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Preface

This book is the result of 25 years of work focusing on mollusk shells from
southern South America. My interest in seashells started when I was a young girl.
Although I was born in a city in the center of Argentina, I spent my holidays by the
sea, where I discovered the beauty of shells just waiting to be unearthed from the
beaches. Amazed by their colors and shapes, I asked myself where they came
from, how they got there, and how deep in the sea they lived. After graduating, I
decided to find the answers. I moved to Ushuaia, where I started to study Qua-
ternary mollusks with a CONICET fellowship under the supervision of Jorge O.
Rabassa and M. Teresa Sánchez�. During this adventure many answers were found
and new questions arose, and in recent years three doctoral students, María Sol
Bayer, Gabriella M. Boretto, and Melisa P. Charó, joined the team to work under
my supervision.

As a result of this rich, shared experience, the purpose of this book is to provide
an approach to how mollusk shell remains are used in the reconstruction of
Quaternary marine environments in southern South America.

This book is designed for researchers who focus on paleoenvironmental
reconstruction, and also for undergraduate and postgraduate students who are
interested in Quaternary research, and for everyone who has an interest in this
topic and/or in this region.

Sandra Gordillo
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Abstract

Given the wide range of disciplines involved in Quaternary research, this book
aims to provide a comprehensive approach to how mollusk shell remains have
been used in the reconstruction of Quaternary environments in southern South
America. Our study was based on present-day Holocene and Pleistocene mollusk
assemblages from different areas covering a wide distribution range between 40�
and 54� S. The mollusk assemblages and/or selected taxa were analyzed using a
multidisciplinary approach mainly involving taphonomy, paleoecology, mor-
phometry, shell microstructure, and sclerochronology.

A local-scale quantitative and qualitative analysis of mollusk assemblages at
different latitudes suggests that each environment acted as a ‘‘dynamic mosaic’’ for
the development of local communities in patchy habitats or sub-environments
which, in accordance with sea-level changes, shifted over time. Changes in mol-
lusk assemblages took place from a few hundred to several thousand years ago,
and mostly follow local physical variations (i.e., substrate, availability of food, and
currents); changes associated to global-scale climatic variability during the
Holocene were also recorded in individual taxa. As the multi-proxy evidence used
in this study provides a consistent picture of spatial and temporal environmental
and climatic changes in southern South America, we have concluded that mollusk
shells are extremely valuable tools for studies addressing Quaternary environments
anywhere.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca � Taphonomy � Paleoecology � Morphometry � Shell microstructure �
Sclerochronology
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Chapter 1
Introduction

Abstract The Quaternary system/period is the most recent geological time
interval in the history of the Earth, and covers the last 2.588 million years up to the
present day. It includes a series of very extensive environmental changes which
have affected and shaped landscapes and life on Earth. These variations in turn
have driven rapid changes in both continental and marine biota. With this in mind,
the aim of this book is to provide tools for reconstructing Quaternary environ-
ments, based on specific cases which offer an approach to the use of mollusk shells
as a multi-proxy data source.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca � Glacial stages � Interglacial stages � Multi-proxy studies

1.1 The Quaternary and the Use of Proxy Records

The Quaternary system/period is the most recent geological time interval in the
history of the Earth, and covers the last 2.588 million years up to the present day
(Fig. 1.1). It includes a series of very extensive environmental changes which have
affected and shaped landscapes and life on Earth. In the geologic history of Earth,
the Quaternary is a unit of time within the Cenozoic era and includes two formally
designed intervals of series/epoch status (Gibbard et al. 2009): the Pleistocene and
the Holocene. The Pleistocene began when rock strata show extensive evidence of
widespread expansion of ice sheets over the continents, and was the beginning of
an era of dramatic climatic and oceanographic changes. The Holocene is generally
regarded as having begun 10,000 radiocarbon years before 1950 AD, or 11.7 k
calendar years before 2000 AD (Wolff 2008). One of the most distinctive features
of the Quaternary has been periodic cold or glacial stages alternating with inter-
glacial stages (Fig. 1.2), during which temperatures were occasionally higher than
those of the present day (Lowe and Walker 1997). During and between these
glacial periods, rapid changes in climate and sea level occurred, and environments

S. Gordillo et al., Mollusk Shells as bio-geo-archives,
South America and the Southern Hemisphere, DOI: 10.1007/978-3-319-03476-8_1,
� The Author(s) 2014
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worldwide were altered. These variations in turn have driven rapid changes in both
continental and marine biota.

With regard to continental and marine environments, the repeated climatic
changes that occurred during the Quaternary have given rise to a rich and complex
record of landforms, sediments and biologic remains. These bio-geo-records
provide indirect measurements of former climates and environments. When the
term bio-geo-archive is associated with mollusk shells, it means that it is possible
to reconstruct past ecosystems and environmental conditions from different data
sources obtained from shells.

Fig. 1.1 The Quaternary in
relation to the geological
timescale according to the
2013 chronostratigraphic
chart recommended by the
International Commission on
Stratigraphy (Cohen et al.
2013)

2 1 Introduction



1.2 The Scope of this Book

The aim of this book is to provide tools for reconstructing Quaternary environ-
ments in southern South America (Fig. 1.3), based on specific cases which offer an
approach to the use of mollusk shells as a multi-proxy data source.

On the basis of several examples that include bivalves and chitons, Chap. 2
explains how different taphonomic attributes (fragmentation, dissolution and
abrasion, among others) are suitable for evaluating the post-mortem events that
took place up to when the mollusk shells were found within the fossil record. In
Chap. 3, the shell microstructure of Patagonian aragonitic shells is studied by

Fig. 1.2 Curve representing
glacial and interglacial cycles
for the last 2.6 Ma, measured
from oxygen isotope analysis
performed on benthic
foraminifera. Odd numbers
indicate isotope warm stages,
while even numbers indicate
cold stages for the last 0.4 Ma
in Argentina (modified after
Lowe and Walker 1997)
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Fig. 1.3 Location map of southern South America showing the main sites mentioned in the text,
covering a wide range between 40� and 54� S

4 1 Introduction



X-ray diffraction, optical and electron microscopy, electron microprobe analyses
and microindentation in order to characterize early diagenetic changes and
mechanical resistance over a period that exceeds 100,000 years (from the present
day up to the late Pleistocene). Chapter 4 is centered on the analysis of taxonomic
groups and taxa composition of the preserved fauna from different Pleistocene and
Holocene marine outcrops located mainly along the Argentinean marine coast.
This allows for the reconstruction of local benthic paleocommunities inhabiting
the different sub-environments throughout the Quaternary in this region. Chapter 5
gives examples of the biotic interactions that can be recorded in mollusk shells.
Chapter 6 focuses on the faunal distribution, faunistic shifts and even the
extinction of some species during the Argentinean and southern South American
Quaternary. Chapter 7 follows the morphometric analyses of selected bivalves
well represented in the Quaternary fossil record of the Argentinean coast, and
looks at shell shape and size variations through time and the reasons for these
changes. Chapters 8 and 9 focus on the use of stable oxygen and carbon isotope
analysis of marine shells, since this can provide information on paleotemperatures
and productivity; in Chap. 8 this analysis is performed on serial samples of dif-
ferent species from different marine deposits, while in Chap. 9 stable isotopes are
treated in conjunction with individual growth in selected fossil specimens of three
bivalves. The final chapter, Chap. 10, summarizes the strengths and weaknesses of
using mollusk shells, and looks at the main achievements of our work and the gaps
which need to be filled in.
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Chapter 2
Taphonomy

Abstract Taphonomy is the ‘‘science of the laws of burial’’ (Efremov 1940); it
involves the transition of animal remains from the biosphere to the lithosphere. In
this chapter we refer to various taphonomic attributes (e.g., fragmentation and
abrasion, among others) by looking at examples in different environments and
different taxa; and we explain the advances made in taphonomy by the working
group.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca � Taphonomy � Taphonomic attributes � Taphonomic grades �
Fragmentation � Dissolution

2.1 Taphonomy as a Cross-Disciplinary Branch

Taphonomy is the ‘‘science of the laws of burial’’ (Efremov 1940), ‘‘a branch of
paleontology, and almost a branch of ecology’’ (Gordillo 2011), and–as it involves
the transition of animal remains from the biosphere to the lithosphere–taphonomy
is also the study of the death and decay of organisms, including the process of
fossilization.

The terms ‘‘authochthonous’’, ‘‘parautochthonous’’ and ‘‘allochthonous’’ pro-
posed by Kidwell et al. (1986) are currently used by many authors to describe the
nature of preserved mollusk assemblages. If they are transported, and therefore
indicative of the environments in which they finally ended up, they are allochth-
onous assemblages. If the preserved shells are recovered in situ, and therefore
record the environment in which they lived, they are authochtonous assemblages.
Finally, if they reflect a situation with locally reworked faunas, but are essentially
in situ, they are parautochthonous assemblages.

In this respect, the history of shell burial and exhumation is strongly associated to
the taphonomically active zone (TAZ), defined by Aller (1982) as the zone near the
sediment–water interface where pore waters are undersaturated with respect to
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aragonite and calcite, and where most dissolution of carbonate minerals occurs. The
length of time a shell remains at the surface and the time it spends buried just below the
surface in the TAZ are significant factors in determining whether the shell will become
part of a preserved fossil assemblage (Parsons-Hubbard et al. 1999). For futher details
on taphonomy of marine shelly faunas see Kidwell and Bosence (1991).

2.2 Taphonomic Attributes

The nature of a fossil concentration is defined by taphonomic attributes (i.e.,
preservational features), and this kind of study allows death assemblages to be
interpreted by observing the fossil remains. One way to do this is to analyze
different taphonomic attributes according to different taphonomic grades
(Fig. 2.1), for each sample and for a target species (i.e., the most common and/or
best preserved species). The results are then averaged over the entire sample for
comparisons with other sites/regions. Some of the taphonomic attributes most
frequently used in mollusk shells are the following:

The ratio of opposite valves refers to the number of left and right valves of a
particular species in each assemblage, and this feature is useful for evaluating
transport from the original community. Another common feature is fragmentation,
which is associated with the breakage of shells and serves as a proxy for environ-
mental energy. The degree of shell fragmentation tends to be highest in environments
with high water turbulence and coarse substrates, such as beaches and tidal channels,
due to the impact of other shells, rocks and waves (Parsons and Brett 1991), although
it can be influenced by ecological interactions, like shell-breaking predation or
bioturbation (Zuschin et al. 2003). As an example, the degree offragmentation can be
estimated following a three-grade scale: whole shell (unbroken), broken shell (up to
50 % broken) and fragment (more than 50 % of the entire shell is absent).

It is also important to analyze the degree of surface alteration, which is gen-
erally related to the abrasion, corrosion or bioerosion of skeletons (Parsons and
Brett 1991). Abrasion of shells occurs when they are exposed to moving particles
or when the shells themselves are moved relative to other particles. It is produced
by near-shore waves, currents or tidal action, and the most common effect of
abrasion on mollusk shells is the loss of surface ornamentation. Corrosion on shell
surfaces is frequently produced by chemical dissolution. Different skeletons dis-
play different solubility in acidic solutions. Calcitic hard parts with high magne-
sium carbonate content (e.g., echinoderms) are the most soluble, followed by
aragonitic and low magnesium calcitic hard parts (Flessa and Brown 1983). Brett
and Baird (1986) introduced the term corrasion to describe the degradation of shell
surfaces when it is difficult to distinguish between abrasion and corrosion. Wear,
related to abrasive agents, is also used to evaluate surface alteration. Bioerosion
refers to the alteration of shells through the activity of organisms, usually in search
of either food or shelter, and may take the form of boring, rasping, etching,
breakage or abrasion of the shell. Another feature, encrustation, which refers to
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Fig. 2.1 Tawera gayi shells displaying three taphonomic grades for fragmentation, wear, and
bioerosion and encrustation. a Unbroken shell, b Broken shell, c Fragmented shell, d Shell with
ornamented surface, not abraded, e Shell with abraded surface, f Shell with internal layer
exposed, g Unbored shell, h Bored shell, i Shell with incomplete drill-hole, j Shell without
encrusters, k Shell with encrusters on external surface, l Shell with encrusters on the internal
surface (after Gordillo et al. 2011)
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organisms that use shells to live, is a good indicator of the duration of shell
exposure at the sediment–water interface (Parsons and Brett 1991); hard-parts are
often encrusted after death.

To analyze the percentage of fragmentation, surface alteration or bioerosion
over an entire sample, different taphonomic categories are useful for further
interpretations.

Finally, size-sorting involves the segregation of fossil elements, and reflects
prolonged exposure to currents, selective winnowing and transport of shells by
currents throughout different hydrodynamic events (Speyer and Brett 1988).

The analysis of ecological features such as mode of life is also useful for
taphonomic studies. When considering life position with respect to sediment,
mollusks are classified as epifauna when they live on a surface such as the sea
floor, or on other organisms, and as infauna when they live in the substrate,
especially when they are buried in a soft sea bottom. However, intergradation
between the two categories makes this classification somewhat arbitrary and
artificial, so a third intermediate category, semi-infaunal (Stanley 1970), can be
applied to organisms that live partially buried in the substratum.

2.3 Exhuming Clams and Chitons

In southern South America, the shell remains of living and fossil specimens of five
bivalves, including mytilids and venerids from the Beagle Channel and the Strait
of Magellan, have provided valuable clues to local variations in physical factors
such as current speed, wave action and freshwater input along these coasts during
the Holocene (Cárdenas and Gordillo 2009; Gordillo et al. 2010, 2011).

According to taphonomic analyses, two types of environment exist on the
coasts of Tierra del Fuego: a high energy environment in the Strait of Magellan
terraces and a low to moderate energy environment in the Beagle Channel. In the
Strait of Magellan, the mytilids (epifauna) show high fragmentation and abrasion,
thus implying that they were subject to long exposure on the sea bottom before
burial. It is also possible that these taxa experienced shell transport in abrasive
sediment due to currents in a high-energy setting such as a foreshore environment,
and/or multiple reworking episodes (Speyer and Brett 1991). In the Beagle
Channel, fossil assemblages have moderate fragmentation and abrasion, thus
indicating a low to moderate energy environment with a dominance of soft bot-
toms such as sand or small gravel. Venerids (infaunal or semi-infaunal species) are
well-preserved in both zones of Tierra del Fuego, and although abrasion and
fragmentation in the deposits are moderate, this can be attributed to high bioe-
rosion of their valves caused mainly by boring gastropods and/or encrusting ele-
ments on the surface of the shell (Zuschin and Stanton 2001). In this respect,
results show a relationship between the levels of bioerosion and fragmentation in
the deposits from the Strait of Magellan, i.e., deposits with high bioerosion also
show high fragmentation. Nonetheless, in other sites along the Beagle Channel
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(the Alakush and Ushuaia sites), this relationship does not exist and the high
fragmentation of venerids could be associated with different postmortem pro-
cesses. In particular, venerids showed a higher preservation potential than mytilids,
and their infaunal life cycle and fast burial rate make them more reliable speci-
mens to use in further taphonomic analyses.

In Patagonia, Argentina, the coastal area of Puerto Lobos (Chubut, northern
Patagonia, 42�000S 65�40W) was chosen for the taphonomic analysis (Fig. 2.2) of
two common bivalve species from the area (Glycymeris longior and Ameghinomya
antiqua). This was useful for evaluating changes in environmental conditions, such
as waves and currents (Boretto et al. 2013). Glycymeris longior is typical of the
Argentinean Province, located to the north, while Ameghinomya antiqua is typical
of the Magellan Province, located to the south. However, the two species coexist in
Puerto Lobos, which is located between these two malacological provinces. For
taphonomic analysis, mollusk shells (N = 268) were collected from the active
beach and from two Holocene beach ridges: the older ridge was dated at
3310 ± 90 years BP, while the younger ridge was dated at 750 ± 75 years BP
(Bayarsky and Codignotto 1982).

Data was analyzed using the ternary taphograms proposed by Kowalewski et al.
(1995), which have a semiquantitative character. The corners of the equilateral
triangles are classified as Good (little or no development of a particular attribute),
Fair (moderate development of a taphonomic characteristic), or Poor (high devel-
opment of the attribute). The entire sample can be characterized by the proportion of
shells in each of the three categories (Kowalewski et al. 1995). For Fragmentation,
the grade Good indicates no fractures; Fair represents less than 50 % broken shells;
and Poor is when more than 50 % of the shells are broken. G. longior assemblages
from the older Holocene deposit are located close to the Good grade, with a tendency
towards Fair, thus indicating the preservation of whole shells, or shells that are less
than 50 % broken. It also shows a higher percentage of fragmented G. longior shells

Fig. 2.2 Distribution of different taphonomic grades for the attribute fragmentation, considered
in Glycymeris longior and Ameghinomya antiqua from Holocene beach ridges and modern A.
antiqua shells from the present day (active) beach. The graph shows a higher percentage of
broken shells in the youngest beach ridge, thus implying different environmental conditions with
respect to the older one. A. antiqua samples from these deposits are closer to the Poor apex of the
triangle, thus indicating shells with fractures greater than 50 %
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Fig. 2.3 Taphonomic attributes and grades using chiton plates. Fragmentation: a, b Whole
plates, c, d Broken plates, e, f Fragments. Edge modification: g Edge without modification,
h Chipped edge, i Polished edge. Surface alteration: j Surface without changes, k Surface
alteration up to 50 %, l, m Completely altered surface. Encrustation: n, o Intermediate plate with
encrusting algae. Coloration p Plate with original color, q Discolored plate, r Colorless plate
(white washed) (after Gordillo 2007)
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in the younger deposit, thus implying different environmental conditions. A. antiqua
samples from these deposits are closer to the Poor apex of the triangle, thus indi-
cating shells with fractures greater than 50 %. As in the previous case, samples from
the younger deposit display a higher degree of fracturing than samples collected
from the older deposit. A. antiqua shells sampled from the modern beach are
preserved whole (Good-Poor grade). These trends indicate greater energy in the
depositional environment for the youngest beach ridge, since both species are more
vulnerable to fracture in relation to those analyzed in the oldest beach ridge. Nev-
ertheless, these results are best interpreted in conjunction with intrinsic properties of
resistance to shell breakage (see Chap. 3).

A third example comes from the analysis of taphonomic and paleontological
attributes in Holocene chitons (Fig. 2.3). Gordillo (2007) showed that the tapho-
nomic condition of a chiton plate is the result of biological, ecological and
environmental factors, and in this study the surface of a high percentage of chiton
plates was affected. It was also considered highly probable that the dissolution
process is post-depositional and is associated with changes in pH, since several of
these deposits are currently associated with brackish or freshwater environments.
This situation, coupled with the frequent rainfall and snow in the region, would
have led to an acidic environment that favored the dissolution of the carbonates
within the plates. However, unlike chitons, dissolution did not significantly alter
the bivalves present in the same associations. The reason for this inequality may be
linked to differences in the microstructure and the organic content of the bivalve
shells and chiton plates. Apparently, the chiton plates have pores associated with
an interconnecting network of microtubules (for housing soft tissue with a sensory
function), and this raises the proportion of organic content and the flow capacity of
interstitial water, thus favoring dissolution. The environmental acidity as a cause
of dissolution, and the relationship between microstructure and differential pres-
ervation of mollusk shells, has also been considered by other authors (e.g., Glover
and Kidwell 1993; Isaji 1993). The exposure of internal layers obtained from
raised beach plates could also be associated with some epibionts not preserved in
the fossil record (e.g., algae, sponges), which could have acted as agents of
bioerosion and facilitators of dissolution. This example with chiton plates shows
that they are also suitable for evaluating the post-mortem events that took place up
to when they were found within the fossil record.
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Chapter 3
Shell Microstructure and Shell
Architecture

Abstract This chapter is focused on the analysis of the shell microstructure of
different taxa and on how this information can be used for paleoenvironmental
interpretations. A physic-chemical analysis on Modern, Holocene and Pleistocene
shells of the purple clam Amiantis purpurata helps discern the structural changes
during early diagenesis. In addition, the analyses of the microstructure of two other
bivalves (Glycymeris longior and Ameghinomya antiqua) from the same region
explain the differences in the degree of fragmentation in both species as a result of
different structural features. Finally, cathodoluminiscence applied to Tawera gayi
provides information on the skeletal growth cycles that is useful for evaluating
changes.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca � Shell microstructure � Mechanical resistance � Early diagenesis

Shell microstructure refers to the arrangement of basic microstructural units, such
as tablets, rods and blades, in a shell layer. Shell architecture deals with the larger
aspect of the shell microstructure, such as the orientation of the largest units of
shell microstructure with respect to the shell form (Carter 1980).

3.1 Inorganic-Organic Biocomposites

As seen in Chap. 2, mollusk shells have been used in comparative taphonomic
studies because of their excellent potential for preservation. However, their resistant
hard parts are subject to physical, chemical and biological agents or processes that
can destroy these shells before and after burial e.g., (Lawrence 1968).

Bivalve shells are predominately composed of CaCO3, in other words, calcite,
variable proportions of aragonite, even vaterite, as well as organic polymers (Hare
and Abelson 1965; Rhoads and Lutz 1980; Nehrke et al. 2012). As in other
biomineralized exoskeletons, the orientation and growth of CaCO3 crystals are
strongly controlled by the organic matrices (which constitute about 1–5 wt% of the

S. Gordillo et al., Mollusk Shells as bio-geo-archives,
South America and the Southern Hemisphere, DOI: 10.1007/978-3-319-03476-8_3,
� The Author(s) 2014

15

http://dx.doi.org/10.1007/978-3-319-03476-8_2
http://dx.doi.org/10.1007/978-3-319-03476-8_2


shell) forming compartments in which mineralization takes place. Most of the
organic components are intercrystalline, with a smaller portion located within the
crystal structure of calcium carbonate. This mixture, on a very fine scale of organic
and bioprecipitated CaCO3, modifies diagenetic processes and patterns in com-
parison with non-biogenic mineral features (Perrin and Smith 2007).

Mollusk shells can be considered inorganic-organic biocomposites, with
excellent mechanical performance compared to non-biogenic material (Chateigner
et al. 2010). Even though aragonite provides high mechanical strength to the valve
(Chateigner et al. 2000), under the environmental conditions found on the Earth’s
surface, this phase is metastable, and is more susceptible to dissolution and
recrystallization than calcite. In other words, during diagenesis, the alteration of
aragonite skeletons commonly results in mineralogical and structural changes, as
well as compression and postdepositional cementation (Brand 1989). For this
reason, aragonitic fossils are usually poorly preserved in the geological record
(Powell and Kowalewski 2002; Cherns et al. 2011). One exception is for the
Cenozoic A-seas (aragonitic seas), in which a positive bias favoring aragonitic
bivalves is recognized (De Renzi and Ros 2002).

This relative instability of aragonite when exposed to diagenesis introduces a
bias in the fossil record, thus affecting its quality for paleoecological and paleo-
biological studies (Fernandez Lopez 2000; Cherns and Wright 2009). The detec-
tion of subtle postdepositional changes therefore becomes of utmost importance,
especially in fossils that appear to retain their primary mineralogy when con-
ventional screening techniques (such as X-ray diffraction) are used.

3.2 Chemical and Physico-Mechanical Changes
from Fossil to Modern Shells

In a recent study, Bayer et al. (2013) described the chemical (trace element),
textural, and physical–mechanical transformation that took place in shells of an
aragonitic bivalve, the Amiantis purpurata venerid, during early diagenesis in a
period of time that exceeds 100,000 years (i.e., from the Late Pleistocene up to the
present day). The advantage of considering the same species from different out-
crops of the same region is the elimination of interspecific variations associated
with intrinsic factors (shell microstructure) and different environmental conditions
that can occur when comparing shells of the same species collected from different
regions.

Bayer et al. (2013) found that mineralogy remains constant, with aragonite as
the only crystalline phase throughout the entire examined time interval, but texture
(as revealed by XRD, SEM and optical microscopy; Fig. 3.1) is modified. The
Pleistocene valve has more grains in a random distribution, compared with the
twinning pattern evident in Modern and Holocene shells (Fig. 3.1). The approxi-
mate constant value of crystallite size suggests that the dissolved CaCO3 does not
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precipitate in crystallographic continuity with the preexisting crystals, as this
would lead to a larger crystallite size (and narrower diffraction peaks) and a
sharpening of the twinning pattern. A possible explanation which remains to be
tested is that aragonite cement occupies voids left by degraded organic matrix, as
found by Webb et al. (2007).

A comparison of the chemical composition of A. purpurata valves of different
ages (Bayer et al. 2013) shows trends of decreasing Na, Sr and (to a lesser degree)
Mg with increasing age. The authors correlate these variations with the dissolution
and reprecipitation of aragonite through a thin film of solutions of meteoric origin
in small-scale, semiclosed microenvironments (a vadose environment).

In terms of mechanical properties, a shell’s resistance to fracture is character-
ized by the measurement of its strength (Zuschin and Stanton 2001; Yang et al.
2011). The mechanical properties of the valves, such as the ability to transfer
charges between adjacent layers of aragonite (Liang et al. 2008), are associated
with the structure and functions of the biological matrix, which also promotes the
formation of crystalline layers (Rhoads and Lutz 1980). Bayer et al. (2013) found
that Holocene and Pleistocene A. purpurata shells have a higher Vickers hardness
and a more fragmented area than the Modern shells (Fig. 3.2). These differences
indicate that over a period of less than 5,000 years the valves of A. purpurata have
become harder but more brittle. These changes are also attributed to postdeposi-
tional modifications by dissolution-recrystallization processes mediated by a thin
film of water in a vadose environment.

Microstructural adjustments are more sluggish than chemical modifications
produced by diagenetic processes, whereas microhardness rapidly reaches high
values, probably due to the early degradation of organic shell compounds.

In conclusion, this study shows that chemical and physico-mechanical changes
in mollusk shells start early (at least before a shell reached the age of 5,000 year
BP), increase with age and most probably occurred as a consequence of the
degradation of the skeletal organic matrix.

Fig. 3.1 SEM images (secondary electron mode) of Amiantis purpurata shells. a Details of the
growth bands of a Modern shell, showing platy aragonite crystals defining a crossed-lamellar
microstructure. b Growth bands from a Holocene shell that can still be observed. Some bands
(marked with white arrows) have been replaced by a granular aggregate of aragonite crystals,
whereas others (black arrows) still display the crossed-lamellar microstructure. c View of a
Pleistocene shell where no growth bands can be discerned, showing a mixture of biogenic platy
crystals (white arrows) with equant grains of aragonite of diagenetic origin (black arrow)
(Modified from Bayer et al. 2013)
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3.3 The Intrinsic Properties of Taxa Lead to Differential
Behavior Under Environmental Conditions

Boretto et al. (2013) described the microstructure of two bivalves (Glycymeris
longior and Ameghinomya antiqua) from Puerto Lobos in northern Patagonia
(Argentina), and provided arguments to explain the differences in the degree of
fragmentation in both species as a result of different structural features. The
associations of shells analyzed in these Holocene beach ridges can be classified as
allochthonous (Kidwell and Bosence 1991), since they originated in the intertidal
and subtidal zones (production areas) and were transported to the supralittoral area
(settling zone). Taphonomic analyses, which evaluate the energy of the processes
involved in the formation of these assemblages, indicate that A. antiqua and
G. longior shells were drawn together during high energy storm events, and that
these bivalve assemblages were affected by the same transport conditions and
physicochemical characteristics as the depositional environment. Previous X-ray
diffraction studies performed on samples of both taxa (Bolmaro et al. 2006;
Boretto et al. 2013) indicate their aragonitic mineralogical composition. On the
one hand, A. antiqua (Fig. 3.3a–c) is characterized by a dominant prismatic
microstructure with two aragonitic layers: an outer prismatic layer and a
homogenous inner layer, although sometimes a thinner, crossed-lamellar third
layer can be observed (Carter 1990). This species shares the same attributes
described for Protothaca thaca from Chile (Lazareth et al. 2006). On the other
hand, in G. longior (Fig. 3.3d–f), two major shell layers can be distinguished: the
inner and the outer layers, separated by the thin miostracal and middle layers.
Additionally, the outer shell layer can be further subdivided into a middle layer
and an outer layer. In this respect, G. longior shares the same attributes as
G. glycymeris (Rogalla and Amler 2007). Boretto et al. (2013) described G. longior
as composed of an inner shell layer which has a complex crossed lamellar
structure, with interdigitating first order lamellar of lenticular shape that extend
normal to the shell, and an area of homogeneous microstructure close to the apex.
The miostracal layer of a fairly constant thickness (between 50 and 100 mm) and a
prismatic structure is then developed, composed of elongated prisms with the long

Fig. 3.2 Changes in
mechanical resistance
measured as microhardness
of Modern, Holocene and
Pleistocene samples of
Amiantis purpurata (after
Bayer et al. 2013)
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axes oriented perpendicular to the layer margin. Below this, a crossed lamellar
structure defines the middle layer, and finally these lamellar become thicker, torted
and anastomosing, thus transitionally defining the outer zone. These differences in
microstructure explain the different behavior of both species in relation to the
taphonomic attributes analyzed in Chap. 2. Studies on the mechanical strength at
break indicate that the crossed lamellar microstructure has a better performance in
the elastic range, with a higher effective Young’s modulus than the prismatic
structure (Bolmaro et al. 2006). This explains the G. longior overall shell pres-
ervation as ‘‘whole and some broken’’, due to the complex cross lamellar micro-
structure, compared with the samples of A. antiqua from the Puerto Lobos site,
which have a high degree of fragmentation.

3.4 Cathodoluminiscence Applied to Biogenic Carbonates

Although the X-ray examination of shells provides information on their mineral-
ogical composition, there are other types of analysis, such as cathodoluminiscence
(CL) applied to recent benthic biogenic carbonates (e.g., mollusk shells), through
which information on the microstructure of shells and their growth can be obtained
(Barbin 1992; Barbin and Gaspard 1995; Gordillo et al. 2011).

Fig. 3.3 Microstructural SEM images of Ameghinomya antiqua (a–c) versus Glycymeris longior
(d–f). a Outer prismatic layer. b Cross-section from the umbo along the growth axis, showing the
outer and inner layers. c Homogenous inner layer. d Cross-section of the shell showing the
cloudy inner ‘‘i’’ and middle ‘‘m’’ layers which contrast with the white arrow point to the clear
miostracal layer. e Contact of the miostracal layer with the inner and middle layers; note that the
miostracal layer is homogeneous and lacks the dark spots which are interpreted as zones rich in
organic material. f Close-up of the inner layer, showing complex crossed lamellar structure, first
and second order lamellar (these defining a chevron pattern) (after Boretto et al. 2013)
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Gordillo et al. (2011) observed that under CL-microscopy, modern and fossil
shells of the venerid Tawera gayi exhibit a well-defined pattern, with parallel
spaced CL lines (Fig. 3.4). This zonation reflects the cycles of skeletal growth and
luminescence intensity typical of aragonitic shells, and may be related to the
alternating amount of manganese present in the aragonite (Barbin 1992). A rapid
growth rate during the earlier life stages of T. gayi (Fig. 3.4a), and CL lines that
terminate in an external growth line (Fig. 3.4b), as well as the regular repetition of
CL with outlines approaching the shape of internal structures, indicate that these
lines are related to the growth dynamics of the shell (see discussion in Tomasovych
and Farkas 2005). The aragonitic T. gayi shells give a weak blue-green lumines-
cence (probably due to a slower growth rate) alternating with dark areas associated
with periods of a different growth rate (or a cessation of growth). In addition, a
different luminescence (bright, light yellow luminescence) affecting outer and inner
shell surfaces is interpreted as a bioeroded surface caused by external factors (i.e.,
bacteria and microboring organisms), but not produced by the mollusk biominer-
alization process (Fig. 3.4c). Although the data presented on the shell structure of
T. gayi under CL is not enough to explain the true reasons behind the differences or
changes among shells, it does indicate that CL lines correspond to zones recording
changes in growth rate. Thus, the analysis of CL lines in this species can provide
another important tool for the evaluation of T. gayi growth rates, in addition to
external growth rates, isotopes and trace elements, since CL lines in bivalves are

Fig. 3.4 View under cathodoluminiscence (CL) of sections of modern (a) and fossil (b-c)
Tawera gayi shells from southern South America, showing a well-defined, almost concentric
pattern of CL lines. Luminiscent bands border the winter (dark) growth rings; c high
magnification (10x) of (b). A different luminescence (light, bright yellow luminescence) affecting
outer and inner shell surfaces is interpreted as a bioeroded surface caused by external factors (i.e.,
bacteria and microboring organisms), but not produced by the mollusk biomineralization process
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correlated with periods of slow growth, such as winter, spawning seasons or
environmental disturbance (Barbin 1992; Barbin and Gaspar 1995). A systematic
examination of CL line pattern in T. gayi can be useful for adding to our knowledge
of changes during the Holocene.
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Chapter 4
Paleoecology

Abstract Mollusk shells are the most common remains in Quaternary marine
deposits throughout the Argentinean coastline and southern South America. They
are well preserved and, despite the taphonomic bias (i.e., the loss of soft body taxa
and post burial processes), Quaternary mollusk assemblages retain useful infor-
mation about the life habits and habitats of the marine benthos from which they are
derived. This chapter is centered on the analysis of the taxa composition of pre-
served fauna from different Pleistocene and Holocene marine outcrops, located
mainly along the maritime Argentinean coast, in order to reconstruct local benthic
paleocommunities inhabiting the different sub-environments throughout the Qua-
ternary in this region.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca � Taphonomy � Paleoecology � Taxa composition � Guild structure

4.1 From Dead Remains to Past Communities

Mollusk shells are the most common remains found in Quaternary marine deposits
throughout the Argentinean coastline and southern South America (Feruglio 1950;
Gordillo 1998). They are well preserved and, despite the taphonomic bias (i.e., the
loss of soft body taxa and post burial processes), Quaternary mollusk assemblages
retain useful information about the life habits and habitats of the marine benthos
from which they are derived (Aitken 1990). Previous available information has
shown that mollusks from the southern tip of South America provide a key for the
reconstruction of paleocommunities and the evaluation of changes in faunal
composition during the Holocene (Gordillo et al. 2005).

In order to reconstruct paleocommunities from fossil shell remains, the first step
is the analysis of taxa composition and abundance, coupled with the analysis of
taphonomic attributes (Chap. 2). In this respect, a death assemblage is not
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biologically equivalent to a census of a living community, but instead sums up the
dead-shell input (minus shell destruction) over a longer period, thus permitting the
accrual of time-averaged species richness (Kidwell 2002). Kidwell (2001) exam-
ined the preservation of species abundance in marine death assemblages and noted
that species which are dominant in a single live census also dominate the local
death assemblage, and species that are rare or not sampled alive are also rare in
death assemblages. In southern South America these studies are still emerging, but
Archuby et al. (2011) presented preliminary data on the degree of correspondence
between living communities and modern death assemblages along the Patagonian
Atlantic coast, and mentioned taphonomic processes that affect fidelity.

It can therefore be seen that the fossil record largely portrays the modern faunas
from which it is derived. To identify Quaternary mollusks, much information
comes from living species, although this is not always complete and depends on
the information available for each particular region.

4.2 Guild Structure

The ecological characterization of the Quaternary fossil taxa is based on their
living representatives. It includes life habit (mode of life) and feeding-type. This
data is commonly used to reconstruct the structure of the mollusk assemblages
represented at each individual site.

When counting taxa in order to estimate relative abundance, in the case of
bivalves it is important to distinguish between the right and left valves, to prevent
an individual from being counted twice. In the same way, as chitons are composed
of 8 plates, to count individual chitons, the total number of plates should be
divided by 8.

Mode of life: This considers the life position with respect to the sediment; mol-
lusks are classified as epifauna, infauna, and semi-infauna, as defined in Chap. 2.

Feeding-type: mollusks have been described as suspension feeders, deposit
feeders, browsers and carnivores. Deposit feeders acquire their nutrition from the
sediments they inhabit, whereas suspension feeders collect food particles sus-
pended above sediments; browsers are hervibores that encrust vegetation from the
surface of substrates they attach to, and carnivores feed on dead or decaying as
well as active prey.

Guild structure: A guild is a group of species that exploit the same kind of
environmental resources in a similar way; the term brings together species that
overlap significantly in their niche requirements, without considering their taxo-
nomic position (Root 1967). The purpose of guild analysis is to examine the
habitat structure of a community as it functioned in some place at some time
(Fig. 4.1).
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4.3 Reconstructing Local Benthic Paleocommunities

During the Quaternary, the southern tip of South America was affected by several
glaciations, which might have excluded much of the benthic marine fauna
inhabiting this region, and as a consequence the connection between the Atlantic
and the Pacific Oceans was broken. In this context, fossil marine mollusks
recovered from interglacial (Pleistocene) and postglacial (Holocene) Quaternary
deposits in Tierra del Fuego provide a clue for the reconstruction of paleocom-
munities and the evaluation of changes in faunal composition over time.

Quaternary mollusk assemblages from Tierra del Fuego represent typical
shallow benthic paleocommunities which developed during different stages within
this period, and variations in faunal composition would mainly be related to dif-
ferences in substratum types, water depth and sedimentation rates.

For the Beagle Channel, at least four different local communities (three infaunal
paleocommunities and one epifaunal paleocommunity) have been recognized
(Gordillo 1999; Gordillo et al. 2008).

An epifaunal Zygochlamys paleocommunity (ca. 8,000–7,000 BP; Fig. 4.2a)
almost completely composed of epifaunal suspension feeders was the most diverse.
The long, fragile pectinid shells suggest a quiet-water environment and firm ground
substrates more suitable for this group, and the dominance of suspension feeders
shows that marine conditions were fully established around 7,500 years ago.

Fig. 4.1 Guild structure of
Quaternary mollusk
assemblages from the San
Matías Gulf, based on life
habit and feeding mode of the
fossil fauna recovered
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Other infaunal local paleocommunities from the same region developed during a
period of climatic ameliorization (ca. 4,500–4,000 BP), and are represented by
extensive beds of articulated venerids and myoids, many of them even in life
position. At least two local benthic communities coexisted and have been described
for this region (Gordillo 1999): the Tawera paleocommunity and the Ameghinomya-
Hiatella paleocommunity. A third infaunal paleocommunity (Fig. 4.2b), the Ame-
ghinomya-Ensis community (Gordillo 1999; Gordillo et al. 2008), has been
described for Golondrina Bay, on the Beagle Channel, and given a radiocarbon age
of ca. 7,000–6,000 years BP. This was formed during a phase of climatic deterio-
ration, prior to ca. 5,500 BP, when paleotemperatures and paleosalinities reached
their maximum values for the last 8,000 years (Lamy et al. 2002).

Fig. 4.2 Reconstruction of local benthic paleocommunities typical of shallow marine environ-
ments in Tierra del Fuego during the Pleistocene-Holocene interval. a An epifaunal Zygochlamys
community developed during the early Holocene in the Beagle channel. b An infaunal
Ameghinomya-Ensis paleocommunity developed in the same channel during the mid-Holocene.
c A Retrotapes infaunal paleocommunity developed during the Pleistocene along the northeastern
sector (Atlantic coast) of Tierra del Fuego. d A typical paleocommunity of mussels with mixed
elements developed in the same area as c during the Holocene
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For the Atlantic coast, Gordillo and Isla (2011) described two other different
local benthic paleocommunities. A Retrotapes dominated assemblage (Pleisto-
cene; Fig. 4.2c) corresponds to an infralittoral community dominated by one main
infaunal element: the venerid Retrotapes, with secondary taxa including other
suspension feeders (Mulinia and Mytilus) and different predatory gastropods
(Trophon, Buccinanops, Odontocymbiola). Considering the ecological require-
ments of these taxa and the available paleoenvironmental data, the original
community might have developed associated to coarse sand bottoms in the in-
fralittoral zone. The Holocene Mytilus intermixed assemblage (Fig. 4.2d) is more
diverse, and dominated by sessile suspension feeder epifauna (mytilids) intermixed
with some infaunal burrower elements (Mulinia), thus suggesting areas with soft
substrates suitable for burrower clams. M. chilensis lives bysally attached to hard
bottoms, forming clusters associated with other species (e.g., P. purpuratus, A.
atra). Other epifaunal elements present are different predatory gastropods
(T. geversianus, Xymenopsis muriciformis, Acanthina monodon), the buccinid
Pareuthria plumbea and a variety of limpets (e.g., Nacella spp., Pachysiphonaria).
These taxa are typical of tidal flats and areas more exposed to highly unstable
conditions with longer episodes of exposure.

4.4 Evaluating Local Faunistic Changes
from Mollusk Assemblages

Quaternary mollusk assemblages from Tierra del Fuego represent the typical
shallow benthic paleocommunities which developed during different stages within
this period, and variations in faunal composition would mainly be related to dif-
ferences in substratum types, water depth and sedimentation rates.

For the Atlantic coast, Gordillo and Isla (2011) found faunal changes during the
Pleistocene-Holocene interval, with a higher proportion of epifaunal elements in
the Holocene than in the Pleistocene (Fig. 4.3). The authors explain these changes,
and the local disappearance of Retrotapes in post-glacial benthic communities in
the area, on the basis of regional and local causes, most probably associated to
substrate changes, and not through a global trend related to large-scale patterns. In
this respect, it is plausible that since Pleistocene transgressions represent higher
sea-levels, the ancient bays were deeper and contained a dominance of suspended-
feeder specimens in a rather stable soft bottom. As the Holocene sea-level has only
fluctuated a few meters, the deposits are dominated by gravel beaches and shallow
bays. In this sense, present benthic communities are dominated by epifaunal
specimens with suspended feeders tolerant to high-sediment concentrations.

Information on Pleistocene species that inhabited the Beagle Channel before the
Last Glacial Maximum (ca. 20,000–18,000 years BP) comes from a paleonto-
logical site (Corrales Viejos) located on Navarino Island and described by Gordillo
et al. (2010). It is interesting to compare the fauna recovered from this
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paleontological site with the living fauna in the area, as there are notable differ-
ences: the Pleistocene macrofauna is dominated by cirripeds, small nesting
bivalves and small muricid gastropods, while the fauna that lives on the adjacent
beach has a different living local community, dominated by huge suspension
feeder bivalves (mytilids and cirripeds).

In San Blas Bay, southern Buenos Aires Province (Argentina), Charó et al.
(2013) also found differences between Pleistocene, Holocene and Modern mollusk
assemblages, and the same happened in the San Matías Gulf, northern Río Negro
Province (Fig. 4.4). For this latter region, 19 sites (6 Pleistocene, 6 Holocene and 7
Modern) with a total of 42 species (20 bivalves and 22 gastropods) were analyzed.
For MIS7, 11 species were recorded and the most abundant were the bivalves
Glycymeris purpurata and the gastropod Tegula atra. For MIS5e a remarkable
diversification of species took place and 22 species were recovered (11 gastropods
and 11 bivalves); the most abundant was the bivalve Brachidontes rodriguezi, in
conjunction with Glycymeris longior and Amiantis purpurata, and the gastropods
Heleobia australis, Olivancillaria carcellesi and Olivancillaria urceus. During the
MIS1, a similar number of species (23 species, 11 bivalves and 12 gastropods) was
recovered, but Amiantis purpurata was dominant, in conjunction with the gas-
tropods Tegula patagonica, Buccinanops cochlidium, Crepidula sp. and Olivan-
cillaria carcellesi. Finally, for the present there was greater diversity, with 31
species (16 bivalves and 15 gastropods), with the most abundant being the bivalves
Brachidontes rodriguezi, Glycymeris longior and Amiantis purpurata, and the
gastropods Crepidula sp., Tegula patagonica, Buccinanops globulosum, Bostry-
capulus odites and Olivancillaria carcellesi.

In this respect, it is believed that mollusk variations in the area are related partly
to changes in temperature that have taken place since the Pleistocene (see Chap. 6),
but are mostly associated with the presence of sub-environments of different energy
levels within this bay.

Faunal changes in the cases described above are mainly related to local physical
variations (i.e., substrate, availability of food and currents) connected to glacial
periods such as the Last Glacial Maximum (ca. 24,000 years BP; Rabassa 2008).
During these glacial periods, a large portion of the Atlantic Continental Shelf was

Fig. 4.3 Percentage of
epifaunal and infaunal taxa in
sites of different ages located
along the Atlantic coast of
Tierra del Fuego. An increase
in epifaunal taxa is noted
from older to younger
deposits
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Fig. 4.4 Relative abundance of species of gastropods (a) and bivalves (b) from the northern San
Matías Gulf at different time periods within the Quaternary
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exposed as a consequence of glacioeustatic movements, with the development of
enormous plains along the Atlantic coast of Pampa and Patagonia (Rabassa et al.
2005; Ponce et al. 2011).

Fig. 4.4 (continued)
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Once again in the Beagle Channel, but now within the early Holocene (ca.
8,000 years BP), new local communities developed in newly formed or recently
vacated habitats through immigration of taxa from surrounding waters. After
deglaciation, the first mollusks to arrive were eurytopic species such as Mulinia
edulis, Mytilus chilensis, Aulacomya atra and Yoldia sp. (Rabassa et al. 2009;
Gordillo et al. 2013), and then towards the middle Holocene the number of species
increased (Fig. 4.5), and different local communities arose, depending on the
physical characteristics that prevailed in each area. The first arriving taxa were
species typical of tidal flats or areas more exposed to highly unstable conditions
with longer episodes of exposure. In southern Chile, Velasco and Navarro (2003)
demonstrated that M. chilensis and M. edulis exhibit a high degree of physiological
plasticity. Reid and Osorio (2000) also mentioned a group of euryhaline taxa
(including M. chilensis, A. atra and M. edulis) from a fjord system in southern
Chile which tolerate sharp salinity gradients. Thus, organisms which represent the
oldest marine stages of the Holocene tolerated large fluctuations in quality and
quantity of suspended particulate matter due mainly to the resuspension of benthic

Fig. 4.5 Faunistic changes
during the early-middle
Holocene in the Beagle
Channel. After deglaciation,
the first migrants arrived to
inhabit the vacant spaces,
with the subsequent
diversification and expansion
of the fauna which persists to
the present-day. a Mulinia
edulis, b Mytilus sp., c Yoldia
sp., d Aulacomya atra, e A
greater diversity of taxa
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sediment by the action of winds and tides. A phase of major expansion of fauna
(ca. 7,500–5,000 years BP), along with further diversification of taxa (ca.
4,500–4,000 years BP), then indicates an evolution towards modern conditions.
These changes in faunal composition from poor diversity to a more diverse fauna
are related to local changes associated with the initial incoming of freshwater and
the progressive input of marine waters (Gordillo et al. 2005). They represent an
ecosystem transition which started with vacant niches first occupied by opportu-
nistic species and/or eurithopic taxa, and their subsequent replacement by more
diverse taxa, associated with the proliferation of habitats which occurred under
truly marine conditions during the Holocene.
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Chapter 5
Biotic Interactions

Abstract Molluscan death assemblages are useful for reconstructing paleocom-
munities and can also provide signals for evaluating predation and other interac-
tions. This chapter gives examples of biotic interactions that can be recorded in
mollusk shells. We will provide data on the interaction between drilling predators
and their shelled prey, and will also refer to preserved shell encrusters and
organisms which settle on live hosts or dead shells.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca � Paleoecology � Drilling predation � Epibionts

Molluscan death assemblages are useful for reconstructing paleo communities and
for evaluating faunistic changes. They also provide signals for evaluating preda-
tion and other biotic interactions, and therefore constitute an important tool for
biological and paleontological studies.

5.1 Looking for Holes

Molluscan death assemblages provide direct evidence of biotic interactions, thus
offering quantifiable data on predator-prey relationships (Kowalewski 2002). The
fossil record yields abundant data on the interaction between drilling predators and
their shelled prey, and is therefore an interesting venue for addressing evolutionary
questions (Vermeij 1987; Kelley et al. 2003). Drilling predation by gastropods
involves mechanical rasping with the radula, as well as secretions from the
accessory boring organ (ABO) (Carriker 1981). Although it is known within
several families of gastropods, most cases reported are produced by naticid and
muricid gastropods.

In Argentinean Patagonia the most common muricid gastropod is Trophon
geversianus, which inhabits both rocky and soft shallow bottoms. In southern
Patagonia, this muricid gastropod preys upon mytilids and venerid clams (Gordillo

S. Gordillo et al., Mollusk Shells as bio-geo-archives,
South America and the Southern Hemisphere, DOI: 10.1007/978-3-319-03476-8_5,
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1998; Andrade and Ríos 2007; Gordillo and Archuby 2012a, b), depending on the
predominant prey in the habitat in which it lives. T. geversianus always makes
holes, but while it drills the valve walls of M. chilensis, it prefers to drill the valve
edges of A. atra and B. purpuratus, with different characteristic patterns (Gordillo
and Archuby 2012a). On Tawera gayi this whelk drills tronco–conical drillholes,
perpendicular to the shell surface of its prey (Gordillo 1998; Gordillo and
Amuchástegui 1998).

The case of the whelk A. monodon, which drills a hole in B. purpuratus but uses
the outer lip of its shell as a wedge to open the valves of M. chilensis and A. atra, is
also interesting.

These examples show that predatory damage to bivalve shells varies according
to the predator and prey species, and also that techniques for attacking prey are
highly specialized. In addition, preliminary results in Patagonia (Gordillo and
Archuby 2012b, unpublished data) show an increase in the intensity of predation
between the Pleistocene and present times. As pointed out by the authors, these
changes should be analyzed taking into account the fact that Pleistocene shells
were deposited prior to the formation of the San Matías and San Jorge gulfs (Ponce
et al. 2011), thus resulting in variations of hydrological conditions and substrate
types that probably affected the burial depth of these clams. The interactions also
need to be analyzed along with other indicators of food levels in the past, such as
growth rates and/or adult size, and used together with sedimentological informa-
tion of Pleistocene deposits to help reconstruct relative patterns of paleoproduc-
tivity (Fig. 5.1).

5.2 Between Host and Guests

Continuing with biotic interactions within the marine realm, epibiosis is one of the
few well-preserved biotic interactions in the fossil record dating back to the early
Paleozoic (Lescinsky 2001). During the Cenozoic, shell encrusters and organisms
able to settle on live and dead shells are very common (Taylor and Wilson 2003).
Studying the spatial relationships between organisms that lived with each other
provides insight into their community structure and environment. Epibiont com-
position is certainly useful for understanding patterns on live hosts, since these
hosts act as ‘discontinuous islands of substrate’ within soft bottom environments.
The study of epibiosis in death assemblages is also useful for understanding how a
fossil assemblage differs from the living community from which it is derived, and
for evaluating the correlation between living mollusks and recent dead and fossil
shells.

Gordillo and Archuby (2012b) analyzed the presence of Crepidula spp. as an
epibiont of Ameghinomya antiqua. The epibiont was identified either by its
presence or, if the shell was found separated from the host, it was recognized
through a mark that reproduces the basal shape of the slipper snail. The analysis of
epibiont distribution on A. antiqua shells, in conjunction with drill hole placement,
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Fig. 5.1 Examples of taxa, including bivalves and gastropods, showing holes produced by
drilling gastropods. a Ameghynomya antiqua, b Cyclocardia compressa, c Amiantis purpurata,
d Calyptraea pileolus, e Pareuthria plumbea, f Tawera gayi, g Trophon geversianus, h Hiatella
sp., i Nacella deaurata. Scale: 1 cm
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shows that they are more concentrated in the upper sector of the valve (75–71 %),
which might be explained by the vertical position and the semi-infaunal mode of
life of this clam. Nevertheless, the presence of drill holes in the lower sector of the
valve indicates that clams spent part of the time reclining on the sediment. There is
also evidence that clams with Crepidula spp. as commensals are less frequently
attacked by drilling gastropods.

Finally, another preliminary study (Gordillo et al. 2006) on modern and fossil
pectinid shells distinguished between ‘live shells’ and ‘dead shells’. The term ‘live
shell’ (or live host) refers to shells which were encrusted or attached to while the
scallop was alive. It includes both living specimens and specimens that died
recently (i.e., dead specimens or empty, complete shells). The term ‘dead shell’ is
used to describe shells with post-mortem encrustation or attachment. On live
shells, the occurrence of the different major taxonomic groups was taken sepa-
rately for right (lower) and left (upper) valve surfaces, while on dead shells the
taxonomic composition of the epibionts was examined on the outer and inner valve
surfaces.

In addition, Gordillo et al. (2006) quantify taxa composition, abundance, spatial
distribution and the prevalence of epibionts associated with the scallop Zygochlamys
patagonica from southern Argentina, with the goal of analyzing changes in latitude
and time. For the analysis of spatial distribution each valve was arbitrarily divided
into seven areas (Fig. 5.2), roughly following the procedures of Ward and Thorpe
(1991), Sanfilippo (1994), and the percentage of coverage of each taxon or taxo-
nomic group was estimated using a scale with three categories of surface coverage
for each area.

Zygochlamys patagonica shells from Patagonia provided a habitat for a great
variety of organisms (Fig. 5.3) that attach or encrustate as epibionts, but dead
shells exposed on the seafloor also acted as hard substrate for any surface-dwelling
organism.

Fig. 5.2 Diagram showing
the division of the outer shell
surface into seven arbitrary
regions (adapted from Ward
and Thorpe 1991)
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Finally, it is important to note that when interactions between the host and their
epibionts are considered, many different aspects (i.e., mortality, growth, predation
and competition) must be taken into account.

For analyzing predation, in the case of scallops it should be remembered that
free scallops normally swim to avoid predation. Sponges appear to have positive
effects on their host since they camouflage the scallops and therefore protect them
against predators (Forester 1979; Donovan et al. 2002). Furthermore, sponges
increase survival by reducing the effects of sediment accumulation, and this has
led several authors (Forester 1979; Pond 1992) to recognize a sponge-scallop
mutualism. Farren (2003) demonstrated that sponges on scallops have chemical
defenses that prevent both predation by sea stars and the settlement of barnacles. In

Fig. 5.3 External view of recent Zygochlamys patagonica shells from Patagonia, Argentina,
showing a variety of epibionts. a Calcareous serpulid, b Braquiopod, c Bryozoans, d Sponges,
e Barnacle, f Scar left by a barnacle, g An agglutinated sabellid tube, h Spirorbis sp
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the case of barnacles, the situation appears to be different, and encrustation could
make scallops more susceptible to predators since they become heavier and are
more easily captured since they soon tire (Donovan et al. 2003). By removing
encrusting barnacles under aquaria conditions, Donovan et al. (2003) demonstrated
that they strongly affected scallop swimming. Further information is needed to
evaluate whether barnacles offer visual or tactile camouflage for predators. From
data considered here it is possible that barnacles do not represent an obstacle since
they are small, and they only covered a relatively small proportion of the shells. In
any case, whether barnacles have positive or negative effects on scallops most
probably depends on the weight a scallop is able to carry and still be capable of
escaping by swimming. At least in mussels, field experiments by Buschbaum and
Saier (2001) showed significantly lower growth with barnacle epibionts than
without them. Other groups, such as epiphytic algae, hydroids and bryozoans also
appear to act as visual barriers that protect from predators. It appears that the
presence of macroalgae on scallops increases the probability of dislodgements, as
observed by Gonzalez et al. (2001) after a storm. Based on this review, it is
considered here that the epibionts affect scallops in a variety of ways.

When considering the relationships of epibionts it is probable that the abun-
dance of different taxonomic groups is determined more by rates of recruitment
and growth than by competition (McKinney and Jackson 1991; Ward and Thorpe
1991). In this sense, sponges are sensitive to high levels of suspended particles and
many are excluded from areas with heavy sediment loads (Burns and Bingham
2002).

Taking into account the fact that most of the conspicuous taxonomic groups
(i.e., bryozoans, and barnacles) can be found on fossil shells, the non-preservable
taxa could represent a minor fraction of the total epibionts. One exception could be
the sponges, which are undoubtedly under-represented in the fossil record; how-
ever, forms with fused or closely interlocked spicules or mineralized basal skel-
etons are common in the ancient (i.e., Paleozoic) fossil record (see Taylor and
Wilson 2003). In our study on Zygochlamys patagonica, there were too few
available fossil shells for any generalization on the absence of sponges in this
assemblage, but other reasons, such as the preservation potential of the group in
this kind of environment, might have played an important role. A final comment
should be made on clionid sponges, which are absent from the live shells con-
sidered here, although they appear to be very common on dead shells. It is well
known that clionid sponges occur worldwide, from polar seas to the tropics, and
they have been reported on both living and dead shells (Wesche et al. 1997),
including scallops (Del Río et al. 2001; Barthel et al. 1994). Clionid sponges, as
shell borers, probably preferentially burrow through dead shells rather than live
shells, and play an important role in the natural process of destruction of scallops,
although this aspect requires further investigation. Forthcoming research will be
focused on the taphonomic meaning of the epibionts on fossil Quaternary scallops
from Southern Argentina.
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Chapter 6
Biogeography

Abstract The study area in southern South America comprises a very extensive
geographic area covering more than 2,000 km and involving two distinct bio-
geographic areas. This chapter focuses on faunistic changes within and between
provinces, faunistic shifts and the extinction of particular species during the
Quaternary.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca � Faunal distribution � Faunal shifts � Extinction � Transoceanic migrants

Our research is focused on the Quaternary mollusks of a very extensive geographic
area covering more than 2,000 km. It involves two distinct biogeographic areas:
the Magellan (43–55� S) and the Argentinean (30–43� S) provinces. The boundary
between these provinces has not been clearly established since it varies seasonally
between 41 and 43� S, with northward fluctuations of the cold Malvinas Current in
winter (Balech and Ehrlich 2008). The dominance of different water masses in
these two provinces causes water temperatures to be lower in the Magellan
Province (3.5–11 �C, Boltovskoy 1979) than in the Argentinean Province
(18–24 �C, Boltovskoy 1979). As marine faunal distribution is mainly related to
global water temperature gradients (Valentine et al. 1978; Valentine and Jablonski
1985), these water temperature differences are one of the main determinants of the
molluscan fauna composition of these two regions (Gordillo 1998; Pastorino 2000)
(Fig. 6.1).

6.1 Faunistic Changes Within and Between Provinces

It was observed that the changes in the quantitative and qualitative analyses
between Pleistocene and Holocene mollusks from the study region are mostly due
to the presence of sub-environments and local, rather than global, environmental
changes that affect ecological parameters.

S. Gordillo et al., Mollusk Shells as bio-geo-archives,
South America and the Southern Hemisphere, DOI: 10.1007/978-3-319-03476-8_6,
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For example, in the region of the Colorado River Delta (39� S, south of Buenos
Aires Province, Argentina) changes were observed in the proportion of warm
temperate species between the MIS9 and the present (Fig. 6.2). There has been an
increase in the proportion of warm water gastropods from MIS9 to the present,
whereas the proportion of warm water bivalves has slightly decreased in the
present.

These changes are partially linked to shifts in the boundaries of the areal extent
of some organisms, and partly to local environmental changes.

A notable example of a species that changed its range of distribution during the
Quaternary is the infaunal bivalve Anomalocardia brasiliana. This was mentioned
by Charó et al. (2013c) in the San Matías Gulf for the MIS5e (Fig. 6.3), but is
today distributed further north from the French Antilles (18� N) to the coast of
Brazil (33� S), thus indicating warmer conditions at that time, coinciding with
global changes. Other species of warm lineage that also expanded their range of
distribution during the Pleistocene were Crassostrea rizophorae and Abra aequalis
(Charó et al. 2013a, b).

Fig. 6.1 Magellan,
Argentinean and Brazilian
malacological provinces in
South America
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Faunal analysis was carried out by Boretto et al. (2013) in the Pleistocene-
Holocene beach ridge system of Puerto Lobos (42�000S, 65�40W; northern Chubut
Province, Argentina), which is a site located within the border area between the
two biogeographic provinces. The analysis showed that the faunal turnover record
could be related to a migration of the boundary between the Argentinean and
Magellan provinces. The Argentinean Province borders the Brazilian Province to
the north (linked to the Brazil Current) and the Magellan Province to the south
(linked to the Malvinas Current in the Atlantic Ocean and the Humboldt Current in
the Pacific) (Boschi 2000; Martínez et al. 2011). Thus, the existence of thermal
gradients in the SW Atlantic produced by the arrival of the warm Brazil Current
from the north and the cold Malvinas Current from the south, means that their
boundaries are not static due to the influence exerted by water masses of different
depths at the same latitude, and to variations caused by ocean–atmosphere

Fig. 6.2 Proportion of warm versus temperate taxa in southern Buenos Aires Province, at
different time periods during the Quaternary
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interaction (Martínez et al. 2011). Recently, Muhs et al. (2012) showed how
climate changes during the Quaternary have affected the distribution range of
mollusks from San Nicolas Island, on the boundary between the Californian and
Oregonian marine invertebrate faunal provinces, which are dominated by the cold
southward California Current and the warm Inshore Countercurrent, respectively.

The youngest Puerto Lobos Holocene deposit is from ca. 1564 AD, which was
deposited before the Maunder Minimum of the Little Ice Age (LIA). There was a
period of prolonged solar quiet from about 1645 until 1715, and the coincidence of
a prolonged ‘‘solar minimum’’ with the coldest excursion of the LIA, which has
been noted by many who have looked at the possible relationship between the sun
and terrestrial climate (Eddy 1976). Evidence of this event has been registered in

Fig. 6.3 Map showing the location of a Pleistocene fossil record of Anomalocardia brasiliana,
further south than its present distribution along the Brazilian Province to the north
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continental areas of Argentina (Cioccale 1999; Glasser et al. 2002; Rabassa 2008;
Strelin et al. 2008; Masiokas et al. 2009).

Boretto et al. (2013) showed some of the differences between the Pleistocene
and the Holocene. The most relevant taxonomic differences are the presence of
T. atra and M. patagonica in Pleistocene ridges and the diversification of taxa in
the Holocene. The coastal area of Puerto Lobos has also recorded a faunal shift
which occurred during the late Holocene. The data shows that at present there is a
greater proportion of taxa typical of the cold-water Magellan Province, while
during the Holocene the most typical element in the area was G. longior, char-
acteristic of northern Argentina (Argentinean Province). This difference can be
explained by a shift in the environmental conditions after 1564 AD, which is the
age of the youngest beach ridge, when the southern limit of the Argentinean
Province retracted. This has been calculated using the Bayarsky and Codignotto
(1982) radiocarbon age, and calibrated considering the reservoir effect, as shown
by Dubois (2009).

Because of this, species belonging to the Magellan Province displace the fauna
of the Argentinean Province to the north, where the sea surface temperature
reflects a greater influence of the warm Brazilian Current.

6.2 Some of Them Have Gone

In this section we refer to certain taxa that appear in Pleistocene sediments but then
became extinct (Fig. 6.4). These are the bivalves Chama iudicai (Pastorino 1991)
and Glycymeris sanmatiensis (Bayer and Gordillo 2013) from northern Patagonia,
and the muricid gastropod Lepsiella ukika (Gordillo and Nielsen 2013) from the
southernmost tip of South America.

A special case is the gastropod Tegula atra, which appears as a living species
in the Pacific, but only as a Pleistocene fossil in the Atlantic. As a living species, it
exhibits a wide range of distribution from Peru to Chile; but on the Atlantic side, it
only appears in Pleistocene marine deposits, and then became extinct perhaps
before the Holocene. In northern Patagonia, this species was found in Pleistocene
sediments associated with other temperate to warm-water species like Amiantis
purpurata and Glycymeris longior, along with two extinct Chama iudicai and
Glycymeris sanmatiensis. However, Aguirre et al. (2013) characterize this gas-
tropod as a cold water species and attribute its disappearance in the Atlantic to
oceanographic changes related to the influence of the Brazil Current or to the
lower intensity of the Malvinas Current after the Last Glacial Maximum. At
present there is still no convincing explanation of how oceanographic changes that
occurred in the late Pleistocene may have affected the larval stage (settlement)
and/or the adult stage of this species that lives mainly on macroalgae, on which it
feeds. Only on the basis of interdisciplinary studies, including environmental
variables, genetics and the ecophysiological constraints of living species, as well
as the fossil record of the genus Tegula in South America, a conclusion can be
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Fig. 6.4 External view of the Quaternary extinct taxa in southern South America. a, b Chama
iudicai; c, d Tegula atra; e, f Glycymeris sanmatiensis; g, h Lepsiella ukika. Scale bar 1 cm
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reached about the relationship between Tegula atra and its appearance in Pleis-
tocene marine deposits along the Atlantic in Patagonia, Argentina. It is also
possible that there has been a misunderstanding between researchers, and that the
Pleistocene extinct Atlantic species is not in fact the same as the living Pacific
species. If so, this would be a case of morphological convergence of the shell,
which has been noted by De Francesco (2007) as one of the limitations in
determining Quaternary species from the fossil record.

In either case, Tegula atra in conjunction with the two northern Patagonian
species (Chama iudicai and Glycymeris sanmatiensis) lived during Pleistocene
times before the formation of the San Matías Gulf (Ponce et al. 2011; Isla 2013).
This gulf is a semicircular basin separated from the open sea by areas that have
developed a threshold of lesser depth than the central part of the basin (Cavallotto
2008). The origin of this gulf, and others from Patagonia, may be related to ancient
continental depressions of hydro-aeolian origin which were later flooded by the
sea, probably with the formation of large interior lakes, rather than having tectonic
origins (Mouzo et al. 1978; Cavallotto and Violante 2003). On the basis of the
analysis of this palaeogeographical evolutionary model, Ponce et al. (2011) con-
cluded that the San Matías and San José gulfs would have been formed at around
12,000 calibrated years BP. A radiocarbon dating performed on Late Pleistocene
wood fragments extracted from the bottom confirmed an age of between 11,500
and 11,000 years, when the sea level surpassed the sill of the gulf (today 50 m
below mean sea level) during postglacial sea-level rise (Isla 2013).

Based on these studies, and together with the fact that prior to the Last Glacial
Maximum (24 kya BP; Rabassa 2008), the sea level was 120 m below the present
level, we have deduced that during the deposition time of these Pleistocene bivalve
species, this area was a huge coastal plain, more exposed to the open sea, with a
different hydrological regime and subject to storm effects and rapid sedimentation
rates. In this respect, such geomorphological and sedimentological changes are
likely to have influenced ecological patterns of benthic marine communities.

Moreover, the presence of Ch. iudicai and G. sanmatiensis in late Pleistocene
(MIS5e) marine deposits from the San Matías Gulf, together with changes in the
southern extension of certain species of warm lineage (i.e., Anomalocardia bra-
siliana, Crassostrea rizophorae and Abra aequalis) strongly suggests at least
slightly warmer sea temperatures for the late Pleistocene in comparison with the
Holocene.

Based on previous studies in other regions of the world and along the coast of
Argentina, we can estimate that the last interglacial (MIS5e) would have been
characterized by an increase in the global mean surface temperature of at least
2 �C, thus making it warmer than at present (Murray-Wallace and Belperio 1991;
Murray-Wallace et al. 2000; Rohling et al. 2008), and also that the sea level
was approximately 5–6 m higher than the present sea level (Shackleton 1987;
Neumann and Hearty 1996).

This event would have been associated with changes in the distribution of
species, with warmer marine records during the Pleistocene in different parts of the
world (e.g., Cuerda et al. 1991; Muhs et al. 2002; Zazo et al. 2010, among others),
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and with other changes in South America, as mentioned by Chaar and Farinati
(1988), and Rojas and Urteaga (2011).

The last extinct species is Lepsiella ukika (Gordillo and Nielsen 2013), which
was recovered from a late Pleistocene marine raised beach located on Navarino
Island, in southern South America. This is the first finding of this genus in the
Americas, since it was previously geographically confined to New Zealand and to
the temperate coast of Australia.

As mentioned in Sect. 4.3, during the Quaternary period, the southern tip of
South America was affected by several glaciations which might have excluded
much of the benthic marine fauna inhabiting this region, with the consequent
interruption (more than once) of the connection between the Atlantic and the
Pacific Oceans (see Gordillo 2009). These glaciations also shaped the receptive
southern South American fjord region, which is considered a major reason for the
high biodiversity of the region (Kiel and Nielsen 2010).

Within this in mind, the Navarino records of Lepsiella probably belong to a
stock (or a short lived pioneer) derived from an Australasian population. It is
plausible that the arrival of this taxon into southern South America took place
during a glacial period prior to MIS4 to MIS2. The polar front might have shifted
northwards during glacial times (Fraser et al. 2009), and the shallower, more
northern position of the Antarctic Circumpolar Current (ACC) would have facil-
itated the circumpolar journey of this taxon from Australasia to South America.

Later, during the last interglacial (MIS5) ca. 125,000 years ago, this species
remained in the Beagle Channel. At that time, a rich fauna including foraminifers,
ostracods and mollusks developed in this channel (see Gordillo et al. 2010). After
that, during the last glaciation, marine taxa living in this interior channel were
separated and survived in marine refuges. Temperate taxa such as Lepsiella
therefore disappeared during this period. When climatic conditions improved,
most taxa reoccupied the ecological niches from marine refuges. The extinction of
Lepsiella in the Beagle Channel could perhaps be related to the fact that this
pioneer or derived population of Lepsiella was eliminated by competition. This
assumption (see Gordillo and Nielsen 2013) is based on the fact that Lepsiella was
found with numerous other predatory muricids, which implies that these species
were contemporaneous and therefore had to compete for food. Another possibility,
more difficult to prove, would be the lack of a suitable habitat, although it is quite
plausible that as a result of sea-level fluctuations rocky shores at the intertidal level
temporarily disappeared.

6.3 Transoceanic Migrants During the Quaternary

Beu et al. (1997) showed that the migration of mollusks via the ACC from South
America to New Zealand might have occurred during the most extreme Pleisto-
cene glaciations when this current was displaced northward. Additionally, a large
burst of dispersed genus-group taxa arrived in South America during the Late
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Oligocene–Early Miocene period, with virtually no further dispersal from New
Zealand to South America. However, other mollusks could have followed a
reverse route from Australasia to South America, as in the case of the venerid
bivalve Tawera, which presumably reached South America during the Quaternary
(Gordillo 2006).

Another example of Pleistocene transoceanic incursions of mollusks, in this
case from South America to South Africa, is the muricid Concholepas conc-
holepas, which only lives in South America but has been recorded in Late
Pleistocene coastal deposits in southern South West Africa-Namibia (Kensley
1985).

Finally, the finding of Lepsiella ukika in southern South America is explained
on the basis of transoceanic migration from Australasia by means of the ACC,
perhaps during a Quaternary glacial period (see Gordillo and Nielsen 2013). Based
on three different arguments (shell morphology, water masses and oceanic circu-
lation, and ecology) these authors highlight the fact that this non-planktonic mu-
ricid was able to migrate, potentially using kelp as raft, to the southern tip of South
America. This alternative dispersal mechanism of non-planktonic taxa is also
potentially applicable to other fossils with a disjunct distribution.

Recent genetic studies on marine biota reinforce these interpretations of the
distribution of fossil faunas, since they show increasing evidence that populations
of organisms without planktonic larval stages can also be widely dispersed, and
that rafting is most frequently involved (Thiel and Gutow 2005a, b; Thiel and
Haye 2006; Macaya 2010; Nikula et al. 2010). For example, using the DNA
barcoding method, Macaya (2010) provides strong evidence that gene flow along
the Southern Ocean is occurring over ecological time scales, where rafting of
detached reproductive Macrocystis kelp seems to be facilitated by the ACC con-
necting populations in the Southern Hemisphere. This author also gives evidence
suggesting that kelp rafts act as an important dispersal mechanism for this species,
thus providing vital information on the factors which are shaping the evolution of
the largest seaweed on Earth. Concerning the associated fauna, Nikula et al. (2010)
demonstrated that long-distance oceanic rafting explains the broad geographic
distribution of two crustaceans across the subantarctic. Additionally, in a recent
molecular study, Fraser et al. (2009) pointed out that the giant seaweed Durvillea
has an extremely high dispersal potential since it is capable of rafting for vast
distances. They concluded that Durvillea in southern Chile originated from source
populations in New Zealand. Moreover, due to the local eddies, estuarine fronts
and internal waves, the channels and fjords of southern South America appear to
act as an extensive retention zone for floating items such as rafted kelp, which
accumulated in the internal waters (Hinojosa et al. 2010, 2011). These authors
pointed out that retention zones near the oceanic end of the channels may trap
Durvillea rafts coming from coastal or distal oceanic sources. Based on these
considerations, Gordillo and Nielsen (2013) suggest that kelp rafting constitutes a
means of transportation for muricid gastropods, thus giving them a better chance
of extending their range or of migrating from one region to another. These
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gastropods could therefore travel huge distances among kelp holdfasts of Mac-
rocystis, Durvillea, or other macroalgae.

As can be seen, the importance of addressing interdisciplinary studies when
considering Quaternary fauna is clear.
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Chapter 7
Morphometry

Abstract Morphological variations in bivalve shells are increasingly the focus of
diverse studies that bridge palaeontology and ecology. Shape in bivalves is a key
morphological characteristic that reflects both phylogenetic history and life habits.
This chapter is centered on the different techniques that can be used to evaluate
size and shape variability in Quaternary bivalves, and also gives reasons for such
variations.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca �Morphometry � Linear morphometrics � Countor analysis � Landmarks

In relation to shell morphology, changes in space and time do not need to be
interpreted solely as a species-level phenomenon, but can and should be consid-
ered in a community or palaeocommunity context, in which phenotypic variation
between localities may represent a source of ecological information suitable for
the evaluation of environmental changes.

Morphological variations in bivalve shells are increasingly the focus of diverse
studies that bridge palaeontology and ecology. Shape in bivalves is a key mor-
phological characteristic that reflects both phylogenetic history and life habits
(Stanley 1970; Crampton and Maxwell 2000).

7.1 Linear Morphometrics

Traditional linear morphometric analysis applied to bivalve remains is a potent
tool for describing patterns of shell variation within species (Roy et al. 2001;
Laudien et al. 2003). Gordillo et al. (2011b) used linear morphometric analysis to
compare fossil and modern Tawera gayi shells. This species is a typical element
of shallow marine soft bottoms in southern South America, and is the most
common species recovered from Late Quaternary marine deposits along the
Beagle Channel, in Tierra del Fuego. Two linear distances, shell length and shell
height, were measured with a caliper in 304 unbroken T. gayi shells (194 modern
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and 110 fossil shells) from the Beagle Channel. Fossil shells previously dated at
ca. 4,500–4,000 years were used for this analysis. The height/length ratio was used
as a proxy for shape, and differences were evaluated with a nonparametric test.
Results show that whereas the modern shells were more rounded, the fossil ones
were slightly elongated. Fossil shells were also significantly smaller and shorter in
length than modern shells (Mann–Whitney rank-sum test; P\0.001 in both cases)
(Fig. 7.1).
To discuss the possible causes of variation in shell morphology, these authors
considered different ecological/environmental factors including temperature, pro-
ductivity and biotic interactions.

Because T. gayi is a suspension feeder and is directly dependent on primary
productivity for its growth, it is assumed here that increased primary productivity
has a positive effect on shell growth. As modern T. gayi shells are larger than fossil
shells, it is reasonable to infer that the increase in nutrient concentrations may have
played a role in affecting shell size. Previous studies on bivalves (Kirby 2000;
Vermeij 1990) and turritelid gastropods (Allmon 1992; Teusch et al. 2002) offer
strong evidence that size and shape differences in shells may be explained by
different temperature and productivity conditions. In southern South America,
recent studies on venerids from Patagonia also show that shell variation is related
to phenotypic plasticity as the result of different environmental conditions
(Márquez et al. 2010).

However, higher productivity does not explain the different in shape between
both ages, with modern shells more rounded than fossil ones. Other studies have
indicated that morphological variations in mollusks may also result in biotic
interactions such as predator–prey relationships (Hagadorn and Boyajian 1997;
Teusch et al. 2002). Following on from this, Gordillo et al. (2011b) suggested that
the reason modern shells were more rounded than fossil ones could be because it
gave them a greater chance of avoiding drilling predation. This interpretation is
supported by the fundamental relationship between shape and function in clams
(Stanley 1975), and the development of antipredatory adaptation. Stanley (1975)
observed that the prosogyrous condition and the rotational mechanism of

Fig. 7.1 Boxplots showing the differences in size (left) and shape (right) between fossil and
modern Tawera gayi shells. Modern shells reached larger sizes and are more quadrangular than
fossil T. gayi shells (modified after Gordillo et al. 2011b)
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burrowing are fundamental adaptations of burrowing clams, showing that each
rocking motion of a typical clam involves a purely rotational movement, with no
translational component. Thus, it could be predicted that the prosogyrous shape
and flattened lunule should cause a backward rotation, shifting the axis of rotation
towards the anterior region. The relationship between the length axis and the
height axis (height/length ratio) therefore has a significant effect on the burrowing
of clams, and the more rounded modern T. gayi shells offer less resistance to the
substrate than the more elongated fossil T. gayi shells. Consequently, the more
rounded clams burrow faster in order to avoid predation by muricid gastropods
such as T. geversianus or X. muriciformis. To support this statement, a slight
decrease in predation rate by drilling gastropods over time has been noted
(Gordillo 1994, 1998). This is even more relevant if it is considered together with
the short South American biogeographical history of Tawera, which apparently
arrived from New Zealand during the Quaternary (see Sect. 6.3), and the need to
improve strategies for avoiding predators in its new environment in South
America. More work is needed to reinforce these assumptions that correlate
changes in T. gayi shape with an effective resistance adaptation against drilling by
gastropods (antipredatory adaptation).

7.2 Contour Analysis

Previous studies (Palmer et al. 2004; Rufino et al. 2006; Márquez et al. 2010,
among others) have shown that Elliptic Fourier Analysis (EFA) on outline bivalve
shells is very useful for defining specific shape features that might distinguish
species or intraspecific variations from among different populations along a wide
geographical range.

For the Quaternary of southern South America the contour method has been
applied using fossil shells of three different infaunal clams; i.e., Amiantis purpu-
rata, Ameghinomya antiqua and Tawera gayi.

Gordillo et al. (2011a), for example, analyzed the significance of the overall
shell shape of T. gayi from different regions within the Magellan Region. Taking
into account the palaeontological history of this genus in the southern hemisphere,
EFA was also performed on shells of Tawera congeners from South Africa
(T. philomela) and New Zealand (T. spissa). The use of EFA permitted the dis-
tinction between the three Tawera species and geographical differentiation in the
T. gayi groups. The authors conclude that morphological variations of T. gayi
appear best related to ecophenotypic plasticity as a response to different envi-
ronmental conditions, although the palaeobiogeographical history of Tawera in
South America cannot be ruled out.

Recently, Boretto et al. (unpublished data) analyzed changes in shape between
Pleistocene, Holocene and Modern Ameghinomya antiqua shells from Bustamante
Bay, in Patagonia (Argentina), using contour analysis (Fig. 7.2).
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7.3 Landmarks

A third method to evaluate morphological changes is the analysis of landmarks.
When applied to bivalves, this method offers a powerful technique for detecting
differences between groups or for analyzing intra-specific variations between
different populations (Rufino et al. 2006; Márquez et al. 2010).

Boretto et al. (unpublished data) also analyzed changes in shape between fossil
and modern Ameghinomya antiqua shells from Bustamante Bay using 13 land-
marks (Fig. 7.3), following Márquez et al. (2010).

This methodology, in addition to contour method, successfully separated
Pleistocene ovoid shell shapes from rounded and sub-quadrangular shapes from
the Holocene/Modern shells respectively. The authors explained these differences
observed through time between Pleistocene and Holocene/Modern as the outcome
of phenotypic plasticity under different environmental conditions, as previously
mentioned by Márquez et al. (2010) for living populations.

During the Pleistocene, the configuration of Bustamante Bay might have been
different from Holocene and Modern configurations, and the marine transgression/
regression cycles might have modified the coastline evolution, including the
development of a peninsula (Graviña) and the entire bay. Climatic oscillations

Fig. 7.2 Contour method used on Ameghinomya antiqua from Quaternary marine deposits in
Patagonia. a Analysis of shell shape variation along the first two canonical axes, plus diagrams of
the reconstructed extreme configurations. b Cluster analysis showing the relationship of shell
shapes between different ages
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could have affected the bottom sediments, and the chemical characteristics of
water masses would have been influenced by continental melting. These factors,
along with ocean circulation, were associated with environmental variation, and
changes in the shell morphology of A. antiqua show how its phenotypic plasticity
allowed it to adapt to different environments, including varied substrate, hydro-
logical changes and predators. Thus, differences between Pleistocene and Holo-
cene/Modern shells are believed to follow substratum changes along with ocean
circulation. These changes most probably took place between the Last Glacial
Maximum (24 kya BP; Rabassa 2008), when the sea level was 120 m below the
present level, and the time of formation of the San Jorge Gulf (15 kya BP; Ponce
et al. 2011).

On the other hand, Boretto et al. also consider other factors to explain differ-
ences between Holocene and Modern shells from Bustamante Bay in association
with burial speed, which was described by Stanley (1970, 1975). The Holocene
shells are more rounded and prosogyrous than the Modern specimens, and this
condition may indicate a faster burial in the Holocene samples, which also burrow
faster than the more elongated Pleistocene ones. A second feature to consider is the
burrowing depth of bivalves, which can be regarded as the length of the siphon at
its maximum extension in many cases (Kondo 1987, 1997; Zwarts and Wanink
1989). The pallial sinus, seen in the inner surface of siphonate bivalves, represents
the accommodation space of a contracted siphon, and has long been regarded as an

Fig. 7.3 Diagram showing the Ameghinomya antiqua shell outline (dashed line) and the position
of the 13 landmarks used to define the inner surface of the right shell shape. These landmarks are:
1, the tip of the dorsal hinge ligament, 2 the tip of the cardinal teeth, 3 the lunule scar, 4 the end of
the anterior cardinal tooth, 5 the midline cardinal tooth, 6 the end of the posterior cardinal tooth, 7
the tip of the posterior hinge ligament, 8–9 the anterior adductor muscle scar, 10 the tip of the
pallial sinus, 11 the lower margin of the pallial sinus, 12–13 the posterior adductor muscle scar
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approximate measure of burrowing depth (Kondo 1987). In this respect, the
Holocene/Modern shells have a longer mark than the Pleistocene shells (landmarks
9, 10, 11), and this feature supports the idea of deeper burial. When comparing
Holocene and Modern shells, the pallial sinus length is more marked in the fossil
samples. Perhaps these changes are associated with changes in the substratum or
with predator–prey relationships which force clams to escape quickly. In con-
nection with this interpretation ongoing research indicates a very low rate of
drilling predation in the Pleistocene samples from the same region.

Thus, morphometrics applied to Quaternary mollusk shells is also a powerful
analytical tool for describing patterns of shell variation during this period.
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Chapter 8
Stable Isotopes

Abstract Carbonate shells have long been used as a proxy for paleoenvironmental
conditions. In particular, oxygen and carbon stable isotopes from carbonate mol-
lusk shells have been used for reconstructing water temperatures, the timing of
upwelling events and changes in salinity. In this chapter, isotopic analysis was
performed on shells of one particular species at different radiocarbon ages. It is
also uses an example to show how to calculate paleotemperatures.

Keywords Southern South America � Quaternary � Holocene �Mollusca � Stable
isotopes

Carbonate shells have long been used as a proxy for paleoenvironmental condi-
tions. In particular, oxygen and carbon stable isotopes from carbonate mollusk
shells have been used for reconstructing water temperatures, the timing of
upwelling events and changes in salinity (e.g., Urey 1947; Epstein et al. 1951,
1953; Jones et al. 2005; Klein et al. 1996). d18O values of bivalve shell carbonate
have been demonstrated to precipitate in equilibrium with the temperature and
d18O value of the ambient water. Specifically, oxygen isotopic ratios can be
converted to temperature values, and because oxygen is incorporated into calcium
carbonate skeletons while the organism is growing, temperature curves can be
constructed by sampling individuals from different sediments and ages. Water
temperatures can therefore be reconstructed from d18O values of carbonate and an
estimated d18O value of water, using an appropriate oxygen isotope carbonate
fractionation relationship. By comparing oxygen and carbon isotopes from the
same organism, productivity conditions may also be reconstructed (Jones and
Allmon 1995). However, carbon isotopes can be more difficult to interpret than
oxygen isotopes. The d13C value of marine shells is controlled by the d13C value of
dissolved inorganic carbon found in the organism’s internal water pool at the site
of calcification (McConnaughey et al. 1997). Despite this, both oxygen and carbon
have been shown to be useful tools for determining relative temperature and
productivity conditions during different time periods.

S. Gordillo et al., Mollusk Shells as bio-geo-archives,
South America and the Southern Hemisphere, DOI: 10.1007/978-3-319-03476-8_8,
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8.1 Hydrological Variations and Climatic
Changes During the Holocene

Gordillo et al. (2011) explained changes in oxygen and carbon isotopes of T. gayi
shells through hydrological changes and warmer temperatures during the Hypsi-
thermal (Fig. 8.1).

Carbon values are within the -2 % and +2 % interval, which is associated
with marine environments (Keith et al. 1964). In comparison, water coming from
rivers is relatively deficient in 18O and 13C and is isotopically more variable: d18O,
-2 %; d13C, 0 % (Epstein and Mayeda 1953; Keith et al. 1964).

Similarly, the oxygen isotopic analysis of T. gayi shells (with the exception of
shells from the Alakush site) showed values within a similar range. This isotopic
data is difficult to explain (particularly carbon) because shells from the shallow
marine environments along the Beagle Channel coast were exposed to freshwater,
which derived from glacial ice melting and discharging into rivers that lead into
the sea. In this respect, as shell carbonate is controlled by temperature and by the
isotopic composition of ambient water, the stable isotopic composition of mollusk
shells from freshwater environments shows wider and more depleted values than
those from marine environments. This is due to the relative deficiency of d18O and
d13C and the isotopically more variable nature of freshwater (see Wang et al.
1991). In the Magellan Region the mixture of seawater and freshwater from
melting Andean snow also produces cooler waters (Palma and Aravena 2001).
However, the great isotopic differences between Alakush (ca. 4400 years BP) and
the other sites could be associated with warmer temperatures during the Hypsi-
thermal (Obelic et al. 1998; Strelin et al. 2008) and a high volume of freshwater

Fig. 8.1 Stable isotopes of modern and fossil Tawera gayi shells from the Beagle Channel.
a Relationship between oxygen and carbon isotopic composition in T. gayi shells, b Scatter plot
of oxygen isotopic values of T. gayi shells, and their radiocarbon age. The great isotopic
differences between the locality AK (squares) (Alakush; ca. 4400 years) and the other sites
(triangles) is thought to be associated with warmer temperatures and a high volume of freshwater
entering the Beagle Channel during the Hypsithermal (modified after Gordillo et al. 2011)
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entering the Beagle Channel, partly due to an increase in rain (Candel et al. 2009),
and partly to melting snow. During this period, large volumes of water enriched in
16O flowed into the sea, thus resulting in lower ratios.

The carbon isotopic analysis of T. gayi shells indicates the existence of a
mixing of waters from pure marine waters to marine waters with signs of fresh-
water influence. The high depletion of d18O at ca. 4400 years BP would be
associated with warmer temperatures during the Hypsithermal, and a maximum
freshwater input to the Beagle Channel, probably due to an increase in rain during
this period.

8.2 Age Calibration and Temperature Equations

Carbonate skeletal remains of mollusks can provide reliable data on environmental
parameters, and combined with 14C dating information they can also give us
valuable data on paleotemperatures.

We therefore used the oxygen composition of radiocarbon-dated Mytilus shells
from the Beagle Channel to infer paleotemperatures during the Holocene. Mytilus
shells were chosen for oxygen isotope analysis because it is the only species
available throughout the Holocene, and appears in the oldest, as well as the
youngest, marine records. One disadvantage of this species is that most of the
specimens recovered were broken (due to taphonomic reasons), which prevented
sclerochronological analysis on complete specimens. The entire shell is therefore
used to estimate an ‘average’ temperature at the age of deposition. The principle
applied here is that bivalve mollusks living at the same time and in the same place
will experience the same temperature and will therefore have similar oxygen
isotope mean values.

To perform isotopic analysis, a total of 62 Mytilus shells were obtained from
nine paleontological sites previously dated. In the laboratory at the Earth Science
Department, University of Pisa (Italy), shells were crushed to a fine powder and
analyzed using standard methods.

Conventional 14C-ages were calibrated using the CalPal program. As a first
approximation towards correcting these dates for the marine reservoir effect, a
marine calibration dataset (Reimer and Reimer 2000) was used which incorporates
a time-dependent global ocean reservoir correction of about 400 years, and a
difference DR of 221 ± 40 in reservoir age (to accommodate the local effects of
this region), in conjunction with the CalPal program for calibrating these samples
(Fig. 8.2).

To estimate an average temperature at the age of deposition, water temperatures
were calculated using a paleotemperature equation (Eq. 8.1) introduced by Epstein
and Mayeda (1953) and improved by Craig (1965).

T �Cð Þ ¼ 16:9�4:2 � dc�dwð Þ þ 0:13 � dc�dwð Þ2 ð8:1Þ
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In this equation T represents temperature (�C). Both dc and dw are expressed as
18O/16O isotope ratios. dc represents the oxygen isotopic composition of the car-
bonate expressed as a deviation in parts per thousand from a standard carbonate
(i.e., PeeDee Belemnite, a carbonate fossil from South Carolina). dw represents the
oxygen isotopic composition of the water expressed as deviation from standard
mean ocean water (SMOW). Based on only one available record for the Beagle
Channel provided by Obelic et al. (1998), a value of d18Ow = -1.81 % PDB was
used, measured at Ushuaia Bay with a salinity of around 30 PSU.

In this equation a theorical average value of d18Ow = -1.09 % PDB for 31
PSU was used, calculated on the basis of the relationship between two pieces of
isotopic data: on the one hand, a mean value of d18Ow = -10.75 % PDB,
obtained from precipitation by Iturraspe et al. (1989), equivalent to a freshwater
input with 0 PSU; and on the other hand, a value of d18Ow = -0.16 % PDB,
obtained from surface salinity of 34 PSU by Meredith et al. (1999) in the Drake
Passage. A quite similar equation was used in Colonese et al. (2011).

A second equation (Eq. 8.2) is based on Wanamaker et al. (2007).

T �Cð Þ ¼ 16:28�4:57 � dc�dwð Þ þ 0:06 � dc�dwð Þ2 ð8:2Þ

In this study, it was assessed whether the d18O values of Mytilus shells from the
Beagle Channel can be used as a proxy for paleotemperatures during the Holocene.
Due to modern samples did not live at the same time and in the same place (i.e.,
they were both temporally and spatially mixed; see Goodwin et al. 2004), they did
not experience the same temperature, and therefore had different oxygen values.
However, fossil values represent an average of the same time/same place. Despite
this, clear differences in mean temperatures were demonstrated within the period
between 9,000 and 2,000 years, starting with colder conditions (2 �C below) ca.
8,500 years, then a warm peak at ca. 6,500 years (3 �C higher), followed by a
second period of cold conditions at ca. 5,000 years BP and finally a second warmer
period ca. 4,500–4,000 (2 �C higher).

Fig. 8.2 Variations between oxygen isotope values in Mytilus fossil specimens of different
radiocarbon ages. Each dot in the graph represents the difference between the oxygen isotope
value of a living and a fossil specimen of a different 14C age. The line shows the trend through
time
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Previous studies on bivalve shell carbon isotope compositions show that they
are difficult to interpret, and are complicated by a number of factors including the
contribution of metabolic carbon (Gillikin et al. 2006). However, the paleotem-
perature curve agrees well with previous environmental interpretations made by
other authors (e.g., Heusser 1998; Grill et al. 2002) who worked on other proxies
such as palynology.

In Chap. 9 more isotopic data, combined with individual growth using scle-
rochronology, and calibrated against temperatures, is used to reinforce evidence of
the impact of climatic changes on shell growth and structure, and to discriminate
better between environmental changes and ecological reasons.
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Chapter 9
Sclerochronology

Abstract As mollusks grow, their shells become biogeochemical records of the
environmental and climatic conditions experienced throughout their lifetime.
Following the ideas developed in Chap. 8, in this chapter stable isotopes are
treated in conjunction with individual growth in the selected fossil specimens of
different bivalves.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca � Stable isotopes � Individual growth � Annual growth �
Sclerochronology

As mollusks grow, their shells become biogeochemical records of the environ-
mental and climatic conditions experienced throughout their lifetime (for a review
see Rhoads and Lutz 1980). The kind of study that focuses primarily upon
physicochemical variations in the periodically hard tissues of organisms has been
defined as sclerochronology (Oschmann 2009). Research over the last decade has
demonstrated that bivalves are a very valuable tool for reconstructing environ-
mental conditions in both extant and ancient marine environments (e.g., Schöne
et al. 2004, 2005; Watanabe et al. 2004; Carré et al. 2005, among others). Addi-
tionally, their broad biogeographic distribution enables cross-calibration with other
environmental and climate archives (Schöne and Gillikin 2013).

To obtain seasonal records of change in a region, it is possible to recover proxy
climate data from the carbonate of marine bivalve shells obtained from the dif-
ferent environments within the studied area (Fig. 9.1).

Temperature seasonality, the difference between summer and winter tempera-
tures, is one of the most important characteristics of climate, and plays a crucial
role in determining the surface characteristics of the ocean. In our study we used
d18O values of microdrilled bivalves (Fig. 9.2) to reconstruct series (Fig. 9.3) in
order to evaluate seasonal temperature variations at discrete intervals of 2 and
more years each from shells of different ages.

S. Gordillo et al., Mollusk Shells as bio-geo-archives,
South America and the Southern Hemisphere, DOI: 10.1007/978-3-319-03476-8_9,
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In southern South America little is known about the biotic response of marine
individual species to large scale climate variability throughout the Holocene. One
exception is a recent study by Colonese et al. (2012), centered on the analysis of
stable oxygen isotope values from shells of the limpet Nacella deaurata, which
were recovered from archaeological shell middens located along the Beagle
Channel. This study suggests that animals were collected in winter and that they
experienced similar environmental conditions to the present day conditions at ca.
1320 years BP.

Fossil shells of the aragonitic bivalve Retrotapes exalbidus provide us with the
opportunity to investigate climate variability in the Beagle Channel, as well as past
seasonal dynamics of sea water temperature during the mid-to-late-Holocene. This
selection is based on two reasons: extant R. exalbidus preserves annual increments in
the outer shell layer, thus capturing the full seasonal temperature amplitude in its
shell (Lomovasky et al. 2002; Yan et al. 2012); and, although not as common as other
venerids, this species is well preserved in different Holocene marine outcrops along
the channel (Gordillo et al. 2005; Cárdenas and Gordillo 2009). For this purpose,
Gordillo et al. (2013) performed a preliminary analysis of Holocene fossil
R. exalbidus shells which were sectioned, polished, photographed and measured,
and after examination three of them were selected for chemical sampling. In each
case, one-half of the shell was used to resolve the annual growth bands and the other

Fig. 9.1 Annual growth lines in a typical bivalve shell. a Annual growth lines (I, II, III) observed
through an external view. b A cross section of a showing the same lines seen in a, and also other
annual growth lines (IV, V, VI, VII) located near the marginal zone and only visible through a
cross section
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half was used for stable isotope sampling. In addition, a fragment of each shell was
used for 14C dating performed by the accelerator mass spectrometry (AMS) tech-
nique in the Poznań Radiocarbon Laboratory. Ontogenetic ages were measured by
counting the annual growth increments under a stereo microscope. The results show
differences between the three specimens. In the ontogenetic oldest individual
(14 years old), which had a calibrated mean value age of 3839 BP, the d18O values
ranged from 1.53 to –1.16 %. Another younger specimen (8 years old), with a mean
calibrated age of 431 BP, had d18O values from 1.55 to 0.44 %. A third specimen
(10 years old), with a calibrated age of 5190 BP, had d18O values from 1.29 to
0.72 %. Variations in annual growth increment widths were also found at different
radiocarbon ages, probably correlated with environmental changes over the mid-to-
late Holocene. The most positive d18O values were correlated with winter and the
most negative d18O with summer. In addition, the summer values around 3800 years

Fig. 9.2 Sampling methods
of carbonate powder for
isotopic analysis. a Sampling
on the outer surface of a shell
(external shell sampling),
b Sampling from a cross
sectioned shell (internal shell
sampling)
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BP are more negative than around 5,000 or 500 years BP. These findings correlate
well with a cooling episode at ca. 5,000 BP, followed by a period of ameliorization
(the Hypsithermal at ca. 4,000 BP), and towards the end of the Holocene, at ca.
500 years BP, a new cooling event. This sclerochronological study of the growth
patterns and the oxygen isotope ratios in fossil R. exalbidus shells therefore dem-
onstrated that this species clearly exhibited annual cycles showing seasonality
patterns through the mid-to-late Holocene, thus providing us with an opportunity to
analyze intra-seasonal time scales in the fossil record.

In another preliminary report, Lomovasky et al. (2013) analyzed fossil and
modern Tawera gayi shells from the Beagle Channel. The d18O values obtained in
fossil shells ranged from 1.316 to –0.064 %. They correlated the most positive
d18O values with winter forming translucent bands and the most negative d18O
with summer. The authors demonstrated that this species clearly exhibited annual
cycles which showed seasonality patterns from the mid-Holocene to the present,
with translucent bands corresponding to slow or halted growth formed in fall/
winter. The growth rate of Tawera gayi was also lower during the past warm
period (Hypsithermal) than the present, which is possibly related to different
productivity in the channel and/or a lower metabolic rate of the clams when
exposed to a higher temperature.

Given these preliminary results, it can be seen that sclerochronology is a
promising path to explore further in (Fig. 9.4).

Fig. 9.3 Oxygen and carbon chronologies from a (middle-late) Holocene shell of Amiantis
purpurata. Each sample (x axis) presented d18O and d13C (y axis) values expressed by parts per
thousand (%) (Bayer et al. 2013)
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Chapter 10
Concluding Remarks

Abstract In this chapter we summarize all the information presented so far, and
explain why we consider mollusk shells to be excellent geo-bio-archives for the
reconstruction of Quaternary paleoenvironments and for paleoclimatic
interpretations.

Keywords Southern South America � Quaternary � Pleistocene � Holocene �
Mollusca � Multidisciplinary approach � Faunistic changes � Local/regional scale

The Argentinean coastline makes an interesting case study due to its huge lati-
tudinal extension and the fact that the coastline is shaped by marine-terrace
deposits accumulated throughout the Quaternary; this provides us with an
opportunity to collect and examine molluscan death assemblages from modern
environments and fossil marine deposits. In this respect, comparisons between the
modern and adjacent fossil shells are probably the most effective way of evaluating
changes and of reconstructing past environmental conditions during the most
recent geological period.

Given the wide range of disciplines involved in Quaternary research, this book
has aimed to provide a comprehensive multidisciplinary approach to how mollusk
shell remains (mollusk assemblages and/or selected taxa) have been used in the
reconstruction of Quaternary environments in southern South America. Our study
was based on Present-day, Holocene and Pleistocene mollusk assemblages from
different areas covering a wide distribution range between 40� and 54� S.

This book has emphasized the use of different proxies (taphonomy, paleo-
ecology, morphometry, stable isotopes, sclerochronology) as a strategy for a better
understanding of environmental and climatic changes, and how these changes are
reflected in shells. For this purpose, different lines of evidence were applied at
local/regional level in different locations along the Argentinean coast. This scale of
analysis helped us to identify local/regional changes, in addition to other global
events, for example, the Hypsithermal during the mid-Holocene and the Marine
Isotope Stage 5e during the late Pleistocene, both slightly warmer periods than the
present. However, more work is needed on local and regional levels to fully
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understand which environmental changes are due to global causes and which are
due to regional/local causes.

Although the Quaternary was a short geological period, notable events occur-
red. It is widely known that significant glacioeustatic movements took place during
the different glacial/interglacial cycles of the Quaternary, with lower sea levels
during colder periods. In southern South America, a large portion of the Argen-
tinean continental shelf was exposed during these glacial periods, and was then
quickly covered during the interglacial periods. The coastal environments would
therefore have suffered a rapid migration of taxa as a response to the fast trans-
gressive sea.

Signs of these changes have been preserved in local mollusk assemblages,
which have also changed over time. At least four mollusk species became extinct
during the Pleistocene, and at times during both the Pleistocene and the Holocene,
several taxa shifted their range of distribution or colonized new vacant areas.

A local-scale quantitative and qualitative analysis of mollusk assemblages at
different latitudes suggests that each environment changed over time, acting as a
‘dynamic mosaic’ for the development of local communities in patchy habitats or
sub-environments which, in accordance with sea-level changes, also shifted over
time. Changes in mollusk assemblages took place from a few hundred to several
thousand years ago, and mostly follow local physical variations (i.e., substrate,
availability of food and currents); changes associated to large scale climatic
variability during the Holocene were also recorded in individual taxa.

The vision that emerges from the Quaternary mollusk shells in southern South
America is a history of continuous and dynamic shifts of the local benthic com-
munities in response to disturbances in physical conditions. Faunistic changes
during the Quaternary partly reflect changes over time, and partly reflect local
circumstances. Discerning how much of each is still difficult. One significant
outcome of this work is that those analyses based solely on lists of species on a
biogeographic scale should be treated with caution if used to assess changes in the
Quaternary: local analyses are far more reliable and are more powerful tools.

Because the multi-proxy evidence used in this study provides a consistent
picture of spatial and temporal environmental and climatic changes in southern
South America, we believe that mollusk shells are extremely valuable tools for
studies addressing Quaternary environments anywhere.
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