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ABSTRACT

Abstract— Additive smooth Fano varieties show very useful arithmetic properties
[Hassett and Tschinkel, 1999]. Although such varieties are hard to construct, a crite-
rion from toric geometry may be used to this effect [Arzhantsev and Romaskevich, 2017].
Their classification has been completed up to dimension 3 through geometric means
[Huang and Montero, 2020], but not for higher dimensions, due to clear theoretical limita-
tions. There’s another recent criterion to decide whether an additive action on a variety is
unique (modulo isomorphism to a normalised action) or not [Dzhunusov, 2022]. Both criteria
are combinatorial in essence, and lend themselves to an algorithmic approach to classifying
these varieties in the toric case.

We will design and implement these algorithms to classify these varieties for any dimen-
sion. We will also present a package that includes these functionalities in Macaulay2, a
computational algebraic geometry software system [Grayson et al., 1993].

Keywords— Additive varieties; Toric varieties; Algebraic geometry; Polytopes; Macaulay2.

RESUMEN

Resumen— Las variedades de Fano suaves y aditivas poseen propiedades aritméticas muy deseables
[Hassett and Tschinkel, 1999]. Si bien son difíciles de construir, existen criterios para hacerlo usando
geometría tórica [Arzhantsev and Romaskevich, 2017]. La clasificación de estas variedades porméto-
dos geométricos ha sido completada hasta dimensión 3 [Huang and Montero, 2020], pero no en di-
mensiones superiores, debido a las limitaciones de los métodos teóricos. Existe otro criterio reciente
que permite decidir si una acción aditiva sobre una variedad es única (módulo isomorfismo con una
acción normalizada) o no [Dzhunusov, 2022]. Ambos criterios son, en esencia, combinatorios, y per-
miten diseñar algoritmos para obtener esta clasificación en el caso tórico.

Diseñaremos e implementaremos estos algoritmos para clasificar estas variedades en dimensión
arbitraria. También presentaremos una extensión que incluye estas funcionalidades en el paquete
de geometría algebraica computacional Macaulay2 [Grayson et al., 1993].

Palabras clave— Variedades aditivas; Variedades tóricas; Geometría algebraica; Polítopos;
Macaulay2.
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A COMPUTATIONAL APPROACH TO CLASSIFICATION OF ADDITIVE SMOOTH FANO POLYTOPES

INTRODUCTION

LetK be an algebraically closed field,Ga = (K,+) its additive group, andX an irreducible algebraic
variety of dimension n overK. An additive action is an effective regular action of the commutative
unipotent groupGn

a onX with an open orbit. We sayX is additive if it admits an additive action.

LetX be a complete normal variety. We sayX is Gorenstein Fano is the anticanonical divisor −KX

is Cartier and ample. We sayX is smooth Fano if it is Gorenstein Fano and smooth.

Toric geometry provides methods to construct algebraic varieties from combinatorial objects, specif-
ically cones and polytopes. There is a correspondence between isomorphism classes of projective
(resp., smooth Fano) toric varieties and very ample (resp., smooth Fano) polytopes, and only finitely
many such classes of smooth Fano polytopes.

Additive smooth Fano varieties, introduced by [Hassett and Tschinkel, 1999], show very
useful arithmetic properties. Additive smooth Fano polytopes have been classified by
[Huang and Montero, 2020] up to dimension 3, but not for higher dimensions, due to clear
theoretical limitations. Recent results by [Arzhantsev and Romaskevich, 2017], [Dzhunusov, 2022]
provide criteria for existence and uniqueness of additive actions on (complete) projective toric
varieties, which are combinatorial in essence, and lend themselves to an algorithmic approach to
classifying these varieties.

In section 2, we give a brief (but sufficient) introduction to toric geometry, polytope theory, the clas-
sification of smooth Fano polytopes, and additive actions on smooth Fano varieties.

In section 3, we useweb-scraping on theGraded Ring Database (GRDB) to obtain a database (provided
by [Øbro, 2007]) of all smooth Fano polytopes of dimensions 2 to 6. We describe an algorithm to
obtain the edges of a polytope that contain a given vertex. Then, we describe algorithms that solve
the decision problem of existence and uniqueness of additive actions on (complete) projective toric
varieties. We give our results and analyse them qualitatively. Finally, we present a new Macaulay2
package which includes some of these functionalities.

Last, but not least, in section 4, we validate our results by matching them with existing classifications
in the literature. We also study the rational cohomology of smooth Fano toric varieties.
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A COMPUTATIONAL APPROACH TO CLASSIFICATION OF ADDITIVE SMOOTH FANO POLYTOPES

SECTION 1
PROBLEM STATEMENT

The asymptotic distribution of rational solutions to polynomial equations is a topic that has been
extensively studied in number theory and geometry. Historically, early approaches date back to Dio-
phantus of Alexandria (3th century B. C.) in antiquity. More recently, and being intentionally vague,
in the spirit of painting the big picture, problems of this class have lent themselves to the same kind
of heavy geometric machinery that has been used to prove statements as famous as Fermat’s last
theorem.

Important developments in the area were pioneered by [Chambert-Loir and Tschinkel, 2002], which
led to the discovery of a class of geometric objects with excellent arithmetic properties: additive
smooth Fano varieties [Hassett and Tschinkel, 1999]. However, as the very authors observe, these
are, in general, very difficult to construct. More recently, [Arzhantsev and Romaskevich, 2017] give a
criterion to construct these geometric objects using the methods of toric geometry.

Toric geometry is concerned with the study of toric varieties (in technical terms, algebraic varieties
that contain an algebraic torus as a dense open subset), and is a great source of examples, models,
and perspectives with which to test many general theories and study objects showing up in other
areas of mathematics [Brasselet, 2001]. On the same lines, toric geometry is one of the main bridges
joining algebraic geometry and combinatorics. Here, the study of polytopes and their points with
integer coordinates plays an especially relevant role. Indeed, there is a correspondence between
isomorphism classes of projective (resp., smooth Fano) toric varieties and very ample (resp., smooth
Fano) polytopes.

There are only finitely many classes of smooth Fano polytopes, which were obtained explicitly by
[Mori and Mukai, 2003] and [Batyrev, 1999] up to dimension 3 and 4, respectively, and later the SFP
algorithm was presented by [Øbro, 2007] to do so for any dimension. Using methods from algebraic
geometry, all classes of smooth Fano polytopes have been classified as additive and non-additive by
[Huang and Montero, 2020] up to dimension 3, but not for higher dimensions, due to clear theoretical
limitations.

Another criterion was introduced by [Dzhunusov, 2022] to determine whether an additive action on
a complete projective toric variety is unique (modulo isomorphism to a normalised action) or not.
Arzhantsev, Romaskevich and Dzhunusov’s criteria are combinatorial in essence, and lend themselves
to an algorithmic approach to computationally classify additive smooth Fano polytopes of any di-
mension. We are not aware of any heuristics that may be used to tell with ease whether a high-
dimensional smooth Fano polytope is (uniquely) additive or not, thus the associated decision prob-
lems are naturally of interest.

Among mathematical circles, it is commonplace to perform algebraic and geometric calculations in
Macaulay2, a “software system devoted to supporting research in algebraic geometry and commu-
tative algebra [...]” [Grayson et al., 1993] written in C/C++ that includes its own homonymous inter-
preted language. It is possible to propose new packages to be distributed on Macaulay2’s official
repository. Therefore, implementing the solutions to the present problem in this software system

Page 2 of 66



A COMPUTATIONAL APPROACH TO CLASSIFICATION OF ADDITIVE SMOOTH FANO POLYTOPES

may prove to be useful for the mathematical community at large.

The author and his thesis advisor hope that this work, a posteriori, helps with developing more in-
tuition about the geometry of additive smooth Fano varieties. Nowadays, due to the tiny number of
explicit examples, this intuition is scarce.

1.1 Objectives

1.1.1 General objectives

To design and implement algorithms that apply the criteria from [Arzhantsev and Romaskevich, 2017]
and [Dzhunusov, 2022] to classify additive smooth Fano toric varieties of any dimension, or up to
the highest feasible dimension, thus generalising theoretical classification results obtained for small
dimensions. Then, to follow guidelines indicated by [Grayson et al., 1993] to submit a new package
with these functionalities to Macaulay2, a computational algebraic geometry software system.

1.1.2 Specific objectives

1. To analyse and synthesise existing relevant literature on toric varieties and Fano varieties, and
to identify combinatorial aspects in the calculations needed for their classification.

2. To design algorithms that may be used to classify additive smooth Fano polytopes of any di-
mension, or up to the highest feasible dimension. This algorithmmust be able to systematically
replicate known results, and be able to classify new additive smooth Fano toric varieties of di-
mension 4 or higher.

3. To first implement these algorithms in any general-purpose programming language, and later
(at least the algorithm related to [Arzhantsev and Romaskevich, 2017]) according to the stan-
dards of Macaulay2, a computational algebraic geometry software system, in order to submit
a new package that may eventually be distributed on its official repository.

4. To classify new additive smooth Fano toric varieties of dimensions 4 to 6 using these imple-
mentations, as they are difficult to classify by theoretical means. To obtain, as a result, a list of
all additive smooth Fano polytopes of dimensions 4 to 6.
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A COMPUTATIONAL APPROACH TO CLASSIFICATION OF ADDITIVE SMOOTH FANO POLYTOPES

SECTION 2
PRELIMINARIES

2.1 A brief introduction to toric geometry

The natural starting point of this thesis is a short review of the basic theory of toric varieties, from
the construction in the affine case to the more general definition, with the only prerrequisite being a
basic knowledge of algebraic geometry. We follow [Brasselet, 2001].

The study of toric varieties lies in the intersection of combinatorics and algebraic geometry, and is
full of explicit back-and-forth interactions between the two. [Brasselet, 2001] quotes [Fulton, 1993]:
”Toric varieties provide a [...] way to see many examples and phenomena in algebraic geometry... [...
They] have provided a remarkably fertile testing ground for general theories.“ In particular, this thesis
is concerned with a specific type of (projective) toric varieties: those constructed from smooth Fano
polytopes.

Let N,M be dual lattices with associated vector spaces NR,MR of dimension n ∈ Z+. Let
{e1, . . . , en} ⊂ NR, {e∗1, . . . , e∗n} ⊂MR be bases ofN,M , respectively.

The construction of an affine toric variety consists of the steps represented in the following diagram
by the object which each produces:

σ → σ̃ → Sσ → Rσ → Xσ.

In order, the objects in the diagram are a cone σ ∈ MR, a dual cone σ̃ ∈ NR, a finitely generated
monoid Sσ, a finitely generated C-algebraRσ, and an affine algebraic varietyXσ.

We start by defining the cone and dual cone.

Definition 2.1.1. (Polyhedral cone generated by a set, zero cone) Let k ∈ Z+, A = {v1, . . . , vk} ⊂
NR be a finite set. The polyhedral cone generated by A is the set

σ := R+
0 v1 + · · ·+ R+

0 vk ⊂ NR.

If A = ∅, the zero cone (generated by A) is σ := {0} ⊂ NR.

Definition 2.1.2. (Lattice, rational, strongly convex cone, dimension) Let A ⊂ NR, and let σ ⊂ NR
be the polyhedral cone generated by A. Then:

i) We say σ is a lattice or rational cone if A ⊂ N .

ii) We say σ is a strongly convex cone if σ ∩ (−σ) = 0.

iii) The dimension of σ is
dim(σ) = min

N ′⊂NR linear subspace
σ⊂N ′

dim(N ′).
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A COMPUTATIONAL APPROACH TO CLASSIFICATION OF ADDITIVE SMOOTH FANO POLYTOPES

Definition 2.1.3. (Dual cone associated to a cone) Let σ ⊂ NR be a polyhedral cone. The dual cone
associated to σ is the set

σ̂ := {u ∈MR : ∀v ∈ σ, 〈u, v〉 ≥ 0}.

Proposition 2.1.4. ([Brasselet, 2001], Property 1.1) Let σ ⊂ NR be a lattice cone. Then, σ̂ ⊂ MR is
a lattice cone (with respect toM ).

Henceforth, all cones σ ⊂ NR, σ̂ ⊂ MR we consider are lattice (polyhedral) cones, and all cones
σ ⊂ NR we consider are also strictly convex.

Example 2.1.5. The following figure contains three examples of cones and their dual cones. Only
cones of maximal dimension are labelled.

Figure 1: Three examples of cones and their dual cones.

Page 5 of 66



A COMPUTATIONAL APPROACH TO CLASSIFICATION OF ADDITIVE SMOOTH FANO POLYTOPES

Given a cone, there is a natural way of obtaining subcones, which are an essential part of the theory.

Definition 2.1.6. (Face, edge) Let σ ⊂ NR be a cone. Then:

i) A face of σ is a subset τ ⊂ σ such that there exists λ ∈ σ̂ ∩M such that τ = σ ∩ λ⊥. In
particular, σ is a face of itself.

ii) An edge is a face of σ of dimension 1.

Proposition 2.1.7. ([Brasselet, 2001], Properties 1.2, 1.3, Remark 1.1) Let σ ⊂MR be a cone. Then:

i) Intersections of faces of σ are faces of σ, and faces of faces of σ are faces of σ.

ii) If λ ∈ σ̂ ∩M , and τ = σ ∩ λ⊥ ⊂ σ is a face of σ, then τ ⊂ NR is a cone, τ̂ = σ̂ + R+
0 (−λ),

and σ̂ ⊂ σ̂.

We now discuss about monoids; a specific one is the third object in our sequence of steps.

Definition 2.1.8. (Semigroup, monoid) Let (S,+) be a non-empty set S with a binary operation + :
S2 → S. Then:

i) S is a semigroup if+ is associative.

ii) S is amonoid if:

a) S is a semigroup.

b) + is commutative.

c) There exists a zero element 0 ∈ S (i. e., there exists an element 0 ∈ S such that for all
a ∈ S, a+ 0 = 0 + a = a).

d) Elements ofS satisfy the simplification law (i. e., for all a, b, c ∈ S such that a+c = b+c,
a = b).

Definition 2.1.9. (Finitely generatedmonoid) Let S be amonoid. S is finitely generated if there exist
k ∈ Z+, a1, . . . , ak ∈ S such that S = Z+

0 a1 + · · ·+ Z+
0 ak.

Remark 2.1.10. Let S be a finitely generated monoid. In general, there may exist two sets of gener-
ators which may be different, and may even have different cardinalities.

The following lemma will allow us to associate a finitely generated monoid to a cone.

Lemma 2.1.11. ([Brasselet, 2001], Lemma 1.3) (Gordon’s lemma) Let σ ⊂ NR be a cone. Then, the
monoid σ ∩N is finitely generated.

Definition 2.1.12. (Finitely generated monoid associated to a cone) Let σ ⊂ NR be a cone. The
finitely generated monoid associated to σ is

Sσ := σ̂ ∩M.

Remark 2.1.13. Let σ ⊂ NR be a cone. In general, a set of generators of σ̂ may not generate Sσ, as
σ̂ is generated by R+

0 linear combinations, and Sσ by Z+
0 linear combinations.
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Remark 2.1.14. Let σ ⊂ NR be a cone. If λ ∈ σ̂ ∩M , and τ = σ ∩ λ⊥ ⊂ σ is a face of σ, then
λ ∈ Sσ.

The following proposition is a direct consequence of Proposition 2.1.7, and will be used a bit later,
when we attempt to give a first definition of a general toric variety,

Proposition 2.1.15. ([Brasselet, 2001], Proposition 1.1) Let σ ⊂ NR be a cone, let λ ∈ Sσ, and let
τ = σ ∩ λ⊥ ⊂ σ be a face of σ. Then, Sτ = Sσ + Z+

0 (−λ).

We now define three classes of polynomials, the first of which will contain an algebra induced by the
monoid Sσ.

Definition 2.1.16. (Laurent polynomial, monomial, monic monomial)

i) A Laurent polynomial is an element of the ring

C[z, z−1] := C[z1, . . . , zn, z−1
1 , . . . , z−1

n ]

of polynomials p : C2n → C such that, for all i ∈ {1, . . . , n}, z1z−1
1 = 1.

ii) A Laurent monomial is a Laurent polynomial of the form λza := λza11 · · · zann , λ ∈ C∗, a =
(a1, . . . , an) ∈ N .

iii) AMonic Laurent monomial is a Laurent monomial such that λ = 1. Monic Laurent monomials
form a multiplicative group, which we will write C[z, z−1]monic.

Proposition 2.1.17. There exists a group isomorphism

ϕ : (M,+)→ (C[z, z−1]monic, ·)
a = (a1, . . . , an) 7→ za = za11 · · · z

an
n .

Definition 2.1.18. (Support) Let p(z, z−1) =
∑r

i=1 λiz
ai ∈ C[z, z−1], r ∈ Z+, λi ∈ C∗, ai ∈ M be

a Laurent polynomial. The support of p is

supp(p) := {a1, . . . , ar}.

Lemma 2.1.19. ([Brasselet, 2001], Proposition 2.1) Let σ ⊂ NR be a cone. Then, the ring {p ∈
C[z, z−1] : supp(p) ⊂ Sσ} is a finitely generated C-algebra.

We are now ready to define the coordinate ring of the affine algebraic variety resulting from our
construction.

Definition 2.1.20. (Finitely generated C-algebra associated to a cone) Let σ ⊂ NR be a cone. The
finitely generated C-algebra associated to σ is

Rσ := {p ∈ C[z, z−1] : supp(p) ⊂ Sσ}.

Reminder 2.1.21. (Algebraic geometry) Let R be a (commutative) finitely generated C-algebra. If
we choose generators of R, then there exist k ∈ Z+ and an ideal I ⊂ C[z] := C[z1, . . . , zk] such
thatR ∼= C[z]/I (as finitely generated C-algebras), and Spec(R) ∼= Spec(C[z]/I) ∼= V (I) ⊂ Ck (as
topological spaces with the Zariski topology). If we choose different generators of R, then we may
also have different k′ ∈ Z+ and I ′ ⊂ C[z] := C[z1, . . . , zk′ ], but we nonetheless have Spec(R) ∼=
V (I) ∼= V (I ′).
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Definition 2.1.22. (Affine toric variety associated to a cone) Let σ ⊂ NR be a cone. The affine toric
variety associated to σ is the affine algebraic variety

Xσ := Spec(Rσ).

The following (admittedly lengthy) theorem clarifies the steps necessary to realise the above defini-
tion in an affine space, and offers a less abstract approach to the latter part of this construction.

Theorem2.1.23. ([Brasselet, 2001], Theorem2.2) (Explicit construction of an affine toric variety) Let
σ ⊂ NR be a cone, and let A = (a1, . . . , ak) ⊂ Sσ, ai = (ai,1, . . . , ai,n) ∈ Sσ be a set of generators
of Sσ. For each i ∈ {1, . . . , k}, we write ui = ϕ(ai) = zai = z

ai,1
1 · · · zai,nn ∈ C[z, z−1]monic, where

ϕ is as in Proposition 2.1.17.

We choose generators of Rσ and calculate the ideal I ⊂ C[z] := C[z1, . . . , zk] such that Rσ
∼=

C[z]/I . To do this, note that there is a finite number r ∈ Z+ of relations between elements of A of
the following form, for each j ∈ {1, . . . , r}:

Rj :

k∑
i=1

αj,iai =

k∑
i=1

βj,iai, αj,i, βj,i ∈ Z+
0 .

Applying ϕ to both sides, we get a binomial relation in C[z, z−1]monic:

ϕ(Rj) :
k∏

i=1

u
αj,i

i =
k∏

i=1

u
βj,i

i .

Finally, we have I =
∑r

j=1C[z](
∏k

i=1 z
αj,i

i −
∏k

i=1 z
βj,i

i ) ⊂ C[z], and Xσ = Spec(Rσ) ∼= V (I) ⊂
Ck.

Example 2.1.24. ([Brasselet, 2001], Example 2.2) (Construction of the algebraic torus) The simplest
example of the construction above is (as we will see) the namesake of the theory. If σ = {0} ⊂ MR,
then σ̂ = NR (see Figure 1, i).

As in the figure, A = (a1, . . . , a2n) = (e∗1, . . . , e
∗
n,−e∗1, . . . ,−e∗n) ⊂ Sσ is a set of generators of

Sσ. For each i ∈ {1, . . . , 2n}, we write ui = zi ∈ C[z, z−1]monic, if i ≤ n, and ui = z−1
i−n ∈

C[z, z−1]monic, if i > n.

We choose generators of Rσ and calculate the ideal I ⊂ C[z] := C[z1, . . . , z2n] such that Rσ
∼=

C[z]/I . There are n relations between elements of A, for each j ∈ {1, . . . , n}:

Rj : aj + an+j = 0.

Applying ϕ to both sides, we get a binomial relation in C[z, z−1]monic:

ϕ(Rj) : ujun+j = 1.
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We have I =
∑n

j=1C[z](zjzn+j − 1) ⊂ C[z], and Xσ = Spec(Rσ) ∼= {z = (z1, . . . , z2n) ∈ C2n :
∀j ∈ {1, . . . , n} : zjzn+j = 1}. In particular, if n = 1, we have that Xσ is represented by the
(complex) equilateral hyperbola. Also note thatXσ is homeomorphic to (C∗)n.

We may instead choose A = (a1, . . . , an+1) = (e∗1, . . . , e
∗
n,−e∗1 − . . .− e∗n) as the set of generators

of Sσ to see thatXσ is also represented by a subset of Cn+1.

Definition 2.1.25. (Algebraic torus) The algebraic torus is the affine algebraic variety T = (C∗)n. It
is also a multiplicative group, and T acts on itself by multiplication.

Remark 2.1.26. ([Brasselet, 2001], Remark 2.2) The definition of the algebraic torus is justified as
clearly T ∼= (S1)n × R+, where (S1)n is the real torus.

We now investigate more closely the interaction between an affine toric variety and the algebraic
torus. The following proposition describes an action which is, in some sense, the multiplicative ana-
logue of the additive actions we will study in this thesis. This multiplicative action is, however, much
simpler to understand.

Theorem 2.1.27. ([Brasselet, 2001], Proposition 2.2, Property 2.1) Let σ ⊂ NR be a cone, and let
A = (a1, . . . , ak) ⊂ Sσ, ai = (ai,1, . . . , ai,n) ∈ Sσ be a set of generators of Sσ. For any t =
(t1, . . . , tn) ∈ T, x = (x1, . . . , xk) ∈ Ck, and for each i ∈ {1, . . . , k}, we write tai = t

ai,1
1 · · · tai,nn ∈

C∗, t · x = (ta1x1, . . . , t
akxk) ∈ Ck.

Then, there is an action

T×Xσ → Xσ

(t, x) = (t1, . . . , tn, x1, . . . , xk) 7→ t · x = (ta1x1, . . . , t
akxk),

which extends the action of T on itself.

The orbit of the point (1, . . . , 1) ∈ Xσ induces an embedding T ↪−→ Xσ. Thus,Xσ contains a copy of
T as a dense open subset, and dimC(Xσ) = n.

The second part of this introduction is devoted to the construction of more general toric (algebraic)
varieties that may not be realised in affine space. As before, we start with a combinatorial object.

Definition 2.1.28. (Fan) A fan∆ inNR is a finite collection of cones σ1, . . . , σr ∈ NR such that:

i) If σ ∈ ∆, and τ ⊂ σ is a face of σ, then τ ∈ ∆.

ii) If σ, σ′ ∈ ∆, then σ ∩ σ′ is a face of both σ and σ′.

Example 2.1.29. The following figure contains three examples of fans. Only cones of maximal dimen-
sion are labelled, faces and intersections of labelled cones of a fan are also cones of the fan.
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Figure 2: Three examples of fans.

We will define toric varieties from affine charts, and use the following lemma to define changes of
charts.

Lemma 2.1.30. ([Brasselet, 2001], Lemma 3.1) (Explicit construction of the gluingmap) Let σ ⊂ NR
be a cone, let λ ∈ Sσ, let τ = σ ∩ λ⊥ ⊂ σ be a face of σ, and let Aσ = (a1, . . . , ak) ⊂ Sσ, ai =
(ai,1, . . . , ai,n) ∈ Sσ be a set of generators of Sσ. Without loss of generality, we can choose ak = λ.

By Proposition 2.1.15, Aτ = (a1, . . . , ak+1) = Aσ ∪ {−ak} is a set of generators of Sτ . We choose
generators ofRτ and calculate the ideal I ⊂ C[z] := C[z1, . . . , zk+1]. There’s a finite number r ∈ Z+

of relations between elements of Aσ given by Theorem 2.1.23, and a new relation:

Rr+1 : ak + ak+1 = 0

We can write Rσ
∼= C[u1, . . . , uk], where, for each i ∈ {1, . . . , k}, ui is as in Theorem 2.1.23, and

think of Xσ as Ck in the coordinates (u1, . . . , uk). We can also write Rτ
∼= C[u1, . . . , uk+1], where

uk+1 = u−1
k , and think ofXτ as Ck+1 in the coordinates (u1, . . . , uk+1). Thus, the projection

Ck+1 → Ck

(z1, . . . , zk+1) 7→ (z1, . . . , zk)

induces the isomorphism (of affine algebraic varieties)

Xτ → {z = (z1, . . . , zk) ∈ Xσ : zk 6= 0}.
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Therefore, if∆ is a fan inMR, and σ, σ′ ∈ ∆, τ = σ ∩ σ′, we can define a gluing map:

ψσ,σ′ : {z = (z1, . . . , zk) ∈ Xσ : zk 6= 0} → Xτ → {z = (z1, . . . , zk′) ∈ Xσ′ : zk′ 6= 0}.

Theorem 2.1.31. ([Brasselet, 2001], Theorem 3.1) Let ∆ be a fan in MR. Define an equivalence
relation on the disjoint union

⨿
σ∈∆Xσ by the following:

Let x, x′ ∈
⨿

σ∈∆Xσ.

i) If there exists σ ∈ ∆ such that x, x′ ∈ Xσ, then x ∼ x′ if and only if x = x′.

ii) If there exist σ, σ′ ∈ ∆, σ 6= σ′ such that x ∈ Xσ, x
′ ∈ Xσ′ , then x ∼ x′ if and only if

ψσ,σ′(x) = x′, where ψσ,σ′ is as in Lemma 2.1.30.

Then, (
⨿

σ∈∆Xσ)/ ∼ is a topological space with the topology locally induced by each Xσ, σ ∈ ∆,
and the union ∪σ∈∆(Xσ/ ∼) is an open covering. It is also an algebraic variety (with charts given by
binomial relations, and change of charts given by the gluing map).

Definition2.1.32. (First definitionof a toric variety) Let∆bea fan inMR. The toric varietyassociated
to∆ is the algebraic variety

X∆ :=

(⨿
σ∈∆

Xσ

)
/ ∼ .

Example 2.1.33. ([Brasselet, 2001], Example 3.2) (Construction of the complex projective space) An
example of the construction above is the complex projective space P2. We use the following figure:

Figure 3: The fan and dual fan of P2.

Consider the fan and dual fan in Figure 3, in which only cones of maximal dimension are labelled,
and their respective sets A1 = {e∗1, e∗2}, A2 = {−e∗1 + e∗2,−e∗1}, A3 = {−e∗2, e∗1 − e∗2} of monoid
generators are drawn.

For all i ∈ {1, 2, 3}, there are no non-trivial relations between elements of Ai, thus X1 is C2 in
the coordinates (z1, z2), X2 is C2 in the coordinates (z−1

1 z2, z
−1
1 ), and X3 is C2 in the coordinates

(z−1
2 , z1z

−1
2 ).

Page 11 of 66



A COMPUTATIONAL APPROACH TO CLASSIFICATION OF ADDITIVE SMOOTH FANO POLYTOPES

We have gluing maps:

ψ1,2 : {(z1, z2) ∈ X1 : z1 6= 0} → {(z−1
1 z2, z

−1
1 ) ∈ X2 : z

−1
1 6= 0}

(z1, z2) 7→ (z−1
1 z2, z

−1
1 ),

ψ2,3 : {(z−1
1 z2, z

−1
1 ) ∈ X2 : z

−1
1 z2 6= 0} → {(z−1

2 , z1z
−1
2 ) ∈ X3 : z1z

−1
2 6= 0}

(z−1
1 z2, z

−1
1 ) 7→ (z−1

2 , z1z
−1
2 ),

ψ3,1 : {(z−1
2 , z1z

−1
2 ) ∈ X3 : z

−1
2 6= 0} → {(z1, z2) ∈ X1 : z2 6= 0}

(z−1
2 , z1z

−1
2 ) 7→ (z1, z2).

On the other hand, the classical charts of P2 are:

ϕ1 : U1 = {[x1 : x2 : x3] ∈ P2 : x1 6= 0} → C2

[x1 : x2 : x3] 7→ (x2/x1, x3/x1),

ϕ2 : U2 = {[x1 : x2 : x3] ∈ P2 : x2 6= 0} → C2

[x1 : x2 : x3] 7→ (x1/x2, x3/x2),

ϕ3 : U3 = {[x1 : x2 : x3] ∈ P2 : x3 6= 0} → C2

[x1 : x2 : x3] 7→ (x1/x3, x2/x3).

The change of variables z1 = x2/x1, z2 = x3/x1 induces homeomorphisms:

U1 → ϕ1(U1)→ X1,

U2 → ϕ2(U2)→ X2,

U3 → ϕ3(U3)→ X3.

Finally, if τ1 = σ1 ∩ σ2, τ2 = σ2 ∩ σ3, τ3 = σ3 ∩ σ1, the gluing maps also induce homeomorphisms
compatible with the classical change of charts:

ϕ1(U1 ∩ U2)→ Xτ1 → ϕ2(U1 ∩ U2),

ϕ2(U2 ∩ U3)→ Xτ2 → ϕ3(U2 ∩ U3),

ϕ3(U1 ∩ U3)→ Xτ3 → ϕ1(U1 ∩ U3).

Thus, both processes yield the same algebraic variety. This process may be generalised to mimic the
classical construction of the complex projective space Pn.

Proposition 2.1.34. ([Brasselet, 2001], Proposition 3.1) LetX be a toric variety of dimensionn. Then,
there exists an algebraic torus T ∼= (C∗)n such that T ⊂ X as a dense open subset.

We now give some remarks about the geometry of toric varieties.
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Definition 2.1.35. (Regular cone, fan, complete fan) Let σ ⊂ NR be a cone. We say σ is regular if
we can choose a set of generators A ⊂ N ∩ σ of σ such that A can be extended to a basis ofN .

Let ∆ be a fan in NR. We say ∆ is regular if all cones σ ∈ ∆ are regular. We say ∆ is complete if
∪σ∈∆σ = NR.

Theorem 2.1.36. ([Brasselet, 2001], Theorem 3.2) Let∆ be a fan inNR. Then:

i) ∆ is a complete fan if and only ifX∆ is a compact algebraic variety.

ii) ∆ is a regular fan if and only ifX∆ is a smooth algebraic variety.

The following theorem is a spiritual sequel to Theorem 2.1.27.

Theorem 2.1.37. ([Brasselet, 2001], Theorem 4.1) Let X be a toric variety. Then, there exists an
action of T which extends the action of T on itself, induced by the action of T on each of the affine
parts ofX .

To finish this subsection, we provide a second definition of toric varieties, which is less constructive,
and may be harder to motivate.

Proposition 2.1.38. ([Brasselet, 2001], Proposition 4.4) LetX be a toric variety. Then,X is a normal
algebraic variety.

Theorem 2.1.39. ([Brasselet, 2001], Theorem 4.3) (Second definition of a toric variety)X is a toric
variety of dimension n if and only if X is a normal algebraic variety of dimension n such that there
exists an algebraic torus T ∼= (C∗)n such that T ⊂ X as a dense open subset, and there exists an
action of T onX that extends the natural action of T on itself.

2.2 Polytopes and their relation to toric geometry

We start this subsection by defining an object central to our discussion. We follow (in order)
[Cox et al., 2011], [Ziegler, 2014], and [Brasselet, 2001].

Let M,N be dual lattices with associated vector spaces MR, NR of dimension n ∈ Z+. Let
{e1, . . . , en} ⊂ MR, {e∗1, . . . , e∗n} ⊂ NR be bases ofM,N , respectively. Note that we have trans-
posed the lattices N,M defined in the previous subsection. The reason for this will become clear
later, when we define the normal fan of a polytope.

Definition 2.2.1. (Polytope, V-representation) A polytope is a subset P ⊂ MR such that P =
Conv(S) (i. e., P is the convex hull of S), where S ⊂MR is finite. We say S is a V-representation of
P .

Definition 2.2.2. (Dimension, full-dimensional polytope, affine hyperplane, closed half-space, face,
supporting affine hyperplane, facet, edge, vertex) Let P ⊂MR be a polytope.
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i) We say P is of dimension

dim(P ) = min
M ′⊂MR affine subspace

P⊂M ′

dim(M ′),

and that P is full-dimensional if dim(P ) = dim(MR).

ii) Let 0 6= u ∈ NR, b ∈ R. The affine hyperplaneHu,b is the subset {m ∈ MR : 〈m,u〉 = b},
The closed half-spaceH+

u,b is the subset {m ∈MR : 〈m,u〉 ≥ b}.

iii) A face ofP is a subsetQ ⊂ P such that there exist 0 6= u ∈ NR, b ∈ R such thatQ = Hu,b∩P
and P ⊂ H+

u,b. In this situation, we say Hu,b is the supporting affine hyperplane of Q. By
convention, ∅, P are also faces of P .

iv) A facet is a face of P of dimension dim(P )− 1, an edge is one of dimension 1, and a vertex is
one of dimension 0.

Proposition 2.2.3. LetP ⊂MR be a polytope given by theV-representationS ⊂MR, and letQ ⊂ P
be a face of P . Then,Q ⊂MR is a polytope given by the V-representationQ = Conv(S ∩Q).

Proposition 2.2.4. ([Cox et al., 2011], Proposition 2.2.1) Let P ⊂ MR be a polytope, and letQ ⊂ P
be a face of P . Then:

i) The facesQ′ ⊂ Q ofQ are exactly the facesQ′′ ⊂ P of P such thatQ′′ ⊂ Q′.

ii) IfQ ⊊ P , thenQ is the intersection of the facets F ⊂ P of P such thatQ ⊂ F .

The previous definitions and results suggest an analogy between polytopes and polyhedral cones
(see subsection 3.1). Indeed, polytopes (resp., polyhedral cones) are bounded (resp., unbounded)
polyhedra.

Proposition 2.2.5. Let (H+
ui,bi

)1≤i≤s, 0 6= ui ∈ NR, bi ∈ R be a finite collection of half-spaces. Then,
P = ∩si=1H

+
ui,bi
⊂MR is a polytope if and only if P bounded.

The next we do is give another representation of a polytope which will prove immediately useful.

Definition 2.2.6. (H-representation) Let P ⊂ MR be a polytope. If there exists a finite collection of
half-spaces (H+

ui,bi
)1≤i≤s, 0 6= ui ∈ NR, bi ∈ R such thatP = ∩si=1H

+
ui,bi

, then we say the collection
(ui, bi)1≤i≤s ⊂ NR × R is anH-representation of P .

Proposition 2.2.7. LetP ⊂MR be a polytope given by theH-representation (ui, bi)1≤i≤s ⊂ NR×R,
and let (λi)1≤i≤s ⊂ R>0. Then, (λiui, λibi)1≤i≤s ⊂ NR × R is also anH-representation of P .

Proof. Let x ∈MR. Then:

x ∈ P ⇐⇒ ∀i ∈ {1, . . . , s}, 〈x, ui〉 ≥ bi ⇐⇒ ∀i ∈ {1, . . . , s}, 〈x, λiui〉 ≥ λibi.

The following theorem sumsup a characterisationof full-dimensional polytopes that is both surprising
and useful, along with a few other facts.
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Theorem2.2.8. ([Ziegler, 2014], Theorem2.2.4) (Minkowski-Weyl representation theorem) LetP ⊂
MR be a full-dimensional polytope, let V be the set of its vertices, and let F be the set of its facets.
Then:

i) V ⊂ MR is a V-representation of P . It is also the unique minimal element in the set of V-
representations of P partially ordered by inclusion (i. e., if S is a V-representation of P , then
V ⊂ S).

ii) There existH-representations of P .

iii) For each facet F ∈ F , there is a unique supporting affine hyperplaneHF of F , corresponding
to a closed half-space H+

F . If we write HF = {m ∈ MR : 〈uF ,m〉 = −aF }, and H+
F =

{m ∈MR : 〈uF ,m〉 ≥ −aF }, then (uF ,−aF ) ∈ NR × R is unique up to multiplication by
λ ∈ R+.

iv) The collection (uF ,−aF )F∈F ⊂ NR is anH-representation ofP (i. e., P =∩F∈FH
+
F ), uniquely

determined as per item iii.

v) Items i and iv are two equivalent definitions for P , and there exist algorithms to compute each
representation given the other.

The following definitions should be interpreted as shorthand for the special representations of a poly-
tope in Theorem 2.2.8. They also justify the presentation of the data on the Graded Ring Database
(GRDB) [Brown and Kasprzyk, 2009], which we will heavily use in later subsections.

Definition 2.2.9. (V , H-polytope, inward-pointing facet normal) A V-polytope (resp., H-polytope)
is a polytope P ⊂ MR given by the V-representation (resp., H-representation) in item i (resp., item
iv) of Theorem 2.2.8. In this situation, each vector uF ∈ NR is an inward-pointing facet normal to its
corresponding facet F .

We now define the dual or polar polytope P ◦ ⊂ NR associated to a polytope P ⊂ MR such that
0 ∈ int(P ), and study some of its properties.

Definition 2.2.10. ([Cox et al., 2011], Exercise 2.2.1) (Dual, polar polytope) Let P ⊂ MR be a full-
dimensional H-polytope such that 0 ∈ int(P ), and let F be the set of its facets. The dual or polar
polytope is the polytope P ◦ ⊂ NR given by the V-representation ((1/aF )uF )F∈F ⊂ NR.

Remark 2.2.11. Let P ⊂ MR be a full-dimensional H-polytope such that 0 ∈ int(P ), and let F
be the set of its facets. As 0 ∈ int(P ), for each F ∈ F we have aF ∈ R+, thus the collection
((1/aF )uF ,−1)F∈F is anH-representation of P .

Proposition 2.2.12. Let P ⊂ MR be a full-dimensional polytope such that 0 ∈ int(P ), let P ◦ ⊂ NR
be its dual polytope. Then:

i) P ◦ = {u ∈ NR : ∀m ∈ P, 〈u,m〉 ≥ −1}.

ii) (P ◦)◦ = P .

The following important combinatorial structurewill presently only allow us to determine the vertices
of the dual polytope, but we will revisit it later. We will not define all order-theoretic notions we will
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use (these may be found in [Ziegler, 2014]), as doing so would not add anything of much relevance to
our discussion.

Definition 2.2.13. (Face lattice) Let P ⊂MR be a polytope, and letQ be the set of its faces. The face
lattice of P is the poset (Q,⊂).

Theorem 2.2.14. ([Ziegler, 2014], Theorem 2.36) Let P ⊂MR be a polytope. Then, its face lattice is
a finite graded lattice of rank dim(P ) + 1.

Theorem 2.2.15. ([Ziegler, 2014], Theorem 2.55) Let P ⊂ MR be a full-dimensional polytope such
that 0 ∈ int(P ), and let P ◦ ⊂ NR be its dual polytope. Then, the face lattices of P and P ◦ are
opposite. In other words, there is a bijective correspondence between faces Q ⊂ P of P and faces
Q′ ⊂ P ◦ of P ◦ such that dim(Q′) = n− dim(Q)− 1, where, by convention, dim(∅) = −1.

Corollary 2.2.16. Let P ⊂ MR be a full-dimensional H-polytope such that 0 ∈ int(P ). The dual
polytope P ◦ ⊂ NR is the V-polytope given by the V-representation in Definition 2.2.10.

Proof. Theorem 2.2.15 implies there is a bijective correspondence between facets of P and vertices
of P ◦.

We now restrict ourselves lattice polytopes in a similar way to how we restricted ourselves to lattice
cones in subsection 3.1.

Definition 2.2.17. (Lattice polytope) A lattice polytope is a (V-)polytope P ⊂ MR given by a V-
representation V ⊂M .

It is possible to choose a unique facet representation of a full-dimensional lattice polytope.

Proposition 2.2.18. Let P ⊂ MR be a full-dimensional lattice polytope, and let F be the set of its
facets. Then, for each F ∈ F , there exists an inward-pointing facet normal uF ∈ NR such that
uF ∈ N , thus there is a uniqueH-representation (uF /GCD(uF ),−aF /GCD(uF ))F∈F ⊂ NR×R of
P , where GCD : Zn → Z gives the greatest common divisor of the n coordinates.

Wewill construct projective toric varieties from lattice polytopes that have enough lattice points. The
following definitions make this notion precise in two different ways:

Definition 2.2.19. (Normal, very ample polytope) Let P ⊂MR be a lattice polytope.

i) P is normal if, for all k, l ∈ N, we have (kP ) ∩M + (lP ) ∩M = ((k + l)P ) ∩M , where
+ : (MR)

2 →MR is the Minkowski sum.

ii) P is very ample if, for each vertexm ∈ P , the semigroup SP,m = N(P ∩M −m) is saturated.

Proposition 2.2.20. ([Cox et al., 2011], Proposition 2.2.18) Let P ⊂MR be a lattice polytope. If P is
normal, then it is very ample.

Corollary 2.2.21. ([Cox et al., 2011], Corollary 2.2.19) LetP ⊂MR be a full-dimensional lattice poly-
tope, and let k ∈ Z+, k ≥ n − 1. Then, kP ⊂ MR is a very ample polytope. In particular, if n = 2,
then P is very ample.
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Throughout, as in subsection 3.1, all cones are strongly convex lattice polyhedral cones.

Theorem 2.2.22. ([Cox et al., 2011], Theorem 2.3.2, Propositions 2.3.7, 2.3.8, [Brasselet, 2001],
Proposition 4.6) Let P ⊂ MR be a full-dimensional lattice V-polytope given by the V-representation
(vi)1≤i≤r ⊂MR. For each i ∈ {1, . . . , r}, define the cones Ci := 〈P ∩M − vi〉 ⊂MR, σi := Ĉi ⊂
NR associated to the vertex vi. Then:

i) For each i ∈ {1, . . . , r}, dim(σi) = n.

ii) The fan generated by the collection (σi)1≤i≤r (i. e., the fan that contains (σi)1≤i≤r and all
faces and intersections) is a complete fan inNR.

Proposition 2.2.23. Let P ⊂ MR be a full-dimensional lattice V-polytope given by the V-
representation (vi)1≤i≤r ⊂MR, and let F be the set of its facets. Then:

i) Cones in the fan in Theorem 2.2.22 are in bijective correspondence with faces of P .

ii) IfQ ⊂ P is a face of P , the cone

σQ := {u ∈ NR : ∀m ∈ Q,∀m′ ∈ P : 〈u,m〉 ≤ 〈u,m′〉}

is its corresponding cone in the fan in Theorem 2.2.22. For each i ∈ {1, . . . , r}, if we substitute
Q = {vi}, then we recover σQ = σi.

iii) For each faceQ ⊂ P of P ,
σQ =

∑
F∈F
Q⊂F

R+
0 uF ,

where, for each F ∈ F , uF ∈ NR is an inward-pointing facet normal to F .

Proof. Item i follows from [Cox et al., 2011], Proposition 2.3.7 (as the very author states on page 79).
Items ii, iii are the definitions in [Cox et al., 2011], [Brasselet, 2001], respectively.

Definition 2.2.24. (Normal fan, toric variety associated to a polytope) Let P ⊂ MR be a full-
dimensional lattice polytope. The normal fan∆P of P is the fan in Theorem 2.2.22. The toric variety
associated to P is the compact toric varietyXP := X∆P

.

The following proposition is a technical justification for this procedure, as a priori Theorem 2.2.22 is
proved in [Cox et al., 2011] for very ample polytopes.

Proposition 2.2.25. Let P ⊂ MR be a full-dimensional lattice polytope, and let k ∈ Z+. Then,
∆P = ∆kP .

If the origin is contained in the polytope’s interior, the cones of the normal fan fit together beautifully.

Proposition 2.2.26. ([Brasselet, 2001], Proposition 4.6) Let P ⊂ MR be a full-dimensional lattice
V-polytope such that 0 ∈ int(P ) given by the V-representation (vi)1≤i≤r ⊂MR, and letF be the set
of its facets.
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Then, for each face Q ⊂ P of P , the cone σQ ⊂ NR covers a face Q ⊂ P ◦ of P ◦ (i. e.,
Q ⊂ σQ). In particular, for each i ∈ {1, . . . , r}, the cone σi ⊂ NR covers the facet Fi :=
Conv((1/aF )uF )F∈F ,vi∈F ⊂ P ◦ of P ◦ (i. e., Fi ⊂ σi).

Example 2.2.27. Figure 4 shows the fan of P2 (see Figure 3) as the normal fan of a polytope. It also
illustrates the behaviour of all cones of maximal dimension involved. The reader is encouraged to
verify as many of the definitions and results stated in this subsection as they need to feel comfortable
with the situation at hand.

Figure 4: The polytope, dual polytope, and normal fan of P2.

Full-dimensional lattice polytopes correspond to projective toric varieties, and bijectively to ample
Cartier divisors of projective toric varieties.

Theorem 2.2.28. ([Brasselet, 2001], Theorem 3.2) Let ∆ be a fan in NR. Then, X∆ projective toric
variety such that dim(X∆) = n if and only if there exists a full-dimensional lattice polytope P ⊂MR
such thatX∆ = XP .

Theorem 2.2.29. ([Brasselet, 2001], Theorem 3.2) There is a bijective correspondence between full-
dimensional lattice polytopes inMR and pairs (X,D), whereX is a projective toric variety such that
dim(X) = n, andD is an ample Cartier divisor ofX .

We will now impose conditions on the polytope in order for the resulting variety to be non-singular.

Definition 2.2.30. (Primitive vector) Let P ⊂ MR be a lattice polytope, and let v 6= v′ be vertices
of P . The primitive vector on the edge E ⊂ P of P that starts at v and ends at v′ is e := (v′ −
v)/GCD(v′− v) ∈M , where GCD : Zn → Z gives the greatest common divisor of the n coordinates.

Definition 2.2.31. (Smooth polytope) Let P ⊂ MR be a lattice polytope. We say P is smooth if, for
each vertex v ∈ P of P , the primitive vectors e ∈M on the edgesE ⊂ P of P such that v ∈ E form
a subset of a basis ofM . In particular, if P is full-dimensional, then, for each vertex v ∈ P of P , the
primitive vectors e ∈M form a basis ofM .

Theorem 2.2.32. ([Cox et al., 2011], Theorem 2.4.3) Let P ⊂ MR be a full-dimensional lattice poly-
tope. Then,XP is a smooth projective toric variety if and only if P is a smooth polytope.
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Proposition 2.2.33. ([Cox et al., 2011], Proposition 2.4.4) Let P ⊂ MR be a full-dimensional lattice
polytope. If P is smooth, then P is very ample.

2.3 Smooth Fano polytopes and their classification

We start this subsection by defining the specific notion of equivalence between lattice polytopes we
will use. There is another such notion which is commonly used in other contexts, but coarser, called
combinatorial equivalence (see [Batyrev, 1999]).

LetM,N be dual lattices with associated vector spacesMR, NR of dimension n ∈ Z+.

Definition 2.3.1. (Lattice isomorphic, lattice equivalent polytopes) Let P, P ′ ⊂ MR be lattice poly-
topes. We say P, P ′ are lattice isomorphic or lattice equivalent if there exists an invertible linear
map f : MR → MR such that f extends an isomorphism ofM (i. e., such that det(f) = ±1) and
P = f(P ′).

Theorem 2.3.2. ([Batyrev, 1999], Theorem 2.2.4) Let P, P ′ ⊂ MR be full-dimensional lattice poly-
topes. Then,XP , XP ′ are biregularly isomorphic if and only if P, P ′ are lattice isomorphic.

Weare now ready to introduce themore specific kind of polytopeswithwhich this thesis is concerned.

Definition 2.3.3. (Reflexive polytope) Let P ⊂ MR be a full-dimensional lattice polytope such that
0 ∈ int(P ). We say P is a reflexive polytope if P ◦ is also a lattice polytope.

Proposition 2.3.4. Let P ⊂ MR be a full-dimensional lattice polytope such that 0 ∈ P , and let F be
the set of its facets. Consider the unique H-representation (uF /GCD(uF ),−aF /GCD(uF ))F∈F ⊂
NR × R of P in Proposition 2.2.18. The following are equivalent:

i) P is reflexive.

ii) P ◦ is reflexive.

iii) The collection (uF /GCD(uF ),−1)F∈F ⊂ NR × R is the unique H-representation of P in
Proposition 2.2.18.

iv) The collection (uF /GCD(uF ))F∈F ⊂MR is a V-representation of P ◦.

Proposition 2.3.5. ([Cox et al., 2011], Exercise 2.3.5) Let P ⊂ MR be a reflexive polytope. Then
int(P ) ∩M = {0}.

Definition 2.3.6. (Smooth Fano polytope) Let P ⊂ NR be a lattice polytope such that 0 ∈ int(P ),
and let F be the set of its facets. We say P is smooth Fano if, for each facet F ⊂ F , the vertices
v ∈ P of P such that v ∈ F form a basis ofN .

Proposition 2.3.7. ([Cox et al., 2011], Exercise 8.3.6) Let P ⊂ NR be a smooth Fano polytope. Then,
P and P ◦ ⊂MR are reflexive.
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Proposition 2.3.8. ([Cox et al., 2011], Exercise 8.3.6) Let P ⊂ NR be a full-dimensional lattice poly-
tope such that 0 ∈ int(P ). Then, P is smooth Fano if and only if P ◦ ⊂MR is reflexive and smooth.

We mention in passing that there are other intermediate classes of polytopes which are sometimes
also called Fano, but our definitions seem to align to modern conventions (see [Nill, 2005], Definition
2.3.5).

As we have repeatedly done, we construct certain classes of toric varieties from reflexive and smooth
Fano polytopes.

Definition 2.3.9. (Gorenstein Fano, smooth Fano variety) Let X be a complete normal algebraic
variety. We sayX is a Gorenstein Fano variety if the anticanonical divisor−KX is Cartier and ample.
In particular, Gorenstein Fano varieties are projective. We say X is a smooth Fano variety if it is
Gorenstein Fano and smooth.

Theorem 2.3.10. ([Cox et al., 2011], Theorem 8.3.4) Let P ⊂MR be a reflexive polytope. Then,XP

is a Gorenstein Fano toric variety. Conversely, ifX is a Gorenstein Fano toric variety, then the polytope
associated to the anticanonical divisor−KX is reflexive.

Corollary 2.3.11. Let P ⊂ NR be a smooth Fano polytope. Then,XP ◦ is a smooth Fano toric variety.
Conversely, if X is a smooth Fano toric variety, then the polytope associated to the anticanonical
divisor−KX is the dual of a smooth Fano polytope.

Proposition 2.3.12. ([Cox et al., 2011]) For each fixed dimension n ∈ Z+, there exist a finite number
of isomorphism classes of reflexive (resp., smooth Fano) polytopes.

By Theorems 2.3.2, 2.3.10, classifying Gorenstein Fano (resp., smooth Fano) toric varieties up to bireg-
ular isomorphism is equivalent to classifying reflexive (resp., smooth Fano) polytopes up to lattice
isomorphism. This is relatively easy for dimension 2 (see [Cox et al., 2011], [Debarre, 2002]); the re-
sulting classification may be seen in Figures 5, 6, 7. Figure 6 also includes information about the
corresponding smooth Fano varieties. The reader is encouraged to verify the relevant definitions and
properties for all polytopes, and to identify all smooth Fano polytopes and their duals in Figure 5.

The higher-dimensional classification of reflexive polytopes has been solved by Kreuzer and Skarke
(see [Kreuzer and Skarke, 2004]), who implemented a package for a software system with which they
found that there are 4319 isomorphism classes of reflexive polytopes of dimension 3, and 473800776
of dimension 4. Quoting [Cox et al., 2011]: “One reason for the interest in these varieties is the re-
lation with mirror symmetry. [... But] since these numbers grow so quickly, most more recent work
has focused on subclasses [such as] polytopes giving smooth Fano toric varieties.“

On the other hand, there are 18 isomorphism classes of smooth Fano polytopes of dimension 3 (see
[Mori and Mukai, 2003]), 124 of dimension 4 (see [Batyrev, 1999]), and 866, 7622 of dimension 5, 6,
respectively (see [Øbro, 2007]). Similarly, the higher-dimensional classification of smooth Fano poly-
topes has been solved by Mikkel Øbro (see [Øbro, 2007]), who introduced the SFP algorithm to this
effect.

In this thesis, we aim to refine the classification of smooth Fano polytopes to account for the notion
of additiveness defined in subsection 2.4.
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Figure 5: Representatives of the 16 isomorphism classes of reflexive polytopes of dimension
2.

Source: [Cox et al., 2011].
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Figure 6: Representatives of the 5 isomorphism classes of smooth Fano polytopes of dimen-
sion 2.

Source: [Debarre, 2002].

Figure 7: Duals of representatives of the 5 isomorphism classes of smooth Fano polytopes
of dimension 2.

Source: [Debarre, 2002].

2.4 Additive actions on smooth Fano toric varieties

As previously suggested (see Theorems 2.1.27, 2.1.37), this thesis is not concerned with the classical
multiplicative action of the torus on a toric variety, but with less understood additive actions of the
commutative unipotent group (a power of the additive group underlying the ground field). We now
direct our attention to studying these additive actions in general and on smooth Fano toric varieties.

LetM,N be dual lattices with associated vector spacesMR, NR of dimension n ∈ Z+.
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Definition 2.4.1. (Additive action on an irreducible algebraic variety, additive variety, uniquely ad-
ditive variety) Let K be an algebraically closed field of characteristic zero, let X an irreducible alge-
braic variety of dimension n over K, and let Ga = (K,+) be the additive group underlying K. An
additive action on X is an (effective, regular) action Gn

a × X → X of the commutative unipotent
groupGn

a onX with an open orbit. We sayX is an additive variety (resp., a uniquely additive variety)
if it admits an additive action (resp., if it admits a unique additive action up to isomorphism).

Definition 2.4.2. (Additive polytope) Let P ⊂ MR be a full-dimensional lattice polytope. We say P
is an additive polytope (resp., a uniquely additive polytope) if the projective variety XP associated
to P is additive (resp., uniquely additive).

The original motivation behind the study of additive actions came from problems in arithmetic geom-
etry.

The first systematic study is found in [Hassett and Tschinkel, 1999], wherein a correspondence is es-
tablished between additive actions on Pn and local (n + 1)-dimensional commutative associative
algebras with unit. This correspondence has been exploited to classify additive actions on many dif-
ferent kinds of algebraic varieties (the introduction of [Arzhantsev and Romaskevich, 2017] includes
a brief survey).

Furthermore, work on Manin’s conjecture yielded two papers by Chambert-Loir, Tschinkel on asymp-
totic results about the distribution of rational points of bounded height on certain equivariant com-
pactifications (resp., embeddings) of the vector group [Chambert-Loir and Tschinkel, 2002] (resp.,
[Chambert-Loir and Tschinkel, 2012]). Incidentially, Manin’s conjecture for smooth projective toric
varieties was proved in [Batyrev and Tschinkel, 1995] using other techniques.

Example 2.4.3. ([Hassett and Tschinkel, 1999], Proposition 3.2) There are two distinct additive ac-
tions on P2 given, for all a = (a1, a2) ∈ G2

a and x = [x1 : x2 : x3] ∈ P2, by:

τ(a)(x) =

1 0 a2
0 1 a1
0 0 1

x1x2
x3

 , ρ(a)(x) =

1 a1 a2 +
1
2a

2
1

0 1 a1
0 0 1

x1x2
x3

 .
We now state a result from [Arzhantsev and Romaskevich, 2017] which we will use to determine the
existence of additive actions on smooth Fano varieties using only combinatorial methods.

Definition 2.4.4. (Polytope inscribed in a rectangle) Let P ⊂ MR be a very ample polytope, and let
F be the set of its facets. We say P is inscribed in a rectangle if there exists a vertex v0 ∈ P of P
such that:

i) The primitive vectors on the edges Ei ⊂ P of P starting at v0 form a basis e1, . . . , en ∈M of
M .

ii) For all F ∈ F and i ∈ {1, . . . , n}, if v0 6∈ F , then 〈−uF , ei〉 ≥ 0.

Theorem 2.4.5. ([Arzhantsev and Romaskevich, 2017], Theorem 5.2) Let P ⊂ MR be a very ample
polytope. Then, the projective varietyXP associated to P is additive if and only if P is inscribed in a
rectangle.
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Let P ⊂ NR be a smooth Fano polytope. By Proposition 2.3.8, P ◦ ⊂ MR is smooth. In particular,
every vertex of P ◦ satisfies condition i of Definition 2.4.4. P ◦ is also very ample by Proposition 2.2.33
Therefore, Theorem 2.4.5 translates nicely to the following:

Corollary 2.4.6. Let P ⊂ NR be a smooth Fano polytope, and letF be the set of facets of P ◦ ⊂MR.
Then, the smooth Fano variety XP ◦ associated to P ◦ is additive if and only if there exists a vertex
v0 ∈ P ◦ such that, if e1, . . . , en are the primitive vectors on the edges Ei ⊂ P ◦ of P ◦ starting at v0,
then for all F ∈ F and i ∈ {1, . . . , n}, if v0 6∈ F , then 〈−uF , ei〉 ≥ 0.

Example 2.4.7. ([Huang and Montero, 2020]) The dual of the smooth Fano polytope II33 (see Figure
8) is given by the V-representation

{(−1,−1,−1), (−1,−1, 3), (−1, 2,−1), (−1, 2, 0), (2,−1,−1), (2,−1, 0)}

and is additive, as it is inscribed in a rectangle. It is easy to verify visually that the inward-pointing
facet normals of facets not containing v0 lie in the negative octant of the basis given by the primitive
vectors on the edges starting at v0.

v0

Figure 8: The smooth Fano polytope II33.
Source: [Huang and Montero, 2020].

Example 2.4.8. ([Huang and Montero, 2020]) The dual of the smooth Fanopolytope III25 (see Figure
9) is given by the V-representation

{(−1, 2,−1), (−1, 0,−1), (−1, 2, 0), (−1, 0, 2), (2,−1,−1), (0,−1,−1),
(2,−1, 0), (0,−1, 2)}

and is not additive, as it is not inscribed in a rectangle. This is also easy to verify visually, although a
bit lengthier.

Figure 9: The smooth Fano polytope III25.
Source: [Huang and Montero, 2020].

The following result will be immediately useful:
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Proposition 2.4.9. ([Dzhunusov, 2022], Proposition 2) Let P ⊂ MR be a full-dimensional latticeH-
polytope given by the uniqueH-representation (pi,−ai)1≤i≤s ⊂ NR×R in Proposition 2.2.18. Then,
XP is additive if and only if the primitive vectors (pi)1≤i≤s ⊂ NR can be ordered in a way such that
the vectors (pi)1≤i≤n form a basisB ⊂ N ofN and the vectors (pi)n+1≤i≤s lie in the negative octant
with respect toB.

Remark 2.4.10. Let P ⊂ MR be a very ample (full-dimensional lattice) polytope. The previous
proposition provides a second, albeit less algorithmically efficient, criterion for additiveness on a
projective toric variety. It is direct to check that it is equivalent to being inscribed in a rectangle:
if v0 ∈ P is the vertex in Definition 2.4.4, andC0 ⊂MR is the cone generated by the primitive vectors
e1, . . . , en ∈ M , then, by Proposition 2.2.23, σ0 = Ĉ0 ⊂ NR is the cone generated by the inward-
pointing facet normals to the facets containing v0. The generators of σ0 form a basis B ⊂ N of N ,
and the remaining inward-pointing facet normals lie in the negative octant with respect to B.

Definition 2.4.11. (Ordered primitiveH-representation) LetP ⊂MR be an additive full-dimensional
lattice H-polytope given by the unique H-representation (pi,−ai)1≤i≤s ⊂ NR × R in Proposition
2.2.18. An ordered primitiveH-representation of P is the collectionP := (pi,−ai)1≤i≤s ⊂ NR×R
ordered as in Proposition 2.4.9.

Wenow state themain result from [Dzhunusov, 2022] which wewill use to determine the uniqueness
of additive actions on smooth Fano varieties using only combinatorial methods.

Definition 2.4.12. (Demazure root) LetP ⊂MR be a full-dimensional latticeH-polytope given by the
unique H-representation (ui,−ai)1≤i≤s ⊂ NR × R in Proposition 2.2.18. For each i ∈ {1, . . . , s},
define the set:

Ri := {x ∈M : 〈ui, x〉 = −1, (∀j ∈ {1, . . . , s} \ {i} : 〈uj , x〉 ≥ 0)}.

A Demazure root is an element of the set ∪si=1Ri ⊂M .

Remark 2.4.13. In the previous definition, if P ⊂ MR is reflexive, i ∈ {1, . . . , s}, and Fi is the facet
associated to ui, thenRi = rint(Fi)∩M , where rint(Fi) is the relative interior ofFi (i. e., the interior
in the induced topology of the smallest affine subspace ofMR containing Fi).

Theorem2.4.14. ([Dzhunusov, 2022], Theorem4) LetP ⊂MR be an additive full-dimensional lattice
H-polytope given by an ordered primitive H-representation P = (pi,−ai)1≤i≤s ⊂ NR × R. If XP

is additive, and (p∗i )1≤i≤s ⊂ MR is the dual basis of (pi)1≤i≤s ⊂ NR (in the linear algebraic sense),
thenXP is uniquely additive if and only if for each i ∈ {1, . . . , n} one hasRi = {−p∗i }.

Similarly to Corollary 2.4.6, let P ⊂ NR be an additive smooth Fano polytope. As P ◦ is full-
dimensional, Theorem 2.4.14 applies toXP ◦ .

Example 2.4.15. Figure 10 illustrates Remarks 2.4.10 and 2.4.13 with the polytope and dual polytope
associated toBlp,q(P2), the blow-up of P2 at two general points p, q.
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Figure 10: The polytope, dual polytope, and Demazure roots of Blp,q(P2).

Indeed, v0 ∈ P is the vertex in Definition 2.4.4, e1, e2 ∈M are the primitive generators ofC0 ⊂MR,
e∗1, e

∗
2 ∈ N are the primitive generators of σ0 ⊂ NR and form a basisB ⊂ N ofN , and the remaining

inward-pointing facet normals of P lie in the negative octant with respect toB.

Elements ofR1 ∪R2 are coloured yellow, and if F1 ⊂ P (resp., F2 ⊂ P ) is the facet of P normal to
e∗1 (resp., e∗2), thenR1 = {−e1} = rint(F1) ∩M (resp.,R2 = {−e2} = rint(F2) ∩M ).

We conclude thatBlp,q(P2) is additive and uniquely additive.

Example 2.4.16. Figure 11 illustrates Remarks 2.4.10 and 2.4.13 with the polytope and dual polytope
associated to P2.

Figure 11: The polytope, dual polytope, and Demazure roots of P2.

Indeed, v0 ∈ P is the vertex in Definition 2.4.4, e1, e2 ∈M are the primitive generators ofC0 ⊂MR,
e∗1, e

∗
2 ∈ N are the primitive generators of σ0 ⊂ NR and form a basisB ⊂ N ofN , and the remaining

inward-pointing facet normal of P lies in the negative octant with respect toB.
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Elements ofR1 ∪R2 are coloured yellow, and if F1 ⊂ P (resp., F2 ⊂ P ) is the facet of P normal to
e∗1 (resp., e∗2), thenR1 = rint(F1) ∩M (resp.,R2 = rint(F2) ∩M ).

We conclude that P2 is additive but not uniquely additive, asR1 andR2 are not singletons.
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SECTION 3
PROPOSED SOLUTION

3.1 Web scraping the GRDB

The Graded Ring Database (GRDB) is, in its authors’ own words, “a database of graded rings in
algebraic geometry, including classifications of toric varieties, [...] and Fano 3-folds and 4-folds”
[Brown and Kasprzyk, 2009]. The website provides a front-end to a database written by Gavin Brown
and Alexander Kasprzyk, with data computed by various collaborators. We entered a blank search in
the Smooth Toric Fano Varieties (STFV) section of the website, which returns polytope data of all 8635
such varieties of dimension less than or equal to 6, spread across 864 pages. This data is provided to
the GRDB byMikkel Øbro, who authored An algorithm for the classification of smooth Fano polytopes
[Øbro, 2007].

We chose the free tier of Google Colab [Google, 2022] to compute most of our results in (except, of
course, those explicitly stated to be related to our Macaulay2 package), as we think it is the ideal
environment for general numerical scientific research that is sufficiently undemanding resource-wise
(indeed, the maximum amount of RAM we used was around 2.5 GB).

Selenium is an open-source project which “supports automation of all themajor browsers in themar-
ket through the use of WebDriver, [...] an API and protocol that defines a language-neutral interface
for controlling the behaviour of web browsers” [Selenium, 2022]. We installed it in our runtime, and
used its Python bindings to scrape data from the website. We previously experimented with (simpler
[Amery, 2019]) HTTP libraries Requests [Reitz, 2022] and BeautifulSoup [Richardson, 2022] but failed,
as the GRDBwebsite dinamically generates relevant data by requiring the user to press aMore details
button for each polytope (see Figure 12).

The steps in our pipeline were as follows:

i) Do the web scraping (see Algorithm 1).

The function “SleepAndPressMoreDetailsButtons(t)” puts the runtime to sleep for t seconds,
and then tells Webdriver to press allMore details buttons on the current page. It was added as
we found theMore details button of some polytopes took a while to render, thus sometimes
causing the script to stop its execution prematurely. As per Algorithm 1, this function is called
in a nested sequence of try-except blocks with increasing values of t, in order to prevent an
otherwise safer sleeping timer from stalling the execution of the script for unnecessarily long.

The function “# PolytopesOnPage(i)” returns 5 if i is the last page, or 10 else.

Each execution of Algorithm 1 typically took us around 50 minutes.

ii) Perform error correction.

In rare occasions (610 out of 8635 polytopes, or around 7.06% of all polytopes, in our first trial),
pressing theMore details button of some polytopes did not actually render any new data. This
may be due to a bug in the website or to a limitation of Selenium. We repeated step i of the

Page 28 of 66



A COMPUTATIONAL APPROACH TO CLASSIFICATION OF ADDITIVE SMOOTH FANO POLYTOPES

Algorithm 1Web scraping the STFV section of the GRDB website to obtain polytope data of
all such varieties of dimension≤ 6.
Precondition: Selenium is correctly installed in the runtime, and the GRDB website is up

online.
Postcondition: “out.txt” is a text file containing all scraped polytope data.
1: Get the webpage of the STFV section of the GRDB website.
2: f ← Open “out.txt” file in append mode.
3: # Pages← 864
4: for 0 ≤ i < # Pages do
5: try
6: SleepAndPressMoreDetailsButtons(0) ▷ Read pipeline step 1 for more details.
7: except
8: try
9: SleepAndPressMoreDetailsButtons(4)
10: except
11: try
12: SleepAndPressMoreDetailsButtons(16)
13: except
14: SleepAndPressMoreDetailsButtons(64)
15: end
16: end
17: end
18: for 0 ≤ j < # PolytopesOnPage(i) do ▷ Read pipeline step 1 for more details.
19: r← Find row with data for polytope j on page i by its ID.
20: Append text on r to f .
21: end for
22: if i < # Pages - 1 then
23: l← Find link to next page by its CSS selector.
24: Click l.
25: end if
26: end for
27: Close f .
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Figure 12: The GRDB website requires the user to press a More details button for each
polytope.

pipeline twice and ran a simple error correction algorithm (henceforth, SEC algorithm) twice,
which consisted of reading two output files of Algorithm 1, identifying the indices of polytopes
with missing data on the first output file, appending the corresponding data from the second
output file (if it was not also missing), and finally writing a new output file with less errors. The
remaining error was corrected manually (see Table 1 for a summary of the error correction
process).

Each execution of the SEC algorithm took us less than 1 second.

Task
nº

Task description # Errors before execution # Errors after execution

1 Run the SEC algorithm 610/8635 (7.06%) 21/8635 (0.24%)
2 Run the SEC algorithm 21/8635 (0.24%) 1/8635 (0.01%)
3 Manual error correction 1/8635 (0.01%) 0

Table 1: List of tasks of the error correction process.

iii) Parse the data.

We split the output of the previous steps into a list, parsed the data of each smooth Fano
polytope P ⊂ NR on GRDB STFV using the following regular expression:

(\d+)
Smooth ([^\n]+)?toric Fano (?:[^\n]+) X = X\(Q\) with degree \(-KX\)(\d+) = (\d+)(?:
Zero barycentre: (\w+))?(?:
Zero dual barycentre: (\w+))?
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Vol\(Q\): (\d+)
#Vertices: (\d+)
#Facets: (\d+)
Vertices: ([^\n]+)
Dual: ([^\n]+)

The 11 capturing groups obtain the following attributes of the polytope, in order:

1) ID on GRDB STFV.

2) If the polytope is centrally symmetric.

3) Dimension.

4) Degree.

5) If the polytope has zero barycentre.

6) If the polytope has zero dual barycentre.

7) Volume.

8) Number of vertices.

9) Number of facets.

10) List of vertices.

11) List of facets.

Furthermore, the following tests were run for the sake of data integrity:

1) Assert that 11 groups have been captured.

2) Assert that the captured ID on GRDB STFV corresponds to the index on the list of poly-
topes.

3) Assert that the number of vertices is equal to the length of the list of vertices.

4) Assert that the number of facets is equal to the length of the list of facets.

The number (resp., list) of vertices and the number (resp., list) of facets were then transposed,
as we will require V and H-representations of the polar polytope P ◦ ⊂ MR instead of the
smooth Fano polytope P ⊂ NR. The resulting parsed list was typecasted into a NumPy array
of objects and was saved as a NumPy file.

3.2 Obtaining the edges of a polytope given by both its V and H-
representations

LetN,M be dual lattices with associated vector spacesNR,MR of dimension d ∈ Z+.

Let P ⊂MR be a full-dimensional polytope.
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3.2.1 Motivation

If P is given by its V-representation (resp., H-representation), the problem of obtaining an H-
representation (resp., V-representation) is called facet enumeration (resp., vertex enumeration). By
duality results, these problems have the same complexity. It is unknown whether there is an algo-
rithm that does this in the general case in time complexity polynomial on the input size (i. e., on
the dimension and number of vertices or facets). [Bremner et al., 1998] Quoting Bremner, Fukuda
and Maretta: “Several polynomial algorithms [...] are known under strong assumptions of non-
degeneracy, which restrict input polytopes to be simple in the case of vertex enumeration and sim-
plicial in the case of facet enumeration. However, it appears to be extremely hard to determine
whether there is a polynomial algorithm in general” [Bremner et al., 1998]. On the other hand, it is
known that, for unbounded polyhedra, the problem is NP-Hard [Khachiyan et al., 2008]. In particular,
if σ ⊂MR is a polyhedral cone, obtaining generators of its dual cone σ̂ ⊂ NR is NP-Hard.

The problem of facet enumeration is clearly equivalent to finding the convex hull of a finite set of
points. A worst-case optimal algorithm for doing this has time complexity exponential on d and, for
fixed d, polynomial on the number of vertices of P [Chazelle, 1993].

Now, for fixed d, given both V andH-representations of P , computing its entire face lattice is can be
done in time complexityO(min{|I|, |J |} · #V F · #Q), where |I| is the number of vertices, |J | is the
number of facets, #V F is the number of vertex-facet incidences, and #Q is the total number of faces
[Kaibel and Pfetsch, 2002].

One step of Algorithm 4 will require us to find all (primitive) vectors on the edges of P starting at
a given vertex of P . By Remark 2.4.10, this may be done by calculating the dual C0 ⊂ MR of
σ0 = Ĉ0 ⊂ NR, the cone generated by the inward-pointing facet normals to the facets containing
the vertex. Since we also require, in particular, that the cone C0 be full-dimensional (see Definition
2.4.4), this is likely not computationally hard. However, to satisfy our curiosity, wewill study themore
general case of any full-dimensional polytope given by both its V andH-representations and any ver-
tex (i. e., not only lattice polytopes, and not only “smooth” vertices). In this subsection we analyse
naïve approaches to this problem for low values of d, and then present an algorithm that solves it
in time complexity O(|I| · #V F ) if V F is sparse (e. g., if P has many facets). This algorithm may
possibly be generalised to compute more of the face lattice of P , although possibly in sub-optimal
time complexity.

Let I = {0, . . . , |I| − 1}, J = {0, . . . , |J | − 1}, let P ⊂MR a full dimensional lattice polytope given
by its vertices V = (mi)i∈I and primitive inward-pointing facet normals H = (uj)j∈J to the facets
F = (Fj)j∈J (see Theorem 2.2.8.i and Proposition 2.2.18, respectively). Given a vertexm0 of P , we
want to find vectors on all edges of P starting atm0. Note that it is enough to find all verticesm of
P ,m 6= m0, such thatm andm0 form an edge of P .

3.2.2 Naïve approaches

If d = 2, all facets are edges, thus it is enough to find all verticesm of P that share a facet withm0.
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If d = 3, it can be shown that it is enough to find all verticesm of P such that there exist two facets
F, F ′ such thatm,m0 ∈ F ∩ F ′. [Henk et al., 1997]

In general, if d ≤ 4, it can be shown that it is enough to find all verticesm of P that share d−1 facets
withm0. [Henk et al., 1997]

However, if d ≥ 5, there may exist vertices that share many facets and do not form an edge!
[Henk et al., 1997]

3.2.3 A correct solution

The author apologises for the somewhat dense formalism that follows: it was created only to simplify
writing the resulting algorithm and the complexity analysis. The basic idea is nonetheless already
present in [Henk et al., 1997]: two vertices form an edge if and only if they are the only vertices in
the facets that contain them.

Definition 3.2.1. (Vertices-facets matrix) The vertices-facets matrix associated to P is V F :=
(vfij)i∈I,j∈J ∈M|I|×|J |(Z), where vfij = 1 ifmi ∈ Fj , and vfij = 0 else.

Definition 3.2.2. (To share a facet, shared facets vector) Let i, i′ ∈ I, j ∈ J . The vertices mi and
mi′ share the facet Fj if mi ∈ Fj and mi′ ∈ Fj . In other words, two vertices share a facet if and
only if vfijvfi′j = 1. Let n < |I|, and fix i0, . . . , in ∈ I . The shared facets vector associated to
i0, . . . , in is Si0,...,in := (si0,...,ini )i∈I := (V F )(((vfi0j)j∈J)

t ◦ · · · ◦ ((vfinj)j∈J)t) ∈ M|I|×1(Z),
where ◦ : (M|I|×1(Z))2 →M|I|×1(Z) is the Hadamard or coordinate-wise product.

Proposition 3.2.3. Let n ∈ Z+
0 , n < |I|, and fix i0, . . . , in ∈ I . For each i ∈ I , the coordinate

si0,...,ini ∈ Z equals the number of facets shared by all the verticesmi,mi0 , . . . ,min at once.

Proof.
si0,...,ini =

∑
j∈J

vfijvfi0j · · · vfinj .

From the expansion above also follow two more propositions:

Proposition 3.2.4. Let n ∈ Z+
0 , n < |I|, and fix i, i0, . . . , in ∈ I . For any permutation σ ∈ Sn+2 we

have si0,...,ini = sσi0,...,σinσi .

Proposition 3.2.5. Let n ∈ Z+
0 , n < |I|, and fix i0, . . . , in ∈ I . If k, k′ ∈ {0, . . . , n} are such that

k < k′, then (element-wise) Si0,...,ik,...,ik′ ≤ Si0,...,ik .

Lemma 3.2.6. Fix i0, i1 ∈ I, i0 6= i1. There exists an edge E of P frommi0 tomi1 if and only if the
following two conditions hold:

1. si0i1 ≥ d− 1.
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2. For each i ∈ I \ {i0, i1} such that si0i ≥ d− 1 we have si0,i1i < si0i1 .

Proof. Fix i0, i1 ∈ I, i0 6= i1.

Suppose there exists an edgeE of P frommi0 tomi1 . Let n ∈ Z+, n ≤ d. A non-empty intersection
of n hyperplanes ofMR is of codimension at most n, thus the vertices mi0 and mi1 must lie in the
intersection of at least d− 1 facets 1.

Let i ∈ I \ {i0, i1}. By Propositions 3.2.4 and 3.2.5, we already have si0,i1i ≤ si0i1 (if the reader has
trouble seeing it, they may just expand as in Proposition 3.2.3). Assume for the sake of contradiction
equality on some i ∈ I \{i0, i1}. Then, by Proposition 3.2.3,mi lies on the intersection of all facets of
P shared bymi0 andmi1 or, equivalently,mi lies onE. Indeed, to see this, note that, by Proposition
2.2.4, E is the intersection of all facets of P that contain E, and that if a facet F of P is shared by
mi0 and mi1 then it is shared by all convex combinations of mi0 and mi1 , thus E ⊂ F . This is a
contradiction, as edges contain only two vertices.

Suppose conditions 1 and 2 hold. Assume for the sake of contradiction that there exists a third vertex
mi on the intersection of all facets ofP shared bymi0 andmi1 . Then, by Propositions 3.2.3 and 3.2.5,
si0i ≥ si0,i1i = si0i1 ≥ d − 1, which contradicts condition 2. As a non-empty intersection of facets of
P is a face of P , and a face that contain only two vertices is an edge, this implies that there exists an
edge E frommi0 tomi1 .

Example 3.2.7. The polytope P ⊂ NR with ID= 4 (see Figure 13) on GRDB STFV has vertices

{m0 = (1, 0),m1 = (0, 1),m2 = (−1, 0),m3 = (0,−1)},

and primitive inward-pointing facet normals

{u0 = (1,−1), u1 = (−1,−1), u2 = (−1, 1), u3 = (1, 1)}.

The vertex-facet inclusions arem0 ∈ F1,m0 ∈ F2,m1 ∈ F0,m1 ∈ F1, . . ., thus the vertices-facets
matrix is:

V F =


0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 1

 .
Supoose we want to calculate all primitive vectors on the edges of P starting at i0 = m1. Lemma
3.2.6 gives us a powerful tool appropriate to the task. We firstly calculate S1:

S1 =


0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 1



1
1
0
0

 =


1
2
1
0

 .
1in practice, we will fix only i0, and then use this necessary condition to prune possible values of i1
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Figure 13: The polytope P ⊂ NR with ID= 4 on GRDB STFV.

As s13 = 0 < 1 = d− 1, there does not exist an edge E of P fromm1 tom3. We now calculate S1,0

and S1,2:

S1,0 =


0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 1




1
1
0
0

 ◦

0
1
1
0


 =


0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 1



0
1
0
0

 =


1
1
0
0

 ,

S1,2 =


0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 1




1
1
0
0

 ◦

1
0
0
1


 =


0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 1



1
0
0
0

 =


0
1
1
0

 .
Since s10 = 1 ≥ 1 = d − 1 and s1,02 = s1,03 = 0 < 1 = d − 1, there exists an edge (1,−1) =
(1, 0) − (0, 1) fromm1 tom0. Similarly, there exists an edge (−1,−1) = (−1, 0) − (0, 1) fromm1

tom2. These are already the primitive vectors on their respective edges: if they were not, we would
have to divide them by the (positive) GCD of their coordinates.

3.2.4 Algorithms

Lemma 3.2.6 gives us Algorithm 2, which is a subroutine of Algorithm 4.
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Algorithm 2 Function to find all primitive vectors on the edges of a full-dimensional lattice
polytope starting at a given vertex.
Precondition: V [|I|][d], V F [|I|][|J |], i are as in Algorithm 4 (P ⊂ MR is a full-dimensional

lattice polytope, V [|I|][d] its vertices V F [|I|][|J |] its vertices-facets matrix, and i the
index of one of its vertices.)

Postcondition: The function returns a dynamic array containing all primitive vectors on the
edges of P starting at V [i].

1: Edges← A dynamic array.
2: Si← V F (V F [i, :])t ▷ See Definition 3.2.2.
3: for 0 ≤ j < |I| do
4: if i 6= j && Si[j] ≥ d− 1 then
5: if CheckVertexLemma3.2.6(V , V F , i, Si, j) then ▷ See Algorithm 3.
6: Edges « (V [j, :]− V [i, :])/GCD(V [j, :]− V [i, :]) ▷ See Definition 2.2.30.
7: end if
8: end if
9: end for
10: Return Edges.

Algorithm 3 Function to check if a vertex satisfies the condition described in Lemma 3.2.6 or
not.
Precondition: V [|I|][d], V F [|I|][|J |], i, Si, j are as in Algorithms 2 and 4.
Postcondition: The function returns True if V [j] satisfies the condition described in Lemma

3.2.6, and False if not.
1: Si,j ← V F ((V F [i, :])t ◦ (V F [j, :])t) ▷ See Definition 3.2.2.
2: for 0 ≤ k < |I| do
3: if k 6= i && k 6= j && Si[k] ≥ d− 1 && Si,j[k] = Si[j] then
4: Return False.
5: end if
6: end for
7: Return True.

Theorem 3.2.8. (Correctness and time complexity of Algorithms 2 and 3) For fixed d, Algorithms 2
and 3 are correct and have time complexityO(|I|2|J |), if V F is dense, orO(|I|#V F ), where #V F is
the number of non-zero entries of V F , if V F is sparse.

Proof. By Lemma 3.2.6, the algorithms are correct.

The most computationally expensive steps are:

• Algorithm 2, line 2, which adds anO(|I||J |) term.

• Algorithm 2, line 3, which implies that Algorithm 3 is executed at most |I| times.
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• Algorithm 3, line 1, which adds anO(|I||J |) term.

• Algorithm 3, line 2, which adds anO(|I|) term.

Thus, the time complexity is:

O(|I||J |) + |I|(O(|I||J |) +O(|I|)) = O(|I|2|J |).

It is known that, if A is a sparse matrix with a non-zero entries, the matrix-vector multiplication Ax
can be performed in timeO(a). V F is often sparse (e. g., if P has many facets), and then we have:

O(#V F + |J |) + |I|(O(#V F + |J |) +O(|I|)) = O(|I|#V F + |I||J |+ |I|2),

where #V F is the number of non-zero entries of V F . Since |I|, |J | ≤ #V F , this reduces to
O(|I|#V F ).

3.3 Existence algorithm

Let I = {0, . . . , |I| − 1}, J = {0, . . . , |J | − 1}, d = dim(MR), and let P ◦ ⊂ MR be the dual of
a smooth Fano polytope given by its vertices V [|I|][d] and primitive inward-pointing facet normals
H[|J |][d] (see Theorem 2.2.8.i and Proposition 2.2.18, respectively).

One of the two main problems we aim to solve in this thesis is designing an algorithm that decides if
P ◦ is additive or not. We call this decision problem the existence problem. To this effect, we have two
equivalent criteria, given by Corollary 2.4.6 and Proposition 2.4.9. The latter gives an algorithm with
a step of time complexity which is likely exponential on d and |J |. Indeed, the algorithm requires us
to check all subsets ofH of length d. An elementary bound on binomial coefficients, and a conjecture
of Batyrev (see [Debarre, 2002]), which states that, if P is smooth Fano, then d ≤ |J | ≤ 3d, yield:(

|J |
d

)
<

(
|J |e
d

)d

≤ (3e)d.

Furthermore, for large d and |J |, Stirling’s approximation yields:(
|J |
d

)
∼

√
|J |

2πd(|J | − d)
|J ||J |

dd(|J | − d)(|J |−d)
.

Since in subsection 3.6 we will also be interested in general very ample polytopes, to which Batyrev’s
conjecture does not apply, it seems reasonable to implement the algorithm given by Corollary 2.4.6
instead.

We implemented Algorithm 4 (which, in turn, depends on Algorithms 2, 3, and 5) based on results
from [Arzhantsev and Romaskevich, 2017] (see Corollary 2.4.6). The following list is a more thorough
description of the steps in our procedure:
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• Algorithm 4, line 1: See Definition 3.2.1.

• Algorithm 4, lines 2 to 7: This for loop iterates through the columns of V F and fills in each
of them at each step. For each j ∈ J , there exists bj ∈ R such that for all x ∈ P we have
〈H[j], x〉 ≥ bj , as H[j] is an inward-pointing facet normal. Thus, for each i ∈ I, j ∈ J , we
have 〈H[j], V [i]〉 ≥ bj . In particular, in the case of equality, V [i] is in the supporting affine
hyperplane of the facet Fj defined byH[j], thus V [i] ∈ Fj . The converse is also clearly true.

• Algorithm 4, lines 8 to 12: This for loop iterates through the rows of V F and, at each step,
checks if the vertex associated to the row satisfies the condition described in Corollary 2.4.6
or not, and returns True if it does. To this effect, we use Algorithm 5.

• Algorithm 5, line 1: We calculate the primitive vectors on the edges of P starting at V [i], and
store them in the dynamic array Edges. To this effect, weuseAlgorithms 2 and 3, see subsection
3.2.

• Algorithm 5, lines 2 to 10: This for loop iterates through the columns of V F and, at each step,
if the vertex V [i] is not in the facetFj defined byH[j], it iterates through the primitive vectors
on the edges of P starting at V [i] (i. e., the entries of Edges). In turn, this for loop checks if
the negation of the inequality in Corollary 2.4.6 is true at each step, and returns False if it is.

• Algorithm 5, line 11: Return True if none of the pairs facet-edge in Corollary 2.4.6 satisfy the
negation of the inequality therein.

• Algorithm 4, line 13: Return False if none of the vertices of P satisfy the condition in Corollary
2.4.6.

Algorithm 4 Algorithm to decide if the dual of a smooth Fano polytope given by both its
vertices and primitive inward-pointing facet normals is additive or not.
Precondition: P ◦ ⊂MR is the dual of a smooth Fano polytope. V [|I|][d] are the vertices of

P ◦. H[|J |][d] are the primitive inward-pointing facet normals of P ◦.
Postcondition: The algorithm returns True if P ◦ is additive, and False if not.
1: V F ← A zero array of dimension |I| × |J |. ▷ See Definition 3.2.1.
2: for 0 ≤ j < |J | do ▷ Fill in V F .
3: IndicesInFacet← Argmin0≤i<|I|{〈H[j], V [i]〉}
4: for i ∈ IndicesInFacet do
5: V F [i, j]← 1
6: end for
7: end for
8: for 0 ≤ i < |I| do ▷ Check each vertex.
9: if CheckVertexCorollary2.4.6(V ,H , V F , i) then ▷ See Algorithm 5.
10: Return True.
11: end if
12: end for
13: Return False.
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Algorithm 5 Function to check if a vertex satisfies the condition described in Corollary 2.4.6
or not.
Precondition: V [|I|][d],H[|J |][d], V F [|I|][|J |], i are as in Algorithm 4.
Postcondition: The function returns True ifV [i] satisfies the condition described in Corollary

2.4.6, and False if not.
1: Edges← FindEdgesFromVertex(V , V F , i) ▷ See Algorithm 2.
2: for 0 ≤ j < |J | do
3: if V F [i][j] == 0 then
4: for 0 ≤ k < # Edges do
5: if 〈H[j], Edges[k]〉 > 0 then
6: Return False.
7: end if
8: end for
9: end if
10: end for
11: Return True.

Theorem 3.3.1. (Correctness and time complexity of Algorithms 4 and 5) For fixed d, Algorithms 4
and 5 are correct and have time complexity O(|I|3|J |), if V F is dense, or O(|I|2#V F ), where #V F
is the number of non-zero entries of V F , if V F is sparse.

Proof. By the previous analysis, the algorithms are correct.

The most computationally expensive steps are:

• Algorithm 4, lines 2 to 7, which add an O(|I||J |) term.

• Algorithm 4, line 8, which implies that Algorithm 5 is executed at most |I| times.

• Algorithm 5, line 1, which adds anO(|I|2|J |) orO(|I|#V F ) term (see Theorem 3.2.8).

• Algorithm 5, lines 2 to 10, which add anO(|J |) term (note that # Edges= d = O(1)).

Thus, the time complexity isO(|I|3|J |) orO(|I|2#V F ).

Remark 3.3.2. The procedure above may be slightly modified to generalise it to arbitrary very ample
(full-dimensional lattice) polytopes, by using Theorem 2.4.5. In particular, we need just add a few lines
before Algorithm 5, line 2, to check if the primitive vectors on the edges of P starting at V [i] form a
basis ofM (i. e., if # Edges= d and det(Edges) = ±1). We indeed use this observation in subsection
3.6 to implement our Macaulay2 package.
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3.4 Uniqueness algorithm

Let J = {0, . . . , |J | − 1}, d = dim(MR), and let P ◦ ⊂ MR be the dual of a smooth Fano polytope
given by the primitive inward-pointing facet normalsH[|J |][d] (see Proposition 2.2.18).

The second main problem analysed in this thesis is that of deciding if P ◦ is uniquely additive or not.
We call this decision problem the uniqueness problem. To this effect, we have the criterion given by
Theorem 2.4.14, which may be used in conjunction with Algorithm 4, and optimised using Remark
2.4.10, which allows us to obtain a basisB ⊂ N ofN of inward-pointing facet normals such that the
remaining lie in the negative octant with respect to B, whilst avoiding the combinatorial explosion
described in subsection 3.3. We will, however, implement the algorithm exactly as suggested by
[Dzhunusov, 2022], as we will only use it on small instances.

We implemented Algorithm 6 based on results from [Dzhunusov, 2022] (see Theorem 2.4.14). The
following list is a more thorough description of the steps in our procedure:

• Algorithm 6, lines 1 to 2: PossibleBases is a dynamic array containing all subsets ofH of length
d. The Python library itertools, which “standardizes a core set of fast, memory efficient tools
[that] form an “iterator algebra”making it possible to construct specialized tools succinctly and
efficiently in pure Python” [Python, 2022], was very helpful. The for loop iterates through the
elementsB[d][d] of PossibleBases.

• Algorithm 6, lines 3 to 7: If det(B) is close to±1, thenB ⊂ N is a basis ofN .

Sort∗(H ,B) sortsH in any way such that the first d columns ofH are equal to the columns of
B, in the same order. SortedH is a dynamic array containing the output of Sort∗(H ,B).

After the execution of line 5,R[d][|J | − d] is a dynamic array containing the columns ofH not
inB. After the execution of line 6,R is changed to the basis B.

IsNonPositive(R) returns True if all entries of R are non-positive (i. e., R[i, j] ≤ 0 for all
i ∈ {0 . . . , d − 1}, j ∈ {0, . . . , |J | − d − 1}, or, equivalently, if the columns of R lie in the
negative octant with respect to the basisB ⊂ N ofN ), and False if not.

These conditions are stated before on page 2 of [Dzhunusov, 2022] (before the main result),
and are also described in Proposition 2.4.9.

• Algorithm 6, line 8: B∗ ⊂M is the linear algebraic dual of B (i. e., the columns of B∗ are the
dual basis of the basis given by the columns of B).

• Algorithm 6, lines 9 to 17: This for loop iterates through indices i ∈ {0, . . . , d− 1} of columns
ofB, and for each i defines an integer linear programming problem Pi:
Let x = (xj)0≤i<d ∈M . Maximise

f(x) =

d−1∑
j=0
j ̸=i

〈H[:, j], x〉,
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subject to

〈H[:, i], x〉 = −1,
〈H[:, j], x〉 ≥ 0, ∀j ∈ J, j 6= i.

If a solution S1 ∈M to Pi exists, then it is:
1) Equal to S0 = −B∗[:, i] ∈ M , the negative of the i-th column of B∗, and then Ri =
{S0} (see Definition 2.4.12).

2) Not equal to S0 ∈M , and thenRi 6= {S0}.
Indeed, the set of feasible solutions to Pi is exactly Ri. If S0 6∈ Ri, we clearly have 2. If
S0 ∈ Ri, then note that f(x) ≥ 0 for all x ∈ Ri, with equality if and only if x = S0. Thus, if
S0 ∈ Ri and S0 = S1, then maxx∈Ri f(x) = f(S1) = f(S0) = 0, f(x) = 0 for all x ∈ Ri,
and we have 1. If S0 ∈ Ri and S0 6= S1, then {S0, S1} ⊂ Ri, and we have 2.

If the set of solutions to Pi is empty, thenRi is empty, andRi 6= {S0}.
Since P ◦ is uniquely additive if and only if Ri = {S0} for all i ∈ {0, . . . , d − 1}, we return
False if there exists an i ∈ {0, . . . , d − 1} such that S0 6= S1 or the set of solutions of Pi is
empty, and True if not.

For this last part we used PuLP [Mitchell et al., 2022], a powerful and widely used linear pro-
grammingmodeling Python librarywhich also supportsmixed and integer linear programming.
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Algorithm 6 Algorithm to decide if the dual of an additive smooth Fano polytope given by its
primitive inward-pointing facet normals is uniquely additive or not.
Precondition: ε > 0 is a small tolerance. P ◦ ⊂ MR is the dual of an additive smooth Fano

polytope. H[d][|J |] are the primitive inward-pointing facet normals of P ◦. Note: H is
the transpose of its homonym in Algorithm 4!

Postcondition: The algorithm returns True if P ◦ is uniquely additive, and False if not.
1: PossibleBases← Subsets(H , d) ▷ Read description for more details.
2: for B ∈ PossibleBases do
3: if ||det(B)| − 1| ≤ ε then ▷ If B is a basis.
4: SortedH← Sort∗(H , B) ▷ Read description for more details.
5: R← SortedH[:, d :] ▷ Slice vectors inH that are not in B.
6: R← B−1R ▷ Change of basis.
7: if IsNonPositive(R) then ▷ Read description for more details.
8: B∗← (B−1)t ▷ Linear algebraic dual of B.
9: for 0 ≤ i < d do
10: S0←−B∗[:, i] ▷ A priori solution.
11: Model← DefineLPModel(Maximise, x = (xj)0≤j<d, f(x), A, b) ▷ Read

description for more details.
12: S1← LPSolve(Model)
13: ifModel.status != “Optimal” or ‖S1 − S0‖ ≥ ε then
14: Return False.
15: end if
16: end for
17: Return True.
18: end if
19: end if
20: end for
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3.5 Results

The algorithms in subsections 3.2 to 3.4 were implemented in Google Colab, and later in the
Macaulay2 framework. The Python and Macaulay2 code, raw and processed data, plots, etc. may
be found in the Github repository: https://github.com/iZafiro/SFTV.

3.5.1 Summary

The following table summarises the results of classifying all additive smooth Fano polytopes of di-
mensions 2 to 6. The raw data was web-scraped from the GRDBwebsite [Brown and Kasprzyk, 2009],
and was provided by [Øbro, 2007] (see subsection 3.1). For dimensions 2 to 4, these results will be
verified by matching them with the existing literature (see section 4). The column labels indicate, in
order:

1. d: Dimension.

2. #NAP: Number of non-additive polytopes.

3. #(NU)AP: Number of (not uniquely) additive polytopes.

4. #UAP: Number of uniquely additive polytopes.

d #NAP #(NU)AP #UAP Total Note
2 1 2 2 5
3 4 12 2 18 #(NU)AP + #UAP = 14 obtained

by [Huang and Montero, 2020].
4 45 75 4 124
5 396 466 4 866
6 4194 3420 8 7622
Total 4640 3975 20 8635

Table 2: Summary of the classification of additive smooth Fano polytopes of dimensions 2
to 6.

3.5.2 Data visualisation

We used Seaborn [Waskom, 2022a], a modern Python data visualisation library, to plot histograms of
the distribution of the three classes of smooth Fano polytopes (non-additive, (not uniquely) additive,
anduniquely additive) of dimensions 2 to 6with respect to various quantities. The plots showabsolute
frequency of each class on the y-axis, and number of facets, vertices, volume, degree, and boolean
values for centrally symmetric, zero barycentre, and zero dual barycentre on the x-axis. We overlayed
non-stacked histograms with kernel density estimates (KDEs), “a [method that] represents the data
using a continuous probability density curve” [Waskom, 2022b], to make global tendencies easier to
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spot.

In order to be consistent with previous subsections, the number of facets and vertices of all polytopes
have been transposed (i. e., if P ⊂ NR is a smooth Fano polytope, its associated data have the
number of facets and vertices corresponding to its polar polytope P ◦ ⊂MR).

Figure 14: Distribution of the three classes of smooth Fano polytopes of dimension 2 with
respect to various quantities.
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Figure 15: Distribution of the three classes of smooth Fano polytopes of dimension 3 with
respect to various quantities.
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Figure 16: Distribution of the three classes of smooth Fano polytopes of dimension 4 with
respect to various quantities.
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Figure 17: Distribution of the three classes of smooth Fano polytopes of dimension 5 with
respect to various quantities.
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Figure 18: Distribution of the three classes of smooth Fano polytopes of dimension 6 with
respect to various quantities.
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Figure 19: Distribution of the three classes of smooth Fano polytopes of dimensions 2 to 6
with respect to various quantities.
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3.5.3 Qualitative analysis

We may infer the following qualitative notions from inspecting the histograms in Figures 14 to 19:

1. For d = 2 to 5, there are more additive polytopes than non-additive. For d = 6 (and thus also
in the final histogram), this trend is reversed.

2. For d = 2, number of facets and number of vertices data are identical. This will be explained
by the cohomological analysis in section 4.

3. Volume and number of vertices data are identical.

4. The frequency distributionof thenumber of facets andnumber of vertices for the non-additive
and additive classes appears to be roughly normal, with a mean that increases with d. In all of
these histograms, the mean for the non-additive class is higher than the mean for the additive
class. This last observation is to be expected, at least in thenumber of facets case, as Demazure
roots of polytopes with a higher number of facets are solutions to a more restrictive system of
linear inequalities, thus additive actions on such polytopes are probably less common.

5. For d = 3 or 4 to 6, the frequency distribution of the degree for the non-additive and additive
classes appears to have a lowmean and a heavy tail to the right. This mean also increases with
d. As a consequence, the final histogram shows several low-dimensional outliers to the left of
the main distribution. In all of these histograms, the mean for the non-additive class is lower
than the mean for the additive class, and the distribution for the non-additive class appears to
be taller.

6. Most smooth Fano polytopes are not centrally symmetric nor have zero (dual) barycentre.

7. Although the class of smooth Fano polytopes is much less numerous than the class of reflexive
polytopes, they also appear to increase exponentially with d.

8. A conjecture of Batyrev [Debarre, 2002] states that a smooth Fano polytope of dimension d
has at most 3d vertices, if d is even, or 3d− 1 vertices, if d is odd. This is clearly verified in the
histograms of the number of facets for each dimension.

9. Finally, we note that the technique of producing a KDE “has the potential to introduce distor-
tions if the underlying distribution is bounded or not smooth” [Waskom, 2022b]. This phe-
nomenon can be seen in many plots, as the values on the x-axis are not continuous. However,
“the quality of the representation also depends on the selection of good smoothing parame-
ters” [Waskom, 2022b]. We experimented a fair bit with these parameters before being satis-
fied with the plots.

Giving amore convincingmathematical argument formany of these observations is outside the scope
of this thesis. Thismaybedifficult in some cases (for example, observations 5 and8) or trivial in others,
and may be the subject of future research. In any case, the latter part of this subsection is evidence
for the usefulness of data visualisation in higher mathematics.
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3.6 Macaulay2 package

The Macaulay2 package and installation instructions may be found in the Github repository: https:
//github.com/iZafiro/SFTV.

We created AdditiveProjectiveToricVarieties, a new Macaulay2 package with methods for work-
ing with additive actions on projective toric varieties, based on algorithms discussed on this the-
sis. We followed package writing guidelines and standards described in the Macaulay2 website
[Grayson et al., 1993]. The package is still a work in progress, so there will be improvements and
more testing. In particular, algorithms for calculating Demazure roots, and algorithms on subsections
3.2 and 3.4 of this thesis, are missing. Nevertheless, one of the specific objetives of this thesis was to
implement the existence algorithm, and this was done.

The package also includes a pre-processed database which classifies as additive or non-additive
smooth Fano toric varieties of dimension one to five as per the database on the NormalToricVarieties
package.

The package dependencies are packages NormalToricVarieties and Polyhedra. The exported meth-
ods are isAdditive, listAdditiveSmoothFanoToricVarieties, and randomAdditiveSmoothFanoToricVari-
ety. The following is a description of each method:

• isAdditive: This method requires either an object P of type Polyhedron, an object X of type
NormalToricVariety, or two integers d, n which correspond to a smooth Fano toric variety as
per the database on the NormalToricVarieties package. Thus, this method is polymorphic, and
has three different implementations:

1) If the input is an object P of type Polyhedron, we call the main routine.
We run three guard clauses for input validation: one that checks ifP is compact, another
that checks if P is full-dimensional, and another that checks if P is a lattice polytope. If
P is not very ample, we scale P by d− 1, so that it is, as the algorithm requires it.
We implemented the generalised version of the existence algorithmdescribed in Remark
3.3.2. We also wrote two auxiliary methods, findEdgesFromVertex, and checkVertex,
which correspond to the Algorithms 2, and 5, respectively, although findEdgesFromVer-
tex was implemented using pre-existing methods in the Polyhedra package. isAdditive
proved to be very slow for some polytopes of dimension greater than or equal to six, and
we suspect this is the reason, as these pre-existingmethodsmay be used to calculate the
entire face lattice of the polytope, and may not be optimised for calculating only edges.
This method returns True, if the associated projective variety is additive, and False if not.

2) If the input is an objectX of type NormalToricVariety, we call a second routine. We run a
guard clause for input validation, which checks ifX is projective. Then, we calculate the
normal fan ofX using amethod in the NormalToricVarieties package, get the convex hull
and polar polytope using methods in the Polyhedra package, and call the main routine
with the resulting polytope.

3) If the input are two integers d, n, we call a third routine. We run various guard clauses
for input validation, which check if d, n correspond to valid inputs for the SmoothFan-
oToricVariety method on the NormalToricVarieties package. If the dimension is equal to
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six, we call the second routine with the corresponding smooth Fano toric variety. If the
dimension is less than or equal to five, we fetch the return value from the pre-processed
database mentioned earlier.

• listAdditiveSmoothFanoToricVarieties: This method requires an integer d such that d ≥ 1 and
d ≤ 5. We run a guard clause for input validation, which checks if d is valid. Then, we return a
list containing indices as per the database on the NormalToricVarieties package, and the cor-
responding additive smooth Fano toric varieties as objects of type NormalToricVariety. This
method is fast, as we fetch the data from the pre-processed database. This list is comprehen-
sive: it contains all such varieties of the given dimension d.

• randomAdditiveSmoothFanoToricVariety: This method requires an integer d such that d ≥ 1
and d ≤ 5. We run a guard clause for input validation, which checks if d is valid. Then, we
return a list containing an index as per the database on the NormalToricVarieties package, and
the corresponding additive smooth Fano toric variety as an object of type NormalToricVariety.
This variety is randomly (uniformly) sampled from the pre-processed database, and is of the
given dimension d.

The package also includes documentation and examples for each method, which are automatically
built as HTML files upon installation (see Figure 20).

Last, but not least, the package includes eight automatic tests, which may be run at any time. The
tests do the following:

• The first six test the three implementations of the isAdditive method with smooth Fano toric
varieties of dimension 1 to 4, by counting the number of times the method returns true and
comparing it with results on subsection 3.5.

• The seventh tests the listAdditiveSmoothFanoToricVarieties method similarly, by comparing
the lengths of the returned lists.

• The eighth tests the randomAdditiveSmoothFanoToricVariety method by calling it once for
each d ∈ {1, . . . , 5}, and also calling the isAdditive method to assert that the returned va-
riety is additive. This is the only random test.
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Figure 20: Automatically built HTML file corresponding to documentation for the method
isAdditive.

SECTION 4
RESULTS VALIDATION

We will match our results for dimensions 2 to 4 with already existing classifications in the literature.
Smooth Fano polytopes are simplicial, therefore we can use results in [Fulton, 1993] to calculate the
rational cohomology of their associated varieties in terms of their number of vertices and facets. This
will prove immediately useful.

Let N,M be dual lattices with associated vector spaces NR,MR of dimension d ∈ Z+. Let
{e1, . . . , ed} ⊂ NR, {e∗1, . . . , e∗d} ⊂MR be bases ofN,M , respectively.
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4.1 Cohomology of smooth Fano toric varieties

Let P ⊂ NR be a simplicial polytope with |I| vertices and |J | facets. We will use the following
simplifying abuse of notation throughout this entire section: we will denote by XP the projective
toric variety associated to the fan which covers the faces of P (i. e., the projective toric variety which
we have hitherto referred to asXP ◦ ).

Definition 4.1.1. (Betti number, face number, constant Betti number) Let i ∈ {0, . . . , 2d}, p ∈
{0, . . . , d}, and let H i(XP ,Q) be the i-th rational cohomology group of XP . The i-th Betti num-
ber of XP is bi := dim(H i(XP ,Q)) (in particular, b2 = |Pic(XP )|, where Pic(XP ) is the Picard
group ofXP ). We also define hp := b2p.

The i − 1-th face number fi−1 of P is its number of faces of dimension i − 1 (in particular, f0 =
|I|, fd−1 = |J |), if i > 0, or f−1 = 1, if i = 0.

Finally, we say a Betti number ofXP is constant if it is equal to an expression which does not depend
on any face number.

Proposition 4.1.2. (Poincaré duality, Vanishing of odd Betti numbers) By Poincaré duality, for each
p ∈ {0, . . . , bd2c}, we have hp = hd−p. Furthermore, the rational cohomology ofXP vanishes in odd
dimensions, thus so do odd Betti numbers.

Proposition 4.1.3. (Formula for even Betti numbers) Let p ∈ {0, . . . , d}. We have:

hp = b2p =

d∑
i=p

(−1)i−p

(
i

p

)
fd−i−1.

In particular:

i) The constant even Betti numbers ofXP are h0 = b0 =
∑d

i=0(−1)ifd−i−1 = hd = b2d = 1.

ii) h1 = b2 =
∑d

i=1(−1)i−1ifd−i−1 = hd−1 = b2d−2 = f0 − d = |I| − d.

Proof. (Propositions 4.1.2, 4.1.3.) See [Fulton, 1993], section 5 for the application of Poincaré duality,
vanishing of odd Betti numbers, and formula for even Betti numbers. The consequences follow easily.

4.2 Dimension 2

Let P ⊂ NR be a simplicial polytope of dimension 2 with |I| vertices and |J | facets.

Proposition 4.2.1. The following are true:

i) The only non-constant Betti number ofXP is h1 = b2 = |Pic(XP )| = |I| − 2.

ii) |I| = |J |.
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Remark 4.2.2. Item ii of this proposition justifies item 2 of the qualitative analysis in subsection 3.5.3.

Proof. Item i follows from Proposition 4.1.2, and from expanding Proposition 4.1.3 for p = 1. Item ii
follows from expanding Proposition 4.1.3 for p = 0, 2.

The following tables contain thematching of additive smooth Fano polytopes of dimension 2 (i. e., our
results) with the classification in Debarre’s Fano Varieties and Polytopes [Debarre, 2002] (see subsec-
tion 2.3). This is easily done by inspecting each polytope. Non-additive polytopes are omitted. The
rows are ordered as in [Debarre, 2002]. The column labels indicate, in order:

1. Nº: The position in [Debarre, 2002].

2. ID: The ID in the GRDB.

3. Degree: The degree (−KX)2, obtained from the GRDB.

4. b2: The second Betti number, calculated using Proposition 4.2.1.

5. |I|, |J|: The number of vertices and facets of the smooth Fano polytope, obtained from the
GRDB.

6. Notation: The notation in [Debarre, 2002].

7. Uniquely additive?: Yes if the polytope is uniquely additive, no if it is (not uniquely) additive.

8. Smooth Fano variety (Table 4): The associated smooth Fano variety, obtained from
[Debarre, 2002].

Nº ID Degree b2 |I| |J| Notation Uniquely
additive?

1 4 8 2 4 4 P1 × P1 Yes
2 5 9 1 3 3 S2 No
3 3 8 2 4 4 Blp(P2) No
4 1 7 3 5 5 A2 Yes

Table 3: Matching of additive smooth Fano polytopes of dimension 2 with the classification
in Debarre’s Fano Varieties and Polytopes (see [Debarre, 2002]).

Nº ID Notation Smooth Fano va-
riety

1 4 P1 × P1 P1 × P1

4 1 A2 Blp,q(P2)

Table 4: Matching of uniquely additive smooth Fano polytopes of dimension 2 with the
classification in Debarre’s Fano Varieties and Polytopes (see [Debarre, 2002]).
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4.3 Dimension 3

Let P ⊂ NR be a simplicial polytope of dimension 3 with |I| vertices and |J | facets.

Proposition 4.3.1. The non-constant Betti numbers of XP are h1 = b2 = h2 = b4 = |Pic(XP )| =
|I| − 3.

Proof. This is an immediate consequence of Propositions 4.1.2, 4.1.3.i, ii.

The following tables contain the matching of additive smooth Fano polytopes of dimension 3 (i. e.,
our results) with the classification by [Mori and Mukai, 2003]. This is mostly done by matching the
(−KX)3 andB2 in [Mori and Mukai, 2003] with the degree obtained from the GRDB and the second
Betti number calculated using Proposition 4.3.1. Non-additive polytopes are omitted. The rows are
ordered as in [Mori and Mukai, 2003]. The column labels indicate, in order:

1. Nº: The nº in [Mori and Mukai, 2003].

2. ID: The ID in the GRDB.

3. Degree: The degree (−KX)3, obtained from [Mori and Mukai, 2003] and the GRDB.

4. b2: The second Betti number, obtained from [Mori and Mukai, 2003] and calculated using
Proposition 4.3.1.

5. |I|, |J|: The number of vertices and facets of the smooth Fano polytope, obtained from the
GRDB.

6. Notation: The notation in [Huang and Montero, 2020].

7. Uniquely additive?: Yes if the polytope is uniquely additive, no if it is (not uniquely) additive.

8. Smooth Fano variety (Table 6): The associated smooth Fano variety, obtained from
[Mori and Mukai, 2003].

Nº ID Degree b2 |I| |J| Notation Uniquely
additive?

- 23 64 1 4 4 P3 No
33 22 54 2 5 6 II33 No
34 19 54 2 5 6 II34 No
35 20 56 2 5 6 II35 No
36 7 62 2 5 6 II36 No
26 16 46 3 6 8 III26 No
27 21 48 3 6 8 III27 Yes
28 17 48 3 6 8 III28 No
29, 30 6 50 3 6 8 III29, III30 No
29, 30 12 50 3 6 8 III29, III30 No
31 11 52 3 6 8 III31 No
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10 14 42 4 7 10 IV10 Yes
11 10 44 4 7 10 IV11 No
12 8 46 4 7 10 IV12 No

Table 5: Matching of additive smooth Fano polytopes of dimension 3 with the classification
by Mori, Mukai (see [Mori and Mukai, 2003], [Huang and Montero, 2020]).

Nº ID Notation Smooth Fano va-
riety

27 21 III27 P1 × P1 × P1

10 14 IV10 P1 × S7

Table 6: Matching of uniquely additive smooth Fano polytopes of dimension 3 with the
classification by Mori, Mukai (see [Mori and Mukai, 2003], [Huang and Montero, 2020]).

Remark 4.3.2. The polytopeS7 is the unique (up to isomorphism) Del Pezzo surface of degree 7, which
is given byBlp,q(P2), the blow-up of P2 at two general points p, q.

Remark 4.3.3. As previously mentioned, the number of additive smooth Fano toric threefolds appears
initially in [Huang and Montero, 2020], who found it through theoretical means.

4.4 Dimension 4

Let P ⊂ NR be a simplicial polytope of dimension 4 with |I| vertices and |J | facets.

Proposition 4.4.1. The non-constant Betti numbers of XP are h1 = b2 = h3 = b6 = |Pic(XP )| =
|I| − 4, h2 = b4 = −2|I|+ |J |+ 6.

Proof. Proposition 4.1.3.ii implies h1 = b2 = f2 − 2f1 + 3|I| − 4 = h3 = b6 = |I| − 4. Then,

f2 − 2f1 + 2|I| = 0. (1)

On the other hand, Proposition 4.1.3.i implies h0 = b0 = |J | − f2 + f1 − |I| + 1 = h4 = b8 = 1.
Then,

|J | − f2 + f1 − |I| = 0. (2)

Adding (1) and (2) gives f1 = |I| + |J |, thus the formula in Proposition 4.1.3 implies h2 = b4 =
f1 − 3|I|+ 6 = −2|I|+ |J |+ 6.

The following tables contain the matching of additive smooth Fano polytopes of dimension 4 (i.
e., our results) with the classification by [Batyrev, 1999]. This is done by using the matching in
[Doi and Yotsutani, 2015], and verifying its correctness bymatching the c41, b2 and b4 in [Batyrev, 1999]
with the degree obtained from the GRDB and the second and fourth Betti numbers calculated using
Proposition 4.4.1. Non-additive polytopes are omitted. The rows are ordered as in [Batyrev, 1999].
The column labels indicate, in order:
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1. Nº: The nº in [Batyrev, 1999].

2. ID: The ID in the GRDB.

3. Degree: The degree (−KX)4, obtained from [Batyrev, 1999] and the GRDB.

4. b2, b4: The second and fourth Betti numbers, obtained from [Batyrev, 1999] and calculated
using Proposition 4.4.1.

5. |J|, |I|: The number of vertices and facets of the smooth Fano polytope, obtained from the
GRDB.

6. Notation: The notation in [Batyrev, 1999].

7. Uniquely additive?: Yes if the polytope is uniquely additive, no if it is (not uniquely) additive.

8. Smooth Fano variety (Table 8): The associated smooth Fano variety, obtained from
[Batyrev, 1999].

Nº ID Degree b2 b4 |J| |I| Notation Uniquely
additive?

1 147 625 1 1 5 5 P4 No
2 25 800 2 2 8 6 B1 No
3 139 640 2 2 8 6 B2 No
4 144 544 2 2 8 6 B3 No
5 145 512 2 2 8 6 B4 No
6 138 512 2 2 8 6 B5 No
7 44 594 2 3 9 6 C1 No
8 141 513 2 3 9 6 C2 No
9 70 513 2 3 9 6 C3 No
10 146 486 2 3 9 6 C4 No
11 24 605 3 3 11 7 E1 No
12 128 489 3 3 11 7 E2 No
13 127 431 3 3 11 7 E3 No
14 30 592 3 4 12 7 D1 No
15 31 576 3 4 12 7 D2 No
16 49 560 3 4 12 7 D3 No
17 35 560 3 4 12 7 D4 No
18 42 496 3 4 12 7 D5 No
19 129 496 3 4 12 7 D6 No
20 97 486 3 4 12 7 D7 No
21 134 480 3 4 12 7 D8 No
22 66 464 3 4 12 7 D9 No
23 132 464 3 4 12 7 D10 No
24 117 459 3 4 12 7 D11 No
25 140 448 3 4 12 7 D12 No
26 143 432 3 4 12 7 D13 No
27 133 432 3 4 12 7 D14 No
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28 135 432 3 4 12 7 D15 No
29 68 432 3 4 12 7 D16 No
33 41 529 3 5 13 7 G1 No
34 40 450 3 5 13 7 G2 No
35 64 433 3 5 13 7 G3 No
36 60 417 3 5 13 7 G4 No
37 69 406 3 5 13 7 G5 No
38 137 401 3 5 13 7 G6 No
39 26 558 4 5 15 8 H1 No
40 45 505 4 5 15 8 H2 No
41 28 478 4 5 15 8 H3 No
42 118 447 4 5 15 8 H4 No
43 123 415 4 5 15 8 H5 No
46 124 378 4 5 15 8 H8 No
49 74 480 4 6 16 8 L1 No
50 75 464 4 6 16 8 L2 No
51 83 448 4 6 16 8 L3 No
52 105 432 4 6 16 8 L4 No
53 95 416 4 6 16 8 L5 No
54 112 400 4 6 16 8 L6 No
55 106 384 4 6 16 8 L7 No
56 142 384 4 6 16 8 L8 Yes
57 130 384 4 6 16 8 L9 No
62 33 496 4 6 16 8 I1 No
63 29 463 4 6 16 8 I2 No
64 47 442 4 6 16 8 I3 No
65 38 433 4 6 16 8 I4 No
67 93 411 4 6 16 8 I6 No
68 37 400 4 6 16 8 I7 No
69 115 384 4 6 16 8 I8 No
70 94 390 4 6 16 8 I9 No
71 111 389 4 6 16 8 I10 No
72 59 384 4 6 16 8 I11 No
74 126 368 4 6 16 8 I13 No
77 61 385 4 7 17 8 M1 No
78 50 417 4 7 17 8 M2 No
79 58 369 4 7 17 8 M3 No
80 57 369 4 7 17 8 M4 No
81 110 364 4 7 17 8 M5 No
84 71 442 5 8 20 9 Q1 No
85 79 405 5 8 20 9 Q2 No
86 73 394 5 8 20 9 Q3 No
87 77 405 5 8 20 9 Q4 No
88 81 373 5 8 20 9 Q5 No
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89 84 368 5 8 20 9 Q6 No
90 91 363 5 8 20 9 Q7 No
91 90 352 5 8 20 9 Q8 No
93 102 336 5 8 20 9 Q10 No
94 120 336 5 8 20 9 Q11 Yes
105 89 332 5 9 21 9 R1 No
117 62 307 5 11 23 9 See Remark

4.4.2
Yes

119 98 294 6 11 25 10 S2 × S2 Yes

Table 7: Matching of additive smooth Fano polytopes of dimension 4 with Batyrev’s
classification (see [Batyrev, 1999], [Doi and Yotsutani, 2015]).

Nº ID Notation Smooth Fano va-
riety

56 142 L8 P1×P1×P1×P1

94 120 Q11 P1 × P1 × S2

117 62 See Remark
4.4.2

See Remark 4.4.2

119 98 S2 × S2 S2 × S2

Table 8: Matching of uniquely additive smooth Fano polytopes of dimension 4 with
Batyrev’s classification (see [Batyrev, 1999], [Doi and Yotsutani, 2015]).

Remark 4.4.2. (Tables 7, 8) Polytope Nº 117 is isomorphic to the polytope given by the V-
representation {

±e1,±e2,±e3,±e4,
4∑

i=1

ei

}
.
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SECTION 5
CONCLUSIONS

At last! We have arrived to thismomentuous (and somewhat dreaded) section. We have provided the
world with yet another introduction to the beautiful topics of toric geometry, polytope theory, and
their intertwinings; albeit one disturbingly lacking in proofs and not particularly original. The author
can only hope that it has served its purpose of making this thesis self-contained, well-motivated, and
understandable. The reader, on the other hand, may rest assured that it was written with care, and
is encouraged to read the references for more comprehensive justifications of each result. Nomen-
clature may vary from reference to reference, but throughout this text it tries to be consistent and
to adhere to modern conventions (in particular, reading the dissertation by Nill [Nill, 2005] is a great
way to be persuaded to keep the adjective smooth on smooth Fano polytope).

We have designed and implemented an algorithm to obtain the edges of a polytope of any dimension
which compares favourably to existing algorithms in the literature.

We have provided a short review of the papers from Arzhantsev, Romaskevich, and Dzhunusov
[Arzhantsev and Romaskevich, 2017] [Dzhunusov, 2022], and have used their results to design and
implement algorithms to systematically classify (complete) projective toric varieties as additive,
uniquely additive, or non-additive. We have used these algorithms to classify smooth Fano toric va-
rieties of dimension up to six: this is our main new result, as it was previously only partially done in
the cases of surfaces and threefolds [Huang and Montero, 2020].

We have created a new Macaulay2 package with methods for working with additive actions on pro-
jective toric varieties, and followed package writing guidelines described in the Macaulay2 website
[Grayson et al., 1993] accordingly.

Let N,M be dual lattices with associated vector spaces NR,MR of dimension d ∈ Z+. Let
{e1, . . . , ed} ⊂ NR, {e∗1, . . . , e∗d} ⊂MR be bases ofN,M , respectively.

We have identified a small error in the initial classification of smooth Fano toric fourfolds by
Batyrev [Batyrev, 1999], which identifies polytope 117 on Table 7 with the polytope given by the V-
representation {

±e1,±e2,±e3,±e4,±
4∑

i=1

ei

}
,

which is incorrect, as it contains ten vertices instead of nine, and is not additive. The correct statement
is given by Remark 4.4.2.

5.1 Future lines

Possible future lines of work and research include:

• Studying the approach we followed on subsection 3.2.3, and trying to generalise it to produce
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an algorithm to obtain the face lattice of a polytope, instead of only the edges.

• Classifying sevenfolds and eightfolds, as this may still be computationally feasible, although it
will require new polytope data.

• Implementing algorithms for calculating Demazure roots, and algorithms on subsections 3.2
and 3.4, on the new Macaulay2 package. Creating a fork and pull request to the main
Macaulay2 repository, submitting the package for community review, writing a companion
article, and submitting it to a journal dedicated to computational algebraic geometry.

• Working towards a more rigurous justification for the observations in subsection 3.5.3.

Another very interesting immediate line of research is given by the following problem:

Problem 5.1.1. Characterise all uniquely additive smooth Fano toric varieties.

To this effect, it may be worthwhile to consider the following definitions:

Definition 5.1.2. (P1, Del Pezzo, pseudo Del Pezzo polytope)

i) The P1 polytope is the polytope [−1, 1] ⊂ R.

ii) If n is even, the Del Pezzo polytope is the polytope P ⊂ NR given by the V-representation:{
±e1, . . . ,±en,±

n∑
i=1

ei

}
.

iii) If n is even, the pseudo Del Pezzo polytope is the polytope P ⊂ NR given by the V-
representation: {

±e1, . . . ,±en,−
n∑

i=1

ei

}
.

Definition 5.1.3. (Centrally-symmetric vertices, polytope splitting) Let P ⊂ NR be a polytope.

1. We say two vertices v, v′ ∈ P of P are centrally-symmetric if v = −v′.

2. We say P splits into two polytopesQ,Q′ ⊂ NR if P is lattice isomorphic to the convex hull of
(Q× {0}) ∪ ({0} ×Q′).

The following is a theorem of Casagrande:

Theorem 5.1.4. ([Casagrande, 2003], Theorem 5, Proposition 7) Let P ⊂ NR be a smooth Fano
polytope. If P has n linearly independent pairs of centrally-symmetric vertices, then P splits into P1

polytopes, Del Pezzo polytopes, and pseudo Del Pezzo polytopes. The converse is clearly true.

Theorem 5.1.4 improves on a weaker theorem of Ewald [Nill, 2005], which consists of similar state-
ment but for centrally-symmetric facets. Theorem 5.1.4 is originally stated in a stronger form, as it
also characterises smooth Fano polytopes with less pairs of linearly independent centrally-symmetric
vertices.

Page 62 of 66



A COMPUTATIONAL APPROACH TO CLASSIFICATION OF ADDITIVE SMOOTH FANO POLYTOPES

This is all very good news! We note that the Del Pezzo polytope of dimension 2 is self-dual and does
not have any Demazure roots, thus it is not additive (see Figure 21). This is likely true for the Del
Pezzo polytope of any even dimension. We also note that our results imply that all uniquely additive
smooth Fano polytopes of dimension up to 4 split into P1 polytopes and pseudo Del Pezzo polytopes.
Thus, we may state the following conjecture, which would solve Problem 5.1.1:

Conjecture 5.1.5. Let P ⊂ NR be a smooth Fano polytope. Then, P is uniquely additive if and only if
P splits into P1 polytopes, Del Pezzo polytopes, and pseudo Del Pezzo polytopes.

Figure 21: The Del Pezzo polytope of dimension 2 is self-dual.

A simple dimensional analysis lets us verify that Conjecture 5.1.5 is true up to dimension 4 (see Table
2). By considering all possible products of P1, Del Pezzo, and pseudo Del Pezzo polytopes that result
in a polytope of dimeension 5, we also verify that it is true in dimension 5. However, there are only
7 such products that result in a polytope of dimension 6, and 8 uniquely additive smooth Fano toric
sixfolds (see Figure 22).

Figure 22: There is another, a popular internet meme.
Source: [Lucas, 1980], [BabaSherif, 2019].

Is it possible that a high-dimensional polytope with a Del Pezzo factor can be additive, or does this
polytope have a new factor with less vertex symmetry? In the future, we will carefully analyse our
results and see.
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