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Abstract. We propose a notion of deterministic association rules for
ordered data. We prove that our proposed rules can be formally justified
by a purely logical characterization, namely, a natural notion of em-
pirical Horn approximation for ordered data which involves background
Horn conditions; these ensure the consistency of the propositional theory
obtained with the ordered context. The main proof resorts to a concept
lattice model in the framework of Formal Concept Analysis, but adapted
to ordered contexts. We also discuss a general method to mine these rules
that can be easily incorporated into any algorithm for mining closed se-
quences, of which there are already some in the literature.

1 Introduction

According to a large number of sources, the field of Data Mining attempts at
finding methods to extract from large masses of existing data, that was not
gathered for that purpose, new, sound knowledge that allows to take actions
with specific purposes. One natural way to interpret the last condition is to look
for causal relationships, where the presence of some fact suggests that other facts
follow from them. This is one of the reasons of the success of the association rules
framework: in the presence of a community that tends to buy, say, sodas together
with the less expensive spirits, a number of natural ideas to try to influence the
behavior of the buyers and profit from the pattern easily come up.

However, association is not causality, even though it is frequently interpreted
in that way (most of the times implicitly). As a token, one of the criticisms of the
lift measure for the strength of association rules is its symmetry, which makes
it impossible to “orient the rules”, that is, disguise the association as causality.
Along the same lines, criticisms of various sorts have been put forward for many
other measures of the strength of implication such as confidence or correlation.
The single case that would be beyond any such criticism is where the implication
always holds. These cases have been named deterministic association rules, and
are particularly interesting in domains coming from observations of scientific
data, where underlying natural laws are actually causing the associations to
appear in all cases [10].

An obvious criticism is that a single counterexample suffices to invalidate a
deterministic association rule, and it could be due to data manipulation errors.
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However, this is not really an objection to the notion of deterministic association
rules but simply a consideration that data cleaning techniques are necessary in
any practical application of this notion; we come back to this point later on.

On the other hand, the central advantage of deterministic association rules
is that they do not require to select, with little or no formal guidance, one single
measure of strength of implication. Since they are pure standard implications,
they can be studied in purely logical terms.

In fact, standard binary databases (as termed in data mining texts, even
though they are rather just relations) of n attributes can be naturally viewed as
sets of models (0/1 assignments to n propositional variables). Thus, from this
perspective, association rules can be seen as propositional logic formulas captur-
ing information contained in a set of models. Practically effective approaches to
find such logical formulas have been proposed in the field of Knowledge Compi-
lation ([3, 11]): among them, a prominent basic process is to “compile” the list
of satisfying models, into a tractable set of Horn clauses ([8, 11]). Of course, it
might happen that no Horn axiomatization exists for the given set of models; but
then, a Horn approximation (the minimal Horn upper bound of the given theory,
sometimes called the empirical Horn approximation) can always be computed.

In [2], the following is proved: if deterministic association rules are computed
from data according to the published lattice-theoretic methods [9, 10, 14], the
rules obtained axiomatize exactly the minimal Horn upper bound of the propo-
sitional theory given by the data. These lattice-theoretic methods are actually
described in terms of concept lattices [7]; this framework allows also for the study
of general association rules (see [15] and the references there) and functional de-
pendencies (see e.g. [6]). Concept lattices are given by closed subsets of attributes
and closed subsets of tuples, where all the tuples in a concept share the attributes
of the same concept, and viceversa. The notion of closure can be defined in a
number of equivalent ways.

However, mining closed sets of binary attributes is but the simplest closure-
based data mining problem; our goal here is to extend these results into the case
of ordered transactions [1]. In these applications, each input tuple no longer is a
set of attributes, but rather a sequence of them. Standard examples, instead of
typical market-basket data, are of a more structured sort, such as the sequence of
actions on a single bank account. Recent work in [13] and [12] provides algorith-
mic solutions to discover closed sequential patterns, so that there exists indeed
a notion of closure-based analysis for these sequences; but, so far, no notion of
deterministic association rules for them. Our goal is to formulate a theory of
associations for this ordered context, in such a way that

– it advances in the theory underlying the state of the art algorithms for
closure-based analysis of sequences,

– it corresponds closely to the lattice-theoretic approach employed for the com-
putation of deterministic association rules in the unordered case, and

– it allows for a precise logical characterization, similar in spirit to [2].

Our starting point is the model in [4], which formalizes a concept lattice
of closed sets of sequences by means of a new Galois connection. Here, we con-



On Horn Axiomatizations for Sequential Data 217

tribute with the proposal of notions of deterministic association rules for ordered
contexts, and we validate formally the proposal by exhibiting a logical character-
ization of the deterministic association rules with order that parallels the existing
one for unordered contexts. We also discuss the integration of the computation
of these rules with existing algorithms to mine closed sequences.

2 Preliminaries

Let I = {i1, . . . , in} be a finite set of items. These will be our atomic objects.
Itemsets are subsets Ii ⊆ I. Since actually n is unbounded, we could alternatively
have an infinite set of items from which, at every moment, only the finitely many
ones appearing in a given dataset are relevant.

Sequences are ordered lists of itemsets. The set of all the possible sequences
will be noted by S. Here we are following the same framework for modeling se-
quences or temporal data tuples as in [1] or [13], whose closed sequential patterns
(that will be later introduced) were formally characterized in our previous work
[4], and which we seek in this paper to complement with adequate notions of
association rules. Thus, our data consists of a database of ordered transactions
that we model as a set of sequences, D = {s1, s2, . . . sn}. Our notation for the
component itemsets of a given sequence will be s = 〈(I1)(I2) . . . (In)〉, meaning
that itemset Ii occurs before itemset Ij for i < j.

An alternative view of our data, borrowed from Formal Concept Analysis, is
in the form of an ordered context; objects of the context are sequences, attributes
of the context are items, and the database becomes a ternary relation, subset
of O × I × IN, in which each tuple 〈o, i, t〉 indicates that item i appears in the
t-th element of the object o. A simple example of the described data and the
associated context can be found in figure 1, where each object oi of the formal
context represents the corresponding input sequence (or ordered transaction) si.
The context for a set of data D is relevant to this work to see objects oi ∈ O
and input sequences si ∈ D as equivalent.

Seq id Sequence
s1 〈(A)(B)(C)(D)〉
s2 〈(B)(C)(D)(A)〉
s3 〈(B)(C)(A)(D)〉

(a) Collection of
data D

A B C D
o1 1 2 3 4
o2 4 1 2 3
o3 3 1 2 4

(b) Con-
text K

Fig. 1. Example of ordered data D and its context K

Sequence s = 〈(I1) . . . (In)〉 is a subsequence of sequence s′ = 〈(I ′
1) . . . (I

′
m)〉

if there exist integers j1 < j2 · · · < jn such that I1 ⊆ I ′
j1
, . . . , In ⊆ I ′

jn
. We note

this case by s ⊆ s′. For example, the sequence 〈(A)(D)〉 is a subsequence of the
first and third sequences in figure 1.
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The intersection of a set of sequences s1, . . . , sn ∈ S is the set of maximal
subsequences contained in all the si. Note that the intersection of a set of se-
quences, or even the intersection of two sequences, is not necessarily a single
sequence. For example, the intersection of the two sequences s = 〈(AD)(C)(B)〉
and s′ = 〈(A)(B)(C)〉 is the set of sequences {〈(A)(C)〉, 〈(A)(B)〉}: both are
contained in s and s′, and among those having this property they are maximal;
all other common subsequences are not maximal since they can be extended to
one of these. The maximality condition discards redundant information since the
presence of, e.g., 〈(A)(B)〉 in the intersection already informs of the presence of
each of the itemsets (A) and (B).

We partially order also sets of sequences, as follows: S � S′ if and only if
∀s ∈ S ∃s′ ∈ S′ s ⊆ s′.

2.1 Propositional Horn Logic

Assume a standard propositional logic language with propositional variables,
noted by {vi}. The number of variables is finite, and we note by V the set of
all variables; but again, we could alternatively use an infinite set of variables
provided that the propositional issues corresponding to a fixed dataset only
involve finitely many of them (this is in fact the case of our application). A
literal is either a propositional variable, called a positive literal, or its negation,
called a negative literal. A clause is a disjunction of literals and can be seen
simply as the set of the literals it contains. A clause is Horn if and only if
it contains at most one positive literal. Horn clauses with a positive literal are
called definite, and can be written as H → v where H is a conjunction of positive
literals that were negative in the clause, whereas v is the single positive literal
in the clause. Horn clauses without positive literals are called nondefinite, and
can be written similarly as H → �, where � expresses unsatisfiability. A Horn
formula is a conjunction of Horn clauses.

A model is a complete truth assignment, i.e. a mapping from the variables
to {0, 1}. We note by m(v) the value that the model m assigns to the variable
v. The intersection of two models is the bitwise conjunction, returning another
model. A model satisfies a formula if the formula evaluates to true in the model.
The set of all models will be noted by M.

A theory is a set of models. A theory is Horn if there is a Horn formula
which axiomatizes it, in the sense that it is satisfied exactly by the models in the
theory. When a theory contains another we say that the first is an upper bound
for the second; for instance, by removing clauses from a Horn formula we get a
larger or equal Horn theory. The following is known (see e.g. [8]):

Theorem 1. Given a propositional theory T , there is exactly one minimal Horn
theory containing it. Semantically, it contains all the models that are intersec-
tions of models of T . Syntactically, it can be described by the conjunction of all
Horn clauses satisfied by all models from T .

The theory obtained in this way is called sometimes the empirical Horn ap-
proximation of the original theory. Clearly, then, a theory T is Horn if and only
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if it is actually closed under intersection, so that it coincides with its empirical
Horn approximation. These concepts are a cornerstone of the area of research
known as Knowledge Compilation [3].

2.2 Closures and Galois Connections

The framework introduced previously allows us to cast our reasoning in terms of
closure operators. A closure operator Γ on a lattice, such as the one formed by the
subsets of any fixed universe, is one that satisfies the three basic closure axioms:
monotonicity, extensivity and idempotency. It follows from these properties that
the intersection of closed sets is a closed set.

In the main case of interest for data mining, the universe will be our set of
items I. Then, closure operators give rise to closed sets of items, generators, and
deterministic association rules. Closed sets are those sets of items that coincide
with their closure, that is, Γ (Z) = Z where Z ⊆ I. When Γ (G) = Z for a set G
and G is minimal for that resulting Z, we say that G is a generator of Z. One way
for constructing closure operators is by composition of two derivation operators
forming a Galois connection [7]. Implications of the form G → Z where G is a
generator of Z, turn out to be the particular case of association rules where no
support condition is imposed but confidence is 1 (or 100%) [10], [9]. Such rules
in this unordered context are sometimes called deterministic association rules.

It turns out that it is possible to exactly characterize this set of deterministic
association rules in terms of propositional logic: we can associate a propositional
variable to each item; then transactions become models, and each association
rule becomes a conjunction of Horn clauses with the same left hand side. Then:

Theorem 2. [2] Given a set of transactions, the conjunction of all the deter-
ministic association rules defines exactly the empirical Horn approximation of
the theory formed by the given tuples.

So, the theorem determines that the empirical Horn approximation of the
unordered data can be computed through the Formal Concept Analysis method
of constructing deterministic association rules, that is, constructing the closed
sets of attributes and identifying minimal generators for each closed set.

In this paper we want to find a notion of deterministic association rules for
the more complex case of sequential data (ordered context), and of course we
would like to support our proposal by proving a similar characterization.

3 Deterministic Association Rules in Ordered Contexts

Of course, the first task is to make available a closure operator that fits ordered
data and specifies sensible results on practical cases. The most relevant existing
contributions on mining closed sequential patterns are given by the algorithms
CloSpan [13] or BIDE [12]. The extracted closed patterns by those algorithms are
said to be stable in terms of support, which means that the closed patterns are
maximal sequences in the set of objects where they are contained. For instance,
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taking data from figure 1, we see that sequence 〈(B)(D)〉 is not a closed pattern
since it can be extended to 〈(B)(C)(D)〉 in all the objects where it is contained.
However, 〈(B)(C)(D)〉 or 〈(A)(D)〉 are closed (so, stable). We want to make
sure that our theoretical notions fit appropriately these approaches. In fact, we
do have already the closure operator set in place, through the Galois connection
from [4], described below. There, two operators are defined in a formal context
corresponding to sequences, and it is proved that they indeed enjoy the properties
of a Galois connection so that their composition provides a closure operator.

Note that this task is nontrivial because it departs from the case of unordered
transactions in the very definition of intersection. Whereas the intersection of
two itemsets is another itemset, the intersection of two sequences (whether with
or without the maximality condition we have imposed in the definition of inter-
section) does not in general result in a single sequence. So, the formal concept
framework developed in [4] works with sets of sequences. Again, another diffi-
culty arises, since ordering sets of sequences just by set inclusion does not give
a Galois connection; using instead the ordering S � S′ we have defined above
does work, provided that the corresponding operators are defined adequately:

– For a set O ⊆ O of objects, φ(O) = {s ∈ S| s maximal contained in o, ∀o ∈
O}. This φ(O) is the set of maximal sequences common to all O, i.e.,φ(O)
represents the intersection of the input sequences equivalent to O.

– For a set S ⊆ S of sequences, ψ(S) = {o ∈ O| s contained in o, ∀s ∈ S}.
This ψ(S) is the set of objects containing all the sequences in S.

As mentioned, these two maps form a Galois connection (proved in [4]), and
so, we can get the corresponding closure operator from their composition. We
will call ∆ = φ ·ψ the closure operator on sets of sequences; thus, by definition, a
set of sequences S is closed if and only if ∆(S) = S. Similarly to any other Galois
connection, we can also consider the dual operator ∆−1 that operates on sets of
objects (although this dual operator is irrelevant for our present contribution).

It is proved that this operator ∆ can characterize the closed sequences of
CloSpan or BIDE as those sequences s that belong to the closure of {s}. Indeed,
the instrumental property that connects the closure operator with the CloSpan
sequences is the following:

Proposition 1. [4] All sequences in a closed set are maximal in it w.r.t. ⊆.

Then it follows that s ∈ ∆({s}) if and only if s belongs to some closed set, and
therefore the result of a mining task for closed sets under our Galois connection
is the same as the result of the CloSpan or BIDE algorithm.

As described in the preliminaries (and exemplified by figure 1), given the
data sequences S on items I we can construct the relation R which contains the
same information as the individual components of each input sequence; thus,
from R we obtain the collection of all formal concepts each corresponding to
a closed set of sequences, and partially ordered by �. As in any other Galois
connections (see [7]), it gives immediately a lattice B(S, I, R) of formal concepts.
For example, for the data in example 1(a), we depict graphically in figure 2 the
corresponding lattice of closed sets of sequences. Together with each node S in
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{<(A)(B)(C)(D)>} {<(B)(C)(A)(D)>} {<(B)(C)(D)(A)>}

{<(B)(C)(D)> , <(A)(D)>}

{<(B)(C)(D)>, <(A)>}

{<(B)(C)(D)> ,  <(B)(C)(A)>}

  1,2,3

1 3 2

2,31,3

D

Fig. 2. Example of a concept lattice B(S, I, R)

the lattice, we have added as a label the list of object identifiers where S is
maximally contained (thus, as happens in general in Galois connections, these
lists form a dual view of the same lattice that, in our case, is ordered by set-
theoretic inclusion downwards). We also can see in the figure that, for each input
sequence si ∈ D, the set {si} is a closed set; this always happens in general, also.

The set of sequences contained in all the input sequences will be called the
bottom or infimum of the lattice; in most cases it will happen to be a trivial,
somewhat artificial, element containing only the empty sequence. Similarly, we
can also add an artificial set of sequences not contained in any input sequence,
so that it forms the top of the concept lattice. In the example showed in figure 2,
an artificial top not belonging to any object is added to the lattice and we note
it by the set of input sequences D (i.e. we assume that D � {si} for all si ∈ D).
This artificial top is not actually necessary in the model, and it was not originally
presented in [4]; however, we add it to the lattice just to the effect of our later
arguments. We say that a closed set of sequences S′ is an immediate predecessor
of another closed set of sequences S if S′ � S and no closed set S′′ exists in the
lattice with S′ � S′′ � S. For example, in figure 2 {〈(B)(C)(D)〉, 〈(A)〉} is an im-
mediate predecessor of two closed sets of sequences: {〈(B)(C)(D)〉, 〈(B)(C)(A)〉}
and {〈(B)(C)(D)〉, 〈(A)(D)〉}. Notice that the Galois connection presented in
this section may be extended to other kind of structured data such as graphs or
trees; we are currently working towards this formalization.

3.1 Generators of the Closed Set of Sequences

We say that a set of sequences G is a generator of S if we have that ∆(G) = S.
We say that a generator G is minimal if there is no other G′ s.t. G′ � G and
G 	= G′, such that ∆(G′) = S. We will only consider minimal generators. These
will be graphically added to the concept lattice model by dashed lines, as showed
in figure 3. Minimal generators of the top of the lattice are not considered here,
but, for the sake of illustration, it is easily seen that {〈(C)(B)〉} is among them.

We can define a family of deterministic association rules for sequences.



222 J.L. Balcázar and G. Casas-Garriga

{<(A)(B)(C)(D)>} {<(B)(C)(A)(D)>} {<(B)(C)(D)(A)>}

{<(B)(C)(D)> , <(A)(D)>}

{<(B)(C)(D)>, <(A)>}

{<(B)(C)(D)> ,  <(B)(C)(A)>}

  1,2,3

1 3 2

2,31,3

{<(D)>}

{<(C)>}

{<(B)>}

{<(A)>}

{<(C)(A)>}

{<(B)(A)>}

{<(D)(A)>}{<(A)(B)>}

{<(C)(A)>,<(A)(D)>}{<(B)(A)>,<(A)(D)>}

{<(A)(D)>}

D

{<(A)(C)>}

Fig. 3. Concept lattice B(S, I, R) with minimal generators

Definition 1. A deterministic association rule with order is a pair (G,S), usu-
ally denoted G → S, where G,S ⊆ S and G � S s.t. ∆(G) = S. We say that
such a rule holds for a given set of sequences S′ ⊆ S if either G � S′ or S � S′.

The following lemmas characterize exactly the relation between the genera-
tors and their associated closed set of sequences, and will be useful to prove our
main result characterizing deterministic association rules in ordered contexts by
means of Horn logic.

Lemma 1. Let ∆(G) = S; then G � S and, for all closed sets of sequences S′

s.t. S′ � S and S′ 	= S, we have that G � S′.

Proof. That G � ∆(G) follows from the fact that ∆ is a closure operator.
We prove the following contrapositive of the rest: for closed sets S and S′, if
∆(G) = S and G � S′ � S then S′ = S. Indeed, by monotonicity of ∆, ∆(G) �
∆(S′) � ∆(S) and, being S and S′ closed, this translates into S � S′ � S.
Using here the fact that all sequences in all closed sets are maximal in them, it
follows that S = S′. 
�

Actually, this is just a rephrasing of the well-known fact that closure operators
assign to each set the minimal closed set that is above it; in the standard case
(unordered data) the comparison is by set inclusion, but here the peculiarity is
that the comparison is according to G � S.

Lemma 2. Let G � S where S is a closed set of sequences, and assume that,
for all closed S′, if S′ � S and S′ 	= S then G � S′; then G contains at least
one minimal generator of S.

Proof. Consider all subsets of G for which the same property indicated for G
still holds. Since they are a finite family, at least one of them is minimal in
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the family (according to �). Let Gmin be this minimal subset of G that fufills
the property (or, any of them if there are several): Gmin � G � S, and for all
closed S′ � S s.t. S′ 	= S, we have Gmin � S′. Then, the minimal closed set of
sequences containing Gmin is S, and so, ∆(Gmin) = S, being Gmin one minimal
generator contained in G. 
�

Due to the construction of the closure operator ∆, we can argue now that all
the rules of our proposed form that can be derived from an input set of sequences
D do hold for each of those input sequences; we could say that our implications
with order have confidence 1 in our ordered data. Indeed, since {si} is closed
for each individual input sequence si of our database D, we can consider any
generator G and obtain, by monotonicity of ∆, si ∈ D ∧ G � {si} ⇒ ∆(G) �
{si}; that is, the implication G → ∆(G) holds for {si}.

4 Empirical Horn Approximation for Ordered Contexts

This section comes back to the propositional logic framework and Horn theories
and introduces background knowledge to define the empirical Horn approxima-
tion for ordered contexts. To motivate our choices, let us briefly discuss a feature
of the analysis in [2].

Indeed, the first step there, is to see each unordered transaction as a proposi-
tional model, and this is easy to obtain since actually it suffices to see the items
as propositional variables. We can see this conceptual renaming as an isomor-
phism, or, even further, by using as propositional variables the very set of items,
the translation is a mere identity function.

But this is no longer the case in our ordered contexts. Taking as propositional
variables simply the items would not provide a sufficiently structured translation
of our data sequences into propositional models. Thus, our next goal is to pro-
pose a more specific mapping that considers the ordered context. The resulting
empirical Horn approximation of the ordered data will allow us to characterize
the association rules defined in the previous section.

By way of example, consider figure 1, where the first object consists explicitly
of the sequence 〈(A)(B)(C)(D)〉; however, it also contains implicitly all the sub-
sequences s′ ⊆ 〈(A)(B)(C)(D)〉. Thus, each input sequence can be also seen as a
tuple of all those subsequences contained in it. Now we assign one propositional
variable to each subsequence of each input sequence; and restrict the family of
possible models by this background knowledge, thus discarding all models that
would pretend to include a given sequence s but simultaneously discard some
subsequence of s.

More precisely, let m be a model: we impose on it the constraints that if
m(x) = 1 for a propositional variable x, then m(y) = 1 for all those variables
y such that y represents a subsequence of the sequence represented by x. For
instance, if a propositional variable x corresponds to the sequence 〈(A)(B)(C)〉,
then a model m assigning 1 to x should also assign 1 to the variable representing
〈(A)(B)〉, and similarly with other subsequences.
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We define more specifically the interpretation of variables as sequences by an
injective function ξ : S → V. For our convenience, we notationally extend this
function with ξ−1(�) = D, where � is the unsatisfiable boolean constant, and
D is the notation for the set of sequences not belonging to any input sequence.
Now, each input sequence s in the data corresponds to a model ms: the one
that sets to true exactly the variables ξ(s′) where s′ ⊆ s; and we can find
the empirical Horn approximation of the corresponding theory. It is important
that the constraints we have imposed to the models, that when s′ ⊆ s then
ξ(s) → ξ(s′), are indeed Horn clauses, which we call background Horn conditions,
and hold on all input models, so that they are imposed automatically unto the
whole Horn approximation: the conjunction of all Horn clauses satisfied by all the
models corresponding to input sequences. We call this conjunction the empirical
Horn approximation for ordered data, and any model there can be mapped back
into a set of sequences that is closed downwards under the subsequence relation.

4.1 Characterization

We are ready to present now the equivalence between the association rules ex-
tracted by the closure-based method presented in section 3, and the empirical
Horn approximation for ordered data.

Theorem 3. Given a set of input sequences S, the conjunction of all the de-
terministic association rules with order constructed as in section 3.1, seen as
propositional formulas, and together with the background Horn conditions, ax-
iomatizes exactly the empirical Horn approximation of the theory containing the
set of models M = {ms|s ∈ D} ⊆ M.

Proof. We prove separately both directions for this theorem: 1/ that the de-
terministic association rules (that is, their corresponding propositional impli-
cations) are implied by the empirical Horn approximation; and 2/ that all the
clauses in the empirical Horn approximation are implied by the conjunction of
the (propositional implications corresponding to) deterministic association rules.

⇒/ Consider a deterministic association rule G → S s.t. ∆(G) = S. By
distribuitivity, we can rewrite the rule as a conjunction of different implications
G → si where S = {s1, . . . , sm} ∈ 2S . As explained after lemma 1, all the input
sequences having as subsequences all the elements of G must have also si, so that
the translation of G → si is a Horn clause that is true for all the given models in
M and, by the theorems in the previous section, it belongs to the empirical Horn
approximation. Likewise, the background Horn conditions are also satisfied by
all models and thus hold in the empirical Horn approximation.

⇐/ Let F → v be an arbitrary Horn clause where F is a set of variables,
and v is a single variable. Assume this clause to be true for all the given models
M = {ms|s ∈ D} that correspond to the input sequences; note that these follow
the constraints mentioned above: if m ∈ M , and m(x) = 1 for a propositional
variable x, then m(y) = 1 for all those variables y such that ξ−1(y) ⊆ ξ−1(x). In
order to show that F → v is a consequence of the rules found from the concept
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lattice for S, we will find an association rule that, upon translation, and in the
presence of the background Horn conditions, logically implies our Horn clause.

Looking at F as a set of variables, we can consider the set of corresponding
sequences S′ = {ξ−1(v)|v ∈ F}; let S′′ = ∆(S′) be its closure. By previous
lemmas 1 and 2, we know that S′ will contain at least one minimal generator of
S′′, that is, G ⊆ S′ s.t. ∆(G) = S′′. Therefore, the rule G → S′′ will be one of
the rules constructed by the FCA method.

On the other hand, we have assumed that the clause F → v holds for all the
models M . By definition, it means that S′ → ξ−1(v) also holds in all the input
sequences, in the sense that whenever S′ � {s} for an input sequence s, also
ξ−1(v) ⊆ s; and this implies that {ξ−1(v)} � ∆(S′) = S′′: so, for some sequence
s ∈ S′′ we have that ξ−1(v) ⊆ s or, equivalently, the Horn clause ξ(s) → v
belongs to the background Horn conditions.

Finally, we have found that G → s is one of the rules composing G → S,
which is one of the association rules coming from the closure system. Since
G ⊆ S′, the variables corresponding to sequences from G are all in F , and thus
the clause F ′ → ξ(s) with F ′ ⊆ F corresponds to one of the association rules. By
subsumption, and one resolution step with ξ(s) → v, we see that F → v follows
indeed from the association rules plus the background Horn conditions. 
�

Note that this proof works also well when the Horn clause is nondefinite,
that is, when considering F → �. In this case no model from M satisfies all the
variables in F , so, S′ � {si} for all si ∈ D; indeed we have that ∆(S′) = D (top
of the lattice not included in any input sequence).

Our characterization brings meaning to the deterministic association rules
extracted by the lattice method of ordered data. We have seen that they exactly
correspond to the empirical Horn approximation under the necessary background
Horn conditions. Next step is then to discuss the algorithmic consequences of
calculating these implication rules with order, and to propose specific algorithms.

5 Computing Rules in Ordered Contexts

As mentioned before and proved in [4], the closure operator ∆ characterizes
the closed patterns of CloSpan [13] (which are closed in the sense of not being
extendable in support, thus stable) as those that belong to a closed set. This
fact makes CloSpan a good candidate algorithm to construct the concepts of
our lattice model. Recently, a more efficient algorithm, BIDE [12], has been
presented; according to the authors, it outperforms CloSpan being more than an
order of magnitude faster; however, the output patterns mined by CloSpan or
BIDE are exactly the same. To the best of our knowledge, these two algorithms
are the only contributions to the mining of closed sequences up to now. The
output of either can be used to construct the concepts of our model, just by
appropriately organizing them.

However, computing the deterministic association rules in the ordered data
(equivalently, the empirical Horn approximation for the ordered context) we seem
to need as well all the minimal generators, in order to output all rules G → S
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where S is closed and G is a minimal generator of S. Thus, an important next
step to add to any current algorithm for closed sequences is then the calculation
of minimal generators for each closed set. We want to compute these minimal
generators by means of a general method, so that it can be plugged into any un-
derlying algorithm of mining closed sequential patterns such as either CloSpan
or BIDE. In this way, after computing the closed sets of sequences, the chosen
algorithm can directly calculate the minimal generators as well, without incur-
ring in inconvenient overheads for intersecting sequences of the database. In this
section we show how to compute minimal generators of a closed set of sequences
S as a sort of transversal of appropriately defined differences between S and all
proper closed predecessors in the lattice.

The difficulty of this proposal will rely on the formalization of both steps: 1/
what it is exactly the difference between two sets of sequences, and 2/ how to
properly define the appropriate variant of transversal. The motivation to look
for such an approach is that it can be seen that the concept lattice we have
obtained is isomorphic to a standard concept lattice for which such a method of
computing rules does already exist [10]; note however that it is not immediate
to carry over the isomorphism into the generators, so that we prefer to develop
our method fully within the closure operator on sets of sequences.

For comparison purposes, we quote here a result that we found in [10] and
that we would like to export here, whereby the minimal generators of a closed
set in the unordered context obtained by a closure operator Γ are characterized
(the original statement differs from ours but their equivalence is readily seen.)

Theorem 4. Let Z be a closed set of items Z = Γ (Z); the minimal generators
of Z are found as the minimal transversal hypergraph of the hypergraph of the
differences Z − Z ′ where Z ′ are the proper closed subsets of Z in the unordered
lattice.

The transversal hypergraph consists of sets that intersect each and every
of the given differences (called faces in [10], a term that comes from related
matroid-theoretic facts). Also, it is not difficult to see that it suffices to state
that the generator intersects the differences with Z−Z ′ for the closed immediate
subsets of Z. For instance, let Z = {a, b, c} be a closed set of items, whose
immediate closed predecessors in the lattice are Z ′

1 = {a, b} and Z ′
2 = {a, c};

then, the minimal generators of Z can be found by transversing the hypergraph
of differences H = {Z − Z ′

1, Z − Z ′
2}, that is, H = {{c}, {b}}. The minimal

transversal of H is {c, b}, and so it is the minimal generator of Z.
We would like to have a similar result as theorem 4 for the minimal generators

of the closed sets of sequences.

5.1 Computing Minimal Generators for Closed Set of Sequences

We preserve here the term faces for our appropriate formalization of the differ-
ences between one closed set and its proper closed predecessors (according to �);
for closed S, each face of S is S−S′, where S′ � S is a proper closed predecessor
of S, and the difference is defined as
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S − S′ = {s|{s} � S but {s} 	� S′}
The main property now is:

Lemma 3. Let S be a closed set of sequences and G � S; then ∆(G) = S if
and only if G intersects all the faces of S.

Here by G intersecting a face S−S′ we understand set-theoretic intersection,
that is, there must exist a common sequence in both. This corresponds to our
notion of transversal for ordered data.

Proof. Assume first that G does not intersect the face S − S′, for some S′ � S;
thus, no s ∈ G fulfills the condition in the definition of the face. Since G � S, for
all such s, {s} � S as well, and this implies {s} � S′, or actually G � S′. Now,
by monotonicity of ∆, from G � S′ � S and the fact that sequences in closed
sets are maximal we obtain S = S′ just as in 1; and S′ is not a proper predecessor
so that S − S′ is not a face. Conversely, assume that G indeed intersects all the
faces; from G � S and monotonicity again we have ∆(G) � S. Equality will
follow as we need, if we prove that ∆(G) is not a proper predecessor. Indeed, by
lemma 1, G � ∆(G), so for all s ∈ G, {s} � ∆(G), which negates the condition
in the definition of S −∆(G). Thus it can’t happen that any s is both in G and
in S − ∆(G), and this last difference cannot be a face because G intersects all
of them. This implies that ∆(G) is not a proper predecessor. 
�

Again, we only need to consider immediate predecessors: if G intersects the
faces corresponding to immediate predecessors, it must also intersect the other
faces, which are larger. Additionally, we may be only interested in minimal gen-
erators (according to �) since non-minimal generators only yield redundant as-
sociation rules. It is not difficult to see that this can be enforced by using only
those subsequences of sequences in S that are minimal in their respective face
for the construction of the generators as in lemma 3.

For a more graphical example of our method, let S = {〈(B)(C)(A)(D)〉} be
a closed set of sequences, as showed in the lattice of figure 2; the proper pre-
decessors of S are the closed set of sequences S′

1 = {〈(B)(C)(D)〉, 〈(A)(D)〉},
and S′

2 = {〈(B)(C)(D)〉, 〈(B)(C)(A)〉}. The minimal new subsequences in S not
contained in S′

1 are F1 = {〈(B)(A)〉, 〈(C)(A)〉}, and the minimal new subse-
quences in S not contained in S′

2 are F2 = {〈(A)(D)〉}. Now, to find the mini-
mal generators of S we must minimally transverse these differences, which are
indeed the two faces of S, obtaining two generators: G1 = {〈(A)(D)〉, 〈(B)(A)〉}
and G2 = {〈(A)(D)〉, 〈(C)(A)〉}, which are exactly the minimal generators of S
(see figure 3).

6 Conclusions

We have proposed a notion of deterministic association rules in ordered data,
building on the fact that such rules for unordered data can be formally justified
as implications in a propositional logic framework; our extension provides a
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way of mining facts where a set of subsequences implies another subsequence
in the data, and proves that the mined rules can be formally justified as well
by a purely logical characterization. We do that using the concept lattice model
provided by the Galois connection and associated closure operator proposed in
[4]: by means of minimal generators that imply a closed set of sequences of
the concept lattice. Indeed, these deterministic association rules characterize
exactly the natural notion of empirical Horn approximation for ordered data,
which involves specifying a number of background Horn conditions that ensure
consistency of the theory with the ordered context.

We have discussed as well the algorithmic consequences of deriving such im-
plications with order. Since any current algorithm for mining closed sequences
can be used for constructing the closed concepts of our lattice model, we just
need to incorporate here the derivation of minimal generators. We consider the
characterization of generators as transversals of faces, known in the unordered
case, and we prove a parallel result in our ordered case. This provides a method
that can be easily incorporated in any algorithm that constructs our closed sets
in the appropriate order, such as the algorithms existing in fact for closed se-
quences, so that generators and association rules can be indeed inferred from
just the system of closed sets. We are currently developing implementations of
our methods to investigate their behavior in practice.

Other extensions of the basic itemset-based characterization are worth more
research. A relevant property of the rules studied here is the need of absolute
confidence; this can be inappropriate in two different ways. First, one may wish
to take into account the possibility of small errors, such as miskeying, that
make inapplicable a deterministic association rule; it is possible to adapt the
case of itemsets to this consideration [15], which we consider a data cleaning
problem rather than a data mining or relational problem. A second, inherently
different case is the more usual application of association rules where more re-
laxed confidences are used. For this case, there is a large number of propos-
als of how to measure the strength of the implication; a survey and compar-
ison, with appropriate references, is given in [5]. To our knowledge, there is
no principled way to select one of them and know what one is actually do-
ing through this choice; specific data mining software may allow only some
of them, as a consequence mainly of research schools of their designers. In
fact, most measures allow for examples of counterintuitive or misleading
results.

We believe that it is possible to modify the definitions of Horn approxima-
tions so as to take into account the various forms of strength of implication, or
at least some of them; so that, at the time of selecting one measure of strength
of implication, we know more information about the specific bias we are intro-
ducing in the analysis, and maybe check the pertinence of such a bias against
domain information that could be available to the data miner. This difficult
but important extension of our work, which also will allow for consideration of
sequential or more generally structured contexts, is to be pursued in the near
future by the authors.
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