application of the closure rule.

By [93] we can require that the start clause be a negative clause since there exists a

negative clause in any minimally satisfiable set.

3.1.3 Rigid Unsatisfiability

Unless otherwise stated, we let F be a set of first order logic formulas. The main problem

in Automated Theorem Proving is to determine if the set of hypotheses in F implies the

conclusion in F . For our purposes we assume that all formula in a problem are in CNF and

the conclusion is negated. Therefore we seek to determine if F is (equivalently) unsatis-

fiable, i.e. there does not exist a model for F . The problem of rigid unsatisfiability of F

seeks to determine whether there exists a ground instance of F which is unsatisfiable.

A result of Tableau Theory is the completeness and soundness of closed (rigid) connec-

tion tableaux.

26

Theorem 1 There exists a closed (rigid) connection tableau for F iff F is (rigidly)

unsatisfiable[88].

3.2 Encoding in SAT

Our method to determine the rigid satisfiability of F generates a set of propositional logic

clauses for F which encodes a closed rigid connection tableau for F . We provide two

encoding, the first for problems which contain only Horn clauses and the second for those

containing non-Horn clauses. Given F , we give unique symbols to each of the clauses in

F and each of the literals in each clause. We represent clause i by Ci. We represent the

jth literal in clause i by Lij (which is used to label the tableaux). Note that as multiple

copies of a clause may appear in a rigid connection tableau, multiple nodes may have the

same literal label. And whereas the same literal may appear in distinct clauses, they are

identified with different labels. We denoteAij to be the atom of Lij . Therefore Lij is either

of the form Aij or ¬Aij .

3.2.1 Encoding for Horn Clauses

We define the variables cm, lmn, emnq , uk, pmq as follows: Define cm = T iff Cm appears in

the tableau. Define lmn = T iff Lmn is an internal node in the tableau. Define emnq = T iff

Cq is an extension ofLmn. Define uτ = T iff τ is an assignment implied by the substitutions

used in the closure rules. Define pmq = T iff there exists a path from a literal in Cm to Cq.

Below we list the set of clauses that we generate and provide their meaning.

At least one clause containing only negative literals appears in the tableau:

∨
Cm is a negative clause

cm (3.1)

If Cm appears in the tableau and Lmn is a negative literal then Lmn is an internal node

27

in the tableau:

¬cm ∨ lmn (3.2)

If Lmn is an internal node in the tableau then for some qj , Cqj is an extension of Lmn:

¬lmn ∨ emnq1 ∨ ... ∨ emnqk (3.3)

where {Cq1...Cqk} represents the set of all clauses whose positive literals are unifiable with

Lmn

If Cq is an extension of Lmn then Cq exists in the tableau:

¬emnq ∨ cq (3.4)

If Cq is an extension of Lmn and τ is an assignment of the mgu used to unify Aqr with

Amn then τ is implied by the mgu:

¬emnq ∨ uτ where τ ∈ mgu(Amn, Aqr) (3.5)

If for two assignments x = s and x = t there does not exist a mgu θ such that sθ = tθ

then both assignments can not be true:

¬ux=s ∨ ¬ux=t where s and t are not unifiable (3.6)

If x = s, x = t, σ = mgu(s, t) and y = r ∈ σ then y = r:

¬ux=s ∨ ¬ux=t ∨ uy=r where y = r ∈ mgu(s, t) (3.7)

If Cq is an extension of Lmn then there is a path from Cm to Cq:

¬emnq ∨ pmq (3.8)

28

Transitivity of the path relation:

¬pmq ∨ ¬pqs ∨ pms (3.9)

There are no cycles in the tableau:

¬pmm (3.10)

3.2.2 Encoding for Non-Horn Clauses

For non-Horn problems we use an alternative set of variables and generate a different set

of clauses.

We define the variables sm, cmn, lmn, emnqj , uk, pmq , and qmnij as follows. Define

sm = T iff Cm is the start clause. Define cmn = T iff Cm appears in the tableau and Lmn

is used to close its parent. Define lmn = T iff Lmn is a node in the tableau and is not a leaf

node created by an application of the closure rule. Define emnqj = T iff Cq is an extension

of Lmn and Lmn is used to close Lqi. Define uτ = T iff τ is an assignment implied by

the unifiers used in the applications of the closure rules. Define oijkl = T iff Lkl is used

to close Lij . Define pmq = T iff there exists a path from a literal in Cm to Cq. Define

qmnij = T iff Lmn is a leaf and Lmn is closed by a literal between the root node and Lij .

The clauses are as follows.

There exists a start clause in the tableau which only contains negative literals:

∨
sm is a negative clause

sm (3.11)

29

If Cm is the start clause in the tableau then each literal Lmn of Cm is in the tableau:

¬sm ∨ lmn (3.12)

If Ci appears in the tableau and Lij is the complement of a literal in its parent then all

other literals of Ci are in the tableau:

¬cij ∨ lik where j = k (3.13)

If Lij exists in the tableau and is not a leaf node created by an application of the closure

rule then either Lij is closed by a literal between the root and Lij or there is an extension

of Lij :

¬lij ∨ qijij
∨
k,l

eijkl (3.14)

If Lij is extended with Ck then Ck is in the tableau and some Lkl of Ck is closed by Lij :

¬eijkl ∨ ckl (3.15)

If clause Cm is an extension of Lij and τ is an assignment of the mgu used to unify Aml

with Aij then τ is true:

¬eijml ∨ uτ where τ ∈ mgu(Aml, Aij) (3.16)

If for two assignments x = s and x = t there does not exist a mgu θ such that sθ = tθ

then both assignments can not be true:

¬ux=s ∨ ¬ux=t where s and t are not unifiable (3.17)

30

If x = s, x = t, σ = mgu(s, t) and y = r ∈ σ then y = r:

¬ux=s ∨ ¬ux=t ∨ uy=r where y = r ∈ mgu(s, t) (3.18)

If Lij is used to close Lkl then their atoms must be unifiable by some unifier σ, hence

each assignment of σ is true:

¬oijkl ∨ uτ where τ ∈ mgu(Aij, Akl) (3.19)

If Lij has the same sign as Lkl or their respective atoms are not unifiable then Lij is not

used to close Lkl:

¬oijkl where Lij and Lkl have the same sign or Aij and Akl are not unifiable (3.20)

If leaf Lij is closed by a literal between the root and Lkl and clause Ck is an extension

of Lmn then Lij is closed by some literal between the root and Lmn:

¬qijkl ∨ ¬emnkl ∨ oijmn ∨ qijmn (3.21)

If Ck is an extension of Lij then there is a path from clause Ci to clause Ck:

¬eijkl ∨ pik (3.22)

Transitivity for paths:

¬pij ∨ ¬pjk ∨ pik (3.23)

There are no cycles in the tableau:

¬pii (3.24)

31

If Ci is the start clause then there are no extensions into any of the literals in Ci:

¬si ∨ ¬eklij (3.25)

If Ci is the start clause and Lmn is a leaf which is closed by a literal between the root

node and Lij , then Lmn must be closed with Lij :

¬si ∨ ¬qmnij ∨ omnij (3.26)

3.2.3 Tableau Encoding Algorithms

We provide three algorithms, each with subtle differences. The first algorithm HTE at-

tempts to find a rigid proof and takes as an argument a problem containing only Horn

clauses. The second, NHTE, also attempts to find a rigid proof and takes as an argument

a non-Horn problem. The last algorithm,NRTE, seeks to finds a non-rigid proof and takes

either a Horn or non-Horn problem as an argument.

The rigid algorithm for non-Horn problems may require additional copies of the clauses

in F in order to generate a proof for F and the non-rigid algorithm may also require addi-

tional instances of clauses. In the case of the former, copies of clauses in F are added to the

set of problem clauses. The number of copies required can be bounded by kn where n is

the number of clauses in F and k is the maximum number of literals in any clause in F . In

the case of the non-rigid algorithm, new instances of clauses in F which are standardized

apart are added to the problem clauses.

Each algorithm initially enters a while loop. While in the loop the set of clauses S,

which encode the closed rigid connection tableau, is given to an external SAT solver. The

SAT solver returns satisfiable or unsatisfiable and if the set of clauses is satisfiable, the SAT

solver returns a modelM . If the SAT solver returns satisfiable we check if the assignments

32

which are assigned true inM are consistent. If not, we add additional clauses to S to resolve

these inconsistencies and call the SAT solver again. If the algorithm determines that S is

satisfiable and the assignments which are assigned true are consistent, the algorithm returns

an indication that F is rigidly unsatisfiable.

The function Unify-Substitutions takes as an argument the model M generated by the

SAT solver and generates additional clauses to rectify inconsistencies in the assignments

used in the proof. The only inconsistency that can occur among assignments is due to

cycles. For example, {x1 = f(x2), x2 = f(x3), x3 = f(x1)}. If a cycle is found, a clause

is created which prevents the conflict. These clauses are added to the original set of clauses

generated by the algorithm which are again checked by the SAT solver.

Algorithm 2: Rigid Algorithm For Horn Problems (HTE)
input : F , a set of FO formula in conjunctive normal form
output: RIGIDLY SATISFIABLE or RIGIDLY UNSATISFIABLE

Generate S, the encodings for F ;
while true do

result := SAT-Solver(S ∪ S ′
);

if result == SATISFIABLE and the model M is consistent then
return RIGIDLY UNSATISFIABLE;

else if result == SATISFIABLE then
S

′
:= Unify-Substitution(M);

else
return RIGIDLY SATISFIABLE;

3.2.4 Completeness and Soundness Theorems for HTE

In the following proofs we refer to the sets of clauses generated by HTE by the enumeration

given in Section 3.2.1.

Theorem 2 (Completeness) Let F be a set of first order logic Horn clauses. If F is rigidly

unsatisfiable, then HTE will return RIGIDLY UNSATISFIABLE.

33

Algorithm 3: Rigid Algorithm For Non-Horn Problems (NHTE)
input : F , a multi-set of FO formula in conjunctive normal form
output: RIGIDLY UNSATISFIABLE

F
′
:= F ;

S
′
:= ∅;

while true do
Generate S, the encoding for F

′
;

result := SAT-Solver(S ∪ S ′
);

if result == SATISFIABLE and the model M is consistent then
return RIGIDLY UNSATISFIABLE;

else if result == SATISFIABLE then
S

′
:= Unify-Substitution(M);

else
F

′
= F

′ ∪ F ;

Algorithm 4: Non-Rigid Algorithm (NRTE)
input : F , a set of FO formula in conjunctive normal form
output: RIGIDLY UNSATISFIABLE

F
′
:= F ;

S
′
:= ∅;

while true do
Generate S, the encoding for F

′
;

result := SAT-Solver(S ∪ S ′
);

if result == SATISFIABLE and the model M is consistent then
return RIGIDLY UNSATISFIABLE;

else if result == SATISFIABLE then
S

′
:= Unify-Substitution(M);

else
Generate set of variants, A, of F . F

′
= F

′ ∪ A;

34

Proof Assume F is rigidly unsatisfiable and let S be the set of clauses for F generated by

HTE. As F is rigidly unsatisfiable then by Theorem 1 there exists a closed rigid connection

tableaux T . It also follows that the start node of T contains only negative literals. From T

we will construct a map from the variables in S to {true, false} so that S is satisfiable.

If Cm appears in the tableau set cm = true otherwise set cm = false. If Lmn is an

internal node in the tableau set lmn = true otherwise set lmn = false. If Cq is an extension

of Lmn set emnq = true otherwise set emnq = false. If τ is an assignment implied by the

unifiers used applications of the closure rule set uτ = true otherwise set uτ = false and

if there exists a path from Cm to Cq set pmq = true otherwise set pmq = false.

As T has a start node containing only negative literals, there exists a variable in Set 1

which is true. Thus Set 1 of S is satisfiable.

As T is a connection tableau and each extension of T closes the branch containing the

positive literal of a clause, and since each clause contains at most one positive literal, then

each negative literal in T is an internal node. Hence each variable representing a clause in

T is true iff its negative literal variables are also true. Thus Set 2 is satisfiable.

Since each negative literal in T must be extended it follows that each variable represent-

ing a negative literal in T is true iff the variable representing its extension is true. Therefore

Set 3 is satisfiable. Furthermore since each extension of T extends a literal to all the literals

in a clause, an extension variable is true iff the clause variable associated with the extension

is true. Thus Set 4 is satisfiable.

Since each extension in T unifies complementary literals, it follows that an extension

variable is true iff each of the variables representing the assignments in the unifier used in

the unification of the complementary literals are true. Hence Set 5 is satisfiable. It also

follows by the consistency of T that inconsistent assignments can not both be true, thus

for each pair of variables representing inconsistent assignments we have one is true iff the

other is false. Hence Set 6 is satisfiable. In addition if two assignments map the same

variable to unifiable terms s and t then the assignments used in the unification of s and t

35

must be true. Therefore Set 7 is satisfiable.

Now as there exists paths between literals and clauses via extensions in T , if a variable

representing an extension is true then the variable representing the path is true. Thus Set 8

is satisfiable. And since the paths in T have a transitive relation and no cycles exist in T ,

Sets 9 and 10 are satisfiable respectively.

Therefore since each of the sets of clauses in S are satisfiable, then the SAT solver

called in HTE returns a satisfiable model with consistent assignments, hence HTE returns

RIGIDLY UNSATISFIABLE.

Theorem 3 (Soundness) If HTE on F returns RIGIDLY UNSATISFIABLE then F is rigidly

unsatisfiable.

Our proof of soundness uses the satisfiability map produced by HTE to construct a

tableau for F .

Proof Suppose HTE on F returns RIGIDLY UNSATISFIABLE. Then there exists a set of

clauses S generated by HTE and a modelM for which S is satisfiable. Furthermore the set

of assignment variables that are true in M correspond to a consistent set of assignments.

We construct a closed rigid connection tableau T for F using M and S as follows.

Since S is satisfiable the clause C = c1 ∨ ... ∨ cn in Set 1 of S, is satisfiable. Since C

is satisfiable at least one of the variables in C are assigned true. Let cm where m ∈ [1..n]

be a variable of C such that cm = true. We begin constructing T by setting Cm as the start

clause of T . 2

Now as cm = true and Set 2 is satisfiable, each of the variables corresponding to the

literals in Cm are true. Thus for each literal Lmn in Cm we create a node directly off the

root and label it Lmn.

Let Lmn be a literal in Cm. Now as lmn is true and Set 3 is satisfiable there exists some

variable emnqi which is true and as Set 4 is satisfiable emnqi = true implies cqi = true. We

2It may be the case that more than one variable of C is assigned true. This corresponds to the fact that
there may be more than one closed rigid connection tableau for F .

36

therefore expand the node labeled Lmn in T with clause Cqi . We continue this process until

all literal, clause, and extention variables which are assigned true have been addressed. By

the satisfiability of Sets 2− 4, T is closed.

Now let emnqi be a variable in M which is set to true. Since Set 5 is satisfiable, emnqi

implies that a set of assignments are true. We label the edge from Lmn to the positive

literal in Cqi with these assignments. Since each extension unifies adjacent complementary

literals and the assignments in M are consistent, T is connected and consistent.

The satisfiability of Sets 8 − 10 ensure that there are no cycles in T , hence T is a tree.

It follows then that T is a closed connection tableau. Since each clause in T is in F , T is

a closed rigid connection tableau for F . Thus by the soundness theorem for closed rigid

connection tableaux, F is rigidly unsatisfiable.

3.2.5 Completeness and Soundness Theorems for NHTE

Here we provide the completeness theorem of NHTE which takes as input non-Horn prob-

lems. In the proofs, we refer to the sets of clauses generated by NHTE by the enumeration

given in Section 3.2.2.

Theorem 4 (Completeness) Let F be a set of first order clauses. If F is rigidly unsatisfi-

able, then NHTE will return RIGIDLY UNSATISFIABLE.

Proof Assume F is rigidly unsatisfiable and let S be the set of clauses for F generated by

NHTE. By Theorem 1, as F is unsatisfiable, there exists a closed rigid connection tableaux

T for F . It also follows that the start node of T contains only negative literals. Let S be the

set of clauses generated by NHTE. Given T we will construct a map from the variables in

S to {true, false} so that S is satisfiable.

Set sm = T iff Cm is the start clause. Set cmn = T iff Cm appears in the tableau and

Lmn is closed by an application of the extension rule. Set lmn = T iff Lmn is a node in

the tableau but is not closed by an application of the extension rule. Set emnqj = T iff Cq

37

is an extension of Lmn and Lqj closes Lmn. Set uτ = T iff τ is a assignment implied by

substitutions used in the closure rules. Set oijkl = T iff Lkl is used to close Lij but not

during an application of the expansion rule. Set pmq = T iff there exists a path from a

literal in Cm to Cq. Set qmnij = T iff Lmn is a leaf and is closed by a literal between the

root node and Lij .

As T has a start node containing only negative literals, there exists a variable in Set 11

which is true, thus Set 11 of S is satisfiable. Since each of the literals in the start clause

are in T and are not closed by an application of the expansion rule then their respective

variables are true, therefore Set 12 is satisfiable.

Now as each clause in T (except for the start clause) is the result of an expansion rule,

and only one literal in each clause is closed in the process of using the expansion rule, all

the other literals are in the tableau but are not closed by an application of the expansion

rule. Hence Set 13 of S is satisfiable.

Suppose Lij is in T such that Lij is not closed by an application of the expansion rule.

Then either Lij is extended or Lij has been closed by a complementary literal on its path.

It follows that Set 14 is satisfiable.

Since each extension in T adds a clause to T , Set 15 is satisfiable. Since each extension

in T unifies complementary literals, it follows that an extension variable is true iff each

of the variables representing the assignments in the unifier used in the unification of the

complementary literals are true. Hence Set 16 is satisfiable. It also follows by the consis-

tency of T that inconsistent assignments cannot both be true, thus for each pair of variables

representing inconsistent assignments, one is true iff the other is false. Hence Set 17 is

satisfiable. In addition if two assignments map the same variable to unifiable terms s and

t then the assignments used in the unification of s and t must be true. Therefore Set 18 is

satisfiable.

As each pair of literals which are used in a non-extension closure are complements,

if a variable representing the non-extension closure between two literals is true then the

38

variables representing the assignments implied by unification of their atoms are true. Hence

Set 19 is satisfiable. Since no two literals with have the same sign or which have atoms that

are not unifiable cannot be used in a non-extension closure, Set 20 is satisfiable.

Suppose Lij is a leaf and is closed by a literal between the root and Lkl. If the clause

containing Lkl is an extension of some node Lmn then either Lmn is a complement of Lij or

Lij is closed by a literal between the root node and Lmn. It follows that Set 21 is satisfiable.

Now as there exists paths between literals and clauses via extensions in T , if a variable

representing an extension is true then the variable representing the path is true. Thus Set

22 is satisfiable. And since the paths in T have a transitive relation and no cycles exist in

T , Sets 23 and 24 are satisfiable respectively.

As the start clause has no expansions into it, Set 25 is satisfiable. And since if a leaf,

say Lij in T is closed by a non-extension closure by a literal between the root and Lmn

of the start clause, since there are not literals between the root and the literals of the start

clause, then Lij must be closed by Lmn. Hence Set 26 is satisfiable.

Therefore as each of the sets of clauses in S are satisfiable, then the SAT solver called

in NHTE returns SATISFIABLE. It follows that as T is a tableau the assignments implied

by the closure rule are consistent. Hence, NHTE returns RIGIDLY UNSATISFIABLE.

Theorem 5 (Soundness) If NHTE on F returns RIGIDLY UNSATISFIABLE then F is

rigidly unsatisfiable.

3.2.6 ChewTPTP-SAT

We have implemented our tableau encoding method in a command line program written

in C++ called ChewTPTP-SAT. The default options assume the input file is in TPTP CNF

format [79]. By default the program assumes the input problem is non-Horn and uses the

non-Horn algorithm with one instance of the clauses in the input file. The user may specify

alternate settings by including the following flags. The flag -h indicates the problem is

Horn, -r specifies the user wishes the program to run one of the rigid algorithms, -i

39

allows the user to input the number of instances of the problem to use, and -p instructs the

program to print a proof. Other options are provided to control input and output.

The program initially parses the input file and constructs a data structure to hold the

clauses in memory. The program then constructs the sets of clauses defined in section

3.2.1 or section 3.2.2. While generating the clauses, a data structure is kept which maps

each variable to a unique integer. We use the integers to format the clauses in a MiniSat

[108] readable format. ChewTPTP-SAT then forks a process and invokes MiniSat on the

set of generated clauses and MiniSat determines the satisfiability of the set. When MiniSat

returns, we inspect the file output by MiniSat. If the file contains an indication of satisfi-

ability we check that the substitutions are unifiable and if so, we use the model provided

by MiniSat to construct a proof. If MiniSat returns back an indication of unsatisfiable, the

program returns SATISFIABLE in the rigid Horn case, and may add additional clauses and

repeat the process in the other cases.

Experimental Results

Preliminary results on 1365 Horn and non-Horn CNF problems without equality in the

TPTP Library show that 221 of them have rigid proofs requiring a single instance. We have

found that ChewTPTP-SAT was able to solve some problems which many theorem provers

could not within a 600 second time limit, e.g. the non-Horn problems ANA003-4.p and

ANA004-4.p. And although we have not tested the library extensively by adding additional

instances, ChewTPTP-SAT was successful solving non-rigid problems that others were

unable, e.g. ANA003-2 was proved with 2 instances in less than 5 seconds.

Below in Table 3.2.6 are some statistics on the problems mentioned above and a few

other problems. The first column identifies the name of the problem in the TPTP library

and the second column identifies whether or not the problem is Horn. The third column

identifies the number of instances that were required to prove the problem. The fourth col-

umn gives the number of seconds ChewTPTP-SAT took to generate the tableau encoding(s)

40

Table 3.1: Statistics on Selected Problems
Name Horn Instances Clause Gen MiniSat Clauses Variables

(sec) (sec)

ALG002-1 N 2 1.2 65.93 411020 13844
ANA003-2 Y 2 .1 4.88 183821 7238
ANA003-4 N 1 1.1 .06 34774 2616
ANA004-4 N 1 1.61 .3 44142 3160
COL121-2 Y 1 1.35 .16 47725 2322
GRP029-2 Y 1 .08 1.41 241272 7943
PUZ031-1 N 1 .24 .71 662145 14672

and the fifth column gives the total time (in seconds) that MiniSat ran on the problem. The

sixth and last columns give the number of clauses and variables respectively that were input

to MiniSat when MiniSat returned SATISFIABLE.

In our ChewTPTP-SAT implementation, some problems generate large encodings for

MiniSat to solve and Minisat usually solves them very quickly. The implementation shows

promise given that it can solve some problems quickly that many other theorem provers

cannot solve. Obviously it will perform best on problems that do not need many instances

of the clauses. From our results, it appears that more than 15% of the problems without

equality in the TPTP library are rigidly unsatisfiable, requiring only one instance of each

clause. Further investigation, however, needs to be done to identify which class of problems

our method does better on.

Implementation Status

ChewTPTP-SAT, in its current state, is a sound and complete theorem prover for first-

order logic without equality. Though we have been successful in finding problems that

ChewTPTP-SAT can solve and others theorem provers can not, the implementation is not a

overall competitive solution to the first-order validity problem. For example, when submit-

ted into the CASC-J4, the 2008 CADE Automated Theorem Proving System Competition,

[131], ChewTPTP-SAT solved 6 of 100 problems in the CNF division whereas Vampire,

the winner of the division, solved 93 problems.

41

We have however identified ways to improve our implementation which we believe will

make the implementation more competitive. One future modification to the implementation

deals with the manner in which the SAT solver is called. Currently, each time the encoding

is modified, the entire encoding is sent to a new instance of the SAT solver. This results in

the SAT solver searching the same space repeatedly. To avoid this repeated work, a single

instance of the SAT solver can be kept in memory while the encoding is augmented. New

clauses added to the encoding can be sent to the SAT solver and when all new clauses

are added, a new satisfiability query can be made. Eliminating restarts should provide a

significant improvement in performance.

3.3 Encoding in SMT

Our second method to determine the rigid unsatisfiability of F generates a set S of proposi-

tional logic clauses modulo the theories of unification and arithmetic for F which encodes

a rigid closed connection tableau for F and tests the satisfiability of S with a SMT solver.

We provide two encodings, the first for problems containing only Horn clauses and the

second for those containing non-Horn clauses. Given F we enumerate each of the clauses

in F and each of the literals in each clause. We denote clause i by Ci and denote the jth

literal in clause i by Lij . We denote Aij to be the atom of Lij . Therefore Lij is either of the

form Aij or ¬Aij .

3.3.1 Encoding for Horn Clauses

Let F be a set of first order logic formulas.

We define a set of propositional variables cm, lmn, emnq, disjoint from the symbols in

F , as follows: Define cm = T iff Cm appears in the tableau. Define lmn = T iff Lmn is

an internal node in the tableau. Define emnq = T iff Cq is an extension of Lmn. For each

pair of clauses Ci and Cj we define xi < xj = T (where xi and xj do not exist in F)

42

iff there exists a path from Ci to Cj . For each pair of atoms Ai and Aj in F , we define

(Ai = Aj) = T iff Ai and Aj are the two atoms involved in an application of the closure

rule.

Below we list the set of clauses that we generate and provide their meaning.

At least one clause containing only negative literals appears in the tableau:

∨
Cm is a negative clause

cm (3.27)

If Cm appears in the tableau and Lmn is a negative literal then Lmn is an internal node

in the tableau:

cm ⇒ lmn (3.28)

If Lmn is an internal node in the tableau then for some qj , Cqj is an extension of Lmn:

lmn ⇒ (emnq1 ∨ ... ∨ emnqk) (3.29)

where {Cq1...Cqk} represent the set of all clauses whose positive literals are unifiable

with Lmn

If Cq is an extension of Lmn then Cq exists in the tableau:

emnq ⇒ cq (3.30)

If Cq is an extension of Lmn and Lqr is the positive literal in Cq then Amn and Aqr are

unifiable:

emnq ⇒ (Amn = Aqr) (3.31)

If Cq is an extension of Lmn then there is a path from Cm to Cq:

43

emnq ⇒ (xm < xq) (3.32)

The encoding is satisfiable if and only if the original set of first order Horn clauses

is rigidly unsatisfiable. We encode non-rigid unsatisfiability by continually adding new

instances of each clause, renamed apart.

3.3.2 Encoding for Non-Horn Clauses

For non-Horn problems we use a different set of variables and generate a different set of

clauses.

We define the variables, disjoint from the symbols in F, sm, cmn, lmn, emnqj , oijkl and

qmnij as follows: Define sm = T iff Cm is the start clause. Define cmn = T iff Cm

appears in the tableau and Lmn is complementary to its parent. Define lmn = T iff Lmn is

a node in the tableau and is not a leaf node created by an application of the extension rule.

Define emnqj = T iff Cq is an extension of Lmn and Lqj is the complement of Lmn. Define

oijkl = T iff Lij and Lkl are a pair of literals used in a closure but not by the extension rule.

If a path to a node N contains the complement of N , then we say that the path is closed.

Define qmnij = T iff Lmn is a leaf and Lij is a node on a path from the root node to Lmn

and every path from the root to Lij contains a complement of Lmn. For each pair of clauses

Ci and Cj we define xi < xj = T (where xi and xj do not exist in F) iff there exists a path

from Ci to Cj . For each pair of atoms Ai and Aj in F , we define (Ai = Aj) = T iff Ai and

Aj are the two atoms involved in an application of the closure rule.

The clauses are as follows.

There exists a start clause in the tableau which only contains negative literals:

∨
sm is a negative clause

sm (3.33)

If Cm is the start clause in the tableau then each literal Lmn of Cm is in the tableau:

44

sm ⇒ lmn (3.34)

If Ci appears in the tableau and Lij is the complement of a literal in its parent then all

other literals of Ci are in the tableau:

cij ⇒ lik where j = k (3.35)

If Lij exists in the tableau and is not a leaf node created by an application of the closure

rule then either every branch ending at Lij is closed or there is an extension of Lij :

lij ⇒ (qijij ∨ (
∨
k,l

eijkl)) (3.36)

If Lij is extended with Ck then Ck is in the tableau and some Lkl of Ck is the comple-

ment of Lij :

eijkl ⇒ ckl (3.37)

If clause Cm is an extension of Lij and literals Lij and Lml are complements then Aij

and Aml are unifiable.

eijml ⇒ (Aij = Aml) (3.38)

If Lij and Lkl are a pair used in a closure then they must be unifiable:

oijkl ⇒ (Aij = Akl) (3.39)

If Lij has the same sign as Lkl or their respective atoms are not unifiable then they are

not complements:

45

¬oijkl where Lij and Lkl are not unifiable (3.40)

If every path through Lkl to leaf Lij is closed and Ck is an extension of Lmn then either

Lij is a complement of Lmn or every path through Lmn to Lij is closed:

qijkl ⇒ (emnkp ⇒ (oijmn ∨ qijmn)) (3.41)

If Ck is an extension of Lij then there is a path from clause Ci to clause Ck:

eijkl ⇒ (xi < xk) (3.42)

If Ci is the start clause then there are no inferences into any of the literals in Ci:

si ⇒ ¬eklij (3.43)

If Ci is the start clause, Lmn is a leaf, and all paths that traverse Lij to Lmn are closed,

then Lij and Lmn are complementary:

si ⇒ (qmnij ⇒ omnij) (3.44)

We represent our tableau as a DAG, so there is some structure sharing. But even with

the structure sharing, a non-Horn clause tableau may need more than one instance of the

same clause. Rigid unsatisfiability could be determined by continually adding identical

instances of a clause. Non-Horn encoding could also be extended to the non-rigid case in

the same way as the Horn encoding.

3.3.3 ChewTPTP-SMT

We have implemented our tableau encoding in our theorem prover ChewTPTP-SMT, which

is an extension of ChewTPTP-SAT[126]. In ChewTPTP-SAT, instead of using theories, we

46

encoded the consistency of the unifiers and the acyclicity of the tableau with additional

propositional clauses. To encode the consistency of the unifiers, we encoded the equations

that would be created if a unification algorithm was run. We do not know ahead of time

which unifiers we will have to create, so we encode everything that can possibly occur

when the unification algorithm is run. To encode the absence of a cycle, we encode the

existence of a path from one clause to another and the fact that there is no path from a

clause to itself. This requires encoding all possible transitivity and irreflexivity axioms that

may occur.

Our implementation, ChewTPTP-SMT, is a command line program written in C++ that

allows the user to decide whether to encode the problem as a SAT problem or an SMT

problem. If the user chooses SMT, our implementation uses Yices to test the satisfiability

of the encoding. If the user chooses SAT, then the user can also choose whether to test the

satisfiability using Yices or Minisat, with a DIMACS encoding of SAT.

Experimental Results

We tested our prover in all three settings on a subset of TPTP [79] problems. Tables 1-4

provide empirical data from these tests. SMT-Y denotes our prover run in SMT mode, SAT-

Y is SAT mode using Yices, and SAT-M is SAT mode using Minisat. For Horn clauses, we

ran ChewTPTP on all the Horn problems in the TPTP database, but for non-Horn we only

had time to run it through the GRP problems. We report all problems that both provers

solved within five minutes but SAT-M took greater than one second. We believe the prob-

lems in these tables are representative of the overall results. Columns in the table show the

running time of each method, the clause generation time rounded off to the nearest second,

the number of clauses generated, and the number of variables generated for each method.

We also show whether or not the problem is rigidly satisfiable. For these experiments, we

only tested rigid satisfiability with one instance of each clause.

We wanted to see if working modulo theories would improve the performance of

47

ChewTPTP. In the Horn case the running time was reduced significantly, except for a small

percentage of exceptions. In the non-Horn case, working modulo theories often increased

the running time. Generally, Yices was faster than Minisat on SAT problems without theo-

ries.

We believe we have an explanation for our results. In the Horn problems the number

of clauses is reduced by an order of magnitude, whereas in the non-Horn problems the

number of clauses is not reduced by much. This implies that working modulo theories is

only useful when the clauses size is reduced significantly.

In the Horn encoding, everything can be encoded in O(n2) except for the encoding

of unification and acyclicity, which require O(n3) space. When we remove the clauses

used to represent unification and acyclicity, the number of clauses is nowO(n2). However,

for the encoding of non-Horn clauses, we must encode the fact of a leaf node having a

complementary literal as an ancestor. This encoding is O(n3). We do not know how

to encode this using the theories of Yices, so we have kept the propositional encoding.

Therefore, when we remove the encoding of unification and acyclicity, the entire coding

of the problem is still O(n3). We conjecture a good rule of thumb for deciding when it

is useful to encode properties using theories. We conjecture that if the number of clause

can be reduced by a factor of n, then the coding is useful, but if the asymptotic complexity

remains the same, then it is not a good idea.

Implementation Status

The current version of ChewTPTP-SMT is a sound and complete first-order logic theo-

rem prover. Though ChewTPTP-SMT runs well on Horn problems, it is not currently a

competitive solution to the first-order validity problem compared to other theorem provers.

Similar to ChewTPTP-SAT, eliminating restarts will provide a significant improvement to

the performance ChewTPTP-SMT. Additional improvement in performance would be seen

if the non-Horn encoding can be reduced by a factor of n, however at this point, we have

48

Table 3.2: ChewTPTP Times For Horn Problems
SAT-M/Y SMT-Y SAT-M SAT-Y SMT-Y

Name Clause Gen Clause Gen Total Total Total
PUZ008-1.p 1 0 1.06 0.89 0.11
NLP106-1.p 2 0 1.8 1.9 0.06
NLP104-1.p 2 0 1.82 1.9 0.05
NLP105-1.p 2 0 1.83 1.89 0.06
NLP107-1.p 2 0 2.47 1.99 0.06
GRP033-3.p 1 0 2.48 1.8 0.28
NLP109-1.p 1 0 2.49 1.99 0.05
NLP113-1.p 2 0 2.51 2.01 0.06
NLP110-1.p 2 0 2.74 1.84 0.07
NLP112-1.p 2 0 2.92 1.92 0.07
NLP111-1.p 1 0 2.94 1.93 0.06
NLP108-1.p 2 0 2.94 1.94 0.07
PUZ036-1.005.p 3 0 4.33 2.92 0.03
RNG037-2.p 4 0 5.33 5.35 6.2
RNG038-2.p 4 0 5.34 3.89 19.94
RNG001-5.p 4 0 6.93 5.32 0.84
SWV015-1.p 9 0 9.64 10.08 0.08
SWV017-1.p 11 0 10.82 11.27 0.1
RNG006-2.p 7 0 11.19 7.53 6.03

49

Table 3.3: ChewTPTP Clause and Variable Count For Horn Problems
SAT-M/Y SMT-Y SAT-M/Y SMT-Y Result

Name Cls Ct Cls Ct Var Ct Var Ct
PUZ008-1.p 52957 323 207608 216 sat
NLP106-1.p 130174 338 513774 392 unsat
NLP104-1.p 130724 344 515712 398 unsat
NLP105-1.p 130724 344 515712 398 unsat
NLP107-1.p 137380 315 542996 370 unsat
GRP033-3.p 115013 737 445065 383 sat
NLP109-1.p 137380 315 542996 370 unsat
NLP113-1.p 137897 319 544836 374 unsat
NLP110-1.p 128150 296 506951 350 unsat
NLP112-1.p 135667 287 537099 342 unsat
NLP111-1.p 135667 287 537099 342 unsat
NLP108-1.p 135667 287 537099 342 unsat
PUZ036-1.005.p 185292 45 729464 91 unsat
RNG037-2.p 221760 1524 876393 714 sat
RNG038-2.p 230063 1522 910786 718 sat
RNG001-5.p 258888 1527 1026821 725 sat
SWV015-1.p 559284 1047 2105121 532 unsat
SWV017-1.p 625119 1137 2354882 578 unsat
RNG006-2.p 432194 2058 1702459 925 sat

50

Table 3.4: ChewTPTP Times For Non-Horn Problems
SAT-M/Y SMT-Y SAT-M SAT-Y SMT-Y

Name Clause Gen Clause Gen Total Total Total
ANA025-2.p 1 0 1.02 1.04 2.43
COL121-2.p 0 1 1.02 0.92 1.41
ANA004-4.p 1 0 1.33 1.87 2.77
GRA001-1.p 2 2 1.92 1.74 4.08
ANA029-2.p 2 2 2.05 2.08 4.68
ANA005-2.p 2 1 2.38 2.31 4.72
ANA004-2.p 2 1 2.39 2.3 5.06
ANA003-2.p 3 1 2.96 2.81 5.53
GRP123-1.003.p 3 2 3.41 3.76 18.11
ANA001-1.p 4 2 4 3.84 7.94
GRP123-2.003.p 4 3 5.55 5.37 17.66
ANA002-2.p 5 3 5.73 5.34 10.56
ANA002-1.p 5 3 6.17 5.67 11.84
GRP124-2.004.p 9 6 10.51 11.4 43.91
GRP033-3.p 15 6 20.11 15.69 23.18
GRP123-3.003.p 28 20 30.63 30.73 80.84
ALG002-1.p 1 1 43.51 64.92 75.33
ANA004-5.p 2 1 47.25 21.5 83.54
GRP124-3.004.p 46 31 88.23 83.83 171
COM003-2.p 82 49 88.72 84.54 168.1

51

Table 3.5: ChewTPTP Clause and Variable Count For Non-Horn Problems
SAT-M/Y SMT-Y SAT-M/Y SMT-Y Result

Name Cls Ct Cls Ct Var Ct Var Ct
ANA025-2.p 41129 36020 2655 2286 sat
COL121-2.p 47725 20335 2322 1538 sat
ANA004-4.p 44142 36844 3160 2631 sat
GRA001-1.p 64222 60849 3292 3161 sat
ANA029-2.p 79860 66884 4107 3388 sat
ANA005-2.p 93806 68206 4907 3802 unsat
ANA004-2.p 93806 68206 4907 3802 unsat
ANA003-2.p 114945 78930 5654 4243 unsat
GRP123-1.003.p 111866 94335 4589 3596 unsat
ANA001-1.p 154246 113596 6680 5185 unsat
GRP123-2.003.p 180783 154243 6723 5450 unsat
ANA002-2.p 226149 151313 7457 5436 unsat
ANA002-1.p 229871 151313 7544 5437 unsat
GRP124-2.004.p 339070 283967 10854 8953 unsat
GRP033-3.p 699160 301901 15989 8961 sat
GRP123-3.003.p 1003831 934044 17763 15377 unsat
ALG002-1.p 54559 32731 3524 2460 unsat
ANA004-5.p 101166 44953 4981 3196 unsat
GRP124-3.004.p 1596801 1468732 25314 21981 unsat
COM003-2.p 2920669 2365922 46818 36051 sat

52

yet to develop such an encoding.

3.4 Conclusion

We introduced in [126] and [128] two novel approaches to first-order theorem proving

which encodes a closed rigid connection tableaux proof of first-order unsatisfiability in

SAT and SMT respectively.

Compared to our encoding in SAT, the encoding in SMT is more natural and more

efficient. As part of our encoding, we need to encode the solving of unification problems

and the acyclicity of the tableau. In SAT, it was necessary to add cubically many clauses

to encode the solving of unification. In addition, it was necessary to add cubically many

clauses to encode the acyclicity of the tableau. However, when encoding this information in

SMT, there was no need to encode the solving of unification, since this was accomplished

directly with the Yices recursive datatype theory. The number of unification clauses was

reduced from a cubic to a quadratic number. Similarly for acyclicity of tableau, we did

not need to encode the transitivity and irreflexivity of the path relation. We only needed to

express edges in the tableau as inequalities. The number of clauses to represent acyclicity

also dropped from a cubic number to a quadratic number.

In the SMT Horn encoding, all the other information in the tableau can also be encoded

with a quadratic number of clauses. Therefore the entire encoding of the existence of a

tableau dropped from a cubic number of clauses in SAT to a quadratic number in SMT. This

drastically reduced the number of clauses, and simultaneously decreased the time needed

to decide the satisfiability of the clauses. There was only a small reduction in number of

clauses for non-Horn clauses, because we still need to encode the fact that all paths in the

tableau can be closed. Therefore the entire encoding is still cubic, and the running time was

actually worse. We conjecture a rule of thumb saying that it is worthwhile to use theories

if the number of clauses is reduced by a factor of n, but not worthwhile if the asymptotic

53

number remains the same.

For future work includes looking at ways to be able to use SMT to further reduce

the representation for non-Horn clauses, ideally cutting it down to a quadratic number of

clauses. It would be possible to define a theory to do this directly, but we have not yet

figured out how to do it with the existing theories in Yices. In addition, in order to prove

the general first order problem we also need to find a good heuristic to decide exactly

which clauses should be copied. We would like a method to decide satisfiability from rigid

satisfiability. It would be useful to have an encoding of rigid clauses modulo a non-rigid

theory, as discussed in [122]. This way, we could immediately identify some clauses as

non-rigid, and work modulo those clauses.

Though our implementations are not yet state-of-the-art, our work shows the usefulness

of SAT and SMT to theorem proving in first order logic. We suspect there are other logics

which could also be solved efficiently using these methods.

54

Chapter 4

Combining Instance Generation and

Resolution

Although resolution methods appear to be more efficient in practice, there are some classes

of problems that are suited better for instantiation-based methods. In [136] we show that we

can combine both instance generation and resolution into a single inference system while

retaining completeness with the aim of getting the best of both methods. We define the

inference system named SIG− Res that combines semantic selection instance generation

(SInst-Gen) with ordered resolution.

Each clause in the given set of clauses is determined, by some heuristic, to be an in-

stantiation clause and placed in the set P or a resolution clause and placed in the set R or

placed in both P and R. Clauses from P are given to a SAT solver and inferences among

them are treated as in SInst-Gen, while any inference which involves a clause in R is a

resolution inference.

Our combination of instance generation and resolution differs from the method used in

the instantiation-based theorem prover iProver [133] which uses resolution inferences to

simplify clauses, i.e. if a conclusion of a resolution inference strictly subsumes one if its

premise then the conclusion is added to the set of clauses sent to the SAT solver and the

55

subsumed premise is removed. Our inference system also allows for the use of resolution

for the simplification of the clauses in P , but differs from iProver in that it restricts certain

clauses, the clauses in R, from any instance generation inference.

Our idea is similar to the idea of Satisfiability Modulo Theories (SMT), where clauses

in P represent data, and the clauses in R represent a theory. This is similar to the SMELS

inference system [132] and the DPLL(Γ + T) inference system [141]. The difference be-

tween those inference systems and ours is that in those inference systems, P must only

contain ground clauses, and the theory is all the nonground clauses, whereas in our case we

allow nonground clauses in P .

Below, we discuss SIG-Res, prove the completeness of our inference system, discuss

our implementation called Spectrum, and present some initial results.

4.1 Preliminaries

4.1.1 Jeroslow Constant

⊥ is used to denote a distinguished constant called the Jeroslow constant and the substi-

tution which maps all variables to ⊥. If L is a literal then L⊥ denotes the ground literal

obtained by applying the ⊥-substitution to L and if P is a set of clauses then P⊥ denotes

the set of ground clauses obtained by applying the ⊥-substitution to the clauses in P .

4.1.2 Term Orderings

A binary relation on a set A is a set of ordered pairs of elements from A. A binary relation

� is transitive if for all x, y and z in A it holds that if x � y and y � z then x � z. A

binary relation � is irreflexive if for all x in A it holds that not x � x.

Ordering are binary relations with special properties. A strict partial ordering is an

irreflexive and transitive binary relation. A strict ordering is well-founded if there is no

56

infinite descending chain of elements. An ordering � is total on S if for every distinct pair

of elements x and y in S it holds that x � y or y � x. An ordering � is stable under

substitution if for any substitution σ and for all x and y in S it holds that if x � y then

xσ � yσ.

Given a signature Σ we say that � is compatible with Σ-operations if s � s′ im-

plies f(t1, ·, ti−1, s, ti+1, ·, tn) � f(t1, ·, ti−1, s
′, ti+1, ·, tn) for all f/n ∈ Σ, for all terms

s, s′, t1, ·, tn ∈ TΣ∪X and for all coefficients i ∈ N, 1 ≤ i ≤ n.

We say that � has the subterm property if s � s′ whenever s′ is a proper subterm of

s. We say � is a rewrite relation if � is compatible with Σ-operations and stable under

substitutions and we say � is a rewrite ordering if it is a strict partial ordering and a rewrite

relation. A simplification ordering is a rewrite ordering that has the subterm property.

An ordering > on terms is any strict partial ordering that is well-founded, stable under

substitution and total on ground terms. We extend > to atoms in such a way so that for any

atom A we have ¬A > A. The ordering > is extended to clauses by considering a clause

as a multiset of literals.

Given a clause C, a literal L ∈ C is maximal in C if there is no K ∈ C such that K >

L. We define a mapping, max from clauses to multisets of literals such that max(C) =

{L|L is maximal in C}.
If X is a set of variables, Σ is a signature, and > is a strict partial ordering on Σ a

(regular) symbol weight assignment is a function λ : Σ ∪X → N. Furthermore, we say λ

is admissible for > if and only if

(i) ∃λ0 ∈ N>0 such that ∀x ∈ X : λ(x) = λ0 and ∀c/0 ∈ Σ : λ(c) ≥ λ0

(ii) If there is f/1 ∈ Σ such that λ(f) = 0, then we must have: ∀g ∈ Σ : f ≥ g

Throughout the remainder of this paper and in our implementations we use the sim-

plification ordering on terms called the Knuth-Bendix ordering. It is parameterized by an

ordering on the symbols in the signature and a weight function on terms. We give below

the version found in [127].

57

We extend a weight assignment λ to a function wλ : TΣ∪X → N on terms as follows:

• For x ∈ X:

wλ(x) = λ(x)

• For n ∈ N and t1, · · · , tn ∈ TΣ∪X :

wλ(f(t1, · · · , tn)) = λ(f) +

n∑
i=1

wλ(ti)

Definition 4 (Knuth-Bendix Ordering) Let Σ be a signature and letX be a set of variables.

Additionally, let > be a strict partial ordering, the precedence, on Σ and λ : Σ ∪X → N

be a regular symbol weight assignment that is admissible for >. Finally, let w = wλ :

TΣ∪X → N be the regular term weight function induced by λ.

We define the Knuth-Bendix ordering�KBO⊆ TΣ∪X×TΣ∪X induced by (>, λ) on terms

s, t ∈ TΣ∪X in the following way: s �KBO t if and only if

(KBO1) ∀x ∈ X : |s|x ≥ |t|x and w(s) > w(t)

or

(KBO2) ∀x ∈ X : |s|x ≥ |t|x, w(s) > w(t) and one of the following cases holds:

(KBO2a) ∃f/1 ∈ Σ, ∃x ∈ X, ∃n ∈ N>0 such that s = fn(x) and t = x.

(KBO2b) ∃f/m, g/n ∈ Σ(m,n ∈ N), ∃s1, · · · , sm, t1, · · · , tn ∈ TΣ∪X such that
s = f(s1, · · · , sm), t = g(t1, · · · , tn) with f > g

(KBO2c) ∃f/m ∈ Σ(m ∈ N>0), ∃s1, · · · , sm, t − 1, · · · , tm ∈ TΣ∪X , ∃i, 1 ≤
i ≤ m such that s = f(s1, · · · , sm), t = f(t1, · · · , tm) and such that
s = t1, · · · , si−1 = ti−1, si �KBO ti

58

4.1.3 Interpretations

A Herbrand interpretation, I , is a consistent set of ground literals. We say that a ground

literal is undefined in I if neither it nor its complement is in I . If a ground literal L is in I

then we say that L is true in I and L is false in I . I is a total interpretation if no ground

literal is undefined in I . A ground clause C is true in a partial interpretation I if there exists

some literal L in C that is true in I , and we say that C is satisfied by I .

4.1.4 Closures

A closure is denoted by the pair C ′ ·σ, where C ′ is a clause and σ is a substitution. Suppose

C = C ′ · σ is a closure. As an abuse of notation we may also refer to C as the instance of

C ′ under the substitution σ, that is C ′σ. We say that C is a ground closure if C ′σ is ground.

If S is a set of clauses and C ′ ∈ S we say that C ′σ is an instance of S. A closure ordering

is any well founded and total (modulo renaming) ordering on closures.

4.2 Semantic Selection Instance Generation and Ordered

Resolution

The main idea behind all saturation-based instance generation methods is to augment a set

of clauses with sufficiently many proper instances so that the satisfiability of the set can be

determined by a SAT solver. Additional instances are generated using some form of the

Inst-Gen [106] inference rule. An instance generation with semantic selection inference

system (SInst-Gen) (See Figure 4.1) uses a selection function and the notion of conflicts

to determine exactly which clauses are to be used as premises in the instance generation

inferences.

Let P be a set of first order clauses and view P⊥ as a set of propositional clauses.

Under this setting, if P⊥ is unsatisfiable, then P is unsatisfiable and our work is done.

59

Otherwise a model for P⊥ is denoted as I⊥ and we define a selection function, sel(C, I⊥),

which maps each clause C ∈ P to a singleton set {L} such that L ∈ C and L⊥ is true in

I⊥ .

We say, given a model I⊥, that two clauses L ∨ Γ and K ∨Δ conflict if

(i) L ∈ sel(L ∨ Γ, I⊥) and K ∈ sel(K ∨Δ, I⊥)

(ii) L and K are unifiable

Instance generation with semantic selection methods saturate a set of clauses P by

repeatedly calling upon a SAT solver to obtain a model for P⊥ and resolving all conflicts

with SInst-Gen inferences. If P⊥ is ever found unsatisfiable, P is unsatisfiable. If, on

the other hand, P⊥ is satisfiable and no conflicts exist then P is satisfiable. SInst-Gen is

refutationally complete [106] but may not halt.

L ∨ Γ K ∨Δ (SInst-Gen)
(L ∨ Γ)σ (K ∨Δ)σ

where

1. L ∈ sel(L ∨ Γ, I⊥) and K ∈ sel(K ∨Δ, I⊥)
2. σ = mgu(L,K)

Figure 4.1: SInst-Gen Inference Rule

The ordered resolution and factoring inference rules are well known in the literature.

For completeness they are given in Figure 4.2. The strength of ordered resolution is in

its ability to reduce the search space by requiring only inferences between clauses which

conflict where max is the selection function.

The satisfiability of a set R is determined by applying resolution and factoring infer-

ences rules to the clauses inR in a fair manner until either the empty clause (⊥) is resolved,

in which case R is unsatisfiable, or the set is saturated and ⊥ /∈ R, in which case R is sat-

isfiable. As is the case with SInst-Gen, ordered resolution with factoring is refutationally

complete, but for some satisfiable problems may not halt.

60

L ∨ Γ K ∨Δ (Ordered Resolution)
(Γ ∨Δ)σ

where

1. L ∈ max(L ∨ Γ) and K ∈ max(K ∨Δ)
2. σ = mgu(L,K)

L ∨K ∨Δ (Factoring)
(L ∨Δ)σ

where σ = mgu(L,K)

Figure 4.2: Ordered Resolution and Factoring Inference Rules

4.3 SIG-Res

The inferences in SIG-Res are variations of SInst-Gen, ordered resolution and factoring

(see Figure 4.3). SIG-Res is an inference system that establishes two sets of clauses. Given

a problem in CNF, S, which we wish to prove satisfiable or unsatisfiable, we create two sets

of clauses, P ⊆ S and R ⊆ S, not necessarily disjoint, such that P ∪ R = S. Given some

clause C ∈ S, C is designated as either a clause in P , a clause in R, or both, according to

any distribution heuristic of our choosing, so long as P ∪R = S.

The distribution heuristic is a key mechanism in this inference system as it determines

which inferences are applied to the clauses. Under SIG-Res, a distribution heuristic can, at

one end of the spectrum, insert all the clauses of S in P , leaving R empty, which would

make the system essentially a instance generation inference system. On the other end of

the spectrum, the distribution heuristic can distribute all the clauses to R, leaving P empty,

making the system a resolution system. This flexibility allows any number of heuristics to

be used and heuristics to be tailored to specific classes of problems. An open question is

which heuristics perform best and for which classes of problems. In Section 4.5 we describe

one general heuristic, GSM, which we have incorporated into our implementation.

The selection function, sel(C, I⊥), where C ∈ P ∪ R and I⊥ is a model for P⊥, is

defined as follows. For clarity, we note that sel(C, I⊥) returns a singleton set if C ∈ P and

61

a non-empty set if C ∈ R.

sel(C, I⊥) =

⎧⎪⎪⎨
⎪⎪⎩
{L} for some L ∈ C such that L⊥ ∈ I⊥ if C ∈ P

max(C) if C ∈ R

We will have the usual redundancy notions for saturation inference systems. We can

define deletion rules to say that a clause can be deleted if it is implied by zero or more

smaller clauses. For example, tautologies can be deleted. The clause ordering, as we will

define it in the next section, will restrict what subsumptions can be done. In particular, if

a clause C is in R, we say that C is subsumed by a clause D if there exists a substitution

σ such that Dσ is a subset of C. If C is a clause in P , we say that C is subsumed by D if

there exists a substitution σ such that Dσ is a proper subset of C.

We will define saturation in the next section, to take into account the model I⊥. Sat-

uration of S under SIG-Res is achieved by ensuring that all possible inferences are made

(fairness). One way to ensure fairness, as is done in the Primal Partial Instantiation method,

is to increment a counter and only allow inferences with premises having depth less than or

equal to the counter. An alternative method is to perform all possible inferences with the

exception that we restrict conclusions generated during each iteration from being consid-

ered as premises until the next iteration. We have implemented IG-Res in a theorem prover

called Spectrum. Our implementation uses the latter method and follows Algorithm 5.

4.4 Completeness

Let S be a set of clauses. We begin by defining an ordering≺ on the closures in S. Given an

ordering on terms,<, we denote by ≺C any closure ordering with the following properties:

for any closures C · σ and D · τ , C · σ ≺C D · τ if

i. Cσ < Dτ or

ii. Cσ = Dτ and C = Dρ where ρ is a proper instantiator of D

62

L ∨ Γ K ∨Δ (SInst-Gen)
(L ∨ Γ)σ (K ∨Δ)σ

where

1. L ∨ Γ ∈ P and K ∨Δ ∈ P
2. L ∈ sel(L ∨ Γ, I⊥) and K ∈ sel(K ∨Δ, I⊥)
3. σ = mgu(L,K)
4. (L ∨ Γ)σ ∈ P and (K ∨Δ)σ ∈ P

L ∨ Γ K ∨Δ (Ordered Resolution)
(Γ ∨Δ)σ

where

1. L ∨ Γ ∈ R or K ∨Δ ∈ R
2. L ∈ sel(L ∨ Γ, I⊥) and K ∈ sel(K ∨Δ, I⊥)
3. σ = mgu(L,K)
4. (Γ ∨Δ)σ ∈ P if L ∨ Γ /∈ R or K ∨Δ /∈ R

L ∨K ∨Δ (Factoring)
(L ∨Δ)σ

where

1. σ = mgu(L,K)
2. (L ∨Δ)σ ∈ P if L ∨K ∨Δ /∈ R

Figure 4.3: SIG-Res Inference Rules

63

We denote by ≺S any (subsumption) closure ordering with the following property: for

any closures C · σ and D · τ , C · σ ≺S D · τ if

i. Cσ < Dτ or

ii. Cσ = Dτ and Cρ = D where ρ is a proper instantiator of C

Given a set of clauses S = P ∪ R and orderings ≺C and ≺S we define the ordering ≺
on the closures of S as follows. For all closures C and D of S, C ≺ D iff

i. C and D are closures of P and C ≺C D or

ii. C and D are closures of R and C ≺S D or

iii. C is a closure of P and D is a closure of R

C ·σ is a minimal closure in S ifC is a closure in S and C is the minimal representation

of C ′σ in S under ≺.

A ground clause C is redundant in S if there are clauses C1, · · · , Cn in set Gr(S) such

that Ci ≺ C holds for all i, 1 ≤ i ≤ n and C1, · · · , Cn � C. A clause C is redundant in

S if all of the ground instances of C are redundant in Gr(S). A derivation of an inference

system is a sequence (S0, I0, sel0), · · · , (Si, Ii, seli), · · · , where each Si is a multiset of

clauses divided into sets Pi and Ri, Ii is a model of Pi⊥, seli is a selection function based

on the model Ii, and Si+1 results from applying an inference rule or deletion rule on Si. The

sequence has as its limit the set of persistent clauses S∞ =
⋃

i≥0

⋂
j≥i Sj . By definition of

redundancy, if a clause is redundant in some Si it is redundant in S∞.

We define a persistent model I∞ in the following way. Let A1, A2, · · · be an enu-

meration of all the atoms. Let D0 be the derivation sequence. For each i, let Di be the

subsequence ofDi−1 such that (i) if A is true in an infinite number of Ij thenDi is the sub-

sequence ofDi−1 that only contains tuples (Sj, Ij, selj) where Ij makesA true, else (ii) ifA

is not true in an infinite number of Sj thenDi is the subsequence ofDi−1 that only contains

tuples (Sj, Ij, selj) where Ij makes A false. If D∞ = (S0, I0, sel0), · · · , (Si, Ii, seli), · · · ,
then we define I∞ =

⋃
j≥0 Ij .

64

S∞ is called saturated if the conclusion of every inference of (S∞, I∞, sel∞) is in S∞

or is redundant in S∞. A derivation is fair if no inference is ignored forever, i.e. the

conclusion of every inference among persistent clauses is persistent or redundant in S∞. A

fair derivation produces a saturated set.

Now we define the construction of a candidate model for the ground instances of S.

Given a clause ordering ≺ on the closures of a set of clauses, S = P ∪R, for every ground

closure, C, of S, we define εC as a set of zero or more literals in C. We say that C is

productive if εC = ∅, otherwise we say that C is not productive.

LetD be a ground closure in S. We define ID =
⋃

C≺D εC where C is a ground closure

of S and define ID = ID ∪ εD. It follows that if C ≺ D then IC ⊆ ID. We define

IS =
⋃

C εC where C is a ground closure in S.

Suppose that P⊥ is satisfied by the model I⊥ and let ≺ be a closure ordering on the

closures of S. We construct a candidate model for the ground instances of S as follows.

For all ground closures C = C ′ · σ we define εC = {Lσ} if

i. C ′σ is not true in IC and

ii. Lσ is undefined in IC and

iii. (C ′ ∈ P and L⊥ ∈ I⊥) or (C ′ ∈ R and max(C ′σ) = {Lσ})

Otherwise εC = ∅.

Theorem 6 Let S = P ∪ R be a multiset of clauses saturated under SIG-Res. If P⊥ is

satisfied by I⊥ then the set of ground instances of P is satisfiable in the candidate model

IS .

Proof Let S = P ∪ R be a multiset of clauses saturated under SIG-Res and suppose P⊥
is satisfied by I⊥. By the completeness of SInst-Gen [106], IP is a model of the ground

instances of P . As IP ⊆ IS and IS is consistent, it follows that the set of ground instances

of P is satisfiable in the candidate model IS.

65

Theorem 7 Let S = P ∪ R be a multiset of clauses saturated under SIG-Res. S is satisfi-

able if P⊥ is satisfied by I⊥ and S does not contain the empty clause.

Proof Let S = P ∪ R be a multiset of clauses saturated by SIG-Res. Suppose P⊥ is

satisfied by I⊥ and S does not contain the empty clause. We claim that IS is a model of all

ground instances of S.

Suppose on the contrary that IS is not a model for the set of ground instances of S. Let

C = C ′ · σ be the minimal ground closure of S that is false or undefined in IS .

As P⊥ is satisfied by I⊥, it follows that the set of ground instances of P is satisfiable

in the candidate model IS . Therefore it must be the case that C ′ ∈ R.

Let Lσ ∈ max(C). Now, suppose Lσ is undefined in IS . Then as C ′σ is not true in

IS , C is productive, a contradiction. Hence, Lσ is false in IS . If Lσ is a duplicate in C ′σ

then let B′ be the conclusion resulting from the factoring of C ′. Then B′σ is smaller than

C ′σ, thus contradicting the minimality of C ′σ. Therefore, let us assume that Lσ is not a

duplicate and let C ′ = C ′′ ∨ L for some C ′′.

As C is not productive and Lσ is false in IS there exists some productive minimal

ground closure D = D′ · σ 1 such that D ≺ C and εD = {Lσ}. Therefore D′ = D′′ ∨K
where Kσ = Lσ and D′′σ is not true in ID.

Let B′ = (D′′ ∨ C ′′)τ where τ = mgu(K,L) be the conclusion of the resolution

inference with premises D′ = D′′ ∨ K and C ′ = C ′′ ∨ L and let B be the minimal

representative of B′σ. Therefore B is a ground instance of B′.

Now D′ ∈ P orD′ ∈ R so we proceed by cases.

Case 1: Suppose that D′ ∈ P . Since S is saturated by SInst-Gen and C ′ ∈ R, then the

conclusion of the resolution inference between D′ and C ′, i.e. B′, is in P or is redundant.

If B′ is in P then B′σ is satisfied in IS . If B′ is redundant then there exists

B1, B2, ..., Bn ∈ P such that B1, B2, · · · , Bn |= B′ and for all i, 1 ≤ i ≤ n, Bi is smaller

than B′. Since for all i, 1 ≤ i ≤ n, Biσ is satisfied in IS then B′σ is satisfied in IS.

1As clauses are standardized apart we use a single substitution σ.

66

Since B′σ = (D′′ ∨ C ′′)σ is true in IS and C ′′σ is not true in IS then D′′σ must be

satisfied in IS . Now as D′′σ is not true in ID, then it follows that D ≺ B. Therefore

(D′′ ∨K)σ is smaller than (D′′ ∨ C ′′)σ. Hence Kσ = Lσ is smaller than C ′′σ, which is a

contradiction as Lσ ∈ max(C).

Case 2: Suppose now that D′ ∈ R. Since εD = {Kσ}, Kσ ∈ max(D). Therefore

D′′σ is smaller than Kσ. Hence B′ is strictly smaller than C. And as D′′σ is not true in IS

and C ′′σ is not true in IS we have B′σ is not true in IS. If B′ is in S, this contradicts the

minimality of C.

If B′ is redundant in S then there exists clauses B1, B2, · · · , Bn ∈ S each smaller than

B′ such that B1, B2, · · · , Bn |= B′. It follows that there exists some 0 ≤ i ≤ n such that

Biσ is false in IS , hence a contradiction.

Since SIG-Res is refutationally complete and the inferences are sound, it should be

clear that it is only necessary that at some point in time we insert the conclusions of SIG-

Res inferences into the appropriate set as defined by the inference rules. Prior to that time,

without affecting completeness, we can insert conclusions from inferences into P orR with

disregard to the algorithm if by doing so we can find a solution quicker.

4.5 Spectrum

We have implemented SIG-Res in a theorem prover for first order logic called Spectrum.

The name comes from the fact that given a set of clauses, our choices to construct the sets

P and R are among a spectrum.

Spectrum is written in C++, has a built-in parser for CNF problems in the TPTP format

[79] and outputs results in accordance to the SZS ontology [79]. It takes as arguments

a filename and mode and outputs satisfiable or unsatisfiable. The modes determine how

the clauses will be distributed to the sets P and R. There are a number of distribution

modes which Spectrum can be run in. When running Spectrum with the -p flag, Spectrum

67

places all clauses in P , hence makes Spectrum run essentially as an instantiation-based

theorem prover. The flag -r makes Spectrum run essentially as a resolution theorem prover

by placing all the clauses in R. Running spectrum without a mode flag runs our default

heuristic we call Ground-Single Max (GSM).

It is well known that in general, SAT solvers are more efficient in solving ground in-

stances than resolution. Our GSM heuristic takes advantage of this by placing all ground

clauses in P . GSM also places all clauses with more than one maximal literal in P . GSM

places all other clauses in R.

When the program begins, the program distributes the clauses to the two sets P and

R in accordance with the distribution mode and if a clause is inserted in R, its maximal

literals are identified. After distributing the clauses, Spectrum follows Algorithm 5.

As we begin the instance generation phase on the set P , Yices [147] is used to check the

satisfiability of the ground instances of P⊥. If Yices reports the problem as inconsistent,

Spectrum reports unsatisfiable and halts. However, if Yices reports the problem is consis-

tent (satisfiable) we retrieve a model from Yices and select for each clause the first literal

in the clause whose propositional abstraction is true in the model. These are the selected

literals that we use for determining if conflicts exist. If a conflict exists we instantiate the

new clauses and check to see if the new clauses already exist in P . If not, we add them

to P . To ensure that we do not run the instance generation phase forever we do not al-

low conclusions to SInst-Gen inferences to be premises until after the next call to the SAT

solver.

Following the instance generation phase, we check for resolution inferences. We first

resolve all unchecked pairs of clauses where both clauses are in R, and then for the

unchecked pairs where one clause is in P and the other is in R. To ensure fairness, we

exclude from being premises SInst-Gen conclusions that were added during the previous

instantiation phase and conclusions from resolution and factoring inferences that are added

in the current iteration. If an inference is made, we check to see if it is the empty clause.

68

If so, Spectrum reports unsatisfiable and halts. Otherwise, if one of the premises is in P

we perform the simple redundancy check as stated above and when appropriate add the

conclusion to P . If, on the other hand, both premises are in R we check for factors. If a

factor is slated for R we determine if it already exists in R and if it is forwardly-subsumed

by some clause in R. If it is slated for P we only check to see if it already exists in P .

If no new clause is added during an iteration, Spectrum reports Satisfiable and halts,

otherwise it repeats the process.

Experimental Results

We have tested Spectrum on 450 unsatisfiable problems rated easy in the TPTP library.

These problems, in general, are not challenging for state of the art theorem provers, but

allow us to compare the different modes of our implementation and give us simple proofs

to analyze. Of the 450 problems we tested, Spectrum run in GSM mode for 300 seconds

solved 192 problems 2. Of these 192 problems when given the same time limit, 18 could

not be solved by Spectrum run in -p mode where the problem is solved using only instance

generation or in -r mode where only resolution inferences are allowed. Interestingly, 16

of these are in the LCL class of problems, the class of Propositional Logic Calculi. Many

of these problems contain the axioms of propositional logic which have clauses that are

similar to the transitivity property. These can produce a large number of clauses under

resolution. These clauses, when run under our heuristic, are put inP to avoid this condition.

Also present are clauses which we call growing clauses because their tendency to produce

larger and larger clauses. These growing clauses, e.g. ¬P (x) ∨ P (f(x)), contain pairs of

complementary literals where each argument in the first is a subterm of the second and there

exists at least one argument that is a proper subterm. Growing clauses, under our heuristic,

since they have only a single maximal literal, are put in R which avoids this problem.

2These results reflect that our implementation is not yet competitive and lacks some key processes such
as robust redundancy deletion.

69

Algorithm 5: Spectrum(P,R)
input : Sets P and R containing FO formula in conjunctive normal form
output: SATISFIABLE or UNSATISFIABLE
while true do

NP := ∅;
NR := ∅;

Run SAT onP⊥ ;
if P⊥ is unsatisfiable then return UNSATISFIABLE;

for C1, C2 ∈ P do
if conflict(C1, C2) = true then

NP := NP ∪ (SInst-Gen(C1, C2) \ P) ;

for C1 ∈ P,C2 ∈ R do
D := Resolution(C1, C2);
if ⊥ ∈ D then

return UNSATISFIABLE;
else if D = ∅ then

NP := NP ∪ (D \ P);

for C1, C2 ∈ R do
D := Resolution(C1, C2) ;
if ⊥ ∈ D then

return UNSATISFIABLE;
else if D = ∅ then

for C ∈ D do
F := Factor(C) ;
for B ∈ F do

T := distribute(B) ;
NT := NT ∪ ({B} \ T);

if NP = ∅ and NR = ∅ then
return SATISFIABLE;

else
P := P ∪NP ;
R := R ∪NR;

70

There are several examples from LCL, and also the GRP problem we illustrate below,

where our heuristic performs better than solely using instance generation or resolution.

The GRP problem is an example that contains clauses that can cause infinite growth, so it

is not good for systems implementing only instance generation. While at the same time, it

contains clauses similar to Transitivity where ordered resolution is explosive. We believe

these examples show the use of our technique and the potential for further research into this

area.

Example Proof

One problem in the TPTP library that illustrates another benefit of SIG-Res with the GSM

heuristic is problem GRP006-1. Spectrum using our heuristic solved this problem in less

than 1 second, but did not find a solution using instantiation or resolution alone. The initial

distribution of clauses and an SIG-Res proof are given in Figure 4.4. As can be seen, by

placing the clauses with more than one maximal literal, specifically clauses 3 and 4, in P

we avoid many resolution inferences that are not necessary for the proof. We also avoid

generating many SInst-Gen inferences by placing clause 4 in P and clause 6 in R.

Before determining the problem unsatisfiable, Spectrum makes 3 passes through the

while loop generating 32 clauses. During the initial iteration, no conflicts are found and

resolution and factoring inferences produce a total of 9 new clauses. During the second

iteration, 2 conflicts produce 2 new clauses and resolution and factoring produce 21 new

clauses. During the third iteration, Yices returns back unsatisfiable as clause 2, 13 and

14 are inconsistent. This example shows that the clauses in a problem may have different

properties and that by controlling the types of inferences that are applied to the clauses we

may eliminates unnecessary inferences and may produce a solution sooner than if using

resolution or instantiation inferences alone.

71

Clauses in P
1. ¬E(inv(a))
2. E(a)
3. ¬P (x, y, z) ∨ ¬P (y, w, v) ∨ ¬P (x, v, t) ∨ P (z, w, t)
4. ¬P (x, y, z) ∨ ¬P (y, w, v) ∨ ¬P (z, w, t) ∨ P (x, v, t)

Clauses in R
5. ¬E(x) ∨ ¬E(y) ∨ ¬P (x, inv(y), z) ∨ E(z)
6. P (inv(x), x, id)
7. P (x, inv(x), id)
8. P (x, id, x)
9. P (id, x, x)

¬E(x) ∨ ¬E(y) ∨ ¬P (x, inv(y), z) ∨ E(z) P (x, inv(x), id)
(Res(5,7))

10. ¬E(x) ∨ ¬E(x) ∨ E(id)

¬E(x) ∨ ¬E(x) ∨ E(id)
(Factor(10))

11. ¬E(x) ∨ E(id)

¬E(x) ∨ ¬E(y) ∨ ¬P (x, inv(y), z) ∨ E(z) P (id, x, x)
(Res(5,9))

12. ¬E(id) ∨ ¬E(x) ∨ E(inv(x))

E(a) ¬E(x) ∨ E(id)
(SInst-Gen(2,11))

13. ¬E(a) ∨ E(id)

¬E(inv(a)) ¬E(id) ∨ ¬E(x) ∨ E(inv(x))
(Res(1,12))

14. ¬E(id) ∨ ¬E(a)

Figure 4.4: Proof of GRP006-1

72

Implementation Status

Spectrum is a sound and complete first-order theorem prover but is not competitive com-

pared to state-of-the-art theorem provers. Much of the disparity is due to the lack of ma-

turity of Spectrum. Many theorem provers that rank high in competition, for example

Vampire [102] and E [101], are more than a decade old thus have been fine tuned over

the years. One major deficiency of Spectrum is the lack of redundancy elimination. Cur-

rently Spectrum only removes tautologies and performs forward subsumption checking on

conclusions to resolution inferences. In order for Spectrum to compete, a comprehensive

redundancy elimination routine must be established.

4.6 Conclusion

SIG-Res is a sound and complete inference system that combines SInstGen with reso-

lution. Here, given a set of clauses, S, we distribute the clauses into to sets, P and R,

and in a fair way run SInstGen on P and run resolution on pairs of clauses in S so long

as one premise is in R. Factoring is applied to conclusions of resolution inferences. We

provide a heuristic, called Ground/Single Max, for distributing the clauses of S into P

and R. We also provide soundness and completeness proofs and discuss our implemen-

tation named Spectrum. Initial results identify a class of problems, LCL, that SIGRes

outperforms SInstGen and resolution alone. We identify a few ways in which Spectrum’s

competitiveness can be increased.

The Completeness Proof for SIG-Res relies on ordered resolution. It may be interesting

to determine if the completeness proof for SIG-Res can be extended to ordered resolution

with selection and if so, how it affects the implementation’s performance. Another area that

might be worthy of investigating is determining for which classes of problems is SIG-Res

a decision procedure and for those classes, what is the complexity?

73

Chapter 5

The Γ + Λ Framework

Due to the common occurrence of equality in formulas of interest to the automated the-

orem proving community, as early as 1969, with Robinson and Wos’ introduction of the

paramodulation inference system [41], many have investigated calculi for first-order pred-

icate calculus with equality. The combination of paramodulation and Knuth and Bendix’s

completion [54] was a significant step forward which led to the superposition1 calculus [64]

which restricts the search space for paramodulation by only requiring inferences that meet

additional ordering constraints.

Recently, with provers like Vampire [102] and E [101] demonstrating the strengths

of superposition, research began on combining superposition with other first-order cal-

culi. Notable in this line of research are Lynch and Tran’s paper [132] and de Moura

and Bjorner’s work2[130] combining SMT with superposition and Baumgartner and Wald-

mann’s combination of superposition with Model Evolution [140].

In this chapter we describe a sound and refutationally complete framework, called Γ +

Λ, which allows the combination of different pairs of sound and refutationally complete

calculi. We require that the two inference systems, Γ and Λ, have certain properties. First,

both calculi must be sound and refutationally complete. Second, Γ must be productive.

1Throughout this chapter when we refer to superposition we mean the sound and complete inference
system that includes equational factoring and equational resolution

2Here, SMT can be combined with any inference system with the reduction property for counterexamples

74

Informally3, an inference system, Γ, is productive if when Γ is used to saturate a set of

clauses, say P , we can incrementally construct a set of clauses, a candidate set, that at the

limit can be used to produce a model for P when P is satisfiable. Third, Λ must have

the lifting and total-saturation property4. Lifting is defined in the standard way [87] and

total-saturation, informally, ensures that, all potential inferences are made.

In our method we first separate the input clauses into two sets 5. The idea is, given a

set of input clauses, to pre-process the clauses to determine which inference systems the

clauses are best suited for. We choose two sound and refutationally complete inference

systems, Γ and Λ, requiring Γ to be productive and Λ to have the lifting and total-saturation

properties, and construct two sets of clauses, P0 and R0, by including in P0 the clauses best

suited for Γ and including in R0 those best suited for Λ.

We then, initialize two sets P = P0 and R = R0 and in a fair way, apply Γ to P and

apply Λ toM ∪R whereM is a candidate set for P . Conclusions to Γ rules and Λ rules are

added to P and R respectively. Unsatisfiable cores inR are learned from, with new clauses

added to P . If at any point, P is determined to be unsatisfiable, the set of input clauses is

deemed unsatisfiable. Satisfiability of P0 ∪R0 is witnessed by the satisfiability of P under

Γ and the total-saturation of M ∪ R by Λ.

Since M can be, loosely speaking, smaller than P , we can view this method as a re-

striction on Λ6. Γ + Λ can also be viewed as a generalization of de Moura and Bjorner’s

work [130] where Γ is DPLL, Λ is superposition, P is the set of ground clauses, M is the

model (set of unit literals) generated by DPLL on P andR is the set of non-ground clauses.

Hence our completeness proof can be seen as a generalization of the completeness proof

they provide.

Below we provide preliminary definitions in Section 5.1, discuss how to transform an

3A formal definition for productive is given in Section 5.1
4Lifting and total-saturation are also defined in Section 5.1
5This idea was originally suggested in [136] where we combine instance generation and resolution.
6M may in fact equal P , but then no benefit is gained other than Λ may witness the unsatisfiability of P

quicker then Γ.

75

inference system into one which supports hypothetical clauses in Section 5.2, give a formal

description of Γ + Λ in Section 5.3 and provide proofs of soundness and completeness in

Section 5.4. In Section 5.5 we show how Inst-Gen-Eq can be combined with superposi-

tion in this framework. In particular, in Section 5.5.1 we discuss the productive, lifting and

total-saturation properties in terms of Inst-Gen-Eq and superposition and in Section 5.5.5

we discuss our implementation to date.

5.1 Preliminaries

Let S be a set of first-order logic formulas, renamed apart, in CNF and Γ and Λ be sound

and refutationally complete first-order logic calculi.

A distribution heuristic can be defined as a function dist : S → {{Γ}, {Λ}, {Γ,Λ}}
that maps the clauses in S to a nonempty subset of {Γ,Λ}. Now let P = {C|Γ ∈ dist(C)}
and let R = {C|Λ ∈ dist(C)}. Clearly S = P ∪ R.

A candidate set is any set (including the empty set) of clauses. Let M1,M2, · · · be

a sequence of candidate sets. We define a persistent candidate set, denoted M∞, in the

following way. Let C1, C2, · · · be an enumeration of all the clauses in Mi for all i ≥ 1.

Let T0 be the set of all candidate sets. For each i ≥ 1 if Ci appears in infinitely many

Mj ∈ Ti−1 then Ti = {Mj |Ci ∈ Mj ∈ Ti−1}. Otherwise, Ti = Ti−1. Now let S0 = ∅. For

each i > 0, if Ci is in an infinite number of Tj then Si = Si−1 ∪ {Ci} otherwise Si = Si−1.

Then we define M∞ =
⋃
i≥1

Si.

A derivation of an inference system, Γ, is a sequence, S0, S1, · · · , of states of a system

such for each 0 < i, Si is the result of applying a Γ inference rule on Si−1. We assume

all conclusions to all inferences are renamed apart. A fair derivation is one where all

inferences are eventually performed. The persistent set, S∞ =
⋃
0≤i

⋂
i≤j

Sj .

We say that the inference system Γ is productive if for every fair derivation of Γ on P

yielding P0, P1, · · · with the limit P∞ there exists a sequence of candidate setsM0,M1, · · ·

76

with the limitM∞, the persistent candidate set, such that there existsM ⊆ Gr(M∞) where

M is consistent and M |= P∞.

Given a candidate set, M , a hypothetical clause is a clause of the form H �
σ
C where

H is a set of clauses in M (the hypothesis), C is a clause (the effective clause), and σ is

a substitution7. In the case that σ is the identity, we may omit σ. A hypothetical clause,

H �
σ
C, is ground if H is a set of ground clauses, C is ground and σ is the identity. An

instance of H �
σ
C is a hypothetical clause Hστ � Cτ where τ is a substitution.

Any standard clause, K can be written as a hypothetical clause with H = ∅, C = K

and σ being the identity. An element K of a candidate set can be written as a hypothetical

clause with H = {K}, C = K and σ being the identity.

Given a set (possibly empty), S, of hypothetical clauses, we define hyp(S) as the union

of all hypotheses of all hypothetical clauses in S. We define conjoin(S) as the conjunction

of all clauses in hyp(S) and assume conjoin(S) to be in CNF.

Given a set of clauses V , we denote the set of all ground instances of V as Gr(V). A

ground clause C is redundant in Gr(V) if there are clauses C1, · · · , Cn inGr(V) such that

Ci ≺ C holds for all 1 ≤ i ≤ n and C1, · · · , Cn � C. A clause C is redundant in V if all

of the ground instances of C are redundant in Gr(V).

Let W be a set of hypothetical clauses. A ground hypothetical clause H � C is redun-

dant in Gr(W) if there are H1 � C1, · · · , Hn � Cn in Gr(W) such that C is redundant in

{C1, · · · , Cn} and
⋃

1≤i≤n

Hi ⊆ H . A hypothetical clause K is redundant in W if all of the

ground instances of K are redundant in Gr(W).

We say the inference system Λ has the lifting property if when given a set of clauses

C1, · · ·Cn and a set of ground substitutions σ1 · · ·σm by Λ we have C1σ1 · · ·Cnσn � C

then by Λ we have C1, · · · , Cn � C ′ such that for some ground substitution τ we have

C = C ′τ or there exists some 0 ≤ i ≤ n such that C = Ciτ . We say Λ has the total-

saturation property if for every T ⊆ R when I is a Λ inference on T then I is also an Λ

7Our definition is almost the same as in [130] except we include a substitution component.

77

inference on R.

We say a set of clauses T ′ is an unsatisfiable core in R if R is unsatisfiable, T ′ ⊂ R,

and T ′ is a minimal set of clauses in R such that T ′ is unsatisfiable. If Λ produces an

unsatisfiable core T ′ ⊂ R then we say that Λ witnesses the unsatisfiability of R.

5.2 Transforming Inference Rules to Support Hypotheti-

cal Clauses

Inference rules can be modified in a straightforward way to support the use of hypothetical

clauses. Suppose λ, depicted in Figure 5.1, is an arbitrary inference rule.

(λ) D1, · · · , Dn

C1, · · · , Cm

where τ is the substitution used in the inference

Figure 5.1: λ

We can construct a new inference rule λ′, shown in Figure 5.2, from λ that supports

hypothetical clauses as follows.

(λ′)
H1 �

σ1

D1, · · · , Hn �
σn

Dn

H �
σ
C1, · · · , H �

σ
Cm

where

⎧⎪⎨
⎪⎩

(i) τ is the substitution used in λ
(ii) H =

⋃
1≤i≤n

Hi

(iii) σ = σ1 ◦ · · · ◦ σn ◦ τ
Figure 5.2: λ′

λ′ is constructed by replacing clauses by hypothetical clauses and adding two new con-

ditions. The first new condition requires that the hypothesis of each premise be added to

the hypothesis of each conclusion. The second states that the substitution in the conclusion

is the composition of all the substitutions from the premises with the substitution, τ , used

by the inference rule. We also note that λ may have other conditions. These are added to

the conditions of λ′.

78

5.3 Γ + Λ Inference Rules

Let’s again let S be a set of first-order logic formulas in CNF and Γ and Λ be sound and

refutationally complete first-order logic calculi but also require that Γ be productive and Λ

have both the lifting and total-saturation properties. We let P and R be sets constructed by

a distribution heuristic such that P ∪ R = S.

The inference rules for Γ+Λ consists of the modified versions (discussed in Section 5.2)

of the Γ and Λ inference rules plus a new inference rules called Learn and a deletion rule

called Delete, given in Figure 5.3. (We note that in the definitions of the inference rules,

below, we denote the set of all premises used in a rule as Prem and the set of all conclusions

in a rule as Concl.)

The Γ inference rules remain unchanged aside from requiring the premises to be in P .

Each Λ inference rule is however replaced with a new inference rule to support the use of

hypothetical clauses. When we refer to Λ inference rules in the remainder of this chapter,

we assume the rules support hypothetical clauses. One additional condition is applied to all

Λ inference rules, that is, the premises are required to be inM ∪R where M is the current

candidate set. A hypothetical clause (H �
σ
C) ∈ R is interpreted as Hσ ∧ R∗ |= C, where

R∗ is the set of hypothetical clauses in R that have empty hypothesis.

The Learn inference rule adds a new clause to P which witnesses the inconsistency

of M ∪ R. If the inconsistency involves M , the learned clause refines the next candidate

model. If not, the learned clause signals the original set of clauses is unsatisfiable.

Given a candidate set,M , Delete removes from R the hypothetical clauses that are not

implied by M , that is, given a hypothetical clause H �
σ
C ∈ R, if H ⊆ M then H �

σ
C is

removed from R. The Delete rule given in Figure 5.3 is a state transition diagram. e1|e2|e3
denotes a state of the Γ + Λ system where e1 is the current candidate model, e2 = P and

e3 = R. We note that Delete is not required for completeness.

A Γ + Λ derivation from S is a sequence (P0, R0,M0), · · · , (Pi, Ri,Mi), · · · , where

79

Learn
H1 �

σ1

C1, · · · , Hn �
σn

Cn

¬(Hσ)
where

⎧⎪⎪⎨
⎪⎪⎩

(i) Prem ⊆M ∪R
(ii) {C1, · · · , Cn} witnesses unsatisfiability of M ∪
(iii) H = conjoin(Prem)
(iv) σ = σ1 ◦ · · · ◦ σn

Delete
M |P |R′, H �

σ
C

M |P |R′
where H ⊆M

Figure 5.3: Learn and Delete Inference Rules

1. P0 ∪ R0 = S,

2. for all i ≥ 0 Pi, Ri and Mi are multisets of clauses where Mi is a candidate set for

Pi and

3. for all i ≥ 0 one of the following holds: (a) Pi+1 results from applying a Γ inference

rule or Learn rule on Pi and Ri+1 = Ri or (b) Ri+1 results from applying a Λ

inference rule or Delete rule on Ri and Pi+1 = Pi.

A Γ + Λ derivation from S has as its limit the sets of persistent clauses P∞ =⋃
i≥0

⋂
j≥i Pj and R∞ =

⋃
i≥0

⋂
j≥iRj and a persistent candidate setM∞. By definition of

redundancy, if a clause is redundant in some Pi it is redundant in P∞ and if a hypothetical

clause, H �
σ
C, is redundant in some Ri and Hσ ⊆M∞ then it is redundant in R∞.

Let (P∞, R∞,M∞) be the limit of a derivation. P∞ is called saturated if the conclusion

of every Γ inference and Learn inference is in P∞ or is redundant in P∞. R∞ is saturated

if the conclusion of every Λ inference is in R∞ or is redundant in R∞. A derivation is fair

if no inference is ignored forever, i.e. the conclusion of every inference among persistent

clauses is persistent or redundant in (P∞, R∞). A fair derivation produces saturated sets.

Unsatisfiability of S under Γ+Λ is detected by Γ witnessing the unsatisfiability of P∞.

Satisfiability is detected by a saturated system without Γ witnessing the unsatisfiability of

P∞.

A saturation procedure for Γ + Λ is provided in Algorithm 6. Here Γ(P,m) returns

the set P after the application of m steps in the saturation of P with Γ inference rules and

Delete(M,R) returns the set R after the deletion of the clauses in R not implied by the

80

candidate set M . Λ(M ∪ R, n) returns the set R after the application of n steps in the

saturation of M ∪ R with Λ inference rules and given an unsatisfiable core, K, Learn(K)

returns a set containing the conclusion(s) to the Learn inference rule with the clauses in K

as the premises.

Algorithm 6: Γ + Λ

input : Sets P and R containing FO formulas with equality in CNF
output: SATISFIABLE or UNSATISFIABLE

Let m, n be positive integers.
while P and R are not saturated do

P := Γ(P,m);
if P is unsatisfiable witnessed by Γ then

return UNSATISFIABLE;

Construct candidate set M from P ;
R := Delete(M,R);

R := Λ(M ∪ R, n);
if M ∪R is unsatisfiable witnessed by Λ then

foreach Unsatisfiable core, K ⊆M ∪R do
P := P ∪ Learn(K);

return SATISFIABLE;

5.4 Soundness and Completeness

Our proofs of soundness and completeness of Γ+Λ is a generalization of the proofs of the

soundness and completeness of DPLL(Γ)� given in [130].

Let S = P ∪ R be a multiset of clauses and let Γ and Λ be sound and refutationally

complete inference systems where Γ is productive and Λ has the lifting and total-saturation

properties. Since Γ and Λ are sound inference systems it is clear that all Γ and Λ inferences

in Γ + Λ preserve satisfiability of S. Learn is sound since Learn produces a clause stating

that at least one of the clauses, in a set of hypotheses that produce an unsatisfiable core, is

not true. Delete is sound since it removes hypothetical clauses that are no longer implied

by the current candidate set.

81

Theorem 8 Γ + Λ is sound.

Theorem 9 Let S0 = P0 ∪ R0 be a multiset of clauses and let Γ and Λ be sound and

refutationally complete calculi with Γ being productive and Λ having the lifting and total-

saturation property. If {P∞, R∞, N∞} is the limit of a derivation of Γ + Λ on S0 and Γ

does not witness the unsatisfiability of P∞ then S0 is satisfiable.

Proof Let S0 = P0∪R0 be a multiset of clauses and let Γ andΛ be sound and refutationally

complete calculi where Γ is productive and Λ has the lifting and total-saturation properties.

Suppose {P∞, R∞, N∞} is the limit of a derivation of Γ+Λ on S0 and suppose Γ does not

witness the unsatisfiability of P∞. Let P ,R, and N be the set of ground instances of P∞,

R∞ and N∞, respectively. As Γ is productive and P∞ is satisfiable, there exists M ⊆ N

such that M is consistent and M |= P . Let RM = {H � C ∈ R|H ⊆M}.
We claim M ∪ RM is saturated by Λ, that is, the conclusion of every Λ inference on

M ∪ RM is in RM or is redundant in RM . Suppose on the contrary that there exists some

clause K = H � C that is the result of a Λ inference rule on M ∪ RM which is not in RM

and is not redundant in RM . Since K is the result of a Λ inference rule on M ∪ RM we

have H ⊆M .

Since N∞ ∪ R∞ is saturated by Λ and Λ has both the lifting property and the total-

saturation property, then K ∈ R or is redundant in R. Suppose K ∈ R. Then as K ∈ RM ,

it follows that K ∈ R \ RM . Hence H ⊆ M , a contradiction. Now suppose that K is

redundant in R. Then there are H1 � C1, · · · , Hn � Cn in R such that C is redundant in

{C1, · · · , Cn} and
⋃

1≤i≤n

Hi ⊆ H . Since K is not redundant in RM , Hj � Cj ∈ RM for

some 1 ≤ j ≤ n. Therefore Hj ⊆ M which implies H ⊆ M , a contradiction. Hence our

claim that M ∪RM is saturated by Λ is proven.

Next we claim thatM ∪RM is satisfiable and will show equivalently thatM ∪RM does

not contain an unsatisfiable core. Suppose M ∪ RM does contain an unsatisfiable core,

D = H1 � C1, · · · , Hm � Cm. Set H =
⋃

1≤i≤m

Hi. If H = ∅ then by Learn, � ∈ P∞. But

82

P∞ is satisfiable, hence a contradiction. If H = ∅, then M |= conjoin(H). By Learn,

¬(conjoin(H)) ∈ P∞ or is redundant in P∞. Thus M |= ¬(conjoin(H)), a contradiction.

Hence M ∪ RM is satisfiable.

Since M |= P∞ we have M |= P0. Since for all C ∈ R0, C contains an empty

hypothesis and by our definition of redundancy it follows that RM |= R0. Thus, since

M ∪RM is satisfiable, S0 is satisfiable.

5.5 Combining Inst-Gen-Eq and Superposition

The only work, that we are aware of, that combines SInst-Gen and superposition is the

system by Ganzinger and Korovin called Inst-Gen-Eq[111]. In their work they provide

a calculus which extends SInst-Gen with superposition to support formulas that include

equality8.

In their method, the role of superposition is to generate a proof of inconsistency in the

current candidate model. When a proof of an inconsistency is found, the substitution used

in the proof is applied to the clauses whose literals are in the proof via SInst-Gen. These

new instances help to refine the next candidate model.

We believe, their method can be enhanced in our framework so that the full power of

superposition can be utilized. In this section we show how, using the Γ + Λ framework,

Inst-Gen-Eq and superposition can be combined in a way that takes full advantage of each

of the two calculi. We call this inference system SIG-Sup.

5.5.1 Γ and Λ Properties

Among the requirements of the Γ + Λ framework is that the inference system Γ must be

productive and Λ must have the lifting and total-saturation properties. Here we show that

8Later in [142],Korovin and Sticksel describe their implementation iProver-Eq which implements the
calculus given in [111]

83

InstGenEq is productive and discuss the lifting and total-saturation properties of super-

position.

For the sake of convenience, we provide definitions for terms that are used in this sec-

tion which were defined previously in Chapter 4. ⊥ is used to denote a distinguished

constant called the Jeroslow constant and ambiguously the substitution which maps all

variables to ⊥. If L is a literal then L⊥ denotes the ground literal obtained by applying the

⊥-substitution to L and if P is a set of clauses then P⊥ denotes the set of ground clauses

obtained by applying the ⊥-substitution to the clauses in P .

P⊥ can be viewed as a set of propositional clauses. Under this setting, if P⊥ is unsat-

isfiable, then P is unsatisfiable. Otherwise a model for P⊥ is denoted as I⊥. We define a

selection function, sel(C, I⊥), which maps each clause C ∈ P to a singleton set {L} such

that L ∈ C and L⊥ is true in I⊥. We define the candidate set IP =
⋃

C∈P
sel(C, I⊥).

During the Inst-Gen-Eq saturation of a set of clauses, P , a set of ground instances of

P , denoted P⊥, is sent to an SMT solver. If P⊥ is determined unsatisfiable, P is determined

unsatisfiable and we are done. Otherwise, a set of literals, denoted I⊥, where I⊥ |= P⊥,

is retrieved from the SMT solver. We then construct IP , a candidate model, from I⊥ and

P using the selection function. We then determine, using unit paramodulation, if IP is

consistent. If so, then P is satisfiable, as IP can be used to generate a model of the ground

instances of P , and we are done. Otherwise, if IP is found to be unsatisfiable, the substi-

tution used in the proof of unsatisfiability is used to generate new instances of the clauses

(via SInst-Gen) whose selected literals are in the proof. These new instances help refine

the next candidate model. The process is repeated until P⊥ is unsatisfiable or there exists

an IP that is consistent.

In this setting, since for each ground instance, one literal is selected in each IP and

since there are finitely many literals in a clause, one literal will be chosen infinitely often.

Hence Inst-Gen-Eq is productive.

It is well-known in the literature that superposition can be lifted from the ground case

84

[90]. And since we can exhaustively apply superposition on all subsets of R, even in the

presence of the empty clause, superposition has the total-saturation property.

5.5.2 The SIG-Sup Inference System

Under the Γ + Λ framework, let Γ be InstGenEq and let Λ be superposition. Let S be a

set of first-order formulas in CNF. Let P and R be sets of clauses such that S = P ∪ R.

Let M be a candidate set for P . We define two selection function, one for Inst-Gen-Eq

inferences and another for our modified superposition inferences.

We define selP (C, I⊥), where C ∈ P and I⊥ is a model for P⊥, as follows.

selP (C, I⊥) = {L} for some L ∈ C such that L⊥ ∈ I⊥

We define selM∪R(C), where C ∈M ∪ R as follows.

selM∪R(C) = max(C)

For clarity, we note that selP (C, I⊥) returns a singleton set and selM∪R(C) returns a

non-empty set. The inferences rules for SIG-Sup are given in Figures 5.4.

Since both Inst-Gen-Eq and superposition are sound and refutationally complete,

Inst-Gen-Eq is productive and superposition has the lifting and total-saturation proper-

ties, by the soundness and completeness of Γ + Λ it follows that SIG-Sup is both sound

and complete.

5.5.3 SIG-Sup Saturation Process

The system we propose takes as input a first order formula (with equality) in CNF, S, and

first, by some heuristic, establishes two sets of clauses, P and R, such that P contains

clauses that are better suited for Inst-Gen-Eq and R contains clauses that are better suited

for superposition. Any heuristic can be used so long as P ∪ R = S. In [136] we proposed

85

a heuristic we called, Ground-Single Max (GSM) where P contains ground clauses and

clauses containing more than one maximal literal and R all other clauses. Although the

division heuristic does not alter the system’s completeness, it can obviously affect perfor-

mance.

After the clauses have been distributed, the system starts in search mode9where we

first check to see if P , when viewed as a set of ground formula, is unsatisfiable. This is

a quick check. In order to do this, we jeroslowize P , replacing all variables in P with

the Jeroslow constant, traditionally denoted ⊥, to produce P⊥. We check the satisfiability

of P⊥ using SMT, possibly adding additional clauses, G, to P in the process to rule out

inconsistencies in the ground formula. If P⊥ is unsatisfiable we halt and we conclude that

S is unsatisfiable.

If on the other hand, P⊥ is satisfiable, we switch to saturation mode and construct a set

of selected literals, IP . That is, for each clause C ∈ P we choose a single literal L in C

such that L⊥ ∈ I⊥ and add it to IP . Clearly IP , our candidate set, implies P .

Then given IP and R, we first remove any hypothetical clauses in R that contain lit-

erals in their hypotheses that are not in IP via Delete inferences. Then, in a fair way, we

saturation IP ∪R with superposition, equality resolution and equality factoring inferences,

adding all conclusions to R.

In SIG-Sup, unsatisfiability of IP ∪ R is detected by a single clause, H �
σ
� ∈ R. If

such a clause is produced we enter conflict resolution mode. In conflict resolution mode we

analyze the conflict to determine a course of action. IfH = ∅, then the initial set of clauses

R is unsatisfiable and we report that S is unsatisfiable and halt. (Note that this is equivalent

to adding the empty clause to P via Learn). If H �
σ
� can be derived from IP only, then

there is a conflict in IP , the candidate model. Here the learned clause is a tautology which

need not be added to P . But we do add to P new instances (using SInst-Gen) of the clauses

whose selected literals are in H and go back into search mode directing the SMT solver

9This is similar to the search and conflict resolution modes used in [130]. In our system we differentiate
between search, saturation, and conflict modes.

86

to again check the consistency of P⊥. The substitution used in the SInst-Gen inference is

the substitution used in the proof of inconsistency of IP . If IP conflicts with R we apply

the Learn inference rule to H �
σ
�, adding a new clause to P , and re-enter search mode. If

IP ∪ R becomes saturated and R does not contain the empty clause, we conclude that S is

satisfiable and halt.

We note that the Γ + Λ framework requires that (i) P be be saturated by Inst-Gen-Eq,

thus requiring the saturation of the candidate model by superposition and (ii) that the can-

didate set union R be saturated by superposition. Since the candidate model, IP , used

in Inst-Gen-Eq is exactly our candidate set, doing these saturation processes separately

would result in IP being saturated by superposition twice. In the method we propose, in-

consistencies in the candidate model/set, IP , are found during the saturation of IP ∪ R by

superposition. These inconsistencies trigger SInst-Gen inferences, resulting in the satura-

tion of P by Inst-Gen-Eq, without the duplication of effort.

We believe that this combination produces a more efficient system than previously sug-

gested systems by (i) identifying a set of clauses, P , which is better suited for Inst-Gen-Eq

and a set, R, which is better suited for superposition, (ii) detecting ground unsatisfiabil-

ity of P efficiently using SMT, (iii) controlling the size of R by eliminating hypothetical

clauses that are not implied by the current interpretation and (iv) minimizing the size of the

clauses in R by applying superposition on IP × R rather than P × R.

5.5.4 SIG-Sup Algorithm

An algorithm for applying the inferences in SIG-Sup in a fair way is given in Algorithm

7. Note that we do not follow Algorithm 6. The main difference is that we guide the

saturation of P with SInst-Gen using the inconsistencies in IP detected in the saturation of

IP ∪R with superposition. This has the effect of saturating P with Inst-Gen-Eq and IP ∪R
with superposition while avoiding running superposition on IP twice. Since superposition

has the total-saturation property we are assured that any inconsistency in IP will be found,

87

resulting in SInst-Gen inferences being added to P .

We define the functions in Algorithm 7 as follows. SMT(P) takes a set of clauses, P ,

as an argument and returns a set of clauses. SMT(P) generates a ground abstraction of P ,

denoted P⊥, and determines the satisfiability of P⊥. If P⊥ is determined to be unsatisfiable,

SMT(P) returns ∅, otherwise SMT(P) returns a set of clauses (often unit) that entail P⊥.

Superposition(IP ∪R) takes a set of clauses IP ∪R, where IP is the current candidate set

as input and returns a set of clauses. Superposition(IP ∪ R) attempts to saturate IR ∪ R

with superposition, in a fair way. If at anytime, R contains the empty clause or M ∪ R

becomes saturated, the function halts and returns the set R. Inst-Gen(P, σ) takes as input a

set of clauses P and returns a set of instances, using the substitution σ, of the clauses in P .

Learn(H, σ) returns a singleton set containing the conclusion to the Learn inference rule.

Algorithm 7: SIGSup(P,R)
input : Sets P and R containing FO formula with equality in CNF
output: SATISFIABLE or UNSATISFIABLE

Let I⊥, IP be sets of clauses.

while true do
I⊥ := SMT(P) ;
if I⊥ = ∅ then

return UNSATISFIABLE;

IP := {L|L = sel(C, I⊥), ∀C ∈ P} ;

R := Superposition(IP ∪ R) ;
if H �

σ
� ∈ R then

if H = ∅ then
return UNSATISFIABLE ;

else if IP � H �
σ
� then

P = P ∪ Inst-Gen(P, σ) ;

else
P = P ∪ Learn(H, σ) ;

else
return SATISFIABLE ;

88

5.5.5 EVC3

EVC3, which is still under development, is our attempt to combine the strengths of existing

software systems to solve the first-order validity problem using SIG-Sup. The current

version is a sound and complete theorem prover that implements the SIGRes inference

system.

In EVC3 we couple together the SMT solver CVC3 [124] and the purely equational

prover E [112]. We chose CVC3 and E for a number of reasons. First, because both

systems are open source, we can offer the source code of our version freely to the public.

Second, both systems are well known and have reputations for their strong performance

and usability in the SMT and ATP communities respectively. Third, by using existing code

bases, we eliminate the need to “reinvent the wheel”.

In developing EVC3, special care was taken as to not alter any existing code in CVC3,

but to utilize the facilities and architecture of CVC3 and augment its code base, initially

with an implementation of the SIG-Res inference system. To execute the system utilizing

our new code the command line flag +sig-res is used. Otherwise, EVC3 behaves identi-

cally to CVC3. The only code modified in E was its main function to facilitate the creation

of an API for its incremental use.

The source code is maintained under a single directory structure and can be configured

and built using a single configure script and make command. The executable runs in a

single process without threading.

A high level view of EVC3 can be found in Figure 5.5. The components defined by

solid bold lines are completely new. Components defined by bold broken lines have been

augmented to support running CVC3 and E together using our quantifier theory reasoner.

At first, CVC3 initializes all of its subsystems; i.e. SAT Solver, DPLL Engine, Search

Engine, and Theory Core (solver). When EVC3 is run with the +sig-res flag, CVC3

installs our new quantifier theory decision procedure which implements the SIG-Res infer-

ence rules and CVC3 installs and initializes E.

89

After the subsystems are initialized, a problem is read into the system, either inter-

actively via the command line or from a file. A new parser was added to CVC3 which

allows problems in TPTP3 [79] format to be read into the system, which is done using the

command line option +lang tptp.

When a problem is being read into the system, a distribution heuristic is applied to the

individual clauses to determine if the clause should be sent to E by which it is added to R,

or should remain in CVC3 and added to P . There are currently three distribution heuristics

built into EVC3 and can be chosen via the command line flag +dist-mode mode. The

built in modes are ig-only (all clauses are added to P), res-only (all clauses are

added to R), and the default mode gsm (defined above). Maximality in the GSM heuristic

is determined via a Knuth-Bendix ordering.

Once the formulas are distributed, CVC3 continually executes a loop in its SAT solver,

checking the satisfiability of P⊥. If it determines P⊥ unsatisfiable it halts and reports un-

satisfiable. Otherwise if satisfiable, it queries the Theory Solver for the consistency of the

model. If the Theory Solver (which calls the individual theory decision procedures) deter-

mines the model to be inconsistent, new formulas explaining the inconsistency are passed

back to the SAT solver and the SAT solver continues in its loop. If no inconsistency is

found by the Theory Solver, CVC3 halts and reports satisfiable.

SIG-Res Quantifier Theory Module

Our quantifier theory decision procedure in the SIG-Res Quantifier Theory Module main-

tains the set of clauses P and retrieves the clauses in R from E when needed.

We have added to CVC3 a new distinguished constant, ⊥, similar to CVC3’s Skolem

constant. For each formula φ that is added to P the quantifier theory module passes φ⊥ to

the SAT solver.

As noted above, when the quantifier theory decision procedure is queried for consis-

tency, at that point the set P⊥ is satisfiable.

90

The quantifier theory decision procedure then applies the inference rules of SIG-Res in

a fair manner until one of the following three states occurs, at which time it passes control

back to the SAT solver.

1. It deduces the empty clause, implying the original set of clauses, F , is unsatisfiable.

When this occurs the quantifier decision procedure adds ⊥ to P⊥ forcing the SAT

solver to report unsatisfiable.

2. It concludes that F is saturated with respect to SIG-Res, implying F is satisfiable,

and returns nothing.

3. It returns at least one new clause φ⊥ not in P⊥.

Resolution and factoring inferences on clauses in R are delegated to E, Whereas all in-

ferences involving clauses in P are performed directly in the quantifier decision procedure.

E API

A new API was created to allow CVC3 and E to communicate and exchange data between

their systems. The E API, found in the class SPSolver, allows a user to initialize E,

add clauses to E’s initial set of clauses, run E for a fixed number of steps of its saturation

process, query E’s state, retrieve the set of clauses processed by E, and gracefully terminate

E.

Implementation Status

The current version of EVC3 is a sound and complete theorem prover for first-order formula

without equality. In EVC3, we currently support the SIGRes inference system and are

working to extend it to support SIGSup.

As EVC3 is new and still under development, it is not yet competitive with state-of-the-

art theorem provers. Before it can complete with the more mature provers we must address

a number of issues. The major work to be done is to augment the parser and quantification

91

theory to allow formula with equality and to modify the algorithm in the quantification

theory to implement SIG-Sup.

We would like to include the ability to input arguments for E on the command line rather

than having the arguments hard coded in the initialization of E. This will allow the user

to utilize the command line flags of E. Also, a tighter coupling of E to CVC3 by creating

methods to convert E data to CVC3 data, and vice versa, will improve efficiency. We would

like to extend our quantifier decision procedure to handle full first order logic formula

rather than just CNF formulas. More work also needs to go into the quantifier reasoner

to eliminate redundancy when performing inferences on clauses in P and restricting the

search space possibly by using dismatching constraints in the SInst-Gen procedure. We

also would like to investigate heuristics for determining i) the number of new inference

clauses to add to P before returning from a SAT query, ii) the balance between inferences

on clauses in P and steps taken in E’s saturation process and iii) the distribution of clauses

to P and R.

5.6 Conclusion

In this chapter we presented a framework called Γ + Λ which allows different combina-

tions of inference systems to be combined into a single sound and complete system. The

only requirements on the inference systems are that they both be sound and refutationally

complete and that one be productive and the other have both the lifting property and the

total-saturation property.

In presenting this framework we provide transformation rules which allow an inference

system to support hypothetical clauses, then give the Learn and Delete inference rules, and

follow up with soundness and completeness proofs.

We show how, under this framework, we can combine Inst-Gen-Eq with superposition

into a single sound and refutationally complete system. We call our system SIG-Sup. We

92

provide the inference rules for SIG-Sup, give an informal description of the system and

provide an algorithm that can be used to implement such a system.

Future work consists of extending EVC3 to support SIG-Sup. Other problems of in-

terest are whether superposition can be used as Γ, in particular, whether we can establish

that superposition is productive. It would also be interesting to consider the use of Γ + Λ

in distributive computing. Since small amounts of data are exchanged between Γ and Λ,

our framework may provide a new paradigm for this area of research. Lastly, as with all

inference systems of practical use, redundancy criteria in our framework should be investi-

gated.

93

Superposition

J �
σ′
L[u]p ∨ Σ K �

σ′′
l � r ∨Δ

H �
σ
(L[r]p ∨ Σ ∨Δ)τ

if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ = mgu(u, l)
u is not a variable
L is of the form s[u]p � t or s[u]p � t
tτ � s[u]τ and rτ � lτ
(L)τ ∈ selM∪R((L ∨ Σ)τ)
(l � r)τ ∈ selM∪R((l � r ∨Δ)τ)
L[u]p ∨ Σ ∈M ∪R and l � r ∨Δ ∈M ∪R
(L[r]p ∨ Σ ∨Δ)τ ∈ R
H = J ∪K
σ = σ′ ◦ σ′′ ◦ τ

Equality Resolution

H �
σ′
l � r ∨Δ

H �
σ
(Δ)τ

if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ = mgu(l, r)
(l � r)τ ∈ selM∪R((l � r ∨Δ)τ)
H �

σ′
l � r ∨Δ ∈M ∪ R

σ = σ′ ◦ τ
H �

σ
(Δ)τ ∈ R

Equality Factoring

H �
σ′
l � r ∨ s � t ∨Δ

H �
σ
(l � t ∨ r � t ∨Δ)τ

if

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ = mgu(l, s)
rτ � lτ and tτ � sτ
(l � r)τ ∈ sel((l � r ∨ s � t ∨Δ)τ)
H �

σ′
l � r ∨ s � t ∨Δ ∈M ∪ R

σ = σ′ ◦ τ
H �

σ
(l � t ∨ r � t ∨Δ)τ ∈ R

SInst-Gen

L ∨ Γ
(L ∨ Γ)σ

if

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H �
σ
� ∈ R

IP � H �
σ
�

L ∨ Γ ∈ P
L ∈ selP (L ∨ Γ)
{L} ∈ H ⊆ IP
(L ∨ Γ)σ ∈ P

Learn
H �

σ
�

¬(Hσ)
if

{
H �

σ
� ∈ R

IP � H �
σ
�¬(Hσ) ∈ P

Delete
IP |P |R′, H �

σ
C

IP |P |R′
if H ⊆ IP

Figure 5.4: SIG-Sup Inference Rules

94

INTERFACE

USER

SEARCH ENGINE THEORY COREDPLL ENGINE

THEORY 1 THEORY K THEORY QUANT
SIG−RES

E PROVER

E PROVER API

CVC3

MAIN API

SAT SOLVER

Figure 5.5: EVC3 System Diagram

95

Chapter 6

Conclusion

The automation of proving theorems in first-order predicate calculus is a relatively young

and active field of research today with many interesting problems. In the early days, a great

deal of interest was in instance-based inference systems based on Herbrand’s theorem [21].

One ground breaking result from this line of research was the Davis-Putnam-Logeman-

Loveland (DPLL) procedure [29, 34] which revolutionized the solving of problems in SAT.

Soon after however, Robinson presented his resolution rule [36] which changed the focus

of research in the community. Rather than trying to reduce first-order logic unsatisfiability

to propositional logic unsatisfiability, resolution seeks to find a proof of the empty clause

(falsum). Following up his work on resolution, Robinson joined up with Wos to derive

paramodulation [41] which along with resolution and factoring form a refutationally com-

plete inference system for first-order logic with equality. Near the same time that paramod-

ulation was developed Knuth and Bendix developed a rewriting system for unit equations

called Knuth-Bendix completion [44]. The combination of Knuth-Bendix completion and

paramodulation by Brand established a restriction on the paramodulation inferences neces-

sary for completeness which led to the superposition calculus by Zhang, Kapur, Bachmair

and Ganzinger [62, 64] which is used in the fastest modern day theorem provers.

As the computational power of computers advanced in the 1980’s, SAT solvers became

96

able to solve problems containing tens of thousands of variables and clauses. This renewed

interest in instance generation-based systems. Jeroslow [63] determined that new ground

instances could be generated by considering only pairs of conflicting literals from different

clauses and that any variable not involved in the conflict could simply be mapped to a

distinguished constant. He called this partial instantiation. Hooker, Ragu, Chandru and

Shrivastava then formulated the first refutationally complete partial instantiation method in

their Primal method [99] and Ganzinger and Korovin formalized primal partial instantiation

in their semantic instance generation rule, SInst-Gen, and proved its completion [106].

iProver [142], a state of the art instance generation prover, is one of the most competitive

theorem provers in competition which shows that although resolution based systems are

at the top of the heap, it may be only a matter of time before instance-based systems are

shown to be equally or perhaps more effective for theorem proving.

We discussed three novel approaches for solving the first-order validity problem us-

ing SAT. The first reduces first-order validity to propositional satisfiability. The second

establishes a method to combine SInst-Gen with resolution. The third provides a general

framework for combining different inference systems into a single system.

A first line of research involved establishing unsatisfiability in first-order logic by en-

coding the existence of a first order proof in propositional logic and utilizing state of the

art SAT solvers to determine the satisfiability of the encoding. Working with DeShane,

Hu, Jablonski, Lin and Lynch, we established a SAT encoding of rigid closed connection

tableaux proofs, showed how it can be used for general first-order theorem proving, and

proved its soundness and completeness [126]. We also identified, with our ChewTPTP-

SAT implementation, problems that our system was able to solve but others could not.

Though not currently competitive, we have reason to believe that by eliminating restarts in

the implementation, the solver will be much more competitive.

Following this work was joint work with Bongio, Katrak, Lin and Lynch where we

established a closed rigid connection tableaux proof in SMT [128]. In this encoding we

97

encoded the choices made in constructing the connection tableaux in SAT and encoded

the unification checks and finiteness of the tableaux in SMT. In an implementation for this

encoding, called ChewTPTP-SMT, we found that the encodings were significantly smaller

in the Horn case and hence faster than the SAT encoding, and found that in the non-Horn

case that the results were worse. Similar to ChewTPTP-SAT, in order to be competitive

with state-of-the-art theorem provers, more work needs to be done on the implementation.

Eliminating restarts and finding a way to reduce the non-Horn encoding by a factor of n are

initial improvements that can be made. Other future work on the tableaux encoding method

includes looking at ways to be able to use SMT to further reduce the representation for non-

Horn clauses, ideally cutting it down to a quadratic number of clauses. In addition, in order

to prove the general first order problem we also need to find a good heuristic to decide

exactly which clauses should be copied. We would like a method to decide satisfiability

from rigid satisfiability. It would be useful to have an encoding of rigid clauses modulo

a non-rigid theory, as discussed in [122]. This way, we could immediately identify some

clauses as non-rigid, and work modulo those clauses.

In the second line of research, in collaboration with Lynch [136], we developed a refu-

tationally complete inference system called SIG-Res which combines semantic selection

instance generation and resolution. In this system, we create two sets of clauses, R and P ,

and only allow resolution inferences between pairs of clauses where at least one clauses is

in R. New instances of clauses in P are generated using SInst-Gen. We established the

soundness and completeness of SIG-Res and have demonstrated in our implementation,

named Spectrum, that we are able to solve some problems faster using SIG-Res than us-

ing SInst-Gen or resolution alone. Though sound and complete, a lack of maturity, has

hindered its performance relative to state-of-the-art theorem provers. More work needs to

go into redundancy elimination in order for it to compete with the leading solvers. A no-

table success of the implementation is the identification of a number of problems in the

LCL class of TPTP problems which were solved faster using SIGRes than when run with

98

SInstGen or resolution alone. We believe these problems work best using SIGRes be-

cause the heuristic places growing clauses in R and clauses with a transitive like structure

in P .

The last line of research we discuss is a framework, called Γ+Λ, which allows the com-

bination of two inference systems, Γ and Λ. The requirements for Γ and Λ are that Γ and

Λ be refutationally complete, Γ be productive, and Λ have the lifting and total-saturation

property. Any Γ and Λ with these properties can be combined under our framework into

a single sound and refutationally complete system. We present the inference rules for Γ

and Λ, prove its completeness and show how under this framework that Inst-Gen-Eq and

superposition can be combined into a single sound and refutationally complete system. We

discuss our work in progress, called EVC3, which will eventually be extended to support

SIG-Sup. The current version, though sound and complete, only implements the SIG-Res

inference system.

Other problems of interest related to the Γ + Λ framework are whether superposition

can be used as Γ, in particular, whether we can establish that superposition is productive.

It would also be interesting to consider the use of Γ + Λ in distributive computing. Since

small amounts of data are exchanged between Γ and Λ, our framework may provide a new

paradigm for this area of research. Lastly, as with all inference systems of practical use,

redundancy criteria in our framework should be investigated.

99

Bibliography

[1] Aristotle. Prior Analytics. In A.J. Jenkinson, trans., Internet Classics Archive. Origi-

nally written in 350 B.C.E.

[2] P. Abaelardus. Dialectica. In L.M. de Rijk, trans., Petrus Abaelardus. Dialectica. First

Complete Edition of the Parisian Manuscript with an Introduction, Assen: Van Gorcum,

1970. Originally written in 1160.

[3] J. Buridan. Summulae de Dialectica. In G. Klima, trans., Jean Buridan, Summulae de

Dialectica, An Annotated Translation with a Philosophical Introduction, Yale University

Press, New Haven, 2001. Originally written in 1487.

[4] R. Descartes. The Geometry of Rene Descartes, D. E. Smith and M. L. Lantham, trans.,

Dover, 1954.

[5] A. Arnauld and P. Nicole. Logic or the Art of Thinking. In T.S. Baynes, trans., J.

Gordon, ed., The Port-Royal Logic, Translated from the French; with Introductions,

Notes, and Appendix, Hamilton, Adams, and Co., London, 1861. Originally written in

1662.

[6] G. Boole. The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of

Deductive Reasoning, 1847.

[7] A. De Morgan. Formal Logic: or, The Calculus of Inference, Necessary and Probable,

1847.

100

[8] G. Boole. An Investigation of the Laws of Thought on Which are Founded the Mathe-

matical Theories of Logic and Probabilities, 1854.

[9] T.S. Baynes. The Port-Royal Logic, Translated from the French; with Introductions,

Notes, and Appendix, J. Gordon, ed., Hamilton, Adams, and Co., London, 1861.

[10] C.S. Peirce. Harvard Lecture 1. In Houser N., et.al., eds., Writings of Charles S.

Peirce, volume 1, pp. 162-175, 2000. Originally written in 1865.

[11] C.S. Peirce. Description of a Notation for the Logic of Relatives, Resulting from an

Amplification of the Conceptions of Boole’s Calculus of Logic, Welch, Bigelow, and

Company, Cambridge, 1870.

[12] G. Frege. Begriffsschrift, A Formal Language, Modeled upon that of Arithmetic, for

Pure Thought. In J. van Heijenoort, ed., From Frege To Godel, Harvard University Press,

Cambridge Massachusetts, 1967. Originally written in 1879.

[13] A. Marquand. A Machine for Producing Syllogistic Variations. In Studies in Logic:

By Members of the Johns Hopkins University, 1883.

[14] D. Hilbert. Mathematische Probleme. In Vortrag, gehalten auf dem internationalen

Mathematiker-Kongress zu Paris 1900, Archiv der Mathematik und Physik, 3rd series,

1, 44-63, 213-237, 1900.

[15] L. Couturat. The Logic of Leibniz in Accordance with Unpublished Documents, D.

Rutherford and R. Timothy Monroe, trans., in progress.

[16] A. Whitehead and B. Russell. Principia Mathematica, Cambridge University Press,

(vol. 1) 1910, (vol. 2) 1912, (vol. 3) 1913.

[17] D. Hilbert. Neubegründung der Mathematik (Erste Mitteilung). In Abhandlungen aus

dem mathematischen Seminar der Hamburgischen Universität 1, pp. 157-177, 1922.

101

[18] P. Bernays and M. Schönfinkel. Zum Entscheidungsproblem der mathematischen

Logik. In Mathematische Annelen, volume 99, pp. 342-372, 1928.

[19] K. Gödel. Die ollständigkeit der Axiome des logischen Funktionenkalküls. In Monat-

shefte für Mathematik und Physik 37, pp. 349, 360.

[20] K. Gödel. Über formal unentscheidbare Sätze der Principia mathematica und ver-

wandter System I. In Monatshefte für Mathematik und Physik 38, pp. 173-198, 1931.

[21] J. Herbrand. Recherches sur la théorie de la démonstation, Thesis at the University of

Paris, 1930.

[22] A. Church. An Unsolvable Problem of Elementary Number Theory. In American

Journal of Mathematics, volume 58, pp. 345-363, 1936.

[23] A. Church. A Note on the Entscheidungsproblem. In The Journal of Symbolic Logic,

volume 1, number 1, 1936.

[24] A. Turing. On Computable Numbers, with an Application to the Entscheidungsprob-

lem. In Proceedings of the London Mathematical Society, series 2, number 42, pp.

230-265, 1937.

[25] E. W. Beth. ’Semantic Entailment and Formal Derivability’, Mededelingen van de

Koninklijke Nederlandse Akademie van Wetenschappen. In Afdeling Letterkunde, N. R.

volume 18, number 13, pp. 309-342, 1955.

[26] K. J. J. Hintikka. Form and Content in Quantification Theory. In Acta Philosohica

Fennica, volume 8, pp. 7-55, 1955.

[27] A. Newell and H.A. Simon. The Logic Theory Machine - A Complex Information

Processing System. In Transactions on Information Theory, IRE., volume 2, issue 3, pp.

61-79, 1956.

102

[28] D. Prawitz, H. Prawitz and N. Voghera. A Mechanical Proof Procedure and its Real-

ization in an Electric Computer. In Journal of the ACM, volume 7, issue 2, 1960.

[29] M. Davis and H. Putnam. A Computing Procedure For Quantification Theory. In

Journal of the ACM, volume 7, issue 3, 1960. Reprinted in [Siekmann, Wrightson 1983].

[30] D. Prawitz. An Improved Proof Procedure. In Theoria, volume 26, issue 2, 1960.

Reprinted in [Siekmann, Wrightson 1983].

[31] P.C. Gilmore. A Proof Method for Quantification Theory: Its Justification and Re-

alization In IBM Journal of Research and Development, volume 4, issue 1, pp. 28-35,

1960. Reprinted in [Siekmann, Wrightson 1983].

[32] H. Wang. Toward Mechanical Mathematics. In IBM Journal of Research and Devel-

opment, volume 4, pp. 2-22, 1960.

[33] W. Kneale and M. Kneale. The Development of Logic, Oxford University Press, 1962.

[34] M. Davis, G. Logemann and D. Loveland. A Machine Program for Theorem-proving.

In Communications of the ACM, volume 5, issue 7, 1962. Reprinted in [Siekmann,

Wrightson 1983].

[35] M. Davis. Eliminating the Irrelevant from Mechanical Proofs. In Proceedings of Sym-

posia in Applied Math, volume 15, pp. 15-30, 1963. Reprinted in [Siekmann, Wrightson

1983].

[36] J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. In

Journal of the Association for Computing Machinery, volume 12, number 1, pp. 23-41,

1965. Reprinted in [Siekmann, Wrightson 1983].

[37] J. van Heijenoort. From Frege to Godel, Harvard University Press, Cambridge Mas-

sachusetts, 1967.

103

[38] J. R. Slagle. Automatic Theorem Proving with Renamable and Semantic Resolution.

In Journal of the ACM, volume 14, number 4, pp. 687-697, 1967.

[39] D. Loveland. Mechanical Theorem-Proving by Model Elimination. In Journal of the

ACM, volume 15, issue 2, 1968.

[40] D. Hilbert and P. Bernays. Foundations Of Mathematics I, Springer-Verlag, Berlin,

1968.

[41] G. Robinson and L. Wos. Paramodulation and Theorem Proving in First-order Theo-

ries with Equality. In Machine Intelligence 4, Edinburgh University Press, pp. 135-150,

1969.

[42] R. Kowalski and P.J. Hayes. Semantic Trees in Automatic Theorem Proving. In

Machine Intelligence 4, Edinburgh University Press, pp. 87-101.

[43] J.L. Bell and A.B. Slomson. Models and Ultraproducts, An Introduction, Dover, 1969.

[44] D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. In Computa-

tional Problems in Abstract Algebra, Pergamon Press, pp. 263-297, 1970.

[45] C. Chang and C.R. Lee. Symbolic Logic and Mechanical Theorem Proving, Aca-

demic Press, New York and London, 1973.

[46] W. Bibel and J. Schreiber. Proof Search in a Gentzen-like system of first order logic.

In Proceedings of the International Computing Symposium, North Holland, pp. 205-212,

1975.

[47] D. Brand. Proving Theorems with the Modification Method. In SIAM Journal on

Computing, volume 4, number 4, pp. 412-430, 1975.

[48] D. W. Loveland. Theorem Proving: a Logical Basis. In Fundamental Studies in

Computer Science, Elsevier North-Holland, 1978.

104

[49] G. Nelson and D. Oppen. Simplification by Cooperating Decision Procedures. In

ACM Transactions on Programming Languages and Systems, volume 1, number 2, pp.

245-257, 1979.

[50] P.B. Andrews. Theorem Proving via General Matings. In Journal of the Association

for Computing Machinery, volume 28, number 2, pp. 193-214, 1981.

[51] H. Putnam. Pierce the Logician. In Historia Mathematica, volume 9, issue 3, pp.

290-301, 1982.

[52] J. Siekmann and G. Wrightson. Automation of Reasoning. Classical Papers in Com-

putational Logic, Springer, 1983.

[53] M. Davis. The Prehistory and Early History of Automated Deduction. In Automation

of Reasoning. Classical Papers in Computational Logic, Springer, 1983.

[54] G. Peterson. A Technique for Establishing Completeness Results in Theorem Proving

with Equality. In SIAM Journal of Computing, volume 12, issue 1, pp. 82-100, 1983.

[55] R. Shostak. Deciding Combinations of Theories. In Journal of the ACM, volume 31,

issue 1, pp. 1-12, 1984.

[56] M. Stickel. Automated Deduction by Theory Resolution. In Proceedings of the 9th

International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers

Inc., pp. 1181-1186, 1985.

[57] P. King. Jean Buridan’s Logic: The Treatise on Supposition; The Treatise on Conse-

quences: Translation from the Latin with a Philosophical Introduction, Reidel, 1985.

[58] L. Fribourg. A Superposition Oriented Theorem Prover. In Theoretical Computer

Science, Elsevier Science B.V., volume 35, pp. 129-164, 1985.

105

[59] D.W. Loveland. Automated Theorem Proving: Mapping Logic into AI. In Proceed-

ings of the International Symposium on Methodologies for Intelligent Systems, Press,

pp. 214-229, 1986.

[60] M. Rusinowitch and J. Hsiang. On Word Problems in Equational Theories. In Au-

tomata, Languages and Programming: Lecture Notes in Computer Science, volume 267,

pp. 54-71, 1987.

[61] H. Zhang. Reduction, superposition and induction: Automated reasoning in an equa-

tional logic, Doctoral Dissertation in Philosophy, Rensselaer Polytechnic Institute, 1988.

[62] H. Zhang and D. Kapur. First-order Theorem Proving Using Conditional Rewrite

Rules. In Proceedings of the 9th International Conference on Automated Deduction,

Lecture Notes in Computer Science, volume 310, pp. 1-20, 1988.

[63] R. Jeroslow. Computation-oriented Reductions of Predicate to Propositional Logic.

In Decision Support Systems, Elsevier Science B.V., volume 4, issue 2, pp. 183-197,

1988.

[64] L. Bachmair and H. Ganzinger. On Restrictions of Ordered Paramodulation with

Simplification. In Proceedings of the 10th International Conference on Automated De-

duction, Springer-Verlag, pp. 427-441, 1990.

[65] S. Lee. CLIN: An Automated Reasoning System Using Clause Linking, Doctoral

Dissertation in Philosophy, University of North Carolina at Chapel Hill, 1990.

[66] R. Dipert. The Life and Work of Ernst Schroder. In Modern Logic, volume 1, pp.

117-139, 1990.

[67] J. Pais and G. Peterson. Using Forcing to Prove Completeness of Resolution and

Paramodulation. In Journal of Symbolic Computation, volume 11, pp. 3-19, 1991.

106

[68] J. Goubault. The Complexity of Resource-Bounded First-Order Classical Logic. In

Lecture Notes In Computer Science, Proceedings of the 11th Annual Symposium on The-

oretical Aspects of Computer Science, volume 775, Springer-Verlag, pp. 59-70, 1994.

[69] S. Lee and D. Plaisted. Problem Solving by Searching for Models with a Theorem

Prover. In Artificial Intelligence, volume 69, pp. 205-233, 1994.

[70] S. Buss. On Herbrand’s Theorem. In Logic And Computational Complexity, Lecture

Notes In Computer Science, volume 960, Springer-Verlag, pp. 195-209, 1995.

[71] P. King and S. Shapiro. The History Of Logic. In The Oxford Companion to Philos-

ophy, Oxford University Press, pp. 496, 1995.

[72] L. Bachmair, H. Ganzinger, C. Lynch and W. Snyder. Basic Paramodulation. In

Information and Computation, volume 121, number 2, pp. 172-192, 1995.

[73] M. Moser, C. Lynch and C. Steinbach. Model Elimination with Basic Ordered

Paramodulation. unpublished, 1995.

[74] C. Barrett, D. Dill and J. Levitt. Validity Checking for Combinations of Theories with

Equality. In Proceedings of the First International Conference on Formal Methods in

Computer-Aided Design, Springer-Verlag, pp. 187-201, 1996.

[75] D. Cyrluk, P. Lincoln and N. Shankar. On Shostak’s Decision Procedure for Combi-

nations of Theories. In Proceedings of the 13th International Conference on Automated

Deduction, Springer-Verlag, pp. 463-477, 1996.

[76] J. Billon. The Disconnection Method. In Proceedings of the 5th International

Workshop on Theorem Proving with Analytic Tableaux and Related Methods, Springer-

Verlag, pp. 110-126, 1996.

[77] N. Bjorner, M. Stickel and T. Uribe. A Practical Integration of First-order Reason-

ing and Decision Procedures. In Proceedings of the 14th International Conference on

107

Automated Deduction, Lecture Notes in Computer Science, Springer, volume 1249, pp.

101-115, 1997.

[78] A. Leitsch. The Resolution Calculus, Springer, 1997

[79] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1. In

Journal of Automated Reasoning, volume 21, number 2, pp. 177-203, 1998.

[80] D. Plaisted and Y. Zhu. Ordered Semantic Hyper-Linking. In Jornal of Automated

Reasoning, volume 25, number 3, 2000.

[81] A. Tiwari, L. Bachmair and H. Ruess. Rigid E-Unification Revisited. In Proceed-

ings of the 17th International Conference on Automated Deduction, Springer-Verlag,

pp. 220-234, 2000.

[82] P. Baumgartner. FDPLL - A First Order Davis-Putnam-Logemann-Loveland Proce-

dure. In Proceedings of the 17th International Conference on Automated Deduction,

Springer-Verlag, pp. 200-219, 2000.

[83] P. Barrouillet. Conditional reasoning by mental models: chronometric and develop-

mental evidence. In Cognit, volume 75, pp. 237-266, 2000.

[84] R. Letz and G. Stenz. Proof and Model Generation with Disconnection Tableaux.

In Proceedings of the Conference on Artificial Intelligence on Logic for Programming,

Springer-Verlag, pp. 142-156, 2001.

[85] D. Plaisted. Theorem Proving. In Wiley Encyclopedia of Electrical and Electronics

Engineering, John Wiley & Sons, Inc., 2001.

[86] M. Davis. The Early History of Automated Deduction. In Handbook Of Automated

Reasoning, A. Robinson and A. Voronkov, eds., volume 1, MIT Press, Cambridge, pp.

3, 2001.

108

[87] L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In Handbook Of Au-

tomated Reasoning, A. Robinson and A. Voronkov, eds., volume 1, MIT Press, Cam-

bridge, pp. 19, 2001.

[88] R. Hähnle. Tableaux and Related Methods. In Handbook of Automated Reasoning,

A. Robinson and A. Voronkov, eds., volume 1, MIT Press, Cambridge, pp. 101, 2001.

[89] M. Baaz, U. Egly and A. Leitsch. Normal Form Transformations. In Handbook

of Automated Reasoning, A. Robinson and A. Voronkov, eds., volume 1, MIT Press,

Cambridge, pp. 273, 2001.

[90] R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In Hand-

book of Automated Reasoning, A. Robinson and A. Voronkov, eds., volume 1, MIT

Press, Cambridge, pp. 371, 2001.

[91] A. Degtyarev and A. Voronkov. Equality Reasoning in Sequent-Based Calculi. In

Handbook of Automated Reasoning, A. Robinson and A. Voronkov, eds., volume 1,

MIT Press, Cambridge, pp. 611, 2001.

[92] C. Fermüller, A. Leitsch, U. Hustadt and T Tammet. Resolution Decision Procedures.

In Handbook of Automated Reasoning, A. Robinson and A. Voronkov, eds., volume 2,

MIT Press, Cambridge, pp. 1791, 2001.

[93] R. Letz and G. Stenz. Model Elimination and Connection Tableau Procedures. In

Handbook of Automated Reasoning, A. Robinson and A. Voronkov, eds., volume 2,

MIT Press, Cambridge, pp. 2015, 2001.

[94] J. Ferreiros. The Road To Modern Logic - An Interpretation. In The Bulletin of

Symbolic Logic, volume 7, number 4, 2001.

[95] G. Klima. John Buridan, Summulae de Dialectica, An Annotated Translation, with a

Philosophical Introduction, Yale University Press, New Haven, 2001.

109

[96] P. King. The Metaphysics and Natural Philosophy of Buridan, J.M.M.H Thijssen and

J. Zupko, eds., Brill, 2001.

[97] C. Barrett, D.L. Dill and A. Stump. Checking Satisfiability of First-order Formulas

by Incremental Translation to SAT. In Proceedings of the 14th International Conference

on Computer Aided Verification, Springer-Verlag, pp. 236-249, 2002.

[98] C. Tinelli. A DPLL-based Calculus for Ground Satisfiability Modulo Theories. In

Proceedings of the 8th European Confernce on Logics in Artificial Intelligence, Lecture

Notes in Artificial Intelligence, Springer, volume 2424, pp. 308-319, 2002.

[99] J.N. Hooker, G. Rago, V. Chandru and A. Shrivastava. Partial Instantiation Methods

for Inference in First-order Logic. In Journal of Automated Reasoning, volume 28, p.

200, 2002.

[100] S. Shankar. Little Engines of Proof. In Proceedings of FME 2002, International

Symposium of Formal Methods, Lecture Notes in Computer Science, Springer, volume

2391, pp. 1-20, 2002.

[101] S. Schulz. E - A Brainiac Theorem Prover. In AI Communications, IOS Press,

volume 15, numbers 2-3/2002, pp. 111-126, 2002.

[102] A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRE. In

AI Communications, IOS Press, volume 15, issue 2-3, pp. 91-110, 2002.

[103] A. Riazanov and A. Voronkov. Efficient Instance Retrieval with Standard and Relati-

nal Path Indexing. In Proceedings of the 19th International Conference On Automated

Deduction, Lecture Notes in Computer Science, Springer, volume 2741, pp. 380-396,

2003.

110

[104] P. Baumgartner and C. Tinelli. The Model Evolution Calculus. In Proceedings of

the 19th International Conference On Automated Deduction, Lecture Notes in Computer

Science, Springer, volume 2741, pp. 350-364, 2003.

[105] A. Riazanov. Implementing An Efficient Theorem Prover, Doctoral Dissertation in

Philosophy, University of Manchester, 2003.

[106] H. Ganzinger and K. Korovin. New Directions in Instantiation-based Theorem Prov-

ing. In Proceedings of 18th IEEE Symposium on Logic in Computer Science, IEEE

Computer Society Press, pp. 55-64, 2003.

[107] C. Barrett. Checking Validity of Quantifier-free Formulas in Combination of First-

order Theories, Doctoral Dissertation in Philosophy, Standford University, 2003.

[108] N. Een and N. Sorensson. An Extensible SAT-solver. In Theory and Applications

of Satisfiabilty Testing, Lecture Notes in Computer Science, Springer, volume 2919, pp.

333-336, 2004.

[109] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras and C. Tinelli. DPLL(T): Fast

Decision Procedures. In Proceedings of the 11th International Conference on Logic

for Programming, Artificial Intelligence and Reasoning, Lecture Notes in Computer

Science, Springer, volume 3452, pp. 175-188, 2004.

[110] J. Marcinkowski, J. Otop and G. Stelmaszek. On a Semantic Subsumtion Test. In

Proceedings of the 11th International Conference on Logic for Programming, Artifi-

cial Intelligence and Reasoning, Lecture Notes in Computer Science, Springer, volume

3452, pp. 142-153, 2004.

[111] H. Ganzinger and K. Korovin. Integrating Equational Reasoning into Instantiation-

based Theorem Proving. In Proceedings of the 13th Annual Conference of European

Association for Computer Science Logic, Lecture Notes in Computer Science, Springer,

volume 3210, pp. 71-84, 2004.

111

[112] S. Schulz. System Description: E 0.81. In Proceedings of the 2nd International

Joint Conference on Automated Reasoning, volume 3097, pages 223-228, 2004.

[113] R. Nieuwenhuis and A. Oliveras. Proof-producing Congruence Closure. In Proceed-

ings of the 16th International Conference on Term Rewriting and Applications, Lecture

Notes in Computer Science, Springer, volume 3467, pp. 453-468, 2005.

[114] P. Baumgartner and C. Tinelli. The Model Evolution Calculus with Equality. In

Proceedings of the 20th International Conference on Automated Deduction, Lecture

Notes in Artificial Intelligence, Springer, volume 3632, pp. 392-408, 2005.

[115] R. Nieuwenhuis, A. Oliveras and C. Tinelli. Abstract DPLL and Abstract DPLL

Modulo Theories. In Proceedings of the 11th International Conference on Logic for

Programming, Artificial Intelligence and Reasoning, Lecture Notes in Computer Sci-

ence, Springer, volume 3452, pp. 36-50, 2005.

[116] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation and

Its Application to Difference Logic. In Proceedings of the 17th International Conference

on Computer Aided Verification, Lecture Notes in Computer Science, Springer, volume

3576, pp. 321-334, 2005.

[117] H. Ganzinger and K. Korovin. Theory Instantiation. In Proceedings of the 13th

Conference on Logic for Programming, Artificial, Intelligence and Reasoning, Lecture

Notes in Computer Science, Springer, volume 4246, pp. 497-5111, 2006.

[118] C. Barrett, R. Nieuwenhuis, A. Oliveras and C. Tinelli. Splitting on Demand. In

Proceedings of the 13th International Conference on Logic for Programming, Artifi-

cial Intelligence, and Reasoning, Lecture Notes in Computer Science, Springer, volume

4246, pp. 512-526, 2006.

112

[119] R. Nieuwenhuis, A. Oliveras and C. Tinelli. Solving SAT and SAT Modulo Theo-

ries: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). In

Journal of the ACM, volume 53, number 6, pp. 937-977, 2006.

[120] B. Lochner. Things to Know when Implementing KBO. In Journal of Automated

Reasoning, Springer, volume 36, pp. 289-310, 2006.

[121] S. Prestwich and I. Lynce I. Local Search for Unsatisfiability. In Proceedings of

the 9th International Conference on Theory and Applications of Satisfiability Testing,

Springer, Aug. 2006 , pp. 283-296, 2006.

[122] S. Delaune, H. Lin and C. Lynch. Protocol Verification Via Rigid/Flexible Resolu-

tion. In Proceedings of the 14th International Conference on Logic for Programming,

Artificial Intelligence and Reasoning, pp. 242-256, 2007.

[123] Y. Ge, C. Barrett and C. Tinelli. Solving Quantified Verification Conditions

Using Satisfiability Modulo Theories. In Proceedings of the 21st International

Conference on Automated Deduction, Lecture Notes in Computer Science, Springe-

http://www.cs.nyu.edu/acsys/cvc3/doc/index.htmlr, volume 4603, pp. 167-182, 2007.

[124] C. Barrett and C. Tinelli. CVC3. In Proceedings of the 19th International Con-

ference on Computer Aided Verification, Springer-Verlag, volume 4590, pp. 298-302,

2007.

[125] P. Baumgartner. Logical Engineering with Instance-based Methods. In Proceedings

of the 21st International Conference on Automated Deduction, Springer-Verlag, pp. 404-

409, 2007.

[126] T. Deshane, W. Hu, P. Jablonski, H. Lin, C. Lynch and R.E. McGregor. Encoding

First Order Proofs in SAT. In Proceedings of the 21st International Conference on

Automated Deduction, Springer-Verlag, pp. 476-491, 2007.

113

[127] M. Ludwig and U. Waldmann. An extension of the Knuth-Bendix Ordering with

LPO-like properties. In Proceedings of the 14th international conference on Logic for

Programming, Springer-Verlag, pp. 348-362, 2007.

[128] J. Bonjio, C. Katrak, H. Lin, C. Lynch and R.E. McGregor. Encoding First Order

Proofs in SMT. In Electronic Notes in Theoretical Computer Science, volume 198,

number 2, pp. 71-84.

[129] P. Baumgartner and C. Tinelli. The Model Evolution Calculus As A First-order

DPLL Procedure. In Artificial Intelligence, Elsevier Science Publishers Ltd., volume

172, issue 4-5, pp. 591-632, 2008.

[130] L. de Moura and N. Bjorner. Engineering DPLL(T) + Saturation. In Proceedings of

the 4th International Joint Conference on Automated Reasoning, Springer-Verlag, pp.

475-490, 2008.

[131] G. Sutcliffe. The CADE-21 Automated Theorem Proving System Competition. In

AI Communications, volume 21, number 1, pp. 71-82.

[132] C. Lynch and D. Tran. SMELS: Satisfiability Modulo Equality with Lazy Superpo-

sition. In Proceedings of the 6th International Symposium on Automated Technology for

Verification and Analysis, Lecture Notes in Computer Science, Springer, volume 5311,

pp. 186-200, 2008.

[133] K. Korovin. An Instantiation-Based Theorem Prover for First-Order Logic (System

Description). In Proceedings of the 4th International Joint Conference on Automated

Reasoning, Springer-Verlag, pp. 292-298, 2008.

[134] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Prentice

Hall, 3rd Edition, 2009.

114

[135] C. Sticksel. Efficient Ground Satisfiability Solving In An Instantiation-based

Method For First-order Theorem Proving. Presented at the 16th Workshop on Auto-

mated Reasoning, 2009.

[136] C. Lynch and R.E. McGregor. Combining Instance Generation and Resolution. In

Proceedings of the 7th International Conference on Frontiers of Combining Systems,

Springer-Verlag, pp. 304-318, 2009.

[137] S. Jabobs. Incremental Instance Generation in Local Reasoning. In Proceedings of

the 21st International Conference on Computer Aided Verification, Springer-Verlag, pp.

368-382, 2009.

[138] L. de Moura and N. Bjorner. Satisfiabilty Modulo Theories: An Appetizer. In Formal

Methods: Foundations and Applications, volume 5902, pp. 23-36, 2009.

[139] Y. Ge and L. de Moura. Complete Instantiation for Quantified SMT Formulas.

In Proceedings of the 21st International Conference on Computer Aided Verification,

Springer-Verlag, pp. 306-320, 2009.

[140] P. Baumgartner and U. Waldmann. Superposition and Model Evolution Combined.

In Proceedings of the 22nd International Conference on Automated Deduction, Lecture

Notes in Artificial Intelligence, volume 5663, pp. 17-34, 2009.

[141] M.P. Bonacina, C. Lynch and L. de Moura. On Deciding Satisfiability by

DPLL(Gamma+T) and Unsound Theorem Proving. In Proceedings of the 22nd Inter-

national Conference on Automated Deduction, Lecture Notes in Artificial Intelligence,

volume 5663, pp. 35-50, 2009.

[142] K. Korovin and C. Sticksel. iProver-Eq: An Instantiation-based Theorem Prover

with Equality. In Proceedings of the 5th International Joint Conference on Automated

Reasoning, Springer, pp. 196-202, 2010.

115

[143] P. Baumgartner and E. Thorstensen. Instance Based Methods - An Overview. In

Kunstliche Intelligenz, volume 24, number 1, pp. 35-42, 2010.

[144] M. Paola-Bonacina, C.A. Lynch and L. de Moura. On Deciding Satisfiability by The-

orem Proving with Speculative Inference. In Journal of Automated Reasoning, Springer

Netherlands, pp. 1-29, 2010.

[145] S. Schulz. E 1.2 User Manual. http://www4.infomatik.tu-meunchen.

de/˜schulz/WORK/eprover.ps.

[146] C. Barrett. CVC3 Documentation. http://www.cs.nyu.edu/acsys/

cvc3/doc/index.html.

[147] B. Dutertre and L. de Moura. Yices. http://yices.csl.sri.com.

116

