Commensurability of Surface Automorphisms

Hongbin Sun

School of Mathematical Sciences Peking University

January 17, 2008

Commensurability Definition Example

Criterion of Commensurability

Definitions The Main Theorem Corollary

Applications on Fiber Bundle Over Circle

A Question Examples Other Questions

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Commensurability

Definition Example

Criterion of Commensurability

Definitions The Main Theorem Corollary

Applications on Fiber Bundle Over Circle

A Question Examples Other Questions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Two manifolds are said to be commensurable if they have common finite cover;

・ロト ・四ト ・ヨト ・ヨト

- Two manifolds are said to be commensurable if they have common finite cover;
- Two manifold automorphisms (M₁, φ₁), (M₂, φ₂) are said to be commensurable if M₁ and M₂ have common finite covering space M and automorphisms φ₁, φ₂, f of M, such that φ_i are lifting of φ_i, and φ₁ is isotopic to f ∘ φ₂ ∘ f⁻¹;

- Two manifolds are said to be commensurable if they have common finite cover;
- Two manifold automorphisms (M₁, φ₁), (M₂, φ₂) are said to be commensurable if M₁ and M₂ have common finite covering space M and automorphisms φ₁, φ₂, f of M, such that φ_i are lifting of φ_i, and φ₁ is isotopic to f ∘ φ₂ ∘ f⁻¹;
- ► Two manifold automorphisms (M₁, φ₁), (M₂, φ₂) are said to be rational commensurable if there are l₁, l₂ ∈ Z₊, such that (M₁, φ₁^{l₁}), (M₂, φ₂^{l₂}) are commensurable.

► We only consider commensurability of surface automorphisms;

- We only consider commensurability of surface automorphisms;
- All the Surfaces are oriented;

・ロト ・ 一 ト ・ モト ・ モト

- We only consider commensurability of surface automorphisms;
- All the Surfaces are oriented;
- All the surface automorphism φ we consider here satisfies: φ^k is generated by Dehn twist along disjoint essential circles for some k ∈ Z₊;

- We only consider commensurability of surface automorphisms;
- All the Surfaces are oriented;
- All the surface automorphism φ we consider here satisfies: φ^k is generated by Dehn twist along disjoint essential circles for some k ∈ Z₊;
- We call this type of surface automorphism pseudo D-type automorphism.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Example

Commensurability Definition Example

Criterion of Commensurability

Definitions The Main Theorem Corollary

Applications on Fiber Bundle Over Circle

A Question Examples Other Questions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

For surface automorphism ϕ generated by Dehn twist along disjoint essential circles (D-type automorphism):

• Generate circles: $\Gamma(\phi) = \{\gamma_1, \ldots, \gamma_n\};$

For surface automorphism ϕ generated by Dehn twist along disjoint essential circles (D-type automorphism):

- Generate circles: $\Gamma(\phi) = \{\gamma_1, \ldots, \gamma_n\};$
- $\Sigma(\phi) = \{\Sigma \mid \Sigma \text{ is a component of } F N(\Gamma(\phi))\};$

For surface automorphism ϕ generated by Dehn twist along disjoint essential circles (D-type automorphism):

- Generate circles: $\Gamma(\phi) = \{\gamma_1, \ldots, \gamma_n\};$
- $\Sigma(\phi) = \{\Sigma \mid \Sigma \text{ is a component of } F N(\Gamma(\phi))\};$
- ► $\forall \Sigma \in \Sigma(\phi), \ \Omega(\Sigma) = \{\gamma \mid \gamma \text{ is a component of } \partial \Sigma, \text{ but not a component of } \partial F\}.$

・ロット (雪) (日) (日)

 $I(\phi, \gamma)$:

• $|I(\phi, \gamma)| = n$ if the Dehn twist along γ is a rotation of $2n\pi$;

 $I(\phi, \gamma)$:

- $|I(\phi, \gamma)| = n$ if the Dehn twist along γ is a rotation of $2n\pi$;
- The sign is decided by whether the direction of the restriction of rotation to one component is coincide with the induced orientation or not;

 $I(\phi, \gamma)$:

- $|I(\phi, \gamma)| = n$ if the Dehn twist along γ is a rotation of $2n\pi$;
- The sign is decided by whether the direction of the restriction of rotation to one component is coincide with the induced orientation or not;
- In the figure, $I(\phi, \gamma) = -1$.

 $I(\phi, \gamma)$:

- $|I(\phi, \gamma)| = n$ if the Dehn twist along γ is a rotation of $2n\pi$;
- The sign is decided by whether the direction of the restriction of rotation to one component is coincide with the induced orientation or not;

• In the figure, $I(\phi, \gamma) = -1$.

 $\blacktriangleright \ I(\phi,\gamma) = I(\phi^k,\gamma)/k;$

・ロト ・四ト ・ヨト ・ヨト

- $\blacktriangleright I(\phi, \gamma) = I(\phi^k, \gamma)/k;$
- ► $b_{\Sigma,n}(\phi) = \#\{\gamma \in \Omega(\Sigma) | I(\phi, \gamma) = n\}, n \in \mathbb{Q} \{0\};$

$$I(\phi, \gamma) = I(\phi^{k}, \gamma)/k;$$

$$b_{\Sigma,n}(\phi) = \#\{\gamma \in \Omega(\Sigma) | I(\phi, \gamma) = n\}, n \in \mathbb{Q} - \{0\}$$

$$B(\phi, \Sigma) = (\sum_{n \in \mathbb{Q}_{+}} \frac{b_{\Sigma,n}(\phi)}{n}, \sum_{n \in \mathbb{Q}_{-}} \frac{b_{\Sigma,n}(\phi)}{-n});$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$I(\phi, \gamma) = I(\phi^k, \gamma)/k;$$

$$b_{\Sigma,n}(\phi) = \#\{\gamma \in \Omega(\Sigma) | I(\phi, \gamma) = n\}, \ n \in \mathbb{Q} - \{0\};$$

$$B(\phi, \Sigma) = (\sum_{n \in \mathbb{Q}_+} \frac{b_{\Sigma,n}(\phi)}{n}, \sum_{n \in \mathbb{Q}_+} \frac{b_{\Sigma,n}(\phi)}{-n});$$

 $\blacktriangleright \ \forall (p,q) \in \mathbb{Q}^2, \ \Sigma(\phi)(p,q) = \{\Sigma \in \Sigma(\phi) | \frac{B(\phi,\Sigma)}{-\chi(\Sigma)} = (p,q)\};$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

► Polynomial pair: $p(\phi)(x, y) = (p_1(\phi)(x, y), p_2(\phi)(x, y))$ = $\sum_{(p,q) \in \mathbb{Q}^2} (p, q) \lambda(\phi)_{(p,q)} x^p y^q;$

・ロト ・四ト ・ヨト ・ヨト

- ► Polynomial pair: $p(\phi)(x, y) = (p_1(\phi)(x, y), p_2(\phi)(x, y))$ = $\sum_{(p,q) \in \mathbb{Q}^2} (p, q) \lambda(\phi)_{(p,q)} x^p y^q;$
- ▶ p(x, y) is projectively equal to q(x, y) (p(x, y) = q(x, y)) if p₁(x, y) = q₁(x, y), p₂(x, y) = q₂(x, y) or p₁(x, y) = q₂(y, x), p₂(x, y) = q₁(y, x);

- ► Polynomial pair: $p(\phi)(x, y) = (p_1(\phi)(x, y), p_2(\phi)(x, y))$ = $\sum_{(p,q) \in \mathbb{Q}^2} (p,q) \lambda(\phi)_{(p,q)} x^p y^q;$
- ▶ p(x, y) is projectively equal to q(x, y) $(p(x, y) \stackrel{p}{=} q(x, y))$ if $p_1(x, y) = q_1(x, y)$, $p_2(x, y) = q_2(x, y)$ or $p_1(x, y) = q_2(y, x)$, $p_2(x, y) = q_1(y, x)$;
- $A(\phi) = \frac{1}{2}p(\phi)(1,1);$

- ► Polynomial pair: $p(\phi)(x, y) = (p_1(\phi)(x, y), p_2(\phi)(x, y))$ = $\sum_{(p,q) \in \mathbb{Q}^2} (p,q) \lambda(\phi)_{(p,q)} x^p y^q;$
- ▶ p(x, y) is projectively equal to q(x, y) $(p(x, y) \stackrel{p}{=} q(x, y))$ if $p_1(x, y) = q_1(x, y)$, $p_2(x, y) = q_2(x, y)$ or $p_1(x, y) = q_2(y, x)$, $p_2(x, y) = q_1(y, x)$;

•
$$A(\phi) = \frac{1}{2}p(\phi)(1,1);$$

► $(p_1, p_2) \stackrel{p}{=} (q_1, q_2)$ if $(p_1, p_2) = (q_1, q_2)$ or $(p_1, p_2) = (q_2, q_1)$.

If two pseudo D-type automorphisms (F_1, ϕ_1), (F_2, ϕ_2) are commensurable, then

$$p(\phi_1)(x,y) \stackrel{p}{=} p(\phi_2)(x,y)$$

and $A(\phi_1) \stackrel{p}{=} A(\phi_2)$.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

If two pseudo D-type automorphisms (F_1, ϕ_1) , (F_2, ϕ_2) are rational commensurable, then there is a rational number $s \in \mathbb{Q}_+$ such that:

$$p(\phi_1)(x,y) \stackrel{p}{=} s \times p(\phi_2)(x,y)$$

and $A(\phi_1) \stackrel{p}{=} s \times A(\phi_2)$.

Commensurability Definition Example

Criterion of Commensurability

Definitions The Main Theorem Corollary

Applications on Fiber Bundle Over Circle

A Question Examples Other Questions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 Whether a 3 manifold M has different structures of surface bundle over circle up to rational commensurability;

- Whether a 3 manifold M has different structures of surface bundle over circle up to rational commensurability;
- ► This means: if $M = F_1 \times I/\phi_1 = F_2 \times I/\phi_2$, are $(F_1, \phi_1), (F_2, \phi_2)$ rational commensurable?

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- Whether a 3 manifold *M* has different structures of surface bundle over circle up to rational commensurability;
- ► This means: if $M = F_1 \times I/\phi_1 = F_2 \times I/\phi_2$, are $(F_1, \phi_1), (F_2, \phi_2)$ rational commensurable?
- In fact, we can construct infinite different structures of surface bundle over circle up to rational commensurability on some 3 manifold *M*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

▲口> ▲圖> ▲国> ▲国>

► *M*:

 $\begin{array}{c} & & & \\ &$

► f(1,0) = (1,0) f(0,1) = (-1,1);g(1,0) = (1,0) g(0,1) = (1,1).

・ロト ・個ト ・モト ・モト

・ロト ・御 ト ・ ヨト ・ ヨト

► Another version of *M*:

・ロト ・個ト ・ヨト ・ヨト

• (F_2, ϕ_2^6)

•
$$A(\phi_1) = (1,1), \ A(\phi_2) = (\frac{1}{9}, \frac{1}{6});$$

- $A(\phi_1) = (1,1), \ A(\phi_2) = (\frac{1}{9}, \frac{1}{6});$
- So (F_1, ϕ_1) , (F_2, ϕ_2) are not rational commensurable;

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- $A(\phi_1) = (1,1), \ A(\phi_2) = (\frac{1}{9}, \frac{1}{6});$
- So (F_1, ϕ_1) , (F_2, ϕ_2) are not rational commensurable;
- We can construct (F_n, ϕ_n) similarly, $A(\phi_n) = (\frac{1}{(n+1)^2}, \frac{1}{n(n+1)});$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- $A(\phi_1) = (1,1), \ A(\phi_2) = (\frac{1}{9}, \frac{1}{6});$
- ▶ So (F_1, ϕ_1) , (F_2, ϕ_2) are not rational commensurable;
- We can construct (F_n, ϕ_n) similarly, $A(\phi_n) = (\frac{1}{(n+1)^2}, \frac{1}{n(n+1)});$
- For any i ≠ j ∈ Z₊, (F_i, φ_i), (F_j, φ_j) are not rational commensurable.

We can also construct $M = F_1 \times I/\phi_1 = F_2 \times I/\phi_2$, $(F_1, \phi_1), (F_2, \phi_2)$ are not rational commensurable, and $g(F_1) = g(F_2)$.

・ロト ・四ト ・ヨト ・ヨト

► All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when *M* is hyperbolic manifold;

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

- ► All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when *M* is hyperbolic manifold;
- ▶ g(F₁) = g(F₂) is very big in the 2nd example, we don't know if there is any example when g is small, for example: g = 2 or 3;

- ► All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when *M* is hyperbolic manifold;
- g(F₁) = g(F₂) is very big in the 2nd example, we don't know if there is any example when g is small, for example: g = 2 or 3;
- Whether there are infinite (F_i, φ_i), such that M = F_i × I/φ_i, and there is an integer g = g(F_i), i = 1, 2, ... and for any i ≠ j ∈ Z₊, (F_i, φ_i) and (F_j, φ_j) are not rational commensurable;

- ► All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when *M* is hyperbolic manifold;
- ► g(F₁) = g(F₂) is very big in the 2nd example, we don't know if there is any example when g is small, for example: g = 2 or 3;
- Whether there are infinite (F_i, φ_i), such that M = F_i × I/φ_i, and there is an integer g = g(F_i), i = 1, 2, ... and for any i ≠ j ∈ Z₊, (F_i, φ_i) and (F_j, φ_j) are not rational commensurable;
- If we restrict: M = F₁ × I/φ₁ = F₂ × I/φ₂ and g = g(F₁) = g(F₂) is the smallest integer satisfies M = F × I/φ and g(F) = g, whether (F₁, φ₁), (F₂, φ₂) are rational commensurable;

・ロト ・ 雪 ト ・ ヨ ト ・

- ► All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when *M* is hyperbolic manifold;
- ► g(F₁) = g(F₂) is very big in the 2nd example, we don't know if there is any example when g is small, for example: g = 2 or 3;
- Whether there are infinite (F_i, φ_i), such that M = F_i × I/φ_i, and there is an integer g = g(F_i), i = 1, 2, ... and for any i ≠ j ∈ Z₊, (F_i, φ_i) and (F_j, φ_j) are not rational commensurable;
- If we restrict: M = F₁ × I/φ₁ = F₂ × I/φ₂ and g = g(F₁) = g(F₂) is the smallest integer satisfies M = F × I/φ and g(F) = g, whether (F₁, φ₁), (F₂, φ₂) are rational commensurable;
- If M = F₁ × I/φ₁ = F₂ × I/φ₂, then is there any explicit relation between (F₁, φ₁), (F₂, φ₂)?

Thank You !

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト