16. Test for non-additivity; 3 factor designs

Sometimes we can make only one observation per cell ($n=1$). Then all $y_{i j 1}-\bar{y}_{i j}=0$, so $S S_{E}=0$ on $a b(n-1)=0$ d.f. The interaction SS, which for $n=1$ is

$$
\begin{equation*}
\sum_{i, j}\left(y_{i j}-\bar{y}_{i .}-\bar{y}_{. j}+\bar{y}_{. .}\right)^{2} \tag{*}
\end{equation*}
$$

is what we should be using to estimate experimental error. There is still however a way to test for interactions, if we assume that they take a simple form:

$$
(\tau \beta)_{i j}=\gamma \tau_{i} \beta_{j}
$$

We carry out 'Tukey's one d.f. test for interaction', which is an application of the usual 'reduction in SS' hypothesis testing principle. Our 'full' model is

$$
y_{i j}=\mu+\tau_{i}+\beta_{j}+\gamma \tau_{i} \beta_{j}+\varepsilon_{i j}
$$

Under the null hypothesis $H_{0}: \gamma=0$ of no interactions, the 'reduced' model is

$$
y_{i j}=\mu+\tau_{i}+\beta_{j}+\varepsilon_{i j}
$$

in which the minimum SS (i.e. $S S_{R e d}$) is $\left(^{*}\right)$ above. One computes

$$
F_{0}=\frac{S S_{R e d}-S S_{F u l l}}{M S_{E}(F u l l)} \sim F_{(a-1)(b-1)-1}^{1}
$$

The difference

$$
S S_{N}=S S_{R e d}-S S_{F u l l}
$$

is called the 'SS for non-additivity', and uses 1 d.f. to estimate the one parameter γ. The ANOVA becomes

Source	SS	df	MS
A	$S S_{A}$	$a-1$	$M S_{A}=\frac{S S_{A}}{a-1}$
B	$S S_{B}$	$b-1$	$M S_{B}=\frac{S S_{B}}{b-1}$
N	$S S_{N}$	1	$M S_{N}=\frac{S S_{N}}{1}$
Error	$S S_{E}$	$(a-1)(b-1)$	$M S_{E}=\frac{S S_{E}}{d f(E r r)}$
Total	$S S_{T}$	$a b-1$	

The error SS is $S S_{\text {Full }}$. To obtain it one has to minimize

$$
\sum_{i, j}\left(y_{i j}-\left[\mu+\tau_{i}+\beta_{j}+\gamma \tau_{i} \beta_{j}\right]\right)^{2}
$$

After a calculation it turns out that
$S S_{N}=\frac{a b\left\{\sum_{i, j} y_{i j} \bar{y}_{i .} \bar{y}_{. j}-\bar{y}_{. .}\left(S S_{A}+S S_{B}+a b \bar{y}_{. .}^{2}\right)\right\}^{2}}{S S_{A} \cdot S S_{B}}$.
Then $S S_{E}$ is obtained by subtraction: $S S_{E}=S S_{\text {Red }}{ }^{-}$ $S S_{N}$.

An R function to calculate this, and carry out the F test, is at " R commands for Tukey's 1 df test" on the course web site.

Example. For the experiment at Example 5.2 of the text there are $a=3$ levels of temperature and $b=5$ of pressure; response is $Y=$ impurities in a chemical product.
> h <- tukey.1df(y,temp, press)
SS df MS F0 p

A $23.333211 .667 \quad 42.9491 \mathrm{e}-04$
$\begin{array}{llllll}\text { B } & 11.6 & 4 & 2.9 & 10.676 & 0.0042\end{array}$
$\begin{array}{llllll}\text { N } & 0.099 & 1 & 0.099 & 0.363 & 0.566\end{array}$
Err 1.90170 .272
Tot 36.93314

A 3 factor example. Softdrink bottlers must maintain targets for fill heights, and any variation is a cause for concern. The deviation from the target (Y) is affected by \%carbonation (A), pressure in the filler (B), line speed (C). These are set at $a=3, b=2, c=2$ levels respectively, with $n=2$ observations at each combination ($N=n a b c=24$ runs, in random order).

	y carbon			
1	-3	10	25	200
2	-1	10	25	200
3	0	12	25	200
4	1	12	25	200
5	5	14	25	200
6	4	14	25	200
		\ldots		
19	1	10	30	250
20	1	10	30	250
21	6	12	30	250
22	5	12	30	250
23	10	14	30	250
24	11	14	30	250

> plot.design(data)
 > interaction.plot(carbon, press,y)
 > interaction.plot(carbon, speed,y)
 > interaction.plot(press,speed,y)

Fig. 5.5.

Full 3 factor model:

$$
\begin{aligned}
y_{i j k l}= & \mu+\tau_{i}+\beta_{j}+\gamma_{k}+(\tau \beta)_{i j}+(\tau \gamma)_{i k}+(\beta \gamma)_{j k} \\
& +(\tau \beta \gamma)_{i j k}+\varepsilon_{i j k l}
\end{aligned}
$$

$>\mathrm{g}<-\operatorname{lm}(\mathrm{y}$ ~carbon + press + speed + carbon*press

+ carbon*speed + press*speed + carbon*press*speed)
$>$ anova(g)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
C $\quad 2252.750126 .375178 .41181 .186 \mathrm{e}-09$
$\begin{array}{llllll}\mathrm{P} & 1 & 45.375 & 45.375 & 64.0588 & 3.742 \mathrm{e}-06\end{array}$
$\begin{array}{llllll}\mathrm{S} & 1 & 22.042 \quad 22.042 & 31.1176 & 0.0001202\end{array}$
$\begin{array}{llllll}\mathrm{C}: \mathrm{P} & 2 & 5.250 & 2.625 & 3.7059 & 0.0558081\end{array}$
$\begin{array}{llllll}C: S & 2 & 0.583 & 0.292 & 0.4118 & 0.6714939\end{array}$
$\begin{array}{llllll}\text { P:S } & 1 & 1.042 & 1.042 & 1.4706 & 0.2485867\end{array}$
C:P:S $2 \quad 1.083 \quad 0.542 \quad 0.7647 \quad 0.4868711$
Resid $128.500 \quad 0.708$

It seems that interactions are largely absent, and that all three main effects are significant. In particular, the low level of pressure results in smaller mean deviations from the target. ACI on $\beta_{2}-\beta_{1}=E\left[\bar{y}_{\text {.2. }}-\bar{y}_{.1}\right.$.] is ($\alpha=.05$)

$$
\begin{aligned}
& \bar{y}_{.2 .}-\bar{y}_{.1 .} \pm t_{\alpha / 2,12} \sqrt{M S_{E}\left(\frac{1}{12}+\frac{1}{12}\right)} \\
= & 1.75-4.5 \pm 2.1788 \sqrt{\frac{.708}{6}} \\
= & -2.75 \pm .75
\end{aligned}
$$

or $[-3.5,-2]$.

17. 2^{2} factorials

- We'll start with a basic 2^{2} design, where it is easy to see what is going on. Also, these are very widely used in industrial experiments.
- Two factors (A and B), each at 2 levels - low (' - ') and high (' + '). $\#$ of replicates $=n$.
- Example - investigate yield (y) of a chemical process when the concentration of a reactant (the primary substance producing the yield) - factor A - and amount of a catalyst (to speed up the reaction) - factor B - are changed. E.g. nickel is used as a 'catalyst', or a carrier of hydrogen in the hydrogenation of oils (the reactants) for use in the manufacture of margarine.

Factor						
A	$n=3$ replicates					
A	I	$I I$	$I I I$	Total	Label	
-	-	28	25	27	$80=$	(1)
+	-	36	32	32	$100=$	a
-	+	18	19	23	$60=$	b
+	+	31	30	29	$90=$	$a b$

- Notation
$(1)=$ sum of obs'ns at low levels of both factors, $a=$ sum of obs'ns with A high and B low, $b=$ sum of obs'ns with B high and A low, $a b=$ sum of obs'ns with both high.
- Effects model. Use a more suggestive notation:

$$
y_{i j k}=\mu+A_{i}+B_{j}+(A B)_{i j}+\varepsilon_{i j k}(i, j=1,2, k=1, \ldots, n)
$$

- E.g. $A_{1}=$ main effect of low level of $\mathrm{A}, A_{2}=$ main effect of high level of A . But since $A_{1}+$ $A_{2}=0$, we have $A_{1}=-A_{2}$.
- We define the 'main effect of Factor A ' to be

$$
A=A_{2}-A_{1}
$$

- What is the LSE of A ? Since A is the effect of changing factor A from high to low, we expect
$\hat{A}=$ average y at high A - average y at low A
$=\frac{a+a b}{2 n}-\frac{(1)+b}{2 n}$
$=\frac{a+a b-(1)-b}{2 n}$.

This is the LSE.
Reason: We know that the LSE of A_{2} is

$$
\hat{A}_{2}=\text { average } y \text { at high } A-\text { overall average } y
$$

and that of A_{1} is

$$
\hat{A}_{1}=\text { average } y \text { at low } A-\text { overall average } y
$$

so that

$$
\hat{A}=\hat{A}_{2}-\hat{A}_{1}
$$

$=$ average y at high A - average y at low A .

- Often the 'hats' are omitted (as in the text). Similarly,

$$
B=\frac{b+a b-a-(1)}{2 n}
$$

$A B=$ difference between effect of A at high B , and effect of A at low B

$$
\begin{aligned}
& =\frac{a b-b}{2 n}-\frac{a-(1)}{2 n} \\
& =\frac{a b-b-a+(1)}{2 n}
\end{aligned}
$$

With $(1)=80, a=100, b=60, a b=90$ we find

$$
\begin{aligned}
A & =8.33 \\
B & =-5.0 \\
A B & =1.67
\end{aligned}
$$

- It appears that increasing the level of A results in an increase in yield; that the opposite is true of B, and that there isn't much interaction effect. To confirm this we would do an ANOVA.

```
> A <- c(-1, 1, -1,1)
> B <- c(-1, -1, 1, 1)
> I <- c(28, 36, 18, 31)
> II <- c(25, 32, 19, 30)
> III <- c(27, 32, 23, 29)
>
> data <- data.frame(A, B, I, II, III)
> data
\begin{tabular}{rrrrrr} 
& A & B & I & II & III \\
1 & -1 & -1 & 28 & 25 & 27 \\
2 & 1 & -1 & 26 & 32 & 32 \\
3 & -1 & 1 & 18 & 19 & 23 \\
4 & 1 & 1 & 31 & 30 & 29
\end{tabular}
```

\# compute sums for each combination
> sums <- apply(data[,3:5], 1, sum)
> names(sums) <- c("(1)", "(a)", "(b)", "(ab)")
> sums
(1) (a)
(b) (ab)
$80 \quad 100 \quad 60 \quad 90$
\# Interaction plots
> ybar <- sums/3
> par(mfrow=c $(1,2)$)
> interaction.plot(A, B, ybar)
> interaction.plot(B, A, ybar)
\# Build ANOVA table
$>y<-c(I, I I, I I I)$
$>$ factorA <- as.factor (rep(A,3))
$>$ factorB <- as.factor (rep(B,3))
$>\mathrm{g}<-\operatorname{lm}(\mathrm{y}$ ~factorA + factorB + factorA*factorB)
$>$ anova (g)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
factorA $1208.333208 .33353 .19158 .444 \mathrm{e}-05$
factorB $175.000 \quad 75.00019 .1489 \quad 0.002362$
$\begin{array}{llllll}\mathrm{AB} & 1 & 8.333 & 8.333 & 2.1277 & 0.182776\end{array}$
Residuals $8 \quad 31.333 \quad 3.917$

Fig. 6.1

Fig. 6.2

Contrasts. The estimates of the effects have used only the terms $a b, a, b$ and (1), each of which is the sum of $n=3$ independent terms. Then

$$
\begin{gathered}
A=\frac{a b+a-b-(1)}{2 n}=\frac{C_{A}}{2 n} \\
B=\frac{a b-a+b-(1)}{2 n}=\frac{C_{B}}{2 n} \\
A B=\frac{a b-a-b+(1)}{2 n}=\frac{C_{A B}}{2 n}
\end{gathered}
$$

where $C_{A}, C_{B}, C_{A B}$ are orthogonal contracts (why?) in $a b, a, b$ and (1). In our previous notation, the SS for Factor A (we might have written it as $b n \sum \hat{A}_{i}^{2}$) is

$$
\begin{aligned}
S S_{A}= & 2 n\left(\hat{A}_{1}^{2}+\hat{A}_{2}^{2}\right)=4 n \hat{A}_{2}^{2}=n A^{2}=\frac{C_{A}^{2}}{4 n} \\
& \quad \text { and similarly } \\
S S_{B}= & \frac{C_{B}^{2}}{4 n}, S S_{A B}=\frac{C_{A B}^{2}}{4 n} \\
S S_{E}= & S S_{T}-S S_{A}-S S_{B}-S S_{A B}
\end{aligned}
$$

In this way $S S_{A}=[90+100-60-80]^{2} / 12=208.33$.

