

CONTENT OF PRESENTATION

- Introduction
- Rattan Biodiversity in the Land of Papua
- Rattan Diversity on the Conservation Areas in the Land of Papua
- Factors Influence the Distribution of Rattan in the Land of Papua
- Conclusion

I. INTRODUCTION

- PAPUASIA REGION
- A. Indonesia has famoused as the great rattan producer country in the world, which produces more than 80% of rattan material in the international market, since the year of 1980s.
- B. The rattan industries in Indonesia have provided employment for millions of people, and have generated a large amount of foreign exchange for the country.
- C. Naturaly, rattan has an important role in traditional life of villagers for many purposes, such as foods, building materials, weapons, to medicines.
- D. Indonesia has 560 conservation areas, and also has around 314 species of rattan spreading across almost the entire islands, including the Land of Papua which is located on the island of New Guinea.

3

- E. The total area of the Island of New Guinea is 890,000 km². The area of the Indonesian part of Papua Island is 421,981 km² and the PNG share is 462,840 km²
- F. Papua area is 31 million Ha & PB area is ± 11 million Ha.
- G. The physiography of LP is very varied, ranging from lowland forest ecosystems on the mainland and small islands around it, coastal and swamp ecosystems, lowland dry land ecosystems, foothills and mountain slopes ecosystems, lower mountain ecosystems, upper mountain ecosystems, and alpine ecosystems at an altitude of almost 5000 m asl.

Papuasia Region

I. INTRODUCTION CONTINUED 2

H. Rattan in New Guinea: 2 Genera & c. 65 spp.

Genera Ceratolobus, Daemonorops, Pogonotium and Retispatha are placed in synonymy with Calamus (Baker, 2015)

Previously, there were three Genera, but currently only two Genera exist in Papua, Calamus and Korthalsia

K. How many rattan species are there in the LP?

L. How are they distributed in the LP?

II. RATTAN BIODIVERSITY IN THE LAND OF PAPUA Rattan Diversity in New Guinea (Calamus = 63 spp., Korthalsia = 2 spp.)

No	Rattan Species	Year of Pub.	Dist.	Ø mm	Elevation M asl.
1	Calamus altiscandens Burret.	1939	PNG	L to 16	Lowland c. 100
2	Calamus anomalus Burret.	1935	PNG	?	1250 - 1830
3	Calamus aruensis Becc.	1886	Aru Isl., L 6 - 30		Lowland to 1200, more frequent < 500
4	Calamus badius J.Dransf.&W.J.Baker	2014	P (Southern)	S 14 – 15	< 100
5	Calamus baiyerensis W.J. Baker & J. Dransf.	2017	PNG	S 15 - 18	1200
6	Calamus bankae W.J.Baker & J.Dransf.	2002	PNG	S c. 9	to 50 on limestone
7	Calamus barbatus Zipp. ex Blume	1830	NG	S 5 - 10	Lowland to 500 – 1000, more frequent in lowland
8	Calamus barfodii W.J.Baker & J.Dransf.	2014	PNG	S 5,5 - 10	50 - 460
9	Calamus bulubabi W.J.Baker & J.Dransf.	2014	PNG, P	S 9 - 14	< 300
10	Calamus capillous W.J. Baker & J.Dransf.	2017	PB	S 5 - 6	450
11	Calamus cheirophyllus J.Dransf. & W.J.Baker	2014	PNG	S < 6	1100 - 1400
12	Calamus croftii J.Dransf. & W.J.Baker	2014	PNG	S 6 - 8	< 150
13	Calamus cuthbertsonii Becc.	1888	PNG	S	2500
14	Calamus dasyacanthus W.J. Baker, Bayton, J. Dransf, & Maturb.	2003	P, PB	L 20 - 23	30 - 150
15	Calamus depauperatus Ridl.	1916	NG	S c. 2	>1000, Montane species
16	Calamus distentus Burret	1939	PNG	S 6 – 7	Lowland, c.100
17	Calamus erythrocarpus W.J. Baker & J. Dransf.	2017	PNG	S 9 - 13	460
18	Calamus essigii W.J. Baker	2002	PNG Very S 2 – 2.5		671 - 719
19	Calamus fertilis Becc.	1908	NG	L 18 - 32	Lowland up to 450
20	Calamus gogolensis Becc. (1908)	1908	PNG	L 20 - 40	Lowland

21	Calamus heatubunii W.J.Baker & J. Dransf.	2017	РВ	S 7 - 11	45 - 180
22	Calamus heteracanthus Zipp. ex Blume	1830	NG	S 10 - 15	Lowland to < 1000
23	Calamus interruptus Becc.	1886	PB	S 9 - 11	Lowland
24	Calamus jacobsii W.J. Baker & J. Dransf.	2017	PNG	L <18	500 - 600
25	Calamus johnsii W.J. Baker & J. Dransf.	2014	PNG	S 3,5 - 7	< 350
26	Calamus katikii W.J. Baker & J. Dransf.	2017	PNG	S 3	1800
27	Calamus kebariensis Maturb., J. Dransf. & W.J. Baker	2014	РВ	S 1,5 – 3,5	1240 – 1500 Mt. Netoti
28	Calamus klossii Ridl.	1916	PNG, P	S ca. 10	762 - 2700
29	Calamus komsaryi (Maturb., J.Dransf. & Mogea) W.J.Baker	2015	PB	L 23 - 30	Lowland to Lower montane 600
30	Calamus kostermansii W.J. Baker & J. Dransf.	2017	PB & P	S 15 - 18	10
31	Calamus lauterbachii Becc.	1908	NG	S 10 - 12	Lowland to Lower Montane
32	Calamus longipinna K. Schum. & Lauterb.	1900	PNG, Southern P	S	0 - 800
33	Calamus lucysmithiae W.J. Baker & J. Dransf.	2014	PNG	S 4 - 8	< 90
34	Calamus macrochlamys Becc.	1908	NG	S 8 - 15	10 -1200
35	Calamus maturbongsii W.J. Baker & J. Dransf.	2002	PB Sorong Regency	S 10 - 11	100 - 200
36	Calamus moszkowskianus Becc.	1913	PNG	S 1.5 - 3	c.1000, Montane species
37	Calamus nanduensis W.J. Baker & J. Dransf.	2014	PNG	L 9 - 20	1100 - 1200
38	Calamus nannostachys Burret	1931	SE NG	?	70 - 900
39	Calamus nudus W.J. Baker & S. Venter.	2019	P, PNG	S7-9	Lowland
40	Calamus oresbius W.J. Baker & J. Dransf. (2014)	2014	PNG	S 3 - 8	700 - 2200

41	Calamus papuanus Becc.	1886	PB, P	S 6 - 8	Lowland
42	Calamus papyraceus W.J. Baker & J. Dransf.	2017	PNG	S 6 - 7	600 - 1000
43	Calamus pholidostachys J. Dransf. & .J. Baker		PNG	S 9 - 15	Lower montane c.750
44	Calamus pintaudii W.J. Baker & J. Dransf.	2017	PNG	L 10 - 20	600 - 1400
45	Calamus polycladus Burret	1943	PNG	L 12	1500
46	Calamus pseudozebrinus Burret.	1935	PNG	S	
47	Calamus reticulatus Burret	1939	PNG	S	< 100, reophytic
48	Calamus retroflexus J. Dransf. & W.J. Baker	2014	P, PB	S 6 - 15	< 640
49	Calamus sashae J. Dransf.& W.J. Baker	2014	РВ	L 15 - 19	< 400
50	Calamus scabrispathus Becc.	1923	PNG	?	Montane species
51	Calamus schlecterianus Becc.	1913	NG	S c.10	Lowland to 500
52	Calamus serrulatus Becc.	1886	РВ	L 15 - 20	Lowland to Lower montane
53	Calamus spanostachys W.J. Baker & J. Dransf.	2014	Р	S 2 - 3	700
54	Calamus spiculiferus J. Dransf. & W.J. Baker	2014	P, PNG	S 15	s.1300
55	Calamus superciliatus W.J. Baker & J. Dransf.	2017	РВ	S7-8	700 - 900

56	Calamus vestitus Becc.	1886	PB, P near boarder of PNG	S 5 - 13	Lowland
57	Calamus vitiensis Warb. ex Becc.	1908	Fiji, NG	L 7 - 22	60 - 750
58	Calamus wanggaii W.J. Baker & J. Dransf.	2002	PB, P	S7-9	Lowland
59	Calamus warburgii K. Schum.		NG	L 30	Lowland to 780, more frequent in lowland
60	Calamus womersleyi J. Dransf. & W.J. Baker	2014	PNG	S < 6,5	1100 - 1500
61	Calamus zebrinus Becc.		PB	S 8 - 18	Lowland to 450, more frequent in lowland
62	Calamus zieckii Fern.	2014	PB	S 10 - 15	Lowland
63	Calamus zollingerii Becc. Sbsp zollingeri	1908	PB, P	L 25 - 40	Lowland
64	Korthalsia brassii Burret.	1939	PNG, P	S	Lowland
65	Korthalsia zippellii Bl.	1843	NG	S 11 - 14	Lowland to Lower montane 1200, more frequent in Lowland

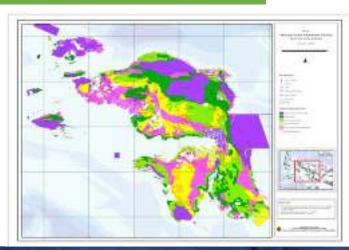
65 rattan species found in New Guinea, they are divided into two genera, *Calamus* 63 spp, and *Korthalsia* only two spp. (*K. zippelii* and *K. brassii*)

	The Land of Papua	Papua New Guinea
Number of Rattan Species	38	46
Endemic Rattan	20	27
Shared Species	18	19

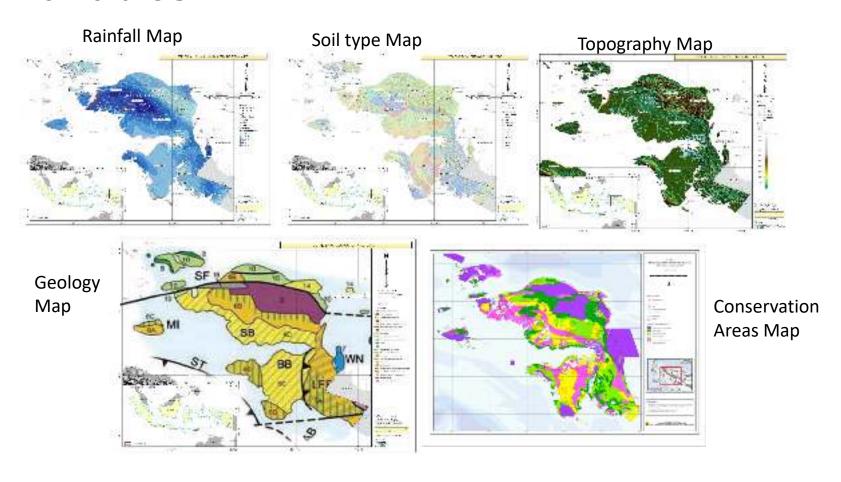
There are 38 (58.5%) species of rattans in the Land of Papua, with 18 (47.4%) species occurring on both side of the region (the Land of Papua & Papua New Guinea). That means 20 (52.6%) rattans species be endemic to the land of Papua Indonesia.

There are 46 (70.8%) species of rattan found in Papua New Guinea (PNG), with 19 (41.3%) species occurring on both sides of the area. This means that 27 (58.7%) rattan species are endemic to PNG.

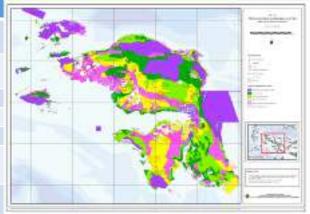
Nine species (13.8%) have cirrus on the tip of leaf, where as remain species with flagellum (85.2%).



Case study in Bird's Head Peninsula of the Land of Papua


Methods

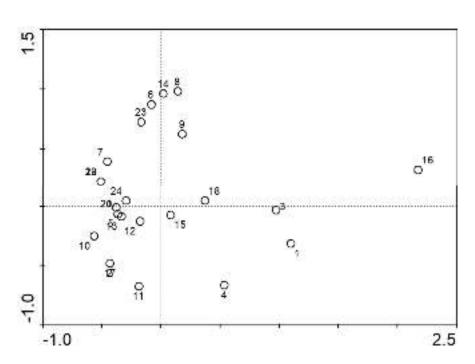
- 1. Preparing a checklist of rattan species presence in conservation areas and other forest status (in Excell file)
- 2. Preparing matrix Environmental variables on each sites (in Excell file)
- 3. Using Thematic Maps (Soil type, Geology, Rainfall, and Topography)
- 4. Running the Canoco application to analyze the relationship between the data above

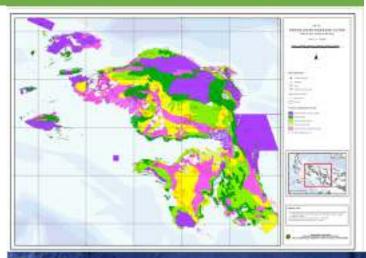


Thematic Maps to gain Data of Environment Variables

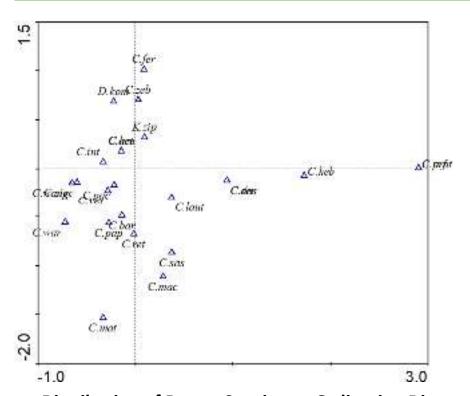
SIL	3
	9
E S ^	₹.8

No	Initial Sites	∑spp	No	Initial Sites	∑ spp
1	CAPA= CA. Peg. Arfak.	10	13	HLPUN= HL. Pantai Utara Nuni	6
2	HPTsWP= HP terbatas Warmare Prafi	9	14	HLTA= HL. Teluk Arguni	4
3	CAPTU= CA. Peg. Tamrauw Utara	8	15	HLA= HL. Ayamaru	11
4	CAPW= CA. Peg. Wondiboy	5	16	HLM= HL. Masikery	3
5	HPKW=HPK Wondiboy	5	17	HPKS= HPK. Sidey	4
6	CAWT= CA. Waigeo Timur	5	18	HPTsS= HP. Terbatas Saengga Babo	5
7	CASU= CA. Salawati Utara	5	19	HPTS= HP. Tetap Sebuni Manokwari	7
8	CABB= CA. Batanta Barat	4	20	HPdT= Hutan Pendidikan Tuwanwouwi	6
9	CAMS= CA. Misool Selatan	6	21	HPdU= Hutan Pendidikan UNIPA	3
10	TWAGM= TWA. Gunung Meja	4	22	APLS= APL. Sebuni Manokwari	5
11	TWAS= TWA. Sorong	12	23	APLK= APL. Kroy Kaimana	4
12	TWAK= TWA. Klamono	11	24	AKPS= Areal Konservasi Perkebunan Sawit	12

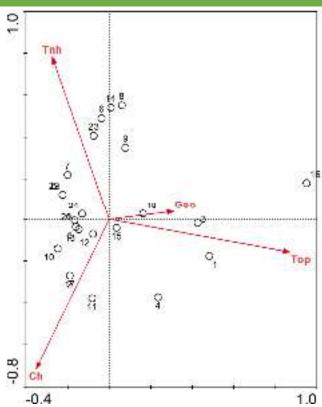



No	Variables	Description	Category
1	Geology	Neogene to quarternary sediment (24-12 million years)	1
		Paleogene to Mid Miocene arch type volcanic (6- 12 million years)	2
		Papua Fold Belt (66-5 million years)	3
		Mesozoic to Quarternary sediment (240-1,7 million years)	4
		Mesozoic & Cenozoic Metamorphic Rocks (240-4 million years)	5
		Mesozoic to Middle Miocene Sediment (240-12 million years)	6
		Mesozoic to Quarternary Sediment + Mesozoic to Middle Miocene Sediment	7
		Paleozoic to Middle (435-12 million years) Miocene Sedimentary Limestone	8
		Paleozoic basement (435 million years)	9
2	Topograp hy	0 – 500	1
	(Altitude m asl)	0 – 500 + 500 - 1000	2
		0 - 500 + 500 - 1000 + 1500 - 2000	3
		1000 - + 1500 - 2000 + 2000 - 2500 + 2500- 3000	4
		0-500 + 500 - 1000 + 1000 - 1500 + 1500 - 2000 + 2000 - 2500 + 2500 - 3000 m	5

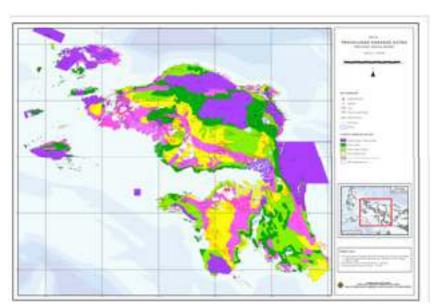
No	Variables	Description	Category
3	Soil Types	Alluvium	1
		Podzolic Complex	2
		Podzolic Yellowish-Red	3
		Mediteranian	4
		Podzolic Yellowish-Red + Alluvium	5
		Podzolic Complex + Allvium + Rendzina	6
		Alluvium + Latosol	7
		Podzolic Brown + Podzolik Yellowish-Red	8
		Podzolik Complex + Podzolic Yellowish-Red + Alluvium + Rendzina	9
		Podzolic Grey-Brown + Podzolic Complex + Alluvium	10
		Podzolic Complex + Podzolic Yellowish-Red + Alluvium	11
4	Annual Rainfall	1250 – 1750	1
	(mm/yr)	1750 - 2250	2
		2250 – 2750	3
		2750 – 3500	4
		3500 – 4500	5
		4500 – 6500	6



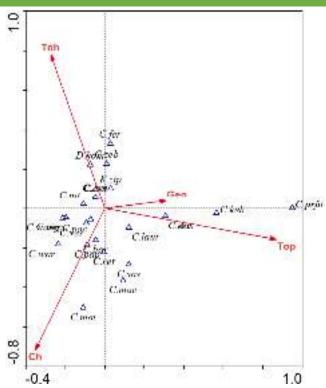
Distribution of Plots (Sites) on Ordination Diagrams



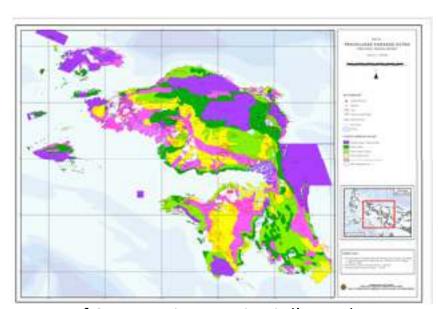
The control of the co


Map of Conservation Ares in Bird's Head Peninsula of Papua

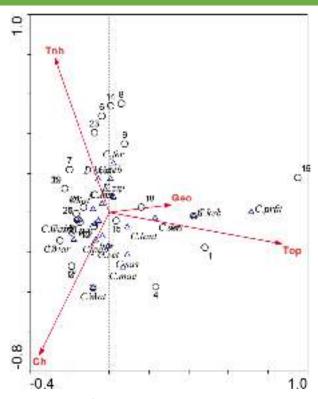
Distribution of Rattan Species on Ordination Diagrams



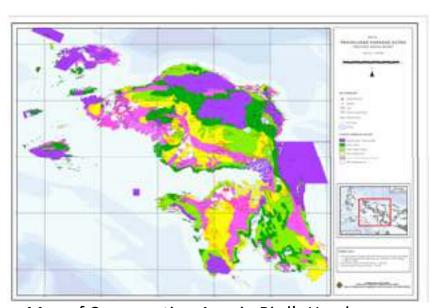
Distribution of Sites x Environment Variables on Ordination Diagrams



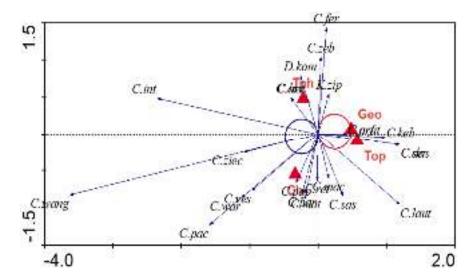
Map of Conservation Ares in Bird's Head Peninsula of Papua



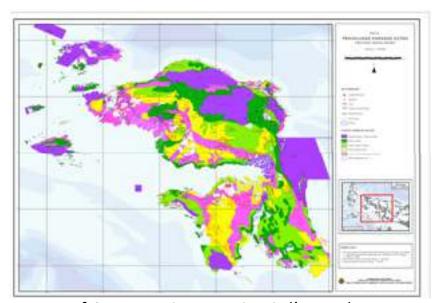
Distribution of Rattan Species x Environment Variables on Ordination Diagrams



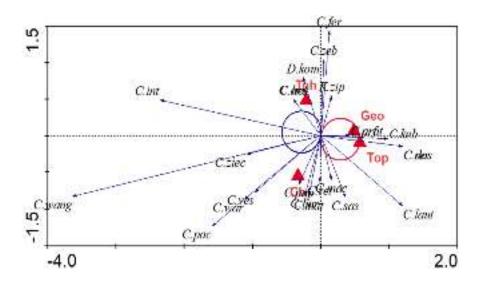
Map of Conservation Ares in Bird's Head Peninsula of Papua



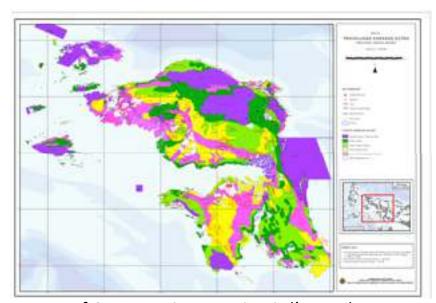
Distribution of Rattan Species, Sites & Environment Variables on Ordination Diagrams



Map of Conservation Ares in Bird's Head Peninsula of Papua

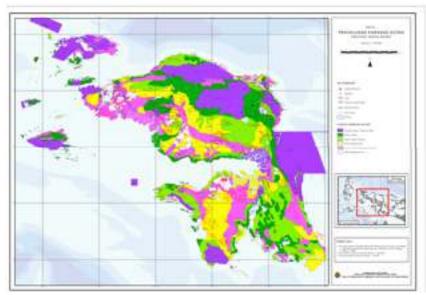


Biplot Diagram t-correlation Value Rattan Species x Environmental Variable of Geological Type

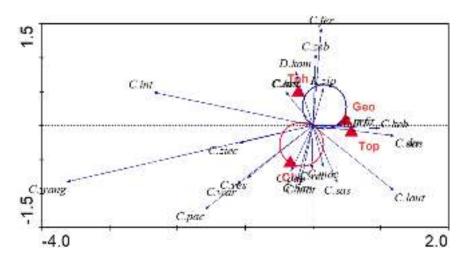


Map of Conservation Ares in Bird's Head Peninsula of Papua

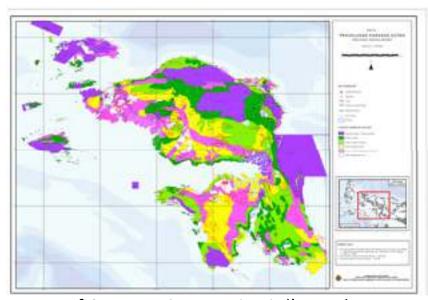
Biplot Diagram t-correlation Value Rattan Species x Environmental Variable of Topography



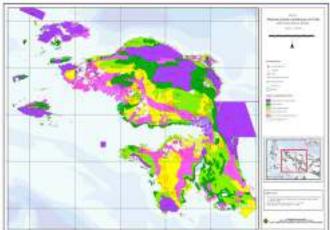
Map of Conservation Ares in Bird's Head Peninsula of Papua



Biplot diagram Value of t-correlation Rattan Species x Environment Variables of Soil Type



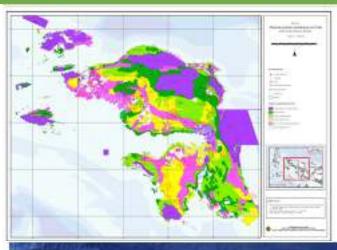
Map of Conservation Ares in Bird's Head Peninsula of Papua


Biplot Diagram t-correlation Value of Rattan Species x Variable Annual Rainfall On Ordination Chart

Map of Conservation Ares in Bird's Head Peninsula of Papua

IV. CONCLUSION

- 1. There are 65 spp. of rattan occur in New Guinea, where as 38 (58.5%) species of rattans are found in the Land of Papua, with 18 (47.4%) species occuring on both side of the region (the Land of Papua & Papua New Guinea). That means 20 (52.6%) rattans species are endemic to the Land of Papua Indonesia.
- 2. The number of rattan species in the Land of Papua will increase along with the good progress of taxonomic research on rattan in Papua that has been carried out.
- 3. Conservation areas in the Land of Papua can protect most species of rattan, but there are some species of rattan that are only found outside conservation forest areas.
- 4. Rainfall, Soil type, Topography, and Geology are the factors that influence the distribution of rattan in the Land of Papua respectively.
- 5. The role of protected forest areas and essential ecosystem areas is very important to protect rattan species and other species that are still outside the conservation areas.



THANK YOU VERY MUCH

