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ABSTRACT

Engineering design under uncertainty has gainediderable attention in recent years. A great nualétof
new design optimization methodologies and religbiéinalysis approaches are put forth with the afm o
accommodating various uncertainties. Uncertainiiegractical engineering applications are commonly
classified into two categories, i.e., aleatory utainty and epistemic uncertainty. Aleatory undetiaarises
because of unpredictable variation in the perforaaand processes of systems, it is irreducible adeing
more data or knowledge. On the other hand, epistamiertainty stems from lack of knowledge of thetam
due to limited data, measurement limitations, mpdified approximations in modeling system behaeind it
can be reduced by obtaining more data or knowlettygme specifically, aleatory uncertainty is natlyral
represented by a statistical distribution andstoaiated parameters can be characterized byisnffitata. If,
however, the data is limited and can be quantifiredh statistical sense, epistemic uncertainty can b
considered as an alternative tool in such a sitmatOf the several optional treatments for epistemi
uncertainty, possibility theory and evidence theloaye proved to be the most computationally efficeEnd
stable for reliability analysis and engineeringigeoptimization. This study first attempts to pideva better
understanding of uncertainty in engineering desigmgiving a comprehensive overview of its classtiions,
theories and design considerations. Then a resdesenducted of general topics such as the foundatad
applications of possibility theory and evidenceotlye This overview includes the most recent resftisn
theoretical research, computational developments parformance improvement of possibility theory and
evidence theory with an emphasis on revealing #paluility and characteristics of quantifying unairty
from different perspectives. Possibility and evicketheory-based reliability methods have many atdgems
for practical engineering when compared with tiaddl probability-based reliability methods. Theanavork
well under limited data while the latter need laggmounts of information, more than possible in pegiing
practice due to aleatory and epistemic uncertainiiee possible directions for future work are swamned.

Keywords: Possibility Theory, Evidence Theory, Design Optiatian, Per Formability Improvement,
Various Uncertainties, Theoretical Research, Coatfnal Development

1. INTRODUCTION take uncertainty analysis into account. Variousuamnties
can be observed in engineering practices acrossplaul
Uncertainty is one of the greatest challenges forspatial and temporal scales, as well as phasesodiigt
engineering design (Huargal., 2008; 2009; 2011a; 2011b; design (Liuet al., 2009; 2012; Greengt al., 2011); these
2012a; Huang, 2012; Zhare al., 2010a). Over the past must be carefully dealt with in engineering desagtivity.
two decades, there has been an ever-increasingnentb In fact, uncertainty is associated with both thelitative
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Industrial Engineering, University of Electronici&we and Technology of China, No. 2006, Xiyuan e
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and quantitative characteristics of design prob)dmsce,
we first present classifications, theories and giesi

When considering design problems, Robinson (1998)
treated uncertainties using two alteratives, priibib

considerations to provide a better understanding ofand possibilistic methods, He pointed out that Xace

uncertainty. A holistic review is thgmovided of alternative
approaches to dealing with epistemic uncertainty applying
these approaches to design practices.

system modeling, probabilistic techniques are dharized
by random variables describing the various souies
uncertainties; these often referred to as religbitiethods

The characteristics of uncertainty depend on theby structural engineers, are typically applied ystems

mathematical theory within which problem situati@me
formalized (Klir, 1995). Generally speaking, each
mathematical theory can characterize only somehef t
specific types of uncertainty. A more general tlyezan,

of course, characterize more types of uncertailhe
theories and methods that we recommand will stggd li
on dealing with practical problems in engineeriegidn.

1.1.Definitions
Uncertainty

and Classifications of

of small or moderate complexity. In contrast,
possibilistic techniques (often referred to asftirzy set
theory or possibility theory) are typically appliezlarge
and complex systems.

Zimmermann (2000) classified the causes of
uncertainty (not types of uncertainty, as he emripbdsas:
lack of information, abundance of information (cdexiy),
conflicting evidence, ambiguity, error in measuratrand
subjective belief. Rowe (1994), on the other hafaksified
uncertainty as metrical (measurement variabilityd an
uncertainty), structural (uncertainty due to thenpexity of

Different terms have been used as synonyms forsystems), temporal (uncertainty about future ars gtates

uncertainty. For examples, words such as unsuragnes of nature) and translational (uncertainty in explag
indefiniteness, unpredictability, indeterminacy, uncertain results). Ferson and Ginzburg (1996) useg
changeability, irregularity, arbitrariness, ambiyui  two broad classes, namely ignorance and varighifiere
vagueness, randomness, variability and haphazasdnesvariability includes the variation between indiveds and

provide various perspectives and/or specific nuance SPatial and temporal variation. Ignorance refers to

in meaning.

Uncertainty has several definitions. To some éxien
is associated with phenomena that are questionabl
problematical, poorly defined or determined, lagkbertain
knowledge, or liable to change/vary (Klir and Fo)d®88).
Uncertainty is also related to degree of belighim validity
of a particular proposition or datum (Agarvetlal., 2004;
Kangas and Kangas, 2004). Based on the existin

definition for uncertainty as follows.

Uncertainty implies that in a certain situation a
person does not dispose about information which
guantitatively and qualitatively is appropriated@scribe,
prescribe or predict deterministically and numdiyca
system, its behavior or other characteristics.

Uncertainty is also classified in several diffaren

€

uncertainty due to lack of knowledge; the true gaduists
and it is fixed, but we do not know it. According this
definition, ignorance can be reduced by furthedstoetter
feasurement techniques and so on. Variabilityherother
hand, remains the same no matter how many additiona
studies are conducted.
The three distinct
uncertainty and error,

categories of variability,
proposed by Moens and

descriptions, Zimmermann (2000) gave a more gener;!{\,/\lamdepltte (2004), which have been popularly aetbpt

idely and used in modeling, are similar to clasaffons

by Oberkamptt al. (2004) and Agarwadt al. (2004). It is
noteworthy that the word uncertainty often refersaindom
variability. A distinction can also be made betwaésatory
uncertainty (referred to as variability, irredueibl
uncertainty, inherent uncertainty and stochastic
uncertainty), epistemic uncertainty (referred to as
reducible uncertainty, subjective uncertainty, estait

ways by the literature. For example, Nikolaidis and ynowledge uncertainty, model form uncertainty and
Haftka (2001) reviewed the types of uncertainty simple uncertainty) and error (Oberkamgtfal., 2000;
involved in risk assessment problems and classified2004)_ Aleatory uncertainty regarding a quantityn ca
them into irreducible (random) and reducible often be distinguished from other types of uncatiaby
uncertainty. The former is due to inherent randogsne its characterization as a random value with known
in physical phenomena or processes whereas the latt distribution (Oberkampf et al., 2004). These
is due to a lack of knowledge. As their names imply classifications can be illustrated with their cdimss as

collecting data can reduce reducible uncertainty bu
not irreducible uncertainty. Oberkampf al. (2000;
2004) considered a third type of uncertainty, namel
error, which is defined as a recognizable deficyeimc
modeling and  simulation that is not dadack

of knowledge.

////4 Science Publications 96

shown inFig. 1.

In view of descriptions of degrees of uncertaiahg
simplifications of systems, Klir and Folger (19&8)d Klir
and Yuan (1995) first reviewed various meaningshef
word “uncertain”, then categorized uncertainty relty
into vagueness and ambiguity.
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Uncertainty

Aleatory uncertainty
(Variability, irreducible,
random, inherent, or
stochastic)

Derives from

<+ Inherent variation of the
system or environment;

< Irreducible variation of
property ranging over
time or population;

It can be modeled by using

Epistemic uncertainty
(Reducible, subjective,
state-of-knowledge, model
form or simply uncertainty)

Derives from

< Incomplete information;
< Some level of ignorance;

<{  Lack of knowledge
(e.g. notenough
experimental data;
different mathematical
model)

Error
arecognizable deficiency
in modeling and
simulation

Itis not caused by lack of
knowledge

Itshould be identifiable
through validation.

It could be avoided by an
alternative approach with

probability theory (classical,
Bayesian). Itcan be modeled by using
fuzzy set theory. evidence
theory. possibility theory,
convex model, imprecise
probability etc.

limited validity of'the
applied numerical
methodology

Fig. 1. A well-known classification of uncertainty (Oberkpf et al., 2000; 2004; Moens and Vandepitte, 2004)

concept of uncertainty and its relationship to the
increasingly important concepts of information and
| complexity; his work plays a fundamental role ire th

y l l - relevant theories on uncertainty and information.
Vagueness Ambiguity

T 1.2. Sources of Uncertainty
[ I |
Nonspecificity Dissonance Confusion

Uncertainty

In order to develop a general methodology for
quantifying various types of uncertainty, the vitaid
necessary first step is identifying of the sourads
uncertainty. In different phases of modeling and
simulation, uncertainty arises from the following
(Robinson, 1998; Agarwadt al., 2004; Huanget al.,

Generally speaking, vagueness reveals the difficaft 2004; 2006c; 2009; 2012by:
making sharp or precise distinctions in the worltda , Eyiernal
ambiguity, arises out of one-to-many relations.r Kind radiation)
Folger (1988) also put forth a set of similar cqusefor + Internal system parameters (material properties)

these two distinct forms of uncertainty; that mguenessis Modeling of the physical system (conceptual or
connected with such concepts as fuzziness, haziness mathematical methods)

cloudiness, unclearness, indistinctiveness andesisess, .  Qpservational uncertainty
whereas ambiguity is connected with such concepts a.  gojution processes of the mathematical model
nonspecificity, one-to-many relations, variety, gmlity, (numerical or algorithmic uncertainty)

diversity and divergence. . . « Representation of the numerical solution
Klir's classifications of uncertainty can be séen .  Fjeld data or experimental data

Fig. 2. There the word vagueness has the same meanin% . . )

as fuzziness and the word dissonarisesometimes 1-3-1heories of Uncertainty Modeling

replaced by conflict. Klir's purpose was to provide There is an abundant collection of theories reigard
basic framework for characterizing the full scogete modeling all types of uncertainties.

Fig. 2.Klir's classification of uncertainty (Klir and Fgér,
1988; Klir and Yuan, 1995)

system parameters (load, temperature,
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Sugeno’s fuzzy measure

Imprecise probability
(Measure of likelihood: upper and lower probability)
Evidence theory
(Types of uncertainty: Nonspecificity and conflict; Measure of likelihood: plausibility and belief)

Probability Possibility
(Types of uncertainty: Conflict; (Types of uncertainty: Nonspecificity;
Measure of likelihood: probability: Measure of likelihood: Possibility and necessity)

Measure of uncertainty: Shannon entropy)

[ |
Classical Bayesian

Fig. 3. Families of theories of uncertainty (Nikolaidisdadaftka, 2001)

Before fuzzy measure was proposed by SugenoKlir, 1995; Klir and Yuan, 1995). Measures of typas
probability theory (including classical or frequistt was uncertainty must be formulated in accordance witirt
the dominant and most effective way to model own distinct framework. The understanding that
uncertainty, especially stochastic uncertainty whenmeasures are related to types of uncertainty has be
sufficient information is available. This theory mot widely accepted. The formulas are as showhabhle 1
appropriate for reducible uncertainty and erroryéeer, . .
because the additivity axioms, which probabilitgaly ~ 1-5-Design Under Uncertainty
relies on, are unable to express lack of knowleiige
scarce-data situations. For this reason, altemativ
uncertainty analysis tools such as imprecise pridibab

Because nature doesn’t adhere to determinism, the
development of uncertainty analysis in engineering

and evidence theory, have been developed; theybean sci.ence ha; received increased .attention, fro_m “’.‘Hh
combined with probability theory to develop a ep|stemolog|_cal and methodolog|_cal perspec_tlv_es.lslt
framework in a specific field (Nikolaidis and Hadtk  9generally believed that unless the impact of unaeies is
2001), e.g., risk assessment of systems when data iconsidered, a design solution may be sensitivatatons
scarce (Nikolaidis and Haftka, 2001). Such a fansfy  in input which will lead to a loss of system penfiance, or
theories of uncertainty is presentedig. 3. _ ~ toapotential risk of violating critical designrstraints (Du
We need to note that these theories of impreciseand Chen, 2004). As a result, design under unogrthas
probability (i.e., intervals of probabilities) a¥idence  peen applied increasingly in practice.
theory don't conflict with Bayesian or classicabipability. The characteristics and formulations of uncerjaint

Instead, they are tools that complement probabilist ove to be mathematicall . :
! - y quantified before design
methods for problems which probability theory canno optimization is conducted. A real design or decisio

solve (Moller et al., 2006). These theories are flexible . ' . s )
problem involving uncertainty may be formalizedait

enough to model both nonspecificity and confligiety of ) . ) . X
uncertainty (see classification Fig. 2). The fundamental ~th€ories of uncertainty. Each is a certain mathaiat

measure in the most general theory is Sugeno’sy fuzz Model of the specific situation; for example, apideed
measure, which is less restrictive than measurtegiother ~ In Fig. 3, probability theory can model decision

two theories of probability and possibility. situations in terms of conflicting degrees of belidich
) are mutually exclusive. On the other hand, possibil
1.4.Uncertainty Measures theory can model a decision situation in terms of

After Klir overviews the various types of conflict-free, or nonspecificity degrees of belighich
uncertainty, he discusses their relation to infdiomeand  are presented as nested subsets of alternativas (Kl
complexity and investigates in detail measureshaf t 1995; Huang, 1997). Moreover, each method of hagdli
individual types of uncertainty (Klir and Folger98s; uncertainty emphasizes a different paradigm.
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Table 1.A summary of measures of uncertainty by Klir amdger (1988)

Type Name Formula Notation

Hartley information I(N) = logN N: cardinality of a crisp set
Classical P: Probability distribution

Shannon entropy H(P)= -3 plog, f P=(p, p, ---» B) [1: possibility distribution

i=l
General U-uncertainty u(n) =£(n - T, )log, i 1= (1 2 3) membership functiqrA(x):
(or possibility distribution) C : fuzzy complenten
Vagueness  Measure of fuzziness  fo(A)94X|= X [pa(x)=C(a (%))
XOX

Measure of onspecificity V(m =A%IFm(A)|og2 |A| m: basic assignment

Ambiguity -z m( A) log, P( A) F: set of focal element F: set of focal element

(m)
Measure of dissonance E(m)=
(m)

Measure of confusion

For example, robust design is expected to imprdwe t
quality of a product by minimizing the effects afput
variation, whereas a reliability-based design apgino
focuses on maintaining design feasibility at expect
probabilistic levels (Huang, 1995; 1996; Tu andiCh@09).
The traditional way of defining design problems,
such as optimization problems, is to create a modlel
the system that assumes that it is exact and digistit.
Recently, a number of non-deterministic approadhes

design problems have emerged, mainly in response to

criticism of the credibility of standard probabiits
analysis which ignores information on epistemic
uncertainty (Huanggt al., 2008; 2009; 2012a). Adding
non-probabilistic methods to traditional design moeks
makes it more difficult for a designer to choose best
method to use. The common non-probabilistic
techniques wused to model uncertainties
possibility theory and evidence theory, which ahe t
main tools to be discussed in the rest of thisystud

The aim of this section is to present a holistic
view on design optimization under uncertainty i th
context of possibility theory and evidence theory
when data is insufficient.

2. THEORETICAL FOUNDATIONS OF
POSSIBILITY THEORY AND
EVIDENCE THEORY

2.1. Possibility Theory

Possibility theory was formulated by Zadeh (1978).
As one of three constituents of fuzzy theory (ttieecs
are fuzzy set theory and fuzzy logic) (Klir, 2000),
possibility theory provides a theoretical framewddk
practical applications of fuzzy theory. Zadeh (1978
points out in his paper that, much of the informaton
which decisions are based more possibilistic rathen
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probabilistic in nature. Based on this premise, efad
proposes the theory of possibility, analogous td bu
different from probability theory, to express timrinsic
fuzziness of natural language and uncertainty
information. Zadeh focuses on information’s meaning
rather than its measure. He provides a set of vedys
analyzing and translating propositions expressed in
natural language by computing the possibility
distribution of a set of fuzzy relations.

As noted by Dubois and Prade (1983; 1988), the
original goal of possibility theory is finding a
mathematical tool for further studying fuzzy langea
and approximate reasoning, thus extending and
systematizing possibility theory. Klir and Folger
(1988); Klir (1995) and Klir and Yuan (1995)
concluded that possibility theory emerged as anahtu

includetool for modeling and handling uncertainty involgin

knowledge expressed in natural language and
represented by fuzzy propositions. Kaufmann (1983)
thought that the role possibility theory plays faezy

sets is analogous to that mathematical expectancy
plays in probability theory and that such valuation

agrees with information available subjectively.

In general, possibility theory is one of seveahfal
mathematical systems suitable for characterizing an
analyzing situations that involve various types of
uncertainties (Klir, 2000). Due to practical demsnd
variety of interpretations of each of these forsydtems
for possibility theory have been studied, in
correspondence with diverse types of uncertainty. A
representative but not total list is the possitdis
interpretation by Dubois and Prade (1983), the rhoda
logic interpretation by Klir (2000), the DST (oridgnce
theory) interpretation examined and compared by
Sudkamp (1992) and Klir and Yuan (1995) and the
fuzzy-set interpretation by Zadeh (1978) and Kilir
(referred to as standard form later as and revized).
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2.1.1. Definition of Possibility R(X)=F 1)

Possibility is a subjective measure that expreaes In the view of the possibility hypothesis, thesend
extent to which, either, a person thinks that a@néan  other information regarding X except the propositix
occur or, alternatively, the available evidencevehthat is F". Thus the proposition associates a posgjbilit

an event will occur (De-Cooman, 1997; Nikolaidisdan dijstribution, My, with X which is postulated to be equal

Haftka, 2001). _ to R(X), i.e.,Myx can be expressed as Equation 2:
In 1949, Shackle was convinced of the need for a
formal mathematical system in terms of possibility M, =R(X) (2)
theory in economics. He defined possibility, in 19@s
the degree to which it is likely for an event tococ Correspondingly, letty denote the possibility

Moreover, he stated that possibility should be useddistribution function associated with X (or the pibdity

instead of probability when the conditions underiolh  distribution function of My), then the degree of

we have to make a decision under uncertainty cap@ot possibility of X = u for all ud U, is defined as

reproduced (Liet al., 2009). numerically equal to the degree of membership fanct
The term possibilistic first occurred in the stuely ~ when X = u. Formally:

possible automata presented by (Gaines and Kohout,

1975), but it is Zadeh who coined the concepts of DuOU, T, (u)=. (u) 3)
possibility measure, possibility distribution and ) )
possibility theory, in which the definition of pdsiity is Equation 3 formulates the connection between

quite different from that of modal logic (Zadeh,789 ~ membership degrees and possibility degrees, in @ mo
Klir, 2000). According to Zadeh, a proposition that 9eneral framework, by the proposition “X'is F".

associates an uncertain quantity with a fuzzy redudes Let Iy be the possibility distribution associated with
a possibility distribution for this quantity whighovides ~ @ variable, X, which takes value in U. Then the
information about the values this quantity can assu possibility measuret(A), is defined as a number in [0,

Another interpretation, which is based on evidencel]. When A is a nonfuzzy (crisp) subset of U, weédia
theory, denotes that possibility is the limit o&psibility

for a body of evidence that is nested (Shafer, 1&1i6 P XOA} =m(A) =supm, (u) 4)
and Yuan, 1995). uoA
Possibility is also viewed as an upper bound of :
probability (Zadeh, 1978; Klir, 2000). Giles (1983) When A is a fuzzy subset of U, a more general

definition of possibility according to which the definition of possibility measure is as follows:

possibility of an event is the smallest amount m a

interval of [0, 1]. Posd X is A =T A) = fDUUF(“A( g om (1Y) ()
2.1.2. Standard Fuzzy-Set Interpretation of
Possibility Theory Let A and B be arbitrary fuzzy subsets of U, the
following Equation 6 and 7 are induced from Equato

Among all the multifarious interpretations of

possibility  theory, the  well-known  fuzzy-set and (5):
interpretation has proved to be the most promirermt B 6
useful. This is mainly because fuzzy set is widebed ~ "(AUB)="(A)Om(B) (6)

and possibility theory palys an important role in

approximate reasoning. _ . It can be derived thatnax(n( A) ,n(ﬂ)) =1
Let X denote a variable that takes values in a universe

of discourse, U and F is a fuzzy set on U, whose

membership function= (u), shows the compatibility of T(ANB)<m(A)On(B) )
an assigned value, u, from X with the concept off £
acts as an elastic constraint on possible valasihy be Zadeh'’s primary contribution is that he introduees

assigned to X, then F is a fuzzy restriction on ok ( meaningful connection between fuzzy propositions an
associated with X); it is referred to as R(X). Azdy possibility measures, a connection that has beekelyvi
proposition, “X is F”, can be described as Equation adopted in literature as the standard fuzzy-set

////4 Science Publications 100 AJEAS



Hong-Zhong Huang et al. / American Journal of Eegiing and Applied Sciences 6 (1): 95-136, 2013

interpretation of possibility theory. As arguechis paper, min(Nec(A)’ Nec('&)) =0 12)

by employing the concept of a possibility distribut it is

possible to translate a proposition expressed inraa

language into a procedure. This manipulates the Poss(A)2 N.{A) (13)

probability distribution using the combination rsilef ) )

fuzzy sets and particularly of fuzzy restrictioubois ~ 2.1.4. Revised Fuzzy-Set Interpretation of

and Prade, 1980). In this study, Zadeh did not,evaw Possibility Theory

address the connection between possibility measnds . . . .

dual necessity measures; that work was done later. After introducing the most common axiomatic
As seen in the above interpretation, we can coaclud characterizations of possibility theory and someiba

that interpretations such as the initial fuzzy €adeh,  Properties of possibility measure, we'd like to

1978) occurred naturally because of the simildviggween ~ Summarize a revised fuzzy-set interpretation of

the mathematical structures of possibility measwmd  POSSibility theory, proposed to overcome the

fuzzy sets. In possibility theory, the underlyirgnilies of ~ difficulties of the standard interpretation wherplgd

nested sets comprise focal element, whereas iy ets, {0 Subnormal fuzzy sets (i.e., height of a fuzzy e

these families comprisecuts (Klir, 2000). he=supur( ), @s discussed by Klir (2000).
uiv
2.1.3. Some Extensions on the Standard The difficulty with subnormal fuzzy sets was first
Interpretation recognized by Yager (1986), who demonstrated that t

standard interpretation expressed by Equation 3ois
coherent when F is subnormal, it proved to be drheo
key properties of possibility theory, as expredsgihequality
Equation 13, that does not come into existence \upeh

In order to overcome the defect, Yager proposegira n
function, called a measure of certainty, to takeplace of
the necessity function, which is given by Equatidn

Dubois and Prade (1988) gave a more detailed
interpretation of possibility theory. De-Cooman IP
systemized the existing views), especially withardgto
uncertain measures. They pointed out that posgitiiory
denotes uncertainty of a proposition by means dia of
fuzzy measures, i.e., possibility measurgss PA) and
necessity measure, N(A). Possibility theory might be

characterized in terms of either of these measurescen( A)=min(Poss( A)lNef( A)) (14)
(Po.e(A).PoA)) + OF expressed agP.(A).N(A))
equivalently. Dubois and Prade (1987) pointed out that such

Necessity measure is defined, as being one of theeplacement violates Equation 10, one of the basic
two dual formulations, in the sense that can beesged  requirements of possibility theory. As a result,bDis

as Equation 8: and Prade (1987) suggested keeping the necessity
function but replacing Equation 8 with a generalize

Neo(A) =1‘POS4A) ®) equation, which is expressed as Equation 15:
NeC(A):hF_POS4A) (15)

Analogous to the additive axiom of probability

measure, possibility measure satisfies the follgwin This is then converted to Equation 8 when F is

axiomatic requirement, which is expressed as Emuei normal and satisfies both Equation 10 and 13 for an
subsets of U, hence it sounds more reasonable.

P.(AU B)=max( P A P E)) ) To address the still-existing severe deficiencies

argued by Klir (2000), they modified possibilityetbry
_ o . to adapt to subnormal fuzzy sets by replacing Eqoat,
Some basic properties in Equation 10-13 of the twog and 9 respectively. This can be seen in theiepéglir,
fu_zzy measures can be induced (Dubois and Pra8&; 19 2000), with the complementary case in which A =1U o
Klir and Yuan, 1995; De-Cooman, 1997): UA, =U , where | is an arbitrary index set.
Neo(ANB) =min(N(A),N (B)) (10) Obviously, all of the above previous work is more
an interpretation of systems that are based orvengi
-\ modification of possibility theory, rather than an
max( Bes( A Ref A)) =1 (11} essential fuzzy-set interpretation of possibilligary.
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Table 2. The revised fuzzy-set interpretation of possipilit Evidence theory could be viewed as a branch of
theory proposed by Kilir (2000) mathematics which studies empirical evidence ireord
Standard Interpretation Revised interpretation to construct a coherent picture of reality (Fidrex004).
7o, (U) = P (U) + G It can narrow down a hypothesis set with the
Th (U) = K (U) _ : : :
=y (U E h accumulation of evidence and it allows for a
me (u) = inf pe(u) me (U) = inf pe(u)+1- b representation of ignorance due to uncertainty hie t
el e evidence (Bhattacharya, 2000). When ignorance thas t
A%(X)mF(A)‘th AE%(X)”‘F(A)‘l value of zero, the Dempster-Shafer model is reduoced

the standard Bayesian model. Thus, the DempstdeSha
theory is an attempt to generalize probability tigeloy
(He (u)* 2= he s (1) introducing a rule for combining distinct bodies of
evidence (Beynoret al., 2000); it is thus actually a
When study returns to fuzzy-set interpretation, the numerical method of evidential reasoning. Compared
possibility distribution function, T(u), satisfies the  wijth Bayesian theory, evidence theory feels closasur
following equation for subnormal fuzzy set, which i pyman perception and reasoning processes. Itsyatoili
expressed as Equation 16: assign uncertainty or ignorance to propositionsais
_ powerful tool for dealing with a large range of plems
ié{?n( J=1 (16) that otherwise would seem intractable (&al., 2002).
There have been many interpretations of the
To consider the connection between possibility Dempster-Shafer theory, (Jumarie, 1994; Kohlas and
theory and evidence theory, Klir (2000) revised som Monney, 1994; Rowe, 1994; Utkin, 1994; Wang, 1994;
definitions as ifrable 2 Wonneberger, 1994; Yageral., 1994; Cakt al., 1995a;
where function, m, is called a basic probability 1995b) including probabilistic approaches and
assignment function in evidence theory andi€ a  nonprobabilistic ones. Also, there have been many
constant for each given fuzzy set, F. When Equati®n closely related developments in recent years. Thetm
is satisfied, thengc= 1-h-. influential version of the theory is still Shafer’s
Klir's direction for improving the initial  presentation in his book A Mathematical Theory of
interpretation of possibility theory can thus be Evidence (Shafer, 1976), which we follow in provigia
summarized briefly as: brief introduction of evidence theory.

Evidence theory starts with defining a frame of
* Keep coherent all fuzzy sets, regardless of whetheryiscernment that is a set of mutually exclusive

they are normal or not, so they violate no propefty  “glementary” propositions; it can be viewed as ritdi
possibility theory sample space in probability theory. Evidence thesss
+ Capture the evidence expressed by any given fuzzytwo measures, Belief (Bel) and Plausibility (Phhizh
proposition, m, which carries information in the are used to characterize uncertainty. In the Desnpst
framework of evidence theory Shafer theory, evidence is represented by the basic
«  Be meaningful on intuitive grounds probability assignment and the combination rule of
evidence is discussed.

Poss(A) = EDUUP mir(pp( l) IJA( l)) Poss(A) = EDUUP min

2.2. Evidence Theory

o ) 2.2.1. Basic Concepts of Evidence Theory
The origins of evidence theory, also called

Dempster-Shafer Theory (DST), can be traced back to  Liu et al. (2009); Klir (1995) and Shafer (1976) let
the work by Dempster (1967) which developed a syste U denote a finite, nonempty universal set thatespnts

of upper and lower probabilities that do not sgtisf the entire collection of elements having the same
additivity. Following Dempster’s work, it was hisudent,  characteristics, which is usually called a Frame of
Shafer (1976) and Liwet al. (2009) who extended Discernment (FD) in DS theory. Léf (U) denote the
Dempster’s probability to the theory of evidencel 86,  power set of U, set A is a collection of some eleimef U.
including a more thorough explanation of belief Then, available evidence can be expressed witlecesp

functions. The name “Dempster-Shafer theory” was the nonnegative function as Equation (17) and (18):
coined by Barnett in a paper which marked the eafry

the belief functions into the field of artificiahtelligence .
(Aughenbaugh and Paredis, 2005). m:0(U) - [0 (17)
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Such thatm(0) =0 and:

A
A
A
y
Y

> m(A):l (18) ) Bel(4) "|” Uncertainty 1 Bel(A)
A (V) < >
. . . . - PI(4)
This function, m, is called a Basic Probability
Assignment (BPA) (or mass function). For each Aet] Fig. 4. Relation of belief measure and plausibility measur
0 (V), the function value, m(A), measures the degriee
evidence supporting the claim that a specific elenoé PI(A,NA,)<PI(A))+PI(A,)-PI(A UA ) (24)
U belongs to set A , as well as the degree to whieh
believe that such a claim is warranted (Klir, 1995) and then the following properties can be derived
Given a basic probability assignment, m, each/et, Equation 25:
O O (V), for which m (A)# 0, is called a focal element B
and the value, m(A), is called the weight of A. Tamily, Bel(A) + BeI(A) <1 (25)
F, of all the focal elements of m characterizesstgsets
of the frame of discernment on which all the avdéda p|(A)+p|(A)21 (26)
evidence rests. The pdif,m) is called a body of evidence
(or belief structure) denoted by m. Bel(A) in Equation 26 represents the total evigenc
) S or belief that the elements belong to A. The total
2.2.2. Belief and Plausibility Measures evidence or belief, PI(A) in Equation 27, represent
Two large classes of fuzzy measures, referred to agnoreover, the additional evidence or belief
the belief measure and plausibility measure, reimdy, corresponding to the focal elements overlappind Wit

characterize the mathematical theory of evidendeerc ~ (Henkind and Harrison, 1988; Klir and Parviz, 1992)
a basic probabmty assignment, m, the two measares ThUS, the relation between the two dual measures is
correspondingly defined by the Equation 19 and 20:

PI(A)=Bel(A) (27)
Bel(A) = ¥ m(B) (19)
ot Equation 18 and 27 can be visualizedHy. 4 (Klir
PI(A)= ¥ m(B) (20) and Parviz, 1992).

pnAz 2.2.3. Postulates

The following postulates are assumed, which shape
the foundation of evidence theory (Beyneiral., 2000)
in Shafer’s interpretation (Shafer, 1976):

They show thaBel and PI give the lower and upper
bounds of the event, respectively. They are mutwhihl
in the sense that one of them can be uniquely
transformed by the other, as seen in the Equation 2

Postulatel = Chance is the limit of the proporth

PI(A)=1- Bel(A) (21) positive outcomes among all outcomes
_ ) ~ Postulate2 = Chances, if known, should be useclefb
where, A is the classical complement of A. This functions
definition reflects the fact that all basic assigmts must  postulate3 = Evidence combination refers to theipgo
sumto 1, as seen in Equation 15. or accumulating, of distinct bodies of
An inverse procedure is also possible for allJA evidence
O (V), e.g., (Klir, 1995) Equation 22: Postulate4 = Dempster’s rule can be used on belief
functions for evidence combination
1A-B|
A)= -1 Bel( B 22 . .
m(A) B%:A( ) e/(8) (22) 2.2.4. Bodies of Evidence
Belief and plausibility measures satisfy both the 2-2-4.1. Algebraic interpretation (Kohlas and
axioms of fuzzy measures (Klir and Yuan, 1995) e Monney, 1994)
following additional axioms in Equation 23 and 24: Evidence theory is connected with the description

and analysis of possibly incomplete and uncertain

Bel(A,UA,)2Bel(A,)+Bel(A,)-Bel(A,NA,)  (23) information relative to a certain precise question.
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In an abstract setting, we call two sets, H anafA,
elements the hypotheses and argument,
Then the triplet (H, A, s) where s is an allocatdrsupport
is called a body of arguments. This simple algebrai
structure acts as the foundation for evidence yheor

In the body of arguments, (H, A, s), not all
arguments inA may be equally likely. Some may be

more probable than others. Thus, some hypothesgs maaggregated using existing

Evidence theory is such a framework that can tendl

respectivelythese various evidentiary types by combining aamotf

probability with the traditional conception of sets
2.2.5.2. Rules of Combinations

Sometimes the available evidence may come from
different sources. Such bodies of evidence can be
rules of combination

become more credible than others, depending on théAgarwalet al., 2004). In other words, combination rules

likelihood of the arguments supporting them.

The likelihood of arguments can be measured byobtained from multiple sources.

probabilities, however, the Boolean algebra, A, rbay
too large to associate a probability with everyredat.
As is usual in probability theory we consider a-sub

algebra, A contained in A and associate a probability, P ¢

(o), with every elementa, of A,. Thus P ¢) is a
probability measure onAThe quintuple (H, A, 4 P, s)
is called a body of evidence.

2.2.4.2. Axiomatic Interpretation (Fioretti, 2004)

Suppose that empirical evidence is measurable ang

available as sets of numbefsy(A,),m(A,),--,m(U)} ,

which represent the amounts of evidence that stippore

subsets{A,A,--} , of a frame of discernment in U,
respectively. Then each set of numbérs,,m,;--,m},

is called a body of evidence, where the number m is

generally normalized to satisfy, which is expresssd
Equation 28:

ym(A)+m(U)=1  whererp P> (28)
The numbers{m,,m,.-} , represent amounts of
empirical evidence supporting alternative posdibsi
{A,A, -} . Their meaning is clarified using an example
of belief formation from the biotech industry arget
ensuing discussion which is presented in (Fior2@)4).

2.2.5. Combinations of Evidence

2.2.5.1.Types of Evidence (Sentz and Ferson,
2002)

We consider four types of evidence from multiple
sources that impact the choice of how informatieroi
be combined:

» Consonant evidence
» Consistent evidence
» Arbitrary evidence

» Disjoint evidence
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are the special types of aggregation methods foa da
Commonly used
combination rules are listed below (Sentz and Ferso
2002; Fan and Zuo, 2006a; 2006b):

The Dempster rule of combination

» Discount t combination method

e Yager's modified Dempster’s rule

* Inagaki’'s unified combination rule

e Zhang's center combination rule

Dubois and Prade’s disjunctive consensus rule
Fan and Zuo’s improved combination rules

e Mixing or averaging

Convolutive X-averaging

Other rules include Smets’ rule,
combination rule and Yen'’s rule (Agarwstlal .,

qualitative
2004).

2.2.5.3. Dempster's Rule of Combination

Although there is always a debate about the sliitabi
of combination rules, Dempster’s rule of combinai®one
of the most popularly used rules and could be vicagethe
core of the Dempster-Shafer fusion method. The
combination (called the joint @) is calculatedin the
following manner, whicih is expressed as Equati®n 2

(m, 0 m,)(A)=m,(A)

B%A (Bm(9 (29)
BﬂCD (B) ( )

where, B and C denote propositions from each source
(my and m).

Because of the normalization factor in the
denominator, Dempster’s rule is not suitable fosesa
where there are many inconsistencies in the availab
evidence, however, it is appropriate where thesime
degree of consistency or sufficient agreement antbag
opinions of different sources (Agarwat al., 2004).
When there is little or no consistency among the
evidence from different sources, the mixing or agang
rule (Sentz and Ferson, 2002) and the improved
combination rule (Fan and Zuo, 2006a; 2006b) are
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available. Recent studies on combination rules ifdat

3. COMPARISON OF POSSIBILITY

two categories: the methods modifying Dempster rule THEORY AND PROBABILITY THEORY

and the methods correcting original evidence saurce
(Floreaet al., 2009).

2.2.6. Advantages of Evidence Theory

Hegarat-Masclet al. (1997); Agarwakt al. (2004)
and Nikolaidis and Haftka (2001):

e Evidence theory can model both reducible and
irreducible uncertainty when the amount of
information available is small. For instance, oae c
express his ignorance of the likelihood of a certai

When Zadeh (1978) proposed the possibility theory,
he pointed out that additional insight into thetidition
between probability and possibility may be gained b
comparing the concept of a possibility measure it
familiar concept of a probability measure. Sincenththe
debate between possibility theory and probabtiigoty has
been on-going. We believe that the focus shouldrbthe
specific practical surroundings a certain methaavalable
to, rather than which is better than the othererdtl, each
concept is useful in its own domain and blendingasmal

event being extremely small by assigning a largein several situations, as Kaufmann (1983) said.

plausibility and a low beliefo it, which appears as a

There are rich studies that compare probability

more flexible and general approach than the theory with possibility theory, or with fuzzy setseory

Bayesian one

e Evidence theory provides a measure of the
uncertainty in estimating of risk. The wider thepga
between plausibility and belief in the previous

and evidence theory (Liet al., 2009; 2012; Greergt al.,
2011; Klir and Yuan, 1995; Misra and Soman, 1995;
Utkin et al., 1995; Cai, 1996; Cayrat al., 1996; Ferson
and Ginzburg, 1996; Huang, 1996; Utkin and Gurov,

example, the greater the uncertainty about the1996). Discussions mainly focus on the aspect frax

estimated risk of the event
e Evidence theory considers not only single or
individual classes, but also unions of classes

2.2.7. Disadvantages of Evidence Theory

In the present literature, the criticism of the
Dempster-Shafer theory of evidence is cruciallyeblasn
the following points (Kozine and Filimonov, 2000):

from which we conclude that a principal difference
between these theories is that the probability rifieo
additivity axiom (about the probability of the digjted
events uniting) is replaced with less restrictivéoms.
Some comparisons consider the notion of consistency
between possibilities and probabilities (Delgadad an
Moral, 1987; Dubois and Prade, 1983). Some focus on
the transformations from probabilities and posgibg to
evidence theory (Klir and Parviz, 1992). Their

» Failure to produce rational results in the case ofcomparisons are quantitative in terms of both fficy

inconsistent combined pieces of information
according to Dempster’s rule of combination

* Inability to combine opinions of different people
with overlapping experiences, especially in safety
analysis application (Wet al., 1990)

and expressiveness, but cannot give the exact
relationship between probabilities and possibsiti€hus
Drakopoulos (1995) studies extensions of the usaler
sets, mapping among probabilities, possibilitiesd an
fuzzy sets in order to specify their important

 Be formally incoherent in safety assessment similarrelationships. Other comparisons are from the aofle

to the theory of probability

To implement the Dempster-Shafer and possibility
theories into risk and reliability analyses, Koziaad
Filimonov (2000) also encountered some difficultilest
could not be solved in the frameworks of these rleso
They summarize the main drawbacks as follows:

Combination of homogeneous bodies of evidence
Combination of inconsistent pieces of information
Judgments admitted in elicitation

Dependence of imprecision on the amount of
information

This indicates, in a final personal opinion,
Dempster’s rule of combination can produce formally
incoherent inferences.
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design rather than theory. Chehal. (1999) compare
probabilistic and fuzzy set models for design asfain
uncertainty when there is limited information abadlg
statistics of the uncertainty or modeling error.eyh
conclude that if there is sufficient informationrfo
building accurate probabilistic models of uncetrtiais
probabilistic methods are better than fuzzy sethou.
Soundapparet al. (2004) compare evidence theory and
Bayesian theory for uncertainty modeling and deaisi
making under uncertainty.

Although each measure or concept of the different
theories is useful in its own domain and has itaow
definition and application, consideration and blegds
normal in several situations (Kaufmann, 1983).
Comparisons are necessary in order to evaluate and
characterize those measures.
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3.1. Similarities Table 3. Comparison of possibility theory and probabiliigdry
- . Probability possibility
Both possibility theory and probability theory are ————— — —
used for uncertainty analysis and quantificatiomey are D'St”buf'oln [T measuret D'smbu_t'clmp » Probability p
both subsumed under the mathematical theory of SUPm(\W= Z,Pu)=
evidence (or DST). 0 (A.B)00 (V) 0 (A.B)00 (V)

Possibility theory has been based on distributions ’ X _ _
the same way as probability theory has been. Fuzzyposs(A)‘T[(A)'ﬁéif’rI ) Po(A)=p(A)= z P(u)
variables are associated with possibility distridg in p(AUB)=p(A)+p(B)
the same way as random variables are associatéd wit (A UB) max(ri( A) ,m(B))
probability distributions.

Possibility measures, analogous to probability Nec(ANB)=min(N(A).N (B)) p(ANB)<p(A)-p(B)
measures, constitute tools for representing and max(n(A) n(A))=1
guantifying uncertainty. Probability and possibilit — 1) =
measures, i.e., fuzzy measures, are all nonnegativ m(A)+m(A)=1 p(A)+p(A)=1
and monotonic (Klir and Yuan, 1995; Nikolaidis and [Nec(A)+N(A)<1

Haftka, 2001). 1
_ OuOuU, N(x=1 OuOu, P(x)=—
3.2. Differences U]

Generally, although probability and possibility |n other words, the possibility of the union of iaite
measures are both tools for representing unceytaimi  number of events (disjoint or not) is equal to the
their adopted theories and methods are relateda¢h € maximum of the possibilities of the individual etgn
other, the two concepts are essentially differefitike  whereas the probability of a union of disjoint eteeis equal
probability, possibility is not subject to repeated to the sum of their probabilities. As well, the
experiments and hence does not refer to statisijgepties.  probability of a union of an event and its negatioust
Moreover, in terms of observating various circumeés,  add up to 1 (Chest al., 1999);Table 2 The additive rule
a probability measure assesses odds of occurrences the basic feature of probability theory (inchgiiclassical
whereas possibility assesses degree of ease. Heliée, and Bayesian probability theory).
the classical probability theory which is best eulitto The difference between possibilities and probisli
aleatory uncertainty, possibility theory is usualiged to  can also be seen in the context of fuzzy measuiger®
quantify only epistemic uncertainty. With a view e introduced fuzzy measure as a generalization of rea
information involved, probability is a quantitativatio measures. Fuzzy measure is a continuous or semi-
scale of uncertainty while possibility is a quasalitative continuous function from a class of crisp sets pbaer set
ordinal scale. Thus there is an opinion (Dulebal., 1993)  to the interval [0, 1]. When the universal set iisitd,
that there is no more information included in agimiity probability and possibility measures are specis¢saf the
distribution than in a probability distribution. Vémalyze fuzzy measure (Chest al., 1999).Table 4 compares these
and discuss both in the following. measures in terms of their axioms (Klir, 2000; Kdind

Let U be the universal set and A be a set of crispFolger, 1988; Klir and Yuan, 1995). Let U be thévarsal
subsets of U; comparisons of some basic formulae inset and A be a set of crisp subsets of U.
possibility theory and probability theory are givém So the consistency of probability measure,
Table 3. To some extent, probability is a ratio scale of possibility measure and necessity measure is esgules
uncertainty while possibility can be consideredams  belowd A OO (U) Equation 30:
ordinal scale. Consequently, the numerical valums f

when A, B is disjoint

probability have their own meaning. On the othendia N (A)<P(A)<P,(A) (30)
the essential information from a possibility distriion is
the order of elements for possibilities; numericalues Note that, of course, the above requirement of the
considered are just an expedient way of specifyi®y  same event is based on intuition and cannot beeprov
order (Dubois and Prade, 1983; Dubsiial., 1993). mathematically (Cheet al., 1999).
3.2.1. Axiomatic Differences 3.2.2. Calculi Differences

A major difference between probability and podisjbi Because of the axiomatic difference, probabilitd a

can be found in axioms about the union of everiggo{dt possibility calculi are fundamentally different amde
or overlapping), that probability is additve whase cannot simulate possibility calculus using prohiatid
possibility is sub-additive (Nikolaidis and Haftiz001). models (Nikolaidist al., 2004).
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Table 4. Comparison of possibility measure and probabitigasure

Fuzzy measure g(*) Probability measure p(*) Pdbsibmeasurert(*)
Boundary conditions g)=1,9U)=0 p(U)=1 mO)=1,1MU) =0

For all, A,BOU, For all, A,BOU if A O B,
Monotonicity if ADO B then g(Ak g(B) P(A)= 0 when AT U thenti(A) < (B)1t

(continuity from below)

L@ OA,, idl, OA;, i01,
Foralla, oA, 0. if iszlAi ou where A s disjoint where A is disjoint,
I I
oY J=5p(a) UA, | =max(n(4,)

Then i|i—n°'|°g(Ai ) = g(i@lAi ]
Continuity (continuity from above)

ForallA,OA,O-if _rlei ou
i=

Then ilmg(Ai)=g(_ﬁ A )

i=L

Nikolaidis et al. (2004) and Nikolaidis and Haftka the fact that two events are not interdependentsaye
(2001) compare probability and possibility by meafs they are non-interactive when Equation 7 holds it
uncertainty modeling. They summarize the main equality sign, i.e., Equation 32:

differences as follows.

Methods of modeling an uncertain quantit: prolighbil  m(ANB)=m(A)On(B) (32)
theo_ry models an_uncertain quantifty by using_i_trbpbil_ity
distribution function, F(x) and its probability daty This indicates that independence is a stronger

function, f(x), the latter being a derivative oktformer.  congition than non-interaction. In other words, we
Correspondingly, possibility theory uses the palisib — yecrease the possibility of the least possible evea
distribution function,m(u), which is the function form and .5 ot compensate for the entailed reduction in the
numerical Expression of_the possibility dlstnbnu(u)_; n possibility by increasing the possibility of thehet
respect that possibility is both a measure andnatifan. events (Nikolaidist al., 2004)

Some differences between the probability densitg an " '
possibility distribution of a continuous variablerea 3.2.3. Realization Differences

summarized below: ] ]
The above comparisons affirm two statements. In

» The area below the probability density function is the epistemological position, probability theonhiah is
one whereas the area below the possibility based on classical set theory, abandons the law of
distribution function has no such meaning and cancausation; whereas possibility theory, which iselolasn
be any value fuzzy set theory, abandons the law of balance.htn t

+  The probability of a continuous variable which take degree of information required, probability theisyest
value in an infinitesimal interval is usually zero, suited to aleatory uncertainty when there is sigffit
whereas the possibility of the same case is usuallyinput data, whereas possibility theory is usuathedi to

greater than zero N . quantify only epistemic uncertainty even if insaiint
*+ The maximum value of the probability density information is available.

function can be greater than one and the valubeof t As a result, probability theory is popular in ittt
possibility distribution is not greater than one technologies, data analysis and communication syste
On the other hands, applications of possibilityottyecan
be found in industrial process control, patterroggition
and group decision-making.

The notion of independence of events; in
probability, we say two events are independentnid a
only if Equation 31 is hold:

_ 3.3. Possibility-Probability Consistency
p(ANB)=p(A)b(B) (31) Principles
In the case of possibility theory, there doesenast If a probability and a possibility are assignedhe

an exact definition of independenda order to express same event, then one expects that the possibilithiad
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event should be consistewith its probability, i.e., the
possibility should be equal to or greater than the
probability of the event, seen in inequality EqoatB0.
This is a logical interpretation of possibility-frability
consistency principles.

Zadeh (1978) has used a famous example of eating

eggs to illustrate the difference between probgbéind
possibility. His observation is that Equation 33l &4

high probabilitygﬁﬁﬁj hign possibilit (33)
low probability Q@'ﬁj low possibility (34)
Such connection is named as the

possibility/probability consistency principle. Ifvariable
X can take the values,uuw,...,u, with respective
possibilities[] = (T,..., T,) and probabilities P = (p..,
pn), then the degree of consistency of the probabilit
distribution P with the possibility distributiodl is
expressed by by Equation 35:
y=Tp +e+ TP, (35)
Note that, of course, the principle is not a geci
law or an intrinsic relationship rather it is arpagximate
formalization of a heuristic observation; this medhat
decreasing the possibility of an event leads taekesing
its probability-but the obverse is not true.
Zadeh's original motivation for the
possibility/probability consistency principle is poovide
a basis for computing of possibility distributiomifn the
probability distribution of X (Zadeh, 1978). Such
computation is important in decision-making under
uncertainty and in the evidence and belief theories

4. COMPATIBILITY OF EVIDENCE
THEORY WITH POSSIBILITY THEORY
AND PROBABILITY THEORY

As expatiated above attempts at quantifying
uncertainty using possibilities, probabilities dodzy sets
share some common properties but also display iapor
differences (Borotschnigt al., 1999). We may induce a
compatibility capacity of evidence theory, with pitdlity
theory and probability theory. Briefly we can sagttthe
classical probability theory and the possibilitedhy are

Evidence theory
Belief measures
Necessity Probability Possibility \\'I
measures measures measures |

Plausibility measures \

Fig. 5. A pictorial description of uncertainty classificati
based on fuzzy measures

4.1. Connection of Possibility Theory with
Evidence Theory

Possibility theory may be viewed as a special dranc
of fuzzy measure theory (Klir and Folger, 1988)zHu
measure theory is based on two dual fuzzy measeygs,
andN., which are connected with the corresponding two
measures, B and B from evidence theory. This is
expatiated below.

Function m, defined in Equation 17, i.e., basic
probability assignment in evidence theory, is an
alternative representation of the possibility measiés
determined by (Klir, 1995), when all focal elemeims
evidence theory are nested or consonant, proviusedht
(A) >0, we obtain a special plausibility measurdahhs
expressed in Equation 36:

mU - [0,]] (36)
Via the Equation 37 (Klir, 2000):
Poss( A) = suprt (u) (37)

udA

which derives from Equation 17 and 20 and resembles
Equation 4. This special plausibility measure itialty
called a possibility measure in possibility theory.
Moreover, the corresponding special belief meastes,
alternative to the two dual measures in evideneerih

subsets of the evidence theory (Mourelatos and Zhouig calied a necessity measure. It is defined inaiqn 18

2004). In other words, both of them are complemgrda
alternative theories, neither of which is a gerneatibn of
the other (Klir and Folger, 1988jig. 5.
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as N (A)=1-P,{A) . In short, when all the focal

elements are nested or consonant, thear® B, in
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evidence theory are equal to thessPand N in
possibility theory. Here, the nested structure iegpthat
e Ty, foralli=1, 2, L, n-1, where = (y, ™, L, T0).
When m(A)# 0, it is induced (Klir, 1995) that Equation
38 and 39:

™M-

m=2m (38)

m =10~ T, (39)

The pair{F, m) , whereF denotes the set of all

theory can be considered as a generalization of
probability theory; this is because its measuris fatlow
those associated with probability theory.

Strictly speaking, classical probability theory as
subset of possibility theory, which in turkig. 5) is a
subset of evidence theory. The transformation betwe
probability measure and possibility measure isufised
in the next sub-section.

4.3. Probability-Possibility Transformation

In order to comprehend the relationship between

focal elements induced by m, is called a body of Probability theory and possibility theory and taaliee
evidence. Thus possibility theory deals with specia how compatible of evidence theory is with these two

bodies of evidence, wher& is a nested family of
subsets of U in each body of evidence. In additiothe
well-known fuzzy-set interpretation, possibilityrcalso
be interpreted in the framework of evidence theas/a
subset of evidence theory (Mourelatos and Zhou4200

4.2. Evidence Theory as an Extension of
Probability Theory
Evidence theory uses two large classes of meastires

uncertainty, B and R In comparison, probability theory
uses just one measure, the probability of an eventR,.

theories, many researchers have studied transfiomsat
between probability and possibility; this provides
theoretical background for practical problems asteyn
modeling, decision making and analysis of data and
expert systems. Most researchers examined the
principles to be satisfied for transformation iheuristic
way (Liu et al., 2009; Dubois and Prade, 1983;
Dubois et al., 1993; Oberkampét al., 2000; Yamada,
2001; Zadeh, 1978) asserting that their propostiare

the only specific ones to satisfy until Yamada (200
devised three new transformation methods based on

Assuming all focal elements in evidence theory areevidence theory and declared these three transfiomsa

singletons, consider an imprecise set of probaslit
expressed by the intervdlB,(A),R(A)] . For all
ADOO(U), there is therB,(A)=P/(A) . This gives us a

classical probability measure,,Pwhich is determined
by Equation 40:

p:U-[0] (40)
Via the Equation 41:
Po(A) =2 p(u) (41)

ubA

where, p(u) is the classical probability distrilouti
function (PDF). Compared with Equation 19 and 20) p(
=m({u}) for allu O U.

Since evidence theory deals with
probabilities (Walley, 1991), when handling a mnetwf
input parameters from incomplete data, the rang=aoh

imprecise

to be the only ones that satisfy the principles.
Let's review the already-existing transformations
(Yamada, 2001; Zadeh, 1978) now.

4.3.1. Zadeh's Consistency Principle

Zadeh illustrated the relationship between proigbil
and possibility (See inequality (30)), proposed the
consistency principle expressed by Equation 333dnaind
defined the degree of consistency signified as &Eoua5,

i.e. y=mp, +---+mp,. From the basic properties of the

possibility and necessity measures (Klir, 2000) kmew

that maximizing the degree of consistency bringsreng

restrictive condition as below Equation 42 and 43:

P

0ss

(A)<1= N (A)

0 (42)

N, (A)>0=P,(A)=1

0sSs!

(43)

which demand that Equation 30, i.e..{d) < P(A) <

input can be described as falling within a specific Pos{A), should be satisfied in general.

interval, [By(A), P(A)]. If the plausibility measure and
the belief measure are equal, it follows logicdligm
Equation 40 and 41 that classical probability tlyesra
special case of evidence theory. In other wordgnithe
ignorance of uncertainty reaches the value zerdgace
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4.3.2. Dubois and Prade’s Transformation from

a Histogram
Dubois and Prade asserted that two principles must
be satisfied first, one is Equation 13, i.e.,
AJEAS
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Ps(A)= N (A) and the other is a revision of Equation
33 which is expressed as Equation 44;

p(u)>p(y) = m(v)>m( y) (44)

These two principles are also called
probability/possibility consistency and preference
preservation Duboist al. (1993) and Dubois and Prade
(1983) proposed the transformation between proibabil
and possibility from a histogram as the following
equation, when the probability qf is an degressive
sequence, pgu= p(u)=...= p(w,), then:

ﬂx(ui)=”({u})
- min(o{u) )

=i@>(ui)+ Zn: p(uj)

jEiH

(45)

where, " p(u;)=0 and yis an element of variable X
j=i+l

satisfying the consistency principle (Equation 1@ d4)
can be expressed as Equation 47 and 48:

)=

T[x(ui):ip(uj)' when(up)z by)ZWZ @nL)

™M>

T[x(ui p(q), whem( g=n( g)=--=m( 4 (47)

(48)

Yamada proved that the above condition as Equation
48 is not adequate for the consistency principle.

4.3.4. Klir's Transformation Based on Uncertainty
Invariance

In accordance with the principle of uncertainty and
information invariance (Klir, 1995; Klir and Folger988)
which claims that the amount of uncertainty sholokd
preserved and the degree of belief should be cteter
by an appropriate scale when information flows tigto
different uncertainty models in different theori€eer and
Klir (1988) and Klir and Parviz (1992) proposed ttha
transformation be based on the principle of unteyta

taking value in a universe discourse, U. Of course,invariance, also called the principle of informatio

Equation 45 can be transformed in the conversetibire
Generally, a possibility distribution can be ob&inby
normalizing a histogram as Equation 46:

_ p(w)

" n (46)
maxp( y)

m (u)

Although both consistency and preference prinsiple
are satisfied, this transformation shows no guesatd be
just the only available one (Yamada, 2001).

4.3.3. Transformation Based Maximal

Specificity

on

From the comparison of possibility and probability
as certain uncertainty quantifications as statedvap
aware of Zadeh's investigation of the relationship

preservation or information invariance. These [iples
defining the relationship between probability andgibility,
were also derived by Jumarie (1994) and developed b
Wonneberger (1994).

Geer and Kiir first defined two kinds of possibilc
uncertainties on the body of evidence called
nonspecificity N and strife (or discord), S, forcha
ordered degressive possibility distribution on tveiéh n
elements. These were expressed as Equation 40and 5

N(m=3

(1 -T,,)log, i (49)

N

(Tq _Tﬁ+1)ili
2Tt
=

M=

S(m) =

i=2

(50)

This transformation has been investigated undeh su

between possibility and information and having seenassumption that the total possibilistic uncertairisy

the unique connection between
information pointed out by Klir (1995), we now know

there is less information covered by a possibility

distribution than by a probability distribution. iBh
suggests a principle that possibility distributions
generated from probability distributions shouldlirtz
the fewest possible number of fuzzy sets in order t
remain maximally specific (Cait al., 1993).

Given a possibility and probability distributiothe
transformation under the maximally specific prifdejp
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uncertainty andmeasured by the sum of N and S and the total wiogrt

must be preserved in the transformation process.

Then Geer and Klir give the log-interval scale
transformation satisfying the principle in bothetitions,
if p(u) = ...2 p(w), Muy) = 1w, = ...= T(U,), then
n, (u;) can be expressed as Equation 51:

(o) {24] acfos

p(ul) &1
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Table 5. Probability-possibility transformation based orndewce theory (Yamada, 2001)

Possibility types Given principles

Transformation expressions

T1: Ordinal scale Probabilistic order preservatioimgple

k
F=UU, k=1 K

k:i p(uk), g<ise(j=1--,m
T,: Ratio scale (1)  Consistency principle and prolisthi order preservation principle n(u;) = K
ki__p(uk), otherwise
K
L) = = EY) /E™ ,
Ts Ratio scale (2)  Equidistribution principle p(u)=m,({u}) & nh( h) B |
Ou, OGY =F -Fr,
where, coefficienta is a constant satisfying a unique elements are described as
equation g§) = 0 (Klir, 1995) anda(J(0,1) implies that  ® ={{Ui} l[yoyuuy,---U UKp} and F":{Fl"r"f.:n}

the consistency condition,MA) < P(A) < Py, is also
satisfied in general.

Actually, the flexibility of such transformationa#
not been fully investigated since first exploredir(land
Parviz, 1992). The uncertainty-invariant transfotiores
are also questioned with regard to several aspEgtn
Klir himself has realized that the uncertainty-inaat
transformations are not unique to ordinal scalltspagh
that is a disadvantage. From another point of vieis, an
advantage that additional requirements can be iecbos
the transformation because of the lack of uniquenes
Moreover, the principle of information preservaficas
proposed by Kilir, is incompatible with the basiswdximal
specificity. In addition, we are not sure whethemot a
function relationship such as Equation 51 is usisker
between such a possibility-probability transforimadi

4.3.5. Yamada's Transformation
Evidence Theory

Based on

Now that evidence theory, which proved to be an

amalgamation of probability theory and possibility
theory, is particularly useful for representing and
combining uncertain information when a single, egc

uncertainty model is unavailable,
between probability and possibility will also poitd

base of evidence theory. Yamada (2001) devise® thre

The other symbols (e.g.,«Uand K) can be seen in
(Yamada, 2001).

The transformations based on evidence theory, more
exactly bodies of evidence are as follow3able 5.

Here the three cases.TT, and T are all
transformations from a given probability distritmutiinto
a possibility one. But the case, Ts not the inverse
transformation whereas the third case ® one
applicable in both directions. So, when possibility
regarded as a ratio scale, considering the givieriptes
(consistency principle, probabilistic order presdion
principle and equidistribution principle) simultansly,
the transformation 3fis more valid than I

5. POSSIBILITY AND EVIDENCE-BASED
RELIABILITY ANALYSIS AND DESIGN
OPTIMIZATION

Before the acceptance and adoption of possibility
theory and evidence theory in engineering areabajility
theory had shown its effectiveness and had gained
popularity in many applications such as modelingl an

transformations guantifying uncertainty in engineering systemstarcsural

designs instead of simply assigning safety factors.
Possibility theory and evidence theory offer

new transformation methods based on evidence theonalternatives to traditional probabilistic theoryjes that

when possibility is considered as three cases ctisply

provide for the mathematical representations of

and finds these transformations generate the sam&ncertainty for complex and sophisticated systefhey

ordinal structure of possibility, moreover can he only
ones satisfying the transformation principles.

In Yamada's transformations, let (F, m) be theybod
of evidence, then £= (P, my) and E = (F', my are
bodies of evidence to define probability and pabsib
distribution, respectively. So the transformatiatvieen
p(u) andTt (u) can be substituted for the transformation
E, and E , where 9 = ({u}) = p(u) and the focal
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can also be used when there is insufficient infdiona
about random variations because they make posaible
combinatorial interval analysis. Both possibilityebry
and evidence theory have been used recently in
reliability analysis and optimization. Since Zad&B78)
published his famous paper on possibility theory,
possibility theory has received more and more &tien
from researchers in an increasing range of scientif
areas, including reliability analysis and uncettain
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management, so too has evidence theory.

decision making (Buckley, 1988; Limbourg, 2005),

Here we mainly discuss applying possibility theory data fusion (Delmotte and Borne, 1998; Hall and
and evidence theory to engineering design and sisaly Llinas, 1997; Suret al., 2008; Yancget al., 2011a) and

situations. As well, it is epistemic uncertaintyattthis
study focuses on primarily.

5.1. General Topics of Applications

fault diagnosis (Fan and Zuo, 2006a; 2006b; &val .,

1990). The popularity of evidence theory has risen,
however, because evidence theory requires
epistemological assumptions that are at odds with

Possibility theory has been applied in many areas.those underlying classical and Bayesian probability

It is usually used to quantify epistemic uncertgiift
there is no conflicting evidence among expertsjkenl
classical probability theory, which is best suiteal
aleatory uncertainty (Baet al., 2004a). In the area of
reliability engineering, reliability estimation amt#sign

theories (Fioretti, 2004).

There is a tendency to use more than one
framework to deal with complicated and variable
environments. Work of this kind include the intega
of probabilistic and possibilistic approaches (Ycamd

are investigated by (Mourelatos and Zhou, 2004),Choi, 2004; Youret al., 2004), probabilistic integration

Kozine and Filimonov (2000); Molleet al. (1999;
2004); Huang (1995; 1996); Huartal. (2006a; 2006b;
2010); Huang (2012); Lt al. (2012); Panget al.
(2012); Wanget al. (2011; 2012) and Xiaet al. (2012).
Modeling of reliability using a new data fusion euis
proposed by Delmotte and Borne (1998); Sainal.

of the probabilistic and evidential approaches (&tea.,
1987); integration of possibility-based design
optimization and robust design (Youet al., 2005;
Huang et al., 2009), integration of probabilistic
optimization and robust design (Det al., 2003),
integration of aleatory and epistemic uncertainty f

(2008) and Yangt al. (2011a); Possibility-based design various design optimizations (Mourelatos and Zhou,
optimization is studied and developed by (Mouredato 2005; Huang and Zhang, 2009; Zhang and Huang, 2010;
and Zhou, 2004; Youn, 2005; Youn and Choi, 2004; Huanget al., 2012a) and so forth.

2005; Youn and Choi, 2004; Youwst al., 2004; 2005;
Choi ¢ al., 2004; Huangt al., 2009; 2012b; Zhang al.,

From our point of view, the existing applications
of and developments in possibility and evidence

2010b). Fuzzy reliability theory in the context of theories deal with uncertainty and reliability ayss,

possibility theory is proposed and developed by éCa.,

mainly focusing on two aspects. One is theoretic

1991a; 1991b; 1993; Utkin and Gurov, 1996; Onisawadevelopment related to the fundamentals of relighbil

1988; Huanget al., 2004; 2010). In addition to

theory, e.g. imprecise reliability (Walley, 1991tkih

reliability engineering, the application areas also gnd Coolen, 2007; Kozine and Filimonov, 2000) and
include civil engineering and structural enginegrin fuzzy reliability (Cai et al., 1991a; 1991b; 1993;

(Moller et al., 1999; Huanget al., 2011a; Huang,

2012), computational mechanics, military, energy,
forestry (Kangas and Kangas, 2004), aerospace an

automobile engineering (Cayraet al., 1996) and
many other fields.

As a more general tool for uncertainty analysis
evidence theory has also been applied to many are

including artificial intelligence (particularly irthe
development of expert systems) (Bekeal., 2004b;

Huanget al., 2004; 2010); the other is computational

éor algorithmic) development in analysis and the

esign method, e.g., data fusion technology appled
reliability assessment (Hall and Llinas, 1997; Zhdral.,
2010a; Sunet al., 2008; Yang, 2011a; 2011b) and

' optimum design methods (Youn and Choi, 2004;
oun et al., 2004; Aughenbaugh and Paredis, 2005;

Huanget al., 2005a; Limbourg, 2005; Mourelatos and

Nikolaidis and Haftka, 2001), object detection and 10U, 2005; Huanget al., 2006a; 2006b; 2012a).

approximate reasoning (Lowraneteal., 1986; Perriret al.,
2004; Xu and Smets, 1996; Borotschmigal., 1999),

These are illustrated in the sections that follow.
The two aspects of applications and developments

design optimization (Mourelatos and Zhou, 2005), arise from the variety and complexity in enginegrin

multidisciplinary design optimization (Agarwadt al.,
2004), uncertainty quantification (Baat al., 2004a;
2004b), risk and reliability evaluation (Yarg al.,
2011b), remote sensing classification (Let al.,
1987), pattern recognition and
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environments, i.e.:

e Various types of uncertainty are taken into account
(Youn, 2005; Wu, 2008; Wet al., 2002; Huangt al.,
2012b; Zhangt al., 2010b)
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» Lack of information in input data, small sampleesiz  of analysis can not be considered a faithful réiiecof

insufficient information or scarce data (Chetral., reality itself. In reliability practice, there havecently
1999:; Mourelatos and Zhou, 2004: Nikolaidis and been some fundamental theoretic developments
Haftka, 2001; Huangt al., 2004; 2010) involving safety and reliability analysis when data

» Imprecise data or lack of knowledge (Chabial., scarce or incomplete.

2004; Youn and Choi, 2004; Youet al., 2004; 5.2.1. Imprecise Reliability
Aughenbaugh and Paredis, 2005; Huagtgal., o ) . .
2005b; 2006d; Limbourg, 2005; Mourelatos and ©-2.1.1. Origin and Basics of Imprecise Probability
Zhou, 2005; Youn and Choi, 2004) Theories: Origin and Motivation
*  Large-scale, complex or costly systems (Zhuatrag., It is popularly accepted that engineering desiga is
2000) process of decision making during which engineers,
5.2.Fundamental Developments Related to because they inherently don't have enough informati
Reliability Theory must def_;ll Wlth uncertainty. Only if the imprecise
characterizations of uncertainty are accommodated,
Reliability research was initiated by the problem o it be said that the uncertainty is reflected orespnted
machine maintenance in the late 1930s and of reygac clearly and quantitatively. Imprecision can resfattm
street-lighting lamps in the early 1940s; it wagegi an  fundamental indeterminacy in the available evideoce
especially impetus by the demands of complex system from incomplete characterizations of the available
in World War Il (Caiet al., 1991a; 1991b). The word evidence or beliefs (Youet al., 2004).
reliability is concerned with whether a system can Imprecise probabilities have been used to represent
operate properly without failure. It is defined #®  uncertainty in practical reliability and risk ansiy, by
ability of an item to perform a required functionder  characterizing state-of knowledge uncertainty with
stated conditions for a stated period of time. Tren intervals of probabilities. The general motivatidor
can also be denoted as a probability or as a ssiccesmprecise probabilities is that the confidence f&jt a
ratio or feasibility. Thus, in most cases, relidghilis decision-maker depends mainly on the evidence on
connected with such related concepts as failurel@ssl  which his/her probability estimate is based. Thaisy
of quality. imprecision in the probabilities should be exprdsse
Classifying aspects of reliability is subject tarious  explicitly in order to signal the level of confidemn
considerations, such as general topics of religbili appropriate to them (Youst al., 2004).
(reliability engineering, reliability managementamanty There are several theories of imprecise probadsliti
and maintenance), contents of reliability researchincluding evidence theory and possibility theory.
(reliability assessment, reliability prediction and Probability theory, possibility theory and evidence
modeling, reliability analysis, reliability allogah and  theory are all special cases of fuzzy measure theor

reliability testing), stages of reliability (relidity in and recently, a theory of coherent imprecise

design, reliability in manufacture, reliability inse), probabilities has been developed by Walley (1991)

objects of reliability (hardware reliability, sofane and Wuet al. (1990).

reliability, human reliability, structural reliatiy) among The termimprecise probabilities is used as a generic

other criteria. one to cover mathematical models such as upper and

At present, the chief reliability design activétie |ower probabilities, upper and lower previsions (or
involve Fault Tree Analysis (FTA), FMEA and reliliti  expectations), possibilities and necessities, bedied

optimization. - , . plausibility functions and other qualitative models
Conventional reliability analysis of engineering (Kozine and Filimonov, 2000).

systems relies on a probabilistic method, which : ; o :
represents the system state variable as precibalgmtidy (Wall-ghe 19(;()1P;e;?gtba;rggritr:lls; beﬂf\gg:);lllt%te:h;iges
distributions and generates precise estimatiorsystem Y, o i - p

d and three fundamental principles: avoiding sures,los

failure given sufficient input data. In complicate ) ;
situations of engineering decision making, we entau coherence and natural extension. The basic concept

many indeterminable factors, both during the esiges ~ associated with behavioral interpretation is théatao
of design and in the process of a product’s martufan gamble. This is a bounded real-valued function raefi
and use; these are due to lack of knowledge. Aon domainQ and it should be interpreted as a reward

determinate decision from a precise probabilistethad whose value depends on an uncertain state. Each one
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belongs to the domaih in the context of decision
theory and utility theory.

The coherent imprecise probability theories ase al
based on two probabilistic models: Lower previsi¢os
expectations) and upper previsions. In reliabaibg risk
analysis problems, we consider a particular ganfire
which the reward can be either 0 or 1. In this cHse
lower and upper previsions are called lower andeupp
probabilities, respectively, just as the name iggli

The combinative rules of multi-source information
discriminate between consistent and inconsistent
judgments (or models). The former contain the
conjunction rule, which combines lower and upper
previsions for consistent judgments. The latteluide an
alternative rule called the unanimity rule. Wall@p91)
obtained these on the basis of concept desiralzlity
preference.

5.2.1.2. Application and Advances of Imprecise
Probability Theories

Imprecise probability theories, including evidence
theory and possibility theory, have proved to befuls
and applicable to the implementation of reliabilapnd
risk analysis, even though some unsatisfactory tpoin
have been criticized (e.g., difficulties with evine’s
combinations, diversity of judgments admitted in
elicitation) Kozine and Filimomov (2000) developed
imprecise probabilities as a particularly advantarge
way of handling indeterminacy and summarized their
experiences in dealing with evidence theory asldtes
to reliability assessments. Using practical system
reliability assessments for serial, parallel andegal
reliability structures, they demonstrated recentaades
in applying the theory of coherent imprecise pralitéds
to system reliability assessments.

Walley (1991) and Wuwet al. (1990) proposed a
theory of coherent imprecise probabilities with a
behavioral interpretation in terms of decision tlyeand
utility theory.

Hall and Lawry (2001) introduced a new method of
constructing an imprecise limit state function from
scarce data based on minimal assumptions about th
underlying systems behavior. Application to a cstsely
on reliability analysis has demonstrated how this

egitng and Applied Sciences 6 (1): 95-136, 2013

suggested applications of imprecise probability in
reliability. A recently developed statistical apach,
called nonparametric predictive inference to religh
has been introduced by Coolest al. (2002) as a
coherent framework offering exciting opportunitifes
when data is scarce. They also presented applisatid
this approach with regard to replacement and
maintenance decisions.

Aughenbaugh and Paredis (2005) consider imprecise
probabilities in order to express clearly the psmci
with which something is known, on the hypothesét ih
is valuable to explicitly represent this imprecisiby
using imprecise probabilities in engineering desigmen
an example and computational experiments involving
pressure vessel design problems are carried oug usi
two approaches, both variations of utility-basedisien
making. The experiments demonstrate that when
designers have access to only a small set of satade
a Probability Bounds Analysis (PBA) approach thedsu
imprecise probabilities to model uncertainty caadl®n
average to better designs than can a purely pridtabi
approach that requires precise probabilities.

Augustin and Hable (2010) claim that building a
relationship between the theory of imprecise
probabilities and robust statistics is promising.
Oberguggenbergest al. (2009) have applied imprecise
probability to deal with sensitivity analysis. An
aerospace engineering example is used to compare th
results obtained using random sets, fuzzy sets and
interval spreads simulated with the aid of the Gguc
distribution.

We can conclude from these results that, at lieast
some design problems, it is valuable to explicitkpress
any imprecision in the available characterizatioh o
uncertainties in terms of imprecise probabilitiEarther
introductory information and examples of imprecise
reliability analysis can be found in (Nikolaidis dan
Haftka, 2001).

e Although applying imprecise probability methods to
reliability has shed light on many interesting wsh
problems, there is still a need for a wide variefy

conventional approach can be extended to handld€S€arch tools for addressing problems. By farnan

imprecise knowledge about system state variabtes. |

difficulties for modeling imprecise probabilitieaviolve

represented in general as random sets, in order tgomputation. Recent work by (Utkin and Coolen, 2007

generate bounds on the probability of failure. This
approach has provided new insights into the sounfes
uncertainty and the assumptions implicit in the
conventional probabilistic approach.

Coolen (2004) discussed a variety of issues

involving advantages and disadvantages and reviewedvide backgrounds of development for
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has made great progress in this regard, yet munhins

to be done. Another topic that has not yet beediestiis

the design of experiments with uncertainty quaeifi
through imprecise probabilities (Youst al., 2004;
Nikolaidis and Haftka, 2001). From this perspectite
researchers
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devoted to this field may be of great benefit itufa.
5.2.2. Fuzzy Reliability

Similar to the origin of imprecise probability
theories, possibility theory and evidence theospdind
their positions in reliability analysis. The systeio and
typical one which has been well-developed is fuzzy
reliability. Mainly referred to as employing posiitly
theory, one uses fuzzy theory as the uncertaindyyais
tools in the framework of reliability theory.

5.2.2.1. Motivation and Consideration of Fuzzy
Theory in Reliability Analysis

The origin of fuzzy reliability theory comes froimet
consideration of reliability aspects in gracefully

guantification analysis tools, such as possibilitgory
and evidence theory, the concept of fuzzy relispili
was introduced based on possibility theory (€l .,
1991a; 1991b; 1993).

5.2.2.2. Classifications and Structures of Fuzzy
Reliability Theory

It is no surprise to note that possibility theory-
based reliability theory can be classified as nuy @
member of fuzzy reliability theory, but also a meamb
of non-probabilistic or imprecise probability thgor
The former classification is due to the theoretic
background of fuzzy set theory while the Ilatter
classification is due to the non-statistical chégestics

degradable computing systems, where system stategf the information involved. Compared with the

cannot be simply classified as failed or functignitn
addition to the nature of performance degradatian,
failure does not necessarily occur at random becatis
complex and uncertain factors. Hence, a concefuzaly
reliability was proposed by to meet these demands.

In detail, the two basic assumptions of traditiona
probability-based reliability analysis, is not
appropriate if the data to estimate the failure
probability is not enough; or the determination af
safety criterion is also dependent on engineering
judgment, which lead to diverse uncertain factors.
Utilizing emergence and development of uncertain

Reliability assumptions

conventional reliability theory, the structure afzty
reliability theory is illustrated akig. 6.

5.2.2.3. Present Works on the Subject of Fuzzy
Reliability

According to different reliability assumptions,
various forms of fuzzy reliability theories, incing
profust reliability theory, posbist reliability tbey and
posfust reliability theory, have been consideredpi
new assumptions in place of the binary-state and
probability assumptions.

Probability

]
1
Probability reliability ! Profust reliability Posbist reliability Posfust reliability
|
! e
Conventional reliability | Fuzzy reliability theory
________________ ':4____________________________________________
I
Fig. 6. Reliability theories based on various fundameasaumptions
115 AJEAS
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With the concept of possibilistic logic proposeg b compared the theoretical foundations of probabikityd
(Dubois and Prade, 1983; 1987), a new knowledgeébas possibility-based methods in design for maximunetsaf
solution now enables possibility theory to achiewder  and concluded that possibility theory tends to éss|
applications in the artificial intelligence or dafiasion  conservative than probability theory in risk assesst
domains than was possible with probability theonga \when data is sufficient and to be more conservative

evidence theory. . _ ~ under more unfavorable circumstances that is under
To date, most existing works are in theoretic gpistemic uncertainty.

construction and modification (Cei al., 1991a; 1991b;
1993; 1995a; 1995b; Cappelle and Kerre, 1993; 19945.3. Computational Developments Related to
1995b; Moller et al., 2004; Nikolaidiset al., 2004; Design Optimization Under Uncertainty
Huang et al., 2010), or practical connections in . L
engineering (Cappelle and Kerre, 1995a; 1995b:eBak,  ©-3-1. Design Optimization
2004a; 2004b; Bai and Asgarpoor, 2004; Moberl., 5311 An overall Understanding of Design
1999; 2004; Liet al., 2012). Caiet al. (1991a; 1991b) Optimization
has considered Posbist reliability theory for tgbic
systems, such as series, parallel and k-out-ofstesys Design optimization is now a mainstream
as well as for cold and warm redundant systemsdiscipline in high-technology product developmentia
(Caiet al., 1995a; 1995b). Utkin (1994) and Utlenal. a natural extension of the ever-increasing anadytic
(1995) has provided an analysis of typical repd@ab abilities of computer-aided engineering (Papalarsbro
systems in the possibility context. Aiming at more and Michelena, 2000). Such factors as designingelar
change-friendly systems, Utkin an@urov (1996) scale complex systems, business demands and
proposed a general formal approach to ana|yzingtechnologi(_:al_ inlterse_ctions, all requirg methods of
posbist reliability behavior in arbitrary systemsing design optimization with a system view, in contrast
a state transition diagram. Systematic work on View of component design. _
maintenance policy and FTA in the presence of fuzzy ~ Design optimization under uncertainty should take
state assumptions has been only been partially .donelnto account the main types of uncertainty arisioging
Huanget al. (2004) have developed a new model of the design or operation of the product, i.e. ptasif
fault tree analysis corresponding to posbist réligb uncertainties (manufacturing tolerances, uncoratiotd!
theory in order to evaluate system reliability and variations in external operating conditions) and
safety when statistical data is scarce or the pitina ~ uncertainties in decision making (vagueness inliotingy
of failure is extremely small. objectives), uncertainties in modeling and simaolati

Most recently, fuzzy reliability has been extended

a multi-state systems context where both components(l) Formal Mathematical Model of Design

and systems possess multiple discrete performaaies r Optimization
in lifecycle (Liu and Huang, 2008; 2010; 2011) and Design optimization assumes a decision-making
dynamic fault tree analysis (et al., 2012). paradigm for the design process. It takes the viotlg

Although much research has been done on fuzzyform expressed as Equation 52:
reliability theory itself and its extensions, theplration
is not complete yet. Existing models of fuzzy reility minimize f(d, X)

theory have caused some difficulties for practiisnwho subject to I@ @ )X) |

feel this theory does not cover a large enougtetsanf (52)
possible judgments in reliability (Utkin and Cogl@007). @ d X)S (
Actually, even the evidence-theory-based approach t X0 ul B

reliability analysis encounters this criticism when
information is incomplete. In some real cases,elltves  where, f(*) is the scalar design objective functich=
not exist a type of possibility distribution thatreasonably  [di] is the vector of design variables in the n-dimemnsi
consistent with statistical data. Clear interpretatof real space BX = [X{]" is the vector of random variables,
possibility distributions is a goal for the future. the vector-valued functions h(*) and g(*) are the
To a certain extent, reliability analysis using th constraint functions that determine whether a aessy
proposed possibility-based method can not be cdelple feasible (reliable) or not. In a practical engimegr
separated from possibility-based design optimizatio optimization problem, the main criteria used to suea
Nikolaidis et al. (2004) and Nikolaidis and Haftka (2001) the effectiveness are cost and performance.
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Although providing a practical tool for analysisda improve numerical efficiency by eliminating
design, the traditional design optimization has its numerical iterations in the only loop of reliabjlit
drawbacks because it does not consider the inherent analysis (Diet al., 2003)

uncertainties (such as variations in design vaemlaind .  safety-factor approach: The approximate equivalent

parameters) and modeling uncertainties (such as  geterministic constraints are used to decouple the
modeling and numerical errors existing in the asialy optimization and reliability analysis

tool) quantitatively (Dhanesh, 2003). Hence resesns
have proposed various specialized optimization
methodologies to reduce the computational costs of
traditional design optimization problems. There dav
been some advances in exploring decomposition
strategies or approximation concepts, especially in
aerospace and automobile engineering applications.

e Sequential optimization and reliability assessment:
A series of cycles are obtained by decoupling the
deterministic optimization and reliability assessine
in order to improve computational efficiency (Tu
and Choi, 1999; Du and Chen, 2004; Zhang and
Huang, 2010; Huang al., 2012a)

(2) Classifications of Design Optimization Based on types of principles and theories of

The diversity of system structures, resource cain uncertainty, there is a classification of analysisthods
and types of uncertainty consideréd has led to thefor uncertain system in the present literature {ley

construction and analysis of various design opion ~ 2000; Choketal., 2004) as follows.

models (or design methods under uncertainty) (L&rad), Describing  uncertain  input variables ~via a
2008: Huanget al., 2012a; 2012b; Huang al., 2011b; probab!l!ty_ density fl_mctlon. The  well-known
Huang and Zhang, 2009; Huagigl., 2008): probabilistic approaches include.

1) Asymptotic Reliability Analysis
» Reliability-Based Design Optimization (RBDO): ) Asymptoti lability ysl

aleatory uncertainties It fully describes the statistics of the enginegrin
+ Possibility-Based Design Optimization (PBDO): structure system by the joint probability densitydtion
epistemic uncertainties with the random variables in the form of the erstri¢ a

«  Evidence-Based Design Optimization (EBDO): vector and dimension. The condition of the struetisr

epistemic uncertainties, also for a mixture of described by a safety margin. Here the word asytapto
aleatory and epistemic uncertainties means that the errors involved in the approximatibn

. Interval-Based Design Optimization (IBDO): failure probab_ility _approaches zero when the rdliigb
interval variables for describing design variables INdeéx goes to infinite.

or/and parameters with two bounds 2) First-Order Reliability Method (FORM)
* Robust design: mainly aimed at enhancing product ) .
quality as well as reliability It is a subset of the asymptotic approach by

« Design for six-sigma: satisfy the six-sigma transforming the random variables to a set of umetated
requirements under uncertainty, mainly a Gaussian variables with zero mean and unit variamce

combination of reliability-based design optimizatio the safety margin is approximated by a hyperplane.
and robust design 3) Second-Order Reliability Method (SORM)

Traditional design optimization methods can be It follows the identical steps of FORM analysis
classified as a bi-level approach. When concreteexcept that the final representation of the safeéygin
uncertainty-based design optimization is applidlk t uses a quadratic approximation.
methods can be categorized as:

goriz 4) Other Methods

* Double-loop method: Two loops (Inner loop: Such as Monte Carlo Simulation (MCS) technology,
reliability analysis and outer loop: design Bayesian method, experimental design techniques (or
optimization) are nested, which is the simple métho Taguchi’'s method).
but with low computational efficiency (Zhang and .

Huang, 2010) 1) Interval Analysis

* Single-loop single-variable method: It is mainly Expressing uncertain input variables via lower and

proposed for the RBDO process and attempts toupper bounds and defining the output interval by th
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minimum and maximum of all
combinations (Youn and Choi, 2004).

input end point

2) Convex Modeling

Assuming that uncertain input variables lie witlain
convex region and reducing to interval analysiswia&ing
a hypercube convex region.

3) Fuzzy Modeling (or Possibility Theory Using
a Fuzzy Set)

Nikolaidis et al. (2004) and Nikolaidis and Haftka
(2001): Describing uncertain input variable by aziy
number (or possibility distribution function).

related to a traditional RBDO, including a unifikedel
RBDO, Performance Measure Approach (PMA), semi-
infinite optimization, a single level approach aad
variable complexity algorithm. In a unified-leveBRO,

the FORM-based reliability constraints take thecelaf
the first order optimality conditions of the MostoBable
Point (MPP) searches. In a PMA, the FORM-based
reliability constraints are replaced with the wocsise
values of hard constraints under a specified railiab
level. In a semi-infinite optimization techniqueasked on
PMA, the constraints are replaced with a single
deterministic one in form of a min-max formulation,
satisfying the hard constraints within a sphereaadius

Encompassing or integrating the probabilistic and of required reliability.

possibilistic analysis methods in a general framéwo
e.g., a common mathematical algorithm in reliailit
analysis (Langley, 2000).

(3) General Introduction of RBDO and
Development

Reliability-Based Design Optimization (RBDO) has

its

The approximation concepts in RBDO can improve
the efficiency of such approaches, including Tw@po
Adaptive  Nonlinear  Approximation  (TANA2),
multivariate spline approximation. A more detailed
survey of detailed approximation and optimum design
can be found in (Dhanesh, 2003).

Recently, the extensive research or development of

been used to consider aleatory uncertainties in arfRBDO concentrates on how to make it computationally

engineering design process. When the input dattaicon
sufficient information to characterize statistical
distributions, the design optimization that incoqtes
the probability method is called a reliability-bes#esign
optimization (Younet al., 2004). The modern reliability
methods themselves are actually formulated as lalgoro
of optimization, which involves evaluating of
probabilistic output performance measures.

affordable, while maintaining numerical accuracyd an
stability. Tu and Choi (1999) have reformulated the
FORM reliability constraints by an inverse relitlyil
analysis formulation. They also point out that Pia&n
work for cases where conventional MPP searches fail
(Youn and Choi, 2005) present an enriched Perfocean
Measure Approach (PMA+) for RBDO to substantially
improve computational efficiency in large-scale

The standard RBDO model can be defined asapplications, by carrying out the refined reliatili

Equation 53 (Youret al., 2004), by replacing the hard
constraints of traditional design optimization with
reliability constraints:

min Cos{ d, ¥
st. {G(¢ X)>9<o(B,), # 12 .n
U< & 49 3)

¢=p(YOR and %[ x['0 R

analysis using the enhanced Hybrid Mean Value
(HMV+) first-order method. We can find that such
approach can also be applied and developed in aOPBD
environment, with each method having its own strong
and weak points (Mourelatos and Zhou, 2005). In
addition to these methods, a new reliability analysol
based on Trust Region methods is also developed.

On the other hand, a general optimization under
uncertainty formulation can adopt both robustnesd a
reliability constraints. One such formulation that
minimizes both mean of merit function and its vaca

where, d and X are the design vector and the randongubject to constraints on worst value of hard cairsts

vector respectively whil@, is a target failure probability
(or reliability level) and n, nr, np are the numbéidesign
variables, the number of random variables and tmeber
of probability constraints, respectively. The dasigriables

can be distribution parameters like means or stdnda

deviations of the random variables, or of course bba
deterministic. The reliability constraints are ohe't
reliabilities with respect to the various failuredes.

within intervals of required confidence level igpesssed
as Equation 54 (Su and Renaud, 1997):

min Q. +wo,
st Hg _ong 20 FE L2 Ny (54)
< & 4

Some alternative methods (Dhanesh, 2003) havewhere,s ando; are the mean and standard derivation of
been suggested to reduce the high computationa$ cos variables and w is a weighting function.
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5.3.1.2. PBDO in terms of a confidence level (Klir, 2000); (4ppiding a
, . , . system-level possibility unlike reliability analgsi
We have mentioned earlier that in practical For numerical methods of fuzzy analysis, some

engineering design, there are two main types Ofreported methods are listed below:
uncertainty: Aleatory and epistemic uncertaintiébe

former is objective and irreducible with a large camt * Vertex method (Sentz and Ferson, 2002)
of information on input data and then can be madlele * Discretization method
using probability theory. The latter is subjectimad * Level-cuts g-cuts) method (Huang al., 2008)
reducible coming from lack of knowledge on inputada  *  Multilevel-cut method

In areas where it is not possible to obtain ageura ¢  Possibility index approach
statistical data due to restriction of resources or® Performance Measure Approach (PMA)
conditions (i.e., budgets, facilities, time, human * Most Probable Paint (MPP) search
factors), probabilistic methods may not be appraeri ©  Maximal Possibility Search (MPS)

for structural analy3|§ and d_eS|gn opt|m|z§t|onu§Ia In practical engineering analysis and designyéex
demand for alternative design methods is created bymethod is popular but rather expensive for largeesc
epistemic uncertainty which requires the modelifig 0 engineering applications and could yield inaccureseilits
physical uncertainty when there is insufficient of fuzzy analysis in the case that an output respdmas a
information (Klir, 2000; Youn et al.,, 2004). maximum or minimum within the input range. A level-
Possibility theory and evidence theory are used incuts method has been used to overcome the diféisudff
such cases. Very recently, possibility-based (@zyu nonlinear problems using various design levels.
set) methods have been proposed (Klir, 2000; @halii., Recently, a multilevel-cut method has been develdpe
2004; Moller et al., 2004; Zhanget al., 2010b), in  improve the accuracy of the vertex method for medr
which a mean performance is optimized subject toStructural design, but it is also very expensivecaory

possibilistic constraints. out PBDO. The PMA has been successfully appliet wit
its advantages of numerical efficiency and stapilit
(1) Formation of PBDO PBDO (Younet al., 2003; Youret al., 2004).

. Fuzzy analysis method is different from reliafilit
The general PBDO can be formulated as Equationgpajysis in such two cases: one is the MPP inhitia

55 (Zhou and Mourelatos, 2008): analysis based on FORM results in the first order
_ approximation, whereas MPP in fuzzy analysis iscexa
min Cos{ d, along with the related possibility; the other istthhe
st I‘I(Q( q y))> ()sa . E 12 .n search domain is different, which is an nr-dimenaio
f (55) sphere in reliability analysis while nr-dimensiommgiper-
< &« 9 cube in fuzzy analysis as shownTable 6, thus lead to
¢=p(Y)OR and \t[ Y]T 0B simpler computation in fuzzy analysis (Clebal., 2004).

(3) Comparison of PMA in PBDO and RBDO

where, d and Y are the design vector and the fuzzy  goih RBDO and PBDO employ PMA to improve
random vector respectively while, is a target failure  , merical efficiency, stability and accuracy. The

possibility and n, nr, np are the number of design gifference of PMA ‘method in reliability analysis by
variables, the number of fuzzy random variables thed (Younet al., 2004; 2003) and in fuzzy analysis (€adl.,

number of possibility constraints, respectively. 1991a; 1991b; 1993; 1995a; 1995b; Cappelle andeierr
(2) Fuzzy Analysis Method for PBDO 1993; 1994; 1995a) is illustrated Tiable 6.

Compared to other methods, a fuzzy (or possibility) (4) Present Works Related to PBDO
analysis method represents a very useful tool tiope At present, one of the main concerns related to

operations in the framework of possibility theomyth the  PBDO research has been how to improve numerical
following main advantages: (1) preserving the iic  efficiency, accuracy and stability during the opgation
random nature of physical variables through their process. The Performance Measure Approach (PMA) is
membership functions; (2) simpler extended fuzzy such a method satisfying the requirement, replatiieg
operations (Klir and Folger, 1988; Klir and Yuar995) probabilistic constraint in Equation 53 with the
than those required to use probability; (3) yieddlnmore  performance measure under a specified reliabiéiel
conservative design than the probabilistic desigrthod (Youn and Choi, 2005; Youet al., 2003).
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Table 6. Comparison of PMA method in RBDO and PBDO (Cétail., 2004; Youret al., 2004; Youn, 2005)

PMA in RBDO PMA in PBDO
min Cos{ d; ¥ min Cos{( d; Y)
Formulation st. Gi(dR)s0 FE12 ,n st. Gy(d¥)=0 E12 n
d<k d d<k d
Objective of constraints random quality loss anmioam Deterministic material cost, random qualitgslo
manufacturing cost. manufacturing cost.
G, : theith probabilistic constraints G,, : theith possibilistic constraints
) ) min G(U) min G( V)
Evaluation of constraints
s.t. H L‘”z <B s.t. H L‘”oo ska,
X: random variable Y: non-interactive fuzzy vatied
U: standard normal random variable; V: fuzzy Vialeawith isosceles
Variables and parameters d: Design variableu®9 0O R". d: Design variable,
B:: target reliability index or target d ={ max{l‘lyi ( y)}} =[ qi]T
reliability level a,: target failure possibility.

Choi et al. (2004) provided a new formulation of PBDO reliability analysis under the condition of design
using PMA to improve numerical efficiency, stalyiland  closeness. Youn and Choi (2004) provided two exampl
accuracy. They also propose a new Maximal Podyibili to show computational features of PMA+ for RBDOwit
Search (MPS) method to resolve disadvantages of thaleatory input uncertainties and MPS for PBDO with
vertex method and the multilevel-cut method, byepistemic input uncertainties. In addition, RBDOdan
evaluating possibility constraints efficiently and PBDO results are compared for implications of these
accurately for nonlinear structural applicationsuM et al. methods in design optimization.

(2004) presented an integrated design platformath b Another concern of the extension of PBDO is to
RBDO and PBDO using PMA when modeling physicalprovide a general framework integrating various
uncertainty with insufficient information. (Mouréts  proposed design optimization methodologies such as
and Zhou, 2004) used the possibility theory asréantt  RBDO, PBDO, under aleatory uncertainty or epistemic
of fuzzy set theory to assess reliability with img@ete  uncertainty, or both of them. Youn (2005) proposed
information in structural analysis and design. method called the adaptive-loop method used fohsuc

In their study, a hybrid optimization approach forintegrated framework, enhancing numerical efficienc
calculation of the confidence level of fuzzy respons  without losing computational stability by integrati
presented first, combining the merits of converdlon of parallel-loop and single-loop methods adaptively
vertex and discretization methods. Then they pmad Nikolaidis et al. (2004); Nikolaidis and Haftka (2001)
general PBDO method with numerical examples, whicrand Cheret al. (1999) also consider the PBDO problem
is from the angle of design and proves to befor design under uncertainty. It is shown that more
computationally efficient. Tu and Choi (1999) shavthat  conservative results are obtained compared with the
the advantage of PMA is that when the reliabilitdéx is  probability-based RBDO, especially when there is
very high, PMA is less expensive and the disadyentd  insufficient  information  available in  reliability
this approach is that it might require more compotes  assessment. But it is also true that using po#giliileory
where the reliability index is lower than the regdi can yield less conservative designs in certains;agben
reliability level. So there is a need for some riiodtion  the main design criterion is to minimize the prabgb
and extension of fuzzy analysis methods in PBDO. and possibilities of failure.

In order to improve the computational efficiengyda The existing works related to PBDO have revealed
stability, the enriched Performance Measure Approacthe characteristics and advantages of possibitigpty
(PMA+) has been proposed. As an extension of PMA, ifor coherent systems; but there still need a génera
combines four key ideas (Youn and Choi, 2005): as &olution (not referred to only method or algorithno$
way to launch RBDO at a deterministic optimum desig all uncertainty-based optimization under diverse
as a probabilistic feasibility check, as an Enhdnce uncertainties, which could be the future directioin
Hybrid-Mean Value (HMV+) method and as a fastresearch.
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5.3.1.3. EBDO

As a more general tool for uncertainty quantificati
analysis than probability and possibility theoryidence
theory has shown its qualitative value and comporat
efficiency in many application areas.

The significant point of evidence theory is that i
allows for allocation of a probability mass to sets
intervals and does not require a premier assumptio
regarding the probability of the individual congénts of
the set or interval, compared with other methodsesgé
special advantages are potentially valuable inrexeging
design if limited and even conflicting informatios

2002; Baeet al., 2004a), e.g., in large-scale engineering
s. One of the major difficulties of

structure system

tool

applications for evidence theory, investigated lag & al.
(2004a; 2004b) may be its high computational csdbpts
evidence theory as a general
guantification analysis for large-scale structunesing a
cost-effective and reliable algorithm, the Multi ifto
ﬁpproximation (MPA) to alleviate the computational
difficulties (Baeet al., 2002; Baest al., 2004a; 2004b). In
their study, compared with the popular evidencestlas
methods of the sampling method and the vertex rdetho
such a proposed optimization technique as MPA naetho

of uncertainty

provided from expert elicitation or experiments, byenhances its accuracy mainly through local appration,

means of combining aleatory and epistemic uncestain focusing the computational recourses on the faileggon
and then the Two-point Adaptive Non-linear Approatms

in a straightforward way.

However, to the best of our knowledge, reported TANA2) is selected. Both the optimization and the

exploration of evidence theory in engineering desig
fairly limited and even much less in a design ojzi#tion
framework. It is only recently that evidence-basegthods
are used to propagate epistemic uncertainty @aa.,

Given information

v

Constructing and combing BBA structure

v

Defining
1)  Structural system failure set;
2)  Function Evaluation Space (FES)

Constructing a surrogate model

Assessing Bel and Pl

Identifying the failure region boundary

Seeking failure region

!

Fig. 7. An uncertainty qualification approximation algbrit using evidence theory (Beeal., 2004a; 2004b)
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| ; ;

Surrogate model [«

Evaluating

1) Belief
function;
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approximation techniques may efficiently evaluake t
belief and the plausibility functions without séicing the

accuracy of resulting measurements. The detailed fl
diagram is showed iRig. 7.
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Although such a computationally efficient and

investigate design optimization in a more broadegadl

accurate method is proposed and demonstrated by twgeneral point of view, if the uncertainty represtion

structural examples (Bagt al., 2004a), it is not an issue
which takes design problem into account. The stuaigh
propagates epistemic uncertainty using evidenceryhe
and also performs a design optimization is firstied out

by (Agarwal et al., 2004), in which optimum design is
calculated for multidisciplinary systems under utaiaty.
Since the belief functions are discontinuous tenideate
non-deterministic  constraints in this research,
Agarwal et al. (2004) employ a trust region sequential
approximate optimization method to drive the optatibn
process with surrogate models representing thertainte
measures as continuous functions. Their work isifsignt

in throwing light on the use of evidence theory for
optimization under uncertainty.

tools can be further improved.
5.3.1.4. Other design Optimizations

Robust design is developed to address the conéern o
robustness of certain performance parameters &ablility
of the design (Duet al., 2003). In a robust design
optimization, the variation in performance paramets be
either minimized, or constrained to be lower thame
value. In a traditional robust optimization propmbsey
Taguchi, the main aim is to find designs with minim
variation of certain performance characteristics,, ito
minimize the product quality loss. Using the propeof
orthogonal arrays, the robust design with minimum
performance parameter variation can be identified.

A robust design method has been adopted in a

Mourelatos and Zhou (2005) continue the researchvariety of practical engineering problems. Recettigre

of Evidence-Based Design Optimization (EBDO). The
proposed design optimization method, which is
computationally efficient and can handle a mixtafe
aleatory and epistemic uncertainties, can be faated|
as Equation 56:

min f(d,xN,P”)

st. P(G(d%)>0<p,F 12 ,np
s & ¥ X< X< ¥
dR,XR P R

(56)

where, d, X and P are the vectors of determinggisign
variables, uncertain design variables and uncertai
design parameters, respectively. Here n, nr, qtlaee
number of the above variables or parameters raspgct
and np is the number of constraint§:) is the objective
function, g is a prescribed probability value. Here the
superscript “N” in Equation 56 indicates the norhina
value of each variables or parameters.

After a geometrical interpretation of the EBDO
problems, a computationally efficient solution is

is a tendency of integrating it to uncertainty-lshdesign
optimizations with a result of enhancing produchliy
as well as confidence level (e.g., reliability) (g

2005), although the emphasis of each individual
paradigm is different.
The fuzzy set approach is common, where

membership functions characterize the input unceyta

This method expresses uncertain input variables via
lower and upper bounds and defines the outputvater
by the minimum and the maximum of all input endnpoi
combinations (Xiaat al., 2011).

It assumes that uncertain input variables lie withi
convex region and be reduced to interval analysisenw
ntaking a hypercube convex region.

5.3.1.5.Integration of Various Optimization
Methods

In recent years more and more attention of desgner
is paid to the integrated framework of uncertainty
analysis and even more of design optimization natho
due to the modified design guideline or standard.
Moreover, in order to deal with the situation witbare

presented and two design examples are provided tds insufficient information, the possibilistic meith itself
demonstrate the proposed EBDO method in Ref.or its integrated framework may be the better ahoic

(Mourelatos and Zhou, 2005). The algorithm quickly
identifies the vicinity of the optimal point by &rivative-
free optimizer calculating the evidence-based aptim
starting from the close-by RBDO optimum and moving
hyper-ellipse in the original design space, as uised
RBDO algorithm. Moreover, only the identified aetiv
constraints are considered for local surrogate tsoddl
these concerns keep the computational cost degilall
(Mourelatos and Zhou, 2005).

It is also shown that the EBDO is conservative
compared with all RBDO designs obtained with difer
probability distributions. It provides the possityil to
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Such integration research includes integratiothef
probabilistic approach with the possibilistic apgeb
(Youn et al., 2004; Langley, 2000), integration of the
probabilistic approach with the evidential approach
(Leeet al., 1987), integration of possibility-based design
optimization with robust design (Youst al., 2005;
Huang et al., 2009), integration of probabilistic
optimization with robust design (Dt al., 2003),
integration of aleatory uncertainty with epistemic
uncertainty for various design optimizations (Youn,
2005; Huang and Zhang, 2009) and so on.
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Fig. 8. An integration of PBDO and RBDO by PMA method (Yiaat al., 2004)

Deterministic design : I Parallel-loop method | : Single-loop method

optimization method ! : ; : |

Feasibility check for ; | 5
Closeness check;

y

- | An initial design : i |probabilistic or possibilistic

design optimization while|

| : constraint 3 :
v : ; | ; keeping stability.

The deterministic ; ; 3 |

A fast reliability analysis w :

I | N -

optimum design i

(i+1)th Design iteration
Fig. 9. The adaptive-loop method proposed by (Youn, 2005)

The survey of existing work is not all-inclusiveutb  for highly nonlinear and monotonic performance
rather representative work emphasizing those methodresponse in RBDO. Such a structure is showFign 8.
that can ultimately be expressed under a common In his study, the adaptive-loop method is composed
analytical framework. of three phrases of optimization: The deterministic
Youn and Choi (2004) and Youst al. (2004) design optimization is employed at the beginninghaf
present an integrated design platform of both READO process with such additional improvement of nunaric
PBDO when modeling physical uncertainty with efficiency by reducing the design iterations anenttthe
insufficient information, using PMA to improve parallel-loop method is expedited addressing nuraéri
numerical efficiency and stability in PBDO while P convergence and statistical feasibility using PMA#e
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last step is for single-loop method, checking tlesigh 2003) propose an integrated framework of two
closeness and improving computational efficienayct5  methodologies for the design objective robustneith w
integrated framework is typical as an organic stmec ~ probabilistic constraints.
for uncertainty-design optimization. The adaptigeg They employ an inverse reliability strategy thaesi
method is illustrated ifrig. 9. percentile performance and give a new search #igoifor

In response to such improved standards inthe Most Probable Point of Inverse Reliability (MRR
engineering design as reliability and robustnesd an evaluating the performance robustness and peeentil
considering the fact that, for epistemic uncertesyta  performance in the proposed formulation.
possibility-based design optimization deals withe th Their engineering example of a vehicle combustion
failure rate, while a robust design optimizatiomimiizes  engine piston design illustrates the effectivengfsthe
the product quality loss, researchers are intataésteghe ~ method, solving the tradeoff problem encounterethén
integration work for epistemic uncertainty. Sinbere is  integration simultaneously which has ever been the
no metric for product quality loss defined undeistgmic  difficulty in uncertainty handling.
uncertainty, (Younet al., 2005) propose a new design . . .
framework successfully integrating the PBDO and a5'3'2' Da'ta 'l_:u3|on T.echnology in Risk and
robust design optimization with new formulation of Reliability Analysis
product quality loss for epistemic uncertainty. Buc 5321 A General Introduction of Information
Possibility-Based Robust Design Optimization (PBRDO Fusion

can be formulated as Equation 57:
In the early 1980s, it was military scientists that

min Cos{ d, \J were the pioneers in the use of techniques of vidat
. now called information fusion (Hall and Llinas, 199

st. N(G(dV)>gsa,, & 12 ,np Zhuang et al., 2000). Data fusion is now a formal
H<s & Y 57) framework and tools for the alliance of data orging

T from different sources of different nature. It airat

d= n{ YO R" and \t[ ,\ﬂ 0o R obtaining information of greater quality.

There are indeed a large amount of literaturesime|
to this method in different aspects of applicatoeas, e.g.,
defense systems, geosciences, medicine and imdiustri
]engineering. The information involved in the fusmmocess
may be data, image, sensor and classifier. Sootieept of
data fusion can be extended and the applicatics caa
also been extended.

A fusion system is usually multi-leveled, e.ggrfr

where, the design vector d= m(V) is the maximuraliik
value of the fuzzy random vector and V is the fuzzy
random vector and np, ndv and nrv are the number o
possibilistic constraints, the number of designialdes
and the number of fuzzy random variables, respelgtiv
First, their paper proposes a new metric for pebdu

quality loss in three different types of robustetijves. fixed level, then to feature level and lastly tocideon
Then the MPS me_thod_ and PMA+ are emplqyed forIevel. The mathematical tools used for fusion amgous,
more ef_fect|vely est!matlng_p(_)SS|_b|I|st|c cons'qtalrand including probability theory, evidence theory, fyzzet
conducting the design optimization, respectivelywoT 5,4 possibility theories and more recently neural
examples are used to show the feasibility of pdggib networks (Hall and Llinas, 1997).

based robust design with epistemic uncertainty,  As two of the most important fusion methods,
comparing with those results of reliability-basexdbust evidence method and possibility method have been
design optimization. Such framework is ready for widely used, including the area of reliability assment
application in other areas. and engineering design (Pergal., 2004).

Actually, robust design can be integrated to any of . . . -
uncertainty-based design optimizations with theltesf 5.3.2.2. Infor(rjnatlorr: dFu5|on Using  Possibility
enhancing product quality as well as confidenceellev Based Metho
(e.g., reliability). _ _ In the framework of possibility theory, the

Considering that robust design emphasizes oninformation available, relative to the value of maeter,
improving the product quality by minimizing the edts is represented by a possibility distribution, which
of variations while RBDO focuses on maintainingiges  corresponds to an interval (or a set) representing
feasibility at expected probabilistic levels, (2t al., imprecise information. Such a set is generally yuzz
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Fig. 10.Dempster-Shafer methods as a part of reliabititgrimation fusion model (Hall and Lawry, 2001)
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Fig. 11. An information fusion structure for comprehensiggability assessment
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It is possible to find a large range of schemesirgni  probability axioms. Possibility theory and Dempster
each case, where the fusion of uncertain informailo ~ Shafer theory of evidence thus offer such alteveati
equivalent to finding a compromise between a tooapproaches by adoptions of natural language express
accurate result which is certainly false and a sasailt about reliability information (Misra, 1993).

which is too imprecise.

Hence, the union and the intersection are botitipal 5.4.1. Quality
ways, among others, to fuse two sets, which proaigeeat System quality, in a narrow sense as a body of
opportunity for reliability analysis and evaluation performance indices whereas in a broad sense as all

5.3.2.3. Information Fusion Using the DS Method relevant variables and procedures, are often ptone
e 9 human errors and management defects (Murthy and

As a generalization of the probability theory, the Djamaludin, 2002). Quality factors, even quality
evidence theory allows the handling of non-exclaesiv definitions are essentially fuzzy and unclear ialitg.
and non-singleton events. Each measure attaches Applying fuzzy methodology, the inherent and irgimn
probability to any element of the power set of sle¢ of data and information can be represented in many
discernment (Hall and Llinas, 1997; Zhuaaigl., 2000; examples including fuzzy control chart and fuzzigsun
Sentz and Ferson, 2002). The Dempster-Shafer sule iquality control (Cai, 1996). The complex and fuzzy
used to aggregate these input mass functions. rBiffe  relationships among object system, operating sitosat
modes of decision associated allow us to handle theand development process, supporting resourcescalso
compromise information. Based on this knowledgehwi for fuzzy techniques.
information theory, the DS fusion method in rellapi C
engineering can be illustrated Eig. 10. 5.4.2. Reliability

Aiming at the difficulty in reliability assessment In the context of measure and integral, reliability
complex large scale system, using information fusio is a quantitative index and can be measured by the
technology is worth trying. The essential stratsigyuld be  opposite side, i.e., unreliable or failure everife
considered as combining fusion technology into afirst adoption of fuzzy methodology in reliabilignd
comprehensive approach (Oberkarepfl., 2000). In the failure analysis, i.e., the proposed notion of cormgnt
reliability assessment process, fusion technologjiesfirst possibility as a reliability index, may be datecclao
applied to subsystems, then synthesis all combiopep ~ Kaufman’'s study (Kaufmann, 1983), although the
results together, as showedFig. 11 (Zhuanget al., 2000). ~ Motivation and exact meaning of component posgybili

N were not explained at that time and now fuzzy-based
5.4. Performability Improvement on the use of  approaches are appearing in various areas of ilgfiab
Possibility theory and Evidence Theory evaluation (Bai and Asgarpoor, 2004) and modeling

So f K besid th fical d(DeImotte and Borne, 1998).
Ot t_ar ?S dwe | now,t est|) es h eoretica anf Because of the simplicity of combination rules, it
computationa evelopments by € means Olis shown recently that D-S theory has been used in
possibilistic and evidential approaches, some ghaysi

X various fields which were not common before, eimy.,
problems have also been solved in the area of

perfomability, which includes quality, reliability, ;)L/jsoterz‘noorgg?ggl(%bs)ettlngs, fault diagnosis (Fanda
maintenance and safety and risk. Such physicall@mub ' ' '
as failure mechanisms and detective methods aaecel 5.4.2.1. Fault Tree Analysis

to system failure engineering, which in some serzse . .
be viewed as a part of operational research (g} Fault Tree Analysis (FTA) has been widely used as a

From this point of view, fuzzy (possibilistic) powgrf_ul and efﬁ(_:ient tool for reIi_a}biIit_y analysiar!d _safety
methodology and evidence theory have made their owrPrediction. The V|su_al an_d quantificational _chaasasncs of
contributions to various aspects of dependabilipd a FTA make it feasible in accordance with the trerfd o
performability. With fast advances in technologyiahe ~ combining  quantitative ~approaches with —qualitative
increasing complexity of technological systems,an approaches, addressing limitations of the conveatio
holistic point of view, product characteristics qmising ~ Probabilistic approach. Among others, we mentiorzyu
functionality, reliability and maintainability havbeen  reliability theories and fuzzy logic based methaat f
becoming more and more important and alternativelinguistic (imprecise) quantification of fuzzy chateristics
approaches are needed to address them. and construction of approximate reasoning system.
Probability theory alone is not sufficient to solthe The first implementation of fuzzy method in the
problem of human subjectivity as it does not folldve context of fault tree analysis was pioneered by
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(Tanakeet al., 1983), who treated imprecise probabilities of addressed by fuzzy logic and Dempster-Shafer theory

basic events as trapezoidal fuzzy numbers and gettbe
extension principle to describe the logical reladlups
leading to the top event. Furuta and Shiraishi 4138so
proposed a kind of importance measure but by meéns
max/min fuzzy operator and fuzzy integrals othesinth

(Misra, 1993), or along with probabilistic approashn
multi-source data analysis (Leeal., 1987).

Since one of the central issues in the eviderearytis
how to combine imperfect information given by
independent knowledge sources, D-S theory of ew&en

Tanaka's approach. When it comes to fuzzy number,has been gaining popularity in various fields wheenting

(Singer, 1990) also thinks it as the perfectlyightiorward
way to overcome the deficiencies of inexact anddneacy

to incomplete knowledge, e.g., multiple-fault diagis
problem. Even though previous causal models for

knowledge. Somat al. (1993) proposed a more general giagnostic expert systems are formulated in thedisork

fuzzy method, also known as resolution identityhhémdle
repeated events. Moreover they extended this metthod

deal with multi-state FTA (Misra and Soman, 1995).

Another approach used to model imprecise relatipash
between physical and reliability states is propdsedPan
and Yun, 1997), using fuzzy gates to describe duigu
triangular fuzzy numbers instead of crisp valuesr @.
In fact, by defining fuzzy possibility of fuzzy eme

of probability theory, the D-S theory of evidencesibeen
suggested for solving some diagnostic problems.

Ishibuchi and his colleagues (Misra, 1993)
developed such a diagnosis model to restrict their
consideration to cases, where fuzzy symptoms are
expressed by belief structures. Very recently (Bad
Zuo, 2006a; 2006b) have proposed new decision rules
based on the improved D-S evidence theory and

analogous to fuzzy probability, FTA can take into employed the improved method in gearbox fault

consideration subjective and experts’
(Huang et al., 2004). Furthermore, fuzzy fault tree

opinion diagnosis, which enhance diagnostic accuracy and

autonomy by means of combining expert knowledge and

method has been implemented in engineering practicenulti-source information.

widely (Mentes and Helvacioglu, 2011; Jafarian and

Rezvani, 2012; Al-Humaidi and Hadipriono, 2010).

Even now, application of D-S evidence theory in
diagnosis has just begun. Issues deserving studyvia

Cai (1996) has summarized three main manners othat how to transform expert diagnostic opinionoint

fuzzy methodology in engineering,

respectively as:

reliability

e Treating the probability as a fuzzy number
» Defining reliability in terms of possibility measur
e Considering failure as a fuzzy event

5.4.2.2.Failure Modes and Effects Analysis
(FMEA)

Failure Modes and Effects Analysis (FMEA)
examines the failure cause-effect relationshipsthBo

basic probability assignments and how to determine
threshold precisely.

5.4.3. Maintenance and Warranty

When it comes to product failures, it is naturally
mentioned the notions of maintenance and warranty.
Maintenance involves actions to control the detation
process leading to failure and actions to restaited
equipment to its operational states by corrective
measures after a failure. A warranty is a contract
between buyer and manufacturer to replace or repair

causes and effects can be fuzzy in some sensegAlonfaulty item, or to partially or fully compensateeth
with treating both probability and consequences of consumer in the case of failure.

failures as fuzzy sets, interdependencies amonigusr

causes and effects may be assessed by the rulé-baséhe attention of

reasoning. Keller and Kara-Zaitri (1989) have obsdr
this and introduced fuzzy logic to handle

the system design,

Product maintenance and warranty have received
researchers from many different
disciplines and are related to sub-areas includjtgnal
optimal reliability improvement,

impreciseness in fault representation. Gargama andnodeling imperfect repairs and replacement.

Chaturvedi (2011) introduce fuzzy logic to descrihe
linguistic variables.

5.4.2.3. Fault Diagnosis and Detection

Fault diagnosis partially interprets the reasony wh
system fails. Fuzzy approach together with the idea
fuzzy logic and linguistic approach can be natyraled

To the best of our knowledge, the three formal
views of warranty are the exploitation theory, tignal
theory and the investment theory, respectively. On
general grounds, the more reliable the producthis,
lower the cost of replacement under warranty fa th
user. So warranty policies are structured according
perspectives of manufacture and buyer. There is a

to deal with vagueness and ambiguity in system iisode negative correlation between product quality and
and in human perceptions (Cai, 1996). Furthermore,warranty costs. Murthy and Djamaludin (2002) and

failure detection and identification problems cam b
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The literature on warranties and preventive ¢
maintenance are vast. On the issue of improving the
reliability of a product, one way is to eliminatefant
mortality or initial failure rate with a burn-in pgram;
another way is to upgrade the manufacturing process
and the third consideration may be outgoing inspact
to eliminate nonconforming items (Misra, 1993)tlise
studies, new technologies and design methods may
provide benefit to measurable improvement in gualit
and investment.

5.4.4. Safety .

Concerning with a special kind of failure with
catastrophic consequences, safety may be a part of
reliability. Fuzzy methodology can be applied, altbh
limited at present, in areas of safety design aafdtg
assessment. Fuzzy rules can be adopted in expert
judgments and subjective assessments.

If we must decide whether to operate or switchaoff
system based on available information which may be*
incomplete and imprecise, evidence theory can poed
to meet such demand. This is a kind of safety obntr
problem and Dempster’s rule of combination has hsed
for fusing a given set of information (Cai, 1996).

5.4.5. Risk .

Risk is concerned with both failure consequenceks an
failure occurrence uncertainty. Risk is also linkesl
decision-making, a policy and so on. Subjects absks
are divided into two phases: Risk assessments iakd r
management (Cai, 1996). When risk management is
performed in relation to a Probabilistic Risk Assasent
(PRA), the two activities are named as a ProbébilRisk
Assessment And Management (PRAM).

Quite a few research efforts have been made to
establish a unified PRAM methodology where subjecti  *
assessment, value judgment, expertise and hearatic
being dealt with more objectively. However, to eegs
the uncertainty of the event occurrence in terms of
possibility measure, it is still an open and chaiieg .
problem how to define and assess risk of an event.

6. DEVELOPING TRENDS OF
POSSIBILITY AND EVIDENCE-BASED
METHODS

6.1. The Possible Directions of Future Works

Although significant progress has been made during
the last two decades, the investigating and dewejopf
possibility and evidence theory is still an actresearch
domain. The probable and noticeable perspectivhsie:
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Integrating or perfecting already-existing integrat

methods

o |In attempt to integrate possibilistic and
probabilistic methods which have been proven
to be efficient and matured, e.g., DS method
with other related methods

0 Reducing design iteration and shorten searching
interval using combination algorithms or
genetic algorithm

o0 Enhancing computational accuracy and stability
and numerical efficiency

Focusing on those methods that can ultimately be

expressed under a common analytical framework

0 Improving and solving the conflict problem of
various uncertainties

0 How to propagate uncertainty in a global angle

o Constructing an error-compensation feedback
loop as a software improvement or an adaptive
loop as a correction mechanism

Uncertainty quantification analysis and risk

assessment of precise systems or those which are

difficult to measure.

Design for six sigma as a new robust optimization

formulation, incorporating approaches from

structural reliability and robust design.

Soft computing strategies as the cooperating

framework with diverse methods

0 Basic cooperating with fuzzy logic,
probabilistic reasoning and neural network

0o More advanced cooperating with genetic
algorithm, evidential reasoning, learning
machine and chaos theory

Combination of theoretical research and practical

applications in real environment, from both the

scientists and engineer’s angle

Design optimization methods under uncertainties for

handling complex systems design with multiple

failure modes and high nonlinear limit state

functions

Accuracy and efficient reliability analysis method

with small probability of failure of systems under

uncertainties

We strongly hope that reliability engineers will

closely collaborate with statisticians in the depehent

of models and methods, to ensure applicationsfialé
where uncertainty often plays a significant role in
decision making.

6.2. Implication for Practice

Uncertainties exist widely in practical engineering

these uncertainties which can be classified agezpis
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