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16. Test for non-additivity; 3 factor designs

Sometimes we can make only one observation per cell

( = 1). Then all 1 − ̄ = 0, so  = 0 on

( − 1) = 0 d.f. The interaction SS, which for

 = 1 is X


³
 − ̄ − ̄ + ̄

´2
 (*)

is what we should be using to estimate experimental

error. There is still however a way to test for inter-

actions, if we assume that they take a simple form:

() = 

We carry out ‘Tukey’s one d.f. test for interaction’,

which is an application of the usual ‘reduction in SS’

hypothesis testing principle. Our ‘full’ model is

 = +  +  +  + 

Under the null hypothesis 0:  = 0 of no interac-

tions, the ‘reduced’ model is

 = +  +  + 
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in which the minimum SS (i.e. ) is (*) above.

One computes

0 =
 − 

()
∼  1(−1)(−1)−1

The difference

 =  − 

is called the ‘SS for non-additivity’, and uses 1 d.f. to

estimate the one parameter . The ANOVA becomes

Source SS df MS

A  − 1  =

−1

B  − 1  =

−1

N  1  =

1

Error 
(−1)(−1)

−1  =


()

Total  − 1

The error SS is . To obtain it one has to

minimizeX


³
 −

h
+  +  + 

i´2
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After a calculation it turns out that

 =

nP

 ̄̄ − ̄
³
 +  + ̄2

´o2
 · 



Then  is obtained by subtraction:  = −
 .

An R function to calculate this, and carry out the F-

test, is at “R commands for Tukey’s 1 df test” on the

course web site.

Example. For the experiment at Example 5.2 of the

text there are  = 3 levels of temperature and  = 5

of pressure; response is  = impurities in a chemical

product.

> h <- tukey.1df(y,temp,press)

SS df MS F0 p

A 23.333 2 11.667 42.949 1e-04

B 11.6 4 2.9 10.676 0.0042

N 0.099 1 0.099 0.363 0.566

Err 1.901 7 0.272

Tot 36.933 14
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A 3 factor example. Softdrink bottlers must maintain

targets for fill heights, and any variation is a cause for

concern. The deviation from the target (Y) is affected

by %carbonation (A), pressure in the filler (B), line

speed (C). These are set at  = 3  = 2  = 2

levels respectively, with  = 2 observations at each

combination ( =  = 24 runs, in random order).

y carbon press speed

1 -3 10 25 200

2 -1 10 25 200

3 0 12 25 200

4 1 12 25 200

5 5 14 25 200

6 4 14 25 200

....

19 1 10 30 250

20 1 10 30 250

21 6 12 30 250

22 5 12 30 250

23 10 14 30 250

24 11 14 30 250
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> plot.design(data)

> interaction.plot(carbon,press,y)

> interaction.plot(carbon,speed,y)

> interaction.plot(press,speed,y)
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Full 3 factor model:

 = +  +  +  + () + () + ()

+() + 

> g <- lm(y ~carbon + press + speed + carbon*press

+ carbon*speed + press*speed + carbon*press*speed)

> anova(g)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

C 2 252.750 126.375 178.4118 1.186e-09

P 1 45.375 45.375 64.0588 3.742e-06

S 1 22.042 22.042 31.1176 0.0001202

C:P 2 5.250 2.625 3.7059 0.0558081

C:S 2 0.583 0.292 0.4118 0.6714939

P:S 1 1.042 1.042 1.4706 0.2485867

C:P:S 2 1.083 0.542 0.7647 0.4868711

Resid 12 8.500 0.708
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It seems that interactions are largely absent, and that

all three main effects are significant. In particular, the

low level of pressure results in smaller mean deviations

from the target. A CI on 2 − 1 =  [̄2 − ̄1] is

( = 05)

̄2 − ̄1 ± 212

s


µ
1

12
+
1

12

¶

= 175− 45± 21788
s
708

6
= −275± 75

or [−35−2].
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17. 22 factorials

• We’ll start with a basic 22 design, where it is easy
to see what is going on. Also, these are very

widely used in industrial experiments.

• Two factors (A and B), each at 2 levels - low

(‘−’) and high (‘+’). # of replicates = .

• Example - investigate yield () of a chemical process
when the concentration of a reactant (the primary

substance producing the yield) - factor A - and

amount of a catalyst (to speed up the reaction)

- factor B - are changed. E.g. nickel is used as

a ‘catalyst’, or a carrier of hydrogen in the hy-

drogenation of oils (the reactants) for use in the

manufacture of margarine.

Factor  = 3 replicates

     Total Label

− − 28 25 27 80 = (1)

+ − 36 32 32 100 = 

− + 18 19 23 60 = 

+ + 31 30 29 90 = 
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• Notation

(1) = sum of obs’ns at low levels of both factors,

 = sum of obs’ns with A high and B low,

 = sum of obs’ns with B high and A low,

 = sum of obs’ns with both high.

• Effects model. Use a more suggestive notation:

 = +++()+ (  = 1 2  = 1  )

• E.g. 1 = main effect of low level of A, 2 =

main effect of high level of A. But since 1 +

2 = 0, we have 1 = −2.

• We define the ‘main effect of Factor A’ to be

 = 2 −1
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• What is the LSE of ? Since  is the effect of

changing factor A from high to low, we expect

̂ = average  at high A - average  at low A

=
+ 

2
− (1) + 

2

=
+ − (1)− 

2


This is the LSE.

Reason: We know that the LSE of 2 is

̂2 = average  at high − overall average 
and that of 1 is

̂1 = average  at low − overall average 
so that

̂ = ̂2 − ̂1

= average  at high A - average  at low A.
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• Often the ‘hats’ are omitted (as in the text). Sim-
ilarly,

 =
+ − − (1)

2
 = difference between effect of A at high B,

and effect of A at low B

=
− 

2
− − (1)

2

=
− − + (1)

2


With (1) = 80  = 100  = 60  = 90 we find

 = 833

 = −50
 = 167

• It appears that increasing the level of A results in
an increase in yield; that the opposite is true of

B, and that there isn’t much interaction effect.

To confirm this we would do an ANOVA.
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> A <- c(-1, 1, -1,1)

> B <- c(-1, -1, 1, 1)

> I <- c(28, 36, 18, 31)

> II <- c(25, 32, 19, 30)

> III <- c(27, 32, 23, 29)

>

> data <- data.frame(A, B, I, II, III)

> data

A B I II III

1 -1 -1 28 25 27

2 1 -1 26 32 32

3 -1 1 18 19 23

4 1 1 31 30 29

# compute sums for each combination

> sums <- apply(data[,3:5], 1, sum)

> names(sums) <- c("(1)", "(a)", "(b)", "(ab)")

> sums

(1) (a) (b) (ab)

80 100 60 90
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# Interaction plots

> ybar <- sums/3

> par(mfrow=c(1,2))

> interaction.plot(A, B, ybar)

> interaction.plot(B, A, ybar)

# Build ANOVA table

> y <- c(I, II, III)

> factorA <- as.factor(rep(A,3))

> factorB <- as.factor(rep(B,3))

> g <- lm(y ~factorA + factorB + factorA*factorB)

> anova(g)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

factorA 1 208.333 208.333 53.1915 8.444e-05

factorB 1 75.000 75.000 19.1489 0.002362

AB 1 8.333 8.333 2.1277 0.182776

Residuals 8 31.333 3.917
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Contrasts. The estimates of the effects have used

only the terms    and (1), each of which is the

sum of  = 3 independent terms. Then

 =
+ − − (1)

2
=



2


 =
− + − (1)

2
=



2


 =
− − + (1)

2
=



2


where  are orthogonal contracts (why?)

in    and (1). In our previous notation, the SS

for Factor A (we might have written it as 
P
̂2 ) is

 = 2
³
̂21 + ̂22

´
= 4̂22 = 2 =

2
4



and similarly

 =
2
4

  =
2
4



 =  −  −  − 

In this way  = [90 + 100− 60− 80]2 12 = 20833.




