GENERALIZED A-WEYL'S THEOREM AND PERTURBATIONS

M. Berkani * and H. Zariouh

Abstract

In this paper we study the stability of generalized a-Weyl's theorem under perturbations by finite rank and nilpotent operators. Among other results, we prove that if T is a bounded linear operator acting on a Banach space X satisfies generalized a-Weyl's theorem and F is a finite rank operator commuting with T, then $T+F$ satisfies generalized a-Weyl's theorem if and only if $E_{a}(T+F) \cap \sigma_{a}(T) \subset E_{a}(T)$. Moreover we prove that if T is a bounded linear operator acting on a Banach space satisfies generalized a-Weyl's theorem and N is a nilpotent operator commuting with T, then $T+N$ satisfies generalized a-Weyl's theorem if and only if $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{S B F_{+}^{-}}(T)$.

1 Introduction

Throughout this paper $L(X)$ denote the Banach algebra of all bounded linear operators acting on a Banach space X. For $T \in L(X)$, let $T^{*}, N(T), R(T)$, $\sigma(T)$ and $\sigma_{a}(T)$ denote respectively the adjoint, the null space, the range, the spectrum and the approximate point spectrum of T. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by $\alpha(T)=\operatorname{dim} N(T)$ and $\beta(T)=$ $\operatorname{codim} R(T)$. If the range $R(T)$ of T is closed and $\alpha(T)<\infty($ resp. $\beta(T)<\infty)$, then T is called an upper (resp. a lower) semi-Fredholm operator. In the sequel $S F_{+}(X)$ denotes the class of all upper semi-Fredholm operators. If $T \in L(X)$ is either an upper or a lower semi-Fredholm operator, then T is called a semiFredholm operator, and the index of T is defined by $\operatorname{ind}(T)=\alpha(T)-\beta(T)$. If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called a Fredholm operator. An operator T is called a Weyl operator if it is a Fredholm operator of index zero. The Weyl spectrum of T is defined by $\sigma_{W}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not Weyl $\}$. For $T \in L(X)$, let $S F_{+}^{-}(X)=\left\{T \in S F_{+}(X): \operatorname{ind}(T) \leq 0\right\}$. Then the Weyl

[^0]essential approximate spectrum of T is defined by $\sigma_{S F_{+}^{-}}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \notin$ $\left.S F_{+}^{-}(X)\right\}$.

Let $\Delta(T)=\sigma(T) \backslash \sigma_{W}(T)$ and $\Delta_{a}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$. Following Coburn [11], we say that Weyl's theorem holds for $T \in L(X)$ if $\Delta(T)=E^{0}(T)$, where $E^{0}(T)=\{\lambda \in \operatorname{iso} \sigma(T): 0<\alpha(T-\lambda I)<\infty\}$. Here and elsewhere in this paper, for $A \subset \mathbb{C}$, iso A denotes the set of all isolated points of A and $\operatorname{acc} A$ denotes the set of all points of accumulation of A.

According to Rakočević [20], an operator $T \in L(X)$ is said to satisfy a-Weyl's theorem if $\Delta_{a}(T)=E_{a}^{0}(T)$, where $E_{a}^{0}(T)=\left\{\lambda \in \operatorname{iso} \sigma_{a}(T): 0<\alpha(T-\lambda I)<\right.$ $\infty\}$. It is known [20] that an operator satisfying a-Weyl's theorem satisfies Weyl's theorem, but not conversely.

For $T \in L(X)$ and a nonnegative integer n define $T_{[n]}$ to be the restriction of T to $R\left(T^{n}\right)$ viewed as a map from $R\left(T^{n}\right)$ into $R\left(T^{n}\right)$ (in particular $T_{[0]}=T$). If for some integer n the range space $R\left(T^{n}\right)$ is closed and $T_{[n]}$ is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-BFredholm operator. In this case the index of T is defined as the index of the semiFredholm operator $T_{[n]}$, see [6]. Moreover, if $T_{[n]}$ is a Fredholm operator, then T is called a B-Fredholm operator, see [7]. An operator $T \in L(X)$ is said to be a BWeyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum of T is defined by $\sigma_{B W}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not a B-Weyl operator $\}$.

Recall that the ascent of an operator $T \in L(X)$ is defined by $a(T)=\inf \{n \in$ $\left.\mathbb{N}: N\left(T^{n}\right)=N\left(T^{n+1}\right)\right\}$ and the descent of T, is defined by $\delta(T)=\inf \{\mathbb{N}$: $\left.R\left(T^{n}\right)=R\left(T^{n+1}\right)\right\}$, with infØ $=\infty$. An operator T is called Drazin invertible if it has finite ascent and descent. The Drazin spectrum of T is defined by $\sigma_{D}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not Drazin invertible $\}$. An operator $T \in L(X)$ is called an upper semi-Browder if it is an upper semi-Fredholm of finite ascent, and is called Browder if it is a Fredholm of finite ascent and descent. The upper semi-Browder spectrum of T is defined by $\sigma_{u b}(T)=\{\lambda \in \mathbb{C}$: $T-\lambda I$ is not upper semi-Browder $\}$ and the Browder spectrum of T is defined by $\sigma_{b}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not Browder $\}$.
Define also the set $L D(X)$ as follows : $L D(X)=\{T \in L(X): a(T)<$ ∞ and $R\left(T^{a(T)+1}\right)$ is closed $\}$ and $\sigma_{L D}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \notin L D(X)\}$. An operator $T \in L(X)$ is said to be left Drazin invertible if $T \in L D(X)$. We say that $\lambda \in \sigma_{a}(T)$ is a left pole of T if $T-\lambda I \in L D(X)$, and that $\lambda \in \sigma_{a}(T)$ is a left pole of T of finite rank if λ is a left pole of T and $\alpha(T-\lambda I)<\infty$. Let $\Pi_{a}(T)$ denotes the set of all left poles of T and $\Pi_{a}^{0}(T)$ denotes the set of all left poles of T of finite rank. From [3, Theorem 2.8], it follows that if $T \in L(X)$ is left Drazin invertible, then T is an upper semi-B-Fredholm operator of index less or equal than zero.

Let $\Pi(T)$ be the set of all poles of the resolvent of T and let $\Pi^{0}(T)$ be the set of all poles of the resolvent of T of finite rank, that is $\Pi^{0}(T)=\{\lambda \in$ $\Pi(T)\}: \alpha(T-\lambda I)<\infty\}$. According to [15], a complex number λ is a pole of the resolvent of T if and only if $0<\max (a(T-\lambda I), \delta(T-\lambda I))<\infty$. Moreover, if this is true then $a(T-\lambda I)=\delta(T-\lambda I)$. According also to [15], the space $R\left((T-\lambda I)^{a(T-\lambda I)+1}\right)$ is closed for each $\lambda \in \Pi(T)$. Hence we have always
$\Pi(T) \subset \Pi_{a}(T)$ and $\Pi^{0}(T) \subset \Pi_{a}^{0}(T)$.
Following [3], we say that generalized a-Browder's theorem holds for T if $\Delta_{a}^{g}(T)=\Pi_{a}(T)$ and that a-Browder's theorem holds for T if $\Delta_{a}(T)=\Pi_{a}^{0}(T)$. It is shown [2, Theorem 2.2] that generalized a-Browder's theorem is equivalent to a-Browder's theorem.

Let $\Delta^{g}(T)=\sigma(T) \backslash \sigma_{B W}(T)$. We say that generalized Browder's theorem holds for T if $\Delta^{g}(T)=\Pi(T)$; where $\Pi(T)$ is the set of all poles of T and that Browder's theorem holds for T if $\Delta(T)=\Pi^{0}(T)$; where $\Pi^{0}(T)$ is the set of all poles of T of finite rank. It is proved in [2, Theorem 2.1] that generalized Browder's theorem is equivalent to Browder's theorem.

Let $S B F_{+}(X)$ be the class of all upper semi-B-Fredholm operators, $S B F_{+}^{-}(X)=$ $\left\{T \in S B F_{+}(X): \operatorname{ind}(T) \leq 0\right\}$. The upper B-Weyl spectrum of T is defined by $\sigma_{S B F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin S B F_{+}^{-}(X)\right\}$. Let $\Delta_{a}^{g}(T)=\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. We say that T obeys generalized a-Weyl's theorem, if $\Delta_{a}^{g}(T)=E_{a}(T)$; where $E_{a}(T)$ is the set of all eigenvalues of T which are isolated in $\sigma_{a}(T)$ and that T obeys generalized Weyl's theorem if $\Delta^{g}(T)=E(T)$; where $E(T)$ is the set of all eigenvalues of T which are isolated in $\sigma(T)$ ([3, Definition 2.13]). Generalized a-Weyl's theorem has been studied in [3, 8]. In [3, Theorem 3.11], it is shown that an operator satisfying generalized a-Weyl's theorem satisfies a-Weyl's theorem, but the converse is not true in general, and under the assumption $E_{a}(T)=\Pi_{a}(T)$, it is proved in [8, Theorem 2.10] that generalized a-Weyl's theorem is equivalent to a-Weyl's theorem. It is also proved in [3, Theorem 3.7] that generalized a-Weyl's theorem implies generalized Weyl's which in turn implies from [3, Theorem 3.9] Weyl's theorem.

Definition 1.1. A bounded linear operator $T \in L(X)$ is called isoloid (resp. a-isoloid) if iso $\sigma(T)=E(T)$ (resp. iso $\sigma_{a}(T)=E_{a}(T)$). Moreover, if iso $\sigma_{a}(T)=$ $\Pi_{a}(T)$, then we will say that T is an a-polaroid operator.

We will say that $T \in L(X)$ has the single valued-extension property at λ_{0}, (SVEP for short) if for every open neighborhood U of λ_{0}, the only analytic function $f: U \rightarrow X$ which satisfies the equation: $(T-\lambda I) f(\lambda)=0$, for all $\lambda \in U$ is the function $f=0 . T \in L(X)$ is said to have the SVEP if T has this property at every $\lambda \in \mathbb{C}$ (see [16]).

The aim of this paper is to study the stability of generalized a-Weyl's theorem under commuting nilpotent or finite rank perturbations. Thus, in the second section, we prove in Theorem 2.2 that if T is a bounded linear operator acting on a Banach space X satisfies generalized a-Weyl's theorem and F is a finite rank operator commuting with T, then $T+F$ satisfies generalized a-Weyl's theorem if and only if $E_{a}(T+F) \cap \sigma_{a}(T) \subset E_{a}(T)$. We obtain also similar results for aWeyl's and Weyl's theorem in the case of compact perturbations. Moreover we prove also in Theorem 2.7 that if $T \in L(X)$ satisfies generalized Weyl's theorem and if $F \in L(X)$ is a finite rank operator commuting with T, then $T+F$ satisfies generalized Weyl's theorem if and only if $E(T+F) \cap \sigma(T) \subset E(T)$.

In the third section we consider in Theorem 3.2 an operator T satisfying generalized a-Weyl's theorem and a nilpotent operator N commuting with T,
and we prove that $T+N$ satisfies generalized a-Weyl's theorem if and only if $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{S B F_{+}^{-}}(T)$. As a consequence, we show in Theorem 3.3 that if $T \in L(X)$ is an operator satisfying generalized a-Weyl's theorem, if $E_{a}(T) \subset \operatorname{iso\sigma }(T)$ and if $N \in L(X)$ is a nilpotent operator commuting with T, then $T+N$ satisfies genralized a-Weyl's theorem. We conclude this paper by some open questions related to the ideas developed in this section.

2 Finite rank perturbations

The next theorem had been established in [3, Theorem 4.2] for Hilbert spaces operators. We show here that it holds also in the general case of Banach spaces.

For $T \in L(X)$, let $c_{n}^{\prime}(T)=\operatorname{dim} \frac{N\left(T^{n+1}\right)}{N\left(T^{n}\right)}$.
Theorem 2.1. Let X be a Banach space and let $T \in L(X)$. Then

$$
\sigma_{L D}(T)=\bigcap_{F \in F(X), F T=T F} \sigma_{L D}(T+F)
$$

where $F(X)$ denotes the ideal of finite rank operators in $L(X)$.
Proof. If $\lambda \notin \sigma_{L D}(T)$, then $\lambda \notin \sigma_{L D}(T+0)$. Since 0 is a finite rank operator, it follows that $\lambda \notin \bigcap\left\{\sigma_{L D}(T+F): F \in F(X), F T=T F\right\}$.

To show the opposite inclusion, let $\lambda \notin \bigcap\left\{\sigma_{L D}(T+F): F \in F(X), F T=\right.$ $T F\}$. Then there exists a finite rank operator F commuting with T such that $T+F-\lambda I$ is left Drazin invertible. So $T+F-\lambda I$ is an upper semi-B-Fredholm. From [6, Theorem 2.7], $T-\lambda I$ is also an upper semi B-Fredholm operator. In particular the two operators $T-\lambda I$ and $T-\lambda I+F$ are operators of topological uniform descent [6]. By [14, Theorem 5.8], for n large enough we have $c_{n}^{\prime}(T-$ $\lambda I)=c_{n}^{\prime}(T-\lambda I+F)$. Since $T-\lambda I+F$ is left Drazin invertible, then for n large enough we have $c_{n}^{\prime}(T-\lambda I+F)=0$. So for n large enough we have $c_{n}^{\prime}(T-\lambda I)=0$ and $a(T-\lambda I)<\infty$. On the other hand, for n large enough $R(T-\lambda I)^{n}$ is closed and by [19, Lemma 12], $R(T-\lambda I)^{a(T-\lambda I)+1}$ is also closed. Hence $T-\lambda I$ is left Drazin invertible.

From Theorem 2.1 we conclude that if $T \in L(X)$ and if $F \in L(X)$ is a finite operator commuting with T, then $\sigma_{L D}(T)=\sigma_{L D}(T+F)$. However, these result do not extend to commuting compact perturbations. To see this,consider on the Hilbert space $\ell^{2}(\mathbb{N})$, the operators $T=0$ and Q defined by $Q\left(x_{0}, x_{1}, x_{2}, \ldots\right)=$ $\left(x_{0}, x_{1} / 2, x_{2} / 3, \ldots\right)$. Then Q is compact, $T Q=Q T=0$, $\operatorname{iso} \sigma_{a}(T)=\Pi_{a}(T)=$ $\{0\}, \operatorname{iso} \sigma_{a}(T+Q)=\{0\}$ and $\Pi_{a}(T+Q)=\Pi_{a}(Q)=\emptyset$. So $\sigma_{L D}(T)=\emptyset$ but $\sigma_{L D}(T+Q)=\{0\}$.

Theorem 2.2. Let X be a Banach space and let $T \in L(X)$ and $F \in L(X)$ be a finite rank operator commuting with T. If T satisfies generalized a-Weyl's theorem, then the following assertions are equivalent.
(i) $T+F$ satisfies generalized a-Weyl's theorem;
(ii) $E_{a}(T+F)=\Pi_{a}(T+F)$;
(iii) $E_{a}(T+F) \cap \sigma_{a}(T) \subset E_{a}(T)$.

Proof. $(i) \Longleftrightarrow$ (ii) If $T+F$ satisfies generalized a-Weyl's theorem, then from [3, Corollary 3.2], we have $E_{a}(T+F)=\Pi_{a}(T+F)$. Conversely, assume that $E_{a}(T+F)=\Pi_{a}(T+F)$, since T satisfies generalized a-Weyl's theorem, then $\sigma_{S B F_{+}^{-}}(T)=\sigma_{L D}(T)$. Since F is a finite rank operator, from [5, Lemma 2.3] we have $\sigma_{S B F_{+}^{-}}(T)=\sigma_{S B F_{+}^{-}}(T+F)$. As F commutes with T, from Theorem 2.1 we have $\sigma_{L D}(T)=\sigma_{L D}(T+F)$. So $\sigma_{S B F_{+}^{-}}(T+F)=\sigma_{L D}(T+F)$. As $E_{a}(T+F)=\Pi_{a}(T+F)$, then from [3, Corollary 3.2], $T+F$ satisfies generalized a-Weyl's theorem.
(iii) $\Longrightarrow(i i)$ Let $\lambda \in E_{a}(T+F)$. Then $\lambda \in \operatorname{iso} \sigma_{a}(T+F)$. If $\lambda \notin \sigma_{a}(T)$, then $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$, then $\lambda \notin \sigma_{S B F_{+}^{-}}(T+F)$. As $\lambda \in \operatorname{iso} \sigma_{a}(T+F)$, it follows from [3, Theorem 2.8] that $\lambda \in \Pi_{a}(T+F)$. If $\lambda \in \sigma_{a}(T)$, then $\lambda \in E_{a}(T+F) \cap \sigma_{a}(T)$, and by assumption $\lambda \in E_{a}(T)$. Since T satisfies generalized a-Weyl's theorem, then $\lambda \notin \sigma_{S B F_{+}^{-}}(T+F)$. Hence $\lambda \in \Pi_{a}(T+F)$. In the two cases, we have $E_{a}(T+F) \subset \Pi_{a}(T+F)$. As we have always $E_{a}(T+F) \supset \Pi_{a}(T+F)$, then $E_{a}(T+F)=\Pi_{a}(T+F)$.
(ii) $\Longrightarrow($ iii $)$ Assume that $E_{a}(T+F)=\Pi_{a}(T+F)$ and let $\lambda \in E_{a}(T+F) \cap \sigma_{a}(T)$, then $\lambda \in \Pi_{a}(T+F) \cap \sigma_{a}(T)$. So $\lambda \notin \sigma_{L D}(T+F)$. As $\sigma_{L D}(T)=\sigma_{L D}(T+F)$ and $\lambda \in \sigma_{a}(T)$, then $\lambda \in \Pi_{a}(T)$. Since the inclusion $\Pi_{a}(T) \subset E_{a}(T)$ is always true, then $\lambda \in E_{a}(T)$. Hence $E_{a}(T+F) \cap \sigma_{a}(T) \subset E_{a}(T)$.

In the next result we prove a similar characterization for a-Weyl's theorem, in the case of a compact pertubation.

Theorem 2.3. Let X be a Banach space and let $T \in L(X)$ and $K \in L(X)$ be a compact operator commuting with T. If T satisfies a-Weyl's theorem, then the following properties are equivalent.
(i) $T+K$ satisfies a-Weyl's theorem;
(ii) $E_{a}^{0}(T+K)=\Pi_{a}^{0}(T+K)$;
(iii) $E_{a}^{0}(T+K) \cap \sigma_{a}(T) \subset E_{a}^{0}(T)$.

Proof. $(i) \Longleftrightarrow$ (ii) If T satisfies a-Weyl's theorem, then from [3, Theorem 3.4] we have $E_{a}^{0}(T+K)=\Pi_{a}^{0}(T+K)$. Conversely, if $E_{a}^{0}\left(T+K=\Pi_{a}^{0}(T+K)\right.$, since T satisfies a-Weyl's theorem, then from [3, Theorem 3.4] we have $E_{a}^{0}(T)=\Pi_{a}^{0}(T)$. Since K is a compact operator, then we also have $\sigma_{S F_{+}^{-}}(T+K)=\sigma_{S F_{+}^{-}}(T)=$ $\sigma_{a}(T) \backslash E_{a}^{0}(T)=\sigma_{a}(T) \backslash \Pi_{a}^{0}(T)=\sigma_{u b}(T)$. Since K commutes with T, then from [1, Corollary 3.45], we have $\sigma_{u b}(T)=\sigma_{u b}(T+K)=\sigma_{a}(T+K) \backslash \Pi_{a}^{0}(T+K)=$ $\sigma_{a}(T+K) \backslash E_{a}^{0}(T+K)$. Therefore $\sigma_{S F_{+}^{-}}(T+K)=\sigma_{a}(T+K) \backslash E_{a}^{0}(T+K)$ and $T+K$ satisfies a-Weyl's theorem.
$(i i) \Longrightarrow(i i i)$ Suppose that $E_{a}^{0}(T+K)=\Pi_{a}^{0}(T+K)$. If $\lambda \in E_{a}^{0}(T+K) \cap \sigma_{a}(T)$, then $\lambda \in \Pi_{a}^{0}(T+K) \cap \sigma_{a}(T)$. So $\lambda \notin \sigma_{u b}(T+K)$. As $\sigma_{u b}(T)=\sigma_{u b}(T+K)$ and $\lambda \in \sigma_{a}(T)$, then $\lambda \in \Pi_{a}^{0}(T)=E_{a}^{0}(T)$. Hence $E_{a}^{0}(T+K) \cap \sigma_{a}(T) \subset E_{a}^{0}(T)$.
$(i i i) \Longrightarrow(i i)$ Suppose that $E_{a}^{0}(T+K) \cap \sigma_{a}(T) \subset E_{a}^{0}(T)$. Since $\Pi_{a}^{0}(T+K) \subset$ $E_{a}^{0}(T+K)$ is always true, we only have to show that $\Pi_{a}^{0}(T+K) \supset E_{a}^{0}(T+K)$. Let
$\lambda \in E_{a}^{0}(T+K)$. If $\lambda \notin \sigma_{a}(T)$, then $\lambda \notin \sigma_{u b}(T)$. As $\sigma_{u b}(T)=\sigma_{u b}(T+K)$ and $\lambda \in$ $\sigma_{a}(T+K)$, then $\lambda \in \Pi_{a}^{0}(T+K)$. If $\lambda \in \sigma_{a}(T)$, then $\lambda \in E_{a}^{0}(T+K) \cap \sigma_{a}(T)$, and by hypothesis $\lambda \in E_{a}^{0}(T)=\Pi_{a}^{0}(T)$. So $\lambda \notin \sigma_{u b}(T)$. As $\sigma_{u b}(T)=\sigma_{u b}(T+K)$, then $\lambda \in \Pi_{a}^{0}(T+K)$. In the two cases, we have $\Pi_{a}^{0}(T+K) \supset E_{a}^{0}(T+K)$.

Remark 2.4. (1)- Theorem 2.2 extends [17, Theorem 2.4] which establishes that $T+F$ satisfies generalized a-Weyl's theorem when T is an a-isoloid operator satisfying generalized a-Weyl's theorem and F is a finite rank operator commuting with T. Since $\operatorname{acc} \sigma_{a}(T)=\operatorname{acc} \sigma_{a}(T+F)$ (see [13, Theorem 3.2]), we observe that if T is an a-isoloid operator, then $E_{a}(T+F) \cap \sigma_{a}(T) \subset E_{a}(T)$.
(2)- There exists an operator T which is not a-isoloid, satisfying generalized a-Weyl's theorem and a finite rank operator commuting with T such that $E_{a}(T+F) \cap \sigma_{a}(T) \subset E_{a}(T)$. To see this, consider the operator T defined on the Hilbert space $\ell^{2}(\mathbb{N})$ by $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} / 2, x_{2} / 3, \ldots\right)$ and let $F=0$. Then $\sigma_{a}(T)=\{0\}, E_{a}(T)=\emptyset$ and $\sigma_{S B F_{+}^{-}}(T)=\{0\}$. So T satisfies generalized a-Weyl's theorem, $E_{a}(T+F) \cap \sigma_{a}(T)=E_{a}(T)$, but T is not a-isoloid.
(3)- Theorem 2.3 extends [13, Theorem 3.4] which establishes that if T is an a-isoloid operator satisfying a-Weyl's theorem and if F is a finite rank operator commuting with T, then $T+F$ satisfies a-Weyl's theorem. To see this, we know that $\alpha(T)<\infty$ if and only if $\alpha(T+F)<\infty$ (see [18, Lemma 2.1]), so it follows that if T is a-isoloid then $E_{a}^{0}(T+F) \cap \sigma_{a}(T) \subset E_{a}^{0}(T)$.

There exists quasinilpotent operators which do not satisfy generalized aWeyl's theorem. For example, if we consider the operator T defined on $\ell^{2}(\mathbb{N})$ by $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{2} / 2, x_{3} / 3, \ldots\right)$, then T is quasinilpotent but generalized a-Weyl's theorem fails for T, since $\sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T)=\{0\}$ and $E_{a}(T)=\{0\}$. But if a quasinilpotent operator satisfies generalized a-Weyl's theorem, then the following perturbation result holds.

Corollary 2.5. Let $T \in L(X)$ be a quasinilpotent operator and let $F \in L(X)$ be a finite rank operator commuting with T. If T satisfies generalized a-Weyl's theorem, then $T+F$ satisfies generalized a-Weyl's theorem.
Proof. If T is injective, as $T F$ is a finite rank quasinilpotent operator, then $T F$ is a nilpotent operator. Since T is injective, then F is nilpotent. Therefore $\sigma_{a}(T+F)=\sigma_{a}(T)$ and $E_{a}(T+F)=E_{a}(T)$ (see Lemma 3.1). Moreover, since F is of finite rank, it follows that $\sigma_{S B F_{+}^{-}}(T+F)=\sigma_{S B F_{+}^{-}}(T)$. As T satisfies generalized a-Weyl's theorem then $\Delta_{a}^{g}(T)=E_{a}(T)$. So $\Delta_{a}^{g}(T+F)=E_{a}(T+F)$ and $T+F$ satisfies generalized a-Weyl's theorem.

If T is not injective, then iso $\sigma_{a}(T)=E_{a}(T)=\{0\}$ and T is an a-isoloid operator. Therefore by Theorem 2.2 , we conclude that $T+F$ satisfies generalized a-Weyl's theorem.

Remark 2.6. The hypothesis of commutativity in Corollary 2.5 is crucial. Indeed, if we consider the Hilbert space $H=\ell^{2}(\mathbb{N})$, and the operators T and F defined on H by:

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots .\right)=\left(0, x_{1} / 2, x_{2} / 3, \ldots .\right), F\left(x_{1}, x_{2}, x_{3}, \ldots .\right)=\left(0,-x_{1} / 2,0,0, \ldots .\right) .
$$

Then T is quasi-nilpotent, F is a finite rank operator which do not commutes with T. Moreover, we have $\sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T)=\{0\}$ and $E_{a}(T)=\emptyset$. Hence T satisfies generalized a-Weyl's theorem. But $T+N$ does not satisfy generalized a-Weyl's theorem because $\sigma_{a}(T+N)=\sigma_{S B F_{+}^{-}}(T+F)=\{0\}$ and $E_{a}(T+N)=$ $\{0\}$.

Theorem 2.7. Let X be a Banach space and let $T \in L(X)$ and $F \in L(X)$ be a finite rank operator commuting with T. If T satisfies generalized Weyl's theorem, then the following properties are equivalent.
(i) $T+F$ satisfies generalized Weyl's theorem;
(ii) $E(T+F)=\Pi(T+F)$;
(iii) $E(T+F) \cap \sigma(T) \subset E(T)$.

Proof. The equivalence of the two first properties is well known in [9, Theorem 3.2]. Let us show that (ii) is equivalent to (iii). Assume that $E(T+F) \cap \sigma(T) \subset$ $E(T)$. Let $\lambda \in E(T+F)$, then $\lambda \in \operatorname{iso} \sigma(T+F)$. If $\lambda \notin \sigma(T)$, then $\lambda \notin \sigma_{D}(T)$. Since F commutes with T, from [10, Theorem 2.7] we have $\sigma_{D}(T)=\sigma_{D}(T+F)$. As $\lambda \in \sigma(T+F)$, then $\lambda \in \Pi(T+F)$. If $\lambda \in \sigma(T)$, then $\lambda \in E(T+F) \cap \sigma(T)$ and by hypothesis we have $\lambda \in E(T)$. As T satisfies generalized Weyl's theorem, it follows that $\lambda \in \Pi(T)$. As $\sigma_{D}(T)=\sigma_{D}(T+F)$ and $\lambda \in \sigma(T+F)$ then $\lambda \in \Pi(T+F)$. Finally we have $E(T+F) \subset \Pi(T+F)$. As we have always $E(T+F) \supset \Pi(T+F)$, then $E(T+F)=\Pi(T+F)$.

Conversely, suppose that $E(T+F)=\Pi(T+F)$. If $\lambda \in E(T+F) \cap \sigma(T)$, then $\lambda \in \Pi(T+F) \cap \sigma(T)$. Therefore $\lambda \notin \sigma_{D}(T+F)$. As $\sigma_{D}(T)=\sigma_{D}(T+F)$ and $\lambda \in \sigma(T)$, then $\lambda \in \Pi(T)=E(T)$. Hence $E(T+F) \cap \sigma(T) \subset E(T)$.

Similarly to Theorem 2.7, we have the following characterization in the case of Weyl's theorem. We give this result without proof.

Theorem 2.8. Let X be a Banach and let $T \in L(X)$ and $K \in L(X)$ be a compact operator commuting with T. If T satisfies Weyl's theorem, then the following properties are equivalent.
(i) $T+K$ satisfies Weyl's theorem;
(ii) $E^{0}(T+K)=\Pi^{0}(T+K)$;
(iii) $E^{0}(T+K) \cap \sigma(T) \subset E^{0}(T)$.

Remark 2.9. (1) It is proved in [5, Theorem 2.6] that generalized Weyl's theorem for isoloid operators is preserved under perturbations by commuting finite rank operators. This result becomes as an immediate consequence of Theorem 2.7. As acc $\sigma(T)=\operatorname{acc} \sigma(T+F)$ (see [18, Lemma 2.1]), we observe that if T is isoloid, then $E(T+F) \cap \sigma(T) \subset E(T)$.
(2) Since $\alpha(T)<\infty$ if and only if $\alpha(T+F)<\infty$, we observe that if T is isoloid then
$E^{0}(T+F) \cap \sigma(T) \subset E^{0}(T)$. Therefore Theorem 2.8 extends a result of W. Y. Lee and S. H. Lee in [18], where Weyl's theorem was proved for $T+F$ when T is an isoloid operator satisfying Weyl's theorem, and F is a finite rank operator commuting with T.

Examples 2.10. (a)- In general generalized a-Weyl's theorem, a-Weyl's theorem, generalized Weyl's theorem and Weyl's theorem are not transmitted from an operator to a commuting finite rank perturbation as the following example shows.
Let $S: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be an injective quasinilpotent operator which is not nilpotent. We define T on the Banach space $X=\ell^{2}(\mathbb{N}) \oplus \ell^{2}(\mathbb{N})$ by $T=I \oplus S$ where I is the identity operator on $\ell^{2}(\mathbb{N})$. Then $\sigma(T)=\sigma_{a}(T)=\{0,1\}$ and $E_{a}(T)=\{1\}$. It follows from [9, Example 2] that $\sigma_{B W}(T)=\{0\}$. This implies that $\sigma_{S B F_{+}^{-}}(T)=\{0\}$. Hence $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E_{a}(T)=\{1\}$ and T satisfies generalized a-Weyl's theorem, so it satisfies a-Weyl's theorem, generalized Weyl's theorem and Weyl's theorem.

We define the operator U on $\ell^{2}(\mathbb{N})$ by $U\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)=\left(-\xi_{1}, 0,0, \ldots\right)$ and $F=U \oplus 0$ on the Banach space $X=\ell^{2}(\mathbb{N}) \oplus \ell^{2}(\mathbb{N})$. Then F is a finite rank operator commuting with T. On the other hand, $\sigma(T+F)=\sigma_{a}(T+F)=$ $\{0,1\}$ and $E_{a}(T+F)=\{0,1\}$. As $\sigma_{S B F_{+}^{-}}(T+F)=\sigma_{S B F_{+}^{-}}(T)=\{0\}$, then $\sigma_{a}(T+F) \backslash \sigma_{S B F_{+}^{-}}(T+F)=\{1\} \neq E_{a}(T+F)$ and $T+F$ does not satisfy generalized a-Weyl's theorem. Not that $E_{a}(T+F) \cap \sigma_{a}(T) \not \subset E_{a}(T)$. Moreover, $E(T+F)=\{0,1\}$, and as by [4, Theorem 4.3] we have $\sigma_{B W}(T+F)=\sigma_{B W}(T)=$ $\{0\}$, then $T+F$ does not satisfy generalized Weyl's theorem. Observe that $E(T+F) \cap \sigma(T) \not \subset E(T)=\{1\}$.
Moreover we have $\sigma_{W}(T+F)=\{0,1\}$ and $E^{0}(T+F)=\{0\}$. As $\sigma(T+F)=$ $\{0,1\}$ then $\Delta(T+F) \neq E^{0}(T+F)$ and $T+F$ does not satisfy Weyl's theorem. So $T+F$ does not satisfy a-Weyl's theorem. Note that $E^{0}(T+F) \cap \sigma(T) \not \subset$ $E^{0}(T)=\emptyset$, and $E_{a}^{0}(T+F) \cap \sigma_{a}(T)=\{0\} \cap\{0,1\} \not \subset E_{a}^{0}(T)=\emptyset$.
(b)- Theorem 2.2 and Theorem 2.7 do not extend to a commuting compact perturbation. Indeed, if we consider on the Hilbert space $\ell^{2}(\mathbb{N})$ the operators $T=0$ and Q defined by $Q\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2} / 2, x_{3} / 3, x_{4} / 4, \ldots\right)$. Then Q is a compact operator commuting with T. Moreover, we have
$\sigma_{a}(T)=\{0\}, \sigma_{S B F_{+}^{-}}(T)=\emptyset, E_{a}(T)=\{0\}$. Hence T satisfies generalized a-Weyl's theorem. So it satisfies generalized Weyl's theorem. But generalized a-Weyl's theorem and generalized Weyl's fails for $T+Q=Q$. Indeed $\sigma_{S B F_{+}^{-}}(T+$ $Q)=\sigma_{a}(T+Q)=\{0\}, E_{a}(T+Q)=\{0\}$ and $\sigma(T+Q)=\{0\}, \sigma_{B W}(T+Q)=$ $\{0\}, E(T+Q)=E(T)=\{0\}$. Thought we have $E_{a}(T+Q) \cap \sigma_{a}(T) \subset E_{a}(T)$ and $E(T+Q) \cap \sigma(T) \subset E(T)$.

3 Nilpotent perturbations

Let $T \in L(X)$ and let N be a nilpotent operator commuting with T. In a first step we prove that T and $T+N$ have the same isolated eigenvalues in the approximate spectrum.

Lemma 3.1. Let X be a Banach space and let $T \in L(X)$. If $N \in L(X)$ is a nilpotent operator commuting with T, then $E_{a}(T+N)=E_{a}(T)$.

Proof. Let $\lambda \in E_{a}(T)$ be arbitrary. There is no loss of generality if we assume
that $\lambda=0$. As N is nilpotent we know that $\sigma_{a}(T+N)=\sigma_{a}(T)$, thus $0 \in$ iso $\sigma_{a}(T+N)$. Let $m \in \mathbb{N}$ be such that $N^{m}=0$. If $x \in N(T)$, then $(T+$ $N)^{m}(x)=\sum_{k=0}^{m} C_{m}^{k} T^{k} N^{m-k}(x)=0$. So $N(T) \subset N(T+N)^{m}$. As $\alpha(T)>0$, it follows that $\alpha\left((T+N)^{m}\right)>0$ and this implies that $\alpha(T+N)>0$. Hence $0 \in E_{a}(T+N)$. So $E_{a}(T) \subset E_{a}(T+N)$. By symmetry we have $E_{a}(T)=$ $E_{a}(T+N)$.

In the next theorem, we consider an operator $T \in L(X)$ satisfying generalized a-Weyl's theorem, a nilpotent operator commuting with T, and we give necessary and sufficient conditions for $T+N$ to satisfy generalized a-Weyl's theorem.

Theorem 3.2. Let X be a Banach space and $T \in L(X)$ and $N \in L(X)$ be a nilpotent operator commuting with T. If T satisfies generalized a-Weyl's theorem, then the following statements are equivalent.
(i) $T+N$ satisfies generalized a-Weyl's theorem;
(ii) $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{S B F_{+}^{-}}(T)$;
(iii) $E_{a}(T)=\Pi_{a}(T+N)$.

Proof. $(i) \Longleftrightarrow(i i)$ Assume that $T+N$ satisfies generalized a-Weyl's theorem, then
$\sigma_{a}(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)=E_{a}(T+N)$. As $\sigma_{a}(T+N)=\sigma_{a}(T)$ and $E_{a}(T+N)=E_{a}(T)$ then $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T+N)=E_{a}(T)$. Since T satisfies generalized a-Weyl's theorem, then
$\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E_{a}(T)$. So $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{S B F_{+}^{-}}(T)$. Conversely, assume that $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{S B F_{+}^{-}}(T)$, then as T satisfies generalized a-Weyl's theorem it follows that $T+N$ satisfies also generalized a-Weyl's theorem.
$(i) \Longleftrightarrow($ iii $)$ Assume that $T+N$ satisfies generalized a-Weyl's theorem, then from [3, Corollary 3.2], we have $E_{a}(T+N)=\Pi_{a}(T+N)$. Therefore $E_{a}(T)=$ $\Pi_{a}(T+N)$. Conversely, assume that $E_{a}(T)=\Pi_{a}(T+N)$. Since T satisfies generalized a-Weyl's theorem, then T satisfies generalized a-Browder's theorem. As we know from [2, Theorem 2.2] that a-Browder's theorem is equivalent to generalized a-Browder's theorem, then T satisfies a-Browder's theorem. So $\sigma_{S F_{+}^{-}}(T)=\sigma_{u b}(T)$. From [12, Theorem 2.13], we know that $\sigma_{S F_{+}^{-}}(T)=\sigma_{S F_{+}^{-}}(T+N)$. By [1, Theorem 3.65], we know that $\sigma_{u b}(T)=$ $\sigma_{S F_{+}^{-}}(T) \cup \operatorname{acc} \sigma_{a}(T)$. Hence $\sigma_{u b}(T)=\sigma_{u b}(T+N)$. Therefore $\sigma_{S F_{+}^{-}}(T+N)=$ $\sigma_{u b}(T+N)$ and $T+N$ satisfies a-Browder's theorem. So it satisfies generalized a-Browder's that is $\sigma_{a}(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)=\Pi_{a}(T+N)$. As by assumption $E_{a}(T)=\Pi_{a}(T+N)$, it follows that $\sigma_{a}(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)=E_{a}(T+N)$ and so $T+N$ satisfies generalized a-Weyl's theorem.

Theorem 3.3. Let X be a Banach space and let $T \in L(X)$ be an operator satisfying generalized a-Weyl's theorem. If $E_{a}(T) \subset i \operatorname{so\sigma }(T)$ and if $N \in L(X)$ is a nilpotent operator commuting with T, then $T+N$ satisfies generalized a Weyl's theorem.

Proof. Let $\lambda \in E_{a}(T)$, since $E_{a}(T) \subset i \operatorname{so\sigma }(T)$, then $\lambda \in E(T)$.
As T satisfies generalized a-Weyl's theorem, from [3, Theorem3.7] T satisfies generalized Weyl's theorem. Hence $\lambda \in \Pi(T)$. As we know that $\sigma_{D}(T)=$ $\sigma_{D}(T+N)$, then $\lambda \in \Pi(T+N)$. Hence $\lambda \in \Pi_{a}(T+N)$. Consequently we have $E_{a}(T)=\Pi_{a}(T+N)$. Conversely if $\lambda \in \Pi_{a}(T+N)$, then $\lambda \in E_{a}(T+N)$. As we know that $E_{a}(T)=E_{a}(T+N)$, (see Lemmma 3.1), then $\lambda \in E_{a}(T+N)$. So $E_{a}(T)=\Pi_{a}(T+N)$. From Theorem 3.2, $T+N$ satisfies generalized a-Weyl's theorem.

Remark 3.4. 1 - The hypothesis of commutativity in the Theorem 3.2 corollary is crucial. The following example shows that if we do not assume that N commutes with T, then the result may fails. Let $H=\ell^{2}(\mathbb{N})$, and let T and N defined by:

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1} / 2, x_{2} / 3, \ldots\right), N\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0,-x_{1} / 2,0,0, \ldots\right)
$$

Clearly N is a nilpotent operator which does not commute with T. Moreover, we have $\sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T)=\{0\}$ and $E_{a}(T)=\emptyset$. Therefore T satisfies generalized a-Weyl's theorem. But $T+N$ does not satisfy generalized a-Weyl's theorem because $\sigma_{a}(T+N)=\sigma_{S B F_{+}^{-}}(T+N)=\{0\}$ and $E_{a}(T+N)=\{0\}$.
(2) Generally, generalized a-Weyl's theorem does not extend to a quasinilpotent perturbation: Define on the Banach space $\ell^{2}(\mathbb{N})$ the operator $T=0$ and the quasinilpotent operator Q defined by $Q\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2} / 2, x_{3} / 3, x_{4} / 4, \ldots\right)$. Then $\sigma_{a}(T)=\{0\}$ and $\sigma_{S B F_{+}^{-}}(T)=\emptyset$. Moreover we have $E_{a}(T)=\{0\}$. Hence T satisfies generalized a-Weyl's theorem. But generalized a-Weyl's theorem does not hold for $T+Q=Q$, since $\sigma_{S B F_{+}^{-}}(T+Q)=\sigma_{a}(T+Q)=\{0\}$ and $E_{a}(T+Q)=\{0\}$.

Open questions: The proof of Theorem 3.2 suggests the following questions:

1. let $T \in L(X)$ and let $N \in L(X)$ be a nilpotent operator commuting with T. Under which conditions $a(T+N)$ is finite if $a(T)$ is finite?
2. let $T \in L(X)$ and let $N \in L(X)$ be a nilpotent operator commuting with T. Under which conditions $R\left((T+N)^{m}\right)$ is closed for m large enough i if $R\left(T^{m}\right)$ is closed for m large enough?
3. let $T \in L(X)$ and let $N \in L(X)$ be a nilpotent operator commuting with T. Under which conditions $\Pi_{a}(T+N)=\Pi_{a}(T)$?

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Academic, (2004).
[2] M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasgow Math. J. 48 (2006), p. 179-185.
[3] M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.
[4] M. Berkani, Index of B-Fredholm operators and generalization of a-Weyl's theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
[5] M. Berkani, M. Amouch, Preservation of property ($g w$) under perturbations. Acta. Sci. Math. (Szeged), 74 (2008), 767-779.
[6] M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
[7] M. Berkani, On a class of quasi-Fredholm operators. Integr. Equ. and Oper. Theory 34 (1999), no. 2, p. 244-249.
[8] M. Berkani, On the equivalence of Weyl and generalized Weyl theorem, Acta Mathematica Sinica, English series, Vol. 23, No. 1, 2007, p. 103-110.
[9] M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), 291-302.
[10] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Applications, 272(2), 596-603 (2002).
[11] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13, 1966, 285-288.
[12] Djordjević, D. S., Djordjević, S. V., On a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 44 (1999), 361-369.
[13] Djordjevic, D. S., Operators obying a-Weyl's theorem.Publ. Math. Debrecen, 55(3-4), 283-298 (1999).
[14] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.
[15] H. Heuser, Functionl Analysis, John Wiley \& Sons Inc, New York, 1982.
[16] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon, Oxford, (2000).
[17] M. Lahrouz and M. Zohri, Weyl type Theorems and the Approximate Point Spectrum. Irish Math. Soc. Bulletin 55 (2005), 41-51.
[18] W. Y. Lee, S. H. Lee, On Weyl's theorem II.Math. Japonica 43 (1996), 549-553.
[19] M. Mbekhta and V. Müller, On the axiomatic theory of the spectrum, II, Studia Math. 119 (1996), 129-147.
[20] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919.

Address:
Mohammed Berkani
Department of mathematics, Science faculty of Oujda, University Mohammed I, Morocco
E-mail: berkani@fso.ump.ma

Hassan Zariouh

Department of mathematics, Science faculty of Meknes, University Moulay Ismail, Morocco
E-mail: h.zariouh@yahoo.fr

[^0]: *Supported by PGR- UMP.
 2010 Mathematics Subject Classifications. 47A53, 47A10, 47A11.
 Key words and Phrases. Generalized a-Weyl's theorem, nilpotent operator.
 Received: August 27, 2009
 Communicated by Dragan S. Djordjević

