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Rapp [5] proves that the theory of the field N of reals in the language with 
Magidor-Malitz quantifiers Qi, QZ,... is decidable. 

The quantifier Q] is interpreted in a structure M by: 
M~Q",xl  . . . .  ,x,q) iff there exists a set Be=M, card(B)>~% such that for all 

distinct b 1 . . . .  , b ,e  B: M ~  q~[b~, ..., b,]; such a set B is called homogeneous for tp. 
Using Tarski's classical result on real closed fields [6] Rapp's theorem is shown 
by proving that the quantifiers QI, Q2 . . . .  are effectively eliminable over N. 

Biirger [1] addresses the question whether Rapp's methods can be applied to 
the class of all uncountable archimedian real closed fields (ARCF). Up to 
isomorphism this is the class of real closed subfelds of ~ .  Bfirger shows that the 
uniform eliminability of Q], for n > 3, is independent of ZFC. In particular, the 
continuum hypothesis CH implies the existence of a counterexample to the 
eliminability of Q3. (Note that by results of Cowles [2], Vinner [7], and Goltz [3], 
the quantifiers QI and Q2 are always effectively eliminable over uncountable 
ARCFs.) 

In view of these results it seems natural to consider models of-q CH, and study 
the uniform eliminability of Q~, Q~, ... where 2~ card(JR)= o)~. Here we assume 
that whenever we talk about the quantifier Q~, only fields of cardinality > ~ are 
considered. We show that again eliminability is independent of ZFC + --7 CH: 

Theorem 1. Assume ZFC + CH, and let ~c=co~>o) 1 be regular. Let V[G] be a 
generic extension of V by a a-product of ~: Sacks (perfect set) forcings. Then 
V[ G] ~ 2o" = co,, and, in V[ G], the quantifiers Q~, n > 3, are uniformly eliminable over 
ARCF. 

Fact 2. Assume Martin's Axiom M A  and 2o'=~o,>co 1. Then the quantifiers Q"~, 
n > 3, are not uniformly eliminable over ARCF. 

The fact follows from the observation that Biirger's proof [1] of non- 
eliminability under CH uses CH only to the extent that the union of < 2o" meager 
sets is meager. But this is also a consequence of MA (see Jech [4, p. 55]). 
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Before we prove  the theorem we have to p repare  mater ia l  on the reduct ion of 
the quant if ier-el iminat ion of the Q~", n >  1, to a set theoret ic  proper ty ,  and  on 
p roduc t  Sacks forcing. 

R a p p  [5] defines formulae  qo~, for  k, n > 1: 

lp~(x~, . . . ,x,)-x~ < . . .  < x ,  

--')" I f i~ ( (Xi  + 1 - -  Xi)  < ( X j  + 1 - -  X j)  k V ( X j  + 1  - -  X j)  < (X i + 1 - -  x i )k)  �9 
l < i< j < n  

Fac t  3 (Rapp  [5]). Let  co~< 20,. Then A R C F  admits effective elimination of  the 
quantifier Q"~ iff every field R in A R  CF (o f  cardinality > co~) satisfies R v--t-- ~,q'kC~"" , for 
all k > l. 

R a p p  obta ined  large h o m o g e n e o u s  sets for ~p~ in R by modifying the Can to r  
discont inuum. Mot iva t ed  by Rapp ' s  cons t ruc t ion  we shall define thin systems of 
intervals. 

Let  B = < ~ be the b inary  tree of  all finite 0 - 1 - s e q u e n c e s ;  we use r, s, t . . . .  to 
denote  elements of  B. The  t ree-ordering on B is given by r ~ s iff r is an initial 
segment  ofs.  r^0 and  r^l denote  the cont inuat ions  o f r  by 0, 1 respectively. We well- 
order  B as follows: let r~"2 ,  s~2" ;  then r ~ s  iff m < n  or ( m = n A 3 i < m  
(r I i= s Ii A r(i)=0 /x s(i)= 1)). 

By an interval we unders tand  a pair  I = (a ,  b )  of  reals such tha t  a < b .  The  
intended meaning  of I is the closed interval  [a, b] in JR, but  the identification with 
pairs of  reals makes  the not ion  absolute.  

I f  I = ( a , b ) ,  d = ( a ' , b ' )  are intervals,  let d ( I , J ) = m i n { I x - x ' l l a < x < b  , 
a'  < x'  < b'} be their distance, e(I, J)  : = max(b,  b ' ) -  min(a,  a') their extent, and 
l(I) : = b -  a the length of I. 

A sequence 1 = ( I ,  I r ~ B )  is called a f i l tration if each I ,  is an interval  and r ~ s 
~I,3=I~. The fusion of I is defined as 0 U I~; it is a closed set of  reals. A 

n < 0 "  r ~ n 2  

fil tration _/= ( I ,  I r E B )  is k-thin, k < co, provided  
(i) r ~ " 2 ~ I ( I , ) < 2 - " ;  
(ii) if there are s _ r  O, t~=r^l such that  I f ~ I t = O  then Ir~oC~I,. ~ =0-  

(iii) if r ~ s  and 1,~on1~ a = 0  then e(I~.o,I~l)<d(I,.o,I,.a) k. 
Note  that  a k-thin fi l tration in V is also a k-thin fi l tration in any  generic 

extension of the universe. 

L e m m a  4. Let  I_ = ( I ,  [ r ~ B )  be k-thin, and let D = (~ ~ Ir be the fusion of  I_. 
n<0, r~n2 

Then D is homogeneous for ~p~,, for all n < co. 

Proof. Let xl  < x2 < x 3  < x4 be elements  of  D. We have to show that  ( x 2 - x 0  
< (x4 - x3) k or (x4 - x3) < (x2 - Xl) k. Let  ra, rz, r3, r4 ~ B such that  x l  e It1, x2 e Ir 2, 
x 3 e I~,  x 4 e It4 and  1,1 c~I,2 = 0,1, 3 c~I~4 = 0. Let  s = rl  c~r2, t = r 3 n r  4. By the thinness 
of  !, I~0 c~I~a = 0 and  Ico c~Ic~ = 0. Wi thou t  loss of  generali ty assume tha t  x l ~ Is~o, 
x2 Els.1, X 3 E I c o ,  X4GIt~I. 

If  s=t ,  we would  get x3 < x2 or x 4 < x x ,  contradict ion.  
Assume s ~ t. Then  x 4 - x 3 < e(Ico , IcO < d(l**o, I,'a) k < (x2 - xO k. The case t ~ s 

is t reated analogously.  Q E D  
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We now recall Sacks forcing P, < with perfect b inary  trees (see Jech [4, p. 15]). 
p____ B is a perfect tree if p 4= 0 and  V s �9 p 3 t �9 p (t 3___ s and  t^0 �9 p, t^l �9 p). Orde r  the set 
P : = {p____ B I P is perfect} by inclusion: p < q iff p_-_ q. F o r  p e P define stem(p) : = the 
unique s E p such tha t  V t �9 p (t c s or  s_C_ t) and  s^O, sA1 ~ p. 

Define 

and  

p<O> : = {s �9 p I s -_ stem(p) v stem(p)^0 ~ s}, 

p< 1 > : = {s �9 p I s C__ stem(p) v stem(p)^1 c s}. 

In  general, define if,  for r �9 B recursively: p 0 : =  p; p,'O : = (pr)<o> and pr ' t  :_____ (pr)< 1). 
So we obta in  the subtree p '  of  p by  branch ing  th rough  p accord ing  to the 0 - 1 -  
pa t te rn  of r. We say tha t  s �9 p is an (n + 1)-st branching point of p, if s = s tem(if)  for 
some r �9  Set p____,q iff p____ q and  every n-th b ranch ing  point  of  q is an n-th 
b ranch ing  point  of  p (n > 1). Set p ____ oq iff p =< q. No te  tha t  p __<,q iff p'<= q~ for all 
re"2. A fusion sequence in P is an m-sequence Po>oPl > lP2>=2P3 . . . .  

Fac t  5 (see [4, p. 16]). I f  ( p , )  is a fusion sequence then the fusion p = 0 P, of  ( p , )  
is a perfect tree. "<'~ 

Let  p �9 P, r �9  and  q < ft.  Then  the r-amalgamation of q into p is defined as 
p= (p\p')wq. Then p < , p ,  and  i f =  q. 

In  T h e o r e m  1 we force with the a -p roduc t  P* of ~: Sacks forcings P, where 
~:=e),  is a fixed uncountab le  regular  cardinal  (see [4, p. 31]). 

Let  us assume that  the con t inuum hypothesis  C H  holds. Let  P~ be the x-fold 
cartesian p roduc t  of P. I f  p = (p(i) I i < x )  �9 P~, set supp(p) = {i < x I p(i) ~ B}; note  
tha t  the full b inary  tree B is the weakest  condi t ion in the Sacks forcing P. 

Set P * =  {p�9 Order  P* by coordinatewise  inclusion 
p < q iff Vi < x p(i) < q(i). 

Fact  6 [4, p. 31]). Let G be P*-generic over V. Then cardinals and cofinalities are 
absolute between V and V[G], and V[G] ~ 2 ~ = o9~. 

We shall now generalize the ideas of  fusion and  a m a l g a m a t i o n  f rom P to P*. I f  
we want  to "b ranch"  th rough  a condi t ion in P* according to some r �9 "2, we need a 
bookkeep ing  function b which picks out  the coordina tes  i < x, where  we per fo rm 
the branching.  

So let us fix a funct ion b : co~x ,  which later will be chosen conveniently.  F o r  
n<o~ and i < x  define n* i � 9  by recursion on n: 0 . i : = 0  for all i<~c; 
(n + 1) * i: = n * i, if b(n) ~ i, and (n + 1) * i: = (n * i) + 1, if b(n) = i. F o r  r �9 B and i < x 
define r * i � 9  by: 0 . i : = 0  for all i < x ;  for r � 9  let (rAO)*i:=(r^ l )* i :=r*i ,  if 
b(n) 4: i, and if^0) * i: = (r * i)^0, (r^l) * i: = (r */)^1, if b(n) = i. 

Then  define pr : = (if(i) I i < x )  �9 P* for p = (p(i) I i < ~)  �9 P* and  r �9 B by: if(i) 
=(p(i)) **i. 

Set p < , q  for p , q � 9  if for all i<~: p(i)<,.iq(i). 
Again, p < ,q for p, q �9 P* iff p" < q* for all r �9 "2. 
Let  p �9 P*, r E"2, q < pr. Then  the r-amalgamation of q into p is defined as 

/5 = (p(i) [ i < x ) ,  where p(i) is the r * / - a m a l g a m a t i o n  of q(i) into p(i). p < ,p  and f f  = q. 
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In defining a fusion sequence in P*, we have to stipulate that  b takes care of 
every relevant index i infinitely often: 

Let Co> oPl > lP2 > z . . . .  Let S =  U supp(p). Then <P,> is called a fusion 
n < ` 0  

sequence, if S~ range(hi(co\k)), for all k < co. 
Define the fusion q = (q(i) [ i < x> of ( p , )  by q(i) = 0 p.(i). If  (p,> is a fusion 

n < ` 0  

sequence, then (p,(i)>,<`0 is basically a fusion sequence for all i <  to, and so the 
fusion q of (p,> is a condition in P*; q<p, ,  for all n. 

We now prove our theorem: Assume Z F C  + C H  and let ~ = co, > col be regular. 
Construct P*, < as above, and let G be P*-generic over V. Then V[G] ~ 2 ̀0 = ~o~. 

Claim. I f  a~ VEG] is a real and k<co then there exists a k-thin filtration 
I = (I~ [ s ~ B> in the ground model V, such that V[G] ~ "a is in the fusion of  i f '  

Before we prove the Claim, let us show that it yields a proof  of the theorem: 
Work  in V[G]. Let R = R be an ARCF of cardinality co~. Let k > 1. For  every a e R 
choose a k-thin filtration !a~ V such that a is in the fusion o f !  a. Since co, is regular 
> col, there exists D ~ R, card(D)= co~ and a k-thin filtration ! e V, such that _/a= I 
for a e D. Then D ~ fusion of !, and by Lemma 4, D is a homogeneous set for ~p~ for 
n < co. By Rapp's  Fact  1, the theorem is proved�9 

Now to prove the Claim it suffices to show the following inside the ground 
model: 

Lemma 7. Let p [k-p.fi ~ JR, and k >= 1. Then there exists p' < p and a k-thin system ! 
such that p' IF-v,'~d is in the fusion of [." 

Proof�9 We shall construct a fusion sequence p >_ Po >- oPl > lPz > 2P3... in P* over a 
suitable bookkeeping function b. It  should be clear that such a b can actually be 
defined without difficulties during the subsequent construction, so we can proceed 
as if b were fixed in advance. Together with ( p , )  we construct a k-thin system 
I = ( I  r I r ~ B),  such that for r ~"2: p~ [~- ~ ~ [~. If  we let p' be the fusion of ( p , )  then 
(pT<p~, for r~"2, and thus P ' [ t - ~  U [ ,  for n~co, hence C'IF-"d is in the fusion 
of [." r~n2 

Let me now describe the recursive construction. Choose Co < P and an interval 
I 0 of length < 1, such that Co I / d e [ 0 .  Assume that Co, . . . ,P, and (I~ I r e  --<"2) are 
suitably defined. Let r(1), ..., r(2") be the enumeration of"2 in the well-order Z.  Set 
qo : = P,. We shall define recursively for i = 1 . . . .  ,2" conditions qi <.pn and intervals 
Ir(iyO, Ir(iy 1 such that qri(iyO 1~-- d ~ Ir(iyO, q7 (iY1 [~'- ti ~ / r ( i F l "  

So fix i and assume the construction is suitably carried out for j < i. Set r: = r(i). 
Let d : = min { d(I~.o, I~^~) l I r = 0  and s ~ r}. qT- ~ I~- a ~ L. There are q' < qT- ~ 
and an interval I'~ such that ' �9 r, q I~-a~I~C=I~ and the length l(I'~)<min{2-~"+~),dk}. 
Case 1. I'~ splits over q', i.e., there are a condition 0 < q' and disjoint intervals I~o, 
Ir. 1C=I',., I,.~oC3I,.~ 1 =0,  such that q<o> I~dZ/ro, q<l> I~-t~ ~ [~'1�9 

Then let q~ be the r -amalgamation of 0 into q~_ ~ with Iro, Ir'~ as above. 

Case 2. Otherwise, then let q~ be the r -amalgamation of q' into q~_ ~, and set 
�9 t 

I t ' 0  : = I r^ l  �9 = Ir" 
When the construction for i = 1 . . . . .  2" is completed, set p, + 1" = q2.. Pn + 1 < ,Cn, 

and P~+~ I~-~i~[~ for all s~"+~2. This completes the definition of (C,)  and 
! = < I r l r z B > .  
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We have  to check that  ! is a k-thin filtration, i.e., satisfies condi t ions  (i), (ii), and  
(iii) above.  (i) and  (iii) are obvious  f rom the construct ion.  F o r  (ii), let r ~ n2 and  
assume there are s__3 r^0, t ~ r*l such tha t  Isc~I t = 0. Let  p' be the fusion of <pn). Then  
(PT I~ it ~ is, (p,)t I[- it ~ it witness tha t  in the above  cons t ruc t ion  of I ro ,  I r l ,  I'~ splits 
over  q'. Hence  I t 0  and  Ir~l a r e  disjoint, as required. This  completes  the p roo f  of  
T h e o r e m  1. [ ]  

Let  us finally c o m m e n t  on the el iminabil i ty of  the quantif iers Q~ over  A R C F  for 
regular  cop < co~ within the model  V[G] constructed:  I f  2 < fl < ~ the same a rgumen t  
as above  shows tha t  the quantifiers Q~ are uniformly el iminable over  A R C F  
in V[G]. 

In  case fl = 1, however ,  B~rger 's  coun te rexample  R to the el iminabil i ty of  Q3 
under  C H  stays a coun te rexample  in the generic extension. 

R is a coun te rexample  because it is a Lusin set, i.e., every nowhere  dense subset  
of R is countable .  By a s tandard  fusion a rgument ,  Lusin  sets in V are Lusin  in 
V[G], so R is a counte rexample  in V[G] to the el iminabil i ty of Q~. 
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