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Definition

I Two manifolds are said to be commensurable if they have common
finite cover;

I Two manifold automorphisms (M1, φ1), (M2, φ2) are said to be
commensurable if M1 and M2 have common finite covering space M
and automorphisms φ̃1, φ̃2, f of M, such that φ̃i are lifting of φi ,
and φ̃1 is isotopic to f ◦ φ̃2 ◦ f −1;

I Two manifold automorphisms (M1, φ1), (M2, φ2) are said to be
rational commensurable if there are l1, l2 ∈ Z+, such that (M1, φ

l1
1 ),

(M2, φ
l2
2 ) are commensurable.
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Definition

I We only consider commensurability of surface automorphisms;

I All the Surfaces are oriented;

I All the surface automorphism φ we consider here satisfies: φk is
generated by Dehn twist along disjoint essential circles for some
k ∈ Z+;

I We call this type of surface automorphism pseudo D-type
automorphism.
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Definitions

For surface automorphism φ generated by Dehn twist along disjoint
essential circles (D-type automorphism):

I Generate circles: Γ(φ) = {γ1, . . . , γn};

I Σ(φ) = {Σ | Σ is a component of F − N(Γ(φ))};
I ∀ Σ ∈ Σ(φ), Ω(Σ) =
{γ | γ is a component of ∂Σ, but not a component of ∂F}.
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Definitions

I (φ, γ):

I |I (φ, γ)| = n if the Dehn twist along γ is a rotation of 2nπ;

I The sign is decided by whether the direction of the restriction of
rotation to one component is coincide with the induced orientation
or not;

I In the figure, I (φ, γ) = −1.

I
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Definitions

For pseudo D-type surface automorphism φ, there is k ∈ Z+, such that
φk is D-type automorphism:

I I (φ, γ) = I (φk , γ)/k;

I bΣ,n(φ) = #{γ ∈ Ω(Σ)| I (φ, γ) = n}, n ∈ Q − {0};
I B(φ,Σ) = (

∑
n∈Q+

bΣ,n(φ)
n ,

∑
n∈Q−

bΣ,n(φ)
−n );

I ∀(p, q) ∈ Q2, Σ(φ)(p, q) = {Σ ∈ Σ(φ)|B(φ,Σ)
−χ(Σ) = (p, q)};

I λ(φ)(p,q) =
∑

Σ∈Σ(φ)(p,q) χ(Σ)

χ(F ) .
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Definitions

I Polynomial pair: p(φ)(x , y) = (p1(φ)(x , y), p2(φ)(x , y))
=

∑
(p,q)∈Q2(p, q)λ(φ)(p,q)x

pyq;

I p(x , y) is projectively equal to q(x , y) (p(x , y)
p
= q(x , y))

if p1(x , y) = q1(x , y), p2(x , y) = q2(x , y)
or p1(x , y) = q2(y , x), p2(x , y) = q1(y , x);

I A(φ) = 1
2p(φ)(1, 1);

I (p1, p2)
p
= (q1, q2)

if (p1, p2) = (q1, q2) or (p1, p2) = (q2, q1).
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The Main Theorem

If two pseudo D-type automorphisms (F1, φ1), (F2, φ2) are
commensurable, then

p(φ1)(x , y)
p
= p(φ2)(x , y)

and A(φ1)
p
= A(φ2).



Corollary

If two pseudo D-type automorphisms (F1, φ1), (F2, φ2) are rational
commensurable, then there is a rational number s ∈ Q+ such that:

p(φ1)(x , y)
p
= s × p(φ2)(x , y)

and A(φ1)
p
= s × A(φ2).



Outline

Commensurability
Definition
Example

Criterion of Commensurability
Definitions
The Main Theorem
Corollary

Applications on Fiber Bundle Over Circle
A Question
Examples
Other Questions



A Question

I Whether a 3 manifold M has different structures of surface bundle
over circle up to rational commensurability;

I This means: if M = F1 × I/φ1 = F2 × I/φ2, are (F1, φ1), (F2, φ2)
rational commensurable?

I In fact, we can construct infinite different structures of surface
bundle over circle up to rational commensurability on some 3
manifold M.
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Example 1

I M:

I f (1, 0) = (1, 0) f (0, 1) = (−1, 1);
g(1, 0) = (1, 0) g(0, 1) = (1, 1).
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I Another version of M:
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Example 1

I A(φ1) = (1, 1), A(φ2) = ( 1
9 , 1

6 );

I So (F1, φ1), (F2, φ2) are not rational commensurable;

I We can construct (Fn, φn) similarly, A(φn) = ( 1
(n+1)2 ,

1
n(n+1) );

I For any i 6= j ∈ Z+, (Fi , φi ), (Fj , φj) are not rational
commensurable.



Example 1

I A(φ1) = (1, 1), A(φ2) = ( 1
9 , 1

6 );

I So (F1, φ1), (F2, φ2) are not rational commensurable;

I We can construct (Fn, φn) similarly, A(φn) = ( 1
(n+1)2 ,

1
n(n+1) );

I For any i 6= j ∈ Z+, (Fi , φi ), (Fj , φj) are not rational
commensurable.



Example 1

I A(φ1) = (1, 1), A(φ2) = ( 1
9 , 1

6 );

I So (F1, φ1), (F2, φ2) are not rational commensurable;

I We can construct (Fn, φn) similarly, A(φn) = ( 1
(n+1)2 ,

1
n(n+1) );

I For any i 6= j ∈ Z+, (Fi , φi ), (Fj , φj) are not rational
commensurable.



Example 1

I A(φ1) = (1, 1), A(φ2) = ( 1
9 , 1

6 );

I So (F1, φ1), (F2, φ2) are not rational commensurable;

I We can construct (Fn, φn) similarly, A(φn) = ( 1
(n+1)2 ,

1
n(n+1) );

I For any i 6= j ∈ Z+, (Fi , φi ), (Fj , φj) are not rational
commensurable.



Example 2

We can also construct M = F1 × I/φ1 = F2 × I/φ2, (F1, φ1), (F2, φ2) are
not rational commensurable, and g(F1) = g(F2).



Other Questions

I All the 3 manifolds we construct are graph manifolds, we don’t know
whether the questions hold when M is hyperbolic manifold;

I g(F1) = g(F2) is very big in the 2nd example, we don’t know if
there is any example when g is small, for example: g = 2 or 3;

I Whether there are infinite (Fi , φi ), such that M = Fi × I/φi , and
there is an integer g = g(Fi ), i = 1, 2, . . . and for any i 6= j ∈ Z+,
(Fi , φi ) and (Fj , φj) are not rational commensurable;

I If we restrict: M = F1 × I/φ1 = F2 × I/φ2 and g = g(F1) = g(F2)
is the smallest integer satisfies M = F × I/φ and g(F ) = g , whether
(F1, φ1), (F2, φ2) are rational commensurable;

I If M = F1 × I/φ1 = F2 × I/φ2, then is there any explicit relation
between (F1, φ1), (F2, φ2)?
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Thank You !
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