Commensurability of Surface Automorphisms

Hongbin Sun

School of Mathematical Sciences
Peking University

January 17, 2008

Commensurability
Definition
Example

Criterion of Commensurability
Definitions
The Main Theorem
Corollary

Applications on Fiber Bundle Over Circle
A Question
Examples
Other Questions

Outline

Commensurability
Definition
Example

Criterion of Commensurability
 Definitions
 The Main Theorem
 Corollary

Applications on Fiber Bundle Over Circle
A Question
Examples
Other Questions

Definition

- Two manifolds are said to be commensurable if they have common finite cover;

Definition

- Two manifolds are said to be commensurable if they have common finite cover;
- Two manifold automorphisms $\left(M_{1}, \phi_{1}\right),\left(M_{2}, \phi_{2}\right)$ are said to be commensurable if $M_{1_{\sim}}$ and M_{2} have common finite covering space M and automorphisms $\tilde{\phi}_{1}, \tilde{\phi}_{2}, f$ of M, such that $\tilde{\phi}_{i}$ are lifting of ϕ_{i}, and $\tilde{\phi}_{1}$ is isotopic to $f \circ \tilde{\phi}_{2} \circ f^{-1}$;

Definition

- Two manifolds are said to be commensurable if they have common finite cover;
- Two manifold automorphisms $\left(M_{1}, \phi_{1}\right),\left(M_{2}, \phi_{2}\right)$ are said to be commensurable if M_{1} and M_{2} have common finite covering space M and automorphisms $\tilde{\phi}_{1}, \tilde{\phi}_{2}, f$ of M, such that $\tilde{\phi}_{i}$ are lifting of ϕ_{i}, and $\tilde{\phi}_{1}$ is isotopic to $f \circ \tilde{\phi}_{2} \circ f^{-1}$;
- Two manifold automorphisms $\left(M_{1}, \phi_{1}\right),\left(M_{2}, \phi_{2}\right)$ are said to be rational commensurable if there are $I_{1}, l_{2} \in \mathbb{Z}_{+}$, such that ($M_{1}, \phi_{1}^{h_{1}}$), $\left(M_{2}, \phi_{2}^{l_{2}}\right)$ are commensurable.

Definition

- We only consider commensurability of surface automorphisms;

Definition

- We only consider commensurability of surface automorphisms;
- All the Surfaces are oriented;

Definition

- We only consider commensurability of surface automorphisms;
- All the Surfaces are oriented;
- All the surface automorphism ϕ we consider here satisfies: ϕ^{k} is generated by Dehn twist along disjoint essential circles for some $k \in \mathbb{Z}_{+}$;

Definition

- We only consider commensurability of surface automorphisms;
- All the Surfaces are oriented;
- All the surface automorphism ϕ we consider here satisfies: ϕ^{k} is generated by Dehn twist along disjoint essential circles for some $k \in \mathbb{Z}_{+}$;
- We call this type of surface automorphism pseudo D-type automorphism.

Example

Outline

Commensurability Definition
 Example

Criterion of Commensurability
Definitions
The Main Theorem Corollary

Applications on Fiber Bundle Over Circle
A Question
Examples
Other Questions

Definitions

For surface automorphism ϕ generated by Dehn twist along disjoint essential circles (D-type automorphism):

- Generate circles: $\Gamma(\phi)=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$;

Definitions

For surface automorphism ϕ generated by Dehn twist along disjoint essential circles (D-type automorphism):

- Generate circles: $\Gamma(\phi)=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$;
- $\Sigma(\phi)=\{\Sigma \mid \Sigma$ is a component of $F-N(\Gamma(\phi))\}$;

Definitions

For surface automorphism ϕ generated by Dehn twist along disjoint essential circles (D-type automorphism):

- Generate circles: $\Gamma(\phi)=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$;
- $\Sigma(\phi)=\{\Sigma \mid \Sigma$ is a component of $F-N(\Gamma(\phi))\}$;
- $\forall \Sigma \in \Sigma(\phi), \Omega(\Sigma)=$
$\{\gamma \mid \gamma$ is a component of $\partial \Sigma$, but not a component of $\partial F\}$.

Definitions

$I(\phi, \gamma):$

- $|I(\phi, \gamma)|=n$ if the Dehn twist along γ is a rotation of $2 n \pi$;

Definitions

$I(\phi, \gamma):$

- $|I(\phi, \gamma)|=n$ if the Dehn twist along γ is a rotation of $2 n \pi$;
- The sign is decided by whether the direction of the restriction of rotation to one component is coincide with the induced orientation or not;

Definitions

$I(\phi, \gamma)$:

- $|I(\phi, \gamma)|=n$ if the Dehn twist along γ is a rotation of $2 n \pi$;
- The sign is decided by whether the direction of the restriction of rotation to one component is coincide with the induced orientation or not;
- In the figure, $I(\phi, \gamma)=-1$.

Definitions

$I(\phi, \gamma):$

- $|I(\phi, \gamma)|=n$ if the Dehn twist along γ is a rotation of $2 n \pi$;
- The sign is decided by whether the direction of the restriction of rotation to one component is coincide with the induced orientation or not;
- In the figure, $I(\phi, \gamma)=-1$.

Definitions

For pseudo D-type surface automorphism ϕ, there is $k \in \mathbb{Z}_{+}$, such that ϕ^{k} is D-type automorphism:

- $I(\phi, \gamma)=I\left(\phi^{k}, \gamma\right) / k$;

Definitions

For pseudo D-type surface automorphism ϕ, there is $k \in \mathbb{Z}_{+}$, such that ϕ^{k} is D-type automorphism:

- $I(\phi, \gamma)=I\left(\phi^{k}, \gamma\right) / k$;
- $b_{\Sigma, n}(\phi)=\#\{\gamma \in \Omega(\Sigma) \mid I(\phi, \gamma)=n\}, n \in \mathbb{Q}-\{0\} ;$

Definitions

For pseudo D-type surface automorphism ϕ, there is $k \in \mathbb{Z}_{+}$, such that ϕ^{k} is D-type automorphism:

- $I(\phi, \gamma)=I\left(\phi^{k}, \gamma\right) / k$;
- $b_{\Sigma, n}(\phi)=\#\{\gamma \in \Omega(\Sigma) \mid I(\phi, \gamma)=n\}, n \in \mathbb{Q}-\{0\}$;
- $B(\phi, \Sigma)=\left(\sum_{n \in \mathbb{Q}_{+}} \frac{b_{\Sigma, n}(\phi)}{n}, \sum_{n \in \mathbb{Q}_{-}} \frac{b_{\Sigma, n}(\phi)}{-n}\right) ;$

Definitions

For pseudo D-type surface automorphism ϕ, there is $k \in \mathbb{Z}_{+}$, such that ϕ^{k} is D-type automorphism:

- $I(\phi, \gamma)=I\left(\phi^{k}, \gamma\right) / k$;
- $b_{\Sigma, n}(\phi)=\#\{\gamma \in \Omega(\Sigma) \mid I(\phi, \gamma)=n\}, n \in \mathbb{Q}-\{0\}$;
- $B(\phi, \Sigma)=\left(\sum_{n \in \mathbb{Q}_{+}} \frac{b_{\Sigma, n}(\phi)}{n}, \sum_{n \in \mathbb{Q}_{-}} \frac{b_{\Sigma, n}(\phi)}{-n}\right)$;
- $\forall(p, q) \in \mathbb{Q}^{2}, \Sigma(\phi)(p, q)=\left\{\Sigma \in \Sigma(\phi) \left\lvert\, \frac{B(\phi, \Sigma)}{-\chi(\Sigma)}=(p, q)\right.\right\} ;$

Definitions

For pseudo D-type surface automorphism ϕ, there is $k \in \mathbb{Z}_{+}$, such that ϕ^{k} is D-type automorphism:

- $I(\phi, \gamma)=I\left(\phi^{k}, \gamma\right) / k$;
- $b_{\Sigma, n}(\phi)=\#\{\gamma \in \Omega(\Sigma) \mid I(\phi, \gamma)=n\}, n \in \mathbb{Q}-\{0\}$;
- $B(\phi, \Sigma)=\left(\sum_{n \in \mathbb{Q}_{+}} \frac{b_{\Sigma, n}(\phi)}{n}, \sum_{n \in \mathbb{Q}_{-}} \frac{b_{\Sigma, n}(\phi)}{-n}\right)$;
- $\forall(p, q) \in \mathbb{Q}^{2}, \Sigma(\phi)(p, q)=\left\{\Sigma \in \Sigma(\phi) \left\lvert\, \frac{B(\phi, \Sigma)}{-\chi(\Sigma)}=(p, q)\right.\right\}$;
- $\lambda(\phi)_{(p, q)}=\frac{\sum_{\Sigma \in \Sigma(\phi)(p, q)} \chi(\Sigma)}{\chi(F)}$.

Definitions

- Polynomial pair: $p(\phi)(x, y)=\left(p_{1}(\phi)(x, y), p_{2}(\phi)(x, y)\right)$

$$
=\sum_{(p, q) \in \mathbb{Q}^{2}}(p, q) \lambda(\phi)_{(p, q)} x^{p} y^{q} ;
$$

Definitions

- Polynomial pair: $p(\phi)(x, y)=\left(p_{1}(\phi)(x, y), p_{2}(\phi)(x, y)\right)$

$$
=\sum_{(p, q) \in \mathbb{Q}^{2}}(p, q) \lambda(\phi)_{(p, q)} x^{p} y^{q} ;
$$

- $p(x, y)$ is projectively equal to $q(x, y)(p(x, y) \stackrel{p}{=} q(x, y))$ if $p_{1}(x, y)=q_{1}(x, y), p_{2}(x, y)=q_{2}(x, y)$ or $p_{1}(x, y)=q_{2}(y, x), p_{2}(x, y)=q_{1}(y, x)$;

Definitions

- Polynomial pair: $p(\phi)(x, y)=\left(p_{1}(\phi)(x, y), p_{2}(\phi)(x, y)\right)$

$$
=\sum_{(p, q) \in \mathbb{Q}^{2}}(p, q) \lambda(\phi)_{(p, q)} x^{p} y^{q} ;
$$

- $p(x, y)$ is projectively equal to $q(x, y)(p(x, y) \stackrel{p}{=} q(x, y))$ if $p_{1}(x, y)=q_{1}(x, y), p_{2}(x, y)=q_{2}(x, y)$ or $p_{1}(x, y)=q_{2}(y, x), p_{2}(x, y)=q_{1}(y, x)$;
- $A(\phi)=\frac{1}{2} p(\phi)(1,1)$;

Definitions

- Polynomial pair: $p(\phi)(x, y)=\left(p_{1}(\phi)(x, y), p_{2}(\phi)(x, y)\right)$

$$
=\sum_{(p, q) \in \mathbb{Q}^{2}}(p, q) \lambda(\phi)_{(p, q)} x^{p} y^{q} ;
$$

- $p(x, y)$ is projectively equal to $q(x, y)(p(x, y) \stackrel{p}{=} q(x, y))$ if $p_{1}(x, y)=q_{1}(x, y), p_{2}(x, y)=q_{2}(x, y)$ or $p_{1}(x, y)=q_{2}(y, x), p_{2}(x, y)=q_{1}(y, x)$;
- $A(\phi)=\frac{1}{2} p(\phi)(1,1)$;
- $\left(p_{1}, p_{2}\right) \stackrel{p}{=}\left(q_{1}, q_{2}\right)$ if $\left(p_{1}, p_{2}\right)=\left(q_{1}, q_{2}\right)$ or $\left(p_{1}, p_{2}\right)=\left(q_{2}, q_{1}\right)$.

The Main Theorem

If two pseudo D-type automorphisms $\left(F_{1}, \phi_{1}\right),\left(F_{2}, \phi_{2}\right)$ are commensurable, then

$$
p\left(\phi_{1}\right)(x, y) \stackrel{p}{=} p\left(\phi_{2}\right)(x, y)
$$

and $A\left(\phi_{1}\right) \stackrel{p}{=} A\left(\phi_{2}\right)$.

Corollary

If two pseudo D-type automorphisms $\left(F_{1}, \phi_{1}\right),\left(F_{2}, \phi_{2}\right)$ are rational commensurable, then there is a rational number $s \in \mathbb{Q}_{+}$such that:

$$
p\left(\phi_{1}\right)(x, y) \stackrel{p}{=} s \times p\left(\phi_{2}\right)(x, y)
$$

and $A\left(\phi_{1}\right) \stackrel{p}{=} s \times A\left(\phi_{2}\right)$.

Outline

Commensurability Definition
Example

Criterion of Commensurability

Definitions
The Main Theorem
Corollary

Applications on Fiber Bundle Over Circle
A Question
Examples
Other Questions

A Question

- Whether a 3 manifold M has different structures of surface bundle over circle up to rational commensurability;

A Question

- Whether a 3 manifold M has different structures of surface bundle over circle up to rational commensurability;
- This means: if $M=F_{1} \times I / \phi_{1}=F_{2} \times I / \phi_{2}$, are $\left(F_{1}, \phi_{1}\right),\left(F_{2}, \phi_{2}\right)$ rational commensurable?

A Question

- Whether a 3 manifold M has different structures of surface bundle over circle up to rational commensurability;
- This means: if $M=F_{1} \times I / \phi_{1}=F_{2} \times I / \phi_{2}$, are $\left(F_{1}, \phi_{1}\right),\left(F_{2}, \phi_{2}\right)$ rational commensurable?
- In fact, we can construct infinite different structures of surface bundle over circle up to rational commensurability on some 3 manifold M.

Example 1

- M :

Example 1

- M :

- $f(1,0)=(1,0) f(0,1)=(-1,1)$;

$$
g(1,0)=(1,0) \quad g(0,1)=(1,1) .
$$

Example 1

- $\left(F_{1}, \phi_{1}\right)$

Example 1

- Another version of M :

Example 1

- $\left(F_{2}, \phi_{2}^{6}\right)$

Example 1

$$
\text { - } A\left(\phi_{1}\right)=(1,1), A\left(\phi_{2}\right)=\left(\frac{1}{9}, \frac{1}{6}\right) ;
$$

Example 1

- $A\left(\phi_{1}\right)=(1,1), A\left(\phi_{2}\right)=\left(\frac{1}{9}, \frac{1}{6}\right)$;
- So $\left(F_{1}, \phi_{1}\right),\left(F_{2}, \phi_{2}\right)$ are not rational commensurable;

Example 1

- $A\left(\phi_{1}\right)=(1,1), A\left(\phi_{2}\right)=\left(\frac{1}{9}, \frac{1}{6}\right)$;
- So $\left(F_{1}, \phi_{1}\right),\left(F_{2}, \phi_{2}\right)$ are not rational commensurable;
- We can construct $\left(F_{n}, \phi_{n}\right)$ similarly, $A\left(\phi_{n}\right)=\left(\frac{1}{(n+1)^{2}}, \frac{1}{n(n+1)}\right)$;

Example 1

- $A\left(\phi_{1}\right)=(1,1), A\left(\phi_{2}\right)=\left(\frac{1}{9}, \frac{1}{6}\right)$;
- So (F_{1}, ϕ_{1}), (F_{2}, ϕ_{2}) are not rational commensurable;
- We can construct $\left(F_{n}, \phi_{n}\right)$ similarly, $A\left(\phi_{n}\right)=\left(\frac{1}{(n+1)^{2}}, \frac{1}{n(n+1)}\right)$;
- For any $i \neq j \in \mathbb{Z}_{+},\left(F_{i}, \phi_{i}\right),\left(F_{j}, \phi_{j}\right)$ are not rational commensurable.

Example 2

We can also construct $M=F_{1} \times I / \phi_{1}=F_{2} \times I / \phi_{2},\left(F_{1}, \phi_{1}\right),\left(F_{2}, \phi_{2}\right)$ are not rational commensurable, and $g\left(F_{1}\right)=g\left(F_{2}\right)$.

Other Questions

- All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when M is hyperbolic manifold;

Other Questions

- All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when M is hyperbolic manifold;
- $g\left(F_{1}\right)=g\left(F_{2}\right)$ is very big in the 2nd example, we don't know if there is any example when g is small, for example: $g=2$ or 3 ;

Other Questions

- All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when M is hyperbolic manifold;
- $g\left(F_{1}\right)=g\left(F_{2}\right)$ is very big in the 2nd example, we don't know if there is any example when g is small, for example: $g=2$ or 3;
- Whether there are infinite $\left(F_{i}, \phi_{i}\right)$, such that $M=F_{i} \times I / \phi_{i}$, and there is an integer $g=g\left(F_{i}\right), i=1,2, \ldots$ and for any $i \neq j \in \mathbb{Z}_{+}$, (F_{i}, ϕ_{i}) and (F_{j}, ϕ_{j}) are not rational commensurable;

Other Questions

- All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when M is hyperbolic manifold;
- $g\left(F_{1}\right)=g\left(F_{2}\right)$ is very big in the 2nd example, we don't know if there is any example when g is small, for example: $g=2$ or 3;
- Whether there are infinite $\left(F_{i}, \phi_{i}\right)$, such that $M=F_{i} \times I / \phi_{i}$, and there is an integer $g=g\left(F_{i}\right), i=1,2, \ldots$ and for any $i \neq j \in \mathbb{Z}_{+}$, (F_{i}, ϕ_{i}) and (F_{j}, ϕ_{j}) are not rational commensurable;
- If we restrict: $M=F_{1} \times I / \phi_{1}=F_{2} \times I / \phi_{2}$ and $g=g\left(F_{1}\right)=g\left(F_{2}\right)$ is the smallest integer satisfies $M=F \times I / \phi$ and $g(F)=g$, whether (F_{1}, ϕ_{1}), $\left(F_{2}, \phi_{2}\right)$ are rational commensurable;

Other Questions

- All the 3 manifolds we construct are graph manifolds, we don't know whether the questions hold when M is hyperbolic manifold;
- $g\left(F_{1}\right)=g\left(F_{2}\right)$ is very big in the 2nd example, we don't know if there is any example when g is small, for example: $g=2$ or 3;
- Whether there are infinite $\left(F_{i}, \phi_{i}\right)$, such that $M=F_{i} \times I / \phi_{i}$, and there is an integer $g=g\left(F_{i}\right), i=1,2, \ldots$ and for any $i \neq j \in \mathbb{Z}_{+}$, (F_{i}, ϕ_{i}) and (F_{j}, ϕ_{j}) are not rational commensurable;
- If we restrict: $M=F_{1} \times I / \phi_{1}=F_{2} \times I / \phi_{2}$ and $g=g\left(F_{1}\right)=g\left(F_{2}\right)$ is the smallest integer satisfies $M=F \times I / \phi$ and $g(F)=g$, whether $\left(F_{1}, \phi_{1}\right),\left(F_{2}, \phi_{2}\right)$ are rational commensurable;
- If $M=F_{1} \times I / \phi_{1}=F_{2} \times I / \phi_{2}$, then is there any explicit relation between $\left(F_{1}, \phi_{1}\right),\left(F_{2}, \phi_{2}\right)$?

Thank You!

