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Abstract

A process-based sediment transport model is presented that combines the knowledge of sediment transport in rivers

and estuaries with the understanding of physical processes specific for the shelf seas. Due to formation of bottom

Ekman spiral, the near-bottom current and hence the sediment transport deviate from the direction of surface current.

The model takes into account velocity veering induced by Ekman spiral and estimates both direction and rate of

transport of suspended particulate matter (SPM) generated by a steady or slowly varying current, through suspension,

relocation and deposition of sediment in a shallow sea. The model uses a combination of analytical and numerical

methods: analytical integration, in the vertical, and numerical integration, in the horizontal. The model predicts also

vertical erosion/deposition fluxes at the seabed. The deviation angles and other parameters of SPM transport are

computed for a range of water depths 5–50m, particle settling velocities 0.1–6 cm/s, and current speeds 0.4–1.2m/s. The

model converges automatically to traditional engineering-style formulations, in extreme case of strong current in very

shallow water, where velocity veering is of minor importance.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Most formulations for sediment transport were
developed originally for rivers (Dyer, 1986; van
Rijn, 1993). However, it is common practice to use
these formulations for the marine environment,
including tidally influenced areas, in a quasi-steady
fashion (Soulsby, 1997; van der Molen, 2002;
Calvete et al., 2001); this is despite the fact they are
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known to be less appropriate for use in the sea due
to lack of specific marine physics. As a result, the
accuracy of traditional sediment transport models
in the marine environment is no better than the
factor of 5, whilst in rivers the best formulae give
predictions within a factor of 2 of the observed
value (Soulsby, 1997). This paper presents a new
sediment transport model that combines the
knowledge of sediment transport in rivers and
estuaries with an understanding of physical
processes specific for shelf seas. The aim of the
model is to estimate transport of suspended
particulate matter (SPM) generated by a steady
or slowly varying current, through suspension,
d.
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Fig. 1. Conceptual scheme of velocity veering and its influence

upon suspended sediment transport. Suspended material

typically occupies only the lower part of the Ekman layer

where the direction of current is different from that of the free

stream current. This results in the depth-integrated sediment

transport being at an angle to the depth-integrated water flow.
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relocation and deposition of a non-cohesive
sediment.
The general principle for the calculation of total

horizontal SPM fluxes is to integrate vertical
profiles of SPM concentration and current velo-
city, over the thickness of the nepheloid (sediment
laden) layer, at each horizontal location (Dyer,
1986). In the SPM transport models, which have
been developed for relatively shallow water pools
(rivers, estuaries) it is common to adopt a
logarithmic velocity distribution, (see e.g. Sleath,
1984). However, in the marine environment where
the depth of water exceeds the Ekman scale, HE,
(typically 10–30m), shear stress changes with
depth due to the Coriolis force, this mostly occurs
above a relatively thin (about 0:1HE) logarithmic
velocity sub-layer. This interaction results in the
formation of a bottom Ekman spiral; hence, both
speed and direction of the current change with
depth (Csanady, 1982). In particular, the direction
of the current, and thus, the direction of sediment
transport near the seabed is different from that of
the surface current. Qualitatively, it became clear
as far back as in 1972 that velocity veering in the
bottom Ekman layer under ocean currents might
be an important mechanism of cross-shore SPM
transport (McCave, 1972).
The present model incorporates the effect of

velocity veering due to Ekman spiral into advec-
tion–diffusion balance of suspended material and
computes SPM transport and erosion/deposition
rates at sea floor by considering deviation of the
SPM flux from the direction of surface current, see
Fig 1. Velocity veering effects both cohesive and
non-cohesive sediment transport. The model oc-
cupies a niche between 2DH models (see e.g.
Schoonees and Theron, 1995 for overview) and
fully 3D (e.g. Proctor et al., 2001; Davies and
Xing, 2001, 2002) numerical models; as such it is
called here a 2.5D velocity veering SPM (VVS)
transport model. The advantage of the model
is that it uses a combination of analytical
and numerical methods: analytical integration
in the vertical and numerical integration in the
horizontal.
Solutions to the governing equations in the

vertical direction are obtained using analytical
methods, which is equivalent to employing an
infinite number of numerical layers. However, as
with all analytical methods, it is necessary to
introduce some physical simplifications in order to
derive a solution, in particular in terms of
parameterization of turbulent diffusion. The para-
meterization used in this paper is similar to the
classical Ekman spiral, which was shown to
provide a good statistical fit to observed current
velocities in the ocean (Stacey et al., 1986). The
horizontal transport rates and the vertical fluxes
(i.e. erosion/deposition rates) are computed nu-
merically or analytically depending on the com-
plexity of a particular problem. This approach
allows to calculate the horizontal SPM transport
for complex current patterns and over complex
bottom topography. It also results in a numerical
code for the model that is significantly faster than
3D models and can be used for quick transport
estimates.
2. Model description

The accuracy of the sediment transport models
is not generally high (Soulsby, 1997), so it would
be unrealistic to attempt development of a fluid
dynamic model which could predict the sediment
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transport rates or concentration of suspended
sediment with the accuracy much better than a
factor of 2. This is why the proposed model
focuses upon the main physical effects and first-
order estimates; it utilizes approximate methods of
solving analytical equations; furthermore, it in-
cludes only two commonly used empirical (tuning)
parameters.
The model follows arbitrary bottom topogra-

phy, although there are the usual restrictions on
the steepness of the slope (hydrostatic approxima-
tion). The main new aspect of the model is that it
incorporates the effect of velocity veering in the
bottom boundary layer of the sea and replaces the
logarithmic velocity profile with a more appro-
priate approach to the marine environment, the
Ekman spiral. A similar idea was used for the
modelling of fine-grained cohesive sediment in
response to mesoscale currents on the outer shelf
and continental slope of the Black Sea (Shapiro
et al., 2000). However, the new model is designed
specifically to simulate transport in shallow seas,
which may have a water depth comparable or
smaller than the Ekman scale and uses a different
turbulent closure scheme. Apart from non-cohe-
sive sediment, the same algorithm can be used for
modelling the cohesive sediment transport, the
difference in physical properties being reflected in
the form of the pick-up and deposition functions,
which should be specified by the user as described
below in Section 2.
In designing the model, we distinguish two

boundary layers: (1) the Ekman layer, where
velocity veering, generation of shear stress and
turbulent mixing takes place; and (2) the nepheloid
layer, where the SPM is concentrated, see Fig 1.
The thickness of the Ekman layer depends upon
the hydrodynamics of the water flow, but not on
the presence of the sediment, as we consider
relatively small SPM concentrations, which are
typical for the shelf seas (McCandliss et al., 2002)
and ignore the effect of damping turbulence by
high concentrations of sediment (Barenblatt and
Golitsin, 1973). The thickness of the nepheloid
(suspension load) layer is controlled by the balance
of turbulent lift versus gravitational settling, which
is calculated within the model and depends upon
parameters of both the flow and sediment;
generally, these layers do not coincide. As the
upward motion of sediment particles is due to
turbulent eddies and, in the absence of waves and
wind, the production of turbulence is confined
within the Ekman layer, it is reasonable to expect
that the bottom nepheloid layer could not extend
higher than the Ekman layer.
The following simplifying assumptions are made

in the mathematical formulation of the model: the
flow is unstratified and steady (or varying with a
subtidal rate) and there are no waves or wind;
horizontal scales of motion are much greater than
the vertical ones.
Within these approximations, the equations of

motions are

�fv ¼ �
1

r
qp

qx
þ

qtx

qz
; ð1Þ

fu ¼ �
1

r
qp

qy
þ

qty

qz
; ð2Þ

tx ¼ Kz

qu

qz
; ty ¼ Kz

qv

qz
; ð3Þ

where u; v are the components of horizontal
current velocity as functions of x; y; z; t; p is the
pressure; f is the Coriolis parameter, r is the
density, t is the Reynolds shear stress per unit
mass, and Kz is the turbulent friction coefficient.
Eqs. (1)–(2) are subject to the following bound-

ary conditions: (i) no slip at the sea bed; (ii) no
shear stress at the sea surface, (iii) a given current
velocity at the sea surface; and (iv) a given shear
stress at the seabed

u ¼ uh; v ¼ vh at z ¼ h; ð4Þ

jtj ¼ u2� at z ¼ 0; ð5Þ

where z is the height above bottom. The values of
friction velocity, u�; surface velocity ðuh; vhÞ; and
water depth, h;may vary in the horizontal. The use
of a no-slip condition (e.g. Davies and Jones, 1990)
implies that the model incorporates a near-bottom
velocity profile, which is often approximated by a
logarithmic function, as a lower part of the Ekman
spiral.
The turbulent viscosity coefficient, Kz; is ob-

tained using a simple turbulence closure scheme,
which has been used successfully by a number of
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authors. Csanady (1982) suggests that outside wall
layers, but within a turbulent shear flow region,
turbulent viscosity may be taken as constant. The
numerical study of Lentz (1995) shows also that
the along-shelf circulation on the shelf is not
sensitive to the actual form of the turbulent
viscosity profile. In the present study, the eddy
viscosity Kz is assumed to have no vertical
variations within the Ekman layer of a thickness
of about 2HE ; where HE is the Ekman scale.
Above the Ekman layer, the shearing stress and
levels of turbulence are small, and the eddy
viscosity Kz is taken as zero. This schematization
does not lead to much error, as was shown by
Rossby and Montgomery, who solved the equa-
tions with various likely vertical profiles of KzðzÞ
and found only detailed differences from the
Ekman’s solution (cited via Pond and Pickard,
2001, Section 9.45). However, the eddy viscosity
Kz may vary in the horizontal, due to changes in
u� and HE ; and this effect is taken into account in
the VVS model.
Eqs. (1)–(7) have an approximate analytical

solution, which can be expressed conveniently in
complex variables

SðzÞ ¼ Sh

coshðlhÞ
coshðlhÞ � 1

1�
cosh½lðh � zÞ�
coshðlhÞ

� �
; ð6Þ

where S ¼ u þ iv; i ¼
ffiffiffiffiffiffiffi
�1

p
; l ¼ ð1þ iÞ=HE ; and

the Ekman scale is

HE ¼

ffiffiffiffiffiffiffiffi
2Kz

f

s
: ð7Þ

Note that in civil engineering applications it is
more common to use the depth-averaged, %S; rather
than surface, Sh; velocity. In complex variables, the
relationship between the two velocities is given by

%S

Sh

¼
coshðlhÞ

coshðlhÞ � 1
1�

i

lh

sinhðlhÞ
coshðlhÞ

� �
: ð8Þ

The equation for the turbulent viscosity coeffi-
cient, Kz; is obtained by matching the shear stress
at the seabed, from Eqs. (3) and (5).

u2� ¼ tjz¼0 ¼ Kz

qS

qz

����
����
0

¼ Kz

lSh sinhðlhÞ
coshðlhÞ � 1

����
����: ð9Þ

In order to solve Eq. (9) we express the frictional
velocity at the seabed, u�; via the surface current,
using the bulk formula

u2� ¼ CDjuhj
2; ð10Þ

where CD is the empirical drag coefficient due to
current (Csanady, 1982). Note that Eq. (10) is
sometimes used in relation to current at a specific
reference level above bottom, which gives a
different numerical value for CD (e.g. Davies and
Xing, 2002). The alternative values of CD are easily
cross-related using the velocity profile uðzÞ; derived
from Eq. (6). An approximate analytical interpo-
lating solution to the set of Eqs. (7), (9) and (10) is

Kz ¼
2C2

Djuhj
2h

2fh þ CDjuhj
at 0ozo2HE ;

0 at 2HEoz:

8><
>: ð11Þ

This formula provides an explicit expression for
the eddy viscosity, Kz; via the speed of the surface
current, uh; and depth of water, H: Eq. (6)
provides vertical profiles of both magnitude and
direction of the current in the bottom boundary
layer. The near-bottom current is directed to the
left (in the Northern Hemisphere) of the surface
current, in agreement with the Ekman theory. The
novelty compared to the standard Ekman spiral is
that: (i) the eddy viscosity, thickness of the Ekman
layer and parameters of the spiral are not
prescribed constants, but are dependent on the
strength of the surface current according to
Eq. (11); and (ii) parameters of the spiral may
vary in the horizontal. The only tuning parameter
used in the model is the drag coefficient CD; which
is usually estimated from hydraulic experiments,
current observations, see e.g. Ramp and Abbott
(1998), or bed roughness measurements.
The strength of the veering can be estimated as

the angle, a; between the surface current and the
bottom shear stress. Simple manipulations with
Eqs. (6) show that

a ¼ arg
ð1þ iÞsinhðlhÞ
coshðlhÞ � 1

� �
ð12Þ

and the veering angle is confined within the range
of approximately 0–45	. The direction of the near-
bottom current does not necessarily coincide with
the direction of the net sediment flux, as the
direction of current within the bottom nepheloid
layer may change with depth. Since the bedload



ARTICLE IN PRESS

G.I. Shapiro / Continental Shelf Research 24 (2004) 659–671 663
transport, which is not the focus of this paper, is
always in the direction of the bottom shear stress,
Eq. (12) may be helpful in estimating impact of
velocity veering on bedload transport.
The advection–diffusion equation for the SPM

concentration is

qC

qt
þ

qðuCÞ
qx

þ
qðvCÞ
qy

þ
q½ðw � wsÞC�

qz

¼
q
qz

Kc
qC

qz

� �
; ð13Þ

where ws is the settling velocity of suspended
particles, and Kc is the turbulent diffusion
coefficient. Within the SPM cloud, the concentra-
tion gradients are often much larger in the vertical,
than in the horizontal. In such circumstances, the
first three terms (phase lag, horizontal advection)
of Eq. (13) are smaller than the last two terms
(gravitational fall of particles and their upward
motion due to turbulence). This is why single-
point 1D models, which utilize only these two
terms, often produce reasonable estimates of SPM
concentration (McCandliss et al., 2002), although
in some circumstances horizontal advection can be
important (e.g. Davies and Xing, 2002; Bass et al.,
2002). This is particularly the case when velocity
veering is considered and the effect of horizontal
advection is incorporated into the VVS model.
Eq. (13) is often used in a depth-integrated form

(e.g. Bass et al., 2002)

qh %C

qt
þ

q
qx

hðuCÞ þ
q
qy

hðvCÞ ¼ Er � D; ð13aÞ

where h %C is the depth-integrated concentration
(the suspended load), hðuCÞ; hðvCÞ are the depth-
integrated horizontal SPM transport rates. The
terms on the right-hand side are the sources and
sinks of sediment to the system, Er is the rate of
erosion and D is the rate of deposition. For
cohesive sediment, the specific expressions of E

and D are discussed in a number of papers (e.g.
Teisson, 1997). For non-cohesive sediment, these
expressions can be determined from more com-
monly used ‘‘reference concentration’’ formula-
tions as shown below in Section 3.1.2. Further
derivation is not based upon any particular
expression for the pick-up and deposition func-
tions, which should be specified by the user of the
model.
The non-local effects, i.e. advection, and the

phase lag between erosion and deposition of
material are treated as follows. Eq. (13) is solved
using an iterative procedure, which employs a
single–point model, as a zero-order approxima-
tion. A reduced, single-point version of Eq. (13) is

�wsC ¼ Kc

qC

qz
; ð14Þ

where the vertical velocity of water, w; is neglected
compared to the settling velocity, and no vertical
sediment flux assumed at the sea surface.
Solution to Eq. (14) gives the vertical profile of

SPM concentration

CðzÞ ¼ C0 exp �
Z z

0

ws dz

Kc

� �
: ð15Þ

Correct parameterization of the diffusion coeffi-
cient can have significant influence on sediment
balance (e.g. Davies and Xing, 2002). Direct
numerical simulations of the turbulent Ekman
layer showed that turbulent kinetic energy (and
hence eddy diffusion and viscosity) is mostly
concentrated in a near-bottom layer (Coleman
et al., 1990). The thickness of this layer, typically
ð0:120:25Þu�=f ; is equivalent to a few Ekman
depths (for details see Section 3 below). In the VVS
model the vertical variation of eddy diffusion is
approximated by a piecewise function, i.e. Kc has a
constant value equal to the eddy viscosity Kz;
within the bottom layer of thickness 2HE and
drops to zero above it.
With this approximation for Kc; Eq. (15) for the

vertical profile of SPM concentration reduces to

CðzÞ ¼ C0bðzÞ: ð16Þ

Here, the non-dimensional concentration profile
is given by

bðzÞ ¼
exp �z=hd

� 
at 0ozo2HE ;

0 at 2HEoz;

(
ð17Þ

where

hd ¼
Kz

ws

ð18Þ

is the height of e-fold decrease of SPM concentra-
tion.
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In contrast to a single-point theory, the value C0

is left at this stage as an unknown function of time
and horizontal co-ordinates rather than being
obtained from local boundary conditions. Its value
will be computed later from the non-local balance,
which includes contribution from all the terms of
Eq. (13). With C0 still being an unknown para-
meter, Eq. (16) does not give the absolute value of
concentration; however, it fixes the non-dimen-
sional shape of the profile. Similar analytical
methods have been used in chemical technology
(Alekseenko et al., 1992), shallow water dynamics
(Xu, 1995), and in simulation of sediment trans-
port by eddies (Shapiro et al., 2000). In contrast to
the VVS, the latter model uses a ‘constant value’
rather than piecewise approximation for the
diffusion coefficient and is only valid for deep
waters (hbHE).
If hdo2HE then hd represents the thickness of

the bottom nepheloid layer, hc: If hd > 2HE ; which
may happen for small values of settling velocities,
ws; or high level of turbulence (large Kz), then the
concentration profile is more uniform within the
Ekman layer. The concentration diminishes shar-
ply above the bottom mixed layer, as there are no
local sources of turbulence. In this case, the
thickness of the nepheloid layer is given by 2HE :
Generally,

hc ¼ minðhd ; 2HE ; hÞ: ð19Þ

It is useful to relate the unknown value of near
bottom SPM concentration C0 to another yet
unknown value, the total suspension load, m; i.e.
total mass of SPM over a unit area of seabed

m ¼
Z h

0

CðzÞ dz ¼ h %C: ð20Þ

Substitution of Eq. (16) into Eq. (20) yields the
relationship

m ¼ gC0hd ; ð21Þ

where the SPM load form-factor, g; is

g ¼
1� exp �

h

hd

� �� �
at ho2HE :

1� exp �
2HE

hd

� �� �
at 2HEoh:

8>>><
>>>:

ð22Þ
The integral version of the SPM advection–
diffusion equation (13a) can now be re-written in
the form

qm

qt
þ

qQx

qx
þ

qQy

qy
¼ E �

wsm

hdg
; ð23Þ

where Qx ¼ hCu ðQy ¼ hCvÞ is the depth-inte-
grated SPM transport in the x ðyÞ direction, and
E ¼ Er � D0 is the full entrainment (sediment
‘pick-up’) function, which depends upon both
parameters of the water flow and condition of
bottom sediment. The term D0 represents the
correction to the gravitational deposition rate,
wsC0; and relates to the critical deposition shear
stress below which material will settle to the bed
(e.g. Teisson, 1997). This term is only important
for cohesive sediment. By now we have expressed
the near-bottom concentration via the SPM load
using Eqs. (21) and (22). In order to obtain a
closed equation for SPM load we need to express
SPM transport rates Qx and Qy in terms of SPM
load and parameters of the flow. This is done
through an iterative procedure, as described
below.
From Eq. (23) we obtain the first-order equation

for m by calculating horizontal SPM fluxes using
the non-dimensional concentration profile from
Eq. (17) as a zero-order approximation. Using
complex variables, we introduce a zero-order SPM
mass transport rate, Q; as follows:

Q ¼ Qx þ iQy ¼
Z h

0

SðzÞCðzÞ dz

¼ ShmOðx; yÞ; ð24Þ

where the concentration profile is given by
Eq. (16), the relationship between C0 and the
SPM load is given by Eq. (21), and the (complex)
velocity veering function, O; is introduced as
follows:

Oðx; yÞ ¼
1

hdg
coshðlhÞ

coshðlhÞ � 1

�
Z h

0

1�
cosh lðh � zÞð Þ

coshðlhÞ

� �
bðzÞ dz; ð25Þ
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where the SPM form-factor, g; is given by Eq. (22).
Substitution of Eqs (22) into (25) yields

Oðx; yÞ ¼
coshðlhÞ

coshðlhÞ � 1

� 1�
elhGþ þ e�lhG�

2g coshðlhÞ

� �
; ð26Þ

where

Gþ ¼
1� exp �½ð1þ lhd Þs�=hd

� 
1þ lhd

;

G� ¼
1� exp �½ð1� lhd Þs�=hd

� 
1� lhd

;

s ¼ minðh; 2HEÞ: ð27Þ

The dimensionless function O shows how the
actual SPM transport rate differs from a simple
product of the SPM load by the surface current.
The imaginary part of O reflects the deviation of
the net SPM transport from the direction of the
current.
Now all the SPM parameters are expressed in

terms of total SPM load, m; so that the SPM
transport equation (23) is closed and can be solved
using numerical methods. Eq. (23) is only in 2D
and, hence, is much simpler to solve than the
original equation (13), as used in fully 3D models
(e.g. Proctor et al., 2001; Davies and Xing, 2002).
After Eq. (23) has been solved, a full 3D picture of
SPM distribution, i.e. Cðx; y; z; tÞ; is obtained from
the 2D distribution of SPM load, mðx; y; tÞ; and
explicit formulae (16), (17), (21) and (22). The
integrals in Eq. (24) and (25) are calculated
analytically, which simplifies the numerical solu-
tion of Eq. (23).
If necessary, further iterations can be formally

performed. For example, the second-order equa-
tions are obtained by calculating corrections to the
shape, bðzÞ; of the vertical SPM concentration
profile from Eq. (13), where the first-order values
of Cðx; y; z; tÞ are substituted into the first three
terms of the equation, and the stages shown by
Eqs. (20)–(24) are repeated. However, the main
effect of velocity veering is already seen in the first-
order equations (23) and (24) and any further
iterations are unlikely to be necessary.
The morphological effect of SPM transport is

controlled by the vertical SPM flux at the seabed,
Fv; which is determined by the amount of eroded
material minus the amount of deposited material,
i.e. is given by the RHS of Eq. (23).

�r
dZb

dt
¼ Fv ¼ E � D; ð28Þ

where

D ¼
wsm

hdg
ð29Þ

is the gravitational downward flux and Zb is the
height of the sea bed above its initial level. It
should be noted that a zero vertical SPM flux at
the sea surface is assumed. In the zero-order
(single-point) approximation the erosion/deposi-
tion flux, Fv; is obviously zero. The lowest-order
approximation which gives a non-trivial result is
the first-order equation (23).
For truly steady-state conditions, Eq. (23) can

be further simplified and solved using expansion in
small parameter, e, which represents a typical ratio
of the LHS of Eq. (23) and the entrainment ðEÞ or
deposition ðDÞ fluxes, whichever is greater.
Let

m ¼ m0 þ em1 þ?; Fv ¼ Fv0 þ eFv1 þ?:

By substituting this expansion set into Eq. (23)
and equating the terms, which are proportional to
eo; we have

m0 ¼
Ehdg

ws

;

Fv0 ¼ 0:

In the next order of e we obtain a correction term
to the depth-integrated SPM load,

em1 ¼
m0

E

qðm0ReðShOÞÞ
qx

þ
qðm0ImðShOÞÞ

qy

� �

and an analytical expression for the vertical flux,
Fv; at the seabed

Fv ¼ eFv1 ¼
qðm0ReðShOÞÞ

qx
þ

qðm0ImðShOÞÞ
qy

:

Here, the symbols Re and Im represent,
respectively, the real and imaginary parts of the
complex variable. Positive values of Fv relate to
prevailing erosion, negative values represent pre-
dominance of deposition.
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3. Results and discussion

Application of the model requires the following
input information: (1) full depth of water as a
function of horizontal co-ordinates hðx; yÞ; (2)
surface currents uhðx; yÞ; vhðx; yÞ; (3) drag coeffi-
cient CD or an equivalent parameter (e.g. bottom
roughness); (4) settling velocity of suspended
particles ws; (5) sediment entrainment (pick-up)
rate E; which can be a function of the location,
sediment properties, bottom shear stress, etc; and
(6) the Coriolis parameter. Another important
factor, the availability of sediment on the seabed
can be controlled by spatial and temporal varia-
tions in E; e.g. by setting E ¼ 0 if the source of
bottom sediment is exhausted.
From the input parameters, the values of Kz; Kc;

HE and l are calculated using Eqs. (11) and (7),
then hd and g are obtained from Eqs. (18) and (22),
and finally the function O is obtained from
Eqs. (25)–(27). After substitution of these values
into Eq. (23), this equation is solved numerically
or analytically in respect to the SPM load, m; as
discussed in the previous Section.
The output of the model includes: (1) the

absolute value and direction of the SPM transport
rate, Q; (2) the rate (vertical flux) of sediment
erosion or deposition as a function of location; (3)
thickness of the near-bottom nepheloid layer and a
3D distribution of SPM concentration. As a side
product the model provides information about: (4)
direction of the bottom shear stress to be used for
calculation of bedload transport; (5) the surface
SPM concentration.
The ‘pick-up’ function is arguably the less

known parameter of sediment transport and is
generally obtained as the ‘best fit’ to observations.
However, the model allows calculating some
of the characteristics of sediment transport,
which are not sensitive to the exact value of the
‘pick-up’ function and can be more easily com-
pared with other theories and observations. These
characteristics are: (1) the eddy viscosity coeffi-
cient, Kz; (2) the angle of SPM veering, aSPM; and
(3) the thickness of the Ekman and nepheloid
layers.
The angle of deviation of the SPM transport

from the surface current, aSPM ; is calculated using
the complex function O given by Eq. (25)

aSPM ¼ tan�1
Oi

Or

� �
; ð30Þ

where Or ðOiÞ is the real (imaginary) part of O:
Positive values of aSPM correspond to left rotation
(in the Northern Hemisphere) of SPM transport
relative to the surface current.

3.1. Comparison with observations and existing

theories

Whilst a detailed validation of the model would
require a focused field programme, some of the
model elements can be checked against existing
theories and observations.

3.1.1. Flow regime

Let us consider the hydrodynamic properties of
the model in extreme cases of very shallow
(h5HE) and very deep (hbHE) waters.
At a very shallow limit, h5HE ; Eq. (11) reduces

to

Kz ¼ 0:5CDjuhjh ¼ 0:5
ffiffiffiffiffiffiffi
CD

p
u�h: ð31Þ

Eq. (31) is similar to the equation used by van
Rijn (1993) for the description of turbulent flows
without the Coriolis force. If we take CD ¼ 4k2=a21;
where k is the von Karman constant, a1 is the
empirical constant used by van Rijn, then our
Eq. (31) becomes identical to van Rijn’s equation
(7.3.12). As expected, in very shallow waters the
role of Coriolis force diminishes, and both veering
angles, a; and aSPM tend to zero as h=HE� > 0:
Assuming the parameter hd does not exceed the
full water depth, the asymptotic expression for the
thickness on the nepheloid layer becomes

hc ¼

ffiffiffiffiffiffiffi
CD

p
u�h

2ws

:

This equation is consistent with Eq. (7.3.18) of
van Rijn, if the empirical coefficient CD is tuned as
follows:

CD ¼
4b2ek

2

a21
;

where be is the empirical beta-factor, see van Rijn
(1993, Eq. 7.3.16).
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In deep waters, i.e. at bottom depths hb2HE ;
the expression for the viscosity coefficient reduces
to the formula obtained by Shapiro et al. (2000),
for the deep water limit:

Kz ¼
u4�

f jShj
2
¼

C2
Djuhj

2

f
: ð32Þ

Eq. (32) can be re-written in the form

HE ¼
ffiffiffiffiffiffiffiffiffi
2CD

p u�
f
; ð33Þ

which has the same functional dependence of u�
and f as the equation for the Ekman scale
introduced by Csanady (1982, Section 6.2.3).
Numerical coefficient recommended by Csanady
is 0.1, and our Eq. (33) coincides exactly with
Eq. (1.52) by Csanady if CD ¼ 5� 10�3: Numer-
ical coefficient given in Simpson (1998) corre-
sponds to CD ¼ 2� 10�3: Both Eqs. (31) and (32)
are consistent with the length-of-mixing theory
(Monin and Yaglom, 1971). Eq. (32) is similar to
that of Davies and Jones (1990).
There are a few observational studies that can

be compared qualitatively with the VVS model
output. Firstly, observational evidence of bottom
Ekman spiral has been reported extensively in the
literature. More specifically, the rotation of
currents with depth near the seabed in relatively
shallow water has been presented in a number of
publications, e.g. Niedoroda and Swift (1991),
Ramp and Abbott (1998). The model shows
clearly such behaviour over a range of current
speeds, if the water depth is greater than about
5–10m. Secondly, the model provides reasonable
estimates of the turbulent viscosity coefficient and
thickness of the bottom Ekman (mixed) layer.
Measurements by Lentz and Trowbridge (1991)
show that bottom mixed-layer heights are typically
5–15m but, occasionally, exceed 50m. Observa-
tions obtained from the continental shelf off
northwest Africa have revealed that the bottom
Ekman layer is about 25m thick (Tomczak and
Hao, 1989) These values are consistent with the
results obtained with the VVS model, Eq. (11).
The analysis presented above shows that the

hydraulic component of the VVS model is
consistent with observations and reduces to exist-
ing theories, in extreme cases.
3.1.2. Transport rates

The SPM transport rates and concentration
profiles as given by the VVS model are compared,
in this Section, with: (i) observations taken in a
relatively shallow flow (no velocity veering); and
(ii) some frequently used sand transport formula-
tions, which ignore the Coriolis effect. The
following calculations follow mainly the Example
(7.4.3) of van Rijn (1993), where details of
measurements and comparison with Bagnold,
Smith-McLean and van Rijn theories are given.
The measurements were carried out in the
Mississippi River in April 1961. The water depth
was H ¼ 12:05m, mean velocity %u ¼ 1:55 m=s; the
bed material characteristics were d35¼ 350 mkm;
d50¼ 400 mkm; d90¼ 1500 mkm; sediment density
r¼ 2650 kg=m3; the measured suspended load
transport was Q¼ 2:4 kg=sm; the seabed roughness
was determined as z0¼ 0:007 m; and the settling
velocity, based upon d50 grain size, was
ws¼ 0:059 m=s:
The SPM transport rates calculated using the

VVS model over a range of flow velocities, are
compared in Fig. 2, with observational data and
computations made according to the methods of
van Rijn (simplified formulation), Bagnold, and
Bailard; see e.g. Eqs. (7.3.46) and (7.3.40) in van
Rijn (1993), and Eq. (134d) in Soulsby (1997). The
following empirical parameters were used as
recommended by van Rijn and Soulsby: for the
Bagnold method—eb ¼ 0:1; es ¼ 0:02; and for the
Bailard method—e ¼ 0:02: Eq. (7.3.46) of van Rijn
does not have any tuning parameters within a
velocity range of 0.5–2.5m/s. The parameters in
the VVS model were selected as follows. Drag
coefficient is related to the seabed roughness, z0;
through a standard expression

CD ¼
k2

ln2ðH=z0Þ
: ð34Þ

The calculation of the pick-up function, E; is
based upon an energy concept. Its value is
computed by equating the SPM load, m; from a
single-point version of Eq. (23)

m ¼
Ehdg

ws

ð35Þ
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and from the Bailard formula

m ¼
esrsk

2U3
avg lnða=z0Þ

gðs � 1Þws ln
3ðH=z0eÞ

; ð36Þ

where a denotes the reference level, a¼ 0:21 m for
the Mississippi case, see van Rijn (1993). The value
of the efficiency factor for the VVS model was
taken es ¼ 0:082; to match the observed value of
the SPM load, m¼ 1:73 kg=m2:
Fig. 3 shows the observed concentration profiles

in the Mississippi river, calculated with the
above parameters by van Rijn (1993, Section
7.4.3) and with the VVS model. Calculation with
the VVS model gives the following flow para-
meters at Uavg¼ 1:55 m=s: the turbulent viscosity
Kz¼ 0:13 m2=s; Ekman depth HE¼ 60 m; nephe-
loid layer thickness (e-fold) hd¼ 2:2 m; a negligibly
small SPM veering angle, a ¼ 0:2	: Figs. 2 and 3
show that, in the extreme case of shallow water the
VVS model predicts the SPM transport rates and
concentration profiles fairly close both to observa-
tions and predictions by the civil engineering
models. It is particularly important that, over a
range of flow parameters, the VVS model gives the
transport rates close to that of van Rijn formula
(Fig. 2) which, in turn, was validated and tuned
against a large number of observations.

3.2. Simulations with the VVS model

The results of the previous section show that, in
extreme cases of very deep or very shallow waters,
the VVS model is consistent with the existing
theories/observations. The results of model simu-
lations in the intermediate range of parameters are
discussed below. The angle of deviation of SPM
transport from the surface current was calculated
using Eq. (30) in a range of water depths
h¼ 5250 m and depth-averaged current speeds
Uavg¼ 0:121:2 m=s.
Calculations were made for a steady uniform

current over a flat bottom covered by medium/fine
sediment (settling velocity ws ¼ 0:00120:02 m=s).
The Coriolis parameter and drag coefficient were
taken as f ¼ 10�4 and Cd¼ 2� 10�3 (Csanady,
1982, Section 1.6), respectively. Fig. 4 shows that,
at a fixed bottom depth, the cross-current SPM
transport decreases with an increase in current
speed. This effect is due to the fact that stronger
currents generate higher level of turbulence, and
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hence sediment particles are lifted higher within
the water column, where the currents are more
aligned with the surface current. Increased turbu-
lence results also in a thickening of bottom Ekman
layer. Thus, the near-bottom currents are more
aligned with the direction of the surface current.
The deviation angle depends also upon the
sediment settling velocity and increases with the
weight of suspended particles (Fig. 4). Heavier
sediment is concentrated closer to the seabed,
where deviation of the local current from the
direction of that at the surface is the strongest.
Fig. 5 shows the angle of SPM veering from the

direction of the surface current, as a function of
total water depth and for a set of current velocities
at ws¼ 0:01 m=s: In shallower water (depth 5–
10m), velocity veering is negligible at speeds higher
than 0.3–0.5m/s. Within this depth range, the
influence of the Earth’s rotation can be ignored, so
that both the velocity veering and traditional
models (with no Coriolis effect involved) can be
used. In water as deep as 20m and more, the
Coriolis effect turns the sediment flux by, typically,
10–30	. The effect is stronger in deeper waters and
exhibits saturation, if the water depth exceeds
about twice the Ekman scale. Coarse sediment
(sand) has a very small e-folding length and hence
it is affected by velocity veering at most. The angle
between the surface current and the bottom shear
stress gives a good estimate to the direction of both
suspended and bedload transport. For finer sedi-
ments (e.g. medium/fine sand, silt) where the
nepheloid layer height is significant, the veering
angle is smaller, however it is more sensitive to the
parameters of sediment and particularly to the
settling velocity. Sediments of varying grain sizes
occupy different parts of the Ekman spiral and
generally move in different directions. Thus the
velocity veering provides a mechanism for sorting
sediments according to their grain sizes.
Another useful parameter, which is predicted by

the model, is the thickness of the near-bottom
nepheloid layer, hc; see Eq. (19). Comparison with
observations at Uavg¼ 1:55 m=s is shown in Fig. 3.
Simulated values of hc for a range of input
parameters are given in Fig. 6. The thickness of
the nepheloid layer increases as the current flows
faster. The model also predicts a thicker nepheloid
layer if the water is deeper. Both effects are due to
the increase of turbulent diffusivity.
Correct parameterization of turbulence is cru-

cial in determining the thicknesses of the Ekman
layer, HE, and the nepheloid layer, hc: Agreement
between the observed and simulated values (Figs. 2
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and 3) proves that piecewise parameterization
scheme used in the VVS gives realistic estimates
of the main parameters and depth-integrated
sediment transport rates. The accuracy of the
vertical profiles of concentration are comparable
with other algorithms, however this is where the
limits of the present form of the VVS model lie.
Better representation of the vertical profiles will
need a more complex turbulent closure schemes.
However the transport rates are more sensitive to
the parameters of bottom sediments than to the
vertical distribution of kinetic energy. The direc-
tion of sediment transport and hence the spatial
structure of erosion and deposition are sensitive to
the effect of velocity veering. This effect is missing
in commonly used algorithms, see Soulsby (1997),
but is represented in the VVS model.
4. Conclusions

Sediment transport in the marine environment is
different from that in rivers and estuaries, in that
the shelf seas are generally deep enough to
accommodate the Ekman spiral or, at least, part
of it. The Coriolis effect generates velocity veering
in such a way that the current near the bottom
flows at an angle to the current in the main body of
water. As the suspended sediment transport
occupies only lower part of the water column,
than the direction of the (depth integrated)
sediment transport is different from the direction
of the (depth integrated) water flow. This effect is
strongest for the coarse sediment and bedload
transport. Fine sediments have a thicker nepheloid
layer so that sediments move in different directions
at different depth with the water column. Depth-
integrated sediment transport in this case is less
deviated from the free-stream water flow.
This paper presents a semi-analytical 2.5D

model, which occupies a niche between 2DH
models and fully 3D numerical models. The model
resolves analytically the vertical structure of the
SPM transport, whilst the horizontal variability
and erosion/deposition fluxes are computed using
numerical methods. This approach results in a fast
numerical code, and the model algorithm is
designed to be similar in format to the models
used by civil engineers. Parameters of the bottom
mixed layer, such as eddy viscosity and the
thickness of the nepheloid layer, are produced by
the model and are position-dependent. Model
simulations show that effect of velocity veering
can be significant, for both bedload and suspended
load transports. The deviation angle between
sediment transport and free-stream water flow is
in the range of 5–30	, at typical shelf sea
parameters. The model automatically reduces to
traditional engineering style formulations in very
shallow water, where velocity veering is of minor
importance.
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