SUPPORTING INFORMATION

Energy Levels, Electronic Properties, and Rectification in Ultrathin P-NiO films Synthesized by Atomic Layer Deposition

Elijah Thimsen¹, Alex B.F. Martinson¹, Jeffrey W. Elam², Michael J. Pellin³

¹Material Science Division, ²Energy Systems Division, ³Physical Sciences and Engineering Directorate, Argonne National Laboratory, Argonne Illinois 60439, United States

Figure S1: XRD patterns for the as-deposited 72 nm TiO_2 films on an FTO substrate. The black curve is a blank substrate, the light blue curve is the TiO_2 as-deposited at 225 °C (AD), and the dark blue curve is after annealing at 450 °C for 60 minutes in O_2 . The XRD pattern for anatase TiO_2 is given at the bottom.

Figure S2: XRD pattern for bunsenite NiO (lines at bottom), FTO substrate (black) and 71 nm NiO films annealed at various conditions. AD = as-deposited. The annealing gas and temperature are indicated next to each spectra. The duration of annealing was 30 minutes for the films of the top three spectra.

Figure S3: A representative electrochemical Bode plot of the real (Z') and imaginary (Z'') components of the impedance. At 8 kHz and higher frequencies the equivalent circuit can be accurately modeled by a resistor in series with a capacitor, as indicated by the relatively constant real component. The indicated frequency range was used for Mott-Schottky analysis.

Figure S4: Mott-Schottky plots at 14.7 kHz for 71 nm NiO films on FTO annealed at different temperatures using different atmospheres for a duration of 30 minutes. The area wetted by the electrolyte was 1 cm². The conditions were: A) as-deposited, B.Ar) 300 °C in Ar, C.Ar) 400 °C in Ar, B.O₂) 300 °C in O₂, C.O₂) 400 °C in O₂ and D.O₂) 600 °C in O₂.

Figure S5: Solid state cyclic voltamagram for the NiO/TiO₂ diode. The layer thicknesses and lead polarities are indicated at the top. The scan rate was 5 mV s⁻¹.

Figure S6: IV curves for diodes with the structure FTO/NiO/TiO₂/100 nm Ag of different layer thicknesses, initially and after measurement of current at the indicated voltage for a period of 600 seconds. (A) thinner layers, initial IV curve; (B) thicker layers, initial IV curve; (C) thicker layers immediately after current measurement at a constant voltage of 1.3 V; (D) thicker layers immediately after current measurement at a constant voltage of 1.4 V.