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Rapp [5] proves that the theory of the field IR of reals in the language with
Magidor-Malitz quantifiers Q},Q?, ... is decidable.

The quantifier Q} is interpreted in a structure M by:

MEQix,, ..., x,¢ iff there exists a set BEM, card(B)=w,, such that for all
distinct by, ...,b,€ B: ME=o[by,...,b,]; such a set B is called homogeneous for ¢.
Using Tarski’s classical result on real closed fields [6] Rapp’s theorem is shown
by proving that the quantifiers @1, 03, ... are effectively eliminable over R.

Biirger [1] addresses the question whether Rapp’s methods can be applied to
the class of all uncountable archimedian real closed fields (ARCF). Up to
isomorphism this is the class of real closed subfields of R. Biirger shows that the
uniform eliminability of @7, for n= 3, is independent of ZFC. In particular, the
continuum hypothesis CH implies the existence of a counterexample to the
eliminability of Q3. (Note that by results of Cowles [2], Vinner [7], and Goltz [3],
the quantifiers Q} and Q? are always effectively eliminable over uncountable
ARCEFs.)

In view of these results it seems natural to consider models of =1 CH, and study
the uniform eliminability of @3, 0%, ... where 2° = card(IR)=w,. Here we assume
that whenever we talk about the quantifier Q}, only fields of cardinality = w, are
considered. We show that again eliminability is independent of ZFC + —CH:

Theorem 1. Assume ZFC + CH, and let k=w,>w, be regular. Let V]G] be a
generic extension of V by a a-product of k Sacks (perfect set) forcings. Then
VIG]E2® =w,, and, in V[ G], the quantifiers Q%, n =3, are uniformly eliminable over
ARCEF.

Fact 2. Assume Martin’s Axiom MA and 2°=w,>w,. Then the quantifiers Q,
nz3, are not uniformly eliminable over ARCF.

The fact follows from the observation that Biirger’s proof [1] of non-
eliminability under CH uses CH only to the extent that the union of <2® meager
sets is meager. But this is also a consequence of MA (see Jech [4, p. 55]).
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Before we prove the theorem we have to prepare material on the reduction of
the quantifier-elimination of the Q%, n=1, to a set theoretic property, and on
product Sacks forcing,

Rapp [5] defines formulae vy}, for k,n=>1:

PHX g, e X)) =X < .. <X,
—)1 /><(\ (©xi+ 1 _xi)<(xj+ 1 _xj)k v (xj+1 _xj)<(xi+ 1 "xi)k)~
<i<j<n
Fact 3 (Rapp [5]). Let w,<2°. Then ARCF admits effective elimination of the
quantifier Q" iff every field R in ARCF (of cardinality =z w,) satisfies R=Qip} for
all k=1.

Rapp obtained large homogeneous sets for yj in R by modifying the Cantor
discontinuum. Motivated by Rapp’s construction we shall define thin systems of
intervals.

Let B= =2 be the binary tree of all finite 0 — 1-sequences; we use r,s,t, ... to
denote elements of B. The tree-ordering on B is given by rCs iff r is an initial
segment of s. "0 and "1 denote the continuations of ¥ by 0, 1 respectively. We well-
order B as follows: let re™2, se2”; then rZs iff m<n or (m=nAJi<m
(rli=stinr(@))=0As@i)=1)).

By an interval we understand a pair I=<{a,b) of reals such that a<b. The
intended meaning of I is the closed interval [a, b] in R, but the identification with
pairs of reals makes the notion absolute.

If I={a,b), J=<{d,b’) are intervals, let d(I,J)=min{|x—x||a<x<h,
a <x'<b'} be their distance, e(l,J):=max(b,b’)—min(a,a’) their extent, and
I(I):=b—a the length of I.

A sequence I ={I,|re B) is called a filtration if each I, is an interval and rCs
—I,21,. The fusion of I is defined as (| ) I,; it is a closed set of reals. A

n<@ ren2
filtration I=<1,|r€ B) is k-thin, k <w, provided
() rem-ll1,)<27%
(i) if there are s2r°0, t2r"1 such that I,nI,=@ then I,.oNI,; =0.
(iii) if r=s and I,.gn1,.; =0 then e(Iyq, 1¢)) <d(I, 0, 1)
Note that a k-thin filtration in V is also a k-thin filtration in any generic
extension of the universe.

Lemma 4. Let [={I,|reB) be k-thin, and let D= () | I, be the fusion of I.
Then D is homogeneous for i, for all n<o. neorenz

Proof. Let x; <x,<x;<x, be elements of D. We have to show that (x, —x;)
<(x4—x3)F or (x4 —x3)<(x,—x,)* Let ry,ry,r3,rs€ B such that x, €1, , x,€1,.,
x3€l,,x,el, andl, NI, = 0,1,.n1,,=0.Lets=r,nr,,t=r;nr,. By the thinness
of I, Iognly =@ and I,-on I, =0. Without loss of generality assume that x; € I -4,
Xy €1pq, X3€1pg, Xq€1,0.

If s=t, we would get x5 < x, or x, <x,, contradiction.

Assume sZt. Then x, —x3 < e(I,, 1) <d(Igg, I¢1)f <(x, —x;)*. The case t s
is treated analogously. QED
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We now recall Sacks forcing P, < with perfect binary trees (see Jech [4, p. 15]).
pCBisaperfect treeif p@and Vsep Itep (t2sand £'0€p, £*1 € p). Order the set
P:={p<B|pis perfect} by inclusion: p<qiff pCq. For pe P define stem(p):=the
unique sep such that Veep (tSs or sCf) and 570, s"1 ep.

Define

p¢%:={sep|sCstem(p) v stem(p)'0<s},
and
p¢'7:={sep|sCstem(p) v stem(p)"1Cs}.

In general, define p", for re B recursively: p® :=p; p%:=(p')¢®> and p"' :=(p")<.
So we obtain the subtree p” of p by branching through p according to the 0—1-
pattern of r. We say that s€ p is an (n+ 1)-st branching point of p, if s =stem(p") for
some re"2. Set p<,q iff p<q and every n-th branching point of ¢ is an n-th
branching point of p (r=1). Set p< ,q iff p<q. Note that p<,q iff p"<q" for all
re"2. A fusion sequence in P is an @-sequence py = oPy = (P2 = 2P3 - -

Fact 5 (see [4, p. 16]). If {p,) is a fusion sequence then the fusionp= () p,of {p.>
is a perfect tree. n<o

Let pe P, re"2, and g=<p". Then the r-amalgamation of q into p is defined as
P=(p\p")vq. Then p<,p, and p"=q.

In Theorem 1 we force with the o-product P* of x Sacks forcings P, where
K=, is a fixed uncountable regular cardinal (see [4, p. 31]).

Let us assume that the continuum hypothesis CH holds. Let P* be the x-fold
cartesian product of P. If p={p(i)| i<x) € P*, set supp(p)={i< x| p(i)=% B}; note
that the full binary tree B is the weakest condition in the Sacks forcing P.

Set P*={peP*|cardsupp(p)<w,}. Order P* by coordinatewise inclusion
p=q iff Vi<k p(i)<q()).

Fact 6 [4, p. 31]). Let G be P*-generic over V. Then cardinals and cofinalities are
absolute between V and V[G], and V{Gl|=2°=w,.

We shall now generalize the ideas of fusion and amalgamation from P to P*. If
we want to “branch” through a condition in P* according to some re"2, weneed a
bookkeeping function b which picks out the coordinates i <k, where we perform
the branching.

So let us fix a function b: w—«, which later will be chosen conveniently. For
n<w and i<k define n*xiew by recursion on n: 0*i:=0 for all i<x;
(n+ D) *i:=n*i,ifb(n)+i,and (n+1)*i:=(n=i)+1,if b(n)=i. Forre Band i<k
define r*ieB by: Oxi:=0 for all i<xk; for re™2 let (FO)i:=("1)*i:=rx*i, if
b(n)=i, and (r0)*i:=(r+i)'0, (*"1) *i:=(r = i)'1, if b(n)=i.

Then define p":=<{p'(i)| i<k e P* for p={p(i)|i<k) e P* and re B by: p'(i)
=(p(i)\**. :

Set p<,q for p,qe P* if for all i<k p(i)<,,,4().

Again, p<,q for p,qe P* iff p"< 4" for all re"2.

Let pe P*, re"2, g<p". Then the r-amalgamation of q into p is defined as
p={p(i)|i< k), where ji(i)is the r * i-amalgamation of ¢(i) into p(i). p<,pand p'=q.
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In defining a fusion sequence in P*, we have to stipulate that b takes care of
every relevant index i infinitely often:
Let po=oP1=1P225 ... . Let S= ) supp(p). Then {p,) is called a fusion

n<wo

sequence, if S<range(bl(w\k)), for all k< w.
Define the fusion q={q(i)|i<x) of {p,) by q()= () p.i). If {p,) is a fusion
n<w

sequence, then {p,(i)),,, is basically a fusion sequence for all i<k, and so the
fusion q of {p,) is a condition in P*; g<p,, for all n.

We now prove our theorem: Assume ZFC + CH and let k =w, > w, be regular.
Construct P*, < as above, and let G be P*-generic over V. Then V[G]E2°=w,.

Claim. If aeV[G] is a real and k<w then there exists a k-thin filtration
I={,|seB) in the ground model V, such that V[ G]l="a is in the fusion of 1.”

Before we prove the Claim, let us show that it yields a proof of the theorem:
Work in V[G]. Let RER be an ARCF of cardinality w,. Let k> 1. For every ae R
choose a k-thin filtration I® € V such that a is in the fusion of I Since w, is regular
> @, there exists DCR, card(D)= w, and a k-thin filtration [ € V, such that [*=]1
for ae D. Then D Cfusion of I, and by Lemma 4, D is a homogeneous set for yj, for
n<w. By Rapp’s Fact 1, the theorem is proved.
Now to prove the Claim it suffices to show the following inside the ground
model:

Lemma 7. Let p|—-pdeR, and k2 1. Then there exists p’ <p and a k-thin system I
such that p' |- p““d is in the fusion of 1.”

Proof. We shall construct a fusion sequence p = p, = op; = 1P2=,P3 ... In P¥* overa
suitable bookkeeping function b. It should be clear that such a b can actually be
defined without difficulties during the subsequent construction, so we can proceed
as if b were fixed in advance. Together with {p,> we construct a k-thin system
I=<I,|reB),such that for re™2: p, |—ael..If we let p’ be the fusion of {p,> then
('Y <p, for re2, and thus p'|—de J I,, for ne w, hence p' |- “d is in the fusion
of I"'” ren2

Let me now describe the recursive construction. Choose p, < p and an interval
Iy of length <1, such that p, [—deIy. Assume that pq, ..., p, and {I,|re ="2) are
suitably defined. Let (1), ..., 7(2") be the enumeration of "2 in the well-order 2. Set
qo:=p,. Weshall define recursively fori=1, ..., 2" conditions ¢; < ,p, and intervals
Lgyo0s Iyy such that 40 -ae fr(i)*Oa g -ae ir(i)‘l .

So fix i and assume the construction is suitably carried out for j<i. Set r: =r(i).
Let d:=min{d(I+o, [s1)| I 0Ny =0 and s2r}. ¢, |-del,. There are ¢’ <q}_,
and an interval I, such that ¢'|-ael’CT, and the length [(I))<min {2~ "+, 49,
Case 1. I splits over ¢, i.e., there are a condition §=<¢' and disjoint intervals I,~,,
I SI, I.onl., =0, such that g |—dael,,, ¥ |-ael,,.

Then let g; be the r-amalgamation of § into g;_, with I.,, I,-; as above.

Case 2. Otherwise, then let g; be the r-amalgamation of ¢’ into g;_, and set
Leg:i=In:=1,.

When the construction for i=1, ...,2" is completed, set p, , 1 :=qzn. Pps 1= wDn>
and pi,,|—ael, for all se™*'2. This completes the definition of {p,> and
I={1,|reB).
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We have to check that [ is a k-thin filtration, i.e., satisfies conditions (i), (ii), and
(iii) above. (i) and (iii) are obvious from the construction. For (ii), let r€"2 and
assume there are s2°0, 1271 such that I,~I,=0. Let p’ be the fusion of {p,>. Then
(') -ael, (p'Y|-ael, witness that in the above construction of I+, I -, I/ splits
over q'. Hence 1., and I,-; are disjoint, as required. This completes the proof of
Theorem 1. O

Let us finally comment on the eliminability of the quantifiers Q3 over ARCF for
regular w; < w, within the model V{G] constructed: If 2 < f < o the same argument
as above shows that the quantifiers Q} are uniformly eliminable over ARCF
in V[G].

In case B=1, however, Biirger’s counterexample R to the eliminability of Q3
under CH stays a counterexample in the generic extension.

R is a counterexample because it is a Lusin set, i.e., every nowhere dense subset
of R is countable. By a standard fusion argument, Lusin sets in V are Lusin in
V[G], so R is a counterexample in V[G] to the eliminability of Q3.
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